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Abstract

In this paper we study the model risk of Expected Shortfall (ES), extending
the results of Boucher et al. (2014) on model risk of Value-at-Risk (VaR). We
propose a correction formula for ES based on passing three backtests. Our
results show that for the DJIA index, the smallest corrections are required
for the ES estimates built using GARCH models. Furthermore, the 2.5% ES
requires smaller corrections for model risk than the 1% VaR, which advocates
the replacement of VaR with ES as recommended by the Basel Committee.
Also, if the model risk of VaR is taken into account, then the correction made
to ES estimates reduces by 50% on average.
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1 Introduction

For risk managers and the regulatory authority, risk estimates like Value-at-Risk

(VaR) and Expected Shortfall (ES)1 are of great importance, since an accurate risk

estimate can help calculate an appropriate buffer against unfavorable events. The

asset prices are observable when the transactions are made, whilst risk estimates

computed from various models are not materialized. The choice of the model is

often subjective, leading to the possible inadequacy of the risk estimates. That is,

model risk in risk models gives rise to inaccurate risk estimates.

The model risk of risk measures can be owed to misspecification of the underlying

model (Cont, 2006), inaccuracy of parameter estimation (Berkowitz and Obrien,

2002), or the use of inappropriate models (Dańıelsson et al., 2016; Alexander and

Sarabia, 2012). Kerkhof et al. (2010) decompose model risk into estimation risk,

misspecification risk and identification risk2.

In order to improve the accuracy of VaR estimates, the quantification of VaR

model risk is followed by the adjustments of VaR estimates as discussed in several

studies. One of the earliest works is Hartz et al. (2006), considering estimation error

only, and the size of adjustments is based on a data-driven method. Alexander and

Sarabia (2010)3, who propose a framework on quantifying VaR model risk and cor-

recting VaR estimates, make the correction for estimation and specification errors

mainly based on probability shifting. Complimentary to the research of Kerkhof

et al. (2010), in which adjustments to VaR estimates are obtained based on reg-

ulatory backtesting measures, Boucher et al. (2014)4 suggest a correction for VaR

model risk based on passing VaR backtests. Furthermore, they propose that their

generalized methodology can be applied to correct ES for model risk. Using Tay-

lor’s expansion, Barrieu and Ravanelli (2015) derive the upper bound of the VaR

adjustments, only taking specification error into account, whilst Farkas et al. (2016)

derive confidence intervals for VaR and Median Shortfall and propose a test for

model validation based on extreme losses.

1An alternative is Median Shortfall (MS), as in So and Wong (2012).
2Estimation risk refers to the uncertainty of parameter estimates. Misspecification risk is the

risk associated with inappropriate assumptions of the risk model, whilst identification risk refers
to the risk that future sources of risk are not currently known and included in the model.

3Alexander and Sarabia (2010) assume that AGARCH(1,1) is the ’true’ DGP and compute
VaRs according to three different models: AGARCH, EWMA and RiskMetrics ‘regulatory’.

4The authors assume (a) normal GARCH(1,1) as both the DGP and the estimated model to
compute estimation error and (b) MS(2)-GARCH(1,1)-t as the DGP and normal GARCH(1,1) as
the estimated model to compute estimation and specification errors jointly.
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Figure 1: DJIA index daily returns, the daily historical VaR estimates (α = 1%) and the
daily historical ES estimates (α = 2.5%) from 28/12/1903 to 23/05/2017, as well as the
difference between the 2.5% historical ES and the 1% historical VaR are presented. We
use a four-year rolling window to compute the risk estimates.

Though VaR has been a popular regulatory measure for many years, several

shortcomings of the VaR measure are identified, most importantly that it is not a

coherent measure as shown by Artzner et al. (1999). Recently, the Basel Committee

recommends and advocates the use of ES (Basel, 2012). Specifically, they proposed

the replacement of VaR at 1% significance level with ES at 2.5% significance level

(Embrechts et al., 2014). With ES gaining more and more importance, the accuracy

of the estimated ES becomes vital. To the best of our knowledge, no research on

the adjustments of ES estimates for model risk has been conducted.

Figure 1 shows the DJIA index daily returns from 28/12/1903 to 23/05/2017,

compared with the daily historical VaR and ES estimates with significance levels

at 1% and 2.5% respectively. During the crisis periods, the difference between the

historical ES and VaR becomes wider, which supports the replacement of the VaR

measure with the ES measure; nevertheless, the clustering of exceptions when ES

is violated is still noticeable. In other words, the historical ES does not react to

adverse changes immediately when the market returns worsen and also it does not

make effective adjustments when the market apparently goes back to normal.

An example is the time period around the 2007 financial crisis, presented in

Figure 2, which shows the peaked-over-ES (α = 2.5%) and three tiers of corrections

(labelled as #1, #2 and #3 on the right-hand side) made to the historical daily

ES estimates (α = 2.5%), using a one-year rolling window. Adjustment #1 with a

magnitude of 0.005 (about 18% in relative terms) added to the daily ES estimates can
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Figure 2: Peaked-over-ES and adjustments, based on the DJIA index from 01/01/2007 to
01/01/2009. One-year moving window is used to forecast daily historical ES (α = 2.5%).

avoid most of the exceptions that occur during this crisis. The higher the adjustment

level (#2 and #3), the higher the protection from extreme losses, but even an

adjustment of 0.015 (adjustment #3) still has too many exceptions. However, too

much protection is not favorable to risk managers. This implies that ES estimates

could be more effective when adjusted with an appropriate buffer against the model

risk of the forecasted ES calculated using a specified model. The question arises how

large the magnitude of the correction made to the ES estimates should be in order

to ensure the accuracy of the ES estimates (not too large or too small).

We extend the research on model risk of VaR of Boucher et al. (2014) to inves-

tigate model risk of ES and also make corrections to ES estimates, thus improving

their accuracy. A desirable ES estimate should satisfy three criteria: one referring to

the expected number of exceptions, one regarding the absence of violation clustering,

and one about the appropriate size of exceptions. By passing different ES backtests

introduced by Du and Escanciano (2016) and Acerbi and Szekely (2014), we can

compute the optimal size of correction made to the ES estimates, to accommodate

for model risk.

The structure of the paper is as follows: section 2 analyzes the sources of ES

model risk focusing on estimation and specification errors of ES estimates, and per-

forms Monte Carlo simulations to quantify them; section 3 proposes a backtesting-

based correction methodology for ES and also considers the impact of VaR model

risk on model risk of ES; section 4 presents the empirical study and section 5 con-

cludes.
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2 Analysis of model risk of Expected Shortfall

2.1 Sources of model risk

Before investigating the sources of ES model risk, we first establish a general scheme

(see Figure 3) in which the sources of model risk of risk estimates are shown.

