Eye of the Artist

William Ayliffe
Gresham College
30th January 2013
Latticed window in Lacock Abbey in 1835 by Talbot
a print from the oldest photographic negative in existence
Sforza Hours

Book of Hours: collection of Christian prayers for recitation at different times, ‘hours’, of the day.

For individual use at home: Simplified versions of the eight periods of daily prayer observed by monks and nuns: matins AM to compline at night.

The Sforza Hours decorations painted in two episodes.

Giovan Pietro Birago: Milan court painter, around 1490 for Bona of Savoy, widow of murdered Galeazzo Sforza.

The last of his full-page miniatures appears in the Office of the Dead. The Virgin, awaits death. St Peter, administers the last rites. He wears glasses to read from the prayer book as he sprinkles holy water. The kneeling apostle also uses glasses to read.

Second part of the book was stolen completed 1517-1520, for Bona’s heir Margaret of Austria, Regent of the Netherlands, by Gerard Horenbout.
Carlo Dolci

1674
At Dulwich exhibition 2007
Quevedo (1580 – 1645)

Francisco de Quevedo y Villegas, R. Ximeno Madrid, Instituto Valencia de Don Juan

nobleman, politician, poet and writer of the Baroque era.

Style conceptismo. rapid rhythm, simple vocabulary, witty wordplay rather than complicated vocabulary.

Ayer se fue, mañana no ha llegado,
Hoy se está yendo sin parar un punto;
Soy un fue, y un seré y un es cansado

Intellectually gifted, a club foot, obesity, and myopia.

Since he always wore pince-nez, his name, *quevedos*, came to mean "pince-nez" in the Spanish.
Retinal Image is blurred

Imperfect optics cause aberrations
Spherical
Chromatic
Worse as pupil dilates (nighttime)

Imperfect image may compensate for chromatic blur. Controversial.

When eye is focused for mid spectrum the blue light is not focused and cannot contribute to image causing blur.

(Yellow pigment in macula, less blue cones. However monochromatic blur much larger.)
Eye of the artist

The yellowing of our lens with age does contribute to our inability to distinguish black, blue, and brown in dim lighting, but the dim lighting is probably a bigger factor.

The yellowing of our lens means that less blue light gets through to our retinas, but dim incandescent bulbs also contain very little blue light.

The lack of blue light to respond to is what causes these particular difficulties with dark colors.
Pair of spectacles, the snuff box, magnifying glass and card case all from Maria Tanner who helped clean Turner’s studio on Queen Anne Street in Chelsea. Maria Tanner was a friend of the painter’s housekeeper, Hannah Danby, and the two women lived together in Turner’s house after his death.

Made by Benz.

The case is later 19thC from the optician Stanley Pearce of Wardour Street.

-2.5D? Cataract myopia

Another 2 pairs preserved by Ruskin, the artist’s executor, presented to Ashmolean museum in Oxford.

+3 and +4; used for close work.
1794: **Thomas Young** mentions his visual defect to the instrument maker William Carey who replies that many people were obliged to tilt a concave lens to see clearly.

Sir George Airy had a higher astigmatism

Whilst a student at Cambridge, he had noticed that images of circles formed elliptical images in his left eye. Developed cylindrical lens to correct the defect.

Paper read Feb 1825 before the Cambridge Philosophical Society. **Whewell** master of Trinity suggested the term “astigmatism”.

1825: Fuller of Ipswich produces astigmatic lenses.
El Greco

Doménikos Theotokópoulos, (1541 – 7 April 1614)

elongated figures

Astigmatism distorts in one direction

El Greco’s elongated distortions did not simply occur in one direction as would be expected with astigmatism; while most of his human bodies are stretched vertically, the fingers are stretched horizontally.

Stylistic: uniting Byzantine traditions with those of Western painting precursor of Expressionism and Cubism

The Opening of the Fifth Seal (The Vision of St John), 1608-14, Metropolitan Museum of Art

Saint Martin and the Beggar; 1599: Chicago
Symposium scene in the Tomb of the Diver at Paestum, Campania c 480 BC

Illusionistic art: EH Gombrich: (Art and illusion): Greek mimesis the imitation of nature; took 250 years to accomplish. The Renaissance took the same time period to eliminate falseness in pictures. Since no image looks like nature some argue that the proper discipline to investigate pictures is semiotics not psychology of perception.

Zeuxis and Parrhasius (of Ephesus and later Athens)

Pliny the Elder *Naturalis Historia* describes a contest to determine which of the two was the greater artist. When Zeuxis unveiled his painting of grapes, birds flew down from the sky to peck at them. Zeuxis then asked Parrhasius to pull aside the curtain from his painting, 'I have deceived the birds, but Parrhasius has deceived Zeuxis

Zeuxis b Heraclea c464 BC arrogant, not popular, even disliked by Aristotle. A client ordered a painting of Aphrodite and requesting herself be used as his model. After viewing the completed painting of the old crone he laughed to a paroxysm and died.
THANK YOU
Centre-surround

In real world a wide range of luminance
Cannot be reproduced by pigments.

Photos and paintings cannot do this

Artist needs to compensate for fact that pigments not available that reflect range of luminances in real world.

