Scenarier for avfallsmengder og behandlingskapasitet fram mot 2030

Avfall Norge-rapport nr 4/2015
Rapport nr: 4/2015
Dato: 08.05.2015
Revidert:
Rev. dato:

Distribusjon: Fri
ISSN:
ISBN: 82-8035-012-1

Tittel:
Scenarier for avfallsmengder og behandlingskapasitet fram mot 2030

Oppdragsgiver: Avfall Norge
Kontaktperson: Henrik Lystad

Forfatter(e): Frode Syversen
Medforfatter(e): Håkon Bratland Olav Skogesal

Oppdragstaker: Mepex Consult AS
Prosjektleder: Frode Syversen

Emneord: Statistikk, framskrivning avfallsmengden, husholdningsavfall, materialgjenvinning, energiutnyttelse
Subject word: Waste statistics, waste forecasts, household waste, recycling, energy recovery

Sammendrag:

Det er foretatt beregninger av fremtidige avfallsstrømmer i Norge fram mot 2030 ved noen ulike scenarier for utvikling av mer effektiv utsortering til materialgjenvinning og generell utvikling i avfallsmengder. Det er bygd opp en modell for å etablere et materialregnskap for sentrale deler av avfallsstrømmene hvor det er et vesentlig potensiale for økt utsortering og materialgjenvinning. Følgende elementer inngår i analysen:
- Avfallsstrømmene i 2013 fra husholdninger
- Materialregnskap i 20 kommuner/regioner som dekker om lag 3 mill innbyggere basert på plukkanalyser
- Beregning av nasjonal generering, returandel og potensiale i restavfall for 6 materialer
- Vurdering av «best practice» vedr. kildesortering og sentral ettersortering
- Mengde og sammensetning av brennbart restavfall fra næringsvirksomhet
- Framskrivning av avfallsmengder basert på historisk utvikling (SSB) til 2030
- Utvikling i kapasitet forbrenning i Norge mot 2030

Det kan forventes en vesentlig vekst i totale avfallsmengder dersom effektive tiltak for avfallsforebygging ikke iverksettes. Kombinert med effektivisering av avfallssystemene basert på «best practice» kan det medføre at mengden materiale utsortert til materialgjenvinning kan øke med 120 % eller nærmere 800.000 tonn bare fra husholdninger (mat, papir, plast, tekstiler, glass, metall). I 2013 ble 39 % av alt husholdningsavfall utsortert for materialgjenvinning/biogass/kompostering. Dette kan øke til 54 % ved vurderte tiltak ved «best practice».

Det er foretatt en vurdering av fremtidig kapasitetsbalanse for forbrenning som viser at mengden restavfall som skal gå til energiutnyttelse vil holde dagens nivå forutsatt maksimal utsortering, men fortsatt vekst i mengdene.

Det er vesentlig usikkerhet til beregningene, og rapporten gir innspill til mulige forbedringer av analysen i en fase to. Rapporten gir også innspill til hvordan rapporten kan benyttes for å arbeide for bedre avfallsstatistikk og datagrunnlag fra materialregnskap.

Godkjent av: Henrik Lystad
Dato: 08.05.2015
Sign:
FORORD

EU-kommisjonen lanserte sommeren 2014 en pakke for ny avfallspolitikk og grønn omstilling i EU, kalt Circular economy. Blant annet inneholdt denne forslag om krav om minimum 70 % materialgjenvinning av husholdningsavfall og enda høyere andeler av utvalgte typer emballasjeavfall. Målepunktet skulle også flyttes fra «sendt til materialgjenvinning» til «faktisk materialgjenvunnet».

Denne rapporten er tatt fram for å se på hvilket potensialet som ligger i bruk av best practice hos kjente løsninger og kjent teknologi i Norge.

Oppdraget er utført av Mepex Consult AS med Frode Syversen som prosjektleder og hovedforfatter. Prosjektets styringsgruppe har bestått av:

- Håkon Jentoft, Renovasjonsetaten i Oslo
- Toralf Igesund/Steinar Nævdal, BIR-privat AS
- Jan Egil Korseberg, RIR
- Nancy Strand, Avfall Norge

Henrik Lystad
Fagsjef
Avfall Norge
<table>
<thead>
<tr>
<th>Innhold</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Innledning</td>
<td>5</td>
</tr>
<tr>
<td>1.1. Bakgrunn for prosjektet</td>
<td>5</td>
</tr>
<tr>
<td>1.2. Mål for prosjektet</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Gjennomføring av fase 1</td>
<td>6</td>
</tr>
<tr>
<td>1.4. Avgrensninger og aktuelle begrep</td>
<td>7</td>
</tr>
<tr>
<td>2. Mengder husholdningsavfall</td>
<td>8</td>
</tr>
<tr>
<td>2.1. Innledning og formål</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Metodebeskrivelse og datagrunnlag</td>
<td>8</td>
</tr>
<tr>
<td>2.3. Resultater</td>
<td>9</td>
</tr>
<tr>
<td>2.4. Drøfting</td>
<td>10</td>
</tr>
<tr>
<td>3. Nasjonal returandel for ulike materialer</td>
<td>12</td>
</tr>
<tr>
<td>3.1. Innledning</td>
<td>12</td>
</tr>
<tr>
<td>3.2. Metode og datagrunnlag</td>
<td>12</td>
</tr>
<tr>
<td>3.3. Resultater</td>
<td>16</td>
</tr>
<tr>
<td>3.4. Drøfting</td>
<td>17</td>
</tr>
<tr>
<td>4. Potensiale for økt sortering i husholdninger</td>
<td>20</td>
</tr>
<tr>
<td>4.1. Innledning</td>
<td>20</td>
</tr>
<tr>
<td>4.2. Metode og datagrunnlag</td>
<td>20</td>
</tr>
<tr>
<td>4.3. Resultater</td>
<td>21</td>
</tr>
<tr>
<td>4.3.1. Oppsummering</td>
<td>21</td>
</tr>
<tr>
<td>4.3.2. Matavfall/våtorganisk avfall</td>
<td>24</td>
</tr>
<tr>
<td>4.4. Papir</td>
<td>25</td>
</tr>
<tr>
<td>4.5. Plast</td>
<td>25</td>
</tr>
<tr>
<td>4.6. Glassemballasje</td>
<td>26</td>
</tr>
<tr>
<td>4.7. Metall</td>
<td>27</td>
</tr>
<tr>
<td>4.8. Tekstil</td>
<td>27</td>
</tr>
<tr>
<td>5. Potensiale for økt gjenvinning i næringsavfall</td>
<td>29</td>
</tr>
<tr>
<td>6. Framskrivning av avfallsgenerering 2013 - 2030</td>
<td>30</td>
</tr>
<tr>
<td>6.1. Innledning</td>
<td>30</td>
</tr>
<tr>
<td>6.2. Metode og datagrunnlag</td>
<td>30</td>
</tr>
<tr>
<td>6.3. Oppsummering av aktuell framskrivning</td>
<td>32</td>
</tr>
<tr>
<td>7. Beregning av avfallsmengder fram mot 2030</td>
<td>34</td>
</tr>
<tr>
<td>7.1. Innledning</td>
<td>34</td>
</tr>
</tbody>
</table>
7.2. Metode og datagrunnlag ... 34
7.3. Resultater .. 35
7.4. Drøfting ... 38
8. Kapasitet forbrenning restavfall i Norge ... 39
 8.1. Innledning ... 39
 8.2. Metode og datagrunnlag ... 39
 8.3. Resultater ... 40
 8.4. Drøfting .. 40
9. Kapasitetsbalanse forbrenning restavfall ... 41
 9.1. Innledning ... 41
 9.2. Metode og datagrunnlag ... 41
 9.3. Resultat ... 41
 9.4. Drøfting .. 43
10. Oppsummering med innspill til videre arbeid 44
 10.1. Kort oppsummering ... 44
 10.2. Drøfting av resultatene ... 45
 10.3. Innspill til mulig videre arbeid .. 46
11. Vedlegg ... 47
 11.1. Liste over plukkanalyser som er benyttet 47
1. Innledning

1.1. Bakgrunn for prosjektet

«Helhetlige rammebetingelser for avfallshåndtering» er et knippe prosjekter Avfall Norge etablerte i 2014. Det har sin bakgrunn i utviklingen i den Europeiske avfallspolitikken og de utfordringer man står overfor i Norge når det gjelder avfallsforebygging, ombruk /materialgjenvinning og energigjenvinning av avfall i Norge fram mot 2030.

Det har vært arbeidet med et forslag i EU-kommisjonen om minst 70 % av kommunalt avfall til ombruk og materialgjenvinning innen 2030 som en del av nytt rammedirektiv for avfall. Det har vært en rekke uklarheter til måleparametere og målemetode for et slikt nytt målregime. Det er nå usikkerhet til hva som kommer til å bli det endelige forslaget. Videre arbeides det med nye mål for materialgjenvinning av emballasje i emballasjedirektivet.

«Helhetlige rammebetingelser for avfallshåndtering» består av flere delprosjekter og denne rapporten omhandler ett av delprosjektene som heter:

Scenarier for avfallsmengder og behandlingskapasitet i Norge fram mot 2030.

Prosjektets omfatter husholdningsavfall og restavfall til forbrenning, og analyserer mulige utvikling i mengder og behandlingsform. Analysen vurderer hvor mye avfall som kan i fremtiden sorteres ut fra restavfall og leveres til materialgjenvinning ut fra kjent teknologi og løsninger, samtidig som fremtidig mengde restavfall beregnes.

Dette prosjektet er betegnet som fase 1 i et prosjekt som kan videreføres i en eventuell fase 2 dersom det viser seg hensiktsmessig. Det er satt av et begrenset beløp og tid til gjenomføring av fase 1. Det har derfor vært nødvendig å foreta en del forenklinger i fase 1 og som kan være grunnlag til å detaljere videre i en fase 2. Etter fase 1 er etablert et helhetlig bilde av hvilke faktorer som har størst betydning for utviklingen og har et bedre grunnlag for å prioritere evt. videre innsats for å øke presisjonsnivået.

1.2. Mål for prosjektet

Følgende relevante scenarier for utviklingen i mengde husholdningsavfall og total mengde brennbart restavfall og tilhørende behandlingsform, både ombruk, materialgjenvinning og energiutnyttelse fram mot 2030, som bygger på:

- En analyse av dagens avfallsstrømmer og sammensetning med angivelse av brutto potensiale for materialgjenvinning, både ut sammensetning av restavfall og sammensetning av kildesorterte avfall.
- Analysere og beskrive aktuelle tiltak for økt sortering, både kildesortering og sentralsortering, ut fra best tilgjengelig teknologi og beste erfaringer.
- Vurdere utvikling i avfallsgenerering fram mot 2030
- Vurdere utvikling i fremtidig behandlingskapasitet energiutnyttelse.

Det skal legges vekt på å visualisere resultatene på en enkel forståelig pedagogisk måte. Det skal utformes som et grunnlag for politiske prioriteringer/avveiningen som kan både bidra til økt satsning på ombruk/materialgjenvinning og fornuftige rammevilkår for energiutnyttelse av avfall i Norge.
1.3. Gjennomføring av fase 1

I fase 1 er det lagt vekt på å innhente og systematisere foreliggende datagrunnlag og etablere en modell for som er egnet for å gjennomføre analyser av ulike scenarier for utvikling i avfallsmengder og endringer i behandlingsform.

Det er lagt vekt på å beskrive modellen som er utviklet og tilhørende forutsetninger for hva som er utført av beregninger, presentere resultater og drøfte usikkerhet. Det gis også en vurdering av hvilke elementer som evt. kan videreføres i en fase 2 for å forbedre modellen og redusere usikkerhet. Prosjektets fase 1 har omfattet følgende hovedaktiviteter:

1. Innhente og strukturere avfallsmengder fra husholdninger, i hovedsak basert på data via Kostra (SSB) rapportering fra kommuner og interkommunale selskap for 2013
 - Avfallstype og behandlingsform
2. Systematisere data fra foreliggende plukkanalyser for restavfall fra husholdninger som grunnlag for å beregne potensial for økt utsortering og status returandel
3. Vurdere reelt potensiale for økt sorteringspotensial fra husholdninger basert på erfaringer fra kommuner som har oppnådd høyest returandel for ulike materialslag gjennom kildesortering og sentral ettersortering av restavfall i Norge.
4. Forenklet vurdering av potensialet for økt utsortering av brennbart næringsavfall som i 2013 går til energiutnyttelse
5. Data for mengde restavfall til forbrenning både fra husholdning og næring (2013)
7. Planer for utvikling av forbrenningskapasitet fram mot 2030 (basert på spørreundersøkelse til anleggseiere, gjennomført av Avfall Norge)
8. Samlet beregning av mengde avfall utsortert og mengde restavfall fram mot 2030.

