Wendover Dean and Small Dean Viaducts and Green Tunnel South Portal Engagement Event

September 2018
Introduction

High Speed Two (HS2) is the new high speed railway for Britain. Welcome to the HS2 and Eiffage Kier engagement event for the design of the Wendover Dean Viaduct, the Small Dean Viaduct and the South portal of the Wendover Green Tunnel. These three structures are known as ‘key design elements’, and in this booklet we will share our current designs with you to keep you informed of progress.

HS2 – Our part in the bigger picture
HS2 is a new high speed railway that will form the backbone of Britain’s transport network. It will connect eight of Britain's ten largest cities and their regions. Faster, easier and more reliable travel will put more opportunities within reach for millions of people for work, business and leisure.

By increasing rail capacity, HS2 will free up space on existing lines for more commuter, regional and freight services. This will relieve overcrowding and improve reliability for millions of people using Britain's railways.

Read more about HS2 at www.hs2.org.uk
Eiffage Kier is proud to have been appointed by HS2 Ltd to deliver an 80km section of the new high speed rail link between the Chiltern Tunnel and Long Itchington Wood, with a planned completion date of 2022.

Along with this booklet there is a questionnaire asking for your thoughts and opinions on what matters most to you about the design and construction of the railway in your area. Please return this questionnaire by Friday 12 October 2018 via freepost to 'Freepost Eiffage Kier JV'. If you have any questions, please call the HS2 helpdesk on 08081 343343 where someone will be happy to help.

Who is Eiffage Kier?
Eiffage Kier is a Joint Venture between the two major civil engineering and construction companies, Eiffage and Kier.

Eiffage is a French civil engineering company that employs over 63,000 people worldwide, with large scale projects across the globe including Canada, South Africa, Japan, and across Europe. Kier, the second largest construction company in the UK, has 90 years of experience in a range of specialities including infrastructure and civil engineering, housebuilding and land development.

Both partners bring specialist expertise in the design, construction, operation, financing and maintenance of railway networks, including the construction of one of Europe's latest high speed rail projects.

We are committed to improving lives, communities and the engineering and construction industry by providing sustained employment opportunities and being a good neighbour, protecting the environment and the places we work. Our inclusive culture ensures that our collaborative and innovative solutions provide exceptional value for money.
Context

What are Key Design Elements?
Key design elements are structures along the route that are recognised by HS2 to be important. This could be due to their size, their proximity to stakeholders or their location within sensitive areas.

The Wendover Dean and Small Dean Viaducts and the Wendover Green Tunnel South Portal are considered key design elements because they are within The Chilterns Area of Outstanding Natural Beauty (AONB).

The design for each of these structures has been developed with consideration for the technical, structural requirements as well as the impact on their surroundings. This has involved regular reviews with and feedback from the Aylesbury Vale District Council, The Chilterns AONB Review Group and the HS2 independent Design Panel.

What are Common Design Elements?
Common design elements are components of the railway that follow an overarching design theme. These components follow certain visual parameters and apply to elements such as noise barriers, piers and parapets on viaducts and handrails.

Engagement and Initial Design
As a main works contractor for HS2 Ltd, Eiffage Kier understands the concerns of the community. We will use this understanding to take reasonable steps to address any issues you raise and continually look to lessen the impact of the project. It is our intention to inform, involve and respond to you during the design period.

The Chilterns AONB Review Group has developed a set of Detailed Design Principles (DDP) and has regularly reviewed and guided our design process up to this point. Our initial design proposals directly respond to the DDP provided.

As key design elements, these structures are also subject to critical review by the independent HS2 Design Panel of architects, engineers and landscape architects. Their role is to act as a ‘critical friend’ to ensure the designs meet the aspirations of the HS2 Design Vision. We continue to engage with the panel during the development of our designs.

Over the past six months we have also engaged with a number of local parish councils to share our emerging designs and explain how they meet the requirements set out above.