Centre-surround makes us respond to abrupt change
We don’t need to code for 1,000’s of luminance steps
Just where things are locally different from the background

do this by gradual changes in background stimulating an opposite shift in the foreground.
Shading
Seurat:
Constructing the visual scene

V1

V2

V4

V5

Colour

Visual Acuity

Form

motion

Stereo

depth

P-cells

M-cells

Complex cells

Simple cells
two-streams hypothesis

model of the neural processing of vision.

humans possess two distinct visual systems.
Segregation begins in retina
Large & Small GCs
Relay in Thalamus
visual information passes on from occipital lobe striate cortex, in two pathways.

dorsal stream ("where/how pathway")
Travels to parietal lobe
processing the objects spatial location related to viewer.

ventral stream ("what pathway")
travels to the temporal lobe
object identification, colour and recognition.

1992: David Milner and Melvyn A. Goodale

WHERE: older.
Motion
Space,
Position
Depth
3D
Figure/ground
Overall organisation of scene

WHAT: primates
Form System:
uses colour and luminance to
determine shape
Colour system:
low resolution, colour of surfaces

interaction between vision-for-action and vision-for-perception.
Mach bands

Optical illusion: areas of different luminance separated by a gradient. Perceive 2 narrow bands of different brightnesses either side of the gradient not present in the original image. Originally explained by centre surround (lateral inhibition) of retina.

Dale Purves: Because of the properties of reflected light, curved surfaces typically exhibit “highlights” and “lowlights,” which are essentially the same as Mach Bands. Curved surfaces more likely to exist in nature than gradients on paper.
Arcturus II, 1966: Victor Vasarely
The brighter bands at 45 and 135 degrees are illusory
Illusionist art in ancient world

1st BCE, walls were decorated with architectural features and trompe l'oeil.
Architectural style, 'illusionism'

The picture plane placed behind wall by using painted architecture
Achieved by shadows
Mach bands give realistic impression of changes in illuminance.

Counteracts claustrophobic effect of small, windowless rooms in Roman houses.

Still life in the Second style. Fresco from the home of Julia Felix, Pompeii
The Arnolfini Portrait 1434 Jan van Eyck.
Giovanni di Nicolao Arnolfini his first wife
Costanza Trenta, who had died by February
1433, in their home at Bruges
Illusion of curved edge by gradient and dark
and bright bands
Under some circumstances targets surrounded by areas of higher luminance can be made to look brighter!

Wilhelm von Bezold (1837–1907)
White’s illusion

Opposite of SBC
Cornsweet edge: opposing gradients make identical regions look differently bright.

Opposite of SBC

Lotto argues that past experience tells us what is the most likely thing the stimulus is consistent with.

It could be painted gradients on flat paper but in real life surfaces having different reflectance under different lighting more likely eg A cube so 2 surfaces with a gradient should look differently bright.

Things that are the same need to look the same under different lighting to be useful.
The World Through Blunted Sight:
Inquiry into the Influence of Defective
Vision on Art and Character: Patrick
Trevor-Roper 1997

Vision and Art: Margaret Livingstone

David Hubel

The eye of the Artist: Michael Marmor,
James Ravin

Tony Harris
Rafael Pepper
Wikipedia
The window appears very bright
Sunlight reflectance from print
Room light
In reality the pigment reflects only 15x more light than the dark shadow area.

Margaret Livingstone
Use of luminance gradients in art

Hsu Tao-ning:
Evening Songs of the Fishermen (970-1052)
painting while selling medicine in K'ai-feng, the capital of the Sung dynasty;

Lightness and dark portrayed by shading not solid colours
Gradients outline mountains giving illusion of darkness. Actually same as river.
(Michael Marmour)
“What would have become of us if Kahnweiler hadn’t had a business sense?”
A second luminance channel for night vision

natural illumination at night comes primarily from the Moon, the Sun (indirectly), starlight, zodiacal light and airglow.
The Moon poor reflector: The Moon's albedo is 0.136, only 13.6% of sunlight incident on the Moon is reflected.
Full moon 500,000x dimmer than the sun.
How do we see? Rods

moonlight is simply reddish sunlight
Reflected from a surface with an albedo larger at longer wavelengths.
But painters use blue for night scenes.
Surprising: moonlight is redder than sun-light;
Rods are more sensitive to light and shorter wavelengths than cones
Less sensitive to red
Only one type of rod so cannot generate signals for comparison by GC's to generate colour information.
Purkinje shift: As lighting dims the cones start to phase out (not enough light to stimulate them fully).
The reds become darker and the blues brighter
Affects how paintings are viewed and created.
Très Riches Heures:
book of prayers to be said at canonical hours
created for John, Duke of Berry.

Paul de Limbourg and his two brothers, Jean and Herman 1412-16. After their deaths the book was completed by an intermediate painter and later Jean Colombe between 1485 and 1489.

Black and grey symbolise, fear, superstitions, evil, death, sorrow.

The light source in religious paintings symbolises divinity (guidance, hope).
The color of moonlight, particularly near full moon, appears bluish to the human eye compared to most artificial light sources.

the light is not actually blue
Receptors see short wavelengths as brighter
Cannot see red things very well at all

although moonlight is often referred to as "silvery"
it has no inherent silvery quality.