Det er under gjennomføringen foretatt presentasjoner av foreløpige beregninger i Avfall Norge seminar for energiutnyttelse i Fredrikstad og ved møte i styringsgruppen til prosjektet. Det har vært gitt noen tilbakemeldinger som i stor grad er hensyntatt i rapporten.
1.4. Avgrensninger og aktuelle begrep

Prosjektet analyserer i hovedsak økt potensiale for utsortering av det restavfall som sendes til forbrenning og legger til grunn at dagens sorteringsaktivitet som et minimum videreføres.

Restavfall fra næringer er inkludert i analysen, uten at dagens sorteringsnivå vurderes.

Tekstiler i restavfall er inkludert i analysen, selv om tekstiler levert til ombruk i 2014 ikke er definert som avfall og dermed ikke oppleves som et kommunalt ansvar.

Farlig avfall og EE-avfall er ikke tatt med, og potensiale for treavfall og hage- og parkavfall er ikke vurdert.

<table>
<thead>
<tr>
<th>Aktuelle begrep</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentral ettersortering av restavfall</td>
<td>Brukes som betegnelse for prosessen ved sorteringsanlegg for restavfall</td>
</tr>
<tr>
<td>Våtorganisk avfall/matavfall</td>
<td>Analysen setter fokus på potensiale for økt utsortering av matavfall, men legger til grunn at annet våtorganisk avfall som dag blir kildesortert fortsatt blir utsortert i fremtiden</td>
</tr>
<tr>
<td>Groavfall husholdninger</td>
<td>Normalt betegnes groavfall som pga. størrelse og mengde ikke passer inn i normal innsamling av avfall. Det er naturlig å knytte til avfall samlet inn som groavfall på egne ruter og avfall levert gjenvinningsstasjon (unntatt farlig avfall?)</td>
</tr>
<tr>
<td></td>
<td>Utfordringen er knyttet til ulik praksis ved datarapportering til SSB og tilhørende upresis definisjon i Kostra-rapporteringen.</td>
</tr>
<tr>
<td></td>
<td>Det har vært viktig i prosjektet å få fram tall for mengden restavfall gjenvinningsstasjoner og evt. henteordninger groavfall for å vurdere potensiale for økt utsortering.</td>
</tr>
<tr>
<td>Returandel</td>
<td>Benyttes som begrep i materialregnskap for å angi hvor stor andel av total generert mengde som sendes til materialgjenvinning. I et materialregnskap er det foretatt korreksjoner av både feilsorteringer i det som er utsortert og korreksjoner for smuss i data fra plukkanalyser</td>
</tr>
<tr>
<td>Avfallskategori og materialtype</td>
<td>Avfallskategori eller avfallstype brukes normalt for å beskrive en avfallsstrøm, gjerne en type kildesortert avfall inklusive feilsorteringer. Det er valgt ikke å bruke avfallsfraksjon som begrep. Materialtype brukes normalt når vi er kun på en mengde i et materialregnskap hvor vekten av feilsorteringer mv ikke teller med.</td>
</tr>
<tr>
<td>Restavfall</td>
<td>Restavfall er ikke et entydig begrep, men vil være en sammensatt avfallsstrøm som ikke blir kildesortert, eller som oppstår som en rest ut fra sentral ettersortering og normalt sent til forbrenning med energiutnyttelse.</td>
</tr>
</tbody>
</table>
2. Mengder husholdningsavfall

2.1. Innledning og formål

Prosjektet bruker gjeldende statistikk fra SSB som hovedkilde til å beskrive avfallsmengdene fra husholdninger i Norge i 2013. Grunnlaget er bearbeidet for å etablere en basis for alle mengdeberegninger av husholdningsavfall i analysen, både når det gjelder analyser på nasjonalt nivå og på regionalt nivå og ved bruk av spesifikke avfallsanalyser utført i kommuner/regioner.

Det kan generelt bemerkes at det er usikkerhet til tallgrunnlaget, og noen punkter i statistikken er ikke entydig og kan oppleves ufullstendig i forhold til det behov prosjektet har hatt. Det gjelder blant annet for groavfall og restavfall fra gjenvinningsstasjoner. Det forekommer erfaringsvis feilrapporteringer som gjør at enkelte tall i statistikken er feil. Det er ikke systematisk kontrollert når man har brukt tall på kommunenivå/for regioner.

2.2. Metodebeskrivelse og datagrunnlag

Det er foretatt en analyse av mengdene husholdningsavfall basert på Kostra-rapportering til SSB for perioden 2009-2013. Analysen for 2013 baserer seg på grunnlaget for de offisielle tallene som SSB publiserte i juni 2014. Fra Kostra er det innhentet en tabell over alt husholdningsavfall ut fra behandlingsform og for ulike avfallskategorier:

<table>
<thead>
<tr>
<th>Behandlingsform (SSB)</th>
<th>Avfallskategorier (SSB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materialgjenvinning</td>
<td>Papir, papp og drikkekartong</td>
</tr>
<tr>
<td>Kompostering</td>
<td>Glass</td>
</tr>
<tr>
<td>Biogassproduksjon</td>
<td>Plast</td>
</tr>
<tr>
<td>Forbrenning</td>
<td>Metall</td>
</tr>
<tr>
<td>Deponering</td>
<td>EE avfall</td>
</tr>
<tr>
<td>Annen behandling</td>
<td>Matavfall og annet våtorganisk avfall</td>
</tr>
<tr>
<td></td>
<td>Park og hageavfall</td>
</tr>
<tr>
<td></td>
<td>Tre</td>
</tr>
<tr>
<td></td>
<td>Tekstiler</td>
</tr>
<tr>
<td></td>
<td>Farlig avfall</td>
</tr>
<tr>
<td></td>
<td>Restavfall</td>
</tr>
<tr>
<td></td>
<td>Utsortert brennbart avfall</td>
</tr>
<tr>
<td></td>
<td>Annet avfall (uspesifisert)</td>
</tr>
</tbody>
</table>
Dette gir en komplett oversikt over alt avfall fra hver og en kommune i Norge. Data som er benyttet i denne rapporten samrervar med de publiserte tallene fra SSB\(^1\).

Dataene tatt ut på kommunenivå er aggregert opp til IKS/selskapsnivå og koblet sammen med innbyggertall. Det er ut fra dette beregnet nøkketall i kg/innbygger som grunnlag for en validering av tallene og for å kunne avdekke feil.

I rapportering til SSB oppgis også data for grovavfall, samt data for andel av grovavfall som er restavfall. Data for andelen grovavfall som er restavfall blir ikke offentliggjort, da SSB opplever at det er større grad av usikkerhet til disse tallene. Mepex har allikevel innhentet disse dataene for grovavfall som inngår som en del av de øvrige avfallsstrømmene. Det er vurdert som viktig å foreta en selvstendig vurdering av potensiale for økt gjenvinning fra restavfall på gjenvinningsstasjonene.

2.3. Resultater

Tabell 2.1 viser hovedtall for alle kommuner i Norge for 2013 ut fra Kostra-rapporteringen.

<table>
<thead>
<tr>
<th>Kategori</th>
<th>Material-gjenvinning</th>
<th>Biogass-produksjon</th>
<th>Komposting</th>
<th>Forbrenning</th>
<th>Deponering</th>
<th>Annen behand.</th>
<th>Totalsum(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall /våtorg.</td>
<td>1 207</td>
<td>73 944</td>
<td>94 446</td>
<td>4 190</td>
<td></td>
<td>148</td>
<td>173 935</td>
</tr>
<tr>
<td>Papir, papp</td>
<td>290 890</td>
<td>1 822</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>292 712</td>
</tr>
<tr>
<td>Glass</td>
<td>54 618</td>
<td>-</td>
<td>-</td>
<td>764</td>
<td></td>
<td></td>
<td>55 382</td>
</tr>
<tr>
<td>Metall</td>
<td>78 071</td>
<td>-</td>
<td>-</td>
<td>13</td>
<td></td>
<td></td>
<td>78 084</td>
</tr>
<tr>
<td>Plast</td>
<td>31 702</td>
<td>1 606</td>
<td></td>
<td>276</td>
<td></td>
<td></td>
<td>33 584</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>610</td>
<td>14</td>
<td></td>
<td>214</td>
<td></td>
<td></td>
<td>838</td>
</tr>
<tr>
<td>Park/hage</td>
<td>4 129</td>
<td>674</td>
<td>179 936</td>
<td>5 207</td>
<td>4 507</td>
<td>194 453</td>
<td></td>
</tr>
<tr>
<td>Tre</td>
<td>41</td>
<td>-</td>
<td>6 484</td>
<td>248 093</td>
<td>114</td>
<td>254 732</td>
<td></td>
</tr>
<tr>
<td>EE-avfall</td>
<td>44 534</td>
<td>25 177</td>
<td>2 659</td>
<td>11 925</td>
<td>11 925</td>
<td>45 982</td>
<td></td>
</tr>
<tr>
<td>Brennbart</td>
<td></td>
<td></td>
<td></td>
<td>38 723</td>
<td></td>
<td>38 995</td>
<td></td>
</tr>
<tr>
<td>Restavfall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>953 641(^3)</td>
<td></td>
<td>983 157</td>
</tr>
<tr>
<td>Annet avfall</td>
<td>15 966</td>
<td>-</td>
<td>-</td>
<td>16 498</td>
<td>19 040</td>
<td>57 085</td>
<td></td>
</tr>
<tr>
<td>Totalsum</td>
<td>527 989</td>
<td>74 618</td>
<td>280 866</td>
<td>1 294 971</td>
<td>46 712</td>
<td>2 254 802</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Avfall fra hushalda 2013 (http://www.ssb.no/natur-og-miljo/statistikker/avfkomm/ear/2014-06-26)
\(^2\) Rapporten vurderer tiltak for å øke utsorteringen av de 6 avfallstypene som er markert
\(^3\) Mengden brennbart og restavfall til forbrenning utgjør mengden hvor det er potensiale for økt utsortering (992 364 tonn)
Mengden restavfall/brennbart fra husholdningene levert til forbrenning var i 2013 i underkant av 1 millioner tonn i følge SSB, eller 44,0 %. Med bakgrunn i tabell 2.1 kan flere nøkkeltall beregnes:

- 52,1 % av avfallet er utsortert
- 39,2 % er levert til materialgjenvinning, biogass/kompostering
- 57,4 % er levert til forbrenning/energiutnyttelse

Tabell 2.2 viser et par aktuelle nøkkeltall fra tatt ut fra statistikken. Totalt er 44,0% restavfall/brennbart avfall. Innbyggertall benyttet for Norge er 5 051 275.

<table>
<thead>
<tr>
<th>Kategori avfall</th>
<th>Mengde i tonn 2013</th>
<th>Mengde i kg/innb.</th>
<th>% - andel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husholdningsavfall totalt</td>
<td>2 254 802</td>
<td>446</td>
<td>100</td>
</tr>
<tr>
<td>Restavfall/brennbart totalt</td>
<td>992 364</td>
<td>196</td>
<td>44,0</td>
</tr>
<tr>
<td>- hvorav restavfall fra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>grovavfall</td>
<td>251 530</td>
<td>50</td>
<td>11,2</td>
</tr>
</tbody>
</table>

Det fremgår av statistikken at om lag 24 vektpersen av total mengde avfall fra husholdningene er grovavfall (546 470 tonn). Den offisielle statistikken sier ikke noe om hvor mye av dette som er restavfall, men SSB har på forespørsel sendt de uoffisielle tallene til Mepex. Ut fra en vurdering av statistikken så kan det konkluderes med at begrepet grovavfall ikke kan omfatte alt avfall som kommer inn via gjenvinningsstasjonene. Det er grunn til å tro at rutinene for rapportering av grovavfall varierer en del og gjør tallene vanskelig å bruke.

2.4. Drøfting

Basert på tilleggsopplysninger fra SSB for grovavfall og generell kunnskap om avfallysmengder, er det klare indikasjoner på at mengden grovavfall er underestimert. Dersom vi slår sammen hage- og parkavfall, treavfall og restavfall fra gjenvinningsstasjonene utgjør dette alene ca. 700.000 tonn avfall. I tillegg kommer en vesentlig andel av metallene og EE-avfall/farlig avfall som leveres inn på gjenvinningsstasjonene og evt. henteordninger for grovavfall. Mengden fra gjenvinningsstasjonene vurderes å kunne være ca. 800.000 tonn og dermed om lag 35 % av total avfalls mengde fra husholdninger. Det fremstår ikke som urimelig tall i forhold til erfaringer fra en del norske kommuner.

Årsakene til at statistikken ikke er pålitelig for grovavfall er trolig i stor grad knyttet til en manglende omforent definisjon av begrepet. Det er for flere registrert at man har brukt samme tall for grovavfall og restavfall som grovavfall. Utsortert avfall til material og energigjenvinning blir da ikke registrert som grovavfall.

