MIPS

by Imagination

MIPS® Architecture for Programmers
Volume lI-B: microMIPS64™ |nstruction
Set

Document Number: MD00594
Revision 6.02
July 13, 2015

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

. MIPSY
MIFPPS “

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

Template: nB1.03, Built with tags: 2B ARCH MIPS64

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Contents

Chapter 1: ADOUL THiS BOOK ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiieitie et eee e ees s esssesseesssesesesseeseeesseeeaeeeeeeaaaaaaaaeens 11
1.1: TYpOgraphiCal CONVENTIONSciiiiieeiiiii ittt e ettt et e e e e e e e e e s et bbbttt e e e e e ae e e e e s aannbbasaeeaaaaaaaaaaaas 12
R R | = [o I S PP PTPPPRR 12

g = o) (o B = TP PTPPTRR 12

RS 0o U 1T G I =) PRSP PTPPTRR 12

1.2: UNPREDICTABLE and UNDEFINEDcccuutiiiiiiiiee ettt e e sitaee e e e s snttee e e e s sntaee e e s s nnnaeeennnsneas 12
1.2.2: UNPREDICTABLEottt ettt ettt e e e s ettt e e e skt e e e e e st e e e e e s snbaeeeeesasbaeeessnteeaeeenanes 12

L.2. 2. UNDEFINEDoviiiiii ittt ettt e e e ettt e e e s ettt e e e e ettt e e e e as et e e e e e s asbbe e e e e e asbbeeeeesbeaeeeesnseeeaaeaanes 13

L2 31 UNSTABLE ...ttt ettt e e e ettt e e e e s at e e e e e bbb e e e e e anbbe e e e e e st bbeeeeasbeeeeeesnsbeeaeeeane 13

1.3: Special Symbols in PSEUAOCOAE NOTATIONuuiiiiiiiiaeee ittt e et e e e e e e e e 13
1.4: Notation for Register Field ACCESSIDIIIYccc..uiiiiiiiiiei e 16
IR o |V (o] (=N T (o) g o= 11T o U PPPRPRTP 18

(OF =T o1 €= a2 a1 1 e T [¥ o f e] o 19
P I B = = LU L 1S AN 1Y o T =S PEPRRR 19
A S 10 1V 2= 1L T = =] 1o o P PPEERRR 20
2.3: ComplianCe aNd SUDSEIIINGciitriiiiee ittt e e et e e e e st b e e e s st e e e e e e 20

P S S Y AN VT To [T (o o PP PERRRR 20
2.5: Branch and JUMP OFfSELScciiiiiiiiiei ittt e e e st e e e e bb e e e e s nabbeeeeeeanes 21
2.6: Coprocessor UNUSADIE BENAVIOTuuiiiiiiiiiiie et et e et ee e aaes 21
2.7: Release 6 Of the MIPS AFChILECIUIE ... e e e e e e e e s e e s st eeaaeaaeeaaeas 22
Chapter 3: Guide tO the INSTIUCTION SEL.......coiiiiiiiiiiiei e 29
3.1: Understanding the INStruCtion FIEIAScccuiiiiiiiiiie e e e e e e e s e e e e e aeaeaaeas 29

I O e | 1S3 (Bt o T 1= (o L TSP RR ST 31

3.1.2: Instruction Descriptive Name and MNEMONIC..........uuuiiiiiiiiiiee i iiiiiieier e e e ae e e e s s s rereeaeeeeseaans 31

I R T o 4 = LA 1= (o PP RR TR 31

0 I S 1o o Y= =1 o SRR 32

G 00 O T I =T] o) € o T 1= o SRR 32

3.1.6: RESIICHONS FIEI. ...ttt ettt e e e e e e et e et e e e e e e enbb bbb e e e e e e e aeeeeeaas 33

3.1.7: Availability and Compatibility FIEIASccooiiiiieee e 33

00 I T @ o= = U1 o] o T =1 [1P 34

Tt e T ot =T o1 o] FS =] o PP 34

3.1.10: Programming Notes and Implementation Notes Fields..............oovviiiiiiiiiiiiiiiin e, 34

3.2: Operation Section Notation and FUNCHIONSuuuiiiiii e e e e e e e e e e e e e eeeee e 35
3.2.1: InStruction EXECULION OFUEIINGcciiiiiiieiiiiiii e e s s e s et e e e e e e et et ettt ee et e e s naaaeeaaaaaaaaaaaaaaeeearnnes 35

3.2.2: PSEUAOCOAE FUNCLIONS.eiiiiiieeiiii ittt et e e e e e e s et e et e e et e e e e e e e e s e et b r e e e e eaaeeeaaaas 35

3.3: Op and Function Subfield NOTAION...........i i e e e e e e e e e et e e e e e ae e re e rr e 47

O S e W [1 Toi 1o TP PP TP PP PPPPPPTPN 47
Chapter 4: INSTrUCTION FOIMALSuuiiiiiiiiiiiiiiitiie bbb as s ee s s sssseessasssesseesseesseeeseeaaeaaaaaeeas 49
4.1: Instruction Stream Organization and ENGIANNESSc.ouiiiiiiiiiiiiiiiiiii e e eee s 52
Chapter 5: MiCrOMIPS INSTIUCTION SELuuuiiiiiiiiiiiiiiiiiiiiiiiieiieeiieeeieee ettt eeeeeeeeeeeeeeeeeeeeeeaens 55
I K =T O (= To o] o PP P P PPUPPPPTPPOPPRPS 55
5.1.1: Frequent MIPS64 INSIUCHIONS.uuiiiiiiiiiiit ettt ettt e e e e e eeee s 55

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 3

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.1.2: Frequent MIPS64 INStrUCLION SEQUENCEScoveviiriiiiiitieisie e e e e e e e e eeaeaeeeeeeeeaetataan s s e s e e e e e aeaaaaaaees 58

5.1.3: Instruction-Specific Register Specifiers and Immediate Field Encodingscccccvvveiieiiiiiieeeeeeen, 59
A KR o 1o [1S3 £ £ T 1o I =T Y (= Y= U 60
R A 12 11 A 0= 1= To o Y2 P UOTS 62

5.3.1: NEW 32-DiIt INSIIUCTIONSceeiieeeee ettt ettt et e e e e e e e e e et e e e e e e e e e s e e nbbenbreeeaeaeaeeaaas 62
5.4: Instructions SPecific t0 MICTOMIPSuu i e e e e e e e e e e e e et et e e e e e e aeaeeeareanaannaas 64

ADDIURZLSNP ...ttt ettt e oottt e e ettt e e e aa ket e e e e aRt bt e e e e aR b bt e e e e e kb et e e e e et bt e e e e e e be e e e e nbateeeeannbeeeeeeane 65
ADDIURZ.....ceeee ettt ettt e e oottt e e e e ekttt e e e et b et e e e e eaE bt e e e e aR b bttt e e e R Ee et e e e e R bt e e e e aRaeeeeeanntateeeeanbeteeeeans 66
F] 16 151 PP PRPPPPPPR 68
F] 16 1] OSSP PRP SRR 70
F] 16 K TR PRSP 72
| 1 PSP PRPPPPPPRP 73
1 1 PSP PRP PRSP 74
2 T3 ORI 75
2] =10 74 @31 X PSSO SPPPP 76
2N O 1 T PSSO PPPSPP 77
2] A N 1 T PSSO SRPSRP 78
S {31 I PP PPP PRSP 79
JRCADDIUSP ...ttt ettt e e ettt e e e ekttt e e e e eh bttt e e e ekt bt e e e e an b be e e e e s anbbe e e e e e anbbeeeannbnteeeeannbeeeeeenne 81
S |31 PP PRPPPPPPRP 83
02 O PSSO PRPSTP 84
0 PSSO PEP PP 86
0 RSO PEP PP 88
[L PSSO PPPSRP 90
0 1 PSSO PRPUP 91
I RSO PEP PR 92
RSO PPTR 93
I PSSO PSPSRPT 94
I PSSO PPPSPP 96
I] PSSO PEPSPP 98
L N S P ettt et RE— et e e ot bttt e e e oAb bttt e e e aREa et e e e e R Rttt e e e e R nte e e R Rt et e e e e nbtaeaeennnteeeeas 99
YL@ A 3t PRSP PRR 100
YL@ A TP PRRR 101
N[I RO PRR 103
(0 3 TP UUPPRPPPPPPPRN 104
] 3 T PP UUPPRPPPPPRPRN 105
ST 2] = = K PSP OUUPPRPPPPPRPRN 106
LT Y PP UUPPRPPPPPRPRN 107
T PO UUPPRRPPPPRPTN 109
I 1 P UTPPRPPPPPPPRN 110
] I PP UUPPRPPPPPRPRN 111
ST N SRR 112
112 1 T PR T PRSI 114
YT T OSSR RRR 115
YV LY] SRS PER 116
SWWIMLB ...ttt ettt e e oottt e e e sa et e e e e ekt et e e e e e R be e e e e e aR R bt e e e e aR Rttt e e e e R Eee e e e e an R bee e e e Rbae e e e e e nbreeeeaanrrees 117
YTV SR T TP PRRR 119
IS YT U PR PRR 121
D@ T 3 TP UUPPRRPPPPRPRN 122
5.5: RECOAEU MIPS INSIIUCTIONSuutteiiieitiiee ittt ettt et e e e e e e e s e e bbb e b et et e e e e e e s nnnbbesneeeeeeas 123
N =T {00 PSPPSR 124
| TP PR 125
F L 11 1 PP PPTRTR 126

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUP C e et et e et et e ettt e e e et e aa e e aa e e e et b a e e e eet e eaaes 128
NI 1 L PSPPSR 129
ALIGN DALIGN Lttt e et e e e e ettt 1 e e e e e e ta s e e et ettt e e e e e eas s e e et eeetaa e e e e ees b neeaae 130
Y I 1 SO PPUPPPTPRTSPP 132
N 1 1 PSP UPPPPPR TSP 133
N 11 L PSP UPPPPPRTRPPI 134
AU DAUL DAHI DAT ettt e e ettt e e e et et e e e e et ettt e e e eesaa e e e e e ees bbb aeeeeestanaenaaes 135
Y 11 PSP UPPPRPRRTRPP 138
2 PSSP 139
BCLEQZC BCLNEZC ...t ittt ettt e e e ettt e e e e et e e e e e ee bt e e e e et bbb e neeeeeebaa e e e aaeenen 140
21 024 (@)4 O = 1 0924 1| = OO PPPPRPPUPPRPN 142
B{LE,GE,GT,LT,EQ,NE}ZALC ...t ie ettt e e e e e e e e e e e e e e e eeaeaeeeeeaesstsaenesenennnnnn 144
o 0] T U 146
T SO PPPPPRN 150
B R AK ittt e e e e e et n e e et et e e et et e n e e e e e et tabn e e et ee e aeaaernen 151
BITSWAPRP DBITSWAP ettt e e e e e et e et e ettt e e e e e e es e e e e ees b neeeeeeeebbnn e e eaaeenen 152
21O A O =] N A PP PSPPPRPN 154
L8 O o PSSP 156
CACHEE ... e e e e e e e e e et et et e e e e s 162
L 1 I 11 | SR 168
(O I o | SR 169
L0 PSPPI 170
L1 PP PPR 172
(O 83 T 0 SR 173
L1 I USSP 175
O USSP 176
(@311 = o o [1 0| S 177
L@] TP UPPPPT 182
L I RSP PPT 183
L I P UPPPPPT 185
L I 5 i .0 | S 186
L I 0| SRR 187
L IS T8 0 1 S 188
L I YV {0 S 189
N I L I U PPPPPRPN 190
NI 1 1 O U PPPPTRPN 191
NI I OO PPPPPRPN 192
5 1 I L USRS 193
5 1 2 PRSPPI 194
g U PPPPPRPS 195
G PP SPPPTPR 196
]G I8\ U PPPPPRPN 198
] N O U PPPPPRPN 200
5 SO SPPPPPRPS 202
[|1 SO PPPPPRPS 203
[1N 1 1 U PPPPPPPN 205
[|1 O PSP PPPPPRPN 207
3] Y 0 | SR 209
DIV MOD DIVU MODU DDIV DMOD DDIVU DMODUcciiiiiiiiieeiiiiiii et e s eain e aeeenen 210
Y 0 U PSPPPRPN 214
Y U PPPPTRPN 215
Y ST PPPPPRPN 216
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 5

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIMT G it r e 218
DM T G e e e e e e e e e e e e e e e 219
DROTR ettt et e e e e e e e st e e e e e e e e e e e e 220
DROT R ee et e e e e e e e e 221
DROTRY it e e e e e e s e e e e e e e e e e e e e 222
] =] PP PPPPPTP 223
DSHD e a e e e e e 224
51 PP PPTRP 225
[PP TP PPPPPTP 226
D P PP PPPPPT 227
DS R A e e e e e e e 228
DS R A e e e e e 229
DSRAV e e e e 230
1] PP PP PPPTRP 231
D] I PP TP PPPPPTP 232
DSRLY e e e r e 233
DSUB ettt e e e e e e e e e 234
DSUBU ..ot e e e e e e e e e e e e 235
A PP PP 237
o = PP PPPPPTP 240
P PP PP PP 241
B R E T e e e e e e 242
ERETINC e e e e e 243
PP PP PP 245
) PP PP PP 247
O L@ T Y 0 {1 | SO PEPP O 249
FLOOR WV IML. .ottt ettt o4t e e o et e e e skt e e s e st e e es et e e e e snr e e e e e nnnnes 250
LN PP TP PPPPPTP 251
JALR C e 253
JALRC.HB .. e 255
JIALC e e e e e e e e 258
8 1L TP PPT T 260
P PP PP PPPT 262
0 P PP PPPPPTP 263
LB e et e e e e e e e e e e e 264
LB e e e e e e e e e e e e e e e e 265
5 PP PO PP PPPTP 266
5 O PP PPPPPTPP 267
5 PP PP 268
3 P PP PPTPP 269
o PP PPPPPTPP 270
o PP PP PP 271
o PP PP PPPTP 272
LHU E e e e e e e e e e e e 273
P PP PP PPPTPP 274
5 PP PP PP 276
P PP PP PPPTP 277
LLX, LEDX, LLXE ettt e e e e e e e e e e 279
L S A e et e e e e e e e e e e e e 290
L PP PP PP PP 291
Y P PO PP PP 292
Yt PP PPPPPTP 293

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU ...
Y1 L o) PP RPN PP PRPPP
N 0 {1 TP PP PEPP TP

RDPGPR ..o e e e e a e
Y= O | 11] S PO OTP RPN
A 0 OO TP PEPP P

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1] o S 385
1] SR 386
1] [T | SR 387
SR 388
I SR 389
1 SR 390

1 I SR 391
1] I SR 392
1] I SR 393
11 L 1 11 R 394
S R A L e e e e e e e e et e e e e et ————— L e e e eeeeeeeeeeetee ettt ———————————e et aaaas 395
S R AV oo e e e e e e e ——————— e eeeeeeeaeeeeeeteet ettt ————— . ————— e aaaaaaas 396
] SR 397
SRV ittt e e e e e e e e e ————————— e eeeeeaeeeeeeeeet ettt e — e ———————————a— e aaaaaaaas 398
3] (0 S 399
] 1 S 400
] 1 1 SR 401
0] 11 S 402
0} S 403
0} SR 404
0} 3t SRR 405
)T S 406
03 2 1 (SRR 407

0 2 (S 412
S 251 I S 415
I = PP PRPPPPN 416
I PP PUPRPPN 417
I L PPN 418
I8 PPN 419
I8 N PP PRRPPRN 421
I PRSPPI 423
I PRSPPI 424
I 0 PPN 426
I T PSPPI 428
I PRSPPSO 430
I PRSPPI 431
I PP PRPRPUN 432
I 1L 0 o o | PRSPPI 433
TRUNC.WV ML ittt s e s e e e e e e e e e e e e e e e e e et e eeeeee et eaa s e s e aaeaeeenseaaaaaeaeaaaeaeeeneenes 434
LAY PRSPPI 435
WRPGPR ...ttt e et ettt ettt e e e e e e e e e e e e e e e e e et e e e et ae—ete et —— e aeaaeaaaaaaaaaaaaeaeaaaataararaaa 436
LAY A5 =1 PP 437
D2 L SR 438
D2 L SR 439
(OF T o1 (=T G A @ o Tod o o =0 1Y/ =T o PSR 441
A% T Y= 1T T @ oo o To 1= USROS 441
A YT o] g oo To 1= 3SR 443
7.3: Floating Point Unit Instruction FOrmat ENCOAINGSceiiiiiiiiiieiiiiiiie ettt 453
Chapter 8: COMPALIDIITY ..cooiiiieee e e e e e e e eeeeas 455
8.1: Assembly-Level COMPAtiDIlILYcciiiei i e e e r e e e e e e e e e 455
8 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

oA Y = 1 I @ 41 o T= 1T o1] PSS
G T = = g (o o 1= T To I W0 0T B £ =3 PSS
o S =T (o Lo Ao] T I3/ 01T PSS
8.5: Boot-up Code shared between microMIPS64 and MIPSB4oovvviiiiiiiiiiiiie e
8.6: Coprocessor UNUSabIe BENAVION.............uuuieiiiiiie et e e e e e e e e e e e e e e e e e e e reeesannnaaas
8.7: Other Issues Affecting Software and Compatibilityoovriiiiiiiiii s

F N oY o L=T o I S = =T =Y o Yo = S

AppendixX D: ReVISION HISTOMY ..o,

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

10

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 1

About This Book

| The MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set comes as part of a multi-
volume set.

* Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

* Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

* Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

* Volume I'V-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-
mented at the same time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

* Volume I'V-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

* Volume I'V-d describes the SmartMIPS® Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set. Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with Release 6, neither MIPS32
Release 6 nor MIPS64 Release 6.

* Volume I'V-e describes the MIPS® DSP Module to the MIPS® Architecture.

* Volume I'V-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume I'V-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

* Volume I'V-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* Volume I'V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 11

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

* is used for emphasis

» is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
Sand D

» is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

» represents a term that is being defined

» isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

» is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

12

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
* UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

“«— Assignment

=, Tests for equality and inequality

I Bit string concatenation

<Y A y-bit string formed by Yy copies of the single-bit value X

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 13

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
Xy 2 Selection of bits y through z of bit string X. Little-endian bit notation (rightmost bit is 0) is used. If'y is less
than z, this expression is an empty (zero length) bit string.
x.bit[y] Bity of bitstring X. Alternative to the traditional MIPS notation x,.
x.bits[y..z] Selection of bits y through z of bit string X. Alternative to the traditional MIPS notation x, .
x.byte[y] Byte y of bitstring X. Equivalent to the traditional MIPS notation Xgs«y+7_ gy
x.bytes[y..z] Selection of bytes y through z of bit string X. Alternative to the traditional MIPS notation Xgsy.7 g,
x.halfword[y] Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).
x.word][i]
x.doubleword][i]
x.bit31, x.byte0, etc. | Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.
x.fieldy Selection of a named subfield of bitstring X, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.
+, - 2’s complement or floating point arithmetic: addition, subtraction
*, 00 2’s complement or floating point multiplication (both used for either)
div 2’s complement integer division
mod 2’s complement modulo
/ Floating point division
< 2’s complement less-than comparison
> 2’s complement greater-than comparison
< 2’s complement less-than or equal comparison
> 2’s complement greater-than or equal comparison
nor Bitwise logical NOR
XOr Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[x] CPU general-purpose register X. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlcgs, X].
SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([s,X] refers to GPR set S, register X.
FPR[X] Floating Point operand register X
FCCICC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.
FPR[X] Floating Point (Coprocessor unit 1), general register X

14

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

CPR[z,x,s]

Coprocessor unit z, general register X, select S

CP2CPR[x]

Coprocessor unit 2, general register X

CCR[z,X]

Coprocessor unit z, control register X

CP2CCR[x]

Coprocessor unit 2, control register X

coc[z]

Coprocessor unit Z condition signal

Xlat[x]

Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem

Endian mode as configured at chip reset (0 — Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU

The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgg and User mode).

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

1+n:
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled 1+1.

The effect of pseudocode statements for the current instruction labeled 1+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 64-bit address, all of which are significant during a memory reference.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

15

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:
Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing MIIPS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS _ 536 bytes.
SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-

bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

ZSEGBITS — 240 bytes.

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.
Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

16 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.4 Notation for Register Field Accessibility

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
R A field which is either static or is updated only by | A field to which the value written by software is
hardware. ignored by hardware. Software may write any value
If the Reset State of this field is either “0”, “Pre- | to this field without affecting hardware behavior.
set”, or “Externally Set”, hardware initializes this | Software reads of this field return the last value
field to zero or to the appropriate state, respectively, | updated by hardware.
on powerup. The term “Preset” is used to suggest | If the Reset State of this field is “Undefined”, soft-
that the processor establishes the appropriate state, | ware reads of this field result in an UNPREDICT-
whereas the term “Externally Set” is used to sug- | ABLE value except after a hardware update done
gest that the state is established via an external under the conditions specified in the description of
source (e.g., personality pins or initialization bit the field.
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.
RO RO = reserved, read as zero, ignore writes by soft- | Architectural Compatibility: RO fields are reserved,
ware. and may be used for not-yet-defined purposes in
future revisions of the architecture.
Hardware ignores software writes to an RO field.
Neither the occurrence of such writes, nor the val- | When writing an RO field, current software should
ues written, affects hardware behavior. only write either all Os, or, preferably, write back the
same value that was read from the field.
Hardware always returns 0 to software reads of RO
fields. Current software should not assume that the value
read from RO fields is zero, because this may not be
The Reset State of an RO field must always be 0. true on future hardware.
If software performs an mtc0 instruction which Future revisions of the architecture may redefine an
writes a non-zero value to an RO field, the write to | RO field, but must do so in such a way that software
the RO field will be ignored, but permitted writes to | which is unaware of the new definition and either
other fields in the register will not be affected. writes zeros or writes back the value it has read from
the field will continue to work correctly.
Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)
Writing zeros to an RO field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 17

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

About This Book

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation
0 Release 6
Release 6 legacy “0” behaves like RO - read as zero, nonzero writes ignored.
Legacy “0” should not be defined for any new control register fields; RO should be used instead.
HW returns 0 when read. Only zero should be written, or, value read from reg-
HW ignores writes. ister.
pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED
A field which hardware does not update, and for A field to which the value written by software must
which hardware can assume a zero value. be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is “Undefined”, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.
R/WO Like R/W, except that writes of non-zero to a R/WO field are ignored.

E.g. Status. NMI

Hardware may set or clear an R/WO bit. Software can only clear an R/WO0 bit.

Hardware ignores software writes of nonzero to an | Software writes 0 to an R/WO field to clear the field.
R/WO field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior. | Software writes nonzero to an R/WO0 bit in order to
guarantee that the bit is not affected by the write.
Software writes of 0 to an R/WO0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/WO bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/WO field, the write
to the R/WO field will be ignored, but permitted
writes to other fields in the register will not be
affected.

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.imgtec.com.

For comments or questions on the MIPS64® Architecture or this document, send Email to IMGBA-DocFeed-
back@imgtec.com.

18 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

http://www.mips.com/

Chapter 2

Introduction

In today’s market, the lowest price, performance, or both must be satisfied, especially for deeply-embedded applica-
tions such as microcontroller applications. Moreover, customers require efficient solutions that can be turned into
products quickly. To meet this need, the MIPS® instruction set has been optimized and re-encoded into a new vari-
able-length scheme. This solution is called microMIPS™.

microMIPS minimizes the resulting code footprint of applications and reduces the cost of memory, which is particu-
larly high for embedded memory. Simultaneously, the high performance of MIPS cores is maintained. Using this
technology, the customer can generate best results without spending time to profile its application. The smaller code
footprint typically leads to reduced power consumption per executed task because of the smaller number of memory
accesses.

microMIPS is the preferred replacement for the existing MIPS16e™ ASE. MIPS16e could only be used for user
mode programs which did not use floating-point nor any of the Application Specific Extensions (ASEs). microMIPS
does not have these limitations — it can be used for kernel mode code as well as user mode programs. It can be used

for programs which use floating-point. It can be used with the available ASEs.

microMIPS is also an alternative to the MIPS64® instruction encoding and can be implemented in parallel or stand-
alone. The microMIPS equivalent of MIPS32 is microMIPS32™ and the microMIPS equivalent of MIPS64 is
microMIPS64™,

Overview of changes vs. existing MIPS64 ISA:

* 16-bit and 32-bit opcodes

* Optimized opcode/operand field definitions based on statistics
* Removal of branch likely instructions, emulation by assembler

* Fine-tuned register allocation algorithm in the compiler for lowest code size

2.1 Default ISA Mode

The instruction sets which are available within an implementation are reported by the Config3,gp register field (bits
15:14). Configlcp (bit 2) is not used for microMIPS64.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode following reset is deter-
mined by the setting of the Config3|g, register field., which is a read-only field set by a hardware signal external to the

processor core.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode upon handling an excep-
tion is determined by the setting of the Config3;saonexc register field (bit 16). The Config3|saonexc register field is

writeable by software and has a reset value that is set by a hardware signal external to the processor core. This register

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 19

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Introduction

field allows privileged software to change the ISA mode to be used for subsequent exceptions. This capability is for
all exception types whose vectors are offsets of the EBASE register.

For implementations that support both microMIPS64 and MIPS64, the selected ISA mode when handling a debug
exception is determined by the setting of the ISAonDebug register field in the EJTAG TAP Control register. This reg-
ister field is writeable by EJTAG probe software and has a reset value that is set by a hardware signal external to the
processor core.

For CPU cores supporting the MT ASE and multiple VPEs, the ISA mode for exceptions can be selected on a per-
VPE basis.

2.2 Software Detection

Software can determine if microMIPS64 ISA is implemented by checking the state of the ISA (Instruction Set Archi-
tecture) field in the Config3 CPO register. Configlcp (bit 2) is not used for microMIPS64.

Software can determine if the MIPS64 ISA is implemented by checking the state of the ISA (Instruction Set Architec-
ture) register field in the Config3 CPO register.

Software can determine which ISA is used when handling an exception by checking the state of the ISAOnEXxc (ISA
on Exception) field in the Config3 CPO register.

Debug Probe Software can determine which ISA is used when handling a debug exception by checking the state of
the ISAONnDebug field in the EJTAG TAP Control register.

2.3 Compliance and Subsetting

This document does not change the instruction subsets as defined by the other MIPS architecture reference manuals,
including the subsets defined by the various ASEs.

2.4 ISA Mode Switch

20

The MIPS Release 3 architecture defines an ISA mode for each processor. An ISA mode value of 0 indicates MIPS64
instruction decoding. In processors implementing microMIPS64, an ISA mode value of 1 selects microMIPS64
instruction decoding.

The ISA mode is not directly visible to user mode software. Upon an exception, the ISA mode of the faulting/inter-

rupted instruction is recorded in the least-significant address bit within the appropriate return address register - either
EPC or ErrorEPC or DebugEPC, depending on the exception type.

For the rest of this section, the following definitions are used:

Jump-and-Link-Register instructions: For the MIPS64 ISA, this means the JALR and JALR.HB instructions. For the
microMIPS64 ISA, this means the JALRC, JALRC.HB, JIALC, and JALRC16 instructions.

Jump-Register instructions: For the MIPS64 ISA, this means the JR and JR.HB instructions. For the microMIPS64
ISA, this means the instructions JRC, JRC.HB, JIC, JRC16, and JRCADDIUSP instructions.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.5 Branch and Jump Offsets

Mode switching between MIPS64 and microMIPS64 is enabled by the Jump-and-Link-Register and Jump-Register
instructions, as described below.

* The Jump-and-Link-Register and Jump-Register instructions interpret bit 0 of the source registers as the target
ISA mode (0=MIPS64, 1=microMIPS64) and therefore set the ISA Mode bit according to the contents of bit 0 of
the source register. For the actual jump operation, the PC is loaded with the value of the source register with bit 0
set to 0. The Jump-and-Link-Register instructions save the ISA mode into bit 0 of the destination register.

* When exceptions or interrupts occur and the processor writes to EPC, DEPC, or ErrorEPC, the ISA Mode bit is
saved into bit 0 of these registers. Then the ISA Mode bit is set according to the Config3,sponexc register field.
On return from an exception, the processor loads the ISA Mode bit based on the value from either EPC, DEPC,
or ErrorEPC.

If only one ISA mode exists (either MIPS64 or microMIPS64) then this mode switch mechanism does not exist, but
the ISA Mode bit is still maintained and has a fixed value (0=MIPS64, 1=microMIPS64). This is to maintain code
compatibility between devices which implement both ISA modes and devices which implement only one ISA mode.
Jump-Register and Jump-and-Link-Register instructions cause an Address exception on the target instruction fetch
when bit 0 of the source register is different from the fixed ISA mode. Exception handlers must use the instruction set
binary format supported by the processor. The Jump-and-Link-Register instructions must still save the fixed ISA
mode into bit 0 of the destination register.

2.5 Branch and Jump Offsets

In the MIPS64 architecture, because instructions are always 32 bits in size, the jump and branch target addresses are
word (32-bit) aligned. Jump/branch offset fields are shifted left by two bits to create a word-aligned effective address.

In the microMIPS64 architecture, because instructions can be either 16 or 32 bits in size, the jump and branch target
addresses are halfword (16-bit) aligned. Branch/jump offset fields are shifted left by only one bit to create halfword-
aligned effective addresses.

To maintain the existing MIPS64 ABIs, link unit/object file entry points are restricted to 32-bit word alignments. In
the future, a microMIPS64-only ABI can be created to remove this restriction.