Landscape Character
All three key design elements are in the north part of the Upper Misbourne chalk valley, within The Chilterns AONB. The structures fall within what is called the ‘Wendover Gap landscape character area’. This local character area defines the side slopes and floor of the valley.

Although all three structures lie within the same local landscape character area, they each sit within locations that have different landscape attributes.
What is a viaduct?
A viaduct is a type of bridge, made up of multiple spans and connecting two points of terrain. On this project they will carry the high speed railway and will cross valleys, rivers, roads and flood plains.

During the construction of the first railway networks in the 19th Century, bricks were used by Victorian engineers for building viaducts as these were the materials readily available. These brick arched viaducts were capable of carrying the Victorian trains and followed the landscapes natural curves. Modern high speed trains travel at around four times the speed of Victorian trains so they require a flatter, straighter track, passing over and under the natural landscape. Modern viaducts are required to cope with the large longitudinal forces that occur due to braking and traction of high speed trains; they require stiff and strong supports to transfer the braking load forces from the train, which can be as high as 770 tonnes, to the foundations.

In keeping with HS2’s Design Principles, viaducts along the route must be designed sustainably, minimising maintenance and materials used, and be considerate to the area where they are being constructed while meeting the technical requirements of the railway.

What is a Green Tunnel portal?
‘Green tunnel’ is another name for a cut and cover tunnel. Cut and cover is a tried and tested method of construction for shallow tunnels. A trench is excavated, a tunnel structure is formed and the trench is filled back in with the excavated material. Green Tunnels are a popular solution for high speed railways across Europe, including High Speed 1, and allows the area above to be reinstated into the natural landscape.

The tunnel portal is the structure at either end of the tunnel and is ventilated to allow air pressure to disperse as the train enters and exits the tunnel. Alongside the portal, there are service buildings housing ventilation and electrical equipment.
Wendover Dean Viaduct

Landscape and Context
The Wendover Dean Viaduct will sit within the natural amphitheatre of the sweeping, tranquil side valley of Wendover Dean. This amphitheatre is defined by sloping, arable farmland on the exposed, mid and upper slopes, rising to a rounded crest from which there are extensive views across the valley.

The lower ground of the amphitheatre flattens out to accommodate farm buildings and an ancient pattern of hedgerows and tree lines set against a mosaic of fields. This landscape is very accessible, is crossed by several public rights of way, and is overlooked by scattered rural residential properties.

The landscape proposal for the project at Wendover Dean responds to the historic field pattern of the area. It replaces and reconnects the field boundary and lane side hedgerow and tree lines affected by the construction work, ensuring that the rural landscape flows beneath the structure.

“The relative simplicity of the backdrop of this viaduct suggests a matching simple and elegant structure.”
Chilterns AONB Review Group

• The design emphasises the thin horizontal band of the parapet and the evenly spaced and slender piers
• The necessary structural depth is downplayed and the structure is presented as an ‘irreducible minimum’ in terms visual impact from a distance

Key points
The Viaduct will be around 450 metres long with ten spans crossing Durham Farm, a realigned section of Bowood Lane and a private access road to Upper Wendover Dean Farm incorporating the public right of way.
Design Considerations

Aesthetics of parapets
The use of texture will give a level of detail when viewed from a close distance, which will effectively relate the structure back down to human scale.
On the current parapet design, the crease creates inward and outward leaning surfaces that catch light and shade. We have considered the use of a number of textures and patterns influenced by the surrounding area to integrate the viaduct into the local environment.

Aesthetics of piers
To increase slenderness, a fold line is introduced. This means that the outer faces of the pier are reduced. Further folds can also be made at the top of the pier to allow for a wider top to accommodate the structural support bearings.
The maximum width requirements for the pier are at the top, where it connects to the deck. Allowance must also be made here for maintenance jacks. This maximum width is tapered down through the use of folds in the form to create a smaller footprint at ground level to minimise the size of foundations and maximise the available space around the pier for planting.

