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ETI - Addressing 2020 and 2050 energy §/ creray

challenges by... technologies
\ institute
Setting strategic direction Creating commercial confidence

L I Viable commercial operation I
World-class ETI capability in i

energy system modelling and
strategic analysis

ETI Delivery of engineering
demonstrations of innovative low
carbon energy systems

Y

Energy System
Modelling Environment

Focused on the integrated UK energy
system — power, heat, transport and
associated infrastructure

dgey §ou s

Which energy technologies do we Innovative technologies, sub-systems and
need and when? information
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What might the UK energy system look §/
_ ) energy
like In 2050... technologies

\ institute

» Decided by global developments — not just
UK events, decisions and policy

— UK and global economy
— Industry and technology developments
— UK demand changes — scale and segmentation

— Global socio-political events

e The future is uncertain and we need energy
system designs that allow for this ‘
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Energy System Modelling Environment §/ener y

technologies
A national energy system design tool; integrating power, heat, \ institute

transport, industry and infrastructure

Addressing the energy trilemma 2050 Demand

— Affordable, secure, sustainable Scenarios
!
o _ ( ESME
« Distinctive modelling approach TRE““:“'“QY.H Power |
— Least cost optimisation (policy neutral) oacmaps |  Heat | Global
— Probabilistic treatment of uncertainties Energy [ Transport ]| Parameters
— Includes temporal variations Resources ™ Q"f’EStrUCt”’EilJ
— Considers geographic factors | |
{[[[Energy Syster;lJ
. Blueprints

Internationally peer reviewed

<

Informed by ETI members, advisors and " ESME

ongoing ETI projects Enery System

Modelling Environment
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ESME integrates knowledge from across §/ ererey
ETI programme areas technologies

L institute
Bio Energy . . )
SN Models informing ESME:

Transport Local authority GIS Waste resource modelling tool
Bio Value Chain Model

Single Building Thermal Efficiency model
Buildings Thermal Efficiency Stock Model

Transport LDV Cost model

Benchmark models of IGCC/CCGT/ USCPC

2050 Energy Infrastructure cost model

PLEXOS dispatch model
Macro DE Heat Network Costing model

Offshore PerAWAT Marine Array Modelling Suite
Wind Tidal Resource Continental Shelf Model

<Y

@ ESME

Energy System

Oﬁ:Shore Wlnd Energy COSt mOdEI Modelling Environment
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ETI Members are using ESME and %y
exploring ways to leverage further technologies

\. institute

e Underpinning business strategy and technology development choices

e Informing UK Govt policy
— Renewable Energy Review
— Technology Investment Needs Assessment’s
— The Carbon Plan
— Bioenergy Strategy

* Individual Members are developing own versions for specific countries of
interest

a"vESME

Ene gySytm
Modelling Envi
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Typical ESME Outputs
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New Peak Energy Model: Electricity y@ v

Peak Reserve Margin vs Typical Demand by technologies
Technologies (mean) \ institute
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Electric Vehicles - Home is the best recharge
point location; duplicate or public recharge
points add little

80%

70%
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Proportion of Mileage in Petrol / Diesel Mode
S S
N X

0%

Source: ETI analysis of DfT National Travel Survey

—\Work Recharge Point Only

——Home Recharge Point Only

% y

technologies

\ institute

A Recharge Point at Both Home and Work

—Able to Recharge Everywhere (Unlimited Recharge Rate)

0% 50% 100%
] Home IS
\ Work
\ Non Food Shop % of cars makmg:
-~ 2+ trips to location
i ‘\ Food Shop in a given week
— ]
I I I I I I 1
0 20 40 60 80 100 120 140

PHEV Battery Range (Miles)
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Dynamic demand control will be needed to fit vehicle )/(
recharging around variable national electricity demand energy

technologies
; ’ . . . . nstitute
Design target: (1) don’t add new peaks; and (2) improve system efficiency by levelling demand
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2050 CO, target Is unaffordable with

today’s technologies

2050 marginal UK system cost

2010 £/Te CO2
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UK Energy GHG Reduction

(including aviation and shipping)
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2050 abatement costs can be acceptable §/
energy

If...we develop and apply the optimum technologies technologies

\ institute

2050 marginal UK system cost
2010 £/Te CO2
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200

150
100
50

ETI projects focus
on reducing these
levels further
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Potential implications and development %
energy

priorities for the UK

Efficiency measures

Waste heat recovery, building insulation, and
efficient vehicles make a contribution under all
emission reduction scenarios.

ETI targeting through ‘Smart’, (including vehicle
electrification infrastructure) and HDV projects

Nuclear

Mature technology and appears economic under
most emission reduction scenarios - primarily an
issue of deployment (planning / licensing, supply-
chain, finance etc)

Cost impacts post-Fukushima need clarification —
international approach needed

ETI contributed to Nuclear roadmap & TINA
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CCS

A key technology lever given potential wide application in
power, hydrogen and SNG (gas) production, and in
industry sector

ETI investing in separation, storage and system design —
for coal, gas and biomass, also hydrogen turbine limits

ETI developing business models and commercial
frameworks to enable deployment

Bioenergy

Major potential for negative emissions via CCS through a
range of conversion routes — H2, SNG, process heat

ETI investing in science, logistics and value models

Offshore Renewables

Offshore Wind is the marginal power technology and an
important hedging option

ETI developing over £30m in next generation, low cost,
deepwater platform and turbine demonstrations

ETI developing marine modelling tools and technology
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Energy Technologies Institute
Holywell Building

Holywell Park

Loughborough

UK

LE11 3UZ

For all general enquiries
telephone the ETI on

+44 (0)1509 202020.

—

For more information about
the ETI visit www.eti.co.uk

e

For the latest ETI news and
announcements email
info@eti.co.uk

L 4

The ETI can also be
followed on Twitter at
twitter.com/the_ETI
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