2.6 Coprocessor Unusable Behavior

If an instruction associated with a non-implemented coprocessor is executed, it is implementation specific whether a
processor executing in microMIPS64 mode raises an RI exception or a coprocessor unusable exception. This behav-
ior is different from the MIPS64 behavior in which coprocessor unusable exception is signalled for such cases.

If the microMIPS64 implementation chooses to use RI exception in such cases, the microMIPS64 RI exception han-
dler must check for coprocessor instructions being executed while the associated coprocessor is implemented but has
been disabled (Statuscyy set to zero).

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 21

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Introduction

2.7 Release 6 of the MIPS Architecture

Table 2.1 Instructions Added in Release 6

Instruction Instruction’s Purpose Replaces
ADDIUPC Add Immediate to PC (unsigned - non-trapping) New
ALIGN Concatenate two GPRs, and extract a contiguous subset at a byte New
position (32-bit)
DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte New
position (64-bit)
ALUIPC Aligned Add Upper Immediate to PC New
AUI Add Upper Immediate New
DAUI Doubleword Add Upper Immediate New
DAHI Doubleword Add Higher Immediate New
DATI Doubleword Add Top Immediate New
AUIPC Add Upper Immediate to PC New
BCIEQZC Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero BCIF
BCINEZC Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero BCIT
BC2EQZC Branch if Coprocessor 2 Condition Register is Equal to Zero BC2F
BC2NEZC Branch if Coprocessor 2 Condition Register is Not Equal to Zero BC2T
BLEZALC Compact branch-and-link if GPR 1t is less than or equal to zero New
BGEZALC Compact branch-and-link if GPR rt is greater than or equal to zero Compact version
BGTZALC Compact branch-and-link if GPR rt is greater than zero New
BLTZALC Compact branch-and-link if GPR rt is less than to zero Compact version
BEQZALC Compact branch-and-link if GPR rt is equal to zero New
BNEZALC Compact branch-and-link if GPR rt is not equal to zero New
BEQC Equal register-register compare and branch with 16-bit offset New
BNEC Not-Equal register-register compare and branch with 16-bit offset New
BLTC Signed register-register compare and branch with 16-bit offset:67 New
BGEC Signed register-register compare and branch with 16-bit offset: New
BLTUC Unsigned register-register compare and branch with 16-bit offset: New
BGEUC Unsigned register-register compare and branch with 16-bit offset: New
BGTC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLEC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BGTUC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLEUC Assembly idioms with reversed operands for signed/unsigned com- New
pare-and-branch
BLTZC Signed Compare register to Zero and branch with 16-bit offset Compact version
22 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.7 Release 6 of the MIPS Architecture

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces
BLEZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BGEZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BGTZC Signed Compare register to Zero and branch with 16-bit offset Compact version
BEQZC Equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset
BNEZC Not-equal Compare register to Zero and branch with 21-bit offset Compact version with 21-bit offset

BC/BC16 Branch, Compact (16) B/B16
BALC Branch and Link, Compact BAL
BITSWAP Swaps (reverses) bits in each byte New
DBITSWAP Swaps (reverses) bits in each byte New
BOVC Branch on Overflow, Compact; Branch on No Overflow, Compact New
BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact New
CLASS.fmt Scalar Floating-Point Class Mask New
CMP.condn.fmt Floating Point Compare setting Mask C.condn.fmt
DIV Divide Words Signed DIV
DVP Disable Virtual Processor New
EVP Enable Virtual Processor New
MOD Modulo Words Signed DIV
DIVU Divide Words Signed DIVU
MODU Modulo Words Signed DIVU
DDIV Divide Doublewords Signed DDIV
DMOD Modulo Doublewords Signed DDIV
DDIVU Divide Doublewords Signed DDIVU
DMODU Modulo Doublewords Signed DDIVU
JALRC16 Jump and Link Register Compact (16-bit instr size) JALR16
JIALC Jump Indexed and Link, Compact New
JIC Jump Indexed, Compact New
JRCADDIUSP Jump Register, Adjust Stack Pointer (16-bit) JRADDIUSP
LDPC Load Doubleword PC-relative New
LSA Load Scaled Address New
DLSA Doubleword Load Scaled Address New
LWPC Load Word PC-relative New
LWUPC Load Word Unsigned PC-relative New
MADDF.fmt Floating Point Fused Multiply Add MADD.fmt
MSUBF.fmt Floating Point Fused Multiply Subtract MSUB.fmt
MAX.fmt Scalar Floating-Point Maximum New
MAXA. fmt Scalar Floating-Point Argument with Maximum Absolute Value New
MIN.fmt Scalar Floating-Point Minimum New
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 23

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Introduction

Table 2.1 Instructions Added in Release 6 (Continued)

Instruction Instruction’s Purpose Replaces
MINA.fmt Scalar Floating-Point Argument with Minimum Absolute Value New
MUL Multiply Words Signed, Low Word MULT
MUH Multiply Words Signed, High Word MULT
MULU Multiply Words Signed, Low Word MULTU
MUHU Multiply Words Signed, High Word MULTU
DMUL Multiply Doublewords Signed, Low Doubleword DMULT
DMUH Multiply Doublewords Signed, High Doubleword DMULT
DMULU Multiply Doublewords Signed, Low Doubleword DMULTU
DMUHU Multiply Doublewords Signed, High Doubleword DMULTU
RINT.fmt Floating-Point Round to Integral New
SEL.fmt Select floating point values with FPR condition MOVF.fmt, MOVT.fmt
SELEQZ Select integer GPR value or zero MOVZ, MOVN
SELNEZ Select integer GPR value or zero MOVZ, MOVN
SELEQZ.fmt Select floating point value or zero with FPR condition MOVZ.fmt, MOVN.fimt
SELNEZ.fmt Select floating point value or zero with FPR condition MOVZ.fmt, MOVN.fmt
Table 2.2 Instructions Recoded in Release 6
Instruction Purpose
AND16 To do a bitwise logical AND
BEQZC Branch on Equal to Zero, Compact
BNEZC Branch on Not Equal to Zero, Compact
BREAK16 Breakpoint
JRC16 Jump Register, Compact (16-bit)
LUI To load a constant into the upper half of a word
LWMI16 Load Word Multiple (16-bit)
MOVEP Move a Pair of Registers
NOT16 Invert (16-bit instr size)
OR16 Or (16-bit instr size)
SDBBP16 Software Debug Breakpoint (16-bit instr size)
SWM16 Store Word Multiple (16-bit)
SYNCI Synchronize Caches to Make Instruction Writes Effective
XOR16 Exclusive OR (16-bit instr size)
24 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 2.3 Instructions Removed in Release 6

2.7 Release 6 of the MIPS Architecture

Instruction Purpose Replaced by
ABS.PS Floating Point Absolute Value, Paired Single —
ADD.PS Floating Point Add, Paired Single —
ADDI Add Immediate Word —
ALNV.PS Floating Point Align Variable, Paired Single —

B Unconditional Branch BC
B16 Unconditional Branch (16-bit instr size) BC16
BAL Branch and Link BALC
BCIF Branch on FP False BCIEQZC
BCIT Branch on FP True BCINEZC
BC2F Branch on COP2 False BC2EQZC
BC2T Branch on COP2 True BC2NEZC
BEQ Branch on Equal BEQC
BGEZ Branch on Greater Than or Equal to Zero BGEZC
BEQZ16 Branch on Equal to Zero (16-bit instr size) BEQZC16
BGEZAL Branch on Greater Than or Equal to Zero and Link BGEZALC
BGEZALS Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot —
BGTZ Branch on Greater Than Zero BGTZC
BLEZ Branch on Less Than or Equal to Zero BLEZC
BLTZ Branch on Less Than Zero BLTZC
BLTZAL Branch on Less Than Zero and Link BLTZALC
BLTZALS Branch on Less Than Zero and Link, Short Delay-Slot BLTZALC.
BNE Branch on Not Equal BNEC
BNEZ16 Branch on Not Equal to Zero (16-bit instr size) BNEZC16.
C.cond.fmt Floating Point Compare CMP.condn.fmt
CVT.PS.S Floating Point Convert Pair to Paired Single —
CVT.S.PL Floating Point Convert Pair Lower to Single Floating Point —
CVT.S.PU Floating Point Convert Pair Upper to Single Floating Point —
DADDI Doubleword Add Immediate —
DDIV Doubleword Divide —
DDIVU Doubleword Divide Unsigned —

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

25

Introduction

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by

DIV Divide Word —
DIVU Divide Unsigned Word —
DMULT Doubleword Multiply —
DMULTU Doubleword Multiply Unsigned —
JALC Jump and Link Compact —
JALR16 Jump and Link Register (16-bit instr size) JALRC16
JALRS Jump and Link Register, Short Delay Slot JALRC
JALRS.HB Jump and Link Register with Hazard Barrier, Short Delay-Slot —
JALRS16 Jump and Link Register, Short Delay-Slot (16-bit instr size) JALRCI16
JALS Jump and Link, Short Delay Slot —
JALX Jump and Link Exchange (microMIPS Format) —
\[@ Jump Register, Compact —
JR Jump Register JALRC
JR.HB Jump Register with Hazard Barrier JALRC.HB
JRC Jump Register, Compact (16) —
JR16 Jump Register (16-bit instr size) JRC16
JRADDIUSP Jump Register, Adjust Stack Pointer JRCADDIUSP
LDL Load Doubleword Left —
LDR Load Doubleword Right —
LDXC1 Load Doubleword Indexed to Floating Point —
LUXC1 Load Doubleword Indexed Unaligned to Floating Point —
LWL Load Word Left —
LWLE Load Word Left EVA —
LWR Load Word Right —
LWRE Load Word Right EVA —
LWXCI Load Word Indexed to Floating Point —
LWXS Load Word Indexed, Scaled —
MADD Multiply and Add Word to Hi, Lo —
MADD.fmt Floating Point Multiply Add MADDF.fmt
MADDU Multiply and Add Unsigned Word to Hi,Lo —
MFHI16 Move From HI Register (16-bit instr size) —

26 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 2.3 Instructions Removed in Release 6 (Continued)

2.7 Release 6 of the MIPS Architecture

Instruction Purpose Replaced by
MFLO16 Move From LO Register —
MFHI Move From HI Register —
MFLO Move From LO Register —
MOV.PS Floating Point Move —
MOVF.fmt Floating Point Move Conditional on Floating Point False SEL.fmt
MOVN Move Conditional on Not Zero SELNEZ, SELEQZ
MOVN.fmt Floating Point Move Conditional on Not Zero SELNEZ.fmt
MOVT Move Conditional on Floating Point True —
MOVT.fmt Floating Point Move Conditional on Floating Point True SEL.fmt
MOVZ Move Conditional on Zero SELNEZ, SELEQZ
MOVZ.fmt Floating Point Move Conditional on Zero SELEZQZ.fmt
MSUB Multiply and Subtract Word to Hi, Lo —
MSUB.fmt Floating Point Multiply Subtract MSUBE.fmt
MSUBU Multiply and Subtract Word to Hi,Lo —
MTHI Move to HI Register —
MTLO Move to LO Register —
MUL Multiply Word to GPR —
MUL.PS Floating Point Multiply, Paired Single —
MULT Multiply Word MUL, MULH
MULTU Multiply Unsigned Word MULU, MUHU
NEG.PS Floating Point Negate, Paired Single —
NMADD.fmt Floating Point Negative Multiply Add NMADDF.fmt
NMSUB.fmt Floating Point Negative Multiply Subtract NMSUBEF.fmt
PLL.PS Pair Lower Lower, Paired Single —
PLU.PS Pair Lower Upper, Paired Single —
PREFX Prefetch Indexed —
PUL.PS Pair Upper Lower, Paired Single —
PUU.PS Pair Upper Upper, Paired Single —

SDL Store Doubleword Left —
SDR Store Doubleword Right —
SDXC1 Store Doubleword Indexed from Floating Point —

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

27

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Introduction

Table 2.3 Instructions Removed in Release 6 (Continued)

Instruction Purpose Replaced by
SUB.PS Floating Point Subtract —
SUXC1 Store Doubleword Indexed Unaligned from Floating Point —

SWL Store Word Left —
SWLE Store Word Left EVA —
SWR Store Word Right —
SWXCl1 Store Word Indexed from Floating Point —
TEQI Trap if Equal Immediate —
TGEI Trap if Greater or Equal Immediate —
TGEIU Trap if Greater or Equal Immediate Unsigned —
TLTI Trap if Less Than Immediate —
TLTIU Trap if Less Than Immediate Unsigned —
TNEI Trap if Not Equal Immediate —
28 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 3

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical

order in the tables at the beginning of the next chapter.
3.1 Understanding the Instruction Fields

Figure 3.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
e “Instruction Fields” on page 31

e “Instruction Descriptive Name and Mnemonic” on page 31

* “Format Field” on page 31

e “Purpose Field” on page 32

e “Description Field” on page 32

e “Restrictions Field” on page 33

e “Operation Field” on page 34

* “Exceptions Field” on page 34

e “Programming Notes and Implementation Notes Fields” on page 34

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

29

Guide to the Instruction Set

Figure 3.1 Example of Instruction Description

Instruction Mnemonic and —s= Example Instruction Name EXAMPLE
Descriptive Name
EXAMPLE

31 26 25 21 20 16 15 1 10 6 5 0
Instruction Encoding
Constant and Variable —— SPECIAL 0 t rd 0 EXAMPLE
Field Names and Values 000000 00000 000000
Architecture Level at 6 > 5 ° 5 6
which Instruction Was
Defined/Redefined
Assembler Format(s) for ———— Format: EXAMPLE fd,rs,rt MIPS32
Each Definition

Short Description —————p Purpose: Example Instruction Name
To execute an EXAMPLE op.

Symbolic Description ——————» Description: GPR[rd] «— GPR[r]s exampleop GPR[rt]

Full Description of ———gm This section describes the operation of the instruction in text, tables, and illustrations. It
Instruction Operation includes information that would be difficult to encode in the Operation section.

Restrictions on Instruction ————® Restrictions:

and Operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High-Level Language — > Operation:
Description of the

Instruction Operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */

temp <— GPR[rs] exampleop GPR[rt]
GPR[rd] « sign_extend(temps;_ g)

Exceptions that the Instruction——~ Exceptions:

Can Cause
A list of exceptions taken by the instruction.

Notes for Programmers—® Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction.

Notes for Implementers—— Implementation Notes:

Like Programming Notes, except for processor implementors.

30 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.1 Understanding the Instruction Fields

3.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

* The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 3.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
3.2).

» Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 3.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 3.2 Example of Instruction Fields

31 26 25 21 20 16 15 1 10 6 5 0
SPECIAL 4 0 ADD
000000 s rt r 00000 100000
6 5 5 5 5 6

3.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
3.3.

Figure 3.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

3.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 3.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 31

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the

ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-

mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

3.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 3.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

3.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 3.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

» Ifthe addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» Ifthe addition does not overflow, the 32-bit result is signed-extended and placed into
GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

32 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.1 Understanding the Instruction Fields

3.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Valid values for instruction fields (for example, see floating point ADD.fmt)
e ALIGNMENT requirements for memory addresses (for example, see LW)

e Valid values of operands (for example, see DADD)

* Valid operand formats (for example, see floating point ADD.fint)

e Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

e Valid memory access types (for example, see LL/SC)

Figure 3.7 Example of Instruction Restrictions

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits ¢3_31 equal),
then the result of the operation is UNPREDICTABLE.

3.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

* Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

* Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

* Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

* Some instructions are prohibited for certain architecture releases and/or optional feature combinations.
* Some instructions may be removed for certain architecture releases. Implementations may then be required

to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 33

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

3.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 3.8 Example of Instruction Operation

Operation:

if NotWordValue (GPR[rs]) or NotWordvValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« (GPR[rsl;;||GPRI[rsls; o) + (GPRI[rtlsi||GPRIrtls;)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« sign_extend(temps;)
endif

See 3.2 “Operation Section Notation and Functions” on page 35 for more information on the formal notation used
here.

3.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 3.9 Example of Instruction Exception

Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.
3.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

34 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

Figure 3.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

3.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 35

* “Pseudocode Functions” on page 35

3.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

3.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

* “Coprocessor General Register Access Functions” on page 35
* “Memory Operation Functions” on page 37
* “Floating Point Functions” on page 40

* “Miscellaneous Functions” on page 45

3.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

3.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register It.

Figure 3.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 35

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
3.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 3.12 COP_LD Pseudocode Function
COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.
/* Coprocessor-dependent action */
endfunction COP_LD

3.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 3.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word wvalue

/* Coprocessor-dependent action */
endfunction COP_SW
3.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.
Figure 3.14 COP_SD Pseudocode Function
datadouble <« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier

datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

36 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

endfunction COP_SD

3.2.2.1.5 CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 3.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop fun)

/* zZ: Coprocessor unit number */
/* cop fun: Coprocessor function from function field of instruction */

/* Transmit the cop fun value to coprocessor z */
endfunction CoprocessorOperation

3.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 3.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

3.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

| The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 3.16 MisalignedSupport Pseudocode Function
predicate <« MisalignedSupport ()

| return Config.AR > 2 // Architecture Revision 2 corresponds to MIPS Release 6.
end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

3.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 37

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Given the virtual address vAddr, and whether the reference is to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 3.17 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* TIorD: 1Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

3.2.2.2.3 LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 3.18 LoadMemory Pseudocode Function
MemElem <« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

38 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

3.2.2.2.4 StoreMemory
The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 3.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will bex*/
/* stored must be valid.x/

/* pAddr: physical address */

/* VvAddr: virtual address */

endfunction StoreMemory

3.2.2.2.5 Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 3.20 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 3.1 lists the data access lengths and their labels for loads and stores.

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 39

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Table 3.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
3
2

WORD 4 bytes (32 bits)
TRIPLEBYTE 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

3.2.2.2.6 SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by Stype occur in the same order for all
processors.

Figure 3.21 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

3.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

3.2.2.3.1 ValueFPR
The ValueFPR function returns a formatted value from the floating point registers.
Figure 3.22 ValueFPR Pseudocode Function
value <« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1l and SDC1 */

40 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

case fmt of
S, W, UNINTERPRETED WORD:
valueFPR < UNPREDICTABLE’? || FPR[fprls;

D, UNINTERPRETED DOUBLEWORD:

if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr+ll;; , || FPRIfprls;. o
endif
else
valueFPR « FPR[fpr]
endif
L, OB, QH:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR « FPR[fpr]
endif
DEFAULT:

valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

3.2.2.3.2 StoreFPR

StoreFPR

/*
/*
/*
/*
/*
/*
/*

/*
/*

fpr:
fmt:

value:

Figure 3.23 StoreFPR Pseudocode Function

(fpr, fmt, value)

The FPR number */

The format of the data, one of: */

S, D, W, L, PS, */

OB, QH, */

UNINTERPRETED WORD, */

UNINTERPRETED DOUBLEWORD */

The formattted value to be stored into the FPR */

The UNINTERPRETED values are used to indicate that the datatype */
is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED WORD:
FPR [fpr] <« UNPREDICTABLE®? || value;;

D, UNINTERPRETED DOUBLEWORD:

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 41

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

if (FP32RegistersMode = 0)
if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE>? | value,;.
FPR [fpr+1] < UNPREDICTABLE’? | valueg,
endif
else
FPR[fpr] <« value
endif

..32

L, OB, QH:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

endfunction StoreFPR

3.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 3.24 CheckFPException Pseudocode Function

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */

/* and the corresponding bit in the Enable field are both 1 */

if ((FCSRyy = 1) or
((FCSRy¢. 15 and FCSRyq; 5) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

3.2.2.3.4 FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 3.25 FPConditionCode Pseudocode Function
tf <-FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode <« FCSRj3

else
FPConditionCode < FCSRy4.cc

42 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

endif
endfunction FPConditionCode
3.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 3.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc, tf)
if cc = 0 then

FCSR « FCSR3; o4 || tf || FCSR,y o
else
FCSR < FCSR31 ss5icc || tf || FCSRa3icc. .o

endif

endfunction SetFPConditionCode

3.2.2.4 Pseudocode Functions Related to Sign and Zero Extension
3.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign extend (immediatel6) orsign extend (disp9).

However, sometimes it is necessary to specify the bit position. For example, sign extend (temp;;) or the

more complicated (offset,) CPREEN-(16+2) || offset || 02

The explicit notation sign_extend.nbits(val) orsign extend(val,nbits) issuggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign extend(temps;)

= sign extend.32 (temp)

and
(of fset) CFRUEN-(16+2) | offget || 02
= sign extend.1l6 (offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign extend.nbits(val) or sign extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 3.27 sign_extend Pseudocode Functions
sign extend.nbits(val) = sign extend(val,nbits) /* syntactic equivalents */

function sign extend(val,nbits)
return (valnbits_l)GPRLEN—nblts ||
end function

Valnbits—l ..0

The earlier examples can be expressed as
(of fset) CFRLEN-(16+2) 1| offget || 02

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 43

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

44

= sign extend.1l6 (offset) << 2)
and

sign extend(temp;; ¢)

= sign extend.32(temp)

Similarly for zero extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend. fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend. 64.

Existing pseudocode may use any of these, or other, notations.

3.2.2.4.2 memory_address

The pseudocode function memory address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. 1t is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 3.28 memory_address Pseudocode Function
function memory address (ea)
if User mode and Status.UX = 0 then return sign extend.32(ea)
/* Preliminary proposal to wrap privileged mode addresses */
if Supervisormode and Status.SX = 0 then return sign extend.32(ea)
if Kernel mode and Status.KX = 0 then return sign extend.32(ea)
/* if Hardware Page Table Walking, then wrap in same way as Kernel/VZ Root */
return ea
end function

On a 32-bit CPU, memory address returns its 32-bit effective address argument unaffected.

On a 64-bit processor, memory address optionally truncates a 32-bit address by sign extension, It discards car-
ries that may have propagated from the lower 32-bits to the upper 32-bits that would cause minor differences between

MIPS32 and MIPS64 execution.It is used in certain modes' on a MIPS64 CPU where strict compatibility with

MIPS32 is required. This behavior was and continues to be described in a section of Volume III of the MIPS ARM?-
However, the behavior was not formally described in pseudocode functions prior to Release 6.

In addition to the use of memory address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Ju—

Currently, if in User/Supervisor/Kernel mode and Status.UX/SX/KX=0.
E.g. see section named “Special Behavior for Data References in User Mode with Statusy;x=0”, in the MIPS(r)

Architecture Reference Manual Volume II1, the MIPS64(R) and microMIPS64(tm) Privileged Resource Archi-
tecture, e.g. in section 4.11 of revision 5.03, or section 4.9 of revision 1.00.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 Operation Section Notation and Functions

Figure 3.29 Instruction Fetch Implicit memory_address Wrapping
PC < memory address(PC)
(instruction data, length) < instruction fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 3.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)
vAddr < memory address (vAddr)

In addition to its use in instruction pseudocode,

3.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

3.2.2.5.1 SignalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.31 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument : A exception-dependent argument, if any */

endfunction SignalException

3.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 3.32 SignhalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

3.2.2.5.3 SighalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 45

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

Figure 3.33 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
3.2.2.5.4 NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 3.34 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
3.2.2.5.5 NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

Figure 3.35 NotWordValue Pseudocode Function

result < NotWordValue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */

NotWordValue < valuegs 5, # (valuesq)>?

endfunction NotWordvValue
3.2.2.5.6 PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 3.36 PolyMult Pseudocode Function

PolyMult (x, y)

temp « O
for i in 0 .. 31
if x; = 1 then
temp « temp xor (y(si-i)..0 || 0%
endif
endfor

PolyMult <« temp

endfunction PolyMult

46 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.3 Op and Function Subfield Notation

3.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

3.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a

variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 47 for a description of the op and function subfields.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 47

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Guide to the Instruction Set

48

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 4

Instruction Formats

This chapter defines the formats of microMIPS instructions. The microMIPS variable-length encoding comprises 16-
bit and 32-bit wide instructions. The 6-bit major opcode is left-aligned within the instruction encoding. Instructions
can have 0 to 4 register fields. For 32-bit instructions, the register field width is 5 bits, while for most 16-bit instruc-
tions, the register field width is 3 bits, utilizing instruction-specific register encoding. All 5-bit register fields are
located at a constant position within the instruction encoding.

The immediate field is right-aligned in the following instructions:
* some 16-bit instructions with 3-bit register fields
* 32-bit instructions with 16-bit or 26-bit immediate field

The name ‘immediate field’ as used here includes the address offset field for branches and load/store instructions as
well as the jump target field.

Other instruction-specific fields are typically located between the immediate and minor opcode fields. Instructions
that have multiple “other” fields are listed in alphabetical order according to the name of the field, with the first name
of the order located at the lower bit position. An empty bit field that is not explicitly shown in the instruction format
is located next to the minor opcode field.

Figure 4.1 and Figure 4.2 show the 16-bit and 32-bit instruction formats.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 49

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Instruction Formats

Figure 4.1 16-Bit Instruction Formats

15 10 9 0
S3R0O ‘ Major Opcode ‘ Minor Opc/Imm ‘
15 10 9 7 6 0
S3R1I7 ‘ Major Opcode ‘ rsl/d ‘ Minor Opc/lmm ‘
15 10 9 6 5 3 2 0
S3R2I10 ‘ Major Opcode ‘ Minor Opc | rs2/d ‘ rsl ‘
15 10 9 7 6 4 3 1 0
S3R2I3 ‘ Major Opcode ‘ rs2/d ‘ rsl ‘ Imm | M ‘
15 10 9 7 6 4 3 0
S3R214 ‘ Major Opcode ‘ rs2/d ‘ rsl ‘ Minor Opc/Imm ‘
15 10 9 7 6 4 3 1 0
S3R3I0 ‘ Major Opcode ‘ rd ‘ rs2 ‘ rsl | M ‘
15 10 9 5 4 0
S5R1I10 ‘ Major Opcode ‘ Minor opc ‘ rsl/d ‘
15 10 9 5 4 0
S5R1I5 ‘ Major Opcode ‘ rd ‘ Minor Opc/Imm ‘

15 10 9 5 4 0

S5R210 ‘ Major Opcode ‘ rd ‘ rsl ‘

50 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 4.2 32-Bit Instruction Formats

31 26 25 0
RO ‘ Major Opcode ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
R1 ‘ Major Opcode ‘ Imm/Other ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 0
R2 ‘ Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 0
R3 ‘ Major Opcode ‘ rt/ft/index ‘ rs/fs/base ‘ rd/fd ‘ Immediate/Minor Opcode/Other ‘
31 26 25 21 20 16 15 11 10 6 5 0
R4 ‘ Major Opcode ‘ rt/ft ‘ rsifs ‘ rd/fd ‘ rr/fr Minor Opcode/Other ‘

Figure 4.3 Immediate Fields within 32-Bit Instructions

32-bit instruction formats with 26-bit immediate fields:

31 26 25 0

ROI26 ‘ Major Opcode ‘ Immediate ‘

31 26 25 16 15 0

ROI16 ‘ Major Opcode ‘ Minor Opcode/Other Immediate ‘

32-bit instruction formats with 16-bit immediate fields:

31 26 25 21 20 16 15 0
R1116 ‘ Major Opcode ‘ Minor Opcode/Other ‘ rs/fs ‘ Immediate ‘

31 26 25 21 20 16 15 0
R2116 ‘ Major Opcode ‘ rt/ft ‘ rsifs ‘ Immediate ‘

32-bit instruction formats with 12-bit immediate fields:

31 26 25 21 20 16 15 12 11 0
R1I12 ‘ Major Opcode ‘ Other ‘ rsifs ‘ Minor Opcode ‘ Immediate ‘

31 26 25 21 20 16 15 12 11 0
R2I12 ‘ Major Opcode ‘ rt/ft ‘ rsifs ‘ Minor Opcode ‘ Immediate ’
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 51

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Instruction Formats

The instruction size can be completely derived from the major opcode. For 32-bit instructions, the major opcode also
defines the position of the minor opcode field and whether or not the immediate field is right-aligned.

Instructions formats are named according to the number of the register fields and the size of the immediate field. The
names have the structure R<x>I<y>. For example, an instruction based on the format R2I16 has 2 register fields and
a 16-bit immediate field.

Table 4.1 shows all formats. The 16-bit formats refer to either 3-bit or 5-bit register fields. To visualize this, a 16-bit
format name starts with the prefix S3 or S5 respectively.

Table 4.1 microMIPS Opcode Formats

32-bit
Instruction
Formats
(additional
32-bit Instruction format(s) for 16-bit
Formats (existing new Instruction
instructions) instructions) Formats
ROIO R2I12 S3R0I0
ROI8 S3ROI10
ROI16 S3R117
ROI26 S3R210
R1I0 S3R2I13
R112 S3R214
R117 S3R311
R1I8 S5R110
R1I10 S5R114
R1I16 S5R210
R210
R2I12
R2I3
R214
R2I5
R2110
R2116
R3I0
R3I3
R410

4.1 Instruction Stream Organization and Endianness

16-bit instructions are placed within the 32-bit (or 64-bit) memory element according to system endianness.

52 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

4.1 Instruction Stream Organization and Endianness

* On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16, and the second instruction
is read from bits 15..0.

* On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0, and the second instruction
is read from bits 31..16.

The above rule also applies to the halfwords of 32-bit instructions. This means that a 32-bit instruction is not treated
as a word data type; instead, the halfwords are treated in the same way as individual 16-bit instructions. The halfword
containing the major opcode is always the first in the sequence.

