Cavitation Simulation on Ship Propellers with Erosion Safety Index

Keun Woo Shin
Propeller & Aftship R&D Department, MAN Energy Solutions
Frederikshavn, Denmark
Contents

• Introduction of erosive cavitation on ship propellers

• CFD setup
 — Cavitation simulation
 — Hull wake modeling
 — Erosion safety index

• CFD validation
 — Cavitation variation
 — Pressure pulse on hull surface
 — Erosion prediction
Introduction (1/3)

- Suction-side sheet cavitation
- Tip vortex cavitation
→ Acceptable to some extent

- Hub vortex caviation
- Blade root cavitation
→ Unavoidable in high-loading conditions

- Cloud cavitation
- Bubble cavitation
- Pressure-side cavitation
→ Erosion risk → Unacceptable

Introduction (2/3)

- Collective burst of cloud cavitation
 → High erosion risk

- Research on static hydrofoil
 → Cloud cavitation mechanism
 ← Re-entrant jet
 ← Extensive sheet cavitation

- Cloud cavitation on oscillating hydrofoil
 ← Periodic change of AoA
 → Cloud cavitation on ship propellers

Introduction (3/3)

• Cloud cavitation on ship propellers
 ← Extensive sheet cavitation
 ← Irregular hull wake

• CFD on propeller designs
 with different tip loadings
 — Abrupt tip unloading
 → Cloud cavitation

 — Gradual tip unloading
 → Conversion of sheet cavitation into tip vortex cavitation
 → Safe way for avoiding cloud cavitation

Pitch ratio with respect to radius

Shin, K. W. & Andersen, P. ‘CFD analysis of cloud cavitation on three tip-modified propellers with systematically varied tip geometry’ CAV2015, Lausanne, Switzerland
CFD Setup (1/5)

Computational model

- Propeller and rudder in cylindrical fluid domain
- Rigid body motion and sliding mesh in rotating domain
- Unsteady simulation with 6° rotation per Δt → 0.5°
- Trimmed hexahedral mesh
- Grid refinement along blade edges
- ~20 mil cells → ~50 hours with 192 cores
- Fine mesh in outer-radius region
 → Resolving cavitating flows
CFD Setup (2/5)

CFD solver

- Commercial CFD software StarCCM+
- DES (Detached-eddy simulation) → Better prediction of detached cavitation than RANS
- Cavitation model ← Inter-phase mass transfer model based on asymptotic Rayleigh-Plesset equation
- VOF method → Vapor volume fraction → Fluid property → Eulerian multi-phase model
- Vapor transport equation
- Incompressible flow solver

Shin, K. W. ‘Cavitation simulation on Kappel propeller with a hull wake field’. Proc. of 16th NuTTS, Marstrand, Sweden, 2014
Hull wake modeling

- Numerical modeling of hull wake instead of including hull geometry
 ← Hull geometry unavailable for propeller designers in commercial project
 → Reducing computational effort

- Axial hull wake
 ← Non-uniform inlet velocity

- Transverse hull wake
 ← Momentum source 0.6·D upstream from propeller plane

- Wake model test in the same computational domain excluding propeller model
Cavitation simulation condition

- Model-scale simulation
 → Propeller diameter of ~25 cm

- Following the condition of cavitation tunnel test
 ← Propeller speeds of 24 – 30 rps
 ← Not complying with Froude’s law
 → Increasing Reynolds number

- Cavitation number from full-scale condition
 → Model-scale reference pressure

- Worst cavitating condition of 100% MCR and ballast draft

Cavitation tunnel in SSPA in Gothenburg, Sweden (www.sspa.se)
CFD Setup (5/5)

Erosion safety index

- Potential energy of cavity collapse
 \[E_{pot} = V_V \cdot (p - p_v) \]
- Potential power of cavity collapse
 \[P_{Pot} = (p - p_v) \cdot \partial V_V / \partial t + V_V \cdot \partial p / \partial t \]
- Erosion safety index based on \(P_{Pot} \)
 → Deviations from experiment results
 \(\Delta t = 50 – 100 \) µs in DES
 > Duration of collective bubble collapse
 = order of 1 – 10 µs

