3Shape’s 3rd generation Removable Partial Design includes new and powerful tools for reliable creation of removable partials while reducing production time by 60-70%. Technicians start by designing the anatomies before the framework, thereby gaining accurate digital control over a technique-demanding process. Design both metal and flexible frameworks.

Extended toolbox for Removable Partial Denture design
Gain unique freedom for designing support bars, runners, and casting reservoirs of any type or at any angle. Technicians can now omit the manual step, and save time while increasing stability during casting and ensuring accuracy when fitting the final framework.
3shape Software
Removable Partial Design

Scan your pencil markings on the model:
Texture scanning on the D800 and D900 series scanners captures 2D images of the gypsum model surface and precisely overlays these on the 3D model - enhancing visualisation of surface details and bringing hand drawn design guidance markings into the scan.

Design sophisticated retention grids:
3Shape’s Removable Partial design has been empowered with new features, including the Retention Grid tool that lets users easily pan and rotate the grid patterns for optimal placement.

Selective Laser Melting lets you skip casting:
Due to recent advancements in Selective Laser Melting technologies with improvements in materials, software, and machines, Removable Partial can now be digitally manufactured in metal directly from the CAD design file, completely omitting the need for wax-casting and bypassing manual production steps.

As a differentiator, 3Shape’s design software allows for high-quality results consistently while controlling a technique-demanding process. Design both metal and flexible frameworks, starting by designing the anatomies before the framework, thereby gaining accurate digital creation of removable partials while reducing production time by 60-70%. Technicians apply attachments, stippled wax pattern and support bars, and work - ready for hand veneering. By designing the anatomy first, the scan lays these on the 3D model - enhancing visualization of surface details and bringing hand drawn design guidance markings into the scan.