SSB bruker begrepet «Levert til materialgjenvinning» i statistikken. Det indikerer at man ikke har statistikk for hva som faktisk blir gjenvunnet. Mepex har erfaring med at det er noe forskjellig praksis i kommunene vedrørende rapportering ut fra hvilket sted i verdikjeden målepunktet ligger, og evt. om det korrigeres for kunnskap om feilsortering, ol. Generelt kan det antas det er få kommuner som foretar korreksjoner i forhold til tap i nedstrømssløsninger, men det er noen som kan gjøre det, eksempelvis for plastemballasje. Tap ved forbehandling av matavfall/våtorganisk avfall (inkl. evt. bleier) skjer trolig ikke.
Restavfallet, sammen med annet brennbart, utgjør 44 % av den totale avfallsgenereringen fra husholdningene. Andelen til forbrenning er en god del høyere (57%) pga. andre brennbare avfallstyper som trevirke.

Det er viktig å understreke at statistikken ikke spesifikt angir emballasje, men at det i stor grad vil være emballasje som dominerer mengdene for plast og glass spesielt.
3. Nasjonal returandel for ulike materialer

3.1. Innledning
SSB har tidligere arbeidet med avfallsregnskap for ulike avfallsmaterialer. Det er i dette prosjektet foretatt en tilsvarande øvelse basert på kunnskap om sammensetning av de ulike avfallsstrømmene. Denne er basert på en lang rekke avfallsanalyser som er gjennomført de senere årene.

Kort fortalt er prinsippet basert på å sette opp et samlet regnskap for hvert materiale ut fra følgende typer datagrunnlag på kommune og regionsnivå:
- Avfallsstrømmen fra husholdningene definert gjennom SSB statistikk eller kildedata fra kommuner
- Avfallssammensetning til hver avfallsstrøm, både restavfall og kildesortert avfall

Når man har oversikt over alle strømmene og sammensetning kan totalt generert mengde beregnes per materiale. Da inngår ikke feilsorteringer og innhold av smuss, mv. Videre kan returandelen for hvert materiale beregnes ved å ta mengden materiale i utsorterte avfallsstrømmen og dele på generert mengde. Differansen gir potensialet som ligger igjen i restavfallet. Det er avgjørende for å vurdere tiltak for å kunne utløse dette potensialet i praksis.

Et helt avgjørende grunnlag for denne analysen er et relativt stort omfang av plukkanalyser som er relativt nylig gjennomført, med vekt på 2011-2014.

3.2. Metode og datagrunnlag

Plukkanalyserne som er benyttet har en noe ulik inndeling for de ulike fraksjonene som er med. Det er i hovedsak lagt vekt på følgende hovedkategorier:
- Matavfall (inkl komposterbart papir og noen ganger planterester/hageavfall og bleier)
- Papp, papir og kartong (inkl. Lesestoff, bølgepapp, drikkekartong, emballasjekartong og kartong)
- Plastemballasje (inkl. alle bæreposer, gjenvinnbar plastemballasje, emballasje folie og hardplast, panteflasker og lite gjenvinnbar plastemballasje)
- Tekstiler (varierende definisjon)
- Glasemballasje
- Metallemballasje og annet metall
- Farlig avfall og EE-avfall
- Restavfall (alle andre fraksjoner som tidligere ikke er medregnet)

Det er 14 analyser som dekker regioner hvor det er utsortering av våtorganisk avfall og 6 som dekker områder som ikke har innført kildesortering av denne avfallstypen. Det er valgt å foreta en stratifisering ut ifra om avfallsløsningen inkluderer kildesortering av våtorganisk
eller ikke. Det er beregnet en vektet gjennomsnittlig sammensetning av alt restavfallet fra kommuner med kildesortering våtorganisk og uten kildesortering av våtorganisk. Tabell 3.1 viser resultatet av beregningen.

Det er valgt ikke å inkludere planterester og hageavfall som en del av potensiale for økt utsortering av våtorganisk avfall da det i mange kommuner ikke skal med matavfall. Bleier er også regnet som korrekt restavfall, selv i regioner som aksepterer bleier i våtorganisk.

Tabell 3.1 Beregnet gjennomsnittlig sammensetning restavfall i Norge (Mepex 2014)

<table>
<thead>
<tr>
<th>Materialtype</th>
<th>Vektet snitt alle analyse</th>
<th>Områder med kildesort. våt</th>
<th>Område uten kildesort. våt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall og tørkepapir*</td>
<td>36 %</td>
<td>31 %</td>
<td>43 %</td>
</tr>
<tr>
<td>Papir, papp og drikkekartong</td>
<td>11 %</td>
<td>12 %</td>
<td>9 %</td>
</tr>
<tr>
<td>Plast</td>
<td>14 %</td>
<td>15 %</td>
<td>14 %</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>5 %</td>
<td>6 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Glassemballasje</td>
<td>4 %</td>
<td>4 %</td>
<td>3 %</td>
</tr>
<tr>
<td>Metall</td>
<td>2 %</td>
<td>2 %</td>
<td>2 %</td>
</tr>
<tr>
<td>Farlig + EE</td>
<td>2 %</td>
<td>2 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Andre avfallstyper</td>
<td>26 %</td>
<td>29 %</td>
<td>23 %</td>
</tr>
<tr>
<td></td>
<td>100 %</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Tabell 3.2 Standard sammensetning restavfall gjenvinningsstasjon (Mepex 2014)

<table>
<thead>
<tr>
<th>Materialtype</th>
<th>Vekt - %</th>
<th>Merknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Våtorganisk</td>
<td>3</td>
<td>Stor variasjon</td>
</tr>
<tr>
<td>Papir, papp</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Plast</td>
<td>10</td>
<td>Hvorav 4 % plastemballasje</td>
</tr>
<tr>
<td>Glassemballasje</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Metall</td>
<td>2,5</td>
<td>Omfatter både emballasje og kompleks metall. Kan virke lavt.</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>8</td>
<td>Mesteparten er egnet for ombruk og materialgjenvinning</td>
</tr>
<tr>
<td>Andre typer</td>
<td>67,5</td>
<td>Trevirke, møbler, div. brennbart, gisp, div ikke brennbart, mv</td>
</tr>
</tbody>
</table>
Materialregnskap per kommune/selskap

Det er satt opp en beregning for materialregnskap per kommune/selskap, hvor data fra lokale plukkanalyser som er benyttet. For avfallet fra henteordningen er avfallets sammensetning dokumentert i plukkanalyseene for hver region, koblet sammen med mengde restavfall per kommune/selskap fra SSB statistikken, som hovedregel.

For avfall fra gjenvinningsstasjoner er det forutsatt en standard sammensetning, ref. tabell 3.2 som er benyttet for alle regioner og koblet sammen med mengde restavfall fra gjenvinningsstasjonene/grovavfall. Når man ut fra SSB-statistikken ikke kan utlede et rimelig tall for mengde restavfall fra gjenvinningsstasjon/grovavfall er det benyttet en fast verdi som ut fra erfaring tilsier at 30 % av total mengde restavfall i statistikken kommer fra gjenvinningsstasjon/grovavfallinnsamling. Samlet sett gir dette grunnlag for å sette opp potensiale i restavfallet for hver region.

I tillegg er kildesorterte mengder i hver region rapportert SSB benyttet for å beregne total generert mengde og mengder per innbygger i regionen per avfallstype. Det er ut fra dette foretatt en beregning av returandel for hver kommune/region. I denne beregningen av faktisk mengde i et materialregnskap er det foretatt to typer korreksjoner, hhv. for innhold av feilsorteringer i kildesortert avfall og smuss/fukt som følger med en materialtype ved plukkanalyser av restavfall. Dette er vist i tabell 3.3 Det er valgt å benytte en felles faktor i alle regioner selv om det vil være en del variasjoner.

Datagrunnlaget for korreksjon 1 er begrenset og bygger på ulike kilder og generell erfaring fra kvalitetsrevisjoner, mv. Det understrekes at korreksjonen ikke omfatter tap av riktig avfallsmateriale ved forbehandling eller sortering, eksempelvis for våtorganisk og plast. Samlet sett viser kvalitetsrevisjoner for Grønt Punkt i 2014 at det er et snitt for Norge på om lag 10 % ikke-plast som følger kildesortert plast.

Tabell 3.3 Korreksjonsfaktorer for andel feilsorteringer og smuss (vekt - %)

<table>
<thead>
<tr>
<th>Avfallskategori</th>
<th>Korreksjon 1. for feilsortering i kildesortert avfall</th>
<th>Korreksjon 2. for smuss, mv. ved restavfallsanalyser</th>
<th>Merknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Våtorganisk</td>
<td>6</td>
<td>0</td>
<td>Gjelder både feilsortering og posevekten. Ikke korrigert for hageavfall i kildesortert.</td>
</tr>
<tr>
<td>Papir, papp</td>
<td>2,5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Plast</td>
<td>10</td>
<td>16</td>
<td>Her er annen plast ikke regnet som feilsortering</td>
</tr>
<tr>
<td>Glass</td>
<td>5</td>
<td>4</td>
<td>Gjelder kun emballasje</td>
</tr>
<tr>
<td>Metall</td>
<td>5</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Tekstiler</td>
<td>2,5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Korreksjon 1 benyttes for å justere ned mengden kildesortert avfall slik at den kun representerer det faktiske inndholdet av det materialet som gir navn til avfallstypen. Den mengde som dermed fjernes fra regnskapet tas ikke inn som potensiale for restavfall.
Korreksjon 2 benyttes for å justere ned mengden materiale i restavfall som er beregnet ut fra plukkanalysene for restavfall. Dette er også en korreksjon som medfører at man kun tar med den faktiske materialvekten.

Grunnlag for korreksjon 2 baseres seg i første rekke på undersøkelser fra Sverige\(^4\), men også noe underlag fra Norge og referanser i veileder for plukkanalyser fra 2005.

Disse beregningene gir korrigert mengde kildesortert avfall, korrigert innhold i restavfall og totalt generert avfall. Fra dette er det beregnet for hver kommune/region;

- Returandel (korrigert mengde kildesortert materiale/totale generert avfall)
- Kildesortert avfall per person (kg/innb)
- Totalt generert avfall per person (kg/innb)

Beregning av nasjonale tall

Det foretatt en samlet beregning som gjelder alle områdene som plukkanalysene dekker, men delt inn i to strata:

- Kildesortering av matavfall
- Ikke kildesortering av matavfall

En slik stratifisering er vurdert som viktig når det foretas en oppskalering av tall fra områder med plukkanalysen til nasjonale gjennomsnittstall. Det er da knyttet til utbredelsen av kildesortering av matavfall i Norge, og i følge SSB hadde 68 % av innbyggerne i Norge et tilbud om kildesortering av våtorganisk avfall i 2013.

Spesielle forutsetninger tekstil

Den nasjonale statistikken er ikke komplett for tekstil, og har trolig aldri vært spesielt god pga. mangelfull rapportering. Det er ut fra tidligere Sifo rapport og kjennskap til markedet lagt til grunn en utsortering av 21.000 tonn tekstiler fra husholdninger i 2013 i hele Norge.

Glasemballasje

Det er valgt å foreta beregning som kun omfatter glassemballasje. Det er da lagt til grunn at innrapporterte mengdetailed til SSB fra kommunene kun omfatter glassemballasje (inkl. feilsortering).

Plast og metall

Det er valgt å slå sammen både emballasje og andre produkter når det gjelder plast og metall. For plast kunne det vært aktuelt å presentere kun emballasje, men det gir noe større usikkerhet

\(^4\) Korreksjonsfaktorer ved plockanalyser for utsortert brennbart avfall. Avfall Sverige U2014:04
3.3. Resultater
Tabell 3.4 viser hovedresultatet av de gjennomførte beregningene og tabell 3.5 viser den totale tonnasjen for 2013.

Tabell 3.4 Spesifikke avfallsregnskap husholdninger (kg/innb.) og returandel 2013

<table>
<thead>
<tr>
<th>Materialtype</th>
<th>Generert mengde Kg/innbygger</th>
<th>Utsortert Kg/innbygger</th>
<th>restpotensial Kg/innbygger</th>
<th>Nasjonal Returandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall</td>
<td>78,7</td>
<td>33,4</td>
<td>45,2</td>
<td>42,5 %</td>
</tr>
<tr>
<td>Papir og papp</td>
<td>79,7</td>
<td>63,1</td>
<td>16,6</td>
<td>79,2 %</td>
</tr>
<tr>
<td>Plast</td>
<td>25,0</td>
<td>5,9</td>
<td>19,1</td>
<td>23,6 %</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>15,0</td>
<td>3,8</td>
<td>11,2</td>
<td>25,5 %</td>
</tr>
<tr>
<td>Glassemballasje</td>
<td>16,7</td>
<td>11,0</td>
<td>5,6</td>
<td>66,3 %</td>
</tr>
<tr>
<td>Metall (inkl kompleks)</td>
<td>18,6</td>
<td>13,1</td>
<td>5,5</td>
<td>70,3 %</td>
</tr>
</tbody>
</table>

Figur 3.1 gir en grafisk fremstilling av spesifikk avfallsgenereringen per avfallstype, delt i det som er kildesortert og det som ligger igjen i restavfall fra husholdninger. Figur 3.2 viser tilsvarende figur men angitt i tonn per år.