Landscape
Due to the loss of some woodland in creating the viaduct, there will be additional planting to compensate, designed to blend in with the local environment.
Construction sequence

Based on our experience in high speed rail and viaduct construction across Europe, we are currently planning the following sequence of construction:

1. Initially the piers are constructed in concrete. We propose to construct the piers as pre-cast shells, manufactured off site and then assembled and filled. This is clean, maintains high quality, and is less damaging to the environment.

2. The steel sections of the deck are then assembled behind the north abutment.

3. The deck is launched from the north abutment across each of the piers to the south abutment. This method of construction will minimise the impact on local roads and haul roads.

4. Once the deck is launched, the deck slab is constructed.

5. The track system is then installed.

Past projects suggest that this construction sequence offers a range of advantages compared to other methods including shorter duration of site works, fewer material deliveries, lesser need for people and a higher quality of construction.
AONB Detailed Design Principles

The Chilterns AONB Review Group was formed to develop guidance for the HS2 project team to ensure locally responsive and high quality design that reflects the sensitivity of the area. This guidance forms a set of Detailed Design Principles (DDP), some of which are quoted below, along with Eiffage Kier’s design response.

1. “Long and equal spans to create a consistent rhythm and avoid below deck visual clutter.”
 - The Sample Design illustrated in the DDP has spans of 40m
 - The Eiffage Kier proposal has longer spans of 47m, which are consistently spaced across the bowl form of the landscape

2. “Maximise apparent slenderness of piers through cross section, grouping and edge profile...”
 - The pier combines the necessary structural stiffness with a tailored, slender form through the treatment of the pier as distinct faces that catch the light individually
 - The pier detail incorporates a curve at the top of the pier stem which softens the transition from horizontal deck to vertical support

3. “It is assumed that piers will be concrete in which case the principal issue is colour and visibility with additional issues of texture, joints and potential staining.”
 - To meet the technical requirements of High Speed Rail, the only material suitable for the piers is reinforced concrete
 - We are also exploring texture, particularly for the inset portion of the pier where we are keen to maximise shadow

4. “Decks can be either concrete or steel provided they are overclad as below to provide a controlled elevation.”
 - The deck of the current proposal is both concrete and steel
 - The parapets act as cladding and will be added as precast elements once the deck is in place
 - The design has been considered holistically with the parapet, beam and deck edge details all being considered together to achieve a ‘controlled elevation’
5. “Whilst the thickness of the deck will be determined by loads and spans, its side elevation should be carefully considered to reduce apparent bulk and create shadow.”

- The use of gradually weathering steel and concrete together is a deliberate effort to break up the overall mass of the structure and introduce variation in terms of material and depth of shadow.
- In the case of the current design for Wendover Dean we are achieving 47m span with an overall structural depth of 3.1m.

6. “Ensure piers meet the ground in the simplest possible manner avoiding visible footings/supplementary bases, fencing and other clutter and making good ground profiles so that the piers emerge cleanly from the ground.”

- The pile cap is located below ground level, with planting over, so that the pier stem meets the ground cleanly and simply.

7. “Noise barriers and edge parapets should appear similar regardless of function... and must be considered as integral parts of the bridge design not bolt on afterthoughts”

- These are the linear elements that will provide much of the visual impact and distinctiveness of the structure.
- The barrier is a key functional requirement and should be indivisible from the rest of the viaduct. Continuity can be achieved by creating concrete noise barriers with the same material as the parapet.
- The visual impact of the barrier can then be modified with the use of colour pigment or a profiled pattern.
- The height shown is ‘anticipated worst case’ of 3 metres above the track.
Small Dean Viaduct

Landscape and context

Small Dean Viaduct straddles the valley floor, which is defined by established linear tree planting associated with the A413 London Road and the Chilterns Railway. The landscape here reflects the linearity of the modern infrastructure rather than the ancient field pattern. The trees at this location give a strong sense of enclosure and create a gateway to the settlement of Wendover, strongly contrasting with the more open valley floor to the south. These tree lines form important elements in the views across the valley floor and define the route for travellers on the A413.