Consider a portfolio affected by risk factors, and the goal is to compute risk estimates

such as VaR and ES. The first step is the identification of risk factors, and this

process is affected by identification risk, which arises when some risk factors are

not identified, with a very high risk of producing inaccurate risk estimates. The

next step is the specification of risk factor models which, again, will have a large

effect on the estimation of risk. This is followed by the estimation of the risk factor

model (this, in our view, has a medium effect on the risk estimate). In step 3, the

relationship between the portfolio P&L and the risk factors is considered and the

formulation of this model will have a high effect on the estimation of the risk. The

estimation of this will have a medium effect on the risk estimation. Step 4 links the

risk estimation with the dependency of the P&L series on the risk factors.

For example, when computing the VaR of a portfolio of derivatives, step 1 would

identify the sources of risk, step 2 would specify and estimate the models describing

these risk factors (underlying assets most importantly), step 3 would model the P&L

of the portfolio as a function of the risk factors, and in step 4 the risk model would

transform P&L values into risk estimates.

The diagram shows that the main causes of model risk of risk estimates are (1)

identification error, (2) model estimation error (for the risk factor model, the P&L

model or the risk model), which arises from the estimation of the parameters of the

model and (3) model specification error (for the risk factor model, the P&L model

or the risk model), which arises when the true model is not known. Other sources

of model risk that may give wrong risk estimates are, for example, granularity error,

measurement error and liquidity risk (Boucher et al., 2014).

2.2 Bias and correction of Expected Shortfall

In fact, most academic research on the adequacies of risk models mainly focuses on

two of the sources of model risk: estimation error and specification error. Referring

to Boucher et al. (2014), the theoretical results about the two sources of VaR model

risk are presented in Appendix A. In a similar vein, we investigate the impact of
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Input: financial data

Step 1:

a) Risk factor identification (H)

Step 2:

a) Risk factor model specification (H)

b) Risk factor model estimation (M)

Step 3:

a) P&L model specification (H)

b) P&L model estimation (M)

Step 4:

a) Risk model specification (H)

b) Risk model estimation (M)

Output: risk estimates

Figure 3: Risk estimation process

Notation: H and M represent high and medium impacts on risk estimates, respectively.

the earlier mentioned two errors on the ES estimates, thus deriving the theoretical

formulae for estimation and specification errors, as well as correction of ES. VaR5,

for a given distribution function F and a given significance level α, is defined as:

V aRt(α) = −inf{q : F (q) ≥ α}, (1)

where q denotes the quantile of the cumulative distribution F. ES, as an absolute

downside risk measure, measures the average losses exceeding VaR, taking extreme

losses into account; it is given by:

ESt(α) =
1

α

∫ α

0

V aRt(u)du (2)

Estimation bias of Expected Shortfall

Assuming that the data generating process (DGP), a model with a cumulative dis-

tribution F for the returns, is known and the true parameter values (θ0) of this ‘true’

model are also known, the theoretical VaR, denoted by ThVaR(θ0, α) and the theo-

retical ES, denoted by ThES(θ0, α), both at a significance level α, can be computed

as:

ThV aR(θ0, α) = −qFα = −F−1
α (3)

ThES(α) =
1

α

∫ α

0

ThV aR(θ0, u)du (4)

5The values of VaR and ES are considered positive in this paper.
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Now, we assume that the DGP is known, but the parameter values are not known.

The estimated VaR in this case is denoted by V aR(θ̂0, α), where θ̂0 is an estimate

of θ0. The relationship between the theoretical VaR and the estimated VaR is:

ThV aR(θ0, α) = V aR(θ̂0, α) + bias(θ0, θ̂0, α) (5)

We also have that:

ThV aR(θ0, α)− E(V aR(θ̂0, α)) = E(bias(θ0, θ̂0, α)) (6)

where E[bias(θ0, θ̂0, α)] denotes the mean bias of the estimated VaR from the theo-

retical VaR as a result of model estimation error. Based on this, we can write the

estimation bias of ES(θ̂0, α), and we have that

ThES(θ0, α)− E[ES(θ̂0, α)] =
1

α

∫ α

0

E[bias(θ0, θ̂0, v)]dv, (7)

Ideally, correcting for the estimation bias, the ES estimate, denoted by ES(θ̂0, α),

can be improved as below:

ESE(θ̂0, α) = ES(θ̂0, α) +
1

α

∫ α

0

E[bias(θ0, θ̂0, v)]dv (8)

Specification and estimation biases of Expected Shortfall

However, in most cases the ’true’ DGP is not known, and the returns are assumed

to follow a different model giving a cumulative distribution (F̂ ) for the returns

with estimated parameter values θ̂1, where θ0 and θ̂1 can have different dimensions

depending on the models used and their values are expected to be different. This

gives the following value for the estimated VaR:

V aR(θ̂1, α) = −qF̂α = −F̂−1
α (9)

The relationship between the true VaR and the estimated VaR is given as:

ThV aR(θ0, α) = V aR(θ̂1, α) + bias(θ0, θ1, θ̂1, α) (10)

where θ1 and θ̂1 have the same dimension under the specified model, but θ1 de-

notes the true parameter values different from the estimated parameter values of θ̂1.
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Similarly:

ThV aR(θ0, α)− E(V aR(θ̂1, α)) = E(bias(θ0, θ1, θ̂1, α)) (11)

where E[bias(θ0, θ1, θ̂1, α)] denotes the mean bias of the estimated VaR from the

theoretical VaR as a result of model specification and estimation error. According

to equation (2), the mean estimation and specification biases of ES can be formulated

as below:

ThES(θ0, α)− E[ES(θ̂1, α)] =
1

α

∫ α

0

E[bias(θ0, θ1, θ̂1, v)]dv (12)

Correcting for these biases, the estimated ES, denoted by ES(θ̂1, α), can be improved

as:

ESSE(θ̂1, α) = ES(θ̂1, α) +
1

α

∫ α

0

E[bias(θ0, θ1, θ̂1, v)]dv (13)

2.3 Monte Carlo simulations

In the following, we simplify the risk estimation process (Figure 3) so that only one

risk factor exists. Thus, the identification risk and the P&L model specification and

estimation risks are not modelled, and we are left with the specification and esti-

mation risks for the risk factor model and, consequently, for the risk model, namely

steps 2 and 4. Following the theoretical formulae for estimation and specification

errors of the ES estimates, Monte Carlo simulations are implemented to investigate

the impacts of these two errors on the estimated ES.

We simulate the daily return series assuming a model, thus knowing the theo-

retical ES. Then, the parameters are estimated using the same model as specified

to generate the daily returns, giving the value of the estimation bias of ES, as in

equation (7). We also estimate ES based on other models to examine the values of

joint estimation and specification biases of ES, as in equation (12).