Dovedale by Moonlight: Joseph Wright of Derby
Non colour cues to indicate night time

Ma Lin, Waiting for Guests by Lamplight, circa 1250 (China, Song Dynasty)
Turner first oil painting
Royal Academy 1796,
cold light of the moon
Warm glow of the fishermen's lantern
Poor detail in peripheral field of vision

Fishermen at Sea. A nocturnal moonlit scene,
differences between rod and cone vision
change in the quality of white, silky sheen;
reduction in spatial resolution, reduces details;
edges are still seen
Reduction of depth perception

The shift to scotopic vision produces a pale grey; greenish-blue scene
Shapes with lighter value characterized by outline
Dark shapes lose internal (low contrast) detail
very small things cannot be discriminated
Detection of rapid movement reduced

Archip Kuindshi, Night on the Dnieper River 1882.
Line detectors
Visual cortical cells respond to orientation

Visual cortex organised as columns.
Info from RE separate column from LE.
Two major classes of cells simple and the complex.
Each cell responds to particular orientation
For any spatial location representation of various orientations.
respond best to **moving** line
Flashing a stationary line on and off evokes weak responses

Stereopsis (depth perception)
Disparity between the two sets of information allows the brain to construct a realistic impression of depth.

Size: near fovea 0.25°. (moon 0.52° 150µm)
In periphery 1° (288µm)
Activation of ON cells elicits the perception of lightness,
activation of OFF cells elicits the perception of darkness.
The link between the eye and objects: Light

Immersed in a sea of electromagnetic radiation waves interact with each other and objects to present a cacophony of electromagnetic signals (Feynman).

Reflected off opaque and transmitted through transparent material.
Skylight.

Through a tiny aperture the eye collects a small fraction of the energy.

Some of this (400-700nm) is used to create the sensation of light.
Light is like any EMR: Special to us because we have receptors

~10% of photons are captured, 3% reflected, rest miss the target and absorbed by non-seeing structures.
Illusion of lines

Domenico Ghirlandaio (c 1448-1494)
Florence's most successful workshop
Michelangelo attended aged 12 in 1487

Frescoes for the choir chapel in the church of Santa Maria Novella illustrating life of the Virgin and St John the Baptist,

study for The Birth of the Virgin

principal aim is the arrangement of the figures.
blank ovals for heads and blobs as hands –
technique also used by Michelangelo in some of his preliminary sketches.

The Birth of the Virgin: Domenico Ghirlandaio:
pen and brown ink: 1487 BM
Michelangelo di Lodovico Buonarroti Simoni 1475-1564

Raphael died 1520, claimed to be entirely self-taught, Ghirlandaio's influence dominates the Roman art for 40 yrs.

Mostly drawings of male body never intended for public display. Destroyed a large number before he death.

1508, Pope Julius II commissioned Michelangelo to paint the Sistine chapel ceiling in the Vatican. Most beautiful are the ignudi - the seated nudes holding swags which keep the bronze medallions upright.
Pablo Picasso (1881–1973)

one of greatest draftsmen of the 20th century
particular attachment to a dachshund called Lump who became famous for eating a Picasso piece
Walter Ehrenstein (1941).
brightness enhancement at the centre
Objects in the natural environment are often partially obscured.
Using a statistical based problem solving mechanism the brain assumes that the lines are continuous behind the disc.

visual system is filling in the field that is receiving no information.
Illusory contours occur from activity of “dedicated” mechanisms critical for survival have to be fast and efficient

more cells in V2 than V1 are excited by the Kanizsa-square
Acuity

Poussin's *Death of Germanicus*, 1628
Minneapolis Institute of Arts;
Higher resolution of the face
Less detail peripherally

'Woman with Crossed Arms' by Dante Gabriel Rosetti, at Wightwick Manor.
Jean-Auguste-Dominique Ingres,

Mrs. Charles Badham,
née Margaret Campbell, 1816,
National Gallery of Art, Washington,
DC
Peripheral vision

Peripheral vision is qualitatively different from foveal vision in some rather strange way:

One either sees something black of indetermined form or one sees two points (Aubert & Foerster, 1857)

Things are less distinct as they lie farther from my gaze. It is not as if these things go out of focus—but rather it’s as if somehow they lose the quality of form” (Lettvin, 1976)

In peripheral vision, the recognition of detail is severely impeded by patterns or contours that are nearby, crowding

Peripheral vision and pattern recognition: A review: Hans Strasburger JOV 2011
A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision S. M. Palmer, M. G. P. Rosa: EJN 2006
Peripheral vision

Ehlers: normal reading and acuity charts, visual difficulties recognizing letters among other letters in eccentric vision; independent of angular letter size. Density of receptors decreases toward edges. Peripheral vision is good at detecting motion. More important than central vision for scene recognition.

Wired up differently
Representation of the far periphery in MT receives specific connections from V1; Medial Superior Temporal and retrosplenial cortex.
No input from other extra-striate areas
Skylight: scattering of short wavelength light by air molecules. Though much dimmer than the sun's disk, sky is x100,000 larger.

Illuminance contribution of skylight is significant: why we can read in shade.

Different surfaces absorb (and reflect) light in different parts of the spectrum due to their chemical composition.

The eye uses chemicals which absorb better in some wavelengths to trap light.

Light of equal energy but different wavelength appear differently bright.

A lumen of light, whatever its wavelength (colour), appears equally bright to the human eye.