Figur 3.1 Dagens mengder utsortert materiale og potensial for økt utsortering (kg/innb.) 2013. Tallverdier i figur angir beregnet brutto potensial for økt utsortering fra husholdningsavfallet.
I tabell 3.5 har vi benyttet grunnlaget for beregning av avfallsmengder per innbygger, både det som er kildesortert og det som ligger igjen i restavfallet som et potensiale for økt utsortering, for å beregnet total tonnasje oppskalert ut fra områdene med plukkanalyse.

Tabell 3.5 Avfallsregnskap for husholdninger 2013 for 6 typer avfall (tonn)

<table>
<thead>
<tr>
<th></th>
<th>Totalt generert tonn</th>
<th>Utsortert tonn</th>
<th>Potensiale i restavfall tonn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall</td>
<td>397 420</td>
<td>168 912</td>
<td>228 509</td>
</tr>
<tr>
<td>Papir og papp</td>
<td>402 706</td>
<td>318 777</td>
<td>83 929</td>
</tr>
<tr>
<td>Plast</td>
<td>126 324</td>
<td>29 804</td>
<td>96 520</td>
</tr>
<tr>
<td>Tekstiler</td>
<td>75 687</td>
<td>19 332</td>
<td>56 355</td>
</tr>
<tr>
<td>Glasemballasje</td>
<td>84 137</td>
<td>55 764</td>
<td>28 373</td>
</tr>
<tr>
<td>Metall</td>
<td>94 106</td>
<td>66 113</td>
<td>27 992</td>
</tr>
<tr>
<td>SUM</td>
<td>1 180 381</td>
<td>658 703</td>
<td>521 677</td>
</tr>
</tbody>
</table>

Det fremgår at det samlet bruttopotensiale i restavfallet er beregnet til 521 677 tonn av total mengde restavfall, som representerer 992 000 tonn jr. statistikk fra SSB for 2013, ref. tabell 2.2 Det tilsier at det er et potensiale for økt utsortering som representerer 53 % av restavfallsmengden i 2013, når vi ser på de 6 angitte avfallstyper.

3.4. **Drøfting**

Det fremgår at beregnet potensiale er relativt stort og at faktisk beregnet returandel er noe lavere i forhold til de resultater om er tilgjengelig i publiserte kilder på nasjonalt nivå for en del avfallstyper.
Det understrekes at kolonnen for utsortert i tabell 3.5 er beregnede verdier for Norge. Når vi sammenligner disse verdiene med SSB sin statistikk for utsortert, ref. tabell 2.1, ser vi at de stemmer rimelig godt. Noe forskjell skal det naturlig være pga. de korreksjoner som er gjort for kildesortert avfall. Total korreksjon for alle de 6 avfallstyper er på noe over 43.000 tonn.

For papir fremgår det imidlertid at beregnet nasjonal mengde kildesortert ligger noe over det som SSB angir. Det kan tilsli at mengden kildesortert papir i de områder hvor vi har beregnet mengden ut fra plukkanalyser, har høyere innsamlingsgrad enn landet under ett. Det er valgt å bygge videre analyse på de beregnede mengder kildesortert materiale.

Det er generell usikkerhet til disse beregningene som er viktige å understreke. Det gjelder både det statistiske grunnlaget når det gjelder avfallsmengder og aktuelle forutsetninger når det gjelder avfallets antatte sammensetning per region som grunnlag for beregning av returgrad per region og totalt ved å oppskalere til nasjonale tall.

Spesielt for emballasje er det viktig å understreke at det også foreligger nasjonal rapportering fra returselskapene. Ulike metoder kan gi forskjellig svar og videre er avgrensningen mellom husholdning og næring ikke alltid entydig.

Det er satt opp noen kommentarer for hver avfallstype i det følgende:

| Avfalltype | Generelt | Returgrad | Mengde
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Papir og papp</td>
<td>En returgrad på under 80 % er i stor grad som forventet, og i hovedsak ligger de fleste mellom 70-95 % beregnet returgrad. Noen kommuner ligger lavt pga. andre systemer (bringe, optisk).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plast</td>
<td>Returgraden for plast er her presentert ut fra total mengde plast og ikke bare emballasje. Dersom vi kun ser på emballasjen er det beregnet et potensiale på 24,6 kg/innbygger og en returgrad på 24 % inkl. gjenvinningsstasjoner. Generelt mengde er en del høyere enn beregninger utført for Grønt Punkt for 2011(^6) hvor tilsvarende tall lå på 18,7 kg etter korreksjoner. Her ble det benyttet en noe høyere korreksjonsfaktor. Generelt er andelen annen plast beregnet til 4,4 kilo som følger vanlig husholdningsavfall.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) Kunnskap om matsvinn fra norske husholdninger, rapport til Miljødirektoratet. Østfoldforskning, mv.
\(^6\) Bråk med brøk, beregning av nevner for plastemballasje i Norge. Mepex presentasjon 6.2.2013
Glasemballasje
Beregn returandel for glasemballasje fra husholdninger er beregnet en del lavere enn det som rapporteres for hele returordningen for glasemballasje. Det kan være flere forklaringer til dette, herunder at ikke alt glass fra husholdningene returneres via kommunens system. Analysen viser at total mengde glasemballasje som tilføres markedet er beregnet høyere ved denne metoden enn ved varetilførselsmetoden som benyttes av Syklus. Det understrekes at tallene ikke er direkte sammenlignbare med de nasjonale returtallene til NGG. Det er videre en usikkerhet ved fordeling av andel glass- og metallemballasje.

Metall
Disse tallene viser det som er utsortert og levert fra kommunale avfallsordningene, inklusive kompleksmetall fra gjenvinningsstasjoner, men omfatter ikke metall utsortert fra forbehandlingsanlegg eller fra slagsorteringsanlegg. Reell returandel er høyere når dette tas i betraktning. Det foreligger registreringer og beregninger av hvor stor andel av metallene som følger med restavfallet som faktisk blir sendt til materialgjenvinning.\(^7\)

Tekstiler
Returandelen for tekstil gjelder her alle typer husholdningstekstiler, og omfatter bare innsamling via Fretex og UFF og ikke det som går via andre kanaler. Reell returandel kan være noe høyere.

Generelt er ikke tap i sortering og gjenvinningsprosesser tatt inn i denne beregningen av avfallsstrømmer. Det vil i første rekke være et tap av organisk avfall i reject fra forbehandling av matavfall som gir en mengde avfall som utgjør en viss mengde restavfall i Norge.

Det er ikke gjennomført en kontroll med at Kostra tallene som er benyttet for hver kommune og region faktisk stemmer. Mepex har erfaring fra tidligere prosjektarbeid at det kan være en del uoverenstemmelser mellom SSB statistikk og kildetall fra kommunene.

\(^7\) Utført av Mepex med grunnlag fra Avfall Norge og Infinitum
4. **Potensiale for økt sortering i husholdninger**

4.1. **Innledning**

Det er med bakgrunn i kunnskap om avfallets sammensetning og beregnet potensiale i restavfallet mulig å foreta en vurdering av potensialet for økt utsortering.

Det vil være både et spørsmål om aktuelle løsninger for å øke utsorteringen og kvaliteten på det materialet som utgjør et potensiale.

Det er foretatt en vurdering av hvor mye av ressursene i restavfallet som faktisk skal kunne la seg utsortere ved kildesortering og sentral ettersortering av avfall fra husholdninger basert på en vurdering av best practice ut fra kjent tilgjengelig teknologi, organisering og incentivbruk.

4.2. **Metode og datagrunnlag**

I tråd med rammene for prosjektet tar analysen utgangspunkt i hva som fremstår som mulige oppnåelige resultater ved bruk av beste tilgjengelige løsninger/systemer.

Det ble vurdert å la EU-kommisjonens foreslåtte mål representerere et mulig fremtidig scenarium, i tillegg til best practice, noe som ble valgt å holde utenom. Det bringer inn en rekke andre forhold og diskusjoner og kan gi et annet budskap.

Hver avfallstype er vurdert separat, men det er også vurdert at de løsningene som legges til grunn som best practice kan fungere når man setter de sammen til en helhetlig løsning.

Beregnet returgrad for hver avfallstype i hver kommune/region fra grunnlag utført i kapittel 2 og 3 ligger til grunn for analyse. Det er valgt ikke å publisere alle disse beregningene pga. at det er usikkerhet i datagrunnlaget, både fra Kostra og plukkanalysene. Vedlegg 1 viser hvilke kommuner/selskap som inngår i datagrunnlaget.

Metoden innebærer at kommuner/IKS som hvor vi ikke har hatt tilgang til plukkanalyser ikke inngår i vurderingen. Det betyr at vi kanskje egentlig ikke kjenner best practice når det gjelder returandel for de ulike kommunene.

Det er identifisert hvilke kommuner/selskap som har høyest beregnet returandel for hver avfallstype og systemløsningen er kort beskrevet/vurdert. Det er i denne omgang ikke foretatt en grundig analyse av forutsetningene for de gode resultatene for kildesortering i områder med best practice.

Når det gjelder sentral ettersortering er erfaringsgrunnlaget i Norge begrenset. I dette prosjektet er Mepex sine erfaringer fra garantitester på ROAF-anlegget og ulike analyser som er utført for avfall fra ROAF og IVAR på dette anlegget. Det betyr at de ikke nødvendigvis representerer hvordan ROAF anlegget drives pt. før planlagte utbedringer.

Tabell 4.1 Selskap/kommuner med beregnet høyest returandel* for husholdningsavfall

<table>
<thead>
<tr>
<th>Avfallskategori</th>
<th>Selskap/kommune</th>
<th>Type løsning/merknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall/ våtorganisk</td>
<td>IVAR (Stavanger)</td>
<td>Luftet beholderløsning, inkl. hageavfall</td>
</tr>
<tr>
<td></td>
<td>RIR (Romsdalen)</td>
<td>Beholderløsning (80 liter)</td>
</tr>
<tr>
<td>Papir</td>
<td>Asker kommune</td>
<td>Ny beholderløsning innført 2011 (1 av 3)</td>
</tr>
<tr>
<td></td>
<td>Vesar (Vestfold)</td>
<td>Beholderløsning papir (1 av 4)</td>
</tr>
<tr>
<td>Plast</td>
<td>Vesar, RIR</td>
<td>Kildesortering basert på plastsekk har gitt best resultat og dekker også en del byer. Beholderløsninger brukes nok i en del fellesløsninger.</td>
</tr>
<tr>
<td></td>
<td>HIAS (Hamar)</td>
<td>Sentral sortering ROAF – resultater basert på garantitester april-mai 2014</td>
</tr>
<tr>
<td></td>
<td>ROAF (Romerike)</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>Vesar</td>
<td>Beholderløsning innført i 2010 (1 av 4)</td>
</tr>
<tr>
<td>Metall</td>
<td>Vesar</td>
<td>Beholderløsning + 5 gjenvinningsstasjoner</td>
</tr>
<tr>
<td></td>
<td>Fredrikstad</td>
<td>Returpunktlysning glass/metall + gjenvinningsstasjon. Mulig rapportering av utsort. slagg?</td>
</tr>
</tbody>
</table>

Returandel er definert om utsortert mengde rapportert til Kostra dividert på utsortert mengde pluss mengde som er beregnet gjenværende i restavfallet. Både utsortert mengde og mengde i restavfall er korrigert ned for hhv. anslått innhold av feilsorteringer og andel smuss/fukt.

Det er ikke foretatt en vurdering av nye incentiver og virkemidler som myndigheter evt. kan iwerksette overfor produsenter, kommuner, husholdningene og andre.

