Course Specification

Course Title: Thermal Environment
Code: W502
Level: Foundation | Intermediate | Advanced
Pre-requisites: None
Course Material: Course manual available from OH learning.com
Coordinating Editor: Ross DiCorletto
Approval Date: June 2009
Review Date: June 2012

Aims
This course aims to:
Provide the student with a sound understanding of the effects of the thermal environment on people and means of assessing and controlling the risks associated with thermal stress.

Learning Outcomes
On completing this course successfully the student will be able to:
- Identify sources of thermal stress within the working environment;
- Understand the nature of thermal strain on the body;
- Make an assessment of the thermal environment through appropriate measurement and other means;
- Evaluate the likely risk from exposure to thermal stress;
- Suggest appropriate control approaches for the thermal environment.

Course Format
Normally run as a 5 day taught course [minimum 45 hours including practical/demonstration sessions, lectures, tutorials, guided reading, overnight questions and examination].

There will be a 40 short answer question “open book” examination with an allowed time of 120 minutes.

Content

<table>
<thead>
<tr>
<th>Topic</th>
<th>Title</th>
<th>Time Allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Thermal Spectrum</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>Principles</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>Effects of Temperature Extremes</td>
<td>10%</td>
</tr>
<tr>
<td>4</td>
<td>Thermal Comfort</td>
<td>5%</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation of Hot Environments</td>
<td>15%</td>
</tr>
<tr>
<td>6</td>
<td>Control of Hot Environments</td>
<td>15%</td>
</tr>
<tr>
<td>7</td>
<td>Thermal Surveys</td>
<td>10%</td>
</tr>
<tr>
<td>8</td>
<td>Evaluation of Cold Environments</td>
<td>10%</td>
</tr>
<tr>
<td>9</td>
<td>Control of Cold Environments</td>
<td>15%</td>
</tr>
<tr>
<td>10</td>
<td>Approaches to Risk Assessment</td>
<td>5%</td>
</tr>
</tbody>
</table>

Note: Reference is made to standards and good practice documentation. This may not be the most up-to-date relevant publications and is intended as guidance for candidates only.
Detailed Course Content

1 The Thermal Spectrum (5%)
 1.1 Extreme Temperatures
 1.1.1 Examples of work environments where extreme temperatures can be found
 1.2 Moderate Temperatures
 1.2.1 How work in moderate thermal environments can present a risk

2 Principles (10%)
 2.1 Heat Stress
 2.1.1 Define heat stress
 2.2 Heat strain
 2.2.1 Define heat strain
 2.3 Homeostasis
 2.3.1 Understand the principles of homeostasis
 2.3.2 Be aware of typical core, muscle and skin temperatures and how they vary with environmental and other conditions
 2.4 Thermal Regulation including Feedback and Control Mechanisms
 2.4.1 Thermoregulation through a feedback system
 2.4.2 The role of the hypothalamus
 2.4.3 Thermoreceptors
 2.4.4 Control actions such as shivering, vasomotor etc.
 2.5 Physiological Responses to Hot Environment
 2.5.1 Vasodilation
 2.5.2 Sweating
 2.5.3 Electrolyte changes
 2.5.4 Dehydration
 2.5.5 Heart rate
 2.5.6 Respiration rate
 2.5.7 Other effects
 2.6 Physiological Responses to Cold Environments
 2.6.1 Vasoconstriction
 2.6.2 Shivering
 2.6.3 Piloerection
 2.6.4 Cold diuresis
 2.6.5 Respiration
 2.6.6 Heart rate
 2.6.7 Dehydration
 2.6.8 Psychological
 2.6.9 Other
 2.7 Heat Production and Heat Exchanges with the Surroundings
 2.7.1 External heat sources
 2.7.2 Internal heat sources
 2.7.3 Basic thermodynamics
 2.8 The Heat Balance Equation - Definitions of Terms
 2.8.1 The heat balance equation
 2.8.2 Definition of terms
 2.9 Metabolic Heat Production and Efficiency
 2.9.1 Metabolic heat production
 2.9.2 Typical values of metabolic heat production for different tasks
 2.9.3 Work
 2.10 Sensible Heat Exchanges
 2.10.1 Convection
 2.10.2 Radiation
 2.10.3 Conduction
2.11 Latent Heat Loss
 2.11.1 Evaporative heat loss
2.12 Acclimatisation
 2.12.1 Physiological mechanisms