The landscape proposals for the viaduct at Small Dean respond to the tree lines that create the gateway to Wendover. Over time, the treelines affected by the construction would be replaced and reconnected so that the approach to the viaduct along the A413 would be enclosed by trees. The treatment immediately adjacent to and beneath the viaduct is presently being developed and designs will be shared with Aylesbury Vale District Council and The Chilterns AONB, with the objective to reinforce this location as the gateway to Wendover.

“The structural and logistical complexities of this viaduct, its greater visibility and less tranquil setting all indicate that a more visually dynamic structure may be appropriate. This might involve a deliberate contrast of the single central long span with the repetitive side spans”

- Chilterns AONB Review Group

Key points

Small Dean Viaduct will be around 350 metres long with seven spans crossing Small Dean Lane, a section of the existing Chilterns Railway line and the A413 London Road, which is the primary route into Aylesbury Vale and the existing form of access to Boswell’s Farm.
Design considerations
Geometrical constraints
The existing alignment of the road and railway over which the viaduct must cross creates unavoidable geometrical constraints for the design of Small Dean Viaduct. This introduces large spans and positions supports very close to the A413 London Road.

Impact on communities
Minimising impact on communities during the main works at Small Dean is important to us. We recognise the importance of the A413 as the main artery in and out of the Vale and we are assessing design options in line with construction sequencing that will reduce traffic impact upon the local area.

Construction sequence
Based on our experience in high speed rail and viaduct construction across Europe, we are currently planning the following sequence of construction:

1. At pier locations, vegetation is removed and where necessary ramps created to provide access. Existing utilities that clash with the viaduct piers are permanently diverted
2. The A413 is temporarily diverted to enable the two southern-most piers to be constructed. Following their construction, the new permanent road alignment will be created to enable the construction of the pier to the north of the A413
3. A piling mat, which is a working platform that provides a stable base for the piling rig to drill from, is constructed at pier locations
4. Large diameter holes are bored into the ground and filled with reinforced concrete. Ground support is installed to allow excavation to the bottom of the foundation
5. The top section of the pile is removed, leaving a section of exposed steel reinforcement
6. The exposed reinforcement is linked into the foundation slab reinforcement and the slab concrete to ensure pier stability and adequate load transfer into the ground
7. Innovative, high quality, precast pier segments, manufactured off-site, are stacked on top of each other to create the pier stem, reducing construction time when compared with traditional methods
8. A unique “hammerhead” precast unit is installed on top of the pier stem, creating the widened top section of the pier to accommodate the main viaduct deck
9. The main steel girders of the viaduct deck are assembled behind the south abutment
10. While still in the assembly yard to the south of the viaduct, the full concrete section of the deck is constructed on top of the main steel girders. Parapets will also be installed at this time
11. The fully constructed deck is launched from the south abutment using a series of powerful jacks. The deck will travel over the top of the piers until reaching its final resting position at the north abutment. Some of this work will need to be undertaken overnight
12. The remaining components such as derailment walling and noise barriers are installed, followed by installation of the track system

Past projects suggest that this construction sequence offers a range of advantages compared to other methods including shorter duration of site works, fewer material deliveries, lesser need for people and a higher quality of construction.
AONB Detailed Design Principles

The Chilterns AONB Review Group was formed to develop guidance for the HS2 project team to ensure locally responsive and high quality design that reflects the sensitivity of the area. This guidance forms a set of Detailed Design Principles (DDP), some of which are quoted below, along with Eiffage Kier’s design response.

