Interesting cases in fungal asthma

Ritesh Agarwal MD, DM
Professor of Pulmonary Medicine
Postgraduate Institute of Medical Education and Research
Chandigarh, India
Fungal asthma

• Broadly defined as the presence of fungal sensitization or fungal allergy in patients with asthma

• Fungal sensitization: immune-mediated response to a fungus, without evidence of inflammation or tissue damage

• Fungal allergy: immune-mediated inflammatory response to a fungus, sometimes associated with tissue damage
Fungal asthma

Denning DW et al. Clin Transl Allergy 2014, 4: 14
Agarwal R. Curr Allergy Asthma Rep 2011; 11: 403-413
Diagnosis of fungal asthma

<table>
<thead>
<tr>
<th>Aspergillus fumigatus associated asthma (AFAA)</th>
<th>Allergic bronchopulmonary aspergillosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled asthma</td>
<td>Asthma</td>
</tr>
<tr>
<td>Elevated A. fumigatus (or other fungus) specific IgE (>0.35 kUA/L)</td>
<td>A. fumigatus specific IgE >0.35 kUA/L</td>
</tr>
<tr>
<td>Total IgE <500 IU/mL</td>
<td>Total IgE >1000 IU/mL</td>
</tr>
<tr>
<td>Severe asthma with fungal sensitization (SAFS)</td>
<td>Elevated A. fumigatus specific IgG (>27 mg<sub>A</sub>/L)</td>
</tr>
<tr>
<td>Severe asthma</td>
<td>Transient or fixed pulmonary opacities</td>
</tr>
<tr>
<td>Elevated A. fumigatus (or other fungus)-specific IgE (>0.35 kUA/L)</td>
<td>Total eosinophil count >500 cells/µL</td>
</tr>
<tr>
<td>Total IgE 500-1000 IU/mL</td>
<td>HRCT of the chest</td>
</tr>
<tr>
<td>Normal A. fumigatus specific IgG (<27 mg<sub>A</sub>/L)</td>
<td>ABPA-S (normal HRCT chest)</td>
</tr>
<tr>
<td></td>
<td>ABPA-B (bronchiectasis)</td>
</tr>
<tr>
<td></td>
<td>ABPA-HAM (high attenuation mucus)</td>
</tr>
</tbody>
</table>
Case 1

• 22-year old woman with history of asthma since 5 years, worsened for the last 1 year
• No history of fever, hemoptysis, weight loss
• Treated with a combination of inhaled steroids (budesonide 400 µg/d), long-acting β-2 agonists (LABA; formoterol 24 µg/d) and montelukast (10 mg/d)
• Treated for pneumonia twice in the past
Case 1

• Chest radiograph: fleeting pulmonary opacities
• *A. fumigatus*-specific IgE: 0.1 kUA/L
• Total IgE: 84 IU/mL
• *Aspergillus* skin test: negative
• *A. fumigatus*-specific IgG: 10 mgA/L
• *Aspergillus* precipitins: negative
• Eosinophil count: 840 cells/µL

• Sputum culture: *A. fumigatus*
• HRCT Chest:
Case 1
Case 1

• Flexible bronchoscopy:
 • Normal airway anatomy
 • Excess secretions
• Bronchoalveolar lavage:
 A.fumigatus
• Post-bronchoscopy sputum:
 A.fumigatus

• Diagnosed as ABPA
 (eosinophilia, persistent growth of *A.fumigatus*, high attenuation mucus)
• Good response to oral glucocorticoids
Case 2

- 60-year old woman
- History of asthma since 26 years, treated with a combination of inhaled steroids (fluticasone 250 µg/d) and LABA (salmeterol 50 µg/d)
- Presented with fever and hemoptysis of 2 weeks duration
- Chest radiograph: LLL consolidation
- Treated with oral antibiotics (augmentin), no response
- Referred to our clinic
Case 2

- HRCT Chest: LLL consolidation
- Sputum culture: no growth of any organism
- CT-guided FNAC:
 - Cytology: acute inflammation, eosinophils
 - Cultures: sterile
Case 2

