
MVP - Spécifications fonctionnelles et techniques ORINOCO

SOMMAIRE

Architecture générale 1

Produits présentés 2

Planification​ de tests unitaires 2

Informations complémentaires 2

Types de données 3

Technologies utilisées 3

URL des API 4

Paramètres des API 4

Repository GitHub à cloner 5

Architecture générale

L’application web sera composée de 4 pages :

● une page de vue sous forme de liste, montrant tous les articles disponibles
à la vente ;

● une page “produit”, qui affiche de manière dynamique l'élément
sélectionné par l'utilisateur et lui permet de personnaliser le produit et de
l'ajouter à son panier ;

● une page “panier” contenant un résumé des produits dans le panier, le prix
total et un formulaire permettant de passer une commande. Les données
du formulaire doivent être correctes et bien formatées avant d'être
renvoyées au back-end. Par exemple, pas de texte dans les champs date ;

● une page de confirmation de commande, remerciant l'utilisateur pour sa
commande, et indiquant le prix total et l'identifiant de commande envoyé
par le serveur.

Produits présentés

Dans un premier temps, une seule catégorie de produits sera présentée.

Choix à faire entre les 3 propositions suivantes :

● ours en peluche faits à la main ;
● caméras vintage ;
● meubles en chêne.

Planification de tests unitaires
Planifiez une suite de tests unitaires pour couvrir au minimum 80 % de la base de
code pour le front-end. Vous devrez formaliser un plan pour atteindre ce résultat,
sans obligation d’écrire ces tests Expliquez quelles lignes seront testées, et quels
“test cases” seront envisagés.

Informations complémentaires
Pour le MVP, la personnalisation du produit ne sera pas fonctionnelle : la page
contenant un seul article aura un menu déroulant permettant à l'utilisateur de

choisir une option de personnalisation, mais celle-ci ne sera ni envoyée au serveur
ni reflétée dans la réponse du serveur.

Le code source devra être indenté et utiliser des commentaires. Il devra
également utiliser des fonctions globales.

Concernant l’API, des promesses devront être utilisées pour éviter les rappels.

Les inputs des utilisateurs doivent être validés avant l’envoi à l’API.

Types de données
Tous les produits possèdent les attributs suivants :

Chaque type de produit comporte un tableau contenant les strings
correspondant aux options de personnalisation :

Champ Type

id ObjectID

name string

price number

description string

imageUrl string

Type de produit Tableau de

personnalisation

Caméras lentilles

Ours en peluche couleurs

Meubles en chêne vernis

Technologies utilisées

HTML, CSS, JavaScript.

URL des API

● Ours en peluche faits à la main : ​http://localhost:3000/api/teddies

● Caméras vintage : ​http://localhost:3000/api/cameras

● Meubles en chêne : ​http://localhost:3000/api/furniture

Paramètres des API
Chaque API contient 3 paramètres :

Verb Paramètre Corps de la demande

prévue

Réponse

GET / - Retourne un tableau de tous les

éléments

GET /:_id - Renvoie l'élément correspondant à

identifiant given_id

POST /order Requête JSON contenant un

objet de contact et un

tableau de produits

Retourne l'objet contact, le tableau

produits et order_id (string)

http://localhost:3000/api/teddies
http://localhost:3000/api/cameras
http://localhost:3000/api/furniture

Validation des données

Pour les routes POST, l’objet contact envoyé au serveur doit contenir les champs
firstName, lastName, address, city et email. Le tableau des produits envoyé au
backend doit être un array de strings product_id. Les types de ces champs et leur
présence doivent être validés avant l’envoi des données au serveur.

Repository GitHub à cloner

https://github.com/OpenClassrooms-Student-Center/JWDP5.git

https://github.com/OpenClassrooms-Student-Center/JWDP5.git

