Escher and Coxeter

A Mathematical Conversation

Sarah Hart
Birkbeck, University of London

5 June 2017
M. C. Escher (1898 – 1972)

Hand with Reflecting Sphere
(Lithograph, 1935)
Education

- Early education in Arnhem.
- Admitted 1919 to School for Architecture and Decorative Arts in Haarlem.

White Cat (Woodcut, 1919)
Travels in Italy and Spain

San Gimignano
(Woodcut, 1923)

Atranti, Coast of Amalfi
(Lithograph, 1931)
A new direction

Metamorphosis I (Woodcut, 1937)
Regular Tilings of the plane

Sarah Hart

Escher and Coxeter
A regular tiling uses one shape of tile, which is a regular polygon, and the same number of tiles meet at each point.
A regular tiling uses one shape of tile, which is a regular polygon, and the same number of tiles meet at each point.
What is a regular polygon?

A regular polygon is a shape made with straight edges, and all edges are equal length, and all internal angles are equal.
What is a regular polygon?

A regular polygon is a shape made with straight edges, and all edges are equal length, and all internal angles are equal.
What is a regular polygon?

A regular polygon is a planar shape made with straight edges, and all edges are equal length, and all internal angles are equal.
What is a regular polygon?

A regular polygon is a planar shape made with straight edges, and all edges are equal length, and all internal angles are equal.
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
- and all edges are equal length,
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
- and all edges are equal length,
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
- and all edges are equal length,
- and all internal angles are equal.
What is a regular polygon?

A regular polygon is a planar shape

- made with straight edges,
- and all edges are equal length,
- and all internal angles are equal.
A regular polygon is a **convex** planar shape
- made with straight edges,
- and all edges are equal length,
- and all internal angles are equal.
What is a regular polygon?

A regular polygon is a convex planar shape
▶ made with straight edges,
▶ and all edges are equal length,
▶ and all internal angles are equal.
Regular Tilings of the plane

A regular polygon is a convex planar shape made from straight edges where all edges are equal length and all internal angles are equal size.
Regular Tilings of the plane

- A regular polygon is a convex planar shape made from straight edges where all edges are equal length and all internal angles are equal size.
- A regular tiling uses one shape of tile, which is a regular polygon, and the same number of tiles meet at each point.
A regular polygon is a convex planar shape made from straight edges where all edges are equal length and all internal angles are equal size.

A regular tiling uses one shape of tile, which is a regular polygon, and the same number of tiles meet at each point.
A \(\{k, n\} \)-tiling has \(k \) tiles (\(n \)-gons) at each point.

The regular tilings of the plane are \(\{4, 4\} \), \(\{6, 3\} \) and \(\{3, 6\} \).
What about the 17 wallpaper patterns?
We can tile the sphere with regular polygons (we have to curve them to lie properly on the surface).
Regular Tilings of the Sphere

- We can tile the sphere with regular polygons (we have to curve them to lie properly on the surface).
- Start with flat tiles making a 3-d shape and ‘inflate’ to make a sphere.

Five possibilities:
- \{3, 3\}, \{4, 3\}, \{5, 3\}, \{3, 4\}, \{3, 5\}
We can tile the sphere with regular polygons (we have to curve them to lie properly on the surface).

Start with flat tiles making a 3-d shape and ‘inflate’ to make a sphere.

Remember we need the same number of the same tile meeting at each point.
Regular Tilings of the Sphere

- We can tile the sphere with regular polygons (we have to curve them to lie properly on the surface).
- Start with flat tiles making a 3-d shape and ‘inflate’ to make a sphere.
- Remember we need the same number of the same tile meeting at each point.
- Five possibilities: \{3, 3\}, \{4, 3\}, \{5, 3\}, \{3, 4\}, \{3, 5\}
We can tile the sphere with regular polygons (we have to curve them to lie properly on the surface).

Start with flat tiles making a 3-d shape and ‘inflate’ to make a sphere.

