Supporting Information

Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex

Seon Joo Lee,[†] Seong Sik Shin,^{†,‡} Young Chan Kim,[†] Dasom Kim, ^{||} Tae Kyu Ahn, ^{||} Jun Hong Noh,[†] Jangwon Seo,^{*,†} and Sang Il Seok^{*,†,‡}

[†]Division of Advanced Materials, Korea Research Institute of Chemical Technology, 141 Gajeong-Ro, Yuseong-Gu, Daejeon 305-600, Republic of Korea

[‡]School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 689-798, Republic of Korea

*Corresponding authors. E-mail: seoksi@krict.re.kr, jwseo@krict.re.kr

Department of Energy Science, Sungkyunkwan University, 2066 Seobu-Ro, Jangsan-Gu, Suwon 440-746, Republic of Korea

Experimental section

Chemicals

Hydriodic acid (99.95 %, 57 wt.% in H_2O), formamidine acetate salt (99 %), titanium diisopropoxide bis(acetylacetonate) (75 wt.% in isopropanol), N,N-dimethylformamide (anhydrous, 99.8 %), dimethyl sulfoxide (anhydrous, \geq 99.9 %), tin(II) fluoride (99 %), pyrazine (\geq 99 %), toluene (anhydrous, 99.8 %), chlorobenzene (anhydrous, 99.8 %), bis(trifluoromethane) sulfonimide (\geq 95.0 %), acetonitrile (anhydrous, 99.8 %), 2,6-lutidine (\geq 99 %) were purchased from Aldrich. Ethanol and diethyl ether were purchased from Burdick & Jackson. 2,2′,7,7′-tetrakis(N,N-bis(p-methoxyphenyl)amino)-9,9′-spirobifluorene (Spiro-MeOTAD) was purchased from Luminescence Technology Corp (Lumtec). All chemicals mentioned above were used without further purification.

Synthesis of formamidinium iodide (CH(NH₂)₂I, FAI)

CH(NH₂)₂I (FAI) was synthesized according to the literature. 30 mL of hydriodic acid was added to 250 mL round-bottom flask which is containing 15 g of formamidine acetate and the reaction was proceeded at 0 °C for 2 h with vigorous stirring. The precipitate was recovered by evaporating the reaction mixture at 50 °C for 1h. The product was dissolved in ethanol and recrystallized by diethyl ether. The resulting FAI was collected by filtration and dried in a vacuum oven at 60 °C overnight.

Film fabrication

Formamidinium iodide (FAI, 1 mmol), tin iodide (SnI₂, 1 mmol) and tin fluoride (SnF₂, 0.1 mmol) were dissolved in the following solvent (1 mL): 1. DMF, 2. DMF and DMSO, and 3. DMF and DMSO including pyrazine. The resulting solution (80 μ L) was loaded

and deposited onto the mesoporous TiO₂/blocking TiO₂/FTO substrate via a two-step spin-coating process, at 1,000 rpm and 5,000 rpm for 10 s and 50 s, respectively. In the case of non-solvent dripping process, 1 mL of toluene was dripped onto the substrates during the second spin-coating step. The substrate was annealed at 60 °C for 10 min.

Device fabrication

A dense blocking layer of TiO₂ with 60 nm thickness was prepared by spray pyrolysis. 20 mM titanium diisopropoxide bis(acetylacetonate) diluted in ethanol was spread onto a F-doped SnO₂ (FTO, Pilkington, TEC8) substrate at 450 °C. This procedure is for preventing a direct contact between FTO and the hole-conducting layer. A mesoporous TiO₂ with 400 nm thickness was deposited onto the blocking TiO₂/FTO substrate by spin coating at 2,000 rpm for 50 s using a diluted TiO₂ paste and sintered at 500 °C for 1 h. The TiO₂ paste was prepared by the same procedure as described in our previous report.¹