1. “Long and equal spans to create a consistent rhythm and avoid below deck visual clutter.”
 • The spans of Small Dean Viaduct have been arranged to minimise impact on the existing infrastructure over which it passes. Given the skewed alignment and the highly constrained site the spans cannot be arranged equally
 • Care has been taken to ensure that the viaduct is symmetrical, with the longest spans in the centre and shorter spans at the ends
 • Span length has also been maximised, which will minimise the number of support piers and reduce the number of elements to the structure

2. “Maximise apparent slenderness of piers through cross section, grouping and edge profile...”
 • The cross section of the pier stem is rhomboid with the outer points angled off to create a flat face that rises up from ground level before curving outwards at the top of the stem to provide the support to the deck
 • By using tapering, curved profile and narrowing the stem relative to the pier head, the slenderness of the pier is maximised

3. “...where a longer span is essential to negotiate existing constraints...either design the complete viaduct using this span as standard or if this is not feasible, produce a design that celebrates this distinct break in the rhythm of the overall viaduct”
 • Long spans are required to cross the Chilterns Railway line and, in particular, the A413 London Road. Visual consistency is important for the appearance of the structure, especially when looking along the viaduct, and so these spans set the standard for the whole viaduct
4. “It is assumed that piers will be concrete in which case the principal issue is colour and visibility with additional issues of texture, joints and potential staining.”

• The detailing of the piers is being carefully developed to minimise adverse weathering effects such as staining and discolouration through the use of drip edges and undercut faces

• Joints between the pier sections will be sharply defined and evenly spaced, coordinating with the starting point of curves in the form

• For the concrete colour an even tone is preferred, which continues to be an important consideration in the ongoing design development

5. “At Small Dean pay particular attention to the underside of the deck which will have close range views from motorists. Consider ribs or other changes in profile to provide texture and light and shade.”

• The splay of the pier ‘catches’ the deck and then brings the structural forces together into the stem of the support in the manner of a tree

• The underside is characterised by the dark steel bands of the girder flanges and the pale concrete of the precast panels that connect them. We are actively investigating the use of pattern on the pre-cast panels and we view it as a topic applicable to both structures
Green Tunnel South Portal

Landscape and context

Wendover Green Tunnel is an 1185 metre long cut and cover tunnel with two 120 metre long porous portals at each end. A porous portal is a gradual widening at the end of a tunnel that dissipates air pressure as the train enters the tunnel to avoid a sonic boom effect. A maintenance building will be constructed next to the tunnel portal, the textural design of which will be developed to tie in with the surroundings.

The tunnel portal sits at the transition between the strongly defined Upper Misbourne Valley to the south and the more open, low lying Aylesbury Plain to the north. To the east, linear tree belts reflect the modern infrastructure of the A413 bypass and Chilterns Railway which defines the western edge of Wendover. The landscape here is very accessible, is used by walkers and cyclists and is overlooked by nearby residential properties.

The landscape proposals for the Wendover Dean South Portal respond to the historic field pattern of the area. It would replace and reconnect the field boundary and hedgerows while allowing the buried section of the tunnel to form the backdrop.

A linear planting scheme is planned for the east side of Wendover Green Tunnel to cover views of the tunnel.

Key points

The South Portal will be approximately 140 metres long and 9 metres high. The proposed solution comprises a twin arch formed using pre-cast concrete segments.

When a train enters a tunnel, there is an increase in air pressure surrounding the train. In order to address this, the proposed tunnel portal contains perforations and is flared from the tunnel profile to enable a gradual dissipation of air pressure created as the train passes through.
Design considerations

Portal-side building
A building will sit next to the portal structure for mechanical and electrical equipment. This building is being designed to sit low in the landscape, partially concealed by a planted bank, and potentially also incorporating a fully planted ‘green’ roof. The walls of this building will be broken up through the use of linear pattern, similar to the appearance of timber sidings used to face agricultural barns.

Weston Turville reservoir
The design and construction of the green tunnel must consider the hydrology of the area with specific consideration of the aquifers that feed into the Weston Turville reservoir. We are carrying out further investigations on the aquifer to better understand this.

Impact upon communities
Our current preferred method of construction using precast concrete segments will permit relatively fast construction. This is quieter than other methods and minimises noise impact on the local community.

Land Art
As we restore the landscape to its natural state there will be opportunities for communities to contribute to land art projects as part of HS2’s Design Vision. Land art above the tunnel could connect the south and north portals, from where there could be viewing platforms to experience the high speed trains as they enter and exit the tunnel. The project could be artist led and developed through community engagement using natural materials such as soil, rocks and vegetation found locally.