- Adopting erosion index based on \(E_{Pot} \)
- Calculating erosion index on cells adjacent to propeller blade surface
- Accumulation of erosion index for a propeller revolution after achieving converged solution

Pfitsch, W., Gowing, S., Fry, D., Donnelly, M. & Jessup, S. ‘Development of measurement techniques for studying propeller erosion damage in severe wake fields’. Proc. of CAV2009, Ann Arbor, MI, USA

CFD Result – Case 1 (1/10)

Validation of cavitation simulation

- 4-blade Kappel propeller for bulk-carrier
- Cavitation tunnel test in SSPA

- 10% vapor fraction for cavitation interface
- Good agreement in unsteady sheet cavitation
- Large-scale structure of cloud cavitation in CFD

CFD Result – Case 2 (2/10)

Tip vortex cavitation (TVC)

- CFD with adaptive grid
 ↩ Tip vortex trajectory predicted by iso-surface of Q-criterion
- Good agreement in LE sheet cavitation
- Extended TVC after grid refinement
- Pronounced spiral structure of TVC
- Shorter extent of TVC than exp
 → Repetitive grid refinement

Shin, K. W. & Andersen, P. ‘CFD analysis of propeller tip vortex cavitation in ship wake fields’. Proc. of Cav2018
CFD Result – Case 2 (3/10)

Pressure pulse above propeller

- Two points on hull surface near rudder headbox
- No hull surface in CFD → Increased by factor of 2
- Increase of high-order pressure pulses ← Grid refinement
- Underestimation of high-order pressure pulses ← Bursting of TVC at rudder headbox

Shin, K. W. & Andersen, P. ‘CFD analysis of propeller tip vortex cavitation in ship wake fields’. Proc. of Cav2018
CFD Result – Case 4 (7/10)

Cavitation simulation

- No cavitation tunnel test result
- Leading-edge sheet cavitation
- Cavitation detachment before reaching tip
- Cavitation streak at $r/R = 0.99$
- Pressure fluctuations
CFD Result – Case 5 (9/10)

Thrust breakdown

- INSEAN E779A propeller
- Model tests with varying cavitation number
- Good agreement for moderate cavitation
- Overestimation for extensive cavitation

← Blockage effect in cavitation tunnel
← Open-water test in a small tunnel

Shin, K. W. & Andersen, P. ‘CFD analysis of ship propeller thrust breakdown’. Proc. of SMP19, 2019
CFD Result – Case 5 (10/10)

Seed density in CFD

• Seed density → Cavity growth and collapse
• Overestimation of LE cavitation at $\sigma_n = 1.763$
• Overall overestimation at $\sigma_n = 0.630$
• Common overestimations in cavitation simulations on the same case made by multiple institutes

Shin, K. W. & Andersen, P. ‘CFD analysis of ship propeller thrust breakdown’. Proc. of SMP19, 2019
Closing Remarks (1/2)

Cavitation simulation with hull wake modeling

• Practical cavitation predictions for ship propeller designs
 → Simplified approach for saving computational effort

• Reproducing destabilization and detachment of cavitation
 → Resolving micro-scale structure & dynamic collapse of cavitation bubble
 → Improving simulations on tip vortex cavitation
 → Tests on pressure-side cavitation and full-scale cavitation
Closing Remarks (2/2)

Erosion safety index

- Quantitative evaluation of erosion safety
- Reasonable agreement with model test results and observations
- Erosion spot predicted upstream from those in model tests & observations → Numerical study with refining temporal and spatial discretization

Shin, K. W. & Andersen, P. ‘Numerical study on characteristics of cloud cavitation on a ship propeller’. Proc. of 3rd Int. Meeting on Propeller Cavitation, 2018
Disclaimer

All data provided in this document is non-binding. This data serves informational purposes only and is especially not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.
Thank you very much!