- *A. fumigatus*-specific IgE: 89 kUA/L
- Total IgE: 201 IU/mL
- *Aspergillus* skin test: negative
- *A. fumigatus*-specific IgG: 18 mgA/L
- *Aspergillus* precipitins: negative
- Eosinophil count: 280 cells/µL
Case 2

- Treated with itraconazole 400 mg/d for four months
- Good response
- Af-IgE: 89 -> 15.6 -> 0.6 kUA/L
<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>A. fumigatus specific IgE >0.35 kUA/L</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>Total IgE > 1000 IU/mL</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Elevated A. fumigatus specific IgG (>27 mg/L)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Transient or fixed pulmonary opacities</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Total eosinophil count >500 cells/µL</td>
<td>✔</td>
<td>x</td>
</tr>
<tr>
<td>HRCT of the chest:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>✔</td>
<td>X</td>
</tr>
<tr>
<td>High-attenuation mucus</td>
<td>✔</td>
<td>X</td>
</tr>
</tbody>
</table>
ABPA with normal IgE (total)

- Prior glucocorticoid therapy
- Very early ABPA
- Rituximab (anti CD20) therapy
- Patient has a very low IgE to begin with
 - For e.g. the IgE is 10-20 IU/mL. Despite a 10-20 fold rise it would be less than 200-400 IU/mL
- Any criteria or range for a population would generally cover only 95% of the population
 - It is expected that several individuals would not meet a criteria

Dorsaneo D et al. Ped Asthma Allergy Immunol 2004; 17: 146-150
Maiz L et al. J Allergy Clin Immunol 1997; 100: 431-432
Case 3

• 56-year old woman
• History of asthma since 22 years
• No history of fever, hemoptysis
• Treated with a combination of inhaled steroids (budesonide 400 µg/d) and LABA (formoterol 24 µg/d)
• Referred to our chest clinic for workup of fleeting pulmonary opacities
Case 3

- Chest radiograph: fleeting pulmonary opacities
- *A. fumigatus*-specific IgE: 60.3 kUA/L
- Total IgE: 12,546 IU/mL
- *A. fumigatus* skin test: positive
- *A. fumigatus*-specific IgG: 92 mgA/L
- *A. fumigatus* precipitins: positive
- Eosinophil count: 240 cells/µL
- HRCT chest: bronchiectasis, high-attenuation mucus

- Sputum culture: *A. flavus*
- *A. flavus*-specific IgE: 75.7 kUA/L
- *A. flavus* skin test: positive
- *A. flavus* precipitins: positive
Case 3

• Classic findings of ABPA (raised A.\textit{fumigatus} specific IgE, A.\textit{fumigatus} skin test positive, A.\textit{fumigatus} precipitins present)

• However, \textit{A.flavus} culture positive and \textit{A.flavus}-specific IgE greater than \textit{A.fumigatus}-specific IgE

• Co-sensitization or Cross-reactivity (ABPA or ABPM)
Cross-reactivity

• Phenomenon where the IgE antibody recognizes, binds, and induces an immune response to similar allergenic molecules (homologues) present in different species

• IgE crossreactivity often occurs between
 • allergenic molecules in closely related species or
 • between well preserved molecules with similar function present in widely different species that belong to the same protein family
Co-sensitization

• Genuine sensitization to more than one allergen source, where the sensitization is not due to cross-reactivity

• The presence of cross-reactivity can be discerned by performing qualitative IgE inhibition tests or by identifying the amino-acid sequence responsible for cross-reactivity

Canonica GW et al. World Allergy Organ J 2013; 6: 17
van Kampen V et al. Int Arch Allergy Immunol 2015; 166: 63-70
Sensitization to *A. flavus* in ABPA

- 53 subjects with a mean (SD) age of 34.2 (12.8) years were included
- Sensitization to *A.flavus* was seen in 51 (96.2%) subjects; 49 (92.5%), 21 (39.6%) and 12 (22.6%) instances on fungal-specific IgE, skin prick test and precipitins, respectively
- Sputum culture was positive in 18 (33.9%; *A.flavus* [n=12], *A.fumigatus* [n=6]) subjects
- ABPM due to *A.flavus* was diagnosed in 16 (30.2%) subjects
- More likely to have high-attenuation mucus and a trend towards higher occurrence of sinusitis, compared to ABPA
- Future work will correlate the role of component-resolved diagnostics in differentiating between the two entities