Construction sequence
Based on our experience in high speed rail construction across Europe, we are currently planning the following sequence of construction:

1. A trench is excavated to allow the tunnel to be constructed. This will be backfilled once the green tunnel is completed to cover the tunnel and return the landscape to the original appearance.

2. The tunnel will be constructed uphill in a southerly direction to manage water ingress more effectively. Construction will halt at Ellesborough Road, so that local road traffic can be temporarily diverted over the already constructed tunnel, once diverted construction will continue.

3. A temporary link road is formed between Ellesborough Road and Bacombe Lane allowing Bacombe Lane to be temporarily closed and the tunnel to be completed.

4. Once the tunnel has been completed both Ellesborough Road and Bacombe Lane will be opened for road traffic.

Past projects suggest that this construction sequence offers a range of advantages compared to other methods including shorter duration of site works, fewer material deliveries, lesser need for people and a higher quality of construction.
Construction

We are committed to minimising the impact of our works on local communities. We have explored a number of options to lessen noise and traffic movements and speed up the construction process where possible. We are also committed to maintaining and enhancing the landscape by introducing plants and wildlife where we can boost the local ecology.

Compounds
Under our current proposal, construction staff will travel to compound sites by bus or minibus, using a park and ride facility to reduce traffic. There will be no on-site overnight accommodation for construction staff.

We are working with Buckinghamshire Business First and the County Council to develop opportunities for local businesses, particularly in facilities management. Local businesses can contact Eiffage Kier through our website (www.eiffagekier.com/supply-chain) to register interest in becoming a supplier.

Eiffage Kier will work in accordance with the HS2 Code of Construction Practice, which sets out the standards and control measures for the management of construction activities on the Project.

We will register every site with the Considerate Constructors Scheme to ensure the highest standards on all our sites.

Visit www.ccscheme.org.uk for more information.

Examples of compounds
Environmental approach

Noise and vibration

We are committed to protecting local communities and wildlife from the noise produced by high speed trains through the design, construction and operation of the railway.

We will use a noise reduction hierarchy; firstly, reducing noise generation at source; secondly, reducing noise through the design, construction and maintenance of noise fence barriers and/or landscape earthworks; lastly, the offer of noise insulation during the construction stage. Measures currently in development include screening, the use of low vibration equipment, the use of broadband vehicle reversing warnings and a noise and vibration monitoring protocol.

We will model construction noise to understand the impact on nearby properties and we will use this information to limit the effects we have upon the communities where we work.

We are currently reviewing the requirements for permanent noise barriers and mitigation earthworks.

Traffic

Eiffage Kier is investigating all transport options and working with stakeholders and the local highways authorities to minimise construction flows and produce local traffic management plans. Further information will also be shared in due course.

Responsible procurement

Our Environment and Sustainability team will implement measures that avoid, prevent and reduce adverse environmental impacts of the project, leaving a positive and lasting legacy within the areas where we work.

Everyone who works for and on behalf of Eiffage Kier will ensure that all works are as ‘carbon-friendly’ as possible. This includes recording previous energy use and efficiency, emissions to air, soil and water and waste generation. We will also maximise materials efficiency, which includes recycled, reused or renewable materials.

Eiffage Kier are embedding carbon reduction initiatives into the scheme design considering our carbon footprint and exploring innovative alternatives to our most carbon intensive materials.

Numerous designing out waste workshops are being undertaken to ensure we achieve maximum efficiency in the raw materials we use. As part of our materials procurement exercises we are challenging our suppliers to deliver on responsibly sourced materials including timber, concrete and steel.

Air Quality

Eiffage Kier is currently developing an approach to air quality management that adheres to HS2’s air quality requirements. Measures to reduce the potential impacts on air quality include conducting dusty works as far from receptors as possible, employing dust suppression, using the latest emission standard vehicles and non-road mobile machinery (e.g. generators), covering materials, constructing haul roads to minimise dust, seeding completed earthworks as early as possible, using temporary enclosures for cutting activities and damping down work areas in dry weather.