4.3. Resultater

4.3.1. Oppsummering

Tabell 4.2 gir en samlet oversikt over resultatet av de vurderinger som er foretatt i påfølgende delkapitler. Det skilles her mellom det som er vurdert oppnåelig med kun økt kildesortering og hva som kan oppnås ved en kombinasjon av kildesortering og sentral ettersortering av restavfall. Forskjellen ligger på avfallskategoriene plast, metall og papir hvor ettersortering kan utløse et restpotensiale. Scenarier for utvikling i returandel er illustrert i figur 4.1.
Tabell 4.2 Fremtidig returandel ved best practice kildesortering og sentral ettersortering

<table>
<thead>
<tr>
<th>Avfallstyp</th>
<th>Total mengde Kg/innbygger 2013</th>
<th>Referansesit. 2013 Returandel</th>
<th>Best practice kildesorting 2030 Returandel</th>
<th>Best practice kilde + sentral 2030 Returandel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall</td>
<td>78,7</td>
<td>42,5 %</td>
<td>70 %</td>
<td>70 %</td>
</tr>
<tr>
<td>Papir</td>
<td>79,7</td>
<td>79,2 %</td>
<td>88 %</td>
<td>93 %</td>
</tr>
<tr>
<td>Plast</td>
<td>25,0</td>
<td>23,6 %</td>
<td>40 %</td>
<td>65 %</td>
</tr>
<tr>
<td>Glassemballasje</td>
<td>16,7</td>
<td>66,3 %</td>
<td>85 %</td>
<td>85 %</td>
</tr>
<tr>
<td>Metall</td>
<td>18,6</td>
<td>70,3 %</td>
<td>80 %</td>
<td>95 %</td>
</tr>
<tr>
<td>Tekstil</td>
<td>15,0</td>
<td>25,5 %</td>
<td>70 %</td>
<td>70 %</td>
</tr>
</tbody>
</table>

Figur 4.1 Fremtidig returandel ved best practice kildesortering og sentral ettersortering

Antall innbyggere for 2013 som ligger til grunn for beregning er 5 051 275. Med utgangspunkt i mengdestatistikk i 2013 er mengdene omregnet i tonn, før man tar hensyn til prognoser for utvikling i avfallsmengdene. Resultater viser i tabell 4.3. Figur 4.2 illustrerer denne økningen i utsortert mengde fordelt på de ulike kategorier avfall. Det er størst økning angitt i tonn for våtorganisk avfall.

Det kan stilles spørsmål ved om det er mulig å oppnå så høy grad av kildesortering i alle områder, kanskje spesielt i storbyer som har egne utfordringer. Alternativet med maksimal kildesortering er derfor kanskje noe mindre sannsynlig og det vil være vesentlig større grad av sikkerhet for å oppnå alternativet med en kombinasjon av sentral ettersortering, hvor man ikke er avhengig av optimale løsninger for kildesortering i hele Norge.
Det samme kan også være situasjonen i områder med stor andel fritidsboliger hvor det erfaringsmessig er større utfordringer å få til en effektiv kildesortering med høy utsorteringsgrad.

Tabell 4.3 Beregnet mengde utsortert avfall uten endring i total mengde for 2013 ved best practice.

<table>
<thead>
<tr>
<th></th>
<th>Total mengdetonn 2013</th>
<th>Referansesit. Utsortert tonn 2013</th>
<th>Kildesortering Utsortert tonn 2030</th>
<th>Kilde + sentral Utsortert tonn 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matavfall/Våtorganisk</td>
<td>397 000</td>
<td>169 000</td>
<td>278 000</td>
<td>278 000</td>
</tr>
<tr>
<td>Papir</td>
<td>402 700</td>
<td>319 000</td>
<td>354 000</td>
<td>375 000</td>
</tr>
<tr>
<td>Plast</td>
<td>126 000</td>
<td>30 000</td>
<td>51 000</td>
<td>82 000</td>
</tr>
<tr>
<td>Glassemballasje</td>
<td>84 000</td>
<td>56 000</td>
<td>72 000</td>
<td>72 000</td>
</tr>
<tr>
<td>Metall</td>
<td>94 000</td>
<td>66 000</td>
<td>75 000</td>
<td>89 000</td>
</tr>
<tr>
<td>Tekstil</td>
<td>76 000</td>
<td>19 000</td>
<td>53 000</td>
<td>53 000</td>
</tr>
<tr>
<td>SUM</td>
<td>1 180 000</td>
<td>658 000</td>
<td>883 000</td>
<td>949 000</td>
</tr>
</tbody>
</table>

Figu 4.2 Beregnet mengde utsortert avfall uten vekst i total mengde for 2013 ved best practice (tonn)
4.3.2. **Matavfall/våtorganisk avfall**

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 78,7 Kg/innbygger kildesortert og i restavfall totalt
- 33,4 kg/innb kildesortert (etter korreksjoner)
- 42,5 % Returgrad i snitt
- 68 % Har tilbud om kildesortering
- 55 % Gjennomsnittlig vektet returgrad i områder med kildesortering

I beregningen utført for Miljødirektoratet for 2013 kom vi fram til 78,2 kilo per innbygger⁸, men da var planterester tatt ut. I vårt arbeid for Miljødirektoratet i 2012 vedrørende økt utnyttelse av ressursene i våtorganisk avfall ble det vurdert et potensiale på 97 kg/innbygger⁹, men det inkluderer også områder hvor en god del hageavfall og planterester innår som en del av våtorganisk avfall.

Det er stor forskjell mellom kommunene både når det gjelder spesifikk generert mengde og beregnet returgrad. Forskjeller i generert mengde skyldes både hva systemet omfatter (les: hageavfall og bleier), samt at andelen fritidsboliger kan medføre høyere generert mengde per innbygger når det ikke er foretatt omregning av fritidsboliger til personekvivalenter.

IVAR og RIR er områder som i følge beregningene basert på egne plukkanalyser har returgrad på 75-80 % for våtorganisk avfall og skiller seg ut fra de fleste andre, som ligger fra 65 % og nedover. IVAR og RIR representerer områder som har hatt kildesortering lenge og som i stor grad omfatter byområder. Det kunne være interessant å kvalitetssikre disse tallene nærmere og se på årsaker til de gode resultatene her. IVAR har hatt stort innslag av hageavfall i sin kildesortering så lenge kompostering har vært løsningen, og det trekker opp returandelen.

Det er ut fra en samlet vurdering av best practice valgt å angi et nivå på 70 % returandel for våtorganisk avfall. Det samvarer med forutsetning i utredning til KLIF i 2012¹⁰. Det kan for fremtiden være grunnlag for kun å knytte mål om returandel til utelukkende matavfall. I dag forstyrer både tørkepapir, planterester og hageavfall hele målegrunnlaget.

⁸ Kunnskap om matsvinn fra norske husholdninger, Østfoldforskning desember 2013
⁹ Økt utnyttelse av ressursene i våtorganisk avfall, Mepex Consult as juni 2012
¹⁰ Som over
Det kan oppleves at det er umulig å komme opp på dette nivået i noen kommuner, men det kan være at det er behov for nye løsninger eller supplerende løsninger og aktiv bruk av nye virkemidler for å oppnå dette.

Det er ikke tatt med muligheten for å produsere biogass av en utsortert finfraksjon fra anlegg for sentsalsortering av avfall. Det er usikkert om en slik prosess vil regnes som gjenvinning dersom det faste sluttproduktet ikke an anvendes til jordforbedring eller gjødsel.

4.4. Papir

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 79,7 kg/innbygger generert
- 63,1 kg/innb kildesortert (etter korreksjoner)
- 79,2% Returgrad

Det er ikke fremskaffet en oversikt over hvor mange som har henteordning kontra bringeløsninger for papir. Det er også noe variasjon i hva som omfattes av ordningen, da noen kun har henteordning for avispapir og ikke emballasje. Vi kan anta at tilnærmert alle innbyggere har som minimum et tilbud om papir/papp som løsning på gjenvinningsstasjon. Tørkepapir inngår ikke i potensialet.

I følge utførte beregninger i områder med plukkanalyser er det Asker kommune som har de beste resultatene å vise til, med 91% returgrad for papir. Vesar ligger på 86% i følge beregninene. Begge steder har godt utviklede henteordninger for papir, og i Asker har man nylig hatt en systemforbedring ved innføring av egen beholder.

Det er forutsatt at best practice ved kildesortering er 88%, noe som vil kreve tiltak i mange kommuner for å løfte seg opp til et slikt nivå. Det kan være noe urealistisk.

Ved utstrakt bruk av sentral sortering kan utsortert mengde øke noe. I praksis vil da innsats for Økt kildesortering kunne reduseres noe. Det er ut fra analyser fra RoAF og IVAR lagt til grunn at man kan ta ut om lag 50% av restpotensialet av papir i restavfallet. Det er vurdert at total returgrad kan gå opp til 93% om alt restavfall går via sentral sortering.

4.5. Plast

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 25,0 kg/innbygger generert
- 5,9 kg/innb kildesortert (etter korreksjoner)
- 23,6% Returgrad

Generert mengde omfatter her også andre plastprodukter, noe som kun utgjør en liten andel Kildesortert mengde er beregnet til 29.400 tonn i 2013, hvor 10% feilsorteringer i snitt er trukket fra, ref. tabell 3.3.

I det følgende har vi vurdert best practice, med kun kildesortering og med bruk av sentsalsortering. Det er en rekke forhold som er aktuelle å ta i betraktning:

- Restavfall emballeres fortsatt i bæreposer
- Kildesortert mengde inkluderer vekten av sekker for innsamling
Kildesortering

Det kan legges til grunn at best practice tilsier 50 % kildesortering av plastemballasje med bruk av henteordning for plastemballasje i sekk og beholder i fellesløsninger. Den kildesorterte plasen inneholder både laminater, pp-folie, svart emballasje og en del annen plast som ikke vil bli utsortert i neste ledd. For å gjøre analysen sammenlignbar med sentral sortering er det derfor relevant å foreta en nedjustering.

Detaljerte plukkanalyser IVAR-området tilsier en nedjustering på omlag 25 % av total mengde plast. Det betyr en nedjustering til 40 % materialgjenvinning.

I arbeid for KLIF (Miljødirektoratet) i 2012 ble det lagt til grunn et potensiale for kildesortering på 12 kg/innbygger i snitt, noe som var en noen lavere verdi.

Sentral sortering

Erfaringstall fra ROAF er fremdeles usikre når det gjelder utbytte og renhet. Det planlegges også forbedringer av anlegget før det formelt overtas fra leverandør. Plukkanalyser som dokumenterer kvalitet viser av ca. 75 % består av PE-folie og hard plast egnet for materialgjenvinning (PEHD, PP, PET, PS). Om vi regner maksimalt 85 % utbytte av denne plasen kan vi legge til grunn at 65 % av totalt innhold av plast kan utsorteres og leveres til materialgjenvinning. Dette gjelder RoAF uten noe kildesortering av husholdningsplast.

Når vi forutsetter en kombinasjon av kildesortering og sentral sortering vil det kanskje være grunnlag for å øke total utsortering til materialgjenvinning noen prosent til, uten at det er forutsatt i beregningene. Det er lagt til grunn at sentralsortering kan innføres for den samlede avfallsmengde, også andelen fra gjenvinningsstasjoner, etter evt. grovkverning.

4.6. Glassemballasje

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 16,7 Kg/innbygger generert
- 11,0 Kg/innb kildesortert (etter korreksjoner)
- 66,3 % Returgrad

Det er i hovedsak et bringesystem for glass i Norge, men i noen regioner er det utbygd en henteordning. Det gjelder blant annet Vesar, Movar og IRIS. Det er kun for Vesar vi har plukkanalyse som dokumenterer returgraden på 84 %. Tall fra Movar viser at innsamlet mengde økte med ca. 25 % ved innføring av hentesystem.

For Vesar er det målt en returgrad på 84 %, og det antas at det kan være realistisk å nå 85 %. Det er lagt til grunn at det skal være mulig å nå 85 % returgrad for gjennomsnitt i hele landet for glass fra husholdningene.
4.7. **Metall**

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 18,6 Kg/innbygger generert
- 13,1 Kg/innbygger utsortert (etter korreksjoner)
- 70,3 % Returgrad

Det omfatter metallemballasje levert sammen med glass/metall og kompleks metall levert gjenvinningsstasjon. Tallene inkluderer ikke metall i andre produkter som håndteres separat, som utsortert EE-avfall.

Tallene rapportert til Kostra om metall inkluderer trolig i liten grad den mengden metall som blir utsortert før forbrenning og fra bunnaske etter forbrenning. I praksis er derfor returgraden trolig vesentlig høyere. Det er allikevel for fremtidig scenarier valgt å se på mulighetene for å øke utsorteringen før forbrenning, da det normalt gir bedre kvalitet på metall enn det som tas ut fra bunnaske.

Ser vi på best practice ligger noen kommuner rundt 80 % returandel for metall ved kildesortering når en tar med alt på gjenvinningsstasjonene. I praksis vil de områder som introduserer sentral ettersortering ikke ha så høye ambisjoner for kildesortering av metallemballasje.