Example:
SRL rl, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 000O0O0O
hex representation: 0021 3840
Address: 3 2 1 0
Little Endian: Data: 38 40 00 21
Address: 0 1 2 3
Big Endian: Data: 00 21 38 40

Instructions are placed in memory such that they are in-order with respect to the address.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 53

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Instruction Formats

54 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 5

microMIPS Instruction Set

This chapter lists all microMIPS encoded instructions, sorted into 16-bit and 32-bit categories.
In the 16-bit category:

* Frequent MIPS64 instructions and macros, re-encoded as 16-bit. Register and immediate fields are reduced in
size by using encodings of frequently occurring values.

In the 32-bit category:

* All MIPS64 instructions, including all application-specific extensions except MIPS16e, re-encoded:
MIPS64, MDMX ASE, MIPS-3D ASE, MIPS DSP ASE, MIPS MT ASE, and SmartMIPS ASE.

* Opcode space for user-defined instructions (UDIs).
* New instructions designed primarily to reduce code size.

To differentiate between 16-bit and 32-bit encoded instructions, the instruction mnemonic can be optionally extended
with the suffix “16” or “32” respectively. This suffix is placed at the end of the instruction before the first .’ if there
is one. For example:

ADD16, ADD32, ADD32.PS, DADDIU32
If these suffixes are omitted, the assembler automatically chooses the smallest instruction size.

For each instruction, the tables in this chapter provide all necessary information about the bit fields. The formats of
the instructions are defined in Chapter 4, “Instruction Formats” on page 49. Together with the major and minor
opcode encodings, which can be derived from the tables in Chapter 7, “Opcode Map” on page 409, the complete
instruction encoding is provided.

Most register fields have a width of 5 bits. 5-bit register fields use linear encoding (rf0="00000’, r1="00001", etc.). For
16-bit instructions, whose register field size is variable, the register field width is explicitly stated in the instruction
table (Table 5.1 and Table 5.2), and the individual register and immediate encodings are shown in Table 5.3. The
‘other fields’ are defined by the respective column, with the order of these fields in the instruction encoding defined
by the order in the tables.

5.1 16-Bit Category

5.1.1 Frequent MIPS64 Instructions

These are frequent MIPS64 instructions with reduced register and immediate fields containing frequently used regis-
ters and immediate values.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 55

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

microMIPS Instruction Set
MOVE is a very frequent instruction. It therefore supports full 5-bit unrestricted register fields for maximum effi-
ciency. In fact, MOVE used to be a simplified macro of an existing MIPS64 instruction.

There are 2 variants of the LW and SW instructions. One variant implicitly uses the SP register to allow for a larger
offset field. The value in the offset field is shifted left by 2 before it is added to the base address.

There are four variants of the ADDIU instruction:

1. A variant with one 5-bit register specifier that allows any GPR to be the source and destination register

2. A variant that uses the stack pointer as the implicit source and destination register

3. A variant that has separate 3-bit source and destination register specifiers

4. A variant that has the stack pointer as the implicit source register and one 3-bit destination register specifier
A 16-bit NOP instruction is needed because of the new 16-bit instruction alignment and the need in specific cases to

align instructions on a 32-bit boundary. It can save code size as well. NOP is not shown in the table because it is real-
ized as a macro (as is NEGU).

NOP16 = MOVElé r0, rO

NEGUl6 rt, rs = SUBUl6 rt, r0, rs

Because microMIPS instructions are 16-bit aligned, the 16-bit branch instructions support 16-bit aligned branch tar-
get addresses. The offset field is left shifted by 1 before it is added to the PC.

The breakpoint instructions, BREAK and SDBBP, include a 16-bit variant that allows a breakpoint to be inserted at
any instruction address without overwriting more than a single instruction.

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

Table 5.1 16-Bit Re-encoding of Frequent MIPS64 Instructions

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other | Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUS5 POOL16D 5bit:1 4 5 0 1 Add Immediate
Unsigned Word Same
Register
ADDIUSP POOL16D 0 9 0 0 1 Add Immediate
Unsigned Word to
Stack Pointer
ADDIUR2 POOLI6E 2 3 3 0 1 Add Immediate
Unsigned Word
Two Registers
ADDIURISP | POOLI16E 1 6 3 0 1 Add Immediate
Unsigned Word
One Registers and
Stack Pointer
ADDUI16 POOLI16A 3 0 3 0 1 Add Unsigned Word
56 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.1 16-Bit Category

Table 5.1 16-Bit Re-encoding of Frequent MIPS64 Instructions (Continued)

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other | Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
AND16 POOL16C 2 0 3 0 4 AND
ANDI16 ANDI16 2 4 3 0 0 AND Immediate
B16 B16 0 10 0 0 Branch
BREAK16 POOL16C 0 0 4 0 6 Cause Breakpoint
Exception
JALRI16 POOL16C 1 0 5 0 5 Jump and Link
Register, 32-bit delay-
slot
JALRS16 POOL16C 1 0 5 0 5 Jump and Link
Register, 16-bit delay-
slot
JR16 POOL16C 1 0 5 0 5 Jump Register
LBU16 LBU16 2 4 3 0 0 Load Byte Unsigned
LHU16 LHU16 2 4 3 0 0 Load Halfword
LI16 LIl6 1 7 3 0 0 Load Immediate
LWI16 LWI16 2 4 3 0 0 Load Word
LWGP LWGP16 1 7 3 0 0 Load Word GP
LWSP LWSP16 Sbit:1 5 5 0 0 Load Word SP
MFHI16 POOL16C 1 0 5 0 5 Move from
HI Register
MFLO16 POOL16C 1 0 5 0 5 Move from
LO Register
MOVEI16 MOVEI16 2 0 5 0 0 Move
NOT16 POOL16C 2 0 3 0 4 NOT
OR16 POOL16C 2 0 3 0 4 OR
SB16 SB16 2 4 3 0 0 Store Byte
SDBBP16 POOL16C 0 0 4 0 6 Cause Debug
Breakpoint Exception
SH16 SH16 2 4 3 0 0 Store Halfword
SLL16 POOL16B 2 3 3 0 1 Shift Word Left
Logical
SRL16 POOL16B 2 3 3 0 1 Shift Word Right
Logical
SUBU16 POOL16A 3 0 3 0 1 Sub Unsigned
SW16 SW16 2 4 3 0 0 Store Word
SWSP SWSP16 Sbit:1 5 5 0 0 Store Word SP
XOR16 POOL16C 2 0 3 0 4 XOR

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

57

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

microMIPS Instruction Set

5.1.2 Frequent MIPS64 Instruction Sequences

These 16-bit instructions are equivalent to frequently-used short sequences of MIPS64 instructions. The instruction-
specific register and immediate value selection are shown in Table 5.3.

Table 5.2 16-Bit Re-encoding of Frequent MIPS64 Instruction Sequences

Register | Total
Major Number of | Immediate Field Sizeof | Empty O Minor
Opcode Register Field Size Width Other | Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
BEQZ16 BEQZ16 1 7 3 0 0 Branch on Equal Zero
BNEZ16 BNEZ16 1 7 3 0 0 Branch on
Not Equal Zero
JRADDIUSP | POOL16C 0 5 5 Jump Register;
ADDIU SP
JRC POOL16C 1 0 5 0 5 Jump Register Com-
pact
LWM16 POOL16C 0 4 2 0 4 Load Word Multiple
MOVEP POOLI16F 3 (encoded) 0 3(encoded) 0 1 Move Register Pair
SWMI16 POOL16C 0 4 2 0 4 Store Word Multiple
58 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.1 16-Bit Category

5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
ADDIUSS Shit:1 4 rd: 5 bit field -8..0..7
ADDIUSP 0 9 (-258..-3,2.257) << 2
ADDIUR2 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 -1,1,4,8,12, 16, 20, 24
ADDIURISP 1 6 rd:2-7,16, 17 (0..63) <<2
ADDU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
AND16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
ANDI16 2 4 rs1:2-7,16, 17 rd:2-7,16, 17 1,2,3,4,7,8,15,16,31, 32,63,
64, 128, 255, 32768, 65535
Bl16 0 10 (-512.511) << 1
BEQZ16 1 7 1s1:2-7,16, 17 (-64..63) << 1
BNEZ16 1 7 rs1:2-7,16, 17 (-64..63) << 1
BREAKI16 0 4 0..15
JALR16 Shit:1 0 rsl:5 bit field
JALRSI16 Sbit:1 0 rsl:5 bit field
JRADDIUSP 0 5 (0.31)<<2
JR16 Shit:1 0 rsl:5 bit field
JRC Sbit:1 0 rs1:5 bit field
LBU16 2 4 rb:2-7,16,17 rd:2-7,16, 17 -1,0..14
LHUI16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) << 1
LI16 1 7 rd:2-7,16, 17 -1,0..126
LW16 2 4 rb:2-7,16,17 rd:2-7,16, 17 (0..15) <<2
LWMI16 2bit list:1 4 (0..15)<<2
LWGP 1 7 rd:2-7,16,17 (-64..63)<<2
LWSP Sbit:1 5 rd:5-bit field (0..31)<<2
MFHI16 Sbit:1 0 rd:5-bit field
MFLO16 Sbit:1 0 rd:5-bit field
MOVE16 Sbit:2 0 rd:5-bit field rs1:5-bit field
MOVEP 3 0 rd, re: 11:0,2,7,16-20 | r1s:0,2,7,16-20
(5,6).(5,7),(6,7),
(4,21),(4,22),(4,
5),(4,6),(4,7)
NOT16 2 0 rsl:2-7,16, 17 rd:2-7,16, 17
OR16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17
SB16 2 4 rb:2-7,16,17 rsl:0, 2-7, 17 0..15

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

59

microMIPS Instruction Set

Table 5.3 Instruction-Specific Register Specifiers and Immediate Field Values (Continued)

Number
of Immediate Register 1 Register 2 Register 3
Register | Field Size Decoded Decoded Decoded Immediate Field Decoded
Instruction Fields (bit) Value Value Value Value
SDBBP16 0 0 0..15
SH16 2 4 h:2-7,16,17 rs1:0, 2-7, 17 (0.15) <<1
SLL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SRL16 2 3 rsl:2-7,16, 17 rd:2-7,16, 17 1..8 (see encoding tables)
SUBU16 3 0 rsl:2-7,16, 17 rs2:2-7,16, 17 rd:2-7,16, 17
SW16 2 4 b:2-7,16,17 rs1:0,2-7, 17 (0..15) <<2
SWSP 5bit:1 5 rsl: 5 bit field (0.31)<<2
SWM16 2 bit list:1 4 (0..15)<<2
XORI16 2 0 rs1:2-7,16, 17 rd:2-7,16, 17

5.2 16-bit Instruction Register Set

Many of the 16-bit instructions use 3-bit register specifiers in their binary encodings. The register set used for most of
these 3-bit register specifiers is listed in Table 5.5. The register set used for SB16, SH16, SW16 source register is
listed in Table 5.5. These register sets are a true subset of the register set available in 32-bit mode; the 3-bit register
specifiers can directly access 8 of the 32 registers available in 32-bit mode (which uses 5-bit register specifiers).

In addition, specific instructions in the 16-bit instruction set implicitly reference the stack pointer register (sp), global
pointer register (gp), the return address register (ra), the integer multiplier/divider output registers (HI/LO) and the
program counter (PC). Of these, Table 5.6 lists Sp, gp and ra. Table 5.7 lists the microMIPS special-purpose registers,
including PC, Hl and LO.

The microMIPS also contains some 16-bit instructions that use 5-bit register specifiers. Such 16-bit instructions pro-
vide access to all 32 general-purpose registers.

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding! | Encoding? ArchDefs.h) Description
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
60 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.2 16-bit Instruction Register Set

Table 5.4 16-Bit Instruction General-Purpose Registers - $2-$7, $16, $17 (Continued)

16-Bit 32-Bit MIPS | symbolic Name

Register Register (From
Encoding? Encoding? ArchDefs.h) Description
7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tion using 3-bit register specifiers. The Move instruction can access all 32 general-purpose

registers.

Table 5.5 SB16, SH16, SW16 Source Registers - $0, $2-$7, $17

16-Bit 32-Bit MIPS | symbolic Name
Register Register (From
Encoding! | Encoding? ArchDefs.h) Description

0 0 Zero Hard-wired Zero

1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

1. “0-7” correspond to the register’s 16-bit binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
microMIPS instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or
the symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register
number 17 in the register file, the programmer references $17 or s1, even though the micro-
MIPS binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the 16-bit instruc-
tions using 3-bit register specifier. The Move instruction can access all 32 general-purpose
registers.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 61

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

microMIPS Instruction Set

Table 5.6 16-Bit Instruction Implicit General-Purpose Registers

16-Bit 32-Bit MIPS | Symbolic Name

Register Register (From

Encoding Encoding ArchDefs.h) Description
Implicit 28 ep Global pointer register
Implicit 29 sp Stack pointer register
Implicit 31 ra Return address register

Table 5.7 16-Bit Instruction Special-Purpose Registers

Symbolic Name Purpose
PC Program counter. The PC-relative ADDIU can access this
register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

5.3 32-Bit Category

The instructions in the following tables are pre-Release 6 instructions. Refer to Section 2.7 “Release 6 of the MIPS
Architecture” to understand which instructions have been removed in Release 6.

5.3.1 New 32-bit instructions

The following table lists the 32-bit instructions introduced in the microMIPS ISA. Only instructions introduced prior
to Release 6 are included in this table. JALRS, JALRS.HB, JALS, and JALX have been removed in Release 6.

Table 5.8 32-bit Instructions introduced within microMIPS

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other |FieldSize | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
ADDIUPC ADDIUPC 1 23 3 0 0 ADDIU PC-Relative
BEQZC POOL321 2:5 bit 16 5 0 Branch on
Equal to Zero, No
Delay Slot
BNEZC POOL321 2:5 bit 16 5 0 Branch on
Not Equal to Zero, No
Delay Slot
JALRS POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter, Short Delay Slot
62 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.3 32-Bit Category

Table 5.8 32-bit Instructions introduced within microMIPS (Continued)

Register | Total
Major Number of | Immediate Field Sizeof | Empty 0 Minor
Opcode Register Field Size Width Other |Field Size | Opcode
Instruction Name Fields (bit) (bit) Fields (bit) Size (bit) Comment
JALRS.HB POOL32A 2:5 bit 0 5 16 Jump and Link Regis-
ter with Hazard Bar-
rier, Short Delay Slot
JALS JALS32 0 26 0 Jump and Link, Short
Delay Slot
JALX JALX 26 5 0 5 Jump and Link
Exchange
LDM POOL32B 1:5bit 12 5 0 4 Load DoubleWord
Multiple
LDP POOL32B 2:5 bit 12 0 4 Load DoubleWord Pair
LWP POOL32B 2:5 bit 12 5 0 4 Load Word Pair
LWXS POOL32A 3:5 bit 0 5 0 1 10 Load Word Indexed,
Scale
LWM32 POOL32B 1:5bit 12 5 0 4 Load Word Multiple
SDM POOL32B 1:5bit 12 5 0 4 Store DoubleWord
Multiple
SDP POOL32B 2:5 bit 12 0 4 Load DoubleWord Pair
SWP POOL32B 2:5 bit 12 0 4 Load Word Pair
SWM32 POOL32B 1:5bits 12 5 0 4 Store Word Multiple

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

63

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 5

5.4 Instructions Specific to microMIPS

This section describes instructions unique to microMIPS.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

64

ADDIUR1SP Add Immediate Unsigned Word One Register (16-bit instr size)

15 10 9 7 6 1o
POOLI16E .
011011 rd Immediate 1
6 3 6 n
Format: ADDIUR1SP rd, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word One Register (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR [rd] « GPR[29] + zero_extend(immediate << 2)

The 6-bit immediate field is first shifted left by two bits and then zero-extended. This amount is added to the 32-bit
value in GPR 29 and the 32-bit arithmetic result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp < GPR[29] + zero extend (immediate || 0?)

GPR[rd] <« sign_extend(temp;; g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 65

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUR2 Add Immediate Unsigned Word Two Registers (16-bit instr size)

15 10 9 7 6 4 3 1 0

POOLI16E rd s Encoded 0
011011 Immediate

6 3 3 3 1

Format: ADDIUR2 rd, rsl, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word Two Registers (16-bit instr size)

To add a constant to a 32-bit integer.

Description: GPR [rd] <« GPR[rs] + sign_extend(decoded immediate)
The encoded immediate field is decoded to obtain the actual immediate value.

The decoded immediate value is sign-extended and then added to the 32-bit value in GPR rs, and the 32-bit arithmetic
result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Table 5.9 Encoded and Decoded Values of the Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Value of Value of
Instrg 3 Instrg 3 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 1 0x0001
1 0x1 4 0x0004
2 0x2 8 0x0008
3 0x3 12 0x000c
4 0x4 16 0x0010
5 0x5 20 0x0014
6 0x6 24 0x0018
7 0x7 -1 Ox ffff

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) then
UNPREDICTABLE
endif
temp <~ GPR[rs] + sign extend(decoded immediate)
GPR [rd] < sign_extend(temp;3;)
Exceptions:

None

66 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.02 67

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

15 10 9 5 4 10
POOL16D .

010011 rd Immediate | 0

6 5 . :

Format: ADDIUS5 rd, decoded immediate value microMIPS

Purpose: Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

To add a constant to a 32-bit integer

Description: GPR[rd] <« GPR[rd] + sign extend (immediate)

The 4-bit immediate field is sign-extended and then added to the 32-bit value in GPR rd. The 32-bit arithmetic result
is sign-extended and placed into GPR rd.

The 5-bit register select allows this 16-bit instruction to use any of the 32 GPRs as the destination register.

No Integer Overflow exception occurs under any circumstances.

Table 5-1 Encoded and Decoded Values of Signed Immediate Field

Encoded Encoded Decoded Decoded
Value of Value of Vvalue of Vvalue of
Instry 4 Instry 4 Immediate Immediate
(Decimal) (Hex) (Decimal) (Hex)
0 0x0 0 0x0000
1 0x1 1 0x0001
2 0x2 2 0x0002
3 0x3 3 0x0003
4 0x4 4 0x0004
5 0x5 5 0x0005
6 0x6 6 0x0006
7 0x7 7 0x0007
8 0x8 -8 0xfff8
9 0x9 -7 0xfff9
10 Oxa -6 Oxftfa
11 0xb -5 0xfftb
12 0xc -4 Oxfffc
13 Oxd -3 Oxftffd
14 Oxe 2 Oxfffe
15 0xf -1 Ox ffff
68 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUS5 Add Immediate Unsigned Word 5-Bit Register Select (16-bit instr size)

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp «-GPR[rd] + sign extend(immediate)
GPR[rd] <« sign_extend(temps;)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 69

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

70

ADDIUSP

15

Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

10 9

POOL16D
010011

Encoded
Immediate

Format:

6

ADDIUSP decoded immediate value

9

Purpose: Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

To add a constant to the stack pointer.

Description: GPR[29] « GPR[29] + sign extend(decoded immediate << 2)

The encoded immediate field is decoded to obtain the actual immediate value.

microMIPS

The actual immediate value is first shifted left by two bits and then sign-extended. This amount is added to the 32-bit
value in GPR 29, and the 32-bit arithmetic result is sign-extended and placed into GPR 29.

No Integer Overflow exception occurs under any circumstances.

Table 5.10 Encoded and Decoded Values of Immediate Field

Encoded Value of Encoded Value of Decoded Value of Decoded Value of
Instrg 1 Instrg 3 Immediate Immediate

(Decimal) (Hex) (Decimal) (Hex)
0 0x0 256 0x0100

1 0x1 257 0x0101

2 0x2 2 0x0002

3 0x3 3 0x0003

254 Oxfe 254 0x00fe
255 Oxff 255 0x00ff
256 0x100 -256 0xff00
257 0x101 -255 0xffo1
508 Ox1fc -4 Oxfffc

509 Ox1fd -3 Oxfftd
510 Ox1fe -258 Oxfefe

511 Ox1ff -257 Oxfeff

Restrictions:

If GPR 29 does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is

UNPREDICTABLE.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUSP Add Immediate Unsigned Word to Stack Pointer(16-bit instr size)

Operation:

if NotWordvalue (GPR[rs]) then
UNPREDICTABLE
endif
temp < GPR[29] + sign extend(decoded immediate || 0?)
GPR[29] <« sign extend(temp;;)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 71

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDU16 Add Unsigned Word (16-bit instr size)

15 10 9 7 6 4 3 1 0
POOL16A
000001 s rt rd 0
6 3 3 3 1
Format: abpuié rd, rs, rt microMIPS

Purpose: Add Unsigned Word (16-bit instr size)
To add 32-bit integers

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs, and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« GPR[rs] + GPR[rt]
GPR[rd] < sign_extend(temps; _g)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

72 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AND16

POOL16C " s ANDI6
010001 0001
6 4

Format: AND16 rt, rs

Purpose: And (16-bit instr size)
To do a bitwise logical AND

Description: GPR [rt] « GPR[rs] AND GPR[rt]

And (16-bit instr size)

microMIPS

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is

placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:

GPR[rt] « GPR[rs] and GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

73

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

74

ANDI16 And Immediate (16-bit instr size)

15 10 9 7 6 4 3 0
ANDI16 Encoded
rd s .
001011 Immediate
6 3 3 4

Format: ANDI16 rd, rs, decoded immediate value microMIPS

Purpose: And Immediate (16-bit instr size)

To do a bitwise logical AND with a constant

Description: GPR[rd] <« GPR[rs] AND zero extend(decoded immediate)
The encoded immediate field is decoded to obtain the actual immediate value

The decoded immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical
AND operation. The result is placed into GPR rd.

Table 5-2 Encoded and Decoded Values of Immediate Field

Encoded Value of Encoded Value of Decoded Value of Decoded Value of
Instrz o (Decimal) Instrz o (Hex) Immediate (Decimal) Immediate (Hex)

0 0x0 128 0x80

1 0x1 1 0x1

2 0x2 2 0x2

3 0x3 3 0x3

4 0x4 4 0x4

5 0x5 7 0x7

6 0x6 8 0x8

7 0x7 15 0xf

8 0x8 16 0x10

9 0x9 31 Ox1f

10 Oxa 32 0x20

11 0xb 63 0x3f

12 Oxc 64 0x40

13 0xd 255 Oxff

14 Oxe 32768 0x8000

15 0xf 65535 Oxffff

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

GPR[rd] <« GPR[rs]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

and zero_ extend(decoded immediate)

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC16

Unconditional Branch Compact (16-bit instr size)

15 10 9
BCl16
110011 offset
6 10

Format: BC16 offset

Purpose: Unconditional Branch Compact (16-bit instr size)

To do an unconditional branch

Description: branch

microMIPS Release 6

A 11-bit signed offset (the 10-bit offset field shifted left 1 bits) is added to the address of the instruction following the

branch (not the branch itself) to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is

taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.

Operation:

target offset < sign extend(offset || 0%)

PC « PC + target offset

Exceptions:

None

Programming Notes:

With the 11-bit signed instruction offset, the branch range is + 1 Kbytes. Use jump (JRC16 or JIC) or 32-bit branch

instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

75

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BEQZzC16 Branch on Equal to Zero Compact (16-bit instr size)

76

15 10 9 7 6 0
BEQZC16 offset
100011 s
6 3 7
Format: BEQZC16 rs, offset microMIPS Release 6

Purpose: Branch on Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: i1 GPR[rs] = 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself) to form a PC-relative effective target address.

If the contents of GPR rs equals zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

target offset <« sign extend(offset || 0)
condition <« (GPR[rs] == 0)
if condition then
PC < PC + target offset
endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is + 64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BNEZC16 Branch on Not Equal to Zero Compact (16-bit instr size)

15 10 9 7 6 0
BNEZC16 . offset
101011 s
6 3 7
| Format: BNEzCl6 rs, offset microMIPS Release 6
| Purpose: Branch on Not Equal to Zero Compact (16-bit instr size)

To compare a GPR to zero then do a PC-relative conditional branch

Description: if GPR[rs] != 0 then branch

A 8-bit signed offset (the 7-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

If the contents of GPR rs does not equal zero, branch to the effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:
The 3-bit register field can only specify GPRs $2-$7, $16, $17.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.
Operation:
target offset <« sign extend(offset || 0)
condition <« (GPR[rs] != 0)

if condition then
PC <« PC + target offset
endif

Exceptions:

None

Programming Notes:

With the 8-bit signed instruction offset, the conditional branch range is + 64 Bytes. Use 32-bit branch, jump (JRC16
or JIC) instructions to branch to addresses outside this range.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 77

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BREAK16 Breakpoint

78

15 10 9 6 5 0
POOL16C code BREAK16
010001 011011
6 4 6
Format: BREAK16 microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the
contents of the memory word containing the instruction.

Restrictions:

None
Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALRC16 Jump and Link Register Compact (16-bit instr size)

15 10 9 5 4 0
POOL16C s JALRCI16
010001 01011
6 5 5
Format: JALRC16 rs microMIPS Release 6

Purpose: Jump and Link Register Compact (16-bit instr size)

To execute a procedure call to an instruction address in a register

Description: GPR[31] <« return addr, PC <« GPR[rs]

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Place the return address link in GPR r31. The return link is the address of the first instruction following the branch,
where execution continues after a procedure call.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and if the ISAMode bit of the target is MIPS64 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Operation:

temp <« GPR[rs]
GPR[31] « PC + 4
if Config3;gy = 1 then
PC <« temp

else
PC « tempgppran-1..1 || 0
ISAMode <« temp,
endif
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 79

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

None

80 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JRCADDIUSP Jump Register Compact, Adjust Stack Pointer (16-bit)

15 10 9 5 4 0
POOL16C immediate JRCADDIUSP
010001 10011
6 5 5
Format: JRCADDIUSP decoded immediate microMIPS Release 6

Purpose: Jump Register Compact, Adjust Stack Pointer (16-bit)

To execute a branch to an instruction address in a register and adjust stack pointer

Description: PC < GPR[ral; SP < SP + zero_extend(Immediate << 2)

For processors that do not implement the MIPS64 1SA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

The 5-bit immediate field is first shifted left by two bits and then zero-extended. This amount is then added to the 32-
bit value of GPR 29 and the 32-bit arithmetic result is sign-extended and placed into GPR 29. No Integer Overflow
exception occurs under any circumstances for the update of GPR 29.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and the ISAMode bit of the target address is MIPS64 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

If GPR 29 does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Operation:

PC < GPRI[31lgprren-1..1 || ©
if (Config3igy > 1)
ISAMode < GPR[31],

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 81

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
if NotWordvValue (GPR[29]) then
UNPREDICTABLE
endif
temp <« GPR[29] + zero extend(immediate || 0?)
GPR[29] <« sign_extend(temps; g)

Exceptions:

None.

Programming Notes:

82 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JRC16 Jump Register Compact (16-bit instr size)

15 10 9 5 4 0
POOL16C s JRCI16
010001 00011
6 5 5
Format: JrCcie «rs microMIPS
| Purpose: Jump Register Compact (16-bit instr size)

To execute a branch to an instruction address in a register

Description: PC « GPR[rs]

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.
Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and the ISAMode bit of the target address is MIPS64 (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

temp <« GPR[rs]
if Config3;gy = 1 then
PC <« temp

else
PC « tempgppran-1..1 || 0
ISAMode <« temp,
endif
Exceptions:
| None
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 83

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBU16 Load Byte Unsigned (16-bit instr size)

84

15 10 9 7 6 4 3 0
LBUl16 ot base encoded
000010 offset
6 3 3 4
Format: LBUl16 rt, decoded offset (base) microMIPS

Purpose: Load Byte Unsigned (16-bit instr size)

To load a byte from memory as an unsigned value

Description: GPR[rt] <« memory[GPR[base] + decoded offset]

The encoded offset field is decoded to get the actual offset value. This decoded value is added to the contents of base
register to create the effective address. Table 5.11 shows the encoded and decode values of the offset field.

Table 5.11 Offset Field Encoding Range -1, 0..14

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
a 10
b 11
c 12
d 13
e 14
f -1

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 4-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded offset <« Decode (encoded offset)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

VAddr <« sign extend(decoded offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian?)
memdoubleword <« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr, , xor BigEndianCPU?

GPR[rt] <« zero_extend (memdoublewordy, gpyte. .s*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.02 85

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDM

Load Doubleword Multiple

31 26 25 21 20 16 15 12 11 0
POOL32B . LDM
001000 reglist base 0111 offset
6 5 5 4 12
Format: 1DM {sregs, } {ra}, offset (base) microMIPS

Purpose: Load Doubleword Multiple

To load a sequence of consecutive doublewords from memory

Description: {Gpr[16],{GPR[17], {GPRI[18], {GPR[19], {GPR[20], {GPR[21],{GPR[22], {GPR[23],

{GPR[301}}}}}}}}H{GPRI31]} «
memory [GPR [base] +offset], ...

,memory [GPR [base] +offset+8* (fn (reglist))]

The contents of consecutive 64-bit words at the memory location specified by the naturally aligned effective address
are fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The
12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding

(Binary) List of Registers Loaded

00001 GPR[16]

00010 GPR[16], GPR[17]

00011 GPR[16], GPR[17], GPR[18]

00100 GPR[16], GPR[17], GPR[18], GPR[19]

00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]

10001 GPR[16], GPR[31]

10010 GPR[16], GPR[17], GPR[31]

10011 GPR[16], GPR[17], GPR[18], GPR[31]

10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations

Reserved

86

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDM Load Doubleword Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instruction is UNDEFINED, if base is included in reglist. Reason for this is to allow restartabil-
ity of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if (Are64bitOperationsEnabled() then
vAddr < sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR [gpr (reglist,i)] <« memdoubleword
vAddr <« vAddr + 8
endfor
else
SignalException (ReservedInstruction)
endif

function fn(list)
fn <« number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 87

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDP

88

Load Doubleword Pair

26 25 21 20 16 15 12 11 0
POOL32B LDP
001000 rd base 0100 offset
6 5 5 4 12
Format: L1LDP rd, offset (base) microMIPS

Purpose: Load Doubleword Pair

To load two consecutive doublewords from memory

Description: GPR[rd], GPR[rd+l] <« memory [GPR[base] + offset]
The contents of the two consecutive 64-bit words at the memory location specified by the aligned effective address

are fetched and placed in GPR rd and (rd+1). The 12-bit signed offset is added to the contents of GPR base to form
the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:
The behavior of the instructions is UNDEFINED if rd equals $31.