In our setup, a GARCH(1,1) model with normal disturbances (GARCH(1,1)-N)

is assumed as the ‘true’ data generating process, given by:

rt = µ+ εt (14)

εt = σt · zt, zt ∼ N(0, 1) (15)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (16)
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Table 1: Simulated bias associated with the ES estimates

Significance levels Mean estimated ES(%) Theoretical ES(%) Mean bias(%) Std. err of bias(%)

Panel A. GARCH(1,1)-N DGP with estimated GARCH(1,1)-N ES: estimation bias
α=5% 23.82 23.83 0.01 1.73
α=2.5% 28.50 28.51 0.01 1.94
α=1% 34.07 34.08 0.01 2.20

Panel B. GARCH(1,1)-N DGP with historical ES: specification and estimation biases
α=5% 28.92 23.83 -5.09 15.79
α=2.5% 36.38 28.51 -7.87 18.97
α=1% 45.77 34.08 -11.69 23.16

Panel C. GARCH(1,1)-N DGP with Gaussian Normal ES: specification and estimation biases
α=5% 26.27 23.83 -2.44 14.86
α=2.5% 31.27 28.51 -2.76 16.84
α=1% 37.23 34.08 -3.15 19.20

Panel D. GARCH(1,1)-N DGP with EWMA ES: specification and estimation biases
α=5% 21.68 23.83 2.15 2.54
α=2.5% 26.31 28.51 2.20 2.87
α=1% 31.82 34.08 2.26 3.28

Note: The results are based on the DJIA index from 01/01/1900 to 23/05/2017. These
statistics are computed from simulating 1,000 paths of 1,000 daily returns according to the
DGP of GARCH(1,1)-N. Then we forecast ES based on the GARCH(1,1)-N, historical,
Gaussian Normal and EWMA (λ = 0.94) specifications, for α = 5%, 2.5% and 1%.

Using real data, we first estimate the parameters6 of this model. Next, we simulate

1,000 paths of 1,000 daily returns, compute one-step ahead ES forecasts under several

different models and compare these forecasts with the theoretical ES.

The purpose of Monte Carlo simulations is to investigate the bias of ES esti-

mates, that is, the perfect corrections for the model risk of ES forecasts. Table 1

presents the annualized ES estimates at 5%, 2.5% and 1% in the second column, the

annualized theoretical ES in the third column, the mean estimation bias of ES fore-

casts in Panel A, and the mean estimation and specification biases of the estimated

ES depending on different model specifications in Panel B, C and D.

We compare the theoretical ES of the simulations with the estimated ES based

on the GARCH(1,1)-N model in Panel A. The mean estimation bias is close to 0

for the 5%, 2.5% and 1% ES estimates. Also, the estimation bias can be reduced

by increasing the size of the estimation period as suggested by Du and Escanciano

(2016). The standard error of the bias decreases, as the value of α increases, as ex-

pected. In Panel B, the mean specification and estimation biases is computed from

6The parameters of GARCH(1,1)-N estimated from the DJIA index (1st Jan 1900 to 23rd May
2017) are : µ = 4.4521e−04; ω = 1.3269e−06; α = 0.0891; and β = 0.9017.
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the theoretical ES and the historical ES. The negative values of the bias show that

the estimated ES is more conservative than the theoretical ES, whilst the positive

values of the bias refer to an estimated ES lower than the theoretical ES. Panel C

examines the specification and estimation biases of the Gaussian Normal ES esti-

mates. In this case, the Gaussian Normal ES estimates are more conservative than

the theoretical ES. The specification and estimation biases of ES estimates computed

from EWMA is positive as shown in Panel D, which requires a positive adjustment

to be added to the EWMA ES estimates.

Furthermore, the specification and estimation biases in Panel B, C and D

are much higher than the estimation bias in Panel A in absolute values, which

indicates that the specification error has a bigger importance than the estimation

error. Overall, based on the results in the table, we conclude that an adjustment is

needed to correct for the model risk of ES estimates.

3 Backtesting-based correction of ES

3.1 Backtesting-based correction methodology for ES

If a data generating process is known, then it is straightforward to compute the

model risk of ES, as in Table 1, based on Monte Carlo simulations. In a realistic

setup, the ‘true’ model is unknown, so we are not able to measure model risk directly.

By correcting the estimated ES and forcing it to pass backtests, model risk is not

broken into its components, but the correction would be for all the types of model

risk considered jointly. In this way, the backtesting-based correction methodology

for ES, proposed in this paper, provides corrections for all the sources of ES model

risk.

Comparing the ex-post realizations of returns with the ex-ante forecasted ES,

the accuracy of ES estimates is examined via backtesting. Then we can quantify

the model risk of ES estimates through backtesting ES, by computing the correction

required to be added to the ES estimate so that the corrected ES passes the backtest.

The value of ES corrected via backtesting is written as:

ESB(θ̂1, α, Ci) = ES(θ̂1, α) + C∗
i (17)
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The minimum correction is given by:

C∗
i = min{Ci|ESt(θ̂1, α) + Ci passes the ith backtest, t = 1, ..., T}, C∗

i ≥ 0 (18)

where {ESt(θ̂, α), t = 1, ..., T} denotes the forecasted ES during the period from 1

to T. C∗
i is the minimum correction required to pass the ith7 ES backtest. Ci =

Ci(θ0, θ1, θ̂1, α), a correction of ES estimates, is obtained when the ith backtest of

the ES estimates is passed successfully. By learning from past mistakes, we can find

the appropriate correction needed to be added to the ES estimates, through which

the model risk of ES estimates can be quantified.

Backtesting checks whether ES forecasts satisfy certain properties. Here we

consider that a good ES estimate should have a desirable frequency of exceptions,

absence of volatility clustering in the tail and an appropriate magnitude of the

violations (see Table 5 in Appendix B for a summary of ES backtests).

3.2 Backtesting framework for ES

Exception frequency test

The unconditional coverage test (UC test) for VaR measure (Kupiec, 1995) is ex-

tended to an unconditional coverage test for ES, proposed by Du and Escanciano

(2016). By analogy, they investigate the cumulation of violations and develop an

unconditional coverage test statistic for ES. The estimated cumulative violations

Ĥt(α) are defined as:

Ĥt(α) =
1

α
(α− ût)1(ût 6 α) (19)

where ût is the estimated probability level corresponding to the daily returns (rt) in

the estimated distribution (F̂t) with the estimated parameters (θ̂1), and Ωt−1 denotes

all the information available until t− 1.