Sehgal IS et al. Med Mycol 2018; In press
Case 4

• 32-year old man
• History of asthma since 25 years
• No history of fever, hemoptysis
• Diagnosed as ABPA at another hospital
• Referred to our chest clinic for recurrent asthma and ABPA exacerbations and glucocorticoid-dependent ABPA
Case 4

- Chest radiograph: fleeting pulmonary opacities
- *A. fumigatus* specific IgE: 98 kUA/L
- Total IgE: 4300 IU/mL
- *A. fumigatus* skin test: positive
- *A. fumigatus* specific IgG: 42 mgA/L
- *A. fumigatus* precipitins: positive
- Eosinophil count: 986 cells/µL
- HRCT chest: extensive bronchiectasis involving all lobes
- Sputum culture: no organism
- FEV₁ 1.1 liters (42% predicted)
Case 4

- Was being treated with prednisolone (20 mg/d), itraconazole (400 mg/d), inhaled steroids (budesonide 1600 µg/d), LABA (formoterol 24 µg/d), theophylline (400 mg/d) and montelukast (10 mg/d)
- Had significant steroid-related adverse effects (weight gain, cushingoid facies, acne, skin striae)
- We increased the dose of prednisolone to 50 mg/d and changed itraconazole to voriconazole (400 mg/d) as he had significant anorexia and fatigue
- Despite this, the patient experienced two asthma exacerbations over the next two months
Case 4

• Also, the IgE decreased to only 3900 IU/mL (10%) after 2 months with no significant improvement in symptoms

• Subsequently, the patient received intravenous methylprednisolone pulse 1 gm/day for 3 days. All other therapies were continued

• The patient again landed in emergency with another asthma exacerbation

• Prednisolone was increased to 60 mg/day and omalizumab 375 mg s.c every two weeks was initiated
Case 4

- The patient had another mild asthma exacerbation in the next month which was managed with nebulized bronchodilators.
- There was only mild improvement in symptoms initially.
- However, there was no exacerbation over the next 4 months.
- We could taper his steroids and voriconazole over the next 4 months.

- After 8 months of omalizumab therapy, the patient was off prednisolone, montelukast, voriconazole and theophylline.
- For the first time in 8 years, the patient was off any oral medication.
Treatment of ABPA

• Glucocorticoids are the most effective anti-inflammatory agents

• **Regime 1 (Low [medium] dose regimen):** prednisolone 0.5 mg/kg/day x 1-2 weeks, then on alternate days for 6-8 weeks. Then taper by 5-10 mg q2 weeks and discontinue

• **Regime 2 (High-dose regimen):** prednisolone, 0.75 mg/kg for 6 weeks, 0.5 mg/kg for 6 weeks, taper by 5 mg q6 weeks. Continued for at least 6-12 months

A randomised trial of glucocorticoids in acute-stage allergic bronchopulmonary aspergillosis complicating asthma

Ritesh Agarwal¹, Ashutosh N. Aggarwal¹, Sahajal Dhooria¹, Inderpal Singh Sehgal¹, Mandeep Garg², Biman Saikia³, Digambar Behera¹ and Arunaloke Chakrabarti⁴

Glucocorticoids in ABPA

- 92 subjects (high-dose n=44, medium-dose n=48)
- Numbers of subjects with exacerbation after 1-year and glucocorticoid-dependent ABPA after 2-years similar in the two groups
- Improvement in lung function and time to first exacerbation similar in the two groups
- Side-effects significantly higher in the high-dose group
- About 12% of patients treated with the low (medium) dose protocol do not respond and require higher doses

Azoles in ABPA

• 55 steroid-dependent ABPA: itraconazole 400 mg/day vs. placebo
 • Difference between 2 groups was significant in composite outcome
 • Reduction in steroid by ≥50%
 • Decrease in IgE by ≥25%
 • At least one [increase in exercise tolerance by ≥25%, improvement by ≥25% in PFTs, resolution of infiltrates]
 • No significance when each outcome examined separately

