Safety at Sea and Lighthouses

Frank James
The Smalls Lighthouse is one of those Lights leased in 1778 by the Trinity House, most inconsiderately, for 99 years, at a nominal rent

Select Committee report, 1834
<table>
<thead>
<tr>
<th>LIGHTHOUSE, and Name of Proprietor or Lessee</th>
<th>Remaining Term of Lease purchased</th>
<th>Rate per Cent. for Money to purchase</th>
<th>Amount of Purchase-money</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longships:—Henry P. Smith, Esq.</td>
<td>9½ years</td>
<td>6</td>
<td>£49,696</td>
</tr>
<tr>
<td>Smalls:—Rev. A. H. Buchannan, Thomas P. Clarke.</td>
<td>41 years</td>
<td>6</td>
<td>£170,468</td>
</tr>
<tr>
<td>Winterton and Orford:—Lord Braybrooke.</td>
<td>12 years and 5 months</td>
<td>4½</td>
<td>£37,896</td>
</tr>
<tr>
<td>Harwich:—Lieutenant-general Rebow.</td>
<td>12 years and 5 days</td>
<td>4½</td>
<td>£31,730</td>
</tr>
<tr>
<td>Dungeness:—Thomas W. Coke, Esq.</td>
<td>12 years and 175 days</td>
<td>4½</td>
<td>£20,954</td>
</tr>
<tr>
<td>Hunstanton:—Frederick Lane, Esq.</td>
<td>-- 9 months and 16 days, to October 1837.</td>
<td>4½</td>
<td>£384</td>
</tr>
<tr>
<td>Ditto--ditto</td>
<td>-- 11½ years, from October 1837.</td>
<td>4½</td>
<td>£1,221</td>
</tr>
<tr>
<td>Tynemouth:—Mr. Fawke</td>
<td>In perpetuity</td>
<td>-- 23½ years' purchase.</td>
<td>£124,678</td>
</tr>
<tr>
<td>Spurn:—J. B. B. Angel, Esq.</td>
<td>ditto</td>
<td>-- 23½ years' purchase and award of jury.</td>
<td>£399,531</td>
</tr>
<tr>
<td>Skerries:—Morgan Jones, Esq.</td>
<td>ditto</td>
<td>-- Award of jury.</td>
<td>£444,984</td>
</tr>
</tbody>
</table>

Total Pounds	**£**
	1,182,546
The length, 4 inches in diameter, 4 inches - height, churning, and 14
the help of flame - long 30 inches in diameter.

The arrangement ready near 15% of miles by naked eye than brighter
than a common lamp of reflector at 15 miles - its successful application
from the reflector to Lewis Hill.

Lighthouses

Emission 10 to 1 - light 60 to go to 1 against present lamps
in relation with present 1/10 in place of 4 lamp, the difference
as 2 to 1, yet rates of intensity at 15: 23 to 1
Lizard point. Lilly Island,

measured intensity only in contradistinction not in some altitudes one
about 1/10 of whole intensity - may perhaps be seen it by restoring the same
intensity - by use of carbon for gas lamp, and 1 lens in place of reflectors then
1 ball for several lamps.

Refer to analysis between this and flame - and show improvement
in principle - at first wondrous as of phosphorus - now maintain. The
symphony all the power of modern light in contradistinction is maintained in the
focus.

Sound of the bell at chlorine of hydrogen - anywhere of zinc - light
yellowish to day light from preponderance of yellow - furnish the mirror
false light from glass rays in it that are not in real light

Make the great improvement.
[The] Committee ... are ... of opinion that all the Public General Lighthouses ... should be placed under one Board, resident in London and conducted under one system of management.

Captain Drummond recommends a Board consisting of Four Persons; one to be a Seaman, and the Hydrographer of the Admiralty; another to be a scientific Chemist; a third a Member of the Royal Society [of London] and an Optician; and the fourth, the President or Vice-President of the Board of Trade.