ût = F̂ (rt,Ωt−1, θ̂1) (20)

The null hypothesis of the unconditional coverage test for ES is given by:

E
[
Ht(α, θ0)− α

2

]
= 0 (21)

7In our paper, i = 1, 2 and 3; C1, C2 and C3 refer to the correction required to pass the
unconditional coverage test for ES and the conditional coverage test for ES introduced by Du and
Escanciano (2016), and the Z2 test proposed by Acerbi and Szekely (2014), respectively.
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Hence, the simple t-test statistic and its distribution is:

UES =

√
n
(

1/n
∑n

t=1 Ĥt(α)− α/2
)

√
α(1/3− α/4)

∼ N(0, 1) (22)

Exception frequency and independence test

The conditional coverage test (CC test) for VaR is a very popular formal backtesting

measure (Christoffersen, 1998). Inspired by this, Du and Escanciano (2016) propose

a conditional coverage test for ES and give its test statistic. The null hypothesis of

the conditional coverage test for ES is given by:

E
[
Ht(α, θ0)− α

2
|Ωt−1

]
= 0 (23)

Du and Escanciano propose a general test statistic to test the mth-order dependence

of the violations, following a Chi-squared distribution with m degrees of freedom.

In the present context, the first order dependence of the violations is considered, so

the test statistic follows χ2(1). During the evaluation period from t = 1 to t = n,

the basic test statistic CES(1) is written as:

CES(1) =
n3

(n− 1)2
·

(∑n
t=2(Ĥt(α)− α/2)(Ĥt−1(α)− α/2)

)2

(∑n
t=1(Ĥt(α)− α/2)(Ĥt(α)− α/2)

)2 ∼ χ2(1) (24)

Escanciano and Olmo (2010) point out that the VaR (and correspondingly, ES)

backtesting procedure may not be convincing enough due to estimation risk and

propose a robust backtest. Based on this, Du and Escanciano (2016) derive robust

test statistics for ES. They also agree with Escanciano and Olmo that estimation risk

can be ignored and the basic test statistic is robust enough against the alternative

hypothesis if the estimation period is much larger than the evaluation period. In

this context, the estimation period (1,000) we use is much larger than the evaluation

period (250), so the robust test statistic is not considered.

11



Exception frequency and magnitude test

Acerbi and Szekely (2014) directly backtest expected shortfall by using the test

statistic (Z2 test) as given below:

Z2 =
T∑
t=1

rtIt
TαESα,t

+ 1 (25)

It , the indicator function, is equal to 1 when the forecasted VaR is violated, oth-

erwise, It is equal to 0. ES is jointly backtested in terms of the frequency and the

magnitude of VaR exceptions. The ES backtesting method is non-parametric, thus

easily implemented. It only needs the magnitude of the VaR violations (rtIt) and

the predicted ES (ESα,t). The authors also demonstrate that there is no need to

do Monte Carlo simulations to store the predictive distributions due to the stabil-

ity of the p-values of the Z2 test statistic across different distribution types. Clift

et al. (2016) also support this test statistic (Z2) introduced by Acerbi and Szekely

by comparing the existing backtesting approaches for ES. The Z2 score at a certain

significance level can be determined numerically based on the simulated distribution

of Z2. If the test statistic is smaller than the Z2 score8, the model is rejected.

3.3 The impact of VaR model risk on the model risk of ES

The correction made to ES estimates can be regarded as a barometer of ES model

risk, just as the backtesting-based correction methodology for ES shows. VaR has

been an indispensable part of ES calculations and the three ES bakctests used in this

paper. For instance, the Z2 test (Acerbi and Szekely, 2014) is commonly considered

as a joint backtest of VaR and ES. For this reason, it is of much interest to explore

whether the model risk of VaR is transferred to the model risk of ES. On the one

hand, ES calculations may be affected by the model risk of VaR, since the inaccuracy

of VaR estimates is carried over to the ES estimates as seen in equation (2). On

the other hand, the wrong VaR estimates may have impacts on the backtesting

results, thus leading to inappropriate corrections of ES estimates. More precisely,

the measurement of the ES correction required to pass a backtest is likely to be

affected by VaR model risk. To address this, as an additional exercise, we compute

the optimal correction of VaR for model risk (estimated at the same significance

8The critical value for the Z2 test is -0.7, which is stable for different distribution types (Acerbi
and Szekely, 2014).
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level as the corresponding ES) as in Boucher et al. (2014)9, and use the corrected

VaR for ES calculation, thus giving the values of ES corrected for VaR model risk.

Consequently, based on the backtesting-based correction framework, the optimal

correction made to the ES corrected for VaR model risk is gauged as a measurement

of ES model risk alone.

4 Empirical Analysis

Our purpose is to evaluate the backtesting-based correction methodology for ES by

using the DJIA index from 01/01/1900 to 05/03/2017 (29,486 daily returns in total).

We employ several well known parametric and nonparametric models for comparison,

such as the Gaussian Normal distribution, the Student’s t distribution, GARCH(1,1)

with normal/student’s t innovations, EWMA, Cornish Fisher expansion as well as

the historical method10. First, one-step ahead ES forecasts are obtained in a rolling

forecasting scheme with a four-year window. Based on equation (18), we compare

the minimum corrections required to pass the ES backtests, where backtesting is

done over a year.

Figure 4 shows the relative corrections made to the daily ES, estimated at differ-

ent significance levels, of four models: EWMA, GARCH(1,1)-N, Gaussian Normal,

and Student’s t, when considering the frequency of the exceptions (passing the UC

test). ES forecasts are computed with a four-year moving window and backtested

using the entire sample. The level of relative corrections is decreasing when the

alpha is increasing, implying that the ES at a smaller significance level may need a

larger correction to allow for model risk. Not surprisingly, the dynamic approaches,

GARCH(1,1)-N and EWMA, require smaller corrections than the two static models

in general, though the Student’s t distribution performs better at capturing the fat

tails than the EWMA model, for example, at 1% and 1.5% significance levels.

Figure 5 presents the optimal corrections made to the daily ES estimates based

on various forecasting models with regard to passing the unconditional coverage test

for ES (UC test), the conditional test for ES (CC test) and the magnitude test (Z2

9To find the optimal correction of VaR for VaR model risk, three VaR backtests are consid-
ered. The VaR backtests are Kupiec’ s unconditional coverage test (Kupiec, 1995), Christoffersen’s
conditional coverage test (Christoffersen, 1998) and Berkowitz’s magnitude test (Berkowitz, 2001).

10The UC and CC tests for all the distribution-based ES are examined in the setting proposed
by Du and Escanciano (2016), whilst the Cornish Fisher expansion and the historical method are
entertained in the same setting but in a more general way. ES for the asymmetric and fat-tailed
distirbutions (Broda and Paolella, 2009) can be also examined by the three backtests.
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Figure 4: Relative corrections based on the UC test made to the daily ES associated
with EWMA, GARCH(1,1)-N, Gaussian Normal, and Student’s t along with a range of
alpha levels, which is computed as the ratio of the absolute correction over the average
daily ES.

test), respectively, where ES is estimated at a 2.5% significance level using a four-year

moving window11 and the evaluation period for backtesting procedures is one year.