The behavior of the instruction is UNDEFINED, if base and rd are the same. Reason for this is to allow restartability
of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if (Are64bitOperationsEnabled() then
vAddr <« sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)<«
memdoubleword <« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)«
GPR [rd] <« memdoubleword
vAddr <« sign extend(offset) + GPR[base] + 8
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD) <«
memdoubleword < LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA) <«
GPR [rd+1] « memdoubleword)

else
SignalException (ReservedInstruction)

endif

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction may execute for a variable number of cycles and performs two loads from memory. A full restart of
the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

89

LHU16 Load Halfword Unsigned (16-bit instr size)

90

15 10 9 7 6 4 3 0
LHUI6
rt
001010 base offset
6 3 3 4
Format: LHUl6 rt, left shifted offset (base) microMIPS

Purpose: Load Halfword Unsigned (16-bit instr size)

To load a halfword from memory as an unsigned value

Description: GPR[rt] <« memory [GPR[base] + (offset x2)]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 4-bit unsigned offset is left shifted by one bit and then added to the contents
of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:
vAddr <« zero_extend(offset || 0) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAddr < pAddrpgrge.i 3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] <« zero_extend (memdoubleword;s,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LI16

15 10 9

Load Immediate Word (16-bit instr size)

LI16

111011 rd

Encoded
Immediate

6 3
Format: 1LI16 rd, decoded immediate

Purpose: Load Immediate Word (16-bit instr size)

To load a 6-bit constant into a register.

Description: GPR[rd] « decoded immediate

7

microMIPS

The 7-bit encoded Immediate field is decoded to obtain the actual immediate value. Table 5.12 shows the encoded
values of the Immeidiate field and the actual immediate values.

Table 5.12 L116 -1, 0..126 Immediate Field Encoding Range

Encoded Input | Decoded Value
(Hex) (Decimal)
0 0
1 1
2 2
3 3
Te 126
7f -1

The actual decoded immediate value is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_ immediate <« Decode (encoded immediate)
temp <« sign extend(decoded immediate)

GPR[rd] < tempg; o

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

91

LWP

31

Load Word Pair

26 25 21 20 16 15 12 11 0

POOL32B LWP
001000 rd base 0001 offset

92

6 5 5 4 12
Format: LWP rd, offset (base) microMIPS

Purpose: Load Word Pair

To load two consecutive words from memory

Description: GPR[rd], GPR[rd+l] <« memory [GPR[base] + offset]

The contents of the two consecutive 32-bit words at the memory location specified by the 32-bit aligned effective
address are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd and (rd+1). The
12-bit signed offset is added to the contents of GPR base to form the effective address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:
The behavior of the instructions is UNPREDICTABLE if rd equals r31.

The behavior of the instruction is UNPREDICTABLE, if base and rd are the same. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrzs.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 02)

GPR[rd] <« sign_extend (memdoublewords;,g«pyte..a*byte)

vAddr <« sign_extend(offset) + GPR[base] + 4

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrzz.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 02)

GPR[rd+1] <« sign_extend (memdoublewords;,gspyte. .s+byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LW16 Load Word (16-bit instr size)

15 10 9 7 6 4 3 0
LWI16
rt
011010 base offset
6 3 3 4
Format: 1wile rt, left shifted offset (base) microMIPS

Purpose: Load Word (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] <« memory [GPR[base] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 4-bit signed offset is left shifted by two
bits and then is added to the contents of GPR base to form the effective address.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr < sign extend(offset|| 02) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pPAddr < pAddrpgrge.1 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 0%)

GPR[rt] <« sign_extend(memdoublewords;,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 93

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWM32

Load Word Multiple

31 26 25 21 20 16 15 2 u 0
POOL32B . LwWM32
001000 reglist base 0101 offset
6 5 5 a4 12
Format: 1wM32 {srel6, } {ra}, offset (base) microMIPS

Purpose: Load Word Multiple

To load a sequence of consecutive words from memory

Description: {Gpr[16],{GPR[17],{GPRI[18],{GPR[19], {GPR[20], {GPR[21],{GPR[22], {GPR[23],
{GPR[301}}}}}}}}}{GPR[31]} «

memory [GPR [base] +offset], ..

. ,memory [GPR [base] +offset+4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 12-bit
signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding

(binary) List of Registers Loaded

00001 GPR[16]

00010 GPR[16], GPR[17]

00011 GPR[16], GPR[17], GPR[18]

00100 GPR[16], GPR[17], GPR[18], GPR[19]

00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]

00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]

00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]

10001 GPR[16], GPR[31]

10010 GPR[16], GPR[17], GPR[31]

10011 GPR[16], GPR[17], GPR[18], GPR[31]

10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]

10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]

10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]

All other combinations

Reserved

94

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWM32 Load Word Multiple

left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instruction is UNPREDICTABLE, if base is included in reglist. Reason for this is to allow
restartability of the operation if an interrupt or exception has aborted the operation in the middle.

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pPAddr < pAddrpgrge.1 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 0?)

GPR[gpr (reglist,i)] <« sign extend(memdoublewords,,g«pyte..s*byte)
vAddr <« vAddr + 4
endfor

function fn(list)
fn < (number of entries in list) - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 95

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

96

LWM16 Load Word Multiple (16-bit)

POOL16C realist offset LWMI16
010001 & 0010
6 2 4 4
Format: rwMle so0, {s1, {s2, {s3,}}} ra, left shifted offset (sp) microMIPS

Purpose: Load Word Multiple (16-bit)

To load a sequence of consecutive words from memory
Description: Gpr[16], {GPR[17], {GPR[18], {GPRI[19],}}} GPRI31] «
memory [GPR[29] + (0ffset<<2)], ..., memory [GPR[19] + (offset<<2) +4* (fn(reglist))]

The contents of consecutive 32-bit words at the memory location specified by the 32-bit aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in the GPRs defined by reglist. The 4-bit
unsigned offset is first left shifted by two bits and then added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Loaded
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.
Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

vAddr < zero extend (offset||0%) + GPRI[spl]
if vAddr,; , # 02 then
SignalException (AddressError)
endif
for i« 0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 02)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR[gpr(reglist,i)] < sign_extend (memdoublewords; g«pyte..s*byte)
vAddr <« vAddr + 4
endfor

function fn(list)
fn < number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

| MIPS® Architecture for Programmers Volume [I-B: microMIPS64™ Instruction Set, Revision 6.02 97

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWGP Load Word from Global Pointer (16-bit instr size)

98

15 10 9 7 6 0
LWGP16
011001 rt offset
6 3 7
Format: LwGP rt, left shifted offset(gp) microMIPS

Purpose: Load Word from Global Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] <« memory[GPR[28] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 7-bit signed offset is left shifted by two
bits and then added to the contents of GPR 28 to form the effective address.

Restrictions:
The 3-bit register field can only specify GPRs $2-$7, $16, $17.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr < sign extend(offset|| 02) + GPR[28]
if vAddr, , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 02))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte « vAddr, , xor (BigEndianCPU || 02)
GPR[rt] <« sign_extend (memdoublewords,g«pyte..a*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWSP Load Word from Stack Pointer (16-bit instr size)

15 10 9 5 4 0
LWSP16
010010 rt offset
6 5 5
Format: Lwsp rt, left shifted offset (sp) microMIPS

Purpose: Load Word from Stack Pointer (16-bit instr size)

To load a word from memory as a signed value

Description: GPR[rt] « memory[GPR[29] + (offset x4)]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 5-bit signed offset is left shifted by two
bits, zero-extended and then is added to the contents of GPR 29 to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr <« zero extend(offset] | 0%) + GPR[29]
if vAddr,; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
memdoubleword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte <« vAddr, , xor (BigEndianCPU || 0?)
GPR[rt] <« sign_extend(memdoublewords;,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 99

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

15

10

MOVEI16
000011

rd

Is

6
Format: MOVE1l6 rd, rs

Purpose: Move Register (16-bit instr size)

To copy one GPR to another GPR.

Description: GPR[rd] « GPR[rs]

The contents of GPR rs are placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] <« GPR[rs]

Exceptions:

None

microMIPS

100 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVEP

Move a Pair of Registers

15 10 9 7 6 4 3 2
POOLI6C enc dest enc rt enc rs| 1 enc rs
010001 - - - -
6 3 3 1 1 2
Format: MOVEP rd, re, rs, rt microMIPS

Purpose: Move a Pair of Registers

To copy two GPRs to another two GPRs.

Description: GPR[rd] <« GPR[rs]; GPR[re] <« GPR[rt];

The contents of GPR rs are placed into GPR rd. The contents of GPR rt are placed into GPR re.

The register numbers rd and re are determined by the encoded enc_dest field:

Table 5.13 Encoded and Decoded Values of the Enc_Dest Field

Encoded Value | Encoded Value | Decoded Value | Decoded Value
of Instrg 7 of Instrg 7 of rd of re
(Decimal) (Hex) (Decimal) (Decimal)

0 0x0 5 6
1 0x1 5 7
2 0x2 6 7
3 0x3 4 21
4 0x4 4 22
5 0x5 4 5
6 0x6 4 6
7 0x7 4 7

Table 5.14 Encoded and Decoded Values of the Enc_rs and Enc_rt Fields

The register numbers rs and rt are determined by the encoded enc_rs and enc_rt fields:

Decoded Value
Encoded Value | Encoded Value of rt
of Instrg 4 (or | of Instrg_4 (or (or rs) Symbolic Name
Instrz 4) Instry 4) (From
(Decimal) (Hex) (Decimal) ArchDefs.h)
0 0x0 0 Zero
1 0x1 17 sl
2 0x2 2 v0
3 0x3 3 vl
4 0x4 16 s0
5 0x5 18 s2
6 0x6 19 s3
7 0x7 20 s4

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

101

MOVEP Move a Pair of Registers

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The destination register pair field, enc_dest, can only specify the register pairs defined in Table 5.13.
The source register fields enc_rs and enc_rt can only specify GPRs 0,2-3,16-20.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rd] <« GPR[rs]; GPR[re] <« GPR[rt]

Exceptions:

None

102 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NOT16

Release 6
POOLI16C ot s NOT16
010001 0000
6 3 3 4

Format: NOT16 rt, rs

Purpose: Invert (16-bit instr size)

To do a bitwise logical inversion.

Description: GPR[rt] <« GPR[rs] XOR Oxffffffffffffffff

Invert the contents of GPR rs in a bitwise fashion and place the result into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Availability and Compatibility:
This instruction has been recoded for Release 6.

Operation:
GPR[rt] <« GPR[rs] xor Oxffffffffffffffff

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Invert (16-bit instr size)

microMIPS

103

OR16 Or (16-bit instr size)

POOL16C " s OR16
010001 1001
6 3 3 4
Format: OR16 rt, rs microMIPS32

Purpose: Or (16-bit instr size)
To do a bitwise logical OR

Description: GPR[rt] « GPR[rs] or GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is
placed into GPR rt.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.
Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt] <« GPR[rs] or GPR[rt]

Exceptions:

None

104 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SB16 Store Byte (16-bit instr size)

15 10 9 7 6 4 3 0
SB16
100010 rt base offset
6 3 3 4
Format: sBi1e6 rt, offset (base) microMIPS

Purpose: Store Byte (16-bit instr size)

To store a byte to memory

Description: memory [GPR [base] + offset] <« GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The
4-bit unsigned offset is added to the contents of GPR base to form the effective address.

Restrictions:
The 3-bit base register field can only specify GPRs $2-$7, $16, $17.
The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Operation:

vAddr <« zero_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrgg.1. .3 || (pAddr, , xor ReverseEndian?)
bytesel « vAddr, , xor BigEndianCPU?
datadoubleword <« GPRI[rt]gs_gspytesel..o
StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

| | OS*bytesel

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 105

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDBBP16 Software Debug Breakpoint (16-bit instr size)

106

15 10 9 6 5 0
POOL16C code SDBBP16
010001 111011
6 4 6
Format: SDBBP16 code EJTAG+microMIPS

Purpose: Software Debug Breakpoint (16-bit instr size)

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgy.code field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word
containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

and Config5.SBRI = 0If Debugpy = 0 then
SignalDebugBreakpointException ()
else
SignalDebugModeBreakpointException ()
endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDM

Store Doubleword Multiple

31 26 25 21 20 16 15 12 11
POOL32B . SDM
001000 reglist base 111 offset
6 5 5 4 12
Format: spM {sregs, } {ra}, offset (base) microMIPS

Purpose: Store Doubleword Multiple

To store a sequence of consecutive doublewords to memory

Description: memory [GPR [base] +offset], . .

{GpPr[16], {GPR[17],{GPR[18], {GPR[19],{GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPRI301}}}}}}}}}{GPRI21]}

The contents of the 64-bit doublewords of the GPRs defined by reglist are stored in memory at the location specified
by the aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective

address.

The following table shows the encoding of the reglist field.

. ,memory [GPR [base] +offset+4* (fn(reglist))] <«

reglist Encoding
(binary) List of Registers Stored
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

107

SDM

108

Store Doubleword Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if Areé64bitOperationsEnabled() then
vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[gpr(reglist,i)]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« vAddr + 8
endfor
else
SignalException (ReservedInstruction)
endif

function fn(list)
fn <« number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDP Store Doubleword Pair

31 26 25 21 20 16 15 12 11 0
POOL32B SDP
001000 rd base 1100 offset
6 5 5 4 12
Format: sSDP rd, offset (base) microMIPS

Purpose: Store Doubleword Pair

To store two consecutive doublewords to memory

Description: memory [GPR [base] + offset] <« GPR[rd], GPR[rd+1]

The contents of the 64-bit doublewords of GPR rd and GPR rd+1 are stored in memory at the location specified by
the aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

The behavior of the instructions is UNDEFINED if rd equals $31.

Pre-Release 6: The effective address must be naturally aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

if Are64bitOperationsEnabled() then
vAddr <« sign_extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)<«<«
datadoubleword <« GPR[rd]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« sign extend(offset) + GPR[base] + 8
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE) <<«
datadoubleword < GPR[rd+1]
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
else
SignalException (ReservedInstruction)
endif

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

This instruction may execute for a variable number of cycles and may perform a variable number of stores to mem-
ory. A full restart of the sequence of operations will be performed on return from any exception taken during execu-
tion.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 109

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SH16

110

Store Halfword (16-bit instr size)
15 10 9 7 6 4 3 0
SH16
101010 rt base offset
6 3 3 4
Format: sH16 rt, left shifted offset (base) microMIPS

Purpose: Store Halfword (16-bit instr size)

To store a halfword to memory

Description: memory [GPR [base] + (offset x2)] <« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 4-bit unsigned offset is left shifted by one bit and then added to the contents of GPR base to form
the effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« zero_extend(offset|| 0) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian? || 0))
bytesel <« vAddr, o xor (BigEndianCPU? || 0)

datadoubleword < GPRI[rt]g¢;_gspyresel..o || o8rbytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLL16 Shift Word Left Logical (16-bit instr size)

15 10 9 7 6 4 3 1 0
POOL16B encoded
001001 rd n sa |0
6 3 3 3 1
Format: sLL16 rd, rt, decoded sa microMIPS

Purpose: Shift Word Left Logical (16-bit instr size)
To left-shift a word by a fixed number of bits

Description: GPR[rd] <« GPR[rt] << decoded sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by decoding the encoded_sa field.
Table 5.15 lists the encoded values of the encoded_sa field and the actual bit shift amount values.

Table 5.15 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

Operation:

decoded_sa <« DECODE (encoded_sa)
s <« decoded_sa

temp ¢ GPRIrt] (31.4)..0 || 0°
GPR[rd] <« sign_ extend (temp)

Exceptions:

None

Programming Notes:

Unlike nearly all other word operations, the SLL input operand does not have to be a properly sign-extended word
value to produce a valid sign-extended 32-bit result. The result word is always sign-extended into a 64-bit destination
register; this instruction with a zero shift amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 111

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SRL16

112

Shift Word Right Logical (16-bit instr size)

15 10 9 7 6 4 3 1 0
POOL16B encoded

001001 rd i a |1

6 3 3 3 1

Format: SRL16 rd, rt, decoded sa

Purpose: Shift Word Right Logical (16-bit instr size)

To execute a logical right-shift of a word by a fixed number of bits

Description: GPR[rd] <« GPR[rt] >> decoded sa (logical)

microMIPS

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by . by decoding the encoded_sa field.

Table 5.16 lists the encoded values of the encoded_sa field and the actual bit shift amount values.

Table 5.16 Shift Amount Field Encoding

Encoded Input | Decoded Value
(Hex) (Decimal)
0 8
1 1
2 2
3 3
4 4
5 5
6 6
7 7

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the

operation is UNPREDICTABLE.

Operation:

if NotWordvalue (GPR[rt]) then
UNPREDICTABLE

endif

decoded_sa <« DECODE (encoded_sa)

s <« decoded_sa

temp « 0° || GPRI[rtl;; ¢

GPR[rd] <« sign_ extend (temp)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 113

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SUBU16 Subtract Unsigned Word (16-bit instr size)

15 10 9 7 6 1 0
POOL16A
000001 s rt rd 1
6 3 3 3 1
Format: suBU16 rd, rs, rt microMIPS

Purpose: Subtract Unsigned Word (16-bit instr size)
To subtract 32-bit integers

Description: GPR[rd] <« GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

The 3-bit register fields can only specify GPRs $2-$7, $16, $17.

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« GPR[rs] — GPRI[rt]
GPR[rd] <« sign extend (temp)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

114 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SW16

Store Word (16-bit instr size)
15 10 9 7 6 4 3 0
SW16
111010 rt base offset
6 3 3 4
Format: swie rt, left shifted offset (base) microMIPS

Purpose: Store Word (16-bit instr size)

To store a word to memory

Description: memory [GPR [base] + (offset x4)] <« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 4-bit unsigned offset is left-shifted by two bits and then added to the contents of GPR base to form the
effective address.

Restrictions:

The 3-bit base register field can only specify GPRs $2-$7, $16, $17.

The 3-bit rt register field can only specify GPRs $0, $2-$7, $17.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:
vAddr < zero extend(offset || 02) + GPR[basel
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 0%?)

datadoubleword <« GPR[rt] 63-8*bytesel. .0 || g8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 115

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWSP Store Word to Stack Pointer (16-bit instr size)

116

15 10 9 5 4 0
SWSP16
110010 rt offset
6 5 5
Format: swsp rt, left shifted offset (base) microMIPS

Purpose: Store Word to Stack Pointer (16-bit instr size)

To store a word to memory

Description: memory [GPR[29] + (offset x4)] <« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 5-bit signed offset is left shifted by two bits, zero-extended and then is added to the contents of GPR 29
to form the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr <« zero extend(offset] | 0%) + GPR[29]
if vAddr,; , # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 0%?)

datadoubleword <« GPR[rt] 63-8*bytesel. .0 || g8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWM16 Store Word Multiple (16-bit)

POOL16C realist offset SWMI16
010001 & 1010
6 2 4 4
Format: swMmile so0, {s1, {s2, {s3,}}} ra, left shifted offset (sp) microMIPS

Purpose: Store Word Multiple (16-bit)

To store a sequence of consecutive words to memory
Description: memory [GPR[29]1], ..., memory [GPR [29] + (offset<<2) +4* (2+fn (reglist))] <«
GPR[16], {GPR[17], {GPR[18], {GPR[19],}}} GPR[31]

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 4-bit unsigned offset is added to the contents of GPR sp to form the effective address.

The following table shows the encoding of the reglist field.

reglist Encoding
(binary) List of Registers Stored
00 GPR[16], GPR[31]
01 GPR[16], GPR[17], GPR[31]
10 GPR[16], GPR[17], GPR[18], GPR[31]
11 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented
for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.
Restrictions:

The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.
Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:
vAddr < zero extend (offset||0%) + GPRI[spl]
| if vAddr,; , # 02 then
SignalException (AddressError)
endif

for i« 0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrge.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel « vAddr, , xor (BigEndianCPU || 0?)
datadoubleword < GPRI[gpr(reglist,i)]gs_gspytesel..
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

o || OS*bytesel

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 117

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

vAddr <« vAddr + 4
endfor

function fn(list)
fn < number of entries in list - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

118 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWM32

Store Word Multiple

31 26 25 21 20 16 15 12 11
POOL32B . SWM
001000 reglist base 1101 offset
6 5 5 4 12
Format: swM32 {sregs, } {ra}, offset (base) microMIPS

Purpose: Store Word Multiple

To store a sequence of consecutive words to memory

Description: memory [GPR [base] +offset], ...

{GpPr[16], {GPR[17],{GPR[18], {GPR[19],{GPR[20], {GPR[21], {GPR[22], {GPR[23],
{GPRI301}}}}}}}}}{GPRI31]}

The least-significant 32-bit words of the GPRs defined by reglist are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.

The following table shows the encoding of the reglist field.

,memory [GPR [base] +offset+4* (fn(reglist))] <«

reglist Encoding
(binary) List of Registers Loaded
00001 GPR[16]
00010 GPR[16], GPR[17]
00011 GPR[16], GPR[17], GPR[18]
00100 GPR[16], GPR[17], GPR[18], GPR[19]
00101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20]
00110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21]
00111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22]
01000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23]
01001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30]
10000 GPR[31]
10001 GPR[16], GPR[31]
10010 GPR[16], GPR[17], GPR[31]
10011 GPR[16], GPR[17], GPR[18], GPR[31]
10100 GPR[16], GPR[17], GPR[18], GPR[19], GPR[31]
10101 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[31]
10110 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[31]
10111 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[31]
11000 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[31]
11001 GPR[16], GPR[17], GPR[18], GPR[19], GPR[20], GPR[21], GPR[22], GPR[23], GPR[30], GPR[31]
All other combinations Reserved

The register numbers and the effective addresses are correlated using the order listed in the table, starting with the
left-most register on the list and ending with the right-most register on the list. The effective address is incremented

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

119

SWM32 Store Word Multiple

for each subsequent register on the list.

It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.

Restrictions:

Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]
for i«0 to fn(reglist)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr < pAddrpgrze-1. .3 || (pAddr, , xor (ReverseEndian || 07))
bytesel <« vAddr, , xor (BigEndianCPU || 0?)
datadoubleword <« GPRI[gpr(reglist,i)]¢s_gepytesel..o || o8*bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« VvAddr + 4
endfor

function fn(list)
fn <« (number of entries in list) - 1
endfunction

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

120 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWP Store Word Pair
31 26 25 21 20 16 15 12 1 0
POOL32B SWP
001000 s base 1001 offset
6 5 5 a4 12
Format: Swp rsl, offset (base) microMIPS
Purpose: Store Word Pair
To store two consecutive words to memory
Description: memory [GPR [base] + offset] <« GPR[rsl], GPR[rsl+1]
The least-significant 32-bit words of GPR rsl and GPR rsl+1 are stored in memory at the location specified by the
aligned effective address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.
It is implementation-specific whether interrupts are disabled during the sequence of operations generated by this
instruction.
Restrictions:
The behavior of the instructions is UNDEFINED if rd equals $31.
Pre-Release 6: The effective address must be 32-bit aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.
Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.
Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.
Operation:
vAddr <« sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 0?))
bytesel <« vAddr, , xor (BigEndianCPU || 0%?)
datadoubleword < GPR[rsl]gs_gspytesel..o || o8*bytesel
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
vAddr <« sign_extend(offset) + GPR[base] + 4
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrzs.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel <« vAddr, , xor (BigEndianCPU || 02)
datadoubleword < GPR[rsl+1]s3_gspytesel..o || g8*bytesel
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 121

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

XOR16 Exclusive OR (16-bit instr size)

POOL16C ; . XOR16
010001 s 1000
6 3 3 4
Format: XOR16 rt, rs microMIPS

Purpose: Exclusive OR (16-bit instr size)

To do a bitwise logical Exclusive OR

Description: GPR[rt] « GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into
GPR rt.

Restrictions:
The 3-bit register fields can only specify GPRs $2-$7, $16, $17.
Availability and Compatibility:

This instruction has been recoded for Release 6.

Operation:

GPR[rt] <« GPR[rs] xor GPR[rt]

Exceptions:

None

122 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

5.5 Recoded MIPS Instructions

5.5 Recoded MIPS Instructions

This section describes recoded 32-bit instructions from MIPS32 and MIPS64 instruction sets specifically for use as
part of the microMIPS instruction set.

Only instructions supported in Release 6 are provided. Section 2.7, "Release 6 of the MIPS Architecture," lists
instructions that have been added, removed and recoded in Release 6.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 123

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ABS.fmt Floating Point Absolute Value

124

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F ABS POOL32FXf
010101 fi fs 0| fmt 0001101 111011
6 5 5 1 2 7 6

Format: ABS.fmt
ABS.S ft, fs microMIPS
ABS.D ft, fs microMIPS

Purpose: Floating Point Absolute Value

Description: FPR[ft] < abs(FPR[fs])
The absolute value of the value in FPR fs is placed in FPR ft. The operand and result are values in format fmt.
The Cause bits are ORed into the Flag bits if no exception is taken.

If FIR{as2008=0 or FCSRaps2008=0 then this operation is arithmetic. For this case, any NaN operand signals invalid
operation.

If FCSRppgso00g=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE exception can be generated for this

case.
Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:
ABS.PS has been removed in Release 6.

Operation:

StoreFPR (ft, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADD Add Word

31 26 25 21 20 16 15 11 10 9 0
POOL32A o ’ 0 ADD
000000 s : 0100010000
6 5 5 5 1 10
Format: ADD rd, rs, rt microMIPS

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR [rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

» If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs.

+ If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 43 _3; equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp <« (GPR[rsl;;||GPR[rsls; o) + (GPR[rtls;||GPRIrtls; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« sign_extend(temps;)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 125

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADD.fmt Floating Point Add

126

31 26 25 21 20 16 15 11 10 9 8 7 0
POOL32F ADD
010101 fi fs fd 0| fmt 00110000
6 5 5 5 1 2 s

Format: ADD.fmt
ADD.S fd, fs, ft microMIPS
ADD.D fd, fs, ft microMIPS
Purpose: Floating Point Add

To add floating point values.

Description: FPR[fd] « FPR[fs] + FPR[ft]

The value in FPR ft is added to the value in FPR fs. The result is calculated to infinite precision, rounded by using to
the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

The Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICTABLE.

The operands must be values in format fmt. If the fields are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
ADD.PS has been removed in Release 6.

Operation:

StoreFPR (fd, fmt, ValueFPR(fs, fmt) +¢, ValueFPR(ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIU Add Immediate Unsigned Word

31

26 25 21 20 16 15 0

ADDIU32

001100 rt s immediate

6 5 5 16

Format: ADDIU rt, rs, immediate microMIPS

Purpose: Add Immediate Unsigned Word

To add a constant to a 32-bit integer.

Description: GPR[rt] ¢ GPR[rs] + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-extended
and placed into GPR rt.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE

endif

temp ¢ GPR[rs] + sign extend(immediate)

GPR[rt] ¢ sign_ extend(temps; 4)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 127

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDIUPC Add Immediate to PC (unsigned - non-trapping)

31 26 25 21 20 19 18 0
PCREL immediate
| 011110 " 00
6 5 2 19
Format: ADDIUPC rt,immediate microMIPS32 Release 6
Purpose: Add Immediate to PC (unsigned - non-trapping)
Description: GPR[rt] <« (PC & ~0x3 + sign _extend(immediate << 2))
This instruction performs a PC-relative address calculation. The 19-bit immediate is shifted left by 2 bits, sign-
| extended, and added to the address of the ADDIUPC instruction. The result is placed in GPR rt.
This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual addresses in the MIPS64 Architecture. The generated address follows the rules for 32-bit
compatibility as described by effective address().
Restrictions:
None
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.
Operation:
| GPR[rt] « (PC & ~0x3 + sign extend(immediate << 2))
Exceptions:
None
Programming Notes:
The term “unsigned” in this instruction mnemonic is a misnomer. “Unsigned:” here means “non-trapping”. It does not
trap on a signed 32-bit overflow. ADDIUPC corresponds to unsigned ADDIU, which does not trap on overflow, as
opposed to ADDI, which does trap on overflow.
| 128 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ADDU Add Unsigned Word

31 26 25 21 20 16 15 11 10 0
POOL32A o ’ 0 ADDU
000000 s : 0101010000
6 5 5 5 1 10
Format: ADDU rd, rs, rt microMIPS

Purpose: Add Unsigned Word
To add 32-bit integers.

Description: GPR [rd] < GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

temp ¢ GPR[rs] + GPR[rt]

GPR[rd] < sign extend(temps; g)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. This instruction is appropriate for unsigned arithmetic, such as address arithmetic, or integer arith-
metic environments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 129

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALIGN DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte position

31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32A ALIGN
000000 " s d bp 000 011111
6 5 5 5 2 3 6
31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32S DALIGN
010110 " s rd op 00 011100
6 5 5 5 3 2 6
Format: ALIGN DALIGN
ALIGN rd,rs,rt,bp microMIPS32 Release 6
DALIGN rd,rs,rt,bp microMIPS64 Release 6

Purpose: Concatenate two GPRs, and extract a contiguous subset at a byte position

Description: GPR[rd] <« (GPR[rt] << (8*bp)) or (GPR[rs] >> (GPRLEN-8*bp))

The input registers GPR rt and GPR rs are concatenated, and a register width contiguous subset is extracted, which is

specified by the byte pointer bp.