Ved å kombinere høy grad av kildesortering, sentral ettersortering, samt utsortering fra slagg (som kan bli vesentlig mindre lønnsomt), oppnår man en meget høy returandel for metall. Det vil alltid være et tap av metall som man ikke får utsortert, samt noe oksidasjon i forbrenningsprosessen (alu). Med kombinasjon av kildesortering og sentral sortering, samt utsortering av bunnaske, er det lagt til grunn at man kan komme opp til 95 % utsortering av metaller.

4.8. **Tekstil**

Vi har i denne analysen beregnet følgende nasjonale tall for 2013:

- 15,0 Kg/innbygger generert
- 3,8 Kg/innb kildesortert (etter korreksjoner)
- 25,5 % Returgrad

Dette er basert på en forenklet analyse hvor vi har lagt til grunn at nivå for kildesortering i 2013 er ca. 21.000 tonn tekstiler. Det er regnet ut at det er om lag 57.000 tonn tekstiler i restavfallet fra husholdninger, inkludert det som er på gjenvinningsstasjon. Sifo kom fram til et tilleggspotensiale på 51.000 tonn. I Sifo ble det lagt et ambisjonsnivå på 80 % total utsortering, hvorav 90 % av økt returandel gikk til ombruk og materialgjenvinning og 10 % til forbrenning. 11

UFF har gjennomført et prosjekt sammen med Asker, FolloRen, IRIS for å starte arbeid med å forbedre returgraden for tekstiler innenfor dagens rammeverk. Mepex skal sluttrapportere dette om kort tid. For Asker er det beregnet nå et nivå på ca. 65 % utsorteringsgrad basert på dagens løsning med tekstiltårn, men med markedsføringstiltak og utdeling av sekk hjemme.

11 Potensiale for økt materialgjenvinning av tekstilavfall og andre avfallstyper. SIFO-rapport 2-2012
Da har man ikke fanget opp den andelen som samles inn av aktører som ikke har avtale med Asker.

Basert på en samlet vurdering er det regnet med at best practice bør komme opp på 70 % utsortering til ombruk og materialgjenvinning. Vi har ikke dokumentasjon fra empiriske forsøk som tilsier like høye resultater; det ansees ikke som urimelig, men betinger en betydelig mer fokus og innsats enn i dag for økt innsamling av tekstiler. Det er ingen klar dokumentasjon om at henteordning vil gi bedre resultater. Det gir høyere risiko for at tekstiler blir våte, samt organisert ulovlig natteinnsamling.

Det er forutsatt at tekstiler ikke kan tas ut fra blandet restavfall. Det er utprøvd sorteringsteknologi som tilsier at det kan være mulig, men det er usikkert om det kan produseres en kvalitet som har en reell mulighet for gjenvinning i markedet.
5. **Potensiale for økt gjenvinning i næringsavfall**

Prosjektet har ikke gitt grunnlag for en tilsvarende detaljert analyse av mulighetene for å øke gjenvinningen av næringsavfall. Det er i analysen av fremtidig mengde restavfall som oppstår også inkludert restavfall fra næringsvirksomhet.

Det er satt opp en meget enkel hypotese om at det skal være mulig å oppnå samme grad av reduksjon i mengden restavfall for næringsliv som for husholdninger, med 2013 som referanseår. Det kan som for husholdningsavfall oppnås gjennom en kombinasjon av kildesortering og sentral sortering. Det er for husholdninger beregnet at mengden restavfall kan reduseres med ca. 1/3.

For å verifisere denne antakelsen er det foretatt en vurdering av foreliggende informasjon om sammensetning av næringsavfall. Det bygger på analyser som er gjennomført for Avfall Norge og NVE vedrørende kartlegging av fornybar andel av avfall til forbrenning i Norge\(^{12}\).

Påfølgende tabell viser sammensetning av restavfall fra næringsliv som bygger på analyser av ulike typer næringsavfall og vektet. Videre er det sannsynliggjort hvilken del av dette potensialet som kan tas ut gjennom økt kildesortering og sentral sortering. Det fremgår at man kan oppnå 33 % utsortering av restavfallet fra næring ved å forutsette at rundt 50-75 % av de gjenvinnbare avfallstypene faktisk utsorteres til materialgjenvinning.

Tabell 5.1 Beregnet sammensetning av restavfall næring og angivelse av potensiale for utsortering.

<table>
<thead>
<tr>
<th>Sammensetning restavfall næring (%)</th>
<th>Potensiale for økt utsort (%)</th>
<th>Andel i restavfall som utnyttes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastemballasje</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Annen plast</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Tekstil</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Papir</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Matavfall</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Metall</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Glass</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Restavfall</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>33</td>
</tr>
</tbody>
</table>

\(^{12}\) Fornybar andel av avfall til norske forbrenningsanlegg, NVE-oppdragsrapport 2/2011. Mepex
6. Framskrivning av avfallsgenerering 2013 - 2030

6.1. Innledning
I prosjektet skal avfallsmengdene framskrives fram til 2030. Det gjelder både mengde avfall fra husholdning og næringsliv.

Utviklingen i framtidige avfallsmengder er betinget av en rekke ulike faktorer slik som utvikling i økonomi og forbruk, næringsutvikling, befolkningsvekst, virkemidler i avfallspolitikken mm.

Det finnes ulike metoder for å framskrive avfallsmengdene, fra enkle lineære framskrivningene til kompliserte modeller basert på økonomiske modeller. Uansett hvilken metode som benyttes vil det være stor usikkerhet knyttet til å framskrive avfallsmengdene så langt fram som til 2030. Dette skyldes ganske enkelt at det er vanskelig å spå om fremtiden.

6.2. Metode og datagrunnlag

For husholdningsavfall er det sterkt korrelasjon mellom mengden husholdningsavfall og konsum i husholdningene (figur 6.1). Det er nærliggende å se på konsum som en forklaring på endringene i avfallsmengde. En slik sammenheng er plausibel ettersom konsum av varer nødvendigvis medfører at det oppstår avfall når emballasje eller varen selv kasseres.

Ettersom SSB ikke har framskrevet avfallsmengdene lenger fram enn til 2020 har det vært nødvendig å finne en metode for å framskrive videre fram til 2030. Dette er gjort med basis i SSBs metode men det har vært nødvendig å gjøre noen forenklinger siden vi ikke har hatt tilgang til det samme detaljerte tall- og metodegrunnlaget som SSB benyttet i sine framskrivninger.

Figur 6.2 viser korrelasjon mellom mengde husholdningsavfall per innbygger og husholdningenes konsum per innbygger i perioden 2002 til 2013. Beregningene viser 96 % av endringen i avfallsmengde i landet kan forklares ut fra konsum \(r^2 = 0.96\). Stigningstallet på kurven \((1,8952)\) innebærer at en økning i konsumet på 1000 kroner per innbygger vil være forbundet med en økning i avfallsmengden på 1,89 kg per innbygger. I prosjektet er denne formel benyttet til å framskrive husholdningsavfallsmengdene. Framskrevet konsum i husholdningene er hentet fra referansealternativet i SSB Notater 30/2012. For å unngå avvik fra SSBs framskrivninger for perioden 2010 til 2020 er det gjort tilpasninger i perioden 2021 til 2030 slik at sluttresultatet i 2030 er i samsvar med metoden som er beskrevet.

For husholdningsavfallet er det spesielt interessant å se på utviklingen målt i kilo per innbygger. I SSBs befolkningssframskrivninger finnes det flere alternative prognoser der alternativet middels nasjonal vekst (MMMM) er ofte benyttet som den mest sannsynlige utviklingen og vi tar derfor utgangspunkt i denne.

Restavfall fra næringslivet er framskrevet med samme årlige endringsrate som husholdningsavfall siden det i prosjektet ikke har vært mulighet til å utvikle en bedre metode. Vi vurderer dette likevel som tilstrekkelig pålitelig til formålet i prosjektet.

Figur 6.1. Historisk utvikling i husholdningsavfallsmengde og konsum i husholdningene 1995 - 2010. Relative endringer, 1995 = 100. Kilde: SSB.

Figur 6.2. Korrelasjon mellom mengde husholdningsavfall og konsum i husholdningene 2002-2013 per innbygger. Kilde SSB (Nasjonalregnskapet og husholdningsavfallsundersøkelsen)

\[
y = 1.8952x + 69.858
\]

\[R^2 = 0.9569\]
6.3. Oppsummering av aktuell framskrivning

Figur 6.3 og Tabell 6.3 viser utviklingen i folketall og beregnet mengde husholdningsavfall med utgangspunkt i metoden som er beskrevet. Avfallsmengden i perioden 2021-2030 viser en lavere vekst enn i perioden fram til 2020de historiske prognosene tilsier. Dette er delvis et resultat av den tilpasning som er gjort i forhold til resultatene i SSBs avfallsframskrivninger fram til 2020 men også et resultat av forventet lavere vekst i konsumet i den siste del av perioden.

Det fremgår at prognosene viser en økning årlig økning på 1,5 prosent målt i kilo husholdningsavfall per innbygger for hele perioden sett under ett.
Tabell 6.3. Husholdningsavfall per innbygger.

<table>
<thead>
<tr>
<th>År</th>
<th>Folketall (MMMM)</th>
<th>Mengde husholdningsavfall (1000 tonn)</th>
<th>Kg per innbygger</th>
<th>Årlig endring kg/innb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>4 920 305</td>
<td>2 278</td>
<td>463</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>4 985 870</td>
<td>2 358</td>
<td>473</td>
<td>2,2 %</td>
</tr>
<tr>
<td>2013</td>
<td>5 051 275</td>
<td>2 442</td>
<td>483</td>
<td>2,2 %</td>
</tr>
<tr>
<td>2014</td>
<td>5 109 056</td>
<td>2 541</td>
<td>497</td>
<td>2,9 %</td>
</tr>
<tr>
<td>2015</td>
<td>5 167 475</td>
<td>2 661</td>
<td>515</td>
<td>3,5 %</td>
</tr>
<tr>
<td>2016</td>
<td>5 225 557</td>
<td>2 772</td>
<td>530</td>
<td>3,0 %</td>
</tr>
<tr>
<td>2017</td>
<td>5 283 471</td>
<td>2 828</td>
<td>535</td>
<td>0,9 %</td>
</tr>
<tr>
<td>2018</td>
<td>5 340 334</td>
<td>2 928</td>
<td>548</td>
<td>2,4 %</td>
</tr>
<tr>
<td>2019</td>
<td>5 395 778</td>
<td>3 079</td>
<td>571</td>
<td>4,1 %</td>
</tr>
<tr>
<td>2020</td>
<td>5 450 104</td>
<td>3 205</td>
<td>588</td>
<td>3,1 %</td>
</tr>
<tr>
<td>2021</td>
<td>5 503 454</td>
<td>3 253</td>
<td>591</td>
<td>0,5 %</td>
</tr>
<tr>
<td>2022</td>
<td>5 556 058</td>
<td>3 303</td>
<td>594</td>
<td>0,5 %</td>
</tr>
<tr>
<td>2023</td>
<td>5 608 114</td>
<td>3 352</td>
<td>598</td>
<td>0,6 %</td>
</tr>
<tr>
<td>2024</td>
<td>5 659 707</td>
<td>3 403</td>
<td>601</td>
<td>0,6 %</td>
</tr>
<tr>
<td>2025</td>
<td>5 710 613</td>
<td>3 455</td>
<td>605</td>
<td>0,6 %</td>
</tr>
<tr>
<td>2026</td>
<td>5 760 762</td>
<td>3 507</td>
<td>609</td>
<td>0,6 %</td>
</tr>
<tr>
<td>2027</td>
<td>5 809 584</td>
<td>3 560</td>
<td>613</td>
<td>0,7 %</td>
</tr>
<tr>
<td>2028</td>
<td>5 857 231</td>
<td>3 613</td>
<td>617</td>
<td>0,7 %</td>
</tr>
<tr>
<td>2029</td>
<td>5 903 422</td>
<td>3 668</td>
<td>621</td>
<td>0,7 %</td>
</tr>
<tr>
<td>2030</td>
<td>5 948 156</td>
<td>3 723</td>
<td>626</td>
<td>0,7 %</td>
</tr>
<tr>
<td>Endring hele perioden</td>
<td>1 027 851 (20,9 %)</td>
<td>1 445</td>
<td>163</td>
<td>35,2 %</td>
</tr>
</tbody>
</table>
7. Beregning av avfallsmengder fram mot 2030

7.1. Innledning

7.2. Metode og datagrunnlag

Det er foretatt en framskrivning avfallsmengder av som er basert på forutsetninger i tabell 7.1 som bygger på kapittel 6 om framskrivning. Det er skilt på vekst i innbyggere og årlig gjennomsnittlig vekstrate i kg/innbygger for avfall fra husholdninger. Det er lagt til grunn samme vekstrate for alle avfallstyper som inngår i analysen.