3 Effects of Temperature Extremes (10%)
 3.1 Effects of Excessive Heat Strain – Hot Environments
 3.1.1 Syncope
 3.1.2 Salt balance
 3.1.3 Dehydration
 3.1.4 Cramps
 3.1.5 Hyperpyrexia
 3.1.6 Prickly heat
 3.1.7 Heat stroke
 3.2 Effects of Excessive Heat Strain – Cold Environments
 3.2.1 Frostbite
 3.2.2 Trenchfoot
 3.2.3 Hypothermia
 3.3 Predisposing Factors
 3.3.1 Age
 3.3.2 General health
 3.3.3 Weight and physical fitness
 3.3.4 Hydration state
 3.3.5 Acclimatisation
 3.3.6 Alcohol
 3.3.7 Drugs
 3.3.8 Diet
 3.3.9 Fatigue

4 Thermal Comfort (5%)
 4.1 Thermal Comfort
 4.1.1 What is thermal comfort?
 4.1.2 Why thermal comfort can be important
 4.2 Scales for Subjective Evaluation of Comfort
 4.2.1 Bedford
 4.2.2 ASHRAE
 4.3 Actual Ideal Indoor Environments
 4.3.1 Temperature, humidity and air movement
 4.4 An Introduction to the Work of Fanger
 4.4.1 Predicted Percentage Dissatisfied (PPD)
 4.4.2 Predicted Mean Vote (PMV)
 4.4.3 ISO 7730

5 Evaluation of Hot Environments (15%)
 5.1 The Use of Heat Stress Indices
 5.1.1 Definition of terms and environments where indices can be applied
 5.1.2 Effective and Corrected Effective Temperature, WBGT, Heat Stress Index, Required Sweat Rate
 5.2 Effect of Heat Stress
 5.2.1 Physiological measurements as predictors of heat strain
 5.3 Effective and Corrective Effective Temperatures
 5.3.1 Application of BET and CET
 5.4 Heat Stress Index
 5.4.1 Application of the heat stress index
 5.5 Required Sweat Rate (PHS)
5.5.1 Application of the Required Sweat Rate

5.6 WBGT
5.6.1 Application
5.6.2 ISO 7243
5.6.3 Threshold Limit Values of ACGIH

6 Control of Hot Environments (15%)
6.1 Personal Factors Mitigating Against ‘Hot’ Work
 6.1.1 Obesity
 6.1.2 Medication
 6.1.3 Age
 6.1.4 State of acclimatisation

6.2 A Simple Introduction to Control by Engineering and Organisational Measures
 6.2.1 Control strategies
 6.2.2 Engineering controls
 6.2.3 Management controls
 6.2.4 Personal protective clothing
 6.2.5 Refuges

6.3 Hot Surfaces
 6.3.1 Exposure to hot surfaces

7 Thermal Surveys (10%)
7.1 Measurement Equipment
 7.1.1 Air temperature
 7.1.2 Radiant temperature
 7.1.3 Humidity
 7.1.4 Air movement
 7.1.5 Integrating meters
 7.1.6 Personal monitoring

7.2 Surveys
 7.2.1 Strategies

7.3 Assessment of the Degree of Risk
 7.3.1 Use of measurement data

8 Evaluation of Cold Environments (10%)
8.1 Assessment Indices
 8.1.1 Wind chill index
 8.1.2 Equivalent chilling temperature
 8.1.3 IREQ
 8.1.4 ACGIH TLV Standards

9 Control of Cold Environments (15%)
9.1 Personal Factors
 9.1.1 Heart and lung conditions
 9.1.2 Circulatory problems

9.2 Engineering Controls
 9.2.1 Wind barriers
 9.2.2 Refuges

9.3 Management Controls
 9.3.1 Monitoring
 9.3.2 Work – rest regimes/warming regimes

9.4 Clothing
 9.4.1 Clothing insulation and clo values
 9.4.2 Wind proofing
 9.4.3 Water proofing
9.4.4 Gloves
9.4.5 Heated clothing

10 Approaches to Risk Assessment (5%)

10.1 AIOH Tiered Approach
10.1.1 Overview and application
10.1.2 Advantages and disadvantages

10.2 SA DoM&E Code of Practice for an Occupational Health Programme on Thermal Stress
10.2.1 Overview and application
10.2.2 Advantages and disadvantages