• 29 ‘clinically stable’ ABPA randomized to receive itraconazole or placebo (1/3rd already on steroids)
 • Use of itraconazole led to a decline in sputum inflammatory markers, serum IgE levels and number of exacerbations warranting glucocorticoid

Wark PA et al. J Allergy Clin Immunol 2003; 111: 952-957
Other therapies

• Newer azoles (voriconazole, posaconazole), aerosolized amphotericin
 • Reserved in patients with no (or poor) response with itraconazole or encounter adverse effects with itraconazole

• Pulse doses of methylprednisolone
 • Refractory ABPA exacerbations
 • Along with azoles to decrease the adverse effects associated with daily oral steroids

Sehgal IS et al. J Postgrad Med 2014; 60: 41-45
Sehgal IS et al. Eur Respir Rev 2014; 23: 149-152
Omalizumab

13 patients with chronic ABPA randomized to 4-month treatment with omalizumab (750 mg monthly) or placebo

- Exacerbations occurred less frequently
- Mean FeNO decreased
- Basophil sensitivity to *A. fumigatus* decreased significantly after omalizumab but not after placebo

Clinical Efficacy and Immunologic Effects of Omalizumab in Allergic Bronchopulmonary Aspergillosis

Astrid L. Voskamp, MSc², Andrew Gillman, FRACP⁴, Karen Symons, RN⁵, Alessandra Sandrini, MD, PhD⁶, Jennifer M. Rolland, PhD⁴, Robyn E. O’Hehir, FRACP, PhD⁴, and Jo A. Douglass, MD, FRACP⁴ Melbourne, Australia

Mepolizumab

- Mepolizumab - additional and effective treatment option for severe ABPA resistant to corticosteroids, antifungal therapy, and omalizumab

- It also demonstrates a potentially synergistic effect of using mepolizumab with omalizumab

Clinical Communications

Combination omalizumab and mepolizumab therapy for refractory allergic bronchopulmonary aspergillosis

Matthew C. Altman, MDa,b, Jake Lenington, MDa, Steve Bronson, RNa, and Andrew G. Ayars, MDa,b
Treatment protocol

Active ABPA (stage 1)

Initiate therapy with corticosteroids: 3-6 months

Followup: chest radiograph, spirometry, serum total IgE q8 weeks

Response (stage 2) | Remission (stage 4)

Exacerbation (stage 3): Steroids plus itraconazole for 6 months

Treatment-dependent (stage 5)

Long term therapy: azoles, low-dose glucocorticoids, methylprednisolone pulses, nebulized amphotericin B, omalizumab

Agarwal R. Mycopathologia 2014; 178: 447-56
Our experience with omalizumab

- We have used omalizumab in only 8 cases
- 7 of the 8 have shown good response
- Response generally occurs after 4 months, and is maintained till you continue omalizumab
Case 5

• A 21-year old male previously treated twice for tuberculosis with empiric anti-tuberculosis treatment presented with cough, recurrent hemoptysis, low grade fever and wheezing since 8 months

• Six months prior to presentation, he had a history of acute onset chest pain (spontaneous pneumothorax) requiring placement of intercostal tube
Case 5

- Diagnosed as chronic pulmonary aspergillosis (CPA) complicating ABPA and started on oral itraconazole (400 mg/day)
- Serum itraconazole levels after 2 weeks were 1.24 µg/mL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus-specific IgE</td>
<td>61.7 KUA/L</td>
</tr>
<tr>
<td>A. fumigatus-specific IgG</td>
<td>182 mgA/L</td>
</tr>
<tr>
<td>Total IgE</td>
<td>19,366 IU</td>
</tr>
<tr>
<td>Eosinophil count</td>
<td>350 cells/µL</td>
</tr>
<tr>
<td>Aspergillus skin test</td>
<td>22 mm</td>
</tr>
<tr>
<td>Serum precipitins</td>
<td>++</td>
</tr>
<tr>
<td>Serum galactomannan</td>
<td>0.49</td>
</tr>
<tr>
<td>Sputum culture</td>
<td>A. fumigatus</td>
</tr>
<tr>
<td>FVC</td>
<td>2.37 litres</td>
</tr>
<tr>
<td>FEV 1</td>
<td>2.17 litres</td>
</tr>
<tr>
<td>FEV1:FVC ratio</td>
<td>91.6</td>
</tr>
</tbody>
</table>
Case 5