<table>
<thead>
<tr>
<th>Wavelength, nm</th>
<th>Lumens/watt</th>
<th>Watts/lumens</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>0.27</td>
<td>3.704</td>
</tr>
<tr>
<td>450</td>
<td>26</td>
<td>0.038</td>
</tr>
<tr>
<td>500</td>
<td>220</td>
<td>0.005</td>
</tr>
<tr>
<td>550</td>
<td>680</td>
<td>0.001</td>
</tr>
<tr>
<td>600</td>
<td>430</td>
<td>0.002</td>
</tr>
<tr>
<td>650</td>
<td>73</td>
<td>0.014</td>
</tr>
<tr>
<td>700</td>
<td>2.8</td>
<td>0.357</td>
</tr>
</tbody>
</table>
Newton:
Orange remained orange
spectral "orange" light was just as primary and simple as "red" or "green" light, because none of these hues by itself could be altered or separated by refraction into any other colors.

refuted the color theory inherited from Aristotle, in which "light" and "dark" were the two antagonistic primitives that mysteriously combined, like an oil slick, to create colour.

the stimulus is perceived as color only through attributes of mind: "*The Rays to speak properly are not coloured*

Light of 640nm looks red
0.0000004” shorter (100nm)
540nm looks green
Pseudodionysian light metaphysics

Abbot Suger, friend of Louis VI and Regent to his son, reconstructed the choir of St. Denis, Benedictine Priory, 1140-44. Glazed the upper Choir “Nova Lux”

Used stained glass with much expensive blue.

Pseudo-Dionysius (Denys) C5th anonymous theologian. Ascribed to Athenian Convert of St. Paul Acts 17:34 D. the Areopagite

Neoplatonic early medieval: Light a direct emanation from the divine

The primary light Lux is substance distinguished from light of heavenly bodies Lumen which flows from it

Lux = Divinity:

Gift of Byzantine **Michael the Stammerer** to Louis the Pious at Compeigne 827

Charles the Bald comissions **John Scotus** to translate

“Quid Distante inter Sottum et Scottum”

Art judged by its physical as well as the metaphysical aspects of the raw materials.

Suger quotes Ovid

Materium superbat opus
The workmanship surpassed the material

Suger presenting glass window
Suger at foot of Virgin in infant of Christ window
Discovered a region of new colours that did not appear in a prismatic spectrum.

Extra-spectral hues
"violet" (purple),
"red violet" (magenta),
"violet red" (carmine)
"red" (unique red)
appeared by overlapping the "orange red" and "blue violet" ends of two separate spectra

known in nature: gems flowers
New color model: "red" and "violet" ends of the spectrum joined to create a hue circle.
only applies to light mixtures.

Pigment mixtures do not depend on the quantities of pigments in a mixture, but on "the quantities of the Lights reflected from them."
two hues on opposite sides of the hue circle could create a near neutral color if mixed in the right proportions:

origin of the idea of complementary colors

Newton's parallel experiments with pigments and lights confused C18th century "color theorists" into thinking that pigments and lights mix in the same way,

Opticks uses the circle to explain colour mixtures, a tool for mathematical analysis of hues in a color mixture.

linkage between physical quantities and sensory qualities principle of psychophysics.

all color arises in mixtures of light, whether the light comes from a prism or reflected qualities of powders.

Colours appear from surfaces painted with pigments because they reflect some spectral colours and absorb others.

C17th century dyer's lore that three primary colored paints or dyes defined colour mixing.

Ancient theory is partly correct. Colour is created by the partial "darkening" of "white" light by matter. Aristotelian theory not specific about the mixture process that allowed just two primitives to produce all colours

Colours result because some of "primary" colors of light are absorbed or darkened more than others
pigments

Ultramarine blue

Windsor Green

Cadmium Red
The trouble with purple

Two ways to get a reddish blue

Violet

Light at 460nm λ looks blue
440nm reddish blue (Violet)
The LW cone has a secondary peak in blue end

Short λ therefore activates both LW and SW cones.

Purple

Cannot be generated by a single wavelength of light

Can be made by mixing different colours

Purple objects reflect blue and red
They absorb specifically in a narrow range of λ green yellow
Such substances are rare and expensive
Non traditional colours

Fluorescent “dayGlo”
Absorb and re-emit at longer wavelength
Conventional colour reflects a maximum of 90% of a colour present in the spectrum;
Fluorescent color can reflect up to 200% to 300%.
Other ways of generating colour

Structural colours

1665: *Micrographia*, Robert Hooke
"fantastical" (structural, not pigment)
colours of the Peacock's feathers
Butterfly wings
Beetles
Oil slicks

1634: Sir Theodore de Mayerne, physician to Charles I, observed that the ‘eyes’ on the wings of the peacock butterfly "shine curiously like stars, and do cast about them sparks of the colour of the Rainbow
Some wavelengths reflected out of phase so cancel out
The complementary colour is seen
CD’s
Damien Hirst
Butterflies

"I Am Become Death, Shatterer of Worlds" –

Hindu scripture the Bhagavad Gita quoted by J. Robert Oppenheimer after watching the test detonation of the first atomic bomb

“wanted to use real butterflies and not just pictures of butterflies, because I wanted it to shimmer when the light catches it like only real butterflies do.”

Blue light has a wavelength range from 400 to 480 nm.
The slits in the scales of the Morpho are 200 nm apart half of the wavelength of blue, undergoes constructive interference.
Biology is interested in surfaces and the light reflected from them.

React to local changes in light.

Shadows
Edges
Movement
How far away
3D shape
Object from background
Overall organisation of the visual scene.

Object recognition
Colour
What is brown?

Brown is dark, low-chroma (desaturated), orange. Orange light perceived in an environment that makes it look dark and less saturated appears brown.

A brighter surround is such an environment.

Brown is a special sort of colour perception that needs relationship to its environment to be perceived.

That's why you can't buy a brown light bulb!"

The brown and orange discs are identical, in identical gray surrounds, Perceived colour categories depend on what white they are compared to.

Non spectral colours:
Left: 250 units of red and 250 units of green.
right 50 units of red and 50 units of green.

olive is a very dark yellow.