The ALIGN instruction operates on 32-bit words, and has a 2-bit byte position field bp.

The DALIGN instruction operates on 64-bit doublewords, and has a 3-bit byte position field bp.

* ALIGN: The rightmost 32-bit word in GPR rt is left shifted as a 32-bit value by bp byte positions. The rightmost
32-bit word in register rs is right shifted as a 32-bit value by (4-bp) byte positions. These shifts are logical
shifts, zero-filling. The shifted values are then or-ed together to create a 32-bit result that is sign-extended to 64-
bits and written to destination GPR rd.

* DALIGN: The 64-bit doubleword in GPR rt is left shifted as a 64 bit value by bp byte positions. The 64-bit
word in register rs is right shifted as a 64-bit value by (8-bp) byte positions. These shifts are logical shifts,
zero-filling. The shifted values are then or-ed together to create a 64-bit result and written to destination GPR
rd.

Restrictions:

Executing ALIGN and DALIGN with shift count bp=0 acts like a register to register move operation, and is redun-

dant, and therefore discouraged. Software should not generate ALIGN or DALIGN with shift count bp=0.

Availability and Compatibility:

The ALIGN instruction is introduced by and required as of Release 6.

The DALIGN instruction is introduced by and required as of Release 6.

Programming Notes:

Release 6 ALIGN instruction corresponds to the pre-Release 6 DSP Module BALIGN instruction, except that

BALIGN with shift counts of 0 and 2 are specified as being UNPREDICTABLE, whereas ALIGN (and DALIGN)

defines all bp values, discouraging only bp=0.

Graphically,

Figure 5.1 ALIGN operation (32-bit)
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

130

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ALIGN DALIGN Concatenate two GPRs, and extract a contiguous subset at a byte position

GPR[rt] GPR[rs]

%

bp 1 % 4-bp
—GPR([rd]

L
\

Figure 5.2 DALIGN operation (64-bit)

//%

GPR[rd]

Operation:

DALIGN:
ALIGN:
tmp_rt_hi < unsigned word (GPR[rt]) << (8*bp)
tmp_rs lo <-unsigned word(GPR[rs]) >> (8*(4-bp))
DALIGN:
tmp_rt _hi <-unsigned doubleword(GPR[rt]) << (8*bp)
tmp_rs lo < unsigned doubleword(GPR[rs]) >> (8% (8-bp))

tmp < tmp_rt_hi or tmp_rt_lo

ALIGN on a 32-bit CPU:
GPR [rd] <« tmp
ALIGN on a 64-bit CPU:
GPR [rd] < sign_extend.32 (tmp)

DALIGN:
if not Areé64bitOperationsEnabled() GPR[rd] < tmp
then SignalException (ReservedInstruction) endif
tmp_rt_hi <-unsigned doubleword(GPR[rt]) << (8*bp)
tmp_rs_lo < unsigned doubleword(GPR[rs]) >> (8*(8-bp))
tmp < tmp_rt_hi or tmp_rt_lo
GPR [rd] < tmp
/* end of instruction */

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

131

ALUIPC Aligned Add Upper Immediate to PC

132

31 26 25 21 20 16 15 0
PCREL t ALUIPC immediate
011110 r 1111
6 5 5 16
Format: ALUIPC rt, immediate microMIPS32 Release 6

Purpose: Aligned Add Upper Immediate to PC

Description: GPR [rt] < ~0xOFFFF & (PC + sign extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the ALUIPC instruction. The low 16 bits of the result are cleared, that is the
result is aligned on a 64K boundary. The result is placed in GPR rt.

This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual addresses in the MIPS64 Architecture.

The generated address follows the rules for 32-bit compatibility as described by effective address().

Restrictions:
None
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:

GPR[rt] <« ~OxOFFFF & (PC + sign extend(immediate << 16))

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 11 10 9 0
POOL32A o q 0 AND
000000 s : 1001010000
6 5 5 5 1 10
Format: AND rd, rs, rt microMIPS

Purpose: and

To do a bitwise logical AND.

Description: GPR[rd] ¢ GPR[rs] AND GPR[rt]
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND operation. The result is

placed into GPR rd.

Restrictions:

None

Operation:

GPR[rd] <« GPR[rs] and GPR|[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

133

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ANDI

134

31

and immediate

26 25 21 20 16 15 0

ANDI32

110100 rt s immediate

6 5 5 16

Format: ANDI rt, rs, immediate microMIPS

Purpose: and immediate

To do a bitwise logical AND with a constant

Description: GPR[rt] ¢ GPR[rs] AND zero extend(immediate)

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical AND
operation. The result is placed into GPR rt.

Restrictions:

None

Operation:

GPR[rt] €« GPR[rs] and zero_ extend(immediate)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AUI DAUI DAHI DATI Add Immediate to Upper Bits

31 26 25 21 20 16 15 0
AUI " s immediate
000100
- 5 5 16
31 26 25 21 20 16 15 0
DAUI i i
111100 It s immediate
POOL32I DAHI - immediate
010000 10001
POOL32I DATI s immediate
010000 10000

Format: AUI DAUI DAHI DATI

AUI rt, rs, rt, rs immediate microMIPS32, microMIPS64 Release 6
DAHI rs, rs, rs immediate microMIPS64 Release 6
DATI rs, rs, rs immediate microMIPS64 Release 6

Purpose: Add Immediate to Upper Bits
AUI: Add Upper Immediate

DAUI: Doubleword Add Upper Immediate
DAHI: Doubleword Add Higher Immediate

DATI: Doubleword Add Top Immediate

Description:
AUI: GPR[rt] <« sign extend.32(GPR[rs] + sign extend(immediate << 16))
DAUI: GPR[rt] <« GPR[rs] + sign_extend(immediate << 16)

DAHI: GPR[rs] <« GPR[rs] + sign extend(immediate << 32)
DATI: GPR[rs] <« GPR[rs] + sign extend(immediate << 48)

AUI: The 16 bit immediate is shifted left 16 bits, sign-extended, and added to the register rs, storing the result in rt.
AUI is a 32-bit compatible instruction, so on a 64-bit CPU the result is sign extended as if a 32-bits signed address.

DAHI: The 16 bit immediate is shifted left 32 bits, sign-extended, and added to the register rs, overwriting rs with
the result.

DATI: The 16 bit immediate is shifted left 48bits, sign-extended, and added to the register rs, overwriting rs with
the result.

DAUI: The 16-bit immediate is shifted left 16 bits, sign-extended, and added to the register rs; the results are stored
inrt.

| In Release 6, LUI is an assembly idiom for AUI with rs=0.

Restrictions:

DAUI: rs cannot be r0, the zero register. The encoding may be used for other instructions or must signal a Reserved

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 135

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AUI DAUI DAHI DATI Add Immediate to Upper Bits

Instruction Exception.

Availability and Compatibility:

AULI is introduced by and required as of Release 6.

DAUI is introduced by and required as of MIPS64 Release 6.
DAHI is introduced by and required as of MIPS64 Release 6.
DATI is introduced by and required as of MIPS64 Release 6.

Operation:

AUI: GPR[rt] <« sign extend.32(GPR[rs] + sign extend(immediate << 16))
DAUI: GPR[rt] <« GPR[rs] + sign extend(immediate << 16)
DAHI: GPR[rs] <« GPR[rs] + sign extend(immediate << 32)
DATI: GPR[rs] <« GPR[rs] + sign extend(immediate << 48)

Exceptions:
AUI: None.
DAUI, DAHI, DATT: Reserved Instruction Exception if 64-bit instructions are not enabled.

DAUI: Reserved Instruction Exception if rs is equal to 0.

Programming Notes:

AUI (and DAUI, DAHI and DATI on MIPS64 Release 6) can be used to synthesize large constants in situations
where it is not convenient to load a large constant from memory. To simplify hardware that may recognize sequences
of instructions as generating large constants, AUI/DAUI/DAHI/DATI should be used in a stylized manner.

To create an integer:
LUI rd, imm low (rtmp)
ORI rd, rd, imm upper
DAHI rd, imm_high
DATI rd, imm_top

To create a large offset for a memory access whose address is of the form rbase+large offset:
AUI rtmp, rbase, imm upper
DAHI rtmp, imm high
DATI rtmp, imm top
LW rd, (rtmp)imm low

To create a large constant operand for an instruction of the form rd:=rs+large immediate
orrd:=rs-large immediate:

136

32-bits:
AUI rtmp, rs, imm_upper
ADDIU rd, rtmp, imm low
64-bits:
AUI rtmp, rs, imm upper
DAHI rtmp, imm high
DATI rtmp, imm top
DADDUI rd, rtmp,imm low

For other instructions with large constant operands non-additive instructions (such as logical operators AND/OR/
XOR, indirect branches, so on), no idioms are recommended apart from those to create a large constant.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Independent instructions may be interleaved between the instructions in the recommended instruction sequences.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 137

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

AUIPC Add Upper Immediate to PC

31 26 25 21 20 16 15 0
PCREL t AUIPC immediate
011110 r 11110
6 5 5 16
Format: AUIPC rt, immediate microMIPS32 Release 6

Purpose: Add Upper Immediate to PC

Description: GPR[rt] « (PC + sign extend(immediate << 16))

This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits, sign-
extended, and added to the address of the AUIPC instruction. The result is placed in GPR rt.

In a MIPS64 implementation, the 32-bit result is sign extended from bit 31 to bit 63.

This instruction is both a 32-bit and a 64-bit instruction. The 64-bit result is sign-extended by the same rules that gov-
ern sign-extension of virtual address in the MIPS64 Architecture.

The generated address follows the rules for 32-bit compatibility as described by effective address().

Restrictions:
None
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation:
GPR[rt] <« (PC + sign extend(immediate << 16))
Exceptions:
None
138 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BALC Branch and Link, Compact
31 26 25 0
BALC
101101 offset
6 26

Format: BALC offset
Purpose: Branch and Link, Compact
To do an unconditional PC-relative procedure call.

Description: procedure _call (no delay slot)

microMIPS32 Release 6

Place the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call. (Because compact branches have no delay slots, see below.)

A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the

branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed when the branch is

taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions

do not apply in Release 6.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0!)

GPR[31] <« PC+4
PC < PC+4 + sign extend(target_ offset)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 139

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1EQZC BCINEZC Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
POOL32I BCIEQZC
010001 01000 fi offset
POOL32I BCINEZC
010001 01001 fi offset
6 5 5 16

Format: BC1EQZC BCINEZC
BClEQZC ft, offset microMIPS32 Release 6
BCINEZC ft, offset microMIPS32 Release 6
Purpose: Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero
BCI1EQZC: Branch if Coprocessor 1 (FPU) Register Bit 0 is Equal to Zero

BCINEZC: Branch if Coprocessor 1 (FPR) Register Bit 0 is Not Equal to Zero

Description:

BC1EQZC: if FPR[ft] & 1 = 0 then branch
BC1NEZC: if FPR[ft] & 1 # 0 then branch

The condition is evaluated on FPU register ft.

* For BC1EQZC, the condition is true if and only if bit 0 of the FPU register ft is zero.

» For BCINEZC, the condition is true if and only if bit 0 of the FPU register ft is non-zero.

If the condition is false, the branch is not taken, and execution continues with the next instruction.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:
If access to Coprocessor 1 is not enabled, a Coprocessor Unusable Exception is signaled.

Because these instructions BCIEQZC and BCINEZC do not depend on a particular floating point data type, they
operate whenever Coprocessor 1 is enabled.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable!

Operation:

tmp <« ValueFPR(ft, UNINTERPRETED WORD)

| 140

In Release 6, BCIEQZC and BCINEZC are required, if the FPU is implemented. They must not signal a Reserved Instruc-
tion Exception. They can signal a Coprocessor Unusable Exception.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC1EQZC BC1INEZC Branch if Coprocessor 1 (FPU) Register Bit 0 Equal/Not Equal to Zero

BC1lEQZC: cond « tmp & 1 = 0
BCINEZC: cond <« tmp & 1 # 0
if cond then

target PC <« (PC+4 + sign extend(offset << 1)
PC <« target PC

Programming Notes:

Release 6: These instructions, BCIEQZC and BCINEZC, replace the pre-Release 6 instructions BC1F and BCIT.
These Release 6 FPU branches depend on bit 0 of the scalar FPU register.

Note: BCIEQZC and BCINEZC do not have a format or data type width. The same instructions are used for
branches based on conditions involving any format, including 32-bit S (single precision) and W (word) format, and
64-bit D (double precision) and L (longword) format, as well as 128-bit MSA. The FPU scalar comparison instruc-
tions CMP.condn.fmt produce an all ones or all zeros truth mask of their format width with the upper bits (where
applicable) UNPREDICTABLE. BC1EQZ and BCINEZ consume only bit 0 of the CMP.condn.fmt output value, and
therefore operate correctly independent of fmt.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 141

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2EQZC BC2NEZC Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero

31 26 25 21 20 16 15 0
BC2EQZC
POOL32I 01010 ct offset
BC2NEZC
POOL32I 01011 ct offset
6 5 5 16
Format: BC2EQZC BC2NEZC
BC2EQZC ct, offset microMIPS32 Release 6
BC2NEZC ct, offset microMIPS32 Release 6

Purpose: Branch if Coprocessor 2 Condition (Register) Equal/Not Equal to Zero
BC2EQZC: Branch if Coprocessor 2 Condition (Register) is Equal to Zero

BC2NEZC: Branch if Coprocessor 2 Condition (Register) is Not Equal to Zero

Description:

BC2EQZC: if COP2Condition[ct] = 0 then branch
BC2NEZC: if COP2Condition[ct] # 0 then branch

The 5-bit field ct specifies a coprocessor 2 condition.
* For BC2EQZC if the coprocessor 2 condition is true the branch is taken.
* For BC2NEZC if the coprocessor 2 condition is false the branch is taken.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

If access to Coprocessor 2 is not enabled, a Coprocessor Unusable Exception is signaled.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Operation:

tmpcond <« Coprocessor2Condition(ct)
if BC2NEZC then

tmpcond < not (tmpcond)

endif

if tmpcond then
PC < PC+4 + sign extend(immediate << 1))
endif

142 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BC2EQZC BC2NEZC BC2NEZC: Branch if Coprocessor 2 Condition (Register) is Not Equal to Zero

Implementation Notes:

As of Release 6 these instructions, BC2EQZC and BC2EQZC, replace the pre-Release 6 instructions BC2F and
BC2T, which had a 3-bit condition code field (as well as nullify and true/false bits).

Release 6 makes all 5 bits of the ct condition code available to the coprocessor designer as a condition specifier.

A customer defined coprocessor instruction set can implement any sort of condition it wants. For example, it could

implement up to 32 single-bit flags, specified by the 5-bit field ct. It could also implement conditions encoded as

values in a coprocessor register (such as testing the least significant bit of a coprocessor register) as done by Release
| 6 coprocessor 1, the FPU, instructions BCIEQZ/BCINEZ.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 143

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

144

31 26 25 21 20 16 15 0
POP60 BLEZALC
10000 offset
1 rt % 00000 00000
BGEZALC
POP60 rs =t # 00000
110000 offset
rt s
POP70 BGTZALC
111000 offset
rt = 00000 00000
BLTZALC
POP70 rs = rt = 00000
111000 offset
1t s
BEQZALC
POP35 s < 1t
011101 offset
1t 00000 00000
BNEZALC
POP37 s <rt
011111 offset
rt = 00000 00000
6 5 5 16

Format: B{LE,GE,GT,LT, EQ, NE}ZALC

BLEZALC rt, offset microMIPS32 Release 6
BGEZALC rt, offset microMIPS32 Release 6
BGTZALC rt, offset microMIPS32 Release 6
BLTZALC rt, offset microMIPS32 Release 6
BEQZALC rt, offset microMIPS32 Release 6
BNEZALC rt, offset microMIPS32 Release 6

Purpose: Compact Zero-Compare and Branch-and-Link Instructions
BLEZALC: Compact branch-and-link if GPR rt is less than or equal to zero
BGEZALC: Compact branch-and-link if GPR rt is greater than or equal to zero
BGTZALC: Compact branch-and-link if GPR rt is greater than zero
BLTZALC: Compact branch-and-link if GPR rt is less than to zero
BEQZALC: Compact branch-and-link if GPR rt is equal to zero

BNEZALC: Compact branch-and-link if GPR rt is not equal to zero

Description: if condition(GPR[rt]) then procedure call branch
The condition is evaluated. If the condition is true, the branch is taken.

Places the return address link in GPR 31. The return link is the address of the instruction immediately following the
branch, where execution continues after a procedure call.

The return address link is unconditionally updated.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B{LE,GE,GT,LT,EQ,NE}ZALC Compact Zero-Compare and Branch-and-Link Instructions

BLEZALC: the condition is true if and only if GPR rt is less than or equal to zero.
BGEZALC: the condition is true if and only if GPR rt is greater than or equal to zero.
BLTZALC: the condition is true if and only if GPR rt is less than zero.

BGTZALC: the condition is true if and only if GPR rt is greater than zero.
BEQZALC: the condition is true if and only if GPR rt is equal to zero.

BNEZALC: the condition is true if and only if GPR rt is not equal to zero.

Compact branches do not have delay slots. The instruction after a compact branch is only executed if the branch is not
taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:
GPR[31] <« PC+4
target offset <« sign extend(offset || 0!)
BLTZALC: cond <« GPR[rt] < O
BLEZALC: cond « GPR[rt] < 0
BGEZALC: cond « GPR[rt] = 0
BGTZALC: cond <« GPR[rt] > 0
BEQZALC: cond <« GPR[rt] = 0
BNEZALC: cond < GPR[rt] # 0

if cond then
PC « (PC+4+ sign extend(target offset))
endif

Programming Notes:

Software that performs incomplete instruction decode may incorrectly decode these new instructions, because of their
very tight encoding. For example, a disassembler might look only at the primary opcode field, instruction bits 31-26,
to decode BLEZL without checking that the “rt” field is zero. Such software violated the pre-Release 6 architecture
specification.

With the 16-bit offset shifted left 2 bits and sign extended, the conditional branch range is £ 128 KBytes. Other
instructions such as pre-Release 6 JAL and JALR, or Release 6 JIALC and BALC have larger ranges. In particular,
BALC, with a 26-bit offset shifted by 2 bits, has a 28-bit range, + 128 MBytes. Code sequences using AUIPC, DAHI,
DATI, and JIALC allow still greater PC-relative range.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 145

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C

Compact Compare-and-Branch Instructions

31 26 25 21 20 16 15 o
POP71 BLEZC
111001 offset
rt = 00000 00000
POP71 BGEZC rs=rt
111001 offset
rt # 00000 s # 00000
POP26 BGEC (BLEC) rs # rt
111001 offset
rt = 00000 rs = 00000
POP61 BGTZC
10001 offset
! rt = 00000 00000
POP61 BLTZC rs=rt
10001 offset
! rt # 00000 rs # 00000
POP61 BLTC (BGTC) rs # 1t
10001 offset
! rt # 00000 rs # 00000
POP60 BGEUC (BLEUC) 1s # rt
10000 offset
! rt # 00000 rs # 00000
POP70 BLTUC (BGTUC) rs # 1t
111000 offset
rt = 00000 rs = 00000
POP35 BEQCrs<rt
011101 offset
rt # 00000 rs # 00000
POP37 BNEC rs <rt
011111 offset
rt # 00000 rs # 00000
° ° 5 16
31 26 25 21 20 .
100000
IS
101000
IS
° ° 21
Format: Becond>C re, rt, offset microMIPS32 Release 6

Purpose: Compact Compare-and-Branch Instructions

Format Details:

Equal/Not-Equal register-register compare and branch with 16-bit offset:
rt, offset
rt, offset

146

BEQC rs,
BNEC rs,

microMIPS32 Release 6
microMIPS32 Release 6

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C Compact Compare-and-Branch Instructions

Signed register-register compare and branch with 16-bit offset:
BLTC rs, rt, offset
BGEC rs, rt, offset

Unsigned register-register compare and branch with 16-bit offset:
BLTUC rs, rt, offset
BGEUC rs, rt, offset

BGTC rt, rs, offset
BLEC rt, rs, offset
BGTUC rt, rs, offset
BLEUC rt, rs, offset

Signed Compare register to Zero and branch with 16-bit offset:
BLTZC rt, offset
BLEZC rt, rs, offset
BGEZC rt, offset
BGTZC rt, rs, offset

Equal/Not-equal Compare register to Zero and branch with 21-bit offset:
BEQZC rt, rs, offset
BNEZC rt, rs, offset

Description: if condition (GPR[rs] and/or GPR[rt]) then compact branch

The condition is evaluated. If the condition is true, the branch is taken.

Assembly idioms with reversed operands for signed/unsigned compare-and-branch:

microMIPS32 Release 6
microMIPS32 Release 6

microMIPS32 Release 6
microMIPS32 Release 6

Assembly Idiom
Assembly Idiom
Assembly Idiom
Assembly Idiom

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6

microMIPS32 Release 6
microMIPS32 Release 6

The branch target is formed by sign extending the offset field of the instruction shifted left by 1 bit (because micro-
MIPS instructions are 2 or 4 byte aligned), and adding it to the PC of the following instruction, i.e. adding it to the PC

| of the current instruction + the instruction length, PC+4.

The offset is 16 bits for most compact branches, including BLTC, BLEC, BGEC, BGTC, BNEQC, BNEC, BLTUC,
BLEUC, BGEUC, BGTC, BLTZC, BLEZC, BGEZC, BGTZC. The offsetis 21 bits for BEQZC and BNEZC.

Compact branches have no delay slot: the instruction after the branch is NOT executed if the branch is taken.

The conditions are as follows:

Equal/Not-equal register-register compare-and-branch with 16-bit offset:
BEQC: Compact branch if GPRs are equal
BNEC: Compact branch if GPRs are not equal

Signed register-register compare and branch with 16-bit offset:
BLTC: Compact branch if GPR rs is less than GPR rt
BGEC: Compact branch if GPR rs is greater than or equal to GPR rt

Unsigned register-register compare and branch with 16-bit offset:
BLTUC: Compact branch if GPR rs is less than GPR rt, unsigned

BGEUC: Compact branch if GPR rs is greater than or equal to GPR rt, unsigned

Assembly Idioms with Operands Reversed:

BLEC: Compact branch if GPR rt is less than or equal to GPR rg (alias for BGEC)

BGTC: Compact branch if GPR rt is greater than GPR rs (alias for BLTC)

BLEUC: Compact branch if GPR rt is less than or equal to GPR rt, unsigned (alias for BGEUC)
BGTUC: Compact branch if GPR rt is greater than GPR rs, unsigned (alias for BLTUC)

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

147

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C Compact Compare-and-Branch Instructions

Compare register to zero and branch with 16-bit offset:
BLTZC: Compact branch if GPR rt is less than zero
BLEZC: Compact branch if GPR rt is less than or equal to zero
BGEZC: Compact branch if GPR rt is greater than or equal to zero
BGTZC: Compact branch if GPR rt is greater than zero

Compare register to zero and branch with 21-bit offset:
BEQZC: Compact branch if GPR rs is equal to zero
BNEZC: Compact branch if GPR rs is not equal to zero

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Exceptions:

None

Operation:

target offset <« sign extend(offset || 0!)

/* Register-register compare and branch, 16 bit offset: */
/* Equal / Not-Equal */

BEQC: cond <« GPR[rs] = GPR[rt]

BNEC: cond <« GPR[rs] # GPR[rt]

/* Signed */

BLTC: cond <« GPR[rs] < GPR[rt]

BGEC: cond <« GPR[rs] = GPR[rt]

/* Unsigned: */

BLTUC: cond <« unsigned (GPR[rs]) < unsigned (GPR[rt])
BGEUC: cond <« unsigned(GPR[rs]) 2> unsigned(GPR[rt])

/* Compare register to zero, small offset: */
BLTZC: cond <« GPR[rt] < 0
BLEZC: cond <« GPR[rt] £ 0
BGEZC: cond « GPR[rt] = 0
BGTZC: cond « GPR[rt] > 0
/* Compare register to zero, large offset: */
BEQZC: cond <« GPR[rs] = 0
BNEZC: cond <« GPR[rs] # O

if cond then
PC « (PC+4+ sign extend(offset))
end if

Special Considerations:

See elsewhere for a complete overview of Release 6 instruction encodings. Brief notes related to compact branches
such as these instructions:

In order to provide a full set of compare-and-branch instructions, Release 6 reduces some of the redundancy in
instruction encoding related to the RO register. This is indicated by constraints applied to the register encodings. For
example, BGEZC rs, rt is encoded as 010110.rs.rt.offset16, with constraints rs#00000, rt#00000

148 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

B<cond>C

Compact Compare-and-Branch Instructions

and rs=rt (since BGEZ with both operands the same register is always true, hence redundant). Similarly,
BEQC rs, rt has the constraints rs#00000, rt#00000, and rs<rt (since BEQC with both operands the same
register is always true, hence redundant). Note that “rs” and “rt” in these constraints refer to register numbers as
encoded within the instruction, not the values contained by the registers.

Table 5.17 below shows that the compact branches provide a full set of integer comparisons. It is necessary to reverse
the operands of the signed and unsigned register-register compares in the shaded cases. Separate instructions are
required for comparisons against 0, because the GPR[0] encoding is not allowed in the register-register comparisons,
to save encoding space. Assembly idioms may provide the “reversed” instructions.

Table 5.17 Compact branches provide a full set of comparisons

register-register comparisons compare to zero
operation sighed unsigned instruction operation

a<b BLTC BLTUC BLTZC a<0

a<b BLEC = BLEUC = BLEZC a<0
BGEC reversed | BGEUC reversed

a=b BEQC BEQZC a=0

azb BNEC BNEZC a#0

a>b BGEC BGEUC BGEZC a>0

a>b BGTC = BGTUC = BGTZC a>0
BLTC reversed BLTUC reversed

Programming Notes:

Legacy software that performs incomplete instruction decode may incorrectly decode these new instructions, because
of their very tight encoding. For example, a disassembler that looks only at the primary opcode field (instruction bits
31-26) to decode BLEZL without checking that the “rt” field is zero violates the pre-Release 6 architecture specifica-
tion. Complete instruction decode allows reuse of pre-Release 6 BLEZL opcode for Release 6 conditional branches.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

149

BC Branch, Compact
31 26 25 0
BC
100101 offset
6 26
Format: BC offset microMIPS32 Release 6
Purpose: Branch, Compact
Description: PC «- PC+4 + sign_extend(offset << 1)
A 27-bit signed offset (the 26-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.
Compact branches have no delay slot: the instruction after the branch is NOT executed when the branch is taken.
Restrictions:
Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.
Exceptions:
None
Operation:
target offset <« sign extend(offset || 0!)
PC < (PC+4 + sign_extend(target offset))
150 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BREAK Breakpoint
31 26 25 0
POOL32A d BREAK32
000000 code 000111
6 20 6
Format: BREAK microMIPS

Purpose: Breakpoint

To cause a Breakpoint exception

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler. The
code field is available for use as software parameters, but is retrieved by the exception handler only by loading the

contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

151

BITSWAP DBITSWAP Swaps (reverses) bits in each byte

31 26 25 21 20 16 15 12 11 6 5 0
POOL32A " d 0 BITSWAP POOL32Axf
000000 : 0000 101100 111100
6 5 5 4 6 6
31 26 25 21 20 16 15 12 11 6 5 0
POOL32S " wd 0 DBITSWAP POOL32Sxf
010110 0000 101100 111100
6 5 5 4 6 6

Format: BITSWAP DBITSWAP
BITSWAP rd,rt microMIPS32 Release 6
DBITSWAP rd,rt microMIPS64 Release 6

Purpose: Swaps (reverses) bits in each byte

Description: GPR [rd] .byte (1) <« reverse bits_in byte (GPR[rt] .byte(i)), for all
bytes 1

Each byte in input GPR rt is moved to the same byte position in output GPR rd, with bits in each byte reversed.

BITSWAP is a 32-bit instruction. BITSWAP operates on all 4 bytes of a 32-bit GPR on a 32-bit CPU. On a 64-bit
CPU, BITSWAP operates on the low 4 bytes, sign extending to 64-bits.

DBITSWAP operates on all § bytes of a 64-bit GPR on a 64-bit CPU.

Restrictions:
BITSWAP: None.

Availability and Compatibility:
The BITSWAP instruction is introduced by and required as of Release 6.
The DBITSWAP instruction is introduced by and required as of Release 6.

Operation:

BITSWAP:
for i in 0 to 3 do /* for all bytes in 32-bit GPR width */
tmp.byte (1) <« reverse bits in byte(GPR[rt] .byte(i))
endfor
GPR[rd] <« sign extend.32(tmp)

DBITSWAP:
for i in 0 to 7 do /* for all bytes in 64-bit GPR width */
tmp.byte (1) <« reverse bits in byte(GPR[rt] .byte(i))
endfor
GPR[rd] « tmp

| where
function reverse bits in byte (inbyte)
outbyte, « inbyte,
outbyte, < inbyte;
outbyteg « inbyte,
outbyte, <« inbyte,
outbyte; « inbyte,

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 152

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BITSWAP DBITSWAP Swaps (reverses) bits in each byte

outbyte, « inbyteg
outbyte; « inbyte,
outbyte, « inbyte,
return outbyte
end function
Exceptions:
BITSWAP: None

DBITSWAP: Reserved Instruction in Release 6.