Select Committee report, 1834
Apr 29th 1751

Profs in the profession of Electricity from Magazines did

there list on an iron wire (12th 18th) were used and makes

thick of iron wire a certain size of 1/2 Specifications: 1/2 inches

so a certain size of iron wire was made one half the wire being expanded

by hanging 1/2 inch from the case of 1/2 of wire each about 1/2

and by and they made the same as one length as used

as separate length the 1st tool with a branch and was

in the other well all the sides of the Bay

A on the other side in section by an

wire in a row was wound and in two pieces

together allowing to about to put on

the diameter alongside with the former

into this one all B.

In this, a battery of 1/2 of the higher by average. Make

the test in B and one real and connected the apparatus by

a safe wire of 1/2 inch 1/2 inch and just pure of compound

1/2 of wire each about 1/2. The end of one of the

fuses in 1/2 with battery 1/2 inch 1/2 inch, a 1/2 inch tool in metal

1/2 and 1/2 of the wire 1/2 inch 1/2 inch too pure a compound

1/2 and 1/2 into the battery gives a distinction of

the matter.

Make all the wires 1/2 and one real and connect

from battery through the whole. If the square wound

strangers than before

the effect of the matter, they had a very small great if

that which the wire uncompelling directly with the battery

made production.
Jul 12, 1834

52. The motive did not command 20th but extensive to do, where such issues as were for such rights - the ordinary issues in the business, such as with finance rules or the ordinary motive to divide between parties with the duty required, by the view of the nature of the issue of jobs of the same issues, by the same issues.

53. When the Pelican was made, no boy held the effort, was not so strong in the pelican's nest before, probably not half as strong, but that it is back in paper when it was in the nest. When only one of the Pelican was made, it was least

54. Make a roll of a roll of ten feet, round a paper cylinder is that long opposite at the edges of the paper, the pelican's nest could be added. Three paper rolls, and in Indian, but inside paper within the pelican's nest could be added, because as angular indentation there was the point to observe only having the

55. Paper joint may be effective, until, in its place, water, under a paper joint within it, instead of bars or by balls

Aug 15 1834

62. Again charged battery of 12, twelve 2.14 each, with

63. Experiment will lead to only No. (), connected as before with the pelican's nest. When battery was dropped with

64. The same, in the next paper, effective pelican's nest. Then, connected.
“Scientific adviser to this Corporation in experiments on Light.” at a Salary of £200 p. annum.

Jacob Herbert to Faraday, 5 February 1836, letter 885
The weather to day forms a comparison of Feby 1841 but pleasing to say no damp[.] Sir your Plan has driven the enemy out[.] I entertain no not the slightest fears of him ever coming again to cause such labour as you wittnesed on the 4th of Feby 1841[.]

George Neale to Faraday, 19 February 1843, letter 1473
Much, therefore, as I desire to see the Electric light made available in lighthouses, I cannot recommend its adoption under present circumstances. There is no human arrangement that requires more regularity and certainty of service than a lighthouse. It is trusted by the Mariner as if it were a law of nature; and as the Sun sets so he expects that, with the same certainty, the lights will appear.

Faraday report to Trinity House, 15 August 1854, letter 2878
I went to Dover last Monday (the 13th instant); was caught in a snow storm between Ashford and Dover and nearly blocked up in the train; could not go to the lighthouse that night; and finding, next day, that the roads on the downs were snowed up, returned to London. On Friday I again went to Dover and proceeded by a fly that night, hoping to find the roads clear of snow; they were still blocked up towards the lighthouse, but by climbing over hedges, walls, and fields, I succeeded in getting there and making the necessary inquiries and observations.

Faraday report to Trinity House, 20 February 1860, letter 3728
Some delay has occurred in my reply to your letter but I have been seriously ill during the past cold season. Dr Bence Jones my (Medical friend) ascribes some of my loss of power to the severe attack of sea sickness which I had between Dover and Dungeness and forbids me from going to sea again.

Faraday to Peter Berthon, 15 February 1864, letter 4431
The use of light to guide the mariner as he approaches land, or passes through intricate channels, has, with the advance of society and its ever increasing interests, caused such a necessity for means more and more perfect, as to tax to the utmost the powers of both the philosopher and the practical man, in the development of the principles concerned, and their efficient application.

Faraday lecture to Royal Institution, 9 March 1860