The colour of a specific wavelength can change according to context. ‘X’ appears to be different when set against the two different backgrounds same spectral reflectance (Albers J. 1975).
Goethe Zur Farbenlehre ("On Chromatics")

Colour theory emphasizing antagonism between complementary colours, including light and dark.
Aristotelian and medieval optics colour results when light comingles with dark.
Sunlight the "Ulicht" or original light
Colours arise by the "shadowing" or darkening of homogeneous light; Cannot reassemble light from darkness; not seven; only two "primary" colors — yellow and blue — that emerge first from the light and dark mixture.
Goethe's view, Newton erred because he mistook a secondary phenomenon for a primordial cause:
Opticks (1704) contained both factual and moral errors; old nest of rats and owls" (Unmasking Newton's Theory)

Also accuses Newton of ignoring perception in favor of imaginary abstractions
mathematics and physics "a scientific coffin".

Hoped to gain scientific support for the Aristotelian dogma.

Goethe correct: simultaneous contrast is a perceptual phenomenon: "Every decided colour does a certain violence to the eye and forces it to opposition."

1785: party in Weimar 1785, Goethe talks on his theory of primary colours with revolutionary Francisco de Miranda. Inspired flag of Gran Colombia,

Light spectrum, from Theory of Colours. Goethe observed that with a prism, colour arises at light-dark edges, and the spectrum occurs where these coloured edges overlap.
color as arising from the dynamic interplay of light and darkness through the mediation of a turbid medium.
Turner

Colour used to take the place of form
Main colors used by Turner were red, yellow, and blue

Goethe’s theory, the creation of color is dependent on the distribution of dark and light reflecting through a transparent object
Each colour a unique combination of light and dark
Yellow the first colour transmitted from light. yellow undergoes a transition of light becoming darker when light reaches its peak, just as the sun shines in the sky, it develops to a white light that is colorless. But the light deepens and evolves the yellow into an orange and then finally to a ruby red
Turner illustrates the process of yellow transitioning into phases of light
The edges get darker.

Light and Colour (Goethe's Theory) – The Morning after the Deluge – Moses Writing the Book of Genesis
Three types of cones
extend the range of visible wavelengths;
also allow λ discrimination “colour vision”

L and M cones produce nearly all the information
acquired by the retina
fovea has 50% of L and M cones in the retina
Dominant in colour vision.
A single photon at a cone's peak sensitivity response
equivalent to 10,000 or more photons at low sensitivity
ends of the curve.
Eyes most sensitive to λ in middle of spectrum: yellows
and greens are the most luminous colours in spectrum.
Sensitivities of L and M cones different red to yellow
range
but similar through the "blue green" to "blue violet"
parts of the spectrum.
S cones break the tie in λ below ~525 nm

<table>
<thead>
<tr>
<th>photons</th>
<th>w/length</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>650 red</td>
<td>+</td>
</tr>
<tr>
<td>200</td>
<td>650 red</td>
<td>++</td>
</tr>
<tr>
<td>100</td>
<td>625nm orange</td>
<td>+++</td>
</tr>
</tbody>
</table>

human photo-pigment absorption curves curves
normalized to equal peak absorptance (1.0); number of
photoreceptors measured at base of curve; Dartnall,
Bowmaker & Mollon (1983)

population weighted linear cone sensitivity functions the Stockman &
Sharpe (2000) 10° quantal cone fundamentals on a linear vertical scale,
scaled to reflect L, M and S cone proportions in the retina (1.0 = total
cumulative response by all three cones)
Trichromatic theory

ambiguity in the response of individual photoreceptors to light
A single cone cannot distinguish changes in wavelength (hue) from changes in radiance (intensity).
equally bright "green" and "red" λ,
Or a "green" λ bright and dim, produces identical change in the output of an L cone.

What cones cannot do individually they achieve together.
Colour defined by the combined response of all three cone types.

james clerk maxwell's "diagram of colours" (1857); the proportions of the additive primaries red, green, and blue violet (pigments vermilion, emerald green, and ultramarine blue) always add up to 1; the approximate location of cerulean blue is shown as an example
1850's quantitative study of stimulus and sensation: Psychophysics.
Weber (1795-1878), Gustav Fechner (1801-1887), Wilhelm Wundt (1832-1920),

Ewald Hering (1834-1918)
1874: defense of subjective colour and antagonism, Zur Lehre vom Lichtsinne (On a Theory of the Light Sense)
perceptual primacy of four Urfarben or "primordial colors", red, yellow, green and blue. 470, 500, 570 and 700 nm
produced by visual substances or processes located somewhere in the visual system outside the retina.
organized as antagonistic or opponent processes.
Thalamic relay

When we look at lights or reflecting surfaces of objects, two of the features we notice are their colour and brightness.

The chromatic channel subtractive mechanisms; Small retinal ganglion cells in Thalamus have receptive fields responsive to wavelength: Colour selective; inhibited by other wavelengths.

Type 1: Red, green and blue centre
Type 2: Colour opponent
Red on green off
Green on red off
Blue on yellow off
spectrally opponent channel.

Luminance channel is via the magnocellular pathways
Type 3 cells colour blind
Respond to change in local light

M-cells
George Seurat

The colours of green and violet are in fact almost complementary and would if mixed as pigments produced a drab and dirty hue
Juxtaposed they produce a fine pearly grey”

They claimed the vibrancy was due to “optical mixing” The simultaneous viewing of adjacent patches of paint of different colours.