Programming Notes:

The Release 6 BITSWAP instruction corresponds to the pre-Release 6 DSP Module BITREV instruction, except that
the latter bit-reverses the least-significant 16-bit halfword of the input register, zero extending the rest, while
BITSWAP operates on 32-bits. Similarly DBITSWAP operates on 64-bits.

In a MIPS64 implementation, the 32-bit result of BITSWAP is sign extended from bit 31.

153 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

BOVC BNVC Branch on Overflow, Compact; Branch on No Overflow, Compact

154

31 26 25 21 20 16 15 0
POP35 BOVC rs >=rt
011101 offset
1t s
POP37 BNVC rs>=rt
011111 offset
rt s
6 5 5 16

Format: BovC BNVC
BOVC rt,rs, offset microMIPS32 Release 6
BNVC rt,rs, offset microMIPS32 Release 6
Purpose: Branch on Overflow, Compact; Branch on No Overflow, Compact
BOVC: Detect overflow for add (signed 32 bits) and branch if overflow.
BNVC: Detect overflow for add (signed 32 bits) and branch if no overflow.

Description: branch if/if-not NotWordvValue (GPR[rs]+GPR[rt])

* BOVC performs a signed 32-bit addition of rs and rt. BOVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum (and the inputs, in MIPS64), and branches if such overflow is detected.

* BNVC performs a signed 32-bit addition of rs and rt. BNVC discards the sum, but detects signed 32-bit inte-
ger overflow of the sum (and the inputs, in MIPS64), and branches if such overflow is not detected.

A 17-bit signed offset (the 16-bit offset field shifted left 1 bits) is added to the address of the instruction following the
branch (not the branch itself), to form a PC-relative effective target address.

On 64-bit processors, BOVC and BNVC detect signed 32-bit overflow on the input registers as well as the output.
This checking is performed even if 64-bit operations are not enabled.

The special case with rt=0 (for example, GPR[0]) is allowed. On MIPS64, this checks that the input value of rs is a
well-formed signed 32-bit integer: BOVC rs,r0,0ffset branches if rs is not a 32-bit integer, and BNVC rs, r0 offset
branches if rs is a 32-bit integer.

The special case of 1s=0 and rt=0 is allowed. BOVC never branches, while BNVC always branches.

Compact branches do not have delay slots. The instruction after the branch is NOT executed if the branch is taken.

Restrictions:

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

input overflow <« NotWordValue (GPR[rs]) or NotWordValue (GPR[rt])

templ <« sign extend.32(GPR[rsl;; o)

temp2 <« sign extend.32(GPR[rtl;;)

tempd < templ + temp2 // wider than 32-bit precision
sum_overflow <« (tempd;, # tempds;)

BOVC: cond <« sum overflow or input overflow

BNVC: cond <« not(sum overflow or input overflow)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

if cond then
PC < (PC+4 + sign_extend(offset << 1))
endif

Exceptions:

None

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 155

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

156

31 26 25 21 20 16 15 12 11 9 8 0
POOL32B b CACHE 0 offset
001000 op ase 0110 000
6 5 5 4 3 9
Format: CACHE op, offset (base) microMIPS

Purpose: Perform Cache Operation

To perform the cache operation specified by op.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 5.18 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ¢ Log2 (BPT)

IndexBit < Log2(CS / A)

WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way ¢ Addryaypit-1..IndexBit

Index ¢ Addripgexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.3 Usage of Address Fields to Select Index and Way

[WayBit[IndexBit /_ OffsetBit
0

Unused Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

operations (where the address is used to index the cache but need not match the cache tag), software must use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

As aresult, a Cache Error exception may occur because of some operations performed by this instruction. For exam-
ple, if a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported
via a Cache Error exception. Also, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.19 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache (every address which is resident in the smaller cache is also resident in the larger cache; also known
as the inclusion property). It is recommended that the CACHE instructions which operate on the larger, outer-level
cache; must first operate on the smaller, inner-level cache. For example, a Hit Writeback Invalidate operation tar-
geting the Secondary cache, must first operate on the primary data cache first. If the CACHE instruction implementa-
tion does not follow this policy then any software which flushes the caches must mimic this behavior. That is, the
software sequences must first operate on the inner cache then operate on the outer cache. The software must place a
SYNC instruction after the CACHE instruction whenever there are possible writebacks from the inner cache to
ensure that the writeback data is resident in the outer cache before operating on the outer cache. If neither the CACHE
instruction implementation nor the software cache flush sequence follow this policy, then the inclusion property of
the caches can be broken, which might be a condition that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, the use of a SYNC instruction after the
CACHE instruction is still needed whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 157

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Table 5.20 Encoding of Bits [20:18] of the CACHE Instruction

Code

Effective
Address
Operand Compliance
Caches Name Type Operation Implemented

0b000

I Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

D Index Writeback Index For a write-back cache: If the state of the cache Required
Invalidate / Index block at the specified index is valid and dirty,

Invalidate write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

S, T Index Writeback Index
Invalidate / Index
Invalidate

Required if S, T cache
is implemented

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. The Index Store Tag
must be used to initialize the cache at power up.

0b001

All Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor 0
registers. If the DatalLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DataLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

158

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation
Table 5.20 Encoding of Bits [20:18] of the CACHE Instruction (Continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address instruction cache by s‘Feppip g through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
. . . . implemented, the S
In multiprocessor implementations with coher- .
. . and T variants are rec-
ent caches, the operation may optionally be
o ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S,T | Hit Writcback Inval- | Address | ‘1t operation is completed, set the state of the - o o0 1o ¢S T cache
. . . cache block to invalid. If the block is valid but . .
idate / Hit Invalidate is implemented

not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

159

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Table 5.20 Encoding of Bits [20:18] of the CACHE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented

0b110 D Hit Writeback Address If the cache block contains the specified address Recommended
and it is valid and dirty, write the contents back

to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

S, T Hit Writeback Address Optional, if
Hit Writeback D is
implemented, the S
and T variants are rec-

. . . . ommended.
In multiprocessor implementations with coher-

ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Obl11 I,D Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write- Recommended
back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

160 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHE Perform Cache Operation

Restrictions:
The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

| This instruction has been recoded for Release 6.

Operation:

vAddr ¢ GPR[base] + sign_extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

| Release 6 architecture implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit
offset.

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the

index passed in GPR a0:
1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 161

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

162

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA | CACHEE
011000 op base 1010 011 offset
6 5 5 4 3 9
Format: CACHEE op, offset (base) microMIPS

Purpose: Perform Cache Operation EVA

To perform the cache operation specified by op using a user mode virtual address while in kernel mode.

Description:

The 9-bit offset is sign-extended and added to the contents of the base register to form an effective address. The effec-
tive address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 5.21 Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, a kseg0 address should always be used
for cache operations that require an index. See the Programming Notes section
below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit ¢ Log2 (BPT)

IndexBit < Log2(CS / A)

WayBit ¢ IndexBit + Ceiling(Log2 (A))

Way ¢ Addryaypit-1..IndexBit

Index ¢ Addripgexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully
specifies the cache tag. This is shown symbolically in the figure below.

Figure 5.4 Usage of Address Fields to Select Index and Way

[WayBit[IndexBit /_ OffsetBit
0

Unused Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHEE instruction never causes an Address
Error Exception due to an non-aligned address.

A Cache Error exception may occur as a by-product of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHEE instruction and the memory transactions which are sourced by the CACHEE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [22:21] of the instruction specify the cache on which to perform the operation, as follows:

Table 5.22 Encoding of Bits[22:21] of CACHEE Instruction

Code Name Cache
0b00 I Primary Instruction

0b01 D Primary Data or Unified Primary

0b10 T Tertiary

Obl11 S Secondary

Bits [25:23] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache, it is recommended that the CACHEE instructions must first operate on the smaller, inner-level
cache. For example, a Hit Writeback Invalidate operation targeting the Secondary cache, must first operate on the
primary data cache first. If the CACHEE instruction implementation does not follow this policy then any software
which flushes the caches must mimic this behavior. That is, the software sequences must first operate on the inner
cache then operate on the outer cache. The software must place a SYNC instruction after the CACHEE instruction
whenever there are possible writebacks from the inner cache to ensure that the writeback data is resident in the outer
cache before operating on the outer cache. If neither the CACHEE instruction implementation nor the software cache
flush sequence follow this policy, then the inclusion property of the caches can be broken, which might be a condition
that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, you must use SYNC instruction after the
CACHEE instruction whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHEE instruction
operations may optionally affect all coherent caches within the implementation. If the effective address uses a coher-
ent Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 163

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE

Perform Cache Operation EVA

caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the
operation. If multiple levels of caches are to be affected by one CACHEE instruction, all of the affected cache levels
must be processed in the same manner — either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

The CACHEE instruction functions the same as the CACHE instruction, except that address translation is performed
using the user mode virtual address space mapping in the TLB when accessing an address within a memory segment
configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also acces-
sible . Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Table 5.23 Encoding of Bits [20:18] of the CACHEE Instruction

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b000

I

Index Invalidate

Index

Set the state of the cache block at the specified
index to invalid.

This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.

Required

Index Writeback
Invalidate / Index
Invalidate

Index

S, T

Index Writeback
Invalidate / Index
Invalidate

Index

For a write-back cache: If the state of the cache
block at the specified index is valid and dirty,
write the block back to the memory address
specified by the cache tag. After that operation
is completed, set the state of the cache block to
invalid. If the block is valid but not dirty, set the
state of the block to invalid.

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. Note that Index Store
Tag should be used to initialize the cache at
power up.

Required

Required if S, T cache
is implemented

0b001

All

Index Load Tag

Index

Read the tag for the cache block at the specified
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the DataLo and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

Recommended

164

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE

Perform Cache Operation EVA

Table 5.23 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.
This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.
0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address instruction cache by s‘Feppip g through the Optional, if
address range by the line size of the cache. Hit_Invalidate D is
. . . . implemented, the S
In multiprocessor implementations with coher- .
. . and T variants are rec-
ent caches, the operation may optionally be
o ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S,T | Hit Writcback Inval- | Address | ‘1t operation is completed, set the state of the - o o0 1o ¢S T cache
. . . cache block to invalid. If the block is valid but . .
idate / Hit Invalidate is implemented

not dirty, set the state of the block to invalid.

For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.

This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

165

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE

Perform Cache Operation EVA

Table 5.23 Encoding of Bits [20:18] of the CACHEE Instruction (Continued)

Code

Caches

Name

Effective

Address

Operand
Type

Operation

Compliance
Implemented

0b110

Hit Writeback

Address

S, T

Hit Writeback

Address

If the cache block contains the specified address
and it is valid and dirty, write the contents back
to memory. After the operation is completed,
leave the state of the line valid, but clear the
dirty state. For a write-through cache, this oper-
ation may be treated as a nop.

In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

Recommended

Optional, if
Hit Writeback D is
implemented, the S
and T variants are rec-
ommended.

Obl111

LD

1l

Fetch and Lock

Address

If the cache does not contain the specified
address, fill it from memory, performing a write-
back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

Recommended

166

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CACHEE Perform Cache Operation EVA

Restrictions:
The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-
able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHEE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent
cache misses to that cache index is UNDEFINED.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

| This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception

Coprocessor Unusable Exception

Reserved Instruction

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to a kseg0
address by ORing the index with 0x80000000 before being used by the cache instruction. For example, the following
code sequence performs a data cache Index Store Tag operation using the index passed in GPR a0:

1i al, 0x80000000 /* Base of kseg0 segment */
or a0, a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(al) /* Perform the index store tag operation */
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 167

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CEIL.L.fmt Fixed Point Ceiling Convert to Long Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt CEIL.L POOL32FXf
010101 s 01001100 111011
6 5 5 1 1 3 6

Format: CEIL.L.fmt
CEIL.L.S ft, fs MIPS64, microMIPS
CEIL.L.D ft, fs MIPS64, microMIPS

Purpose: Fixed Point Ceiling Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding up.

Description: FPR[ft] <« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounding toward +co
(rounding mode 2). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

* 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2031

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

168 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CEIL.W.fmt Floating Point Ceiling Convert to Word Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 fm CEIL.W POOL32FXf
010101 S t 01101100 111011
6 5 5 11 8 6
Format: CEIL.W.fmt
CEIL.W.S ft, fs microMIPS
CEIL.W.D ft, fs microMIPS
Purpose: Floating Point Ceiling Convert to Word Fixed Point
To convert an FP value to 32-bit fixed point, rounding up
Description: FPR[ft] < convert and round (FPR[fs])
The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounding toward -+
(rounding mode 2). The result is placed in FPR ft.
When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is
2931, On cores with FCSR.NAN2008=1, the default result is:
¢ 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631
« 2291 when the input value is —00 or rounds to a number smaller than 291
Restrictions:
The fields fs and fd must specify valid FPRs; fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.
The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Operation:
StoreFPR (ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 169

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CFC1 Move Control Word From Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 CFCl1 POOL32FXf
010101 s 01000000 111011
6 5 5 2 8 6
Format: crci1i rt, fs microMIPS

Purpose: Move Control Word From Floating Point
To copy a word from an FPU control register to a GPR.

Description: GPR[rt] <« FP_Control [fs]

Copy the 32-bit word from FP (coprocessor 1) control register fs into GPR rt, sign-extending it to 64 bits.

UER (User ER change facility):

The definition of this instruction has been extended in Release 5 to support user mode read of Statusgg under the
control of Config5gr. This optional feature is meant to facilitate transition from FR=0 to FR=1 floating-point

register modes in order to obsolete FR=0 mode. An implementation that is strictly FR=1 would not support this
feature.

The UFR facility is removed in Release 6. Accessing the UFR and UNFR registers cannot occur because Release
6 does not allow FIRyggp to be set.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction Exception occurs if fs
specifies a register that does not exist.

The result is UNPREDICTABLE if fs specifies the UNFR write-only control. R5.03 implementations are required to
produce a Reserved Instruction Exception; software must assume it is UNPREDICTABLE.

Operation:

if fs = 0 then
temp ¢ FIR
elseif fs = 1 then /* read UFR (CPl Register 1) */
if FIRypgp then
if not ConfigSypgr then SignalException(ReservedInstruction) endif
temp ¢« Statusgg
else
if Configpg>=2 SignalException (ReservedInstruction) /* Release 6 traps */
endif
temp ¢ UNPREDICTABLE
endif
elseif fs = 4 then /* read fs=4 UNFR not supported for reading - UFR suffices */
if Configpg>2 SignalException(ReservedInstruction) /* Release 6 traps */
endif
temp ¢ UNPREDICTABLE
elseif fs = 25 then /* FCCR */

temp < 0% || FCSRyy o5 || FCSR,s
elseif fs = 26 then /* FEXR */
temp < 0'* || FCSRy; 15 || 0° || FCSRs , || 07

elseif fs = 28 then /* FENR */

170 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CFC1 Move Control Word From Floating Point

temp < 02° || FCSRy; 5 || 0* || FCSR,, || FCSR;
elseif fs = 31 then /* FCSR */

temp € FCSR
else

if Config2.AR > 2 SignalException (ReservedInstruction) /* Release 6 traps

*/ endif
temp ¢ UNPREDICTABLE
endif

GPR[rt] €« sign extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For the MIPS 1, I and III architectures, the contents of GPR rt are UNPREDICTABLE for the instruction immedi-

ately following CFC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not

available in MIPS I, II, III, or IV.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg. Release 6

removes them.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

171

CFC2 Move Control Word From Coprocessor 2

31 26 25 21 20 16 15 6 5 0
POOL32A ot Imol CFC2 POOL32AXf
000000 P 1100110100 111100
6 5 5 10 6
Format: crc2 rt, Impl microMIPS

The syntax shown above is an example using CFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word From Coprocessor 2

To copy a word from a Coprocessor 2 control register to a GPR

Description: GPR[rt] < CP2CCR[Impl]

Copy the 32-bit word from the Coprocessor 2 control register denoted by the Impl field, sign-extending it to 64 bits.
The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The result is UNPREDICTABLE if Impl specifies a register that does not exist.

Operation:

temp ¢ CP2CCR [Impl]
GPR[rt] ¢ sign extend(temp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

172 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CLASS.fmt Scalar Floating-Point Class Mask

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F CLASS
010101 fs fd 00000 fimt 001100000
6 5 5 5 2 9

Format: cCLASS.fmt

CLASS fd, fs, fmt microMIPS32 Release 6
CLASS.S fd4,fs microMIPS32 Release 6
CLASS.D fd4,fs microMIPS32 Release 6

Purpose: Scalar Floating-Point Class Mask

Scalar floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.

Description: FPR[£d] <« class (FPR[fs])
Stores in fd a bit mask reflecting the floating-point class of the floating point scalar value fs.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zero (bit 5). Bits 6, 7, 8, 9
classify positive values: infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

This instruction corresponds to the class operation of the IEEE Standard for Floating-Point Arithmetic 754™.2008.
This scalar FPU instruction also corresponds to the vector FCLASS.df instruction of MSA.

The input values and generated bit masks are not affected by the flush-subnormal-to-zero mode FCSR.FS.

The input operand is a scalar value in floating-point data format fmt. Bits beyond the width of fmt are ignored. The
result is a 10-bit bitmask as described above, zero extended to fmt-width bits. Coprocessor register bits beyond fmt-
width bits are UNPREDICTABLE (e.g., for CLASS.S bits 32-63 are UNPREDICTABLE on a 64-bit FPU, while bits
32-128 bits are UNPREDICTABLE if the processor supports MSA).

Restrictions:

No data-dependent exceptions are possible.

Availability and Compatibility:
This instruction is introduced by and required as of Release 6.

CLASS.fmt is defined only for formats S and D. Other formats must produce a Reserved Instruction Exception
(unless used for a different instruction).

Operation:

CLASS.fmt
if not IsCoprocessorEnabled (1)
then SignalException (CoprocessorUnusable, 1) end if
if not IsFloatingPointImplemented (fmt))
then SignalException (ReservedInstruction) end if
if fmt=D and FIR.D=0
then SignalFPException (UnimplementedOperation) end if

fin <« ValueFPR(fs, fmt)
masktmp < ClassFP(fin, fmt)
StoreFPR (fd, fmt, ftmp)
/* end of instruction */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 173

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

function ClassFP(tt, ts, n)
/* Implementation defined class operation. */
endfunction ClassFP

Exceptions:

Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:

Unimplemented Operation

174 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CLO Count Leading Ones in Word

31 26 25 21 20 16 15 6 5 0
POOL32A ot c CLO POOL32AXS
000000 s 0100101100 111100
6 5 5 10 6
Format: cLo rt, rs microMIPS

Purpose: Count Leading Ones in Word

To count the number of leading ones in a word.

Description: GPR[rt] ¢ count leading ones GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading ones is counted
and the result is written to GPR rt. If all of bits 31..0 were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are
UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp ¢ 32
for i in 31 .. 0
if GPR[rs]l; = 0 then
temp < 31 - i
break
endif
endfor
GPR[rt] <« temp

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 175

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CLz Count Leading Zeros in Word
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A " . CLZ POOL32AXf
000000 s 0101101100 111100
6 5 5 10 6
Format: cLz rt, rs microMIPS

176

Purpose: Count Leading Zeros in Word

Count the number of leading zeros in a word.

Description: GPR[rt] ¢ count leading zeros GPR[rs]

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of leading zeros is counted
and the result is written to GPR rt. If no bits were set in GPR rs, the result written to GPR rt is 32.

Restrictions:

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the results of the operation are

UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rs]) then
UNPREDICTABLE
endif
temp ¢ 32
for i in 31 .. 0
if GPR[rs]; = 1 then
temp < 31 - i
break
endif
endfor
GPR[rt] <« temp

Exceptions:

None

Programming Notes:
Release 6 sets the ‘rt’ field to a value of 00000.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CMP.condn.fmt Floating Point Compare Setting Mask

26 25 21 20 16 15 11 10 6 5 4 0
POOL32F CMP.condn.S
010101 fi fs fd condn 000101
POOL32F CMP.condn.D
010101 fi fs fd condn 010101
6 5 5 5 5 6

Format: CMP.condn.fmt
CMP.condn.S fd, fs, ft microMIPS32 Release 6
CMP.condn.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Compare Setting Mask

To compare FP values and record the result as a format-width mask of all Os or all 1s in a floating point register

Description: FPR[fd] ¢« FPR[fs] compare cond FPRI[ft]
The value in FPR fs is compared to the value in FPR ft.
The comparison is exact and neither overflows nor underflows.

If the comparison specified by the condn field of the instruction is true for the operand values, the result is true; other-
wise, the result is false. If no exception is taken, the result is written into FPR fd; true is all 1s and false is all Os,
repeated the operand width of fmt. All other bits beyond the operand width fmt are UNPREDICTABLE. For example,
a 32-bit single precision comparison writes a mask of 32 Os or 1s into bits 0 to 31 of FPR fd. It makes bits 32 to 63
UNPREDICTABLE if a 64-bit FPU without MSA is present. It makes bits 32 to 127 UNPREDICTABLE if MSA is
present.

The values are in format fmt. However, these instructions use a non-standard encoding of fmt: fmt encoding=10100,
which is W (32-bit integer) elsewhere, means S (32-bit single precision floating point) here; fmt encoding=10101,
which is L (64-bit integer) elsewhere, means D (64-bit double precision floating point) here.

All other encodings, that is all other values of fmt, are reserved in Release 6, and produce a Reserved Instruction
Exception. The encodings corresponding to MIPS32 Release 5 C.cond.S and C.cond.D are so reserved.

The condn field of the instruction specifies the nature of the comparison: equals, less than, and so on, unordered or
ordered, signalling or quiet, as specified in Table 5.24 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 179.

Release 6: The condn field bits have specific purposes: cond,, and cond, 4 specify the nature of the comparison
(equals, less than, and so on); condy specifies whether the comparison is ordered or unordered, that is false or true if
any operand is a NaN; condg indicates whether the instruction should signal an exception on QNaN inputs. However,
in the future the MIPS ISA may be extended in ways that do not preserve these meanings.

All encodings of the condn field that are not specified (for example, items shaded in Table 5.24) are reserved in
Release 6 and produce a Reserved Instruction exception.

If one of the values is an SNaN, or if a signalling comparison is specified and at least one of the values is a QNaN, an
Invalid Operation condition is raised and the Invalid Operation flag is set in the FCSR. If the Invalid Operation
Enable bit is set in the FCSR, no result is written and an Invalid Operation exception is taken immediately. Otherwise,
the mask result is written into FPR fd.

There are four mutually exclusive ordering relations for comparing floating point values; one relation is always true
and the others are false. The familiar relations are greater than, less than, and equal. In addition, the IEEE floating
point standard defines the relation unordered, which is true when at least one operand value is NaN; NaN compares
unordered with everything, including itself. Comparisons ignore the sign of zero, so +0 equals -0.

The comparison condition is a logical predicate, or equation, of the ordering relations such as less than or equal,

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 177

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CMP.condn.fmt Floating Point Compare Setting Mask

178

equal, not less than, or unordered or equal. Compare distinguishes among the 16 comparison predicates. The Bool-
ean result of the instruction is obtained by substituting the Boolean value of each ordering relation for the two FP val-
ues in the equation. For example: If the equal relation is true, then all four example predicates above yield a true
result. If the unordered relation is true then only the final predicate, unordered or equal, yields a true result.

The predicates implemented are described in Table 5.24 “Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt,
and MSA FP compares” on page 179. Not all of the 16 IEEE predicates are implemented directly by hardware. For
the directed comparisons (LT, LE, GT, GE) the missing predicates can be obtained by reversing the FPR register
operands ft and fs. For example, the hardware implements the “Ordered Less Than” predicate LT(fs,ft); reversing the
operands LT(ft,fs) produces the dual predicate “Unordered or Greater Than or Equal” UGE(fs,ft). Table 5.24 shows
these mappings. Reversing inputs is ineffective for the symmetric predicates such as EQ; Release 6 implements these
negative predicates directly, so that all mask values can be generated in a single instruction.

Table 5.24 compares CMP.condn.fmt to (1) the MIPS32 Release 5 C.cond.fmt, and (2) the (MSA) MIPS SIMD
Architecture packed vector floating point comparison instructions. CMP.condn.fmt provides exactly the same com-
parisons for FPU scalar values that MSA provides for packed vectors, with similar mnemonics. CMP.condn.fmt pro-
vides a superset of the MIPS32 Release 5 C.cond.fmt comparisons.

In addition, Table 5.24 shows the corresponding IEEE 754-2008 comparison operations.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

panlasal s1ybul ||y “saluedwo) dnois parel|illy Sl Jo/pue ‘al saibojouyosa] uoneuibew| GToZ @ 1YybluAdoD

6.1

20°9 UOISIASY 189S UONINASU| w, #OSIINOIOIW :g-]| ALUNJOA SlawureiBold 10} IN0aNydIyY @SdIIN

Table 5.24 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt:
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 = 26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecc
011110 oooof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5...0 = 28 - 011100

e MSA: operation CMP: condn Bit5..4=00 C: only applicable CMP: condn Bit5..4=01 C: not applicable
S ¢ |oooo Bits 25...22 . .
g2 ¢C: cond Predicates Negated Predicates
g - Bits 3.0 - - - =
=S ccg;\:/lP- . Relation £ £ Relation £ £
<] :condn = < Qs 9 <«]
2 lcccee - Bits 3. 05 %) S5 Long names IEEE og o =5 Long names IEEE
= >|< ? c = O c >|< ? o = O c
o o [s o
O O O O
0 oo [[Flelele] | Foar [ar | False TiTiTiT| T ar | True
Always False Always True
compareQuietUnordered compareQuietOrdered
1 0001 FIF|F|T] uUN | FCUN | UN | Unordered 2 T|T|T|FJOR|FCOR| OR | Ordered >
isUnordered NOT(isUnordered)
2 0010 FlF Fl FCE E compareQuietEqual TIT TINEOIFCUNEl UNE compareQuietNotEqual
Q Q | EQ | Equal h Q Not Equal 7<> NOT(=), #
’Z:; Ordered
3|5 3 0011 FIF|T|T] UEQ | FCUEQ |UEQ| Unordered or Equal T FIOGL] FCNE | NE Greater Than
s or Less Than
5|5
2| ® ‘ Unordered or :
|2 4 0100 ElT Fl oLt FCLT LT compareQuietLess TIF TlUGH| UGE compareQuietNotLess
2|3 Ordered Less Than iSLess Greater Than 75—, NOT(isLess)
] or Equal
els
%]
S Unordered or Less compareQuietLessUnor- Ordered compareQuiet-
5 0101 F|T T| UuLT FCULT | ULT dered T F F|OGE] OGE Greater Than GreatrEqual
Than ?<, NOT(isGreaterEqual) or Equal isGreaterEqual
; . compareQuietGreaterUn-
6 0110 cltltlel oe | ree | e Ordered Less than or compareQuictLessEqual [l £ || 1 lyeT] UGT Unordered or e
Equal isLessEqual Greater Than | o NOT(isLessEqual)
7 or |[r/ 77 7| ue | FouLe |uLe [Unordered orLess | compareQuictNotGreater [l | £ | ¢ | £ Jogy o | Ordered compareQuictGreater
Than or Equal 7<=, NOT((isGreater) Greater Than | isGreater

JWUpuod'diND

3Se Bumes atedwo) 1ulod Buneo|4

panlasal s1ybul ||y “saluedwo) dnois parel|illy Sl Jo/pue ‘al saibojouyosa] uoneuibew| GToZ @ 1YybluAdoD

08T

2079 UOISIASY 19S UONINISU| wi9SdINOIOIW G-]| WN|OA SiawiwelBold 10} 21noaliydly @SdIN

Table 5.24 Comparing CMP.condn.fmt, IEEE 754-2008, C.cond.fmt, and MSA FP compares (Continued)

Shaded entries in the table are unimplemented, and reserved.