<table>
<thead>
<tr>
<th>Årstall</th>
<th>Innbyggere Norge</th>
<th>Periode</th>
<th>Årlig vekstrate kg/innbygger</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>5 053 288</td>
<td>2013-2020</td>
<td>2,6 %</td>
</tr>
<tr>
<td>2020</td>
<td>5 450 104</td>
<td>2021-2025</td>
<td>0,6 %</td>
</tr>
<tr>
<td>2025</td>
<td>5 710 613</td>
<td>2026-2030</td>
<td>0,7 %</td>
</tr>
<tr>
<td>2030</td>
<td>5 948 156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For næringsavfall er modellen som er benyttet relativ enkel, og kun knyttet opp til mengden restavfall til forbrenning fra 2013. Først er dagens restavfallsmengde for husholdninger fremskrevet hvor alle øvrige forutsetninger fra 2013 holdes konstant. For restavfall fra næringsliv til forbrenning er det forutsatt at mengden følger samme prosentvise endring som mengde restavfall fra husholdninger til forbrenning. Total mengde restavfall til forbrenning i 2013 som er lagt til grunn er:

Husholdning: 992 364 tonn
Næringsliv: 1 290 058 tonn

Det er etablert en regnearkmodell hvor alle inngangsdata og forutsetninger om vekst i avfallsmengder fram mot 2030 og effekten av økt returandel ved best practice er koblet sammen for å beregne avfallsstrømmene i 2030. Beregningene er foretatt trinnvis og presenteres etter følgende prinsipp:

- Samlet vekst i total mengde husholdningsavfall frem mot 2030
- Utvikling i mengde restavfall og utsortert mengde (kun de 6 avfallstyper som inngår i analysen), samme returandel som 2013
- Beregnet mengde restavfall i 2030 ved de alternative scenarier for best practice og tilhørende økning i mengde utsortert (kun de 6 avfallstypene som inngår)
- Total mengde utsortert mengde i 2030 ved alt. Scenarier, spesifisert per materiale.

7.3. Resultater

Tabell 7.2 gir hovedresultat for mengde husholdningsavfall som inngår i analysen som dermed omfatter restavfall og de utsorterte avfallstypene, våtorganisk, papir, plast, glassemballasje, metall og tekstiler. Andre typer avfall inngår ikke i denne sammenstillingen.

<table>
<thead>
<tr>
<th>Avfallsmengde husholdning</th>
<th>Prosentvis akkumulert økning</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1 650 807</td>
</tr>
<tr>
<td>2020</td>
<td>2 080 886</td>
</tr>
<tr>
<td>2025</td>
<td>2 229 874</td>
</tr>
<tr>
<td>2030</td>
<td>2 380 408</td>
</tr>
</tbody>
</table>

Figur 7.1 Utvikling i mengde norsk restavfall levert til forbrenning i Norge og eksport. Mepex.
Påfølgende figur 7.2 viser mengden fordelt på hhv. utsortert og i restavfall, forutsatt samme returandel som beregnet i 2013. Denne gjelder ikke hele avfallsmengden fra husholdninger, men bare restavfall og de 7 avfallstypene som vurderes.

Figur 7.2 Utvikling i mengde restavfall og utsortert avfall ved ingen endring returandel (tonn/år) (gjelder for restavfall husholdning for 6 utsorterte avfallstyper)

<table>
<thead>
<tr>
<th>Årstall</th>
<th>utsortert</th>
<th>restavfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>659 052</td>
<td>991 756</td>
</tr>
<tr>
<td>2020</td>
<td>840 171</td>
<td>1 240 715</td>
</tr>
<tr>
<td>2025</td>
<td>902 674</td>
<td>1 327 201</td>
</tr>
<tr>
<td>2030</td>
<td>967 374</td>
<td>1 413 034</td>
</tr>
</tbody>
</table>

Figur 7.3 viser sammenhengen mellom mengden restavfall og økt mengde utsortert avfall forutsatt vekst i avfallsmengdene fram til 2030. Her fremgår effekten av optimalisering av avfallssystemene basert på hhv. kildesortering og kombinasjon av kildesortering og sentral sortering. Det viser at mengde restavfall kan holdes omtrent på 2013-nivå i 2030 dersom man har full satsing på forbedring av systemene mht. materialgjenvinning og vekst i avfallsmengdene.
Figur 7.3 Mengde restavfall og økning i utsorterte materialer i 2030 ved ulike scenarier (tonn/år)

Figur 7.4 viser hvordan beregnet mengde utsortert fordeler seg på de ulike avfallstypene for det ulike scenariene og forventet vekst fram mot 2030, i forhold til situasjonen i 2013.

Figur 7.4 Total mengde utsortert ved ulike vekstscenari i 2030 (tonn/år)
7.4. **Drøfting**

Analysen viser først og fremst at mengden avfall kan øke stort fram mot 2030 knyttet til befolkningsvekst og fortsatt forsiktig vekst i mengde per innbygger. Forutsatt at returandelen for alle avfallstyper fryses på 2013-nivået vil mengden restavfall øke til 1,413 mill tonn, en økning på 421.000 tonn.

Mengden avfall som potensielt kan utsorteres gjennom best practice vil, kombinert med vekst i avfallsmengden, kunne bidra til en økt utsortering på 734.000 tonn, en økning på 111 % samlet sett for de 6 avfallstypene. Mengdene er angitt som netto materialstrøm levert til materialgjenvinning, uten feilsorteringer/fukt.

Figur 7.4 viser hvordan total mengden utsortert til materialgjenvinning ved de ulike scenarier fordeler seg på de ulike materialtyper. Denne figuren kan sammenlignes med figur 4.2 som viser tilsvarende figur, men før man tar hensyn til vekst i avfallsmengdene.

Dersom vekstraten ikke hadde vært korrigert ned i perioden 2020-2030 så hadde avfallsmengden økt med ca. 88 % fram til 2030 i stedet for 44 % som nå ligger til grunn. Det ville gitt vesentlig høyere mengde utsortert og høyere mengde restavfall.

Det bemerkes at det også vil oppstå et tap av materiale ved forbehandling og sortering av de ulike typer avfall. Det gjelder spesielt våtorganisk avfall, hvor det vil være et tap av organisk materiale i forbehandlingen hvor de fleste feilsorteringene fjernes. Denne type feilsortering vil også være aktuell for forbrenning i Norge og medfører en noe høyere totalmengde restavfall.

For plast er det allerede foretatt en nedkorrigering av potensialet ved at 25 % av mengden består av plast som er vurdert ikke å være et potensiale for materialgjenvinning. For metall er det en vesentlig økning i mengden, men det skyldes at tallene for 2013 ikke inkluderer metall fra ettersortering og slaggbehandling.
8. Kapasitet forbrenning restavfall i Norge

8.1. Innledning
Det er gjennomført en enkel kartlegging og vurdering av fremtidig kapasitet for forbrenning av restavfall Norge.

Hensikten er å få opp et grunnlag for å vurdere fremtidig kapasitetsbalanse ut fra beregnet tilgang på restavfall og forventet tilgjengelig kapasitet.

8.2. Metode og datagrunnlag

Planer for utvidelser av eksisterende anlegg og planlagt utfasing av eldre anlegg er dermed kommet fram ved vurdering av utvikling av forbrenningskapasitet fram mot 2030. Det sier seg selv at det vil være usikkerhet for de som skal besvare på denne type spørsmål. Følgende anlegg inngår i den samlede vurdering av kapasitet.

<table>
<thead>
<tr>
<th>Forbrenningsanlegg</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIR Avfallsenergi AS</td>
</tr>
<tr>
<td>EGE Oslo K+H</td>
</tr>
<tr>
<td>Forus</td>
</tr>
<tr>
<td>FREVAR KF</td>
</tr>
<tr>
<td>Hallingdal Renov.</td>
</tr>
<tr>
<td>Senja Avfallselskap IKS</td>
</tr>
<tr>
<td>Tafjord Kraft AS</td>
</tr>
<tr>
<td>Statkraft Varme, Heimdal VS</td>
</tr>
<tr>
<td>EGK Borregaard</td>
</tr>
<tr>
<td>Østfold Energi, Rakkestad</td>
</tr>
<tr>
<td>Hafslund Varme BEF (Bio-El)</td>
</tr>
<tr>
<td>Hafslund Varme SAE (Sarpsborg Avfallsenergi)</td>
</tr>
<tr>
<td>Returkraft AS</td>
</tr>
<tr>
<td>Eidsiva Bioenergi, Trehørningen ES</td>
</tr>
<tr>
<td>Årdal, Geithus forbrenningsanlegg</td>
</tr>
<tr>
<td>Hafslund Varme, Haraldrud Varmesentral</td>
</tr>
<tr>
<td>Heidelberg sement, Brevik</td>
</tr>
<tr>
<td>Heidelberg sement, Kjøpsvik</td>
</tr>
</tbody>
</table>
Det har også vært en del aktuelle planer for nyetablering av anlegg i Norge. Det er ut fra en samlet vurdering ikke tatt hensyn til slike planer som kanskje kan la seg realisere.

8.3. Resultater

Det forventes en netto kapasitetsøkning på 185.000 tonn frem mot 2020, mens det videre frem mot 2030 forventes en netto nedgang på 85.000 tonn.

Det er liten kapasitet som forventes å tas ut av produksjon i følge denne undersøkelsen.

![Diagram: Forventet kapasitet avfallsforbrenning i Norge (1000 tonn/år)](image)

Figur 8.1 Prognose i utvikling av forbrenningskapasitet for anlegg operative i 2014.

8.4. Drøfting

Resultatene av denne undersøkelsen tar ikke hensyn til mulige endringer i rammevilkår og markedsmessige endringer som kan medføre enten økt eller redusert kapasitet i markedet.

De nye reglene vedrørende selvkost og tilhørende har betydning for prissetting av konkurranseutsatt avfall for anlegg som delvis opererer under selvkost og delvis baserer seg på avfall fra andre kommuner, og næringsliv kan påvirke fremtidig kapasitet og medføre økt reduksjon i kapasiteten.
9. Kapasitetsbalanse forbrenning restavfall

9.1. Innledning
Det er foretatt en beregning av mengden restavfall som i fremtiden trenger behandling i form av forbrenning med energiutnyttelse. Hvordan vil mengde restavfall utvikles i fremtiden ved alternative utviklingssceneriar, hvor mye vil kunne dekkes opp gjennom nasjonal forbrenningskapasitet og hvor mye er vi avhengig av fortsatt eksport?

Denne analysen er gjennomført for å illustrere hvordan økt utsortering kan påvirke mengden restavfall og behovet for behandlesløsninger på et overordnet nivå.

9.2. Metode og datagrunnlag
I denne delen av rapporten kombineres alle de ulike brikkene som er presentert tidligere i rapporten for å beregne utviklingen i mengde restavfall ved aktuelle scenarier for økt utsortering og se det opp mot tilgjengelig forbrenningskapasitet i Norge fram mot 2030.

Det er lagt vekt på å presentere det for følgende scenarier:
1. Vekst i avfallsmengdene og ingen endring i utsortert andel (returandel)
2. Vekst i avfallsmengdene og maksimal utsortering ved best practice.
3. Ingen vekst i avfallsmengdene og maksimal utsortering ved best practice.

Det vurderes at alternativet med ingen vekst i de totale avfallsmengder representerer et alternativ hvor det er økonomisk stagnasjon eller det er iverksatt effektive tiltak for avfallsforebygging som gir en faktisk reduksjon i mengdene per innbygger ved økende befolkning.

Det er valgt i denne presentasjonen å forutsette at beskrevet best practice av kildesortering og sentralsortering er ferdig gjennomført innen 2030. Det er her forutsatt en jevn utvikling fra år til år uten å vurdere nærmere mulig fremdrift i gjennomføring av tiltakene.

Alternativen med vekst i avfallsmengdene og ingen endring i returandelen i forhold til 2013 er et referansealternativ hvor utviklingen fortsetter uten endringer i utsorteringsgrad.

9.3. Resultat
Figu 9.1 for scenario 1 viser en vesentlig økning i mengden restavfall til forbrenning på 425.000 tonn fram til 2030. Underkapasitet forbrenning i Norge blir ved dette alternativet over 1.4 milli tonn per år.

Figu 9.2 angir resultat for scenario 2 og viser at det kan forventes en meget stabil mengde restavfall som må sendes til forbrenning. Det fremgår at det fremdeles vil være behov for eksport av avfall til forbrenning, men at det behovet kan reduseres noe ned til ca. 450.000 tonn/år pga. en viss forventet økning av norsk kapasitet.