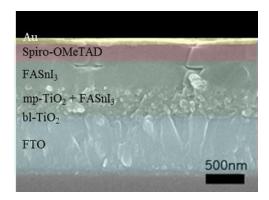
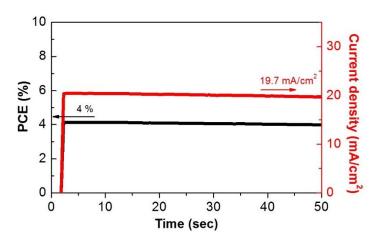
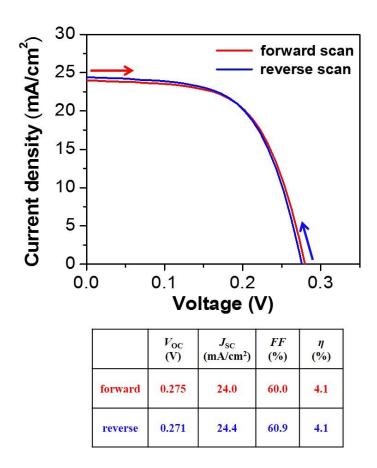
The CH(NH₂)₂SnI₃ (FASnI₃) perovskite absorbing layer was prepared in glove box. FAI (1 mmol) and SnI₂ (1 mmol) were dissolved in 1 mL of DMF and DMSO mixed solvent (4:1 volume ratio) and then SnF₂ and pyrazine were sequentially added. The resulting solution was coated onto the mesoporous TiO₂/blocking TiO₂/FTO substrate via a two-step spin-coating process, at 1,000 rpm and 5,000 rpm for 10 s and 50 s, respectively. During the second spin-coating step, 1 mL of toluene was dripped onto the substrates. The substrate was annealed at 60 °C for 1 h. A solution of spiro-MeOTAD/chlorobenzene (72.3 mg/mL) containing 17.5 μ L of bis(trifluoromethane) sulfonimide/acetonitrile (509 mg/mL) and 30 μ L of 2,6-lutidine was spin-coated on the perovskite layer at 3,000 rpm for 30 s. Finally, 60 nm thick gold electrode was deposited onto the devices using a thermal evaporator while maintaining N₂ condition. The effec-

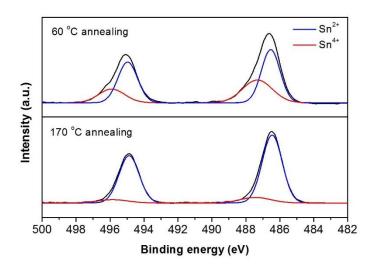
tive active area was fixed at 0.16 cm². The devices were thermally encapsulated with cover glass (2.5 cm×1.5 cm) using a polymer and an epoxy resin under nitrogen atmosphere.

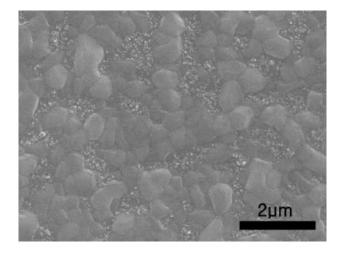
Characterization

The morphology of FASnI₃ films and full device were investigated using field emission scanning electron microscopy (Mira 3 LMU, Tescan) operated at 20 kV. X-ray diffraction (XRD) patterns of the prepared films were measured on a Rigaku SmartLab X-ray diffractometer. The Fourier transform infrared (FT-IR) spectra were recorded with a Bruker ALPHA-P spectrophotometer. X-ray photoelectron spectroscopy (XPS) studies were carried out using a Thermo VG Scientific K-Alpha. The absorption spectra were collected on a Shimadzu UV 2550 spectrophotometer using the encapsulated films. The external quantum efficiency (EQE) was measured using a power source (Newport 300 W Xenon lamp, 66920) with a monochromator (Newport Cornerstone 260) and a multimeter (Keithley 2001). Transient photovoltage decay measurements were performed using a nanosecond laser (10 Hz, NT342A-10, EKSPLA) as a small perturbation light source and a Xe lamp (150 W, Zolix) as a bias light source. The device was directly connected to a digital oscilloscope (500 MHz, DSO-X 3054A, Agilent) and the input impedance of the oscilloscope was set to 1 M Ω for an open circuit condition. The bias light intensity was controlled by neutral density filters for various open circuit voltages (V_{oc}) and a strongly attenuated laser pulse of 550 nm, which generated a voltage transient (ΔV) that did not exceed 20 mV. The J-V curves were measured using a solar simulator (Newport, Oriel Class A, 91195A) under standard air-mass 1.5 global (AM 1.5G) illumination with an irradiation intensity of 100 mW cm⁻² (Keithley 2420) and a calibrated Si-reference cell certified by the National

Renewable Energy Laboratory, USA. The J-V curves were measured by reverse scan (forward bias (1.2 V) \rightarrow short circuit (0 V)) or forward scan (short circuit (0 V) \rightarrow forward bias (1.2 V)). The step voltage and the delay time, which is a delay set at each voltage step before measuring each current, were set to 10 mV and 10 ms, respectively. The J-V curves for all devices were measured by masking the active area using a metal mask with an area of 0.096 cm². Time-dependent current was measured with a potentiostat (PGSTAT302N, Autolab) under one sun illumination.


Figure S1. Cross-sectional SEM image of the full device in this work.


Figure S2. Stabilized power conversion efficiency and photocurrent density of FASnI₃ PSC measured at maximum power voltage of 0.202 V for 50 seconds.