Instruction Encodings

CMP.condn. fmt :
C.cond. fmt:
MSA:

MSA: minor opcode mmmmmm Bits 5...0 = 26 - 011010

010001 fffff ttttt sssss ddddd Occccc
010001 fffff ttttt sssss CCCOO0 lleccecec
011110 ooocof ttttt sssss ddddd mmmmmm

MSA: minor opcode mmmmmm Bits 5...0 = 28 - 011100

e MSA: operation CMP: condn Bit5..4=00 C: only applicable CMP: condn Bit5..4 =01 C: not applicable
S c |oooo Bits 25...22 . .
g-% C: cond Predicates Negated Predicates
) - Bi = = =1 =
z 9 |°S Bits 3.0 Relation £ £ Relation g £
CMP: condn = = - =
z lccecee - Bits 3. [SR S (%] >3 Long names IEEE ogl v S35 Long names IEEE
= >|< ? c = (SR > < ? q = O c
o o (e o
O O O} O
Signalling False Signalling True
8 1000 FIF|F|F| sF FSAF | SAF| Signalling T|T|T|T|]ST SAT | Signalling
Always False Always True
Greater Than or
Not Greater Than or Less Than or Equa
9 1001 F|F T| NGLE | FSUN |SUN Less Than or Equal T F|GLE] FSOR | SOR Si 11
Signalling Unordered 1gnating
Ordered
P Signalling Not Equal
\enating Bqua Signalling Unor- onalli
10 1010 |IF|F|T|F] sEQ | FsEQ |sEQ| Ordered Signallin ignalling T|T|F|T[SNE[FsuNE| suNE compareSignalling-
Q Q Q g g compareSignalling Equal dered or Not NotEqual
Equal
Equal
Greater Than or
Not Greater Than or Less Than
Less Than Si :
S . . ignallin
g 11 1011 F|F T] NGL | FSUEQ [SUEQ Slgnalhng Unordered T|T FJGL | FSNE | SNE g g
El or Equal Ordered
5 Not Equal
"
e Not Less Than
2 Less Than . compareSienallineLess Signalling compareSignallingNot-
12 1100 FIT|F|F] LT FSLT | sLT | Ordered Signalling i paresig g T|F|T|T|NLT SUGE | Unordered or Less
Less Than Greater Than or NOT(<)
Equal
Not Greater Than or Equal | compareSignalling- Signalling Ordered | compareSignalling-
13 1201 JIF|T|F|T| NeE | FsuLT [suLT| Unordered or Less LessUnordered T/F|T|F|GE SOGE | Greater Than or GreaterEqual
Than NOT(>=) Equal >= >
Less Than or Equal - compareSignalling- NOELCST ULERICE compareSignalling-
14 1110 FIT|T|F] LE FSLE | SLE | Ordered Signalling LessEqual T|F|F|T|NLE SUGT | Bdua GreaterUnordered
- < Signalling Unordered NOT(<=)
Less Than or Equal | <= < or Greater Than
Not Greater Than
Signalling Unordered | compareSignalling- Greater Than compareSignalling-
15 1111 F|T|T|T|] NGT | FSULE [SULE or Less Than or NotGreater T|F| F|F|GT SOGT | Signalling Ordered Greater
NOT(>) Greater Than >
Equal

JWUpuod'diND

3Se Bumes atedwo) 1ulod Buneo|4

CMP.condn.fmt

Restrictions:

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QONaN (ValueFPR (fs, fmt)) or QNaN(ValueFPR (ft, fmt))
then
less < false
equal ¢« false
unordered ¢ true
if (SNaN(ValueFPR (fs,fmt)) or SNaN (ValueFPR(ft,fmt))) or
(cond; and (QNaN (ValueFPR(fs,fmt)) or QONaN(ValueFPR(ft,fmt)))) then
SignalException (InvalidOperation)
endif
else
less ¢ ValueFPR(fs, fmt) <f,. ValueFPR(ft, fmt)
equal ¢ ValueFPR(fs, fmt) =¢,. ValueFPR(ft, fmt)
unordered ¢ false
endif
condition ¢ cond, xor (
(cond, and less)
or (cond; and equal)
or (condy, and unordered))

StoreFPR (fd, fmt, ExtendBit.fmt (condition))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Compare Setting Mask

181

COP2 Coprocessor Operation to Coprocessor 2

31 26 25 3 2 0
POOL32A " COoP2
000000 cotun 010
6 23 3
Format: cop2 func microMIPS

Purpose: Coprocessor Operation to Coprocessor 2

To perform an operation to Coprocessor 2.

Description: CoprocessorOperation (2, cofun)

An implementation-dependent operation is performed to Coprocessor 2, with the cofun value passed as an argument.
The operation may specify and reference internal coprocessor registers, and may change the state of the coprocessor
conditions, but does not modify state within the processor. Details of coprocessor operation and internal state are
described in the documentation for each Coprocessor 2 implementation.

Restrictions:

Operation:

CoprocessorOperation (2, cofun)

Exceptions:

Coprocessor Unusable
Reserved Instruction

182 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CTC1 Move Control Word to Floating Point
31 26 25 21 20 16 15 14 13 6 5 0
POOL32F " " 00 CTC1 POOL32FXf
010101 s 01100000 111011
6 5 5 2 P 6
Format: cTc1i rt, fs microMIPS

Purpose: Move Control Word to Floating Point
To copy a word from a GPR to an FPU control register.

Description: FP_Control [fs] < GPR[rt]
Copy the low word from GPR rt into the FP (coprocessor 1) control register indicated by fs.

Writing to the floating point Control/Status register, the FCSR, causes the appropriate exception if any Cause bit
and its corresponding Enable bit are both set. The register is written before the exception occurs. Writing to FEXR to
set a cause bit whose enable bit is already set, or writing to FENR to set an enable bit whose cause bit is already set
causes the appropriate exception. The register is written before the exception occurs and the EPC register contains
the address of the CTC1 instruction.

UER (User ER change facility):

The definition of this instruction has been extended in Release 5 to support user mode read of Statusgg under the
control of Config5gr. This optional feature is meant to facilitate transition from FR=0 to FR=1 floating-point
register modes in order to obsolete FR=0 mode. An implementation that is strictly FR=1 would not support this
feature.

The UFR facility is removed in Release 6. Accessing the UFR and UNFR registers cannot occur because
Release 6 does not allow FIRyggp to be set.

Restrictions:

There are a few control registers defined for the floating point unit. Prior to Release 6, the result is UNPREDICT-
ABLE if fs specifies a register that does not exist. In Release 6 and later, a Reserved Instruction exception occurs if fs
specifies a register that does not exist.

Furthermore, the result is UNPREDICTABLE if fd specifies the UFR or UNFR aliases, with fs anything other than
00000, GPR[0]. R5.03 implementations are required to produce a Reserved Instruction Exception; software must
assume it is UNPREDICTABLE.

Operation:

temp ¢ GPR[rtls; o
if (fs = 1 or fs = 4) then
/* clear UFR or UNFR(CP1l Register 1)*/
if Configp >2 SignalException() /* Release 6 traps */ endif
if not (rt = 0 and FIRyppp) then UNPREDICTABLE /*end of instruction*/ endif
if not Config5ypg then SignalException() endif
if fs = 1 then Statusggy ¢« O
elseif fs = 4 then Statuspy < 1
else /* cannot happen */
elseif fs = 25 then /* FCCR */
if tempy; g # 02* then
UNPREDICTABLE

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 183

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CTC1 Move Control Word to Floating Point

else
FCSR « temp,; ; || FCSRy, || tempy || FCSR,,
endif
elseif fs = 26 then /* FEXR */
if temps; 193 # 0 or temp;; -, # 0 or temp, , # Othen
UNPREDICTABLE
else
FCSR € FCSR3; 15 || tempy; 15 || FCSRyy. 5 ||
tempg , || FCSRy. o
endif
elseif fs = 28 then /* FENR */
if temps; 45, # 0 or tempg 3 # 0 then

UNPREDICTABLE

else
FCSR ¢ FCSR3y s || temp, || FCSRy3 15 || tempyy. 5
|| FCSRg, , || temp;

endif

elseif fs = 31 then /* FCSR */
if (FCSRppe; field is not implemented) and(temp,, ;5 # 0) then
UNPREDICTABLE
elseif (FCSRpp,; field is implemented) and temp,, 15 # O then
UNPREDICTABLE
else
FCSR <« temp
endif
else
if Config2.AR > 2 SignalException (ReservedInstruction) /* Release 6 traps */
endif
UNPREDICTABLE
endif

CheckFPException ()

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Division-by-zero, Inexact, Overflow, Underflow

Historical Information:

For the MIPS I, II and III architectures, the contents of floating point control register fs are UNPREDICTABLE for
the instruction immediately following CTC1.

MIPS V and MIPS32 introduced the three control registers that access portions of FCSR. These registers were not
available in MIPS I, 11, III, or I'V.

MIPS32 Release 5 introduced the UFR and UNFR register aliases that allow user level access to Statusgg.

184 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CTC2 Move Control Word to Coprocessor 2
31 26 25 21 20 16 15 6 5 0
POOL32A " fnol CTC2 POOL32AXf
000000 P 1101110100 111100
6 5 5 10 6
Format: cTc2 rt, Impl microMIPS

The syntax shown above is an example using CTC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Control Word to Coprocessor 2

To copy a word from a GPR to a Coprocessor 2 control register.

Description: CP2CCR[Impl] < GPR[rt]

Copy the low word from GPR rt into the Coprocessor 2 control register denoted by the Impl field. The interpretation
of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.
Restrictions:

The result is UNPREDICTABLE if rd specifies a register that does not exist.

Operation:

temp ¢ GPR[rtl;;
CP2CCR [Impl] < temp

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 185

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.D.fmt Floating Point Convert to Double Floating Point

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F i £ 0! fmt CVTD POOL32FXf
010101 s 1001101 111011

6 5 5 1 2 7 6

Format: cvT.D.fmt

CVT.D.S ft, fs microMIPS
CVT.D.W ft, fs microMIPS
CVT.D.L ft, fs MIPS64, microMIPS

Purpose: Floating Point Convert to Double Floating Point

To convert an FP or fixed point value to double FP.

Description: FPR[ft] <« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in double floating point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft. If fmt is S or W, then the operation is always exact.
Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and ft for double floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.D.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model.

Operation:

StoreFPR (ft, D, ConvertFmt (ValueFPR(fs, fmt), fmt, D))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

186 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.L.fmt Floating Point Convert to Long Fixed Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt CVTL POOL32FXf
010101 S 00000100 111011
6 5 5 1 1 8 6

Format: cvT.L.fmt
CVT.L.S ft, fs MIPS64, microMIPS
CVT.L.D ft, fs MIPS64, microMIPS
Purpose: Floating Point Convert to Long Fixed Point

To convert an FP value to a 64-bit fixed point.

Description: FPR[ft] < convert and round (FPR[fs])
Convert the value in format fmt in FPR fs to long fixed point format and round according to the current rounding
mode in FCSR. The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

¢ 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs, fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact,

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 187

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.S.fmt Floating Point Convert to Single Floating Point

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F i £ 0! fmt CVTS POOL32FXf
010101 s 1101101 111011

6 5 5 1 2 7 6

Format: cvT.s.fmt

CVT.S.D ft, fs microMIPS
CVT.S.W ft, fs microMIPS
CVT.S.L ft, fs MIPS64, microMIPS

Purpose: Floating Point Convert to Single Floating Point

To convert an FP or fixed point value to single FP.

Description: FPR[ft] <« convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in single floating point format and rounded according to the
current rounding mode in FCSR. The result is placed in FPR ft.

Restrictions:

The fields fs and ft must specify valid FPRs—fs for type fmt and fd for single floating point. If the fields are not valid,
the result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

For CVT.S.L, the result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit
FPU register model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on
a 32-bit FPU.

Operation:

StoreFPR (ft, S, ConvertFmt (ValueFPR(fs, fmt), fmt, S))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact, Overflow, Underflow

188 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

CVT.W.fmt Floating Point Convert to Word Fixed Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fnt CVT.W POOL32FXf
010101 s o 00100100 111011
6 5 5 1 1 8 6
Format: CvT.w.fmt
CVT.W.S ft, fs microMIPS
CVT.W.D ft, fs microMIPS
Purpose: Floating Point Convert to Word Fixed Point
To convert an FP value to 32-bit fixed point.
Description: FPR[ft] < convert and round (FPR[fs])
The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded according to
the current rounding mode in FCSR. The result is placed in FPR ft.
When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is
2931, On cores with FCSR.NAN2008=1, the default result is:
¢ 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631
« 2291 when the input value is —00 or rounds to a number smaller than 291
Restrictions:
The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.
The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Operation:
StoreFPR (ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))
Exceptions:
Coprocessor Unusable, Reserved Instruction
Floating Point Exceptions:
Invalid Operation, Unimplemented Operation, Inexact
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 189

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DADD Doubleword Add

190

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S DADD
010110 rt s rd 0 100010000
6 5 5 5 2 9
Format: DADD rd, rs, rt microMIPS64

Purpose: Doubleword Add

To add 64-bit integers. If overflow occurs, then trap.

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs to produce a 64-bit result. If the addi-
tion results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Integer
Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ¢« (GPR[rs]gs||GPRI[rs]) + (GPR[rtlgs;||GPR[rt])
if (tempg, # tempg;) then
SignalException (IntegerOverflow)
else
GPR[rd] € tempgs. .o
endif
Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DADDIU Doubleword Add Immediate Unsigned

31 26 25 21 20 16 15 0
DADDIU . .
010111 rt s immediate
6 5 5 16
Format: DADDIU rt, rs, immediate microMIPS64

Purpose: Doubleword Add Immediate Unsigned

To add a constant to a 64-bit integer

Description: GPR[rt] ¢ GPR[rs] + sign extend (immediate)

The 16-bit signed immediate is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is placed into
GPR rt.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[rt] ¢ GPR[rs] + sign extend(immediate)

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 191

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DADDU Doubleword Add Unsigned

192

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DADDU
010110 101010000
6 5 5 5 2 9
Format: DADDU rd, rs, rt microMIPS64

Purpose: Doubleword Add Unsigned
To add 64-bit integers

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 64-bit doubleword value in GPR rt is added to the 64-bit value in GPR rs and the 64-bit arithmetic result is
placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation:

GPR[rd] < GPR[rs] + GPR[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DCLO Count Leading Ones in Doubleword
31 26 25 21 20 16 15
POOL32S - DCLO POOL32SXf
010110 s 0100101100 111100
6 5 10 6
Format: DCLo rd, rs microMIPS64

Purpose: Count Leading Ones in Doubleword

To count the number of leading ones in a doubleword

Description: GPR[rd] ¢« count_ leading ones GPR[rs]

The 64-bit word in GPR rs is scanned from most-significant to least-significant bit. The number of leading ones is

counted and the result is written to GPR rd. If all 64 bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values Release 6’s new instruction encoding does not contain an field; Release 6 imple-

mentations are required to signal a Reserved Instruction exception if the field is nonzero.

Operation:

temp <

64

for i in 63.. 0
if GPR[rs]; = 0 then

temp €< 63

break

endif

endfor
GPR [rd]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

< temp

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

193

DCLZ Count Leading Zeros in Doubleword

31 26 25 21 20 16 15 6 5 0
POOL32S " . DCLZ POOL32SXf
010110 s 0101101100 111100
6 5 5 10 6
Format: bDcLz rd, rs microMIPS64

Purpose: Count Leading Zeros in Doubleword

To count the number of leading zeros in a doubleword

Description: GPR[rd] ¢ count leading zeros GPR[rs]

The 64-bit word in GPR rs is scanned from most significant to least significant bit. The number of leading zeros is
counted and the result is written to GPR rd. If no bits were set in GPR rs, the result written to GPR rd is 64.

Restrictions:

To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR number in both the
rt and rd fields of the instruction. The operation of the instruction is UNPREDICTABLE if the rt and rd fields of the
instruction contain different values.

Operation:

temp « 64
for i in 63.. 0
if GPR[rs]; = 1 then
temp ¢« 63 - i
break
endif
endfor
GPR[rd] <« temp

Exceptions:

None

194 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DERET Debug Exception Return

31 26 25 16 15 6 5 0
POOL32A 0 DERET POOL32AXS
000000 0000000000 1110001101 111100
6 10 10 6
Format: DERET EJTAG microMIPS

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode.
Pre-Release 6: The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch
or jump instruction. This restriction does not apply in Release 6.

Operation:

Debugpy <« 0

Debugipxr < 0

if IsMIPSlé6Implemented() | (Config3;qn > 0) then
PC « DEPCg3. .1 || O
ISAMode <« DEPCj

else
PC <« DEPC

endif

ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 195

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXT Doubleword Extract Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DEXT
010110 it rs msbd Isb 101100
6 5 5 5 5 5
Format: DEXT rt, rs, pos, size microMIPS64

Purpose: Doubleword Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ¢« ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for Size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields mshd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Isb
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd < size-1
lsb ¢ pos
msb < lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:
0 < pos < 32
<

0 size < 32
0 pos+size < 63

A

Figure 3-3 shows the symbolic operation of the instruction.

Figure 5.5 Operation of the DEXT Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
GPR rs IJKL MNOP—_| QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd+1

size size-1

63 msbd+1 msbd 0
GPRrs 0 MNOP
Final 32-size size
Value 32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as
derived from mshd and Isb) and Isb of the field (which implies restrictions on pos and size), as follows:

mshbd Isb msb pos size Instruction Comment

0<mshd<32 0<Isbh<32 0<msh<63 0<pos<32 1<size<32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0<mshd <32 32<Ish<64 32<msb<64 32<pos<64 1<size<32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

32<mshd< 0<Isb<32 32<msb<64 0<pos<32 32<size<64 DEXTM The field is larger than 32 bits and starts in
64 the right-most word of the doubleword

196 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXT Doubleword Extract Bit Field

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Because of the limits on the values of msbd and Isb, there is no UNPREDICTABLE case for this instruction.

Operation:

GPR[rt] « 0% MWL) || GPRIrs]pgparish. .1sb

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 197

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXTM Doubleword Extract Bit Field Middle

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DEXTM
010110 it rs msbd Isb 100100
6 5 5 5 5 5
Format: DEXTM rt, rs, pos, size microMIPS

Purpose: Doubleword Extract Bit Field Middle
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ¢« ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for Size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields mshdminus32 (the most significant bit of the destination field in GPR rt, minus 32), in instruction
bits 15..11, and Isb (least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbdminus32 < size-1-32
lsb < pos

msbd < msbdminus32 + 32
msb < lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:
0 < pos < 32

32 < size £ 64
32 < pos+size £ 64

Figure 3-4 shows the symbolic operation of the instruction.

Figure 5.6 Operation of the DEXTM Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
GPRrs IJKL MNOP—_| QRST
Initial 32-(pos+size) size
Value 32-(Isb+msbd+1) msbd+1

size size-1

63 msbd+1 msbd 0
GPRrs 0 MNOP
Final 32-size size
Value 32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as
derived from mshd and Isb) and Isb of the field (which implies restrictions on pos and size), as follows:

mshbd Isb msb pos size Instruction Comment

0<mshd<32 0<Isbh<32 0<msb<63 0<pos<32 1<size<32 DEXT The field is 32 bits or less and starts in the
right-most word of the doubleword

0<mshd <32 32<Ish<64 32<msb<64 32<pos<64 1<size<32 DEXTU The field is 32 bits or less and starts in the
left-most word of the doubleword

198 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXTM Doubleword Extract Bit Field Middle

mshbd Isb msb pos size Instruction Comment

32<mshd< 0<Isb<32 32<msh<64 0<pos<32 32<size<64 DEXTM The field is larger than 32 bits and starts in
64 the right-most word of the doubleword
Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if (Isb + mshd + 1) > 64.

Operation:

msbd < msbdminus32 + 32

if ((lsb + msbd + 1) > 64) then
UNPREDICTABLE

endif

GPR[rt] <« O63_(m5bd+1) ” GPR[rS]msbd+lsb..pos

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 199

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXTU Doubleword Extract Bit Field Upper
31 26 25 21 20 16 15 11 10 6 0
POOL32S DEXTU
010110 it s msbd 1sb 010100
6 5 5 5 5 5
Format: DEXTU rt, rs, pos, size microMIPS64

Purpose: Doubleword Extract Bit Field Upper

To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ¢« ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for Size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and
Isbminus32 (least significant bit of the source field in GPR rs, minus32), in instruction bits 10..6, as follows:

msbd < size-1
lsbminus32 ¢ pos-32

lsb < lsbminus32 + 32
msb < lsb+msbd

For this instruction, the values of pos and size must satisfy all of the following relations:

32 < pos < 64
0 < size < 32
32 < pos+size £ 6

4

Figure 3-5 shows the symbolic operation of the instruction.

GPRrs
Initial
Value

GPRrs
Final
Value

Figure 5.7 Operation of the DEXTU Instruction
pos+size pos+size-1 pos pos-1

63 Isb+msbd+1 Isb+msbd Isb Isb-1 0
IJKL MNOP—_| QRST
32-(pos+size) size
32-(Isb+msbd+1) msbd+1
size size-1
63 msbd+1 msbd 0
0 MNOP
32-size size
32-(msbd+1) msbd+1

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb (as
derived from mshd and Isb) and Isb of the field (which implies restrictions on pos and size), as follows:

mshd Isb

msb

pos

size

Instruction

Comment

0<mshd<32 0<Isbh<32 0<msb<63 0<pos<32

1 <size <32 DEXT

The field is 32 bits or less and starts in the
right-most word of the doubleword

0<mshd <32 32<Ish<64 32<msb<64 32<pos<64 1<size<32

200

DEXTU

The field is 32 bits or less and starts in the
left-most word of the doubleword

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DEXTU Doubleword Extract Bit Field Upper

mshbd Isb msb pos size Instruction Comment

32<mshd< 0<Isb<32 32<msh<64 0<pos<32 32<size<64 DEXTM The field is larger than 32 bits and starts in
64 the right-most word of the doubleword

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if (Isb + mshd + 1) > 64.

Operation:

lsb < lsbminus32 + 32

if ((lsb + msbd + 1) > 64) then
UNPREDICTABLE

endif

GPR[rt] < O63_(m5bd+1) || GPR[rS]msbd+lsb..pos

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DEXT,
DEXTM, or DEXTU as appropriate to the values. Programmers should always specify the DEXT mnemonic and let
the assembler select the instruction to use.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 201

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DI Disable Interrupts

31 26 25 21 20 16 15 6 5 0
POOL32A 0 DI POOL32AXS
000000 00000 s 0100011101 111100
6 5 5 10 6
Format: b1 microMIPS
DI rs microMIPS

Purpose: Disable Interrupts

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[rs] < Status; Statusyg € 0

The current value of the Status register is sign-extended and loaded into general register rs. The Interrupt Enable (IE)
bit in the Status register is then cleared.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

Operation:

data ¢ Status
GPR[rs] €« sign extend(data)
Statusig < 0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Release 1 implementations)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

202 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DINS Doubleword Insert Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DINS
010110 it rs msbd Isb 001100
6 5 5 5 5 5
Format: DINS rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field
To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] < InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most Size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of the
field), in instruction bits 10..6, as follows:

msb € pos+size-1
lsb ¢ pos
For this instruction, the values of pos and size must satisfy all of the following relations:
0 < pos < 32
<

0 size < 32
0 pos+size < 32

A

Figure 3-6 shows the symbolic operation of the instruction.

Figure 5.8 Operation of the DINS Instruction

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and Isb of
the field (which implies restrictions on pos and size), as follows:

msh Isb pos size Instruction Comment
0<msh<32 0<Ish<32 0<pos<32 1<size<32 DINS The field is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Ish<32 0<pos<32 2<size<64 DINSM The field straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU The field is entirely contained in the

left-most word of the doubleword

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if Isb > msb.

Operation:

if (1sb > msb) then

UNPREDICTABLE
endif
GPR[rt] <« GPRI[rt] 63..msb+1 | | GPR[rs] msb-1sb..0 | | GPR[rt] 1sb-1..0
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 203

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

204 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DINSM Doubleword Insert Bit Field Middle

31 26 25 21 20 16 15 11 10 6 5 0
POOL32S DINSM
010110 it rs msbd Isb 000100
6 5 5 5 5 5
Format: DINSM rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field Middle
To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] < InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most Size bits from GPR rs are inserted into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and Isb (least signif-
icant bit of the field), in instruction bits 10..6, as follows:

msbminus32 ¢ pos+size-1-32
lsb < pos
msb ¢« msbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:
0 pos < 32

2 size < 64

32 < pos+size £ 64

IAIN

Figure 3-7 shows the symbolic operation of the instruction.

Figure 5.9 Operation of the DINSM Instruction

size size-1
63 msb-Isb+1 msb-Isb 0
GPRrs ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
63 msb+1 msb Isb Isb-1 0
IJKL MNOP / QRST
GPR 1t 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos-1
63 msb+1 msb Isb-1 0
IJKL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and Isb of
the field (which implies restrictions on pos and size), as follows:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 205

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DINSM Doubleword Insert Bit Field Middle

msh Isb pos size Instruction Comment
0<msbh<32 0<Ish<32 0<pos<32 1<size<32 DINS The field is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Ish<32 0<pos<32 2<size<64 DINSM The field straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU The field is entirely contained in the

left-most word of the doubleword

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Because of the instruction format, Isb can never be greater than msb, so there is no UNPREDICATABLE case for
this instruction.

Operation:

msb < msbminus32 + 32

GPR[rt] < GPR[rt]63..msb+l || GPR[rs]msb—lsb..o || GPRI:rt]lsb—l..o
Exceptions:

Reserved Instruction

Programming Notes

The assembler will accept any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

206 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DINSU Doubleword Insert Bit Field Upper

31 26 25 21 20 16 15 10 9 6 5 0
POOL32S DINSU
010110 it rs msbd Isb 110100
6 5 5 5 5 5
Format: DINSU rt, rs, pos, size microMIPS64

Purpose: Doubleword Insert Bit Field Upper
To merge a right-justified bit field from GPR rs into a specified position in GPR rt.

Description: GPR[rt] < InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most Size bits from GPR rs are inserted into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the instruc-
tion fields msbminus32 (the most significant bit of the field, minus 32), in instruction bits 15..11, and Isbminus32
(least significant bit of the field, minus 32), in instruction bits 10..6, as follows:

msbminus32 <« pos+size-1-32
lsbminus32 <« pos-32

msb <« msbminus32 + 32

1sb « lsbminus32 + 32

For this instruction, the values of pos and size must satisfy all of the following relations:
32 < pos < 64

1 < size < 32
32 < pos+size £ 64

Figure 3-8 shows the symbolic operation of the instruction.

Figure 5.10 Operation of the DINSU Instruction

size size-1
63 msb-Isb+1 msb-Isb 0
GPR s ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
63 msb+1 msb Isb Isb-1 0
DKL MNOP / QRST
GPR 1t 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos-1
63 msb+1 msb Isb-1 0
UKL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Three instructions are required to access any legal bit field within the doubleword, as a function of the msb and Isb of
the field (which implies restrictions on pos and size), as follows:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 207

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DINSU Doubleword Insert Bit Field Upper

msh Isb pos size Instruction Comment
0<msbh<32 0<Ish<32 0<pos<32 1<size<32 DINS The field is entirely contained in the
right-most word of the doubleword
32<msh<64 0<Ish<32 0<pos<32 2<size<64 DINSM The field straddles the words of the
doubleword
32<msh<64 32<Ish<64 32<pos<64 1<size<32 DINSU The field is entirely contained in the

left-most word of the doubleword

Restrictions:
In implementations pre-Release 2 of the architecture, the instruction resulted in a Reserved Instruction Exception.

The operation is UNPREDICTABLE if Isb > msb.

Operation:

lsb < lsbminus32 + 32
msb < msbminus32 + 32
if (1lsb > msb) then
UNPREDICTABLE
endif
GPR[rt] < GPR[rt] 63..msb+1 || GPR[IS]msbflsb..O || GPR[rt]lsbfl..O

Exceptions:

Reserved Instruction

Programming Notes

The assembler accepts any value of pos and size that satisfies the relationship 0 < pos+size < 64 and emit DINS,
DINSM, or DINSU as appropriate to the values. Programmers should always specify the DINS mnemonic and let the
assembler select the instruction to use.

208 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV.fmt Floating Point Divide

31 26 25 21 20 16 15 11 10 9 8 7 5 0
POOL32F DIV
010101 fi fs fd 0| fmt 11110000
6 5 5 5 1 2 s

Format: DIV.fmt
DIV.S fd, fs, ft microMIPS
DIV.D fd, fs, ft microMIPS
Purpose: Floating Point Divide

To divide FP values.

Description: FPR[fd] « FPR[fs] / FPR[ft]

The value in FPR fs is divided by the value in FPR ft. The result is calculated to infinite precision, rounded according
to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.
Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is
UNPREDICABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

Operation:
StoreFPR (fd, fmt, ValueFPR(fs, fmt) / ValueFPR (ft, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation, Division-by-zero, Overflow, Underflow

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 209

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU

210

Divide Integers (with result to GPR)

31 26 25 21 20 16 15 11 10 9 0
POOL32A DIV
000000 it s rd 0 0100011000
POOL32A MOD
000000 nt s rd 0 0101011000
POOL32A u . » 0 DIVU
000000 s 0110011000
POOL32A N . i 0 MODU
000000 s 0111011000
6 5 5 5 1 10
31 26 25 21 20 16 15 11 10 0
POOL32S DDIV
010110 it s rd 00 100011000
POOL32S DMOD
010110 n s rd 00 101011000
POOL32S DDIVU
010110 nt s rd 00 110011000
POOL32S u . » 00 DMODU
010110 111011000

6

5

Format: DIv MOD DIVU
DIV rd,rs,rt
MOD rd,rs,rt
DIVU rd,rs,rt
MODU rd, rs,rt
DDIV rd,rs,rt
DMOD rd,rs,rt
DDIVU rd,rs,rt
DMODU rd, rs,rt

Purpose: Divide Integers (with result to GPR)

DIV: Divide Words Signed
MOD: Modulo Words Signed

DIVU: Divide Words Unsigned

MODU: Modulo Words Unsigned

DDIV: Divide Doublewords Signed
DMOD: Modulo Doublewords Signed
DDIVU: Divide Doublewords Unsigned
DMODU: Modulo Doublewords Unsigned

Description:

DIV:
MOD:
DIVU:
MODU :

GPR [rd]
GPR [rd]
GPR [rd]
GPR [rd]

Tt

5

5

MODU DDIV DMOD DDIVU DMODU

sign extend.32
sign extend.32
sign extend.32
sign_extend.32

(
(
(
(

divide.
modulo.
divide.
modulo.

signed(GPR[rs],
signed(GPR[rs],

9

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6

GPR[rt])
GPRI[rt])

unsigned(GPR[rs], GPR[rt])
unsigned(GPR[rs], GPR[rt])

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU DIV: Divide Words Signed MOD: Modulo Words

DDIV: GPR[rd] <« divide.signed(GPR[rs], GPRI[rt])
DMOD: GPR[rd] < modulo.signed(GPR[rs], GPR[rt])
DDIVU: GPR[rd] <« divide.unsigned(GPR[rsg], GPR[rt])
DMODU: GPR[rd] <« modulo.unsigned(GPR[rsg], GPR[rt])

The Release 6 divide and modulo instructions divide the operands in GPR rs and GPR rt, and place the quotient or
remainder in GPR rd.