Margaret Livingstone argues that this cannot be the case

The Papal Palace, Avignon.
1900, George Seurat. Musée d'Orsay.
Luminance and Colour
Madame Paul-Sigisbert Moitessier, Seated 1856; Jean Auguste Dominique Ingres
National Gallery
Perfect treatment of luminance: Photographic quality
Gulf racing,
Steve McQueen, the Ford GT, the Porsche 917, “Cool”

Grady Davis, Executive V.P. of Gulf, when Gulf became the sponsor of the J.W. Automotive team of GT.40s. Specified powder blue and orange, corporate colors of the Wilshire Oil Company, from California.

Complimentary on the color wheel, the powder blue is of a lighter value than the orange.

the colours they chose had more optical vibrancy than the darker navy blue used in the corporate logo. phenomenon is called “Equiluminant Colors”.

When our eyes encounter colors that are Equiluminant, we have a hard time assigning them positions, so the color tends to vibrate or move slightly

Wadefjohnston1962 Kansas Qty
Luminance

Reflected light from window appears brighter than the reality of the light the pigment reflects.
Colour system responds to borders

No neural activity in centre of object

That is filled in perceptually.
Water colour illusion

The separation between the colour and figure effects indicates parallel but related processes. Boundary and surface features are treated differently by the information streams of the visual system. Firstly deciding what is the boundary of an object seen by each eye, then using this to fill in the surface colour, texture, etc.

More cells in V2 than V1 are excited by the Kanizsa-square. Neurons in V2 respond with different strength to the same contrast border, depending on the side of the figure to which the border belongs.

The colour tint of the watercolor illusion also explained by cortical representation of borders (von der Heydt & Pierson, 2006).
The primary visual cortex fills in color

Spreading effect of colour inclusions in repetitive structures like a neon tube. Luminous colour appears to fill the empty spaces in between lines. The illusion of a semi-transparent structure is created at the front.

Even if the light of the inlays is insufficient to be perceived, our eyes - which were developed some 300 million years ago - may still be able to discern something thanks to this heightening of perception.

Complex effect must either be an anomaly of human evolution or have a deeper meaning. It might be a remnant of the development of sight under water: perception of transparent bodies located in front of filigree structures may have played a role.

Yuka Sasaki and Takeo Watanabe
Role of what system

Colour part of the what system has large receptive fields
Low resolution

Matisse small rumanian blouse

Henri Matisse. Large Red Interior. 1848
1905, exhibited with Albert Marquet, Maurice de Vlaminck, Kees van Dongen, Charles Camoin, and Jean Puy in a room at the Salon d'Automne containing a renaissance statue. clashing hues, not related to subject's natural colours. Matisse showed Open Window and Woman with the Hat

Critic Louis Vauxcelles described the work with the phrase "Donatello parmi les fauves!" (wild beasts)

Matisse discovered that he could use any hue as long as the luminance was appropriate. Despite the unrealistic colours the shape of the face looks fine, because the luminances are appropriate.
Analysis of depth
Analysis of distance

Light rays do not tell us how far they have travelled; so how can we determine depth or distance from whence they came?

Images are flat but contain lots of information about depth.

- Perspective: shape on the retina is ambiguous. Perspective can suggest 3D if we make assumptions.
- Texture gradients: Cells in parietal lobe
- Shape from shading: Only works if we know where light source is. Assumption from above. Cells in V4 respond to shadow below. Rotate 90° no response
- Interruption of lines (occlusion). Tilted line detectors in V1
- Upward sloping ground
- Size constancy: Psychologically expand perception of the smaller image of a distant object.
- Atmospheric perspective

Identical 2D shadows can be generated by completely different 3D objects. We cannot reconstruct the original object on the basis of the image alone. We could make a guess if we knew the angle of the lighting. More accurate prediction based on likelihood of which shape, acute or obtuse, in which context.
A Philosopher Giving that Lecture on the Orrery, (1766) by Joseph Wright of Derby

a public lecture about a model solar system: The Orrery Lamp is put in place of the Sun, the partially illuminated faces represent the phases of the moon, full (the children) to gibbous (left) to new (man seen from behind)
Other traditions

China

- **Mo Ti** or **Mozi** (5th BC): Engineer founded school of thought, Mohism, flourished during the Warring States era (479-221 BC). Understood principles of pin hole camera.

- **Shen Kuo** (1031-1095 AD) *Mengxi bitan Dream Pool Essays* of 1088, Shen Kuo experimented with the camera obscura.

- **Zhāng Zé duān** 张择端 (1085-1145 AD): Painting of daily life of the Song Dynasty capital Kaifeng geometrically accurate. Techniques: shading and foreshortening, later abandoned and not developed further.

- 1606: Christian convert **Xu Guang-qì** translates Euclid’s elements

- 1617 Emperor Wanli evicts Jesuits
Size constancy

Information about distance is derived from various cues: convergence of the eyes, geometrical perspective (many illusion figures having converging lines), and the graded texture and falling of sharpness ('aerial perspective').

Any cue to distance can set the compensatory size-scaling mechanism when mis-set causes size or shape distortion illusion.

The further ball appears to be bigger. Is this a failing of the visual system? Visual system versatile enough to tell us about real size not retinal size.

In the real world the top ball would be further away. It has the same retinal image size so therefore must be bigger. The 2 balls subtend the exact same angle but are perceived to be at different distances. The brain therefore tells us (generates a percept) that the upper ball is larger.
Analysis of distance

Motion parallax
Not always a good thing to bring attention to oneself
Brain has some purpose built analogue computers to judge range.