- At 6 months he had clinical (except hemoptysis) and serological response
- Itraconazole was stopped

<table>
<thead>
<tr>
<th>Parameter</th>
<th>3 months</th>
<th>6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. fumigatus-specific IgE</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A. fumigatus-specific IgG</td>
<td>35 mgA/L</td>
<td>26 mgA/L</td>
</tr>
<tr>
<td>Total IgE</td>
<td>11,160 IU</td>
<td>6,911 IU</td>
</tr>
<tr>
<td>Eosinophil count</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aspergillus skin test</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Serum precipitins</td>
<td>Negative</td>
<td></td>
</tr>
<tr>
<td>Serum galactomannan</td>
<td>0.39</td>
<td>0.30</td>
</tr>
<tr>
<td>Sputum culture</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>-</td>
<td>2.87</td>
</tr>
<tr>
<td>FEV1</td>
<td>-</td>
<td>2.84</td>
</tr>
<tr>
<td>FEV1:FVC ratio</td>
<td>-</td>
<td>99</td>
</tr>
</tbody>
</table>
Case 5

- Six months after stopping treatment he again presented with low grade fever, hemoptysis, worsening breathlessness
- Total IgE (19,994 IU/mL), \textit{A. fumigatus}-specific IgG (84 mgA/L)
- Again started on itraconazole; there was partial response, however fever and breathlessness persisted (serum itraconazole levels, 1.4 µg/mL)
- IgE had declined to 15,441 IU/mL after 2 months
- Oral glucocorticoids were added
- At 6-month follow up, symptomatically better, total IgE (8,720 IU/mL)
Case 5

Before starting glucocorticoids

After glucocorticoids and itraconazole
CPA complicating ABPA

• The diagnosis of CPA complicating ABPA is difficult
• The diagnostic hallmark for CPA is *A. fumigatus*-specific IgG, which is also seen in ABPA
• Detection of *Aspergillus* spp. by culture, antigen or molecular testing is encountered in both the conditions

• Thus, the diagnosis of CPA-ABPA is primarily based on serial radiology, clinical and serological findings
• Nodules (some with cavitation), lobar shrinkage with indrawing of extrapleural fat, aspergillomas and bilateral pleural thickening are characteristic for CPA complicating ABPA

CPA complicating ABPA

- Treatment also offers certain challenges
- Oral triazoles are the treatment of choice for CPA; glucocorticoids are contraindicated
- Oral glucocorticoids are the treatment of choice for ABPA; itraconazole monotherapy is also beneficial in about 88% of cases
- Thus in CPA complicating ABPA, itraconazole controls both ABPA and CPA
- However, glucocorticoids might be required in ABPA-CPA, and they are not contraindicated in ABPA-CPA

Denning DW et al. Eur Respir J 2016; 47: 45-68
Agarwal R et al. Chest 2018; In press
ABPA with aspergilloma has been treated with glucocorticoids alone. Hence, patients with ABPA-CPA may require glucocorticoids for control of disease activity.

References:
- Rosenberg IL et al. Chest 1984; 85: 123-125
- Agarwal AK et al. Asian Pac J Allergy Immunol 1996; 14: 5-8
Summary

• Fungal asthma can have varied presentations

• While the hallmark of the diagnosis of allergic bronchopulmonary mycosis is raised total IgE, it can be normal in some individuals

• The role of the different fungi in causing allergic mycosis depends on the geographic locale

• In patients with allergic bronchopulmonary mycosis, more than one fungi may be allergenic. Molecular-based allergy diagnostics may help in clarifying the role of a particular fungi
Summary

• More evidence and experience is required with newer treatments like omalizumab (and mepolizumab)

• Long-standing allergic bronchopulmonary mycosis can be complicated by CPA, which may be difficult to diagnose and treat