The optimal corrections made to the ES estimates, found by minimizing equation

(18), can be seen as a measurement of model risk. The smaller the correction,

the more accurate the ES estimates, therefore the less the model risk of the ES

forecasting model. This figure shows that a series of dynamic adjustments are needed

for the daily ES (α = 2.5%) based on all different models, especially during the

crisis periods. This is in line with our expectation of model inadequacy in the crisis

periods. Among the models considered, the EWMA, Gaussian Normal and Student’s

t models require larger corrections than the others. That is, these three models have

higher model risk than the other four models. Also, the Cornish Fisher expansion

requires the smallest adjustments in order to pass the UC and CC tests, whilst

GARCH(1,1)-t requires the smallest corrections when considering the Z2 test.

Figure 6 presents the time taken to arrive to the peak of the optimal corrections,

for the UC, CC and Z2 tests, accordingly. It can been seen that more than a decade

is needed to find the highest correction required to cover for model risk (also see

Appendix C, Table 6 for the dates when the highest corrections are required).

When considering the UC test and the CC test, the highest values of the optimal

corrections made to the daily ES based on various models are achieved before the

21st century (except that the highest value of the optimal corrections made to the

11The results computed by using a five-year moving window and a three-year moving window
are very similar to those required here. (available from the authors on request.)
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Figure 5: Optimal corrections made to the daily ES estimates (α = 2.5%) associated
with various models for the DJIA index from 01/01/1900 to 23/05/2017, required to pass
the UC , CC , and Z2 tests, respectively. The parameters are re-estimated using a four-
year moving window (1,000 daily returns) and the evaluation window for backtesting is
one year. 15



Student’s t ES happened around 2008, required to pass the UC test), indicating

that based on past mistakes we could have avoided the ES failures found by these

two tests, for instance, in the 2008 credit crisis. Nevertheless, when considering the

Z2 test, all the models, except for the GARCH models, find the peak values of the

optimal corrections around 2008. Therefore, the GARCH models are more favorable

than the others in avoiding model risk. This is also supported by the results shown

in Appendix C, Figure 8, which shows the left tails of the cumulative distribution

of the negative of the optimal corrections.

Panel A and Panel B of Table 2 compare the severity of the model risk of

different ES estimates with respect to the three backtests discussed earlier. Panel

A gives the maximum and mean values of the absolute optimal corrections to the

daily ES (α = 2.5%) associated with several models, depending on the three ES

backtests. The largest corrections are needed for the Gaussian Normal and Student’s

t models, which do not account for the volatility clustering, whilst the GARCH

models perform well in capturing extreme losses. With the requirement of passing

the three backtests jointly, the Cornish Fisher expansion performs best and requires

a correction of 0.0975 made to the daily ES against model risk. However, the

absolute model risk shown in Panel A may give an ambiguous understanding of the

severity of ES model risk based on different forecasting models, since the values of

ES estimates vary for various forecasting models. Panel B shows the maximum and

mean values of the relative corrections made to the daily ES (α = 2.5%), where the

relative corrections are expressed as the optimal corrections over the average daily

ES. When looking at the three backtests jointly, the EWMA, Gaussian Normal and

Student’s t models face the highest ES model risk with the mean values of the

relative corrections at 0.3070, 0.3577, and 0.3964, repectively, thereby needing the

largest buffer; whilst GARCH(1,1)-t performs best, having the mean value of the

relative optimal correction of 0.0868.

By using the backtesting-based correction methodology for VaR estimates, we

compute the relative corrections made to one-step ahead VaR forecasts at a signif-

icance level of 1% by passing three VaR backtests as in Boucher et al. (2014), re-

ported in Panel C of Table 2. The results show that the Cornish Fisher expansion

and GARCH(1,1)-t outperform any other model, requiring the smallest corrections.

Comparing Panel B and Panel C of Table 2, it can be seen that the peak values

of the relative correction required to pass the UC and CC tests for VaR estimates

are generally (with a few exceptions) smaller than the corresponding values for ES

16
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Figure 6: Relative optimal adjustments required by passing the UC, CC, Z2 tests, which
is expressed as the ratio of the corrections over the maximum of the optimal corrections
over the entire period.
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estimates, whilst the ES estimates require much smaller corrections than the VaR

estimates when considering the Z2 test. That is, ES forecasts are more able to mea-

sure the size of the extreme losses. When the three backtests are considered jointly,

it can be concluded that ES is less affected by model risk than VaR.

It is interesting to compare our results with those of Danielsson and Zhou (2015).

In their Table 1, they show that VaR estimation has a higher bias than ES estimation,

but a smaller standard error. However, this is based on a simulation study that

focuses on estimation risk. The results presented in the empirical part of their

paper somewhat contradict their theoretical expectation of VaR being superior to

ES, and it can be argued that this is caused by the presence of specification error.

So when only estimation error is considered, VaR is superior to ES, but when both

estimation error and specification error are considered jointly, our results show that

ES outperforms VaR, being less affected by model risk.

Supplementary to the backtesting-based correction methodology for ES, we ex-

amine the impact of VaR model risk on the model risk of ES in Panel D, Table 2.

It can be seen that for the six models12, the optimal corrections required to pass the

three ES backtests jointly, made to the daily ES after correcting for VaR model risk,

are smaller than the corrections made to the daily ES when VaR is not corrected for

model risk. We can conclude that ES is less affected by model risk, when VaR model

risk is removed in calculating and backtesting ES. Roughly speaking, the corrections

for model risk to the ES estimates reduce by about 50% if the VaR estimates are

corrected for model risk first. Moreover, the standard deviations of the corrections

made to the daily ES before and after VaR model risk is removed are presented

in Appendix C, Table 7, showing that the smaller corrections consistently come

with smaller standard deviations. Ultimately, this supports the previous result that

GARCH models are less affected by model risk, thus are preferred to make risk

forecasts.

Additionally, we apply the methodology presented to different asset classes (namely

equity, bond and commodity from 07/07/1986 to 07/07/2017), the FX (USD/GBP)

and Microsoft stock from 01/01/1987 to 04/10/2017. We compare the model risk

of ES, and give the dollar values of model risk of two specific assets in the case

study. Table 3 reports the absolute and relative corrections required to pass the

three backtests, made to the daily GARCH(1,1)-t ES estimates (α = 2.5%) for the

12The model risk of ES forecasting models examined in this paper, except for the Cornish Fisher
expansion, is considered to be affected by VaR model risk.
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Table 2: Maximum and mean of the absolute and relative optimal corrections made to
the daily ES (α = 2.5%), and maximum and mean of the relative optimal corrections to
the daily VaR (α = 1%), based on various models and different backtests.

