THE KENYAN-DUTCH SEA FREIGHT SUPPLY CHAIN FOR ROSES

By Milco Rikken, Jeroen van der Hulst and Robbert van Willegen (VGB)
OBJECTIVES OF THE STUDY

Gain insight into the still to develop Kenyan-Dutch sea freight supply chain for roses.

Learn lessons from previous and current (pilot) projects

Insight into the sea freight supply chain:

• Freight routes, shipping lines and schedules
• Relevant actors
• Carbon footprint
• Bottlenecks and challenges

Ideas for subsequent pilot shipments
METHODOLOGY

Desk research

Interviews in Netherlands

Fact-finding mission in Kenya

• Mombasa, Nairobi, Naivasha and Limuru
• 15-20 visits and interviews

Executing parties *Hortiwise* and *FlowerWatch*, in close collaboration with *VGB*
STRONG GROWTH KENYAN EXPORTS TO THE EU

Figure 1 Development of Kenyan cut flower exports

Source: Hortiwise from HCDA and KFC (2012)
SOME OTHER DEVELOPMENTS

Strong growth Kenyan horticultural exports to the EU

Changing market conditions
• Stagnating market growth
• Retail chains increasingly dominate
• Sustainability becomes mainstream
• Lean and transparent supply chains

Other
• Improved varieties (for production in Africa)
• Preferential access uncertain
• Piracy
• Maersk price increase
• Development in air freight capacity
RECENT AND ONGOING SEA FREIGHT PROJECTS

• Onderzoek Zeetransport (2003-2005)
• Flowers on Waves (2006)
• Star Flower project (2005-2007)
• Bloemen in containers beter bekeken (2005-2008)
• CoCos - Containerisatie en Conditionering in Sierteeltketens (2008-2010)
• Ketenregie en kwaliteitsborging zeetransport (2009-2010)
• CO2 reductie duurzame ketens bloemisterij (fase 1) (2012)
• Plantgezondheid in de multimodale keten (2012)
• Compact & Dry
• Fresh Flower Solutions (FFS) (2012-ongoing)
1. INTRODUCTION
2. DEVELOPMENTS
3. SEA FREIGHT ROUTES
4. SUPPLY CHAIN CHALLENGES
5. CONCLUSION
SOMALI PIRACY PROBLEM
LINEA MESSINA

Source: www.messinaline.it
Source: Bolloré Africa
BEST OPTIONS

Table 2 Best option sea freight routes

<table>
<thead>
<tr>
<th>shipping line</th>
<th>destinations</th>
<th>trans shipping</th>
<th>travel days</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ideal schedule</td>
<td>realistic schedule</td>
</tr>
<tr>
<td>Messina</td>
<td>Genoa</td>
<td>no</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Marseille</td>
<td>no</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Barcelona</td>
<td>no</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Maersk</td>
<td>Felixstowe</td>
<td>at Salalah</td>
<td>26</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Zeebrugge</td>
<td>at Salalah</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Bremerhaven</td>
<td>at Salalah</td>
<td>29</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Rotterdam</td>
<td>at Salalah</td>
<td>31</td>
<td>36</td>
</tr>
</tbody>
</table>

Sources: Messina, Bolloré, Maersk

Shipping lines: Maersk (Safmarine), Linea Messina, Mediterranean Shipping Company (MSC), CMA CGM / Delmas, and others
SEA FREIGHT CHAIN FROM GROWER TO CONSUMER

Grower → Forwarder → Port → Shipping line → Arrival Port → ...

Source: www.360quality.org
Transit time is typically 25+ days to Europe depending on the destination, with high risk of delays

Recommendation:

Direct connections preferred: shorter transit times, less risk of delays, but selection of route also depends on the targeted market, etc.
CHALLENGE 2: SCHEDULE INTEGRITY

Reliability of shipping lines
Flowers no bulk article
Uncertainty about delays and waste rates

Recommendation:

- Risk management: Assess historical shipping data and/or record current schedules to obtain insight into actual delays per shipping lines and routes.
- Forwarder (two viable options): GMS and Bolloré Africa.
- Insuring shipments?
A 40ft container contains about 955 boxes. Challenges for both grower and importer. Consolidated loads also brings new logistic challenges.

Recommendation:

- Initial trial shipment (proof of concept) ideally all products come from one farm.
- Alternatively, a farm can be used as a consolidation point for flowers from a small number of different farms.
- Locations for consolidating are available for in a later stage.
Possibilities and requirements of many Kenyan varieties are not yet known.

Recommendation:

- Relevant Kenyan varieties need to be researched. Which can cope with 25+ days of sea transport and how?
- Pre-selection of varieties for the initial trial shipment.
CHALLENGE 5: MOMBASA PORT
Port congestion & customs clearance procedures
Slowly improving

Recommendation:
- Liaise with relevant local authorities and (stakeholder) organisations.
CHALLENGE 6: ARRIVAL PORT

Port of arrival: close to the final destination and swift clearance procedures and fast container handling.
Partly a learning process.

Recommendation:
- To be determined by project partners (market).
Quality is a critical variable: temperature primary factor. Entire supply chain, from grower to end customer. What additional techniques for atmosphere management to use?

Recommendation:

- Develop, implement and strictly monitor protocols for sea transportation.
- Start initial trial shipments without additional techniques.
- Assess (and research) impact of additional techniques.
THOUGH LIFE OF A REEFER
Boxes will have to be optimised to fulfill reefer requirements, but also still need to comply with on-farm cold store requirements.

Recommendation:
- Use (design) boxes specifically for sea freight requirements.
WHAT ABOUT THE COSTS?

Costs of shipping a container to Europe US$ 10,000 to US$15,000. Flying 11 tonnes: US$ 20,000 to US$ 25,000. Estimated cost savings in the 30-40% range.

But:

- Price differences between shipping lines and forwarders.
- Inland transport in Europe up to € 4,500 euro.
- Value at risk: full container of roses anywhere between € 20,000 and € 80,000 (955 boxes x 250 to 400 stems per box x € 0.10 to € 0.20 per stem).
- Waste?
- Atmosphere control?
- Consultancy and guidance?
1. INTRODUCTION
2. DEVELOPMENTS
3. SEA FREIGHT ROUTES
4. SUPPLY CHAIN CHALLENGES
5. CONCLUSION
A commercially successful sea transport supply chain is all about:

Optimisation
- Varieties
- Quality
- Cold chain
- Packaging
- Protocols
- Market

Monitoring & Controlling
- Post-harvest
- Cold chain
- Procedures
- Planning

Managing Risk
- Transit times
- Schedule integrity
- Delays
- Waste rates
- Liaising