Binocular parallax
Compares the 2 images from each eye.
A shift of only a few 1,000ths of a mm changes light on a cone by ~5%. This causes it to fire.
Upstream individual cells which have receptive fields in slightly different places can detect depth.
Random dot stereogram: Centre dots moved slightly in one eye’s image.
Neighbouring points are same distance but now have no correlation in brightness
Enables the parallax computers in the brain to find them. They have large receptive fields to make job easier, average light over large areas.
Useful to detect moths on bark
Stereopsis

3D
Despite perspective
Makes us not believe picture
Depth perception

3D objects reflect different amounts of light
Changes in luminance (shading)
Depth cue

Luminance contrast is enough to give a very vivid impression of depth.

Colour blind channel
Shape from shading

Orientation of objects

1. To guide movements. Learns quickly (inverted prism experiment, learned to ride bike)

2. To interpret the shape of objects and the orientation with respect to gravity
 - Learns slowly.
 - Difficult to recognise upside down faces.

Two circuits in the brain. One wired to control of movement the other wired to recognition of shapes (and faces)

Our visual systems evolved with one major source of light and that came from the sky above.
Simple inversion of shaded images can dramatically change our perception of the object. Buttons become dimples
Painting depth

Chiaroscuro
light and shade

Modeling of volume by depicting light and shade and their contrast.
Strengthens an illusion of depth on a 2D surface. Important topic in Renaissance.

The Rest on the Flight into Egypt 1510 Gerard David
Camouflage

The brain has to interpret the patterns formed by images in eye. Thus needs to distinguish objects from their background. Fooling this system is how camouflage works.

India 1848. Khaki-colored uniforms: Dust coloured. Used officially by British army during Abyssinian campaign 1867-68, Indian troops sent to Ethiopia under general Sir Robert Napier to release British captives from King Theodore.

Gertrude Stein: *The Autobiography of Alice B. Toklas.* WW1, walking with Pablo Picasso on Bvd Raspail, "All of a sudden down the street came some big cannon, the first any of us had seen painted, that is camouflaged. Pablo stopped, he was spellbound. 'C'est nous qui avons fait ça,'

Norman Wilkinson British artist 1917: U-boat threat: a ship cannot be hidden, so prevent it from being hit. Recommended ships painted in high contrast, asymmetric shapes, *dazzle painting*

Used on speed trap cameras to fool which way pointing Austria.

Roy R. Behrens

Dazzle-ships in Dry-dock at Liverpool, Edward Wadsworth, 1919
Bacon c1220-1292

Visual realism.
Images of saints were to stimulate thought of the deeds.
Icons Not realistic.

religion should be represented as realistically as possible.

Perspectival drawing gives a 3-D realism, bringing saints to life on church walls.

New Basilica of St. Francis, at Assisi, perspective paintings.
The most popular tourist attractions of its age.

150yrs before Bruneleschi in Florence
Perspective

Rendering a three-dimensional world onto two dimensions
C14th, Alhazen's *Book of Optics*
Italian translation, Deli Aspecti.
Quoted by Lorenzo Ghiberti:
Bronze doors of Baptistry

Linear perspective, Brunelleschi 1413.
Brunelleschi is famous for two panel paintings illustrating geometric optical linear perspective made in the early 1400s

Giotto and Lorenzetti a century earlier

Ambrogio Lorenzetti annunciation-1344
Pinacoteca Nazionale, Siena
Intensity of light gives sensation of relative lightness and darkness. The sensation of brightness is not proportional to intensity of the light!

VISION: information processing not image transmission

Retinal Ganglion cells perform calculations on the signals generated by photoreceptors.

An on-center cell: increase rate with small spot shone in the center of the receptive field.

An off-center cell: does the opposite: a surround that gave on responses.

In nature, dark objects are as common as light ones. Sensitive to discontinuities in pattern of light. Only encodes those parts of scene where there are changes (JPEG)
Illusions of depth in art

trompe l’oeil
occur in the paintings of architectural elements that surround the frescos in Medieval churches.

Masacchio: the Trinity, Fresco
Dominican church of Santa Maria Novella.
Hidden by Vasari’s renovations commissioned by Cosimo I duke of Florence rediscovered when Vasari’s altar was dismantled during renovations in 1860 illusion of a barrel vault ceiling behind the figure of God the wall behind the work seem to disappear so that the painting becomes an extension of the space we are in.

Died 1428 aged 26
Perspective
visual processes which judge depth and distance assume that the arrow point configuration corresponds to a closer object and the fletch configuration corresponds to an object which is far away.

The ambiguity solving mechanisms assumes these configurations are 90° angles; speeds up the interpretation, but gives rise to optical illusions in new situations.

Franz. Müller-Lyer 1889

By drawing lines that all slope up or down from corners, people get the impression of depth. Paintings use this to make illusion of perspective.
Two streams for visual processing: "where/what" or "action/perception"

Where pathway: spatial processing: parietal lobe.
- perception and interpretation of spatial relationships
- space, position,
- depth 3D,
- figure-ground
- motion
- overall organisation of the visual scene.
- accurate body image, and the learning of tasks involving coordination of the body in space.