Methods Mean ES (VaR) Max C1 Max C2 Max C3 Mean C1 Mean C2 Mean C3

Panel A: Maximum and mean of the absolute optimal corrections to the daily ES (α= 2.5%)
Historical 0.0306 0.0250 0.0980 0.1186 0.0013 0.0020 0.0053
EWMA (λ=0.94) 0.0244 0.1355 0.0930 0.1241 0.0069 0.0037 0.0074
Gaussian Normal 0.0245 0.0873 0.0964 0.1433 0.0072 0.0042 0.0084
Student’s t 0.0303 0.2184 0.1212 0.1315 0.0113 0.0038 0.0073
GARCH(1,1)-N 0.0225 0.1011 0.0990 0.0408 0.0020 0.0008 0.0033
GARCH(1,1)-t 0.0314 0.0869 0.1041 0.0118 0.0029 0.0015 0.0001
Cornish Fisher 0.0499 0.0140 0.0760 0.0975 0.0005 0.0014 0.0029

Panel B: Maximum and mean of the relative optimal corrections to the daily ES (α= 2.5%)
Historical 0.0306 0.9846 3.1899 4.3676 0.0568 0.0608 0.1818
EWMA (λ=0.94) 0.0244 3.1882 3.9932 5.3753 0.2599 0.1162 0.3070
Gaussian Normal 0.0245 2.6898 2.1429 6.7203 0.2739 0.1344 0.3577
Student’s t 0.0303 4.7976 2.4108 4.8079 0.3964 0.0979 0.2550
GARCH(1,1)-N 0.0225 5.6038 3.9722 1.3372 0.0840 0.0341 0.1341
GARCH(1,1)-t 0.0314 1.5495 3.1743 0.2340 0.0868 0.0405 0.0016
Cornish Fisher 0.0499 0.5222 2.4011 3.3902 0.0175 0.0222 0.0977

Panel C: Maximum and mean of the relative optimal corrections to the daily VaR (α= 1%)
Historical 0.0295 0.7820 2.8091 11.1037 0.0286 0.0766 0.5908
EWMA (λ=0.94) 0.0243 1.0183 2.9779 11.3926 0.0634 0.1075 0.8284
Gaussian Normal 0.0243 1.3942 4.2346 12.2224 0.0730 0.1433 0.8646
Student’s t 0.0280 0.8911 3.6617 10.5877 0.0422 0.1004 0.6961
GARCH(1,1)-N 0.0224 0.5051 2.9813 11.4471 0.0229 0.0652 0.8325
GARCH(1,1)-t 0.0302 0.0714 1.7387 7.3335 0.0001 0.0149 0.4016
Cornisher Fisher 0.0498 0.3660 1.8009 10.2159 0.0077 0.0241 0.3087

Panel D: Maximum and mean of the absolute corrections to the daily ES, corrected for VaR model risk
Historical 0.0323 0.0140 0.0870 0.0605 0.0008 0.0018 0.0024
EWMA (λ=0.94) 0.0257 0.0853 0.0930 0.0672 0.0055 0.0036 0.0038
Gaussian Normal 0.0260 0.0861 0.0964 0.0726 0.0055 0.0041 0.0040
Student’s t 0.0319 0.1368 0.1212 0.0642 0.0051 0.0035 0.0031
GARCH(1,1)-N 0.0230 0.0342 0.0706 0.0364 0.0015 0.0008 0.0023
GARCH(1,1)-t 0.0314 0.0644 0.1041 0.0094 0.0014 0.0015 0.0001

Note: The outcomes are computed based on the DJIA index from the 1st January 1900 to
the 23rd May 2017, downloaded from DataStream. Based on various forecasting models,
the risk estimates (ES and VaR) are forecasted with a four-year moving window (1,000
daily returns) and the mean ES and VaR are calculated over the entire sample. Panel A
gives the absolute values of the maximum and mean of the historical series of minimum
corrections (C1, C2 and C3) made to ES estimates, accordingly, for the unconditional
coverage test (UC test), the conditional coverage test (CC test) and the magnitude test (Z2

test), whilst Panel B gives the relative values of the maximum and mean of the historical
series of minimum corrections for ES estimates, obtained by passing the aforementioned
backtests, where the relative correction is the ratio of the optimal correction over the
average daily ES; backtesting is done over 250 days. Panel C gives the relative values of
the maximum and mean of the historical series of minimum corrections for VaR etsimates,
obtained by passing three VaR backtests. Panel D gives the absolute values of the
maximum and mean of the historical series of minimum corrections for ES estimates, after
correcting for VaR model risk.
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Table 3: Maximum and mean of the absolute and relative corrections made to the daily
GARCH(1,1)-t ES (α = 2.5%) for different asset classes based on different backtests.

Statistics of asset returns Backtesting-based corrections
Asset classes Std. Skewness Kurtosis Mean ES Max C1 Max C2 Max C3 Mean C1 Mean C2 MeanC3

Panel A: Maximum and mean of the absolute corrections to the daily GARCH (1,1)-t ES (α = 2.5%)
equity 0.012 -0.363 8.966 0.0308 0.0246 0.0160 0.0071 0.0034 0.0006 0.0001
bond 0.003 0.029 4.477 0.0082 0.0055 0.0353 0.0000 0.0004 0.0005 0.0000
commodity 0.004 -0.556 7.045 0.0133 0.0105 0.0144 0.0068 0.0009 0.0004 0.0001

Panel B: Maximum and mean of the relative corrections to the daily GARCH (1,1)-t ES (α = 2.5%)
equity 0.012 -0.363 8.966 0.0308 0.8282 0.5954 0.2835 0.0986 0.0219 0.0028
bond 0.003 0.029 4.477 0.0082 0.6275 3.0534 0.0000 0.0550 0.0548 0.0000
commodity 0.004 -0.556 7.045 0.0133 0.6939 1.5953 0.2759 0.0562 0.0344 0.0036

Note: The results are based on daily returns from 07/07/1986 to 07/07/2017, downloaded
from DataStream. For the equity, we use a composite index with 95% “MSCI Europe
Index” and 5% “MSCI World Index”; for the bond, we use the “Bank of America Merrill
Lynch US Treasury & Agency Index”; for the commodity, we use the “CRB Spot Index”.
The average daily ES of various asset classes is computed based on the GARCH(1,1)-t
model in a four-year rolling forecasting scheme. Panel A gives the absolute values of
the maximum and mean of the historical series of minimum corrections (C1, C2 and C3),
accordingly, for the unconditional coverage test (UC test), the conditional coverage test
(CC test) and the magnitude test (Z2 test), whilst Panel B gives the relative values of the
maximum and mean of the historical series of minimum corrections obtained by passing
the three backtests; backtesting is done over 250 days. The relative correction is the ratio
of the optimal correction over the average daily ES.

different asset classes13. In this case, the higher the corrections, the more unreliable

the ES forecasts, thus the worse the fit of the forecasting model to the data. We find

that equity has the highest model risk with the highest mean value of the relative

optimal correction of 0.0986 required to pass the three tests jointly, when compared

with bond and commodity ES, provided that a GARCH(1,1)-t model is used. This

is consistent with the statistical properties of the dataset considered, where equity

returns are the most volatile with a fat tail. To pass the magnitude test (Z2 test),

the corrections made to the daily ES associated with GARCH(1,1)-t are small, as

expected.