10.3 ACGIH Thermal Stress TLVs
10.3.1 Overview and Application
10.3.2 Advantages and disadvantages

10.4 Quantitative vs Qualitative Approaches
10.4.1 Quantitative vs Qualitative approaches

10.5 Physiological Assessments
10.5.1 Physiological Assessments

Learning and Teaching Activities

<table>
<thead>
<tr>
<th>Scheduled contact hours: (Note these timings are indicative only)</th>
<th>Lectures</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seminars</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Practical Sessions</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Examinations (including preparation)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Other Scheduled Time</td>
<td></td>
</tr>
</tbody>
</table>

Guided independent study	Independent coursework	8
Note: include in guided independent study; preparation for scheduled sessions, follow up work, wider reading or practice, revision	Independent laboratory work	
	other non-scheduled time	

| Total hours | 45 |
Assessment Details:

<table>
<thead>
<tr>
<th>Methods of Assessment</th>
<th>Practical Assessment</th>
<th>Open Book Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading Mode</td>
<td>Formative</td>
<td>Summative</td>
</tr>
<tr>
<td>Weighting %</td>
<td>NR</td>
<td>100</td>
</tr>
<tr>
<td>Pass Mark</td>
<td>NR</td>
<td>Set by Examination Board</td>
</tr>
<tr>
<td>Outline Details</td>
<td>All candidates must participate in the practical studies and demonstrate the required skills. The studies should be designed by the course tutor(s) to test the basic skill and knowledge of each of the candidates in the techniques in making measurements of conditions for the purpose of assessing the thermal environment. Full details of the practical requirements and the individual candidate reporting forms etc. are available in document BOHS. JB.2 Practical Evaluation Report which is available from www.bohs.org and www.ohlearning.com</td>
<td>40 short answer questions to be answered in 120 minutes. The questions require candidates to write short answers which will require no more than the box provided but may include multiple answers. Some questions may require calculations. Students can only refer to the W502 student manual during the examination.</td>
</tr>
</tbody>
</table>

Is the student required to pass ALL elements of assessment in order to pass the course? Yes

Indicative Course Materials and Reading:

<table>
<thead>
<tr>
<th>ISBN Number</th>
<th>Author</th>
<th>Date</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K.C.Parsons</td>
<td>2002</td>
<td>Human Thermal Environment, Taylor and Francis, 2002</td>
<td>Taylor and Francis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Heat Stress Standard and Documentation, AIOH</td>
<td>AIOH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>South African Department of Minerals and Energy (2002) Guideline for Compilation of a Mandatory Code of Practice for an Occupational Health Programme (Occupational Hygiene and Medical Surveillance) on Thermal Stress</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ISO 7243 Hot environments – Estimation of heat stress on a working man, based on the WBGT – Index (Wet Bulb Globe Temperature)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS 7915 Ergonomics of the thermal environment – Guide to design and evaluation of working practices in cold indoor environments</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ISO 11079 IREQ Evaluation of cold environments – Determination of required clothing insulation (IREQ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ISO 7730 Moderate thermal environments – Determination of the PMV and PPD indices and specification of the conditions for thermal comfort</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>Title</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 10551</td>
<td>Ergonomics of the thermal environment – assessment of the influence of the thermal environment using subjective judgment scales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 12894</td>
<td>Ergonomics of the thermal environment – Medical supervision of individuals exposed to extreme hot or cold environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 7933</td>
<td>Hot environments – Analytical determination and interpretation of thermal stress using calculation of required sweat rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS 7963</td>
<td>Ergonomics of the thermal environment – Guide to the assessment of heat strain in workers wearing personal protective equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 7726</td>
<td>Thermal environments – Instruments and methods for measuring physical quantities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS EN 14058</td>
<td>Protective clothing garments for protection against cool environments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 15265</td>
<td>Ergonomics of the thermal environment – Risk assessment strategy for the prevention of stress and discomfort in thermal working conditions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS EN 511</td>
<td>Specification for protective gloves against cold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 13732-3</td>
<td>Ergonomics of the thermal environment – Methods for the assessment of human responses to contact with surfaces - Part 3: Cold Surfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS EN 563</td>
<td>Safety of machinery – Temperatures of touchable surfaces – Ergonomics data to establish temperature limit values for hot surfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 11399</td>
<td>Ergonomics of the thermal environment – Principles and application of relevant international standards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISO 9920</td>
<td>Ergonomics of the thermal environment – Estimation of the thermal insulation and water vapor resistance of a clothing ensemble</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>