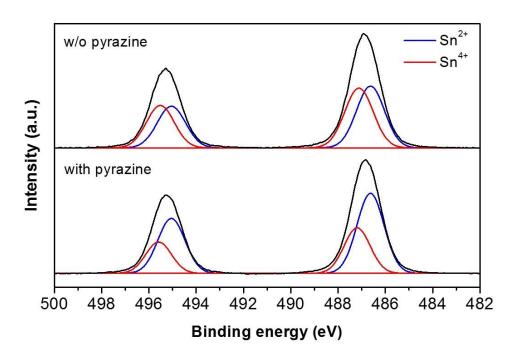

Figure S3. Photocurrent density–voltage (J-V) curves of FASnI₃ perovskite solar cell with pyrazine measured by forward $(J_{sc} \rightarrow V_{oc})$ and reverse $(V_{oc} \rightarrow J_{sc})$ scans.

Figure S4. XPS spectra of the Sn (3s) bands of FASnI₃ films prepared in the absence of SnF₂ with different annealing temperature (60 $^{\circ}$ C and 170 $^{\circ}$ C).

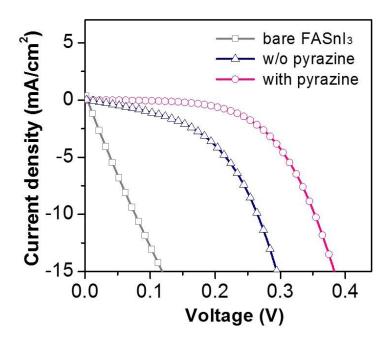
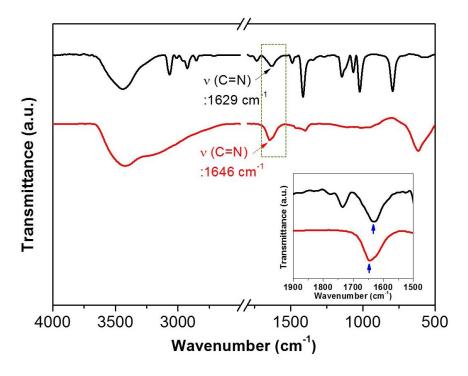


Figure S5. SEM plane image of FASnI₃ perovskite film prepared in the absence of SnF₂ and annealed at $170\,^{\circ}$ C.



	Sn ⁴⁺ contents (%)
w/o pyrazine	49.8
with pyrazine	35.3

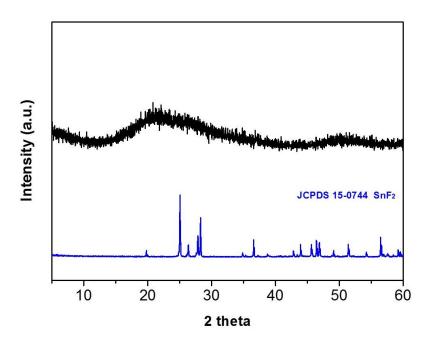

Figure S6. XPS spectra of the Sn (3s) bands of FASnI₃ films when the etching time is 60 seconds.

Figure S7. Dark *J-V* curves of bare $FASnI_3PSC$ PSC with and without pyrazine in the presence of SnF_2 (10 mol%).

Figure S8. IR spectra of the free pyrazine (black) and SnF₂-pyrazine complex (red). The inset shows the magnified view from 1900 nm to 1500 nm.

Figure S9. X-ray diffraction (XRD) pattern of the SnF₂-pyrazine complex.

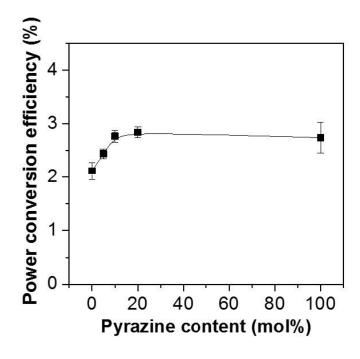


Figure S10. Power conversion efficiency of devices as a function of pyrazine content.

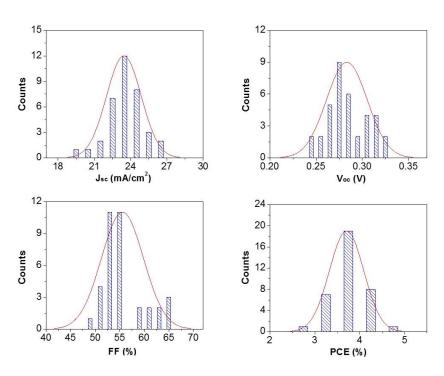


Figure S11. Histograms of photovoltaic parameters measured for 36 devices.

References

(1) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. *Nature* **2015**, *517*, 476-480.