To have a further look at the model risk of ES estimates of specific assets, we

conduct a case study on the USD/GBP foreign currency as well as the Microsoft

stock listed in the Nasdaq Stock Market. We consider that ES is estimated at a

significance level of 2.5%, and we have a position of 1 million dollars for each asset.

Table 4 shows the exposure to model risk of the GARCH(1,1)-t ES when investing

13See the data source in the note to Table 3.
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Table 4: Dollar exposure to model risk of GARCH(1,1)-t ES (α = 2.5%) of the USD/GBP
exchange rate and Microsoft equity, based on various ES backtests.

Asset Mean ES Max C1 Max C2 Max C3 Mean C1 Mean C2 Mean C3

FX USD/GBP 17,654 13,997 13,288 6,924 1,001 700 100

Microsoft stock 64,069 61,837 49,485 17,044 1,701 3,305 100

Note: The data of USD/GBP spot rates and Microsoft stock prices from 01/01/1987
to 04/10/2017 are downloaded from DataStream and Bloomberg, respectively. All the
outcomes are in monetary terms ($) computed by using a four-year moving window and
a one-year backtesting period, based on the GARCH(1,1)-t model. The table presents
the dollar values of the maximum and mean of the optimal corrections (C1, C2 and C3)
required to pass the UC, CC and Z2 tests accordingly, when considering a position of 1
million dollars in the asset specified in the first column.

in the USD/GBP exchange rate or by purchasing the Microsoft stock, respectively.

Using a significance level of 2.5%, the average ES of the two investments are $17,654

and $64,069, respectively. The mean model risk, according to the Z2 backtest for ES,

is only $100 for both investments. The same backtest gives a maximum correction of

$6,924 for the FX investment and $17,044 for the stock investment. These examples

show why it is necessary for banks to introduce enough protection against model

risk when calculating the risk-based capital requirement, as in Basel (2011).

Our empirical analysis shows that, when forecasting ES, GARCH models are pre-

ferred, whilst the static models (e.g. the Gaussian Normal and Student’s t models)

and EWMA should be avoided. However, when considering the model risk of VaR

models, Boucher et al. (2014) recommend that EWMA VaR is preferred, whilst

the Cornish Fisher expansion VaR should be avoided. Overall, we conclude that

GARCH models are preferred for VaR and ES forecasting. Also, ES is the preferred

measure of risk since it is less affected by model risk than VaR when both ES and

VaR are estimated at the regulatory coverage levels, especially after VaR model risk

is removed.
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5 Conclusions

The superiority14 of ES allows it to replace VaR as the standard risk measure as

documented in Basel (2013). Usually, only the risk estimates are considered, ignoring

the risk of risk models, but this practice can lead to devastating losses. Whilst there

are several papers that examine VaR model risk, the model risk of ES forecasting

models is a relatively untouched topic. The general methodology in quantifying

the model risk of imperfect VaR forecasts based on their backtesting performance,

proposed by Boucher et al. (2014), is extended in this paper to study the model

risk of ES estimates. Using Monte Carlo simulations, we compute the estimation

bias as well as the joint specification and estimation biases of various ES estimates,

indicating that the model risk of ES forecasting models is worth a great deal of

consideration.

ES forecasts should satisfy certain requirements with respect to the following

characteristics: 1) the frequency of exceptions; 2) the absence of autocorrelations in

exceptions; 3) the magnitude of exceptions. We use the unconditional coverage test

and the conditional coverage test for ES (Du and Escanciano, 2016), as well as the

magnitude test proposed by Acerbi and Szekely (2014) to test the adequacy of ES

estimates. The optimal corrections, which are considered as a proxy for model risk,

are obtained by minimizing the adjustments needed to pass the backtests above.

When considering the three tests jointly, the GARCH(1,1)-t model has the smallest

model risk.

Comparing the model risk of ES and VaR risk models at the regulatory coverage

levels, we find that the ES estimates are less affected by model risk, needing a

smaller correction to pass the three ES backtests jointly. If VaR model risk is first

removed from ES calculations and ES backtests, then ES model risk reduces further

by approximately 50%. Our results are strengthened when the standard deviations

of the corrections for model risk are considered: GARCH models not only require

the smallest corrections for model risk, but the level of the corrections are the most

stable, when compared to the other models considered in our study. Also, we obtain

that the ES of equity investments are more vulnerable to the model risk of risk

models, indicating that equity investors should be more aware of model inadequacy,

when compared to bond, commodity and FX investors.

14Artzner et al. (1999) and Acerbi and Tasche (2002) suggest ES as a remedy for the VaR
measure accused of non-subadditivity; Colletaz et al. (2013) and Danielsson and Zhou (2015) show
that ES is more sensitive to the magnitude of losses in the tail than VaR.
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Appendix A. Theoretical analysis of estimation and

specification errors of VaR15

Estimation bias and correction of VaR

Based on equation (5) and (6), correcting for the estimation error, the VaR estimate

can be written as:

V aRE(θ̂0, α) = V aR(θ̂0, α) + E(bias(θ0, θ̂0, α)) (26)

This tells us that the mean bias of the forecasted VaR from the theoretical VaR is

caused by estimation error.

Specification and estimation biases and correction of VaR

Based on equation (10) and (11), correcting for these biases (specification and esti-

mation), the VaR estimate can be written as:

V aRSE(θ̂1, α) = V aR(θ̂1, α) + E(bias(θ0, θ1, θ̂1, α)) (27)

The mean of the estimation bias and specification bias for VaR can be considered

as a measurement of economic value of the model risk of VaR.