Remember we need the same number of the same tile meeting at each point.

Five possibilities: \(\{3, 3\}, \{4, 3\}, \{5, 3\}, \{3, 4\}, \{3, 5\} \)
Angels and Devils on a Sphere (1942)
Donald Coxeter (1907 – 2003)

No one asks artists why they do what they do. I'm like any artist, it's just that the obsession that fills my mind is shapes and patterns.

Sarah Hart, Birkbeck, University of London

Escher and Coxeter
Donald Coxeter (1907 – 2003)

‘No one asks artists why they do what they do. I’m like any artist, it’s just that the obsession that fills my mind is shapes and patterns.’
International Congress of Mathematicians, 1954

Sarah Hart

Escher and Coxeter
Coxeter’s Diagram
Escher’s New Tiling

Sarah Hart

Escher and Coxeter
Three Geometries
Three Geometries
The Poincaré Disc
Hyperbolic Tilings
I’ve been killing myself, [...] for four days with clenched teeth, to make another nine good prints of that highly painstaking circle-boundary-in-colour. Each print requires twenty impressions: five blocks, each block printing four times. (Escher to his son Arthur, March 1960)
‘I’ve been killing myself, [...] for four days with clenched teeth, to make another nine good prints of that highly painstaking circle-boundary-in-colour. Each print requires twenty impressions: five blocks, each block printing four times.’ (Escher to his son Arthur, March 1960)
Influence on Coxeter
Circle Limit IV (woodcut, 1960)
Classification of Regular Tilings

- A \(\{k, n\} \) regular tiling is a tiling by regular \(n \)-gons, with \(k \) meeting at each vertex.

We must have \(k \geq 3 \) or there would be gaps.

We must have \(n \geq 3 \) as the smallest number of sides a polygon can have is 3.
A \{k, n\} regular tiling is a tiling by regular \(n\)-gons, with \(k\) meeting at each vertex.

We must have \(k \geq 3\) or there would be gaps.
A \(\{k, n\} \) regular tiling is a tiling by regular \(n \)-gons, with \(k \) meeting at each vertex.

- We must have \(k \geq 3 \) or there would be gaps.
- We must have \(n \geq 3 \) as the smallest number of sides a polygon can have is 3.
Theorem

For any k and n with $k \geq 3$ and $n \geq 3$, there exists a regular tiling in exactly one of plane, spherical and hyperbolic geometry.

- $\frac{1}{k} + \frac{1}{n} > \frac{1}{2} \rightarrow$ regular spherical tiling.
- $\frac{1}{k} + \frac{1}{n} = \frac{1}{2} \rightarrow$ regular plane tiling.
- $\frac{1}{k} + \frac{1}{n} < \frac{1}{2} \rightarrow$ regular hyperbolic tiling.

Example

For a tiling with equilateral triangles ($n = 3$) we have $\frac{1}{2} - \frac{1}{n} = \frac{1}{6}$.

So if k is 3, 4 or 5 we get a spherical tiling; if $k = 6$ it's a plane tiling; if k is 7 or higher it's a hyperbolic tiling.
Theorem

For any k and n with $k \geq 3$ and $n \geq 3$, there exists a regular tiling in exactly one of plane, spherical and hyperbolic geometry.

- $\frac{1}{k} + \frac{1}{n} > \frac{1}{2} \rightarrow$ regular spherical tiling.
- $\frac{1}{k} + \frac{1}{n} = \frac{1}{2} \rightarrow$ regular plane tiling.
- $\frac{1}{k} + \frac{1}{n} < \frac{1}{2} \rightarrow$ regular hyperbolic tiling.

Example

For a tiling with equilateral triangles ($n = 3$) we have $\frac{1}{2} - \frac{1}{n} = \frac{1}{6}$. So if k is 3, 4 or 5 we get a spherical tiling; if $k = 6$ it’s a plane tiling; if k is 7 or higher it’s a hyperbolic tiling.
Thank you!