We will risk assess construction activities, following best practice guidance from the Institute of Air Quality Management, to determine the appropriate monitoring to be employed. Inspection and monitoring procedures will be determined in consultation with the local authority.
Questionnaire and feedback
The feedback from the questionnaire you have received with this booklet will be analysed, and a report will be produced to provide a technical expert response to the issues identified and raised as part of this public engagement event.

The report will be delivered through a parish council presentation, regular drop-in sessions and made available on the local Commonplace websites.

In addition to the above, we would also like to welcome any overall feedback from you on the value of attending today. This will help inform continuous improvement for future events.

All questions raised today will be recorded and responses will be fed back through the local Commonplace website:

https://hs2inbucksandoxfordshire.commonplace.is

Future events
If you have any further queries following this event, you may want to attend one of our ongoing monthly drop in events at Wendover Community Library.

The next planned drop in sessions will take place on:

Tuesday 23 October 2018, 3.00pm to 7.00pm
Thursday 22 November 2018, 2.00pm to 7.00pm

As the project progresses we will be hosting more public engagement events to provide you with general updates about the works in your area.

Details will be provided on the HS2 website:

www.hs2.org.uk/events

Supply chain opportunities
Eiffage Kier is keen to engage with supply chain partners who share our values and enthusiasm, regardless of how big or small your organisation may be. We believe in fair and inclusive procurement in order to stimulate a more competitive market place.

For opportunities and information about how your business could become a supply chain partner of Eiffage Kier, please visit our CompeteFor page:

www.competefor.com/EiffageKier

Thank you for attending
We hope you found today’s event to be useful and we look forward to your feedback.
Artists impressions

Wendover Dean Viaduct - lakeside view

Small Dean Viaduct - A413 London Road view

Wendover Green Tunnel South Portal - track view
Keeping you informed

We are committed to keeping you informed about work on HS2. This includes ensuring you know what to expect and when to expect it, as well as how we can help.

Residents’ Charter and Commissioner

The Residents’ Charter is our promise to communicate as clearly as we possibly can with people who live along or near the HS2 route. www.gov.uk/government/publications/hs2-residents-charter

We also have an independent Residents’ Commissioner whose job is to make sure we keep to the promises we make in the Charter and to keep it under constant review. Find reports at: www.gov.uk/government/collections/hs2-ltd-residents-commissioner

You can contact the Commissioner at: residentscommissioner@hs2.org.uk

Construction Commissioner

The Construction Commissioner’s role is to mediate and monitor the way in which HS2 Ltd manages and responds to construction complaints. You can contact the Construction Commissioner at: complaints@hs2-cc.org.uk

Property and compensation

You can find out all about HS2 and properties along the line of route by visiting: www.gov.uk/government/collections/hs2-property

Find out if you’re eligible for compensation at: www.gov.uk/claim-compensation-if-affected-by-hs2

Holding us to account

If you are unhappy for any reason you can make a complaint via the helpline. For more details on our complaints process, please visit our website: www.hs2.org.uk/how-to-complain/

Contact us

If you have any questions about this document, please get in touch.

- **24/7 freephone** 08081 434 434
- **Minicom** 08081 456 472
- **Email** HS2enquiries@hs2.org.uk

Write to

High Speed Two (HS2) Limited
Two Snowhill
Snow Hill Queensway
Birmingham B4 6GA

Website www.hs2.org.uk

To keep up to date with what is happening in your area, visit: https://hs2.commonplace.is/

Please contact us if you’d like a free copy of this document in large print, Braille, audio or easy read. You can also contact us for help and information in a different language.

HS2 Ltd is committed to protecting personal information. If you wish to know more about how we use your personal information please see our Privacy Notice (https://www.gov.uk/government/publications/high-speed-two-ltd-privacy-notice).