15The analysis is based on Boucher et al. (2014).
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Appendix B. Backtesting measures of VaR and ES

Table 5: Selected backtesting methodologies for VaR and ES

VaR backtests ES backtests

Exception Frequency Tests: Exception Frequency Tests:
1)UC test - Kupiec (1995) 1)UC test - Du and Escanciano (2016)

2)data-driven- Escanciano and Pei (2012)

2)risk map- Colletaz et al. (2013)

Exception Independence Tests: Exception Independence Tests:
1)independence test-Christoffersen (1998)

2)density test- Berkowitz (2001)

Exception Frequency and Independence Tests: Exception Frequency and Independence Tests:
1)CC test- Christoffersen (1998) 1)CC test- Du and Escanciano (2016); Costanzino and Curran (2015a,b)

2)dynamic quantile-Engle and Manganelli (2004)

3)multilevel test- Campbell (2006)

4)multilevel test-Leccadito et al. (2014)

5)multinomial test-Kratz et al. (2016) 2)multinomial test-Kratz et al. (2016); Emmer et al. (2015); Clift et al. (2016)

6)two-stage test- Angelidis and Degiannakis (2006)

Exception Duration Tests: Exception Duration Tests:
1)duration-based test- Berkowitz et al. (2011)

Exception Magnitude Tests: Exception Magnitude Tests:
1)tail losses- Wong (2010) 1) tail losses- Wong (2008); Christoffersen (2009); McNeil and Frey (2000)

2)magnitude test-Berkowitz (2001)

Exception Frequency and Magnitude Tests: Exception Frequency and Magnitude Tests:
1)risk map- Colletaz et al. (2013)

1)Z2 test-Acerbi and Szekely (2014)

Appdendix C. Empirical results
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Figure 7: Historical maximum of the optimal corrections required by passing the UC,
CC and Z2 tests, respectively.
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Table 6: The highest values of the absolute minimum corrections made to the daily ES
(α = 2.5%) based on several models and different backtests.

UC test CC test Z2 test
Models Dates C1 Dates C2 Dates C3

Historical 1 16/06/1930 0.0250 29/10/1929 0.0980 20/04/2009 0.1186
2 11/09/2009 0.0240 14/12/1914 0.0570 30/03/2009 0.1176
3 20/11/2008 0.0230 30/10/1930 0.0300 05/03/2009 0.1172
4 12/12/1929 0.0220 13/12/1915 0.0280 19/05/2009 0.1167

EWMA 1 15/08/1932 0.1355 15/10/1935 0.0930 20/04/2009 0.1241
2 08/08/1932 0.1196 18/10/1935 0.0898 05/03/2009 0.1238
3 09/11/1931 0.1010 17/10/1935 0.0897 30/03/2009 0.1229
4 22/06/1931 0.0744 16/10/1935 0.0893 05/05/2009 0.1225

Gaussian Normal 1 17/08/1932 0.0873 15/10/1935 0.0964 20/04/2009 0.1433
2 13/09/1935 0.0861 18/10/1935 0.0927 05/03/2009 0.1431
3 12/09/1935 0.0859 17/10/1935 0.0925 30/03/2009 0.1421
4 16/09/1935 0.0850 16/10/1935 0.0921 05/05/2009 0.1418

Student’s t 1 29/05/2009 0.2184 25/10/1935 0.1212 05/03/2009 0.1315
2 15/09/1932 0.1475 04/10/1935 0.1118 20/04/2009 0.1308
3 11/10/1932 0.1324 28/10/1935 0.1041 30/03/2009 0.1300
4 08/09/1932 0.1206 29/10/1935 0.1005 02/03/2009 0.1299

GARCH(1,1)-N 1 14/12/1962 0.1011 02/06/1915 0.0990 29/03/1938 0.0408
2 19/12/1962 0.0990 10/06/1915 0.0775 29/10/1929 0.0403
3 27/03/1931 0.0484 01/03/1915 0.0744 14/04/1988 0.0397
4 26/03/1931 0.0471 02/03/1915 0.0721 08/08/1930 0.0396

GARCH(1,1)-t 1 24/08/1932 0.0869 08/06/1915 0.1041 08/08/1930 0.0118
2 25/08/1932 0.0854 25/05/1915 0.1022 28/10/1928 0.0095
3 26/08/1932 0.0812 03/03/1915 0.1002 12/12/1929 0.0086
4 02/02/1932 0.0427 09/06/1915 0.0999 21/07/1930 0.0084

Cornish Fisher 1 06/11/1929 0.0140 28/10/1930 0.0760 01/12/2008 0.0975
2 29/10/1929 0.0130 29/10/1929 0.0750 08/12/2008 0.0951
3 10/02/1930 0.0120 14/12/1914 0.0540 29/12/2008 0.0933
4 28/10/1929 0.0110 19/10/1987 0.0280 20/11/2008 0.0915

Note: The results are based on the DJIA index daily returns from 1st January 1900 to 23rd
May 2017, downloaded from DataStream. Assuming several models, we re-estimate the
parameters with a four-year moving window and backtest ES estimates in the evaluation
period of 250 days. The variables C1, C2 and C3 denote the optimal corrections required
to pass the unconditional coverage test (UC test), the conditional coverage test (CC test)
and the magnitude test (Z2 test), respectively.
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Figure 8: The left tail of the cumulative distribution (using a Gaussian Kernel smoothing
density) of the negative of the optimal corrections obtained by passing the UC, CC, and
Z2 tests, respectively.

27



Table 7: Standard deviations of the absolute and relative corrections made to the daily
ES (α = 2.5%), as well as standard deviations of the absolute corrections made to the
daily ES (α = 2.5%) after VaR model risk is first removed, based on several models and
different backtests.

Method Std. dev of C1 Std. dev of C2 Std. dev of C3

Panel A: Standard deviations of the absolute optimal
corrections made to the daily ES (α = 2.5%).
Historical 0.0039 0.0108 0.0157
EWMA(λ=0.94) 0.0133 0.0108 0.0179
Gaussian Normal 0.0135 0.0111 0.0200
Student’s t 0.0125 0.0098 0.0186
GARCH(1,1)-N 0.0039 0.0038 0.0067
GARCH(1,1)-t 0.0051 0.0063 0.0006

Panel B: Standard deviations of the relative optimal
corrections made to the daily ES (α = 2.5%).
Historical 0.1215 0.3050 0.5010
EWMA(λ=0.94) 0.4263 0.3034 0.6769
Gaussian Normal 0.4339 0.3095 0.7991
Student’s t 0.3823 0.2167 0.5933
GARCH(1,1)-N 0.1530 0.1471 0.2415
GARCH(1,1)-t 0.1430 0.1556 0.0138

Panel C: Standard deviations of the absolute optimal corrections made
to the daily ES (α = 2.5%), after VaR model risk is first removed.
Historical 0.0024 0.0100 0.0077
EWMA(λ=0.94) 0.0121 0.0110 0.0093
Gaussian Normal 0.0122 0.0113 0.0099
Student’s t 0.0107 0.0097 0.0089
GARCH(1,1)-N 0.0031 0.0046 0.0052
GARCH(1,1)-t 0.0057 0.0063 0.0006

Note: The results are based on the DJIA index daily returns from 1st January 1900 to 23rd
May 2017, downloaded from DataStream. Assuming several models, we re-estimate the
parameters with a four-year moving window and backtest ES estimates in the evaluation
period of 250 days. The variables C1, C2 and C3 denote the optimal corrections required
to pass the unconditional coverage test (UC test), the conditional coverage test (CC test)
and the magnitude test (Z2 test), respectively.
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