Figu 9.3 viser at mengden restavfall ved scenario 3 vil reduseres betydelig, fra nærmere 2,3 milli tonn/år til noe over 1,6 milli tonn per år. Her vil det mellom 2020-2025 oppstå en overkapasitet på forbrenning på ca. 200.000 tonn i 2030.
Figur 9.1 Scenario 1 - Vekst i avfallsmengder og ingen økt returandel

Figur 9.2 Scenario 2 – vekst i avfallsmengder og best practice sortering
9.4. Drøfting

Denne type scenarioberegninger er egnet til å illustrere effekter av ulike utviklingsretninger. Scenario 1 og 3 kan oppleves som ytterpunktene i forhold til hva som kan være et mer realistisk alternativ i midten, representert ved scenario 2.

Det er viktig å understreke at alternativene bygger på at man oppnår det som er vurdert som maksimal utsortering ved gjeldende teknologier og løsninger. Det er dermed lagt til grunn en økt utsortering fra husholdningsavfall som alene representerer nærmere 0,8 mill tonn avfall fram mot 2030.

Når man legger til grunn foreskrevet vekst i avfallsmengdene, men ingen økt returandel vil det medføre at mengden restavfall som oppstår øker til over 3,25 mill tonn avfall. Ved en slik situasjon ville underskuddet av forbrenningskapasitet økes til ca. 1.40 mill tonn/år som da må eksporteres.

Det er mange usikre parametere som inngår i denne beregningen. Det kan behov for å vurdere nærmere hvilke faktorer som har størst betydning for resultatet i forhold til å vurdere på hvilke områder man evt. kunne arbeide videre å redusere usikkerhet. Uansett er fremtidig utvikling i avfallsgenerering en faktor med rimelig stor grad av usikkerhet.

Det understreskes at beregningene av potensiale for økt utsortering ikke inkluderer feilsorteringer (andre materialer), slik at faktisk utsortert mengde, inkl feilsorteringer vil være noe høyere. Det kan også tilsi at mengden restavfall direkte fra avfallsinnsamlingen er beregnet noe for høyt. I praksis vil en god del av feilsorteringene, sammen med noe av faktisk materiale bli utsortert som reject og være en avfallstype til forbrenning med energiutnyttelse.
10. Oppsummering med innspill til videre arbeid

10.1. Kort oppsummering

Prosjektet analyserer mulig utvikling av mengden husholdningsavfall som blir utsortert, samt total mengden restavfall til forbrenning fram til 2030, med basis i avfallsmengdene i 2013 og aktuelle prognoser og forutsetninger om mulig økt returandel og økt materialgjenvinning.

For næringsavfall er det foretatt en enklere analyse som tar utgangspunkt i mengden restavfall til forbrenning i 2013 og legger til grunn at utvikling i mengden avfall og utsorteringsgrad vil skje med samme faktorer for vekst og økt utsortering som for husholdningsavfall.

Prosjektet består av en rekke ulike sett med datagrunnlag og delanalyser som til slutt kombineres for å foreta beregning av fremtidig utvikling av avfallsmengdene. Det presenteres tre hovedscenarier for utvikling av avfallsmengdene:

1. Vekst i avfallsmengdene og ingen endring i utsortert andel (returandel)
2. Vekst i avfallsmengdene og maksimal utsortering ved best practice.
3. Ingen vekst i avfallsmengdene og maksimal utsortering ved best practice.

Referansesituasjonen er definert som fortsatt vekst i avfallsmengdene og ingen endring i andel av avfallet som blir utsortert til materialgjenvinning (returandel).

Det er i beregningene kun regnet med ett alternativ for vekst i avfallsmengdene som inkluderer både forventet befolkningsvekst og vekst i kilo per innbygger. Tabell 10.1 og 10.2 gir noen hovedtall for avfallsstrømmene.

Tabell 10.1 Hovedtall for husholdningsavfall (tonn/år - 6 avfallstyper utsortert)

<table>
<thead>
<tr>
<th></th>
<th>Utsortert tonn/år</th>
<th>Restavfall tonn/år</th>
<th>Utsort.grad*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referanse 2013</td>
<td>659 000</td>
<td>992 000</td>
<td>39,9 %</td>
</tr>
<tr>
<td>1) Ingen økt returandel m/vekst (2030)</td>
<td>967 000</td>
<td>1 413 000</td>
<td>40,6 %</td>
</tr>
<tr>
<td>2) Best practice m/vekst (2030)</td>
<td>1 393 000</td>
<td>987 000</td>
<td>58,5 %</td>
</tr>
<tr>
<td>3) Best practice, u/ vekst (2030)</td>
<td>949 000</td>
<td>702 000</td>
<td>57,5 %</td>
</tr>
</tbody>
</table>

*Gjelder ikke hele avfallsmengden, men for de 6 angitte avfallstyper

Tabell 10.2 Hovedtall for mengde restavfall totalt til energiutnyttelse Norge (tonn/år)

<table>
<thead>
<tr>
<th></th>
<th>Husholdning</th>
<th>Næring</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referanse 2013</td>
<td>992 000</td>
<td>1 290 000</td>
<td>2 282 000</td>
</tr>
<tr>
<td>1) Ingen økt returandel m/vekst (2030)</td>
<td>1 413 000</td>
<td>1 837 000</td>
<td>3 250 000</td>
</tr>
<tr>
<td>2) Best practice m/vekst (2030)</td>
<td>987 000</td>
<td>1 284 000</td>
<td>2 271 000</td>
</tr>
<tr>
<td>3) Best practice, uten vekst (2030)</td>
<td>702 000</td>
<td>912 000</td>
<td>1 614 000</td>
</tr>
</tbody>
</table>

Utsorteringsgrad slik den er angitt i tabell 10.1 for husholdningsavfall er knyttet til mengden som er analysert, dvs. de 6 typer avfall og restavfallsmengden. Det er foretatt en beregning
av hvordan resultatet for scenario 3 ville slått ut på total beregnet andel avfall utsortert til materialgjenvinning med utgangspunkt i tabell 2.1. Det fremgår at mengden kun øker fra 39,2 % til 54,0 % for alt husholdningsavfall. Det viser at selv med stor innsats for økt andel til materialgjenvinning så ligger resultatet langt under 70 % som er lansert som en mulig målsetning i 2030 for EU-landene.

De ulike alternativene angir stor variasjon i mengde restavfall og kan representerer ytterpunkter for mulig utvikling. Når vi ser disse mengdetallene opp mot forventet nasjonal kapasitet for forbrenning av avfall på rundt 1,7-1,8 mill tonn avfall så er det liten sannsynlighet for at det vil oppstå overkapasitet på forbrenning av restavfall i Norge, når vi ser det opp mot mengden restavfall som oppstår i Norge.

Prosjektet har også gitt mange andre interessante delresultater, herunder beregning av returandel for ulike materialslag i 2013, spesifikk avfalls generering og sammensetning restavfall. Videre synliggjør prosjektet en del utfordringer med norsk avfalls statistikk og kunnskap om avfallsstrømmene.

10.2. Drøfting av resultatene

Prosjektet har kommet fram til et resultat i forhold til de målsetninger som ble definert. Det er en rekke forhold i beregningene som representerer usikkerhet og som således kan bidra til feilkilder i analysen.

Det er i denne omgang ikke utført en følsomhetsanalyse for å dokumentere hvilke forutsetninger og antakelser som har størst betydning på resultatet. Noen merknader kan knyttes til de mest avgjørende forutsetninger;

- Veksten i avfallsmengdene og variasjoner i veksten for ulike materialer vil være av stor betydning for fremtidig mengde restavfall, uavhengig av utvikling i retning av økt utsortering. Arbeid med å forbedre prognoser fremstår allikevel ikke som noe som bør prioriteres, da slike prognoser alltid vil være behøftet med usikkerhet.
- Forutsetningene vedrørende næringsavfall bygger på et vesentlig svakere grunnlag enn for husholdninger, og representerer en vesentlig andel av total mengde restavfall i alle alternativer.
- Best practice utsortering er lagt til grunn for alle norske kommuner uten en regional vurdering. Det kan hevdes at det kan være vanskelig å oppnå like gode resultater i storbyer som i mindre byer, spesielt for alternativ kun basert på kildesortering. Ved sentral ellersortering kan storbyene i stor grad utjevne dette (unntatt for matavfall).

Resultatene gir uansett et grundlag for å se på konsekvenser av både mulig vekst i avfalls mengdene og behov for økt innsats for mer effektiv utsortering av avfall til materialgjenvinning. Det fremgår at økt innsats for materialgjenvinning vil i stor grad kunne bidra til å holde mengden restavfall på dagens nivå, forutsatt fortsatt vekst i avfallsmengdene.

Videre viser analysen at selv om man oppnår en høy returandel for de fleste materialer vil den totale utsorteringsgraden for alt husholdningsavfall ligge på 54 % når tiltak for de store strømmene er inkludert, og ikke nærme seg 70 %, som er lansert som et fremtidig mål for det kommunalt avfall i EU. Det skyldes at det er en betydelig andel av avfallet som ikke er spesielt egnet til materialgjenvinning. Bleier og treavfall er typiske avfallstyper som bidrar negativt i forhold til høye materialgjenvinningsmål. Hageavfall er en annen usikkerhet i beregningene i forhold til om det skal defineres inn under materialgjenvinning, slik det er gjort i rapporten. Hageavfall kunnes om inerte masser kunne med fordel vært trukket ut av statistikken.
10.3. Innspill til mulig videre arbeid

Foreliggende prosjekt er utført innenfor begrensede rammer og det har vært nødvendig å foreta antagelser og forutsetninger som kunne være utredet mer i detalj. Det har vært sett på som sannsynlig at det kan være aktuelt å gå videre med en fase 2 i prosjektet. I tabell 10.3 er noen aktuelle punkter trukket fram.

Tabell 10.3 Mulige punkter for forbedring av analysen i evt. fase 2.

<table>
<thead>
<tr>
<th>Mulige punkter for forbedring</th>
<th>Hva kan gjøres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedre kvalitetssikring av datagrunnlag som ligger til grunn for beregning av referansesituasjon vedr. nasjonal retourgrad husholdninger og kommuner med best practice</td>
<td>Verifiseres med direkte kontakt med hver kommune/region som ingår i beregningen.</td>
</tr>
<tr>
<td>Regional vurdering av best practice med variasjon i returandel ut fra ulike erfaringer</td>
<td>Vurdere lavere utsorteringsgrad i storbyer med kildesortering.</td>
</tr>
<tr>
<td>Gjennomføre en følsomhetsanalyse for en del viktige parametere</td>
<td>Inkludere grovavfallsandel, korreksjonsfaktorer for smuss, sammensetning næringsavfall, ol</td>
</tr>
</tbody>
</table>

I tillegg gir prosjektet relevant informasjon som Avfall Norge kan legge til grunn for sitt videre arbeid på flere områder, uten at det er direkte relevant for en evt. fase 2. Det fremgår av påfølgende tabell 10.4.

Tabell 10.4 Innspill til andre prosesser og prosjekter

<table>
<thead>
<tr>
<th>Innspill til andre prosesser</th>
<th>Forklaring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbedre system/rutiner for Kostra i dialog med SSB</td>
<td>Det er identifisert forbedringspotensialer, spesielt vedr. groavfall/restavfall gjenvinningsstasjoner.</td>
</tr>
<tr>
<td>Bidra til bedre innrapportering fra kommunene</td>
<td>Det bør kunne lages en bedre veileder for hvordan hver kommune bør innrapportere til Kostra på en enhetlig måte og å gjøre dataene mer pålitelig.</td>
</tr>
<tr>
<td>Prosjekter for å sikre bedre korreksjonsfaktorer og tall for svinn i materialstrømmer</td>
<td>Det er usikkerhet til foreliggende tall, og det er en fordel om det gjøres mer praktiske tester på dette området som er kvalitetssikret.</td>
</tr>
<tr>
<td>Bedre system for plukkanalyser og nasjonal sammenstilling</td>
<td>Ved lansering av ny veileder for plukkanalyser bør også et nasjonalt system for å samle data utvikles.</td>
</tr>
<tr>
<td>Mer plukkanalyser av restavfall gjenvinningsstasjoner og evt. næringsavfall</td>
<td>Det foreligger begrenset grunnlag, og med stor usikkerhet. Det bør utføres, samles flere analyser.</td>
</tr>
</tbody>
</table>
11. Vedlegg

11.1. Liste over plukkanalyser som er benyttet

- Hias 2010
- AvfallSør 2011
- FREVAR 2011
- Hallingdal Renovasjon 2011
- Indre Hordaland Miljøverk, 2011
- Innherred Renovasjon, 2011
- IVAR 2011
- SIMAS 2011
- Fredrikstad, 2011
- RIR, 2011
- FolloRen 2012
- ROAF 2012
- Trondheim 2012
- Asker 2013
- BIR, 2013
- Bærum, 2013
- Hadeland og Ringerike Avfallsselskap, 2013
- Oslo, 2013
- VESAR, 2013
- RfD, 2013
- Remiks, 2012