What pathway: Well developed in primates: temporal lobe.
- Object identification, in detail and colour;
- recognising faces
- Interacts with attention and memory.
- Assesses significance of objects

A controversial simplification: Ungerleider and Mishkin
Analysis of motion

Photos and paintings cannot represent movement
We don’t see blur in moving objects. We also don’t see a series of frozen snapshots
The sense of movement is specific like smell.
Motion is computed directly from the retinal image
Motion detectors

Movement detector:
Present in retina of rabbit
Brain of monkeys

Some of the parallax detectors also respond to differences of movement between the 2 eyes. Effect of object moving in third dimension. (pendulum)

Keinoscope
Cartoon
cinema

Movement detector neuron
Fires if signal arrives at same time
Movement

Giacomo Balla: Futurist painter and teacher, movement, which they saw as symbolic of their commitment to the dynamic forward thrust of the twentieth century. 1909 he interested in depiction of light, movement and speed as outlined by the Futurists primary objective to depict 1912 to early 1913 Giacomo Balla turned from a depiction of the splintering of light to the exploration of movement and, more specifically, the speed of racing automobiles suggesting the alteration of landscape by the passage of a car through the atmosphere crisscross motifs, representing sound, and a multiplication of the number of lines and planes.
Chauvet Cave contains the oldest paintings on record (some of them 32,000 years old)
rotation of the “wheels” occurs in relation to eye movements. On steady fixation the effect vanishes. asymmetric luminance steps are required which triggers motion detectors.

fMRI: significant activation in a motion-sensitive area in the human extrastriate visual cortex during the observation of the figure. Enhanced by eye movements.

Akiyoshi Kitaoka, Professor, Department of Psychology, Ritsumeikan University, Kyoto, Japan
Simultaneous brightness contrast

When visual signal leaves the eye it has been stripped of amount illumination information.
Replaced difference map, where light meets dark.
So surfaces reflecting same amount of light can appear differently bright!
The apparent brightness of a surface, depends both on its own luminance and the luminance of the areas surrounding it.

Context influences perceptions, the surround affects perception of that object.
Motion illusions

Repeated asymmetric patterns cause the visual system to infer motion.

Sigmund Exner, postulated specialised micro-circuits in the periphery of our vision for detecting movement.

Gregory & Heard (1983) first to describe that asymmetric luminance steps cause illusory movement.

Fraser and Wilcox's (1979) peripheral drift illusion: Small involuntary eye movements during fixation play an important role.

Morgan: Exner face illusion (Pinna type)
Optical illusion art

artists such as Bridget Riley, 1931-
Croydon School of Art.
1965: Wm Seitz’s *The Responsive Eye*
Exhibited at MOMA NY brought
attention to op-art
National Gallery November 2011

Movement in
Ouchi

The Ouchi illusion is thought to arise from retinal motion signals, generated either by moving the image, or by small involuntary eye movements while viewing a static pattern (Spillmann et al 1993).
Figure background

Top-down processing: The mind creates meaning to perceptions and memories, using what we already know and believe.

Makes sense of the world even if the information misleading or partial. Normally enough information to construct a realistic model of the external world. Leaving out critical information creates illusions.

Ambiguous edges obscure figure and ground, which tend then to be grouped together. Basis of camouflage.

Once seen it can never be unseen again (meaningless to meaningful)
With age crystalline lens less elastic
Ciliary muscles unable to accommodate

Many when they wish to read hold the writing at a distance from their eyes so the image may enter they more easily and more sharply:
Dante Alighieri: Convivio BIII Ch9
Jan Van Eyck

La Madone au Chanoine Van der Paele (1434)
Did the ancients use lenses for optical purposes?

George Sines, "Precision in Engraving of Etruscan and Archaic Greek Gems", detailed statistical analysis of nine engraved Etruscan gems. spacings of hatchmarks:

Modern skilled machinist can achieve a precision \(~0.2\) mm with the unaided eye and with a simple magnifying glass \(~0.08\) mm.

The median spacing on the ancient gems was half this size \(0.048\) mm.

1854: Significant Roman period magnifying lens in the "House of the Engraver" on the Stabian Way in Pompeii.

Argues that skill and experience were enough. Perhaps myopia.

Roman Britain, 4th CAD Venus with Cupid (love) and the armour of Mars, common Roman iconography; Thetford hoard of late-Roman gold jewels 1979. Large carnelian removed from older jewelry & cut down for re-setting.
Medieval lenses

1268: Roger Bacon: *Opus Majus*:

"If anyone examine letters or other minute objects through the medium of crystal or glass or other transparent substance, if it be shaped like the lesser segment of a sphere, with the convex side toward the eye, he will see the letters far better and they will seem larger to him. For this reason such an instrument is useful to all persons and to those with weak eyes for they can see any letter, however small, if magnifier enough".

Sophisticated lens-making techniques 1,000 years ago.

Lens-shaped objects made of rock crystal (quartz) found in several Viking hoards on the island of Gotland, Sweden, 11/12th C.

imaging quality comparable to the modern aspheric lenses used, e.g., in today's projectors

The craftsmen used trial and error, since the maths to calculate the best form for a lens not yet discovered. possibly only a few craftsmen, perhaps a single person, in Byzantium or Eastern Europe

Schmidt et al,
(Optometry and vision scienc 1999).
Gospel according to Matthew,

Xristi autemgene Rationsicerat

"The birth of Christ took place thus."

Eadfrith. Lindesfarne.
First depiction of spectacles

1352 Tomaso da Modena, son of painter, Barisino Barisini.
Hired by Prior of S. Nicolo, Treviso. He wanted the general chapter of the Dominicans to move to Treviso

Friar Ugone de Provenza (Cardinal Hugh of Provence first Cardinal of the order). These rivet spectacles are the first pictorial representation of spectacles.

Hugh never wore specs; he died 20 years before they were invented but Tomaso thought a man of his age would have needed them.