For each of the div/mod operator pairs DIV/M OD, DIVU/MODU, DDIV/DMOD, DDIVU/DMODU the results sat-
isfy the equation (A div B)*B + (A mod B) = A, where (A mod B) has same sign as the dividend A, and
abs (A mod B) < abs (B). This equation uniquely defines the results.

NOTE: if the divisor B=0, this equation cannot be satisfied, and the result is UNPREDICTABLE. This is commonly
called “truncated division”.

DIV performs a signed 32-bit integer division, and places the 32-bit quotient result in the destination register.

MOD performs a signed 32-bit integer division, and places the 32-bit remainder result in the destination register. The
remainder result has the same sign as the dividend.

DIVU performs an unsigned 32-bit integer division, and places the 32-bit quotient result in the destination register.

MODU performs an unsigned 32-bit integer division, and places the 32-bit remainder result in the destination regis-
ter.

DDIV performs a signed 64-bit integer division, and places the 64-bit quotient result in the destination register.

DMOD performs a signed 64-bit integer division, and places the 64-bit remainder result in the destination register.
The remainder result has the same sign as the dividend.

DDIVU performs an unsigned 64-bit integer division, and places the 64-bit quotient result in the destination register.
DMODU performs an unsigned 64-bit integer division, and places the 64-bit remainder result in the destination regis-
ter.

Restrictions:

If the divisor in GPR rt is zero, the result value is UNPREDICTABLE.

On a 64-bit CPU, the 32-bit signed divide (DIV) and modulo (MOD) instructions are UNPREDICTABLE if inputs
are not signed extended 32-bit integers.

Special provision is made for the inputs to unsigned 32-bit divide and modulo on a 64-bit CPU. Since many 32-bit
instructions sign extend 32 bits to 64 even for unsigned computation, properly sign extended numbers must be
accepted as input, and truncated to 32 bits, clearing bits 32-63. However, it is also desirable to accept zero extended
32-bit integers, with bits 32-63 all 0.

On a 64-bit CPU, DIVU and MODU are UNPREDICTABLE if their inputs are not zero or sign extended 32-bit inte-
gers.

On a 64-bit CPU, the 32-bit divide and modulo instructions, both signed and unsigned, sign extend the result as if it is
a 32-bit signed integer.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Release 6 divide instructions have the same opcode mnemonic as the pre-Release 6 divide instructions (DIV, DIVU,
DDIV, DDIVU). The instruction encodings are different, as are the instruction semantics: the Release 6 instruction
produces only the quotient, whereas the pre-Release 6 instruction produces quotient and remainder in HI/LO registers
respectively, and separate modulo instructions are required to obtain the remainder.

The assembly syntax distinguishes the Release 6 from the pre-Release 6 divide instructions. For example, Release 6
“DIV rd, rs,rt” specifies 3 register operands, versus pre-Release 6 “DIV rs, rt”, which has only two register

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 211

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU DIV: Divide Words Signed MOD: Modulo Words

212

arguments, with the HI/LO registers implied. Some assemblers accept the pseudo-instruction syntax
“DIV rd,rs,rt” and expand it to do “DIV rs, rt;MFHI rd”. Phrases such as “DIV with GPR output” and
“DIV with HI/LO output” may be used when disambiguation is necessary.

Pre-Release 6 divide instructions that produce quotient and remainder in the HI/LO registers produce a Reserved
Instruction Exception on Release 6. In the future, the instruction encoding may be reused for other instructions.

Programming Notes:

Because the divide and modulo instructions are defined to not trap if dividing by zero, it is safe to emit code that
checks for zero-divide after the divide or modulo instruction.

Operation

DDIV, DMOD, DDIVU, DMODU:

if not Are64bitOperationsEnabled then SignalException (ReservedInstruction) endif
if NotWordvValue (GPR[rs]) then UNPREDICTABLE endif
if NotWordValue (GPR[rt]) then UNPREDICTABLE endif

/* recommended implementation: ignore bits 32-63 for DIV, MOD, DIVU, MODU */

DIV, MOD:
sl <« signed word(GPR[rs])
s2 <« signed word(GPR([rt])
DIVU, MODU:
sl <« unsigned word(GPR[rs])
s2 <« unsigned word (GPR[rt])
DDIV, DMOD:
sl <« signed doubleword (GPR[rs])
s2 <« signed dpubleword (GPR[rt])
DDIVU, DMODU:
sl <« unsigned doubleword (GPR[rs])
s2 <« unsigned_doubleword (GPR[rt])

DIv, DIVU, DDIV, DDIVU:
quotient <« sl div s2
MOD, MODU, DMOD, DMODU:
remainder < sl mod s2

DIV: GPR [rd] <« sign extend.32(gquotient)
MOD: GPR[rd] <« sign extend.32(remainder)
DIVU: GPR[rd] <« sign extend.32(quotient)
MODU: GPR[rd] <« sign extend.32(remainder)
DDIV: GPR[rd] <« quotient

DMOD: GPR[rd] <« remainder

DDIVU: GPR[rd] <« quotient

DMODU: GPR[rd] <« remainder

/* end of instruction */
where

function zero or sign extended.32(val)
if valuegs 3, = (values;)>? then return true
if valuegsy 35 = (0)32 then return true
return false

end function

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

None!

1. No arithmetic exception occurs under any circumstances. Division by zero produces an UNPREDICTABLE result.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 213

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DMFCO Doubleword Move from Coprocessor 0

31 26 25 21 20 16 15 14 12 11 10 6 5 0
POOL32S " s 00 sel DMFCO POOL32Sxf
010110 00011 111100
6 5 5 2 3 5 6
Format: DMFCO rt, rs microMIPS64
DMFCO rt, rs, sel microMIPS64

Purpose: Doubleword Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general purpose register (GPR).

Description: GPR[rt] « CPR[O,rs,sel]

The contents of the coprocessor 0 register are loaded into GPR rt. Note that not all coprocessor 0 registers support the
sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel, or if the copro-
cessor 0 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword < CPR[0,rs,sel]
GPR [rt] <« datadoubleword

Exceptions:
Coprocessor Unusable

Reserved Instruction

214 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DMFC1 Doubleword Move from Floating Point
31 26 25 21 20 16 15 14 13
POOL32F s 0 DMFC1 POOL32Fxf
010101 00 10010000 111011
6 5 2 8 6
Format: DMFC1 rt,fs microMIPS64

Purpose: Doubleword Move from Floating Point

To move a doubleword from an FPR to a GPR.

Description: GPR[rt] « FPR[fs]
The contents of FPR fs are loaded into GPR rt..

Restrictions:

Operation:

datadoubleword < ValueFPR(fs, UNINTERPRETED DOUBLEWORD)
GPR[rt] ¢ datadoubleword

Exceptions:
Coprocessor Unusable

Reserved Instruction

Historical Information:

For MIPS 111, the contents of GPR rt are undefined for the instruction immediately following DMFCI.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

215

DMFC2 Doubleword Move from Coprocessor 2

216

31 26 25 21 20 16 15 6 5 0
POOL32A " Imol DMFC2 POOL32Axf
000000 P 0110110100 111100
6 5 5 10 6
Format: DMFC2 rt, rd microMIPS64
DMFC2, rt, rd, sel microMIPS64

The syntax shown above is an example using DMFCI1 as a model. The specific syntax is implementation dependent.

Purpose: Doubleword Move from Coprocessor 2

To move a doubleword from a coprocessor 2 register to a GPR.

Description: GPR[rt] < CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field is loaded into GPR rt. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ¢ CP2CPR[Impl]
GPR[rt] < datadoubleword

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DMTCO Doubleword Move to Coprocessor 0
31 26 25 21 20 16 15 14 12 11 10 0
POOL32S " s 0 sel DMTCO POOL32Sxf
010110 00 01011 111100
6 5 5 2 3 5 6
Format: DMTCO rt, rs microMIPS64
DMTCO rt, rs, sel microMIPS64

Purpose: Doubleword Move to Coprocessor 0

To move a doubleword from a GPR to a coprocessor 0 register.

Description: CPR[0,rs,sel] « GPR[rt]

The contents of GPR rt are loaded into the coprocessor 0 register specified in the rd and sel fields. Not all coprocessor

0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel, or if the copro-
cessor 0 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword ¢ GPR[rt]

CPR[0,rs,sel]

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

< datadoubleword

217

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DMTC1 Doubleword Move to Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F " s 0 DMTCI1 POOL32Fxf
010101 00 10110000 111011
6 5 5 2 8 6
Format: bpMTC1 rt, fs microMIPS64

Purpose: Doubleword Move to Floating Point
To copy a doubleword from a GPR to an FPR.

Description: FPR[fs] « GPR[rt]
The doubleword contents of GPR rt are placed into FPR fs.

Restrictions:

Operation:

datadoubleword < GPR[rtl]
StoreFPR (fs, UNINTERPRETED DOUBLEWORD, datadoubleword)

Exceptions:
Coprocessor Unusable

Reserved Instruction

Historical Information:
For MIPS 111, the contents of FPR fs are undefined for the instruction immediately following DMTCI.

218 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DMTC2 Doubleword Move to Coprocessor 2

31 26 25 21 20 16 15 6 5 0
POOL32A " Imol DMTC2 POOL32Axf
000000 P 0111110100 000011
6 5 5 10 6
Format: bpMTC2 rt,Impl microMIPS64
DMTC2 rt, Impl, sel microMIPS64

The syntax shown above is an example using DMTCI1 as a model. The specific syntax is implementation dependent.

Purpose: Doubleword Move to Coprocessor 2

To move a doubleword from a GPR to a coprocessor 2 register.

Description: CPrR[2, rd, sel]l < GPR[rt]

The contents GPR rt are loaded into the coprocessor 2 register denoted by the Impl field. The interpretation of the
Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if Impl specifies a coprocessor 2 register that does not exist, or if the coproces-
sor 2 register specified by rd and sel is a 32-bit register.

Operation:

datadoubleword < GPR[rt]
CP2CPR [Impl] ¢« datadoubleword

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 219

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DROTR Doubleword Rotate Right

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s s 0 DROTR
010110 00 011000000
6 5 5 5 2 9
Format: DROTR rt, rs, sa microMIPS64

Purpose: Doubleword Rotate Right
To execute a logical right-rotate of a doubleword by a fixed amount—0 to 31 bits.

Description: GPR[rt] ¢ GPR[rs] x (right) sa

The doubleword contents of GPR rs are rotated right; the result is placed in GPR rt. The bit-rotate amount in the
range 0 to 31 is specified by sa.

Restrictions:

Operation:

s < 0 || sa

GPR [rt] < GPRI[rslg. 1. o || GPRIrsles o
Exceptions:

Reserved Instruction

220 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DROTR32 Doubleword Rotate Right Plus 32
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s saminus32 0 DROTR32
010110 u 011001000
6 5 5 5 2 9
Format: DROTR32 rt, rs, sa microMIPS64

Purpose: Doubleword Rotate Right Plus 32

To execute a logical right-rotate of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] « GPR[rs] x (right)

(saminus32+32)

The 64-bit doubleword contents of GPR rs are rotated right; the result is placed in GPR rt. The bit-rotate amount in

the range 32 to 63 is specified by saminus32+32.

Restrictions:

Operation:
s <1 || sa /* 32+saminus32 */
GPR [rt] < GPRI[rslg.q. o || GPRIrtles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

221

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DROTRV Doubleword Rotate Right Variable

222

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DROTRV
010110 011010000
6 5 5 5 2 9
Format: DROTRV rd, rt, rs microMIPS64

Purpose: Doubleword Rotate Right Variable

To execute a logical right-rotate of a doubleword by a variable number of bits

Description: GPR[rd] < GPR[rt] x (right) GPRIrs]

The 64-bit doubleword contents of GPR rt are rotated right; the result is placed in GPR rd. The bit-rotate amount in
the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s €< GPR[rsls o

GPR [rd] < GPRI[rtlg.;. o || GPRIrtles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSBH Doubleword Swap Bytes Within Halfwords

31 26 25 21 20 16 15 6 5 0
POOL32S " s DSBH POOL32Sxf
010110 0111101100 111100
6 5 5 10 6
Format: DSBH rt, rs microMIPS64

Purpose: Doubleword Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] < SwapBytesWithinHalfwords (GPR[rs])
Within each halfword of GPR rs the bytes are swapped and stored in GPR rt.

Restrictions:

In implementations Release 1 of the architecture, this instruction resulted in a Reserved Instruction Exception.

Operation:
GPR[rt] < GPRIslss 4g || GPRIsl¢s. 56 || GPRISlsg. 32 || GPRISlgy. 40 ||
GPRI[sly3. .16 || GPRISI3y 24 || GPRIsl; o || GPRIslis. g
Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endian-
ness. For example:

14 t0, 0(al) /* Read doubleword value */
dsbh tO0, tO /* Convert endiannes of the halfwords */
dshd tO0, toO /* Swap the halfwords within the doublewords */
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 223

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSHD Doubleword Swap Halfwords Within Doublewords

224

31 26 25 21 20 16 15 6 5 0
POOL32S " s DSHD POOL32SXf
010110 1111101100 111100
6 5 5 10 6
Format: DSHD rt, rs microMIPS64

Purpose: Doubleword Swap Halfwords Within Doublewords
To swap the halfwords of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢ SwapHalfwordsWithinDoublewords (GPR[rs])

The halfwords of GPR rs are swapped and stored in GPR rt.

Restrictions:

In implementations of Release 1 of the architecture, this instruction resulted in a Reserved Instruction Exception.

Operation:

>GPR[rt] <« GPRIrsl;s o || GPRIrsls; 16 || GPRIrsl,; 3, || GPRIrsles ag

Exceptions:

Reserved Instruction

Programming Notes:

The DSBH and DSHD instructions can be used to convert doubleword data of one endianness to the other endian-
ness. For example:

14 to, 0(al) /* Read doubleword value */
dsbh tO0, tO /* Convert endiannes of the halfwords */
dshd t0, to /* Swap the halfwords within the doublewords */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSLL Doubleword Shift Left Logical
31 26 25 21 20 16 15 11 10 8 0
POOL32S " s s 0 DSRL
010110 00 000000000
6 5 5 5 2 9
Format: DSLL rt, rs, microMIPS64

Purpose: Doubleword Shift Left Logical

To execute a left-shift of a doubleword by a fixed amount—aO0 to 31 bits

Description: GPR[rt] « GPR[rs] << sa

The 64-bit doubleword contents of GPR rs are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

S

Exceptions:

Reserved Instruction

< 0 || sa
GPR[rt] ¢ GPRIrs] (43_g).

o] 0®

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

225

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSLL32 Doubleword Shift Left Logical Plus 32

226

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s s 0 DSLL32
010110 00 000001000
6 5 5 5 2 9
Format: DSLL32 rt, rs, sa microMIPS64

Purpose: Doubleword Shift Left Logical Plus 32
To execute a left-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] < GPR[rs] << (sa+32)

The 64-bit doubleword contents of GPR rs are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:
s <1 || sa /* 32+sa */
GPR[rt] < GPRIrs] (53.¢)..0 || 0°
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSLLV Doubleword Shift Left Logical Variable
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DSLLV
010110 00 000010000
6 5 5 5 2 9
Format: DSLLV rd, rt, rs microMIPS64

Purpose: Doubleword Shift Left Logical Variable

To execute a left-shift of a doubleword by a variable number of bits.

Description: GPR[rd] « GPR[rt] << GPR[rs]

The 64-bit doubleword contents of GPR rt are shifted left, inserting zeros into the emptied bits; the result is placed in
GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:
s €< GPR[rsls o
GPR [rd] < GPRIrt] (3.4 ..
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

| o®

227

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRA Doubleword Shift Right Arithmetic

228

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s s 0 DSRA
010110 00 010000000
6 5 5 5 2 9
Format: DSRaA rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Arithmetic

To execute an arithmetic right-shift of a doubleword by a fixed amount—0 to 31 bits.

Description: GPR[rt] « GPR[rs] >> sa (arithmetic)

The 64-bit doubleword contents of GPR rs are shifted right, duplicating the sign bit (63) into the emptied bits; the
result is placed in GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

s < 0 || sa

GPR [rt] < (GPR[rslgs;)® || GPRIrsles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRA32 Doubleword Shift Right Arithmetic Plus 32
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s s 0 DSRA32
010110 010000100
6 5 5 5 2 9
Format: DSRA32 rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Arithmetic Plus 32

To execute an arithmetic right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] < GPR[rs] >> (sa+32)

(arithmetic)

The doubleword contents of GPR rs are shifted right, duplicating the sign bit (63) into the emptied bits; the result is

placed in GPR rt. The bit-shift amount in the range 32 to 63 is specified by sa+32.

Restrictions:

Operation:

s <1 || sa /* 32+sa */

GPR [rt] < (GPR[rslgs;)® || GPRIrsles o
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

229

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRAV Doubleword Shift Right Arithmetic Variable

230

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DSRAV
010110 010010000
6 5 5 5 2 9
Format: DSRAV rd, rt, rs microMIPS64

Purpose: Doubleword Shift Right Arithmetic Variable

To execute an arithmetic right-shift of a doubleword by a variable number of bits.

Description: GPR[rd] ¢ GPR[rt] >> GPR[rs] (arithmetic)

The doubleword contents of GPR rt are shifted right, duplicating the sign bit (63) into the emptied bits; the result is
placed in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s €< GPR[rsls o

GPR [rd] < (GPR[rtlgs)® || GPRIrtles ¢
Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRL Doubleword Shift Right Logical
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S wd sa 0 DSRL
010110 00 001000000
6 5 5 2 9
Format: DSRL rt, rs, microMIPS64

Purpose: Doubleword Shift Right Logical

To execute a logical right-shift of a doubleword by a fixed amount—0 to 31 bits.

Description: GPR[rt] ¢ GPR[rs] >> sa

(logical)

The doubleword contents of GPR rs are shifted right, inserting zeros into the emptied bits; the result is placed in
GPR rt. The bit-shift amount in the range 0 to 31 is specified by sa.

Restrictions:

Operation:

S

GPR[rt]

Exceptions:

Reserved Instruction

< 0 || sa
< 0° || GPRIrsles. o

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

231

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRL32 Doubleword Shift Right Logical Plus 32

232

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s saminus32 0 DSRL32
010110 u 00 001001000
6 5 5 5 2 9
Format: DSRL32 rt, rs, sa microMIPS64

Purpose: Doubleword Shift Right Logical Plus 32
To execute a logical right-shift of a doubleword by a fixed amount—32 to 63 bits

Description: GPR[rt] < GPR[rs] >> (saminus32+32) (logical)

The 64-bit doubleword contents of GPR rs are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rt. The bit-shift amount in the range 32 to 63 is specified by saminus32+32.

Restrictions:

Operation:
s <1 || sa /* 32+saminus32 */
GPR [rt] < 0° || GPRIrsles. o

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSRLV Doubleword Shift Right Logical Variable
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DSRLV
010110 00 001010000
6 5 5 5 2 9
Format: DSRLV rd, rt, rs microMIPS64

Purpose: Doubleword Shift Right Logical Variable

To execute a logical right-shift of a doubleword by a variable number of bits

Description: GPR[rd] ¢ GPR[rt] >> GPR[rs]

(logical)

The 64-bit doubleword contents of GPR rt are shifted right, inserting zeros into the emptied bits; the result is placed
in GPR rd. The bit-shift amount in the range 0 to 63 is specified by the low-order 6 bits in GPR rs.

Restrictions:

Operation:

s €< GPR[rsls o
|| GPRIrtles o

GPR [rd] « 0°

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

233

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSUB Doubleword Subtract
31 26 25 21 20 16 15 11 10 9 8 0
POOL32S DSUB
010110 rt s rd 0 110010000
6 5 5 5 2 9
Format: DSUB rd, rs, rt microMIPS64

234

Purpose: Doubleword Subtract

To subtract 64-bit integers; trap on overflow

Description: GPR[rd] « GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs to produce a 64-bit result. If the
subtraction results in 64-bit 2’s complement arithmetic overflow, then the destination register is not modified and an
Integer Overflow exception occurs. If it does not overflow, the 64-bit result is placed into GPR rd.

Restrictions:

Operation:

temp ¢« (GPR[rs]gs||GPRI[rs]) - (GPR[rtlg;||GPR[rt])
if (tempg, # tempgs) then
SignalException (IntegerOverflow)
else
GPR[rd] € tempgs.
endif
Exceptions:

Integer Overflow, Reserved Instruction

Programming Notes:

DSUBU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DSUBU Doubleword Subtract Unsigned

31 26 25 21 20 16 15 11 10 9 8 0
POOL32S " s d 0 DSUBU
010110 00 111010000
6 5 5 5 2 9
Format: DSUBU rd, rs, rt microMIPS64

Purpose: Doubleword Subtract Unsigned
To subtract 64-bit integers

Description: GPR[rd] « GPR[rs] - GPR[rt]

The 64-bit doubleword value in GPR rt is subtracted from the 64-bit value in GPR rs and the 64-bit arithmetic result
is placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.
Restrictions:

Operation: 64-bit processors

GPR[rd] < GPR[rs] - GPRI[rt]

Exceptions:

Reserved Instruction

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 64-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 235

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

236 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DVP Disable Virtual Processor

31 26 25 21 20 16 15 6 5 0
POOL32A 0 s DVP POOL32AXf
000000 00000 0001100101 111100
6 5 5 10 6
Format: bpvp microMIPS Release 6
DVP rs microMIPS Release 6

Purpose: Disable Virtual Processor

To disable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR [rs] ¢ VPControl ; VPControlprg ¢ 1

Disabling a virtual processor means that instruction fetch is terminated, and all outstanding instructions for the
affected virtual processor(s) must be complete before the DVP itself is allowed to retire. Any outstanding events such
as hardware instruction or data prefetch, or page-table walks must also be terminated.

The DVP instruction has implicit SYNC(stype=0) semantics but with respect to the other virtual processors in the
physical core.

After all other virtual processors have been disabled, VPControlpy;g is set. Prior to modification and if rs is non-
zero, sign-extended VPControl is written to GPR[rs].If DVP is specified without rs, then rs must be 0.

DVP may also take effect on a virtual processor that has executed a WAIT or a PAUSE instruction. If a virtual proces-
sor has executed a WAIT instruction, then it cannot resume execution on an interrupt until an EVP has been executed.
If the EVP is executed before the interrupt arrives, then the virtual processor resumes in a state as if the DVP had not
been executed, that is, it waits for the interrupt.

If a virtual processor has executed a PAUSE instruction, then it cannot resume execution until an EVP has been exe-
cuted, even if LLbit is cleared. If an EVP is executed before the LLbit is cleared, then the virtual processor resumes in
a state as if the DVP has not been executed, that is, it waits for the LLDbit to clear.

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately—where applicable—on all other virtual processors, as if the DVP had not been executed. The
execution is completely restorable after the EVP. If an event occurs in between the DVP and EVP that renders state of
the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is UNPREDICTABLE.

DVP may only take effect if VPControlp;s=0. Otherwise it is treated as a NOP instruction.

If a virtual processor is disabled due to a DVP, then interrupts are also disabled for the virtual processor, that is, logi-
cally Statusz=0. Statusy for the target virtual processors though is not cleared though as software cannot

access state on the virtual processors that have been disabled. The virtual processor which executes the DVP however
continues to be interruptible.

In an implementation, the ability of a virtual processor to execute instructions may also be under control external to
the physical core which contains the virtual processor. If disabled by DVP, a virtual processor must not resume fetch
in response to the assertion of this external signal to enable fetch. Conversely, if fetch is disabled by such external
control, then execution of EVP will not cause fetch to resume at a target virtual processor for which the control is
deasserted.

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5,p=0), this instruction must be treated as a NOP instruction.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 237

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

DVP Disable Virtual Processor

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

The pseudo-code below assumes that the DVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlprg = 0)

// Pseudo-code in italics provides recommended action wrt other VPs
disable fetch(vpPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP

}

disable interrupt (VPn) f{
if WAIT(VPn) retires prior or at disable event
then interrupts are ignored by VPn until EVP

}

// DVPO not retired until instructions for VPn completed
while (VPn outstanding instruction)

DVPO unretired
endwhile

endif

data < VPControl
GPR[rs] ¢ sign_extend(data)
VPControlprg < 1

Exceptions:

Coprocessor Unusable
Reserved Instruction (pre-Release 6 implementations)

Programming Notes:

DVP may disable execution in the target virtual processor regardless of the operating mode - kernel, supervisor, user.
Kernel software may also be in a critical region, or in a high-priority interrupt handler when the disable occurs. Since
the instruction is itself privileged, such events are considered acceptable.

Before executing an EVP in a DVP/EVP pair, software should first read vPControlpg, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below :

11 t0 0(a0)
dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors
238 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

11 t0 0(a0)

dvp // disable all other virtual processors
<change core-wide state>

evp // enable all othe virtual processors

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 239

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EHB

240

Execution Hazard Barrier

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A 0 0 3 0 g(i)l(‘)%%
000000 00000 00000 00011 00000
6 5 5 5 5 6
Format: EHB microMIPS

Purpose: Execution Hazard Barrier

To stop instruction execution until all execution hazards have been cleared.

Description:
EHB is used to denote execution hazard barrier. The actual instruction is interpreted by the hardware as SLL 10, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statuscyyq, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB. The EHB instruction does
not clear instruction hazards—such hazards are cleared by the JALR.HB, JR.HB, and ERET instructions.
Restrictions:

None

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

In MIPS64 Release 2 implementations, this instruction resolves all execution hazards. On a superscalar processor,
EHB alters the instruction issue behavior in a manner identical to SSNOP. For backward compatibility with Release 1
implementations, the last of a sequence of SSNOPs can be replaced by an EHB. In Release 1 implementations, the
EHB will be treated as an SSNOP, thereby preserving the semantics of the sequence. In Release 2 implementations,
replacing the final SSNOP with an EHB should have no performance effect because a properly sized sequence of
SSNOPs will have already cleared the hazard. As EHB becomes the standard in MIPS implementations, the previous
SSNOPs can be removed, leaving only the EHB.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

El Enable Interrupts
31 26 25 21 20 16 15 6 5 0
POOL32A 0 EI POOL32AXf
000000 00000 s 0101011101 111100
6 5 5 10 6
Format: EI microMIPS
EI rs microMIPS
Purpose: Enable Interrupts
To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.
Description: GPR[rt] < Status; Statusyg ¢ 1
The current value of the Status register is sign-extended and loaded into general register rt. The Interrupt Enable (IE)
bit in the Status register is then set.
Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.
In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:
data ¢ Status
GPR[rs] €« sign extend(data)
Statusig < 1
Exceptions:
Coprocessor Unusable
Reserved Instruction (Release 1 implementations)
Programming Notes:
The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.
This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 241

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ERET Exception Return
31 26 25 16 15 6 5 0
POOL32A 0 ERET POOL32AXf
000000 0000000000 1111001101 111100
6 10 10 6
Format: ERET microMIPS

242

Purpose: Exception Return

To return from interrupt, exception, or error trap.

Description:

ERET clears execution and instruction hazards, conditionally restores SRSCtlcgg from SRSCltlpgg in a Release 2

implementation, and returns to the interrupted instruction at the completion of interrupt, exception, or error process-
ing. ERET does not execute the next instruction (that is, it has no delay slot).

Restrictions:

Pre-Release 6: The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a branch
or jump instruction. This restriction does not apply in Release 6.

An ERET placed between an LL and SC instruction will always cause the SC to fail.

ERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the ERET returns.

In a Release 2 implementation, ERET does not restore SRSCtlcgg from SRSCtlpgg if Statusggy = 1, or if Statusgg,.
= | because any exception that sets Statusgg to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCltlcgg
in SRSCtlpgs. If software sets Statusgg to 1, it must be aware of the operation of an ERET that may be subse-
quently executed.

Operation:

if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusgg;, < 0
else
temp ¢ EPC
Statusgy;, < O
if (ArchitectureRevision > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg € SRSCtlpgg
endif
endif
if IsMIPSl6Implemented() | (Config3igy > 0) then
PC « tempgs 1 || O
ISAMode < temp,
else
PC <« temp
endif
LLbit ¢« 0
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ERETNC Exception Return No Clear

31 26 25 16 15 6 5 0
POOL32A 0 1 ERET POOL32AXf
000000 000000000 1111001101 111100
6 9 1 10 6
Format: ERETNC microMIPS Release 5
Purpose: Exception Return No Clear
To return from interrupt, exception, or error trap without clearing the LLbit.
Description:
ERETNC clears execution and instruction hazards, conditionally restores SRSCtlgg from SRSCtlpgg when imple-
mented, and returns to the interrupted instruction at the completion of interrupt, exception, or error processing.
ERETNC does not execute the next instruction (i.e., it has no delay slot).
ERETNC is identical to ERET except that an ERETNC will not clear the LLbit that is set by execution of an LL
instruction, and thus when placed between an LL and SC sequence, will never cause the SC to fail.
An ERET must continue to be used by default in interrupt and exception processing handlers. The handler may have
accessed a synchronizable block of memory common to code that is atomically accessing the memory, and where the
code caused the exception or was interrupted. Similarly, a process context-swap must also continue to use an ERET in
order to avoid a possible false success on execution of SC in the restored context.
Multiprocessor systems with non-coherent cores (i.e., without hardware coherence snooping) should also continue to
use ERET, because it is the responsibility of software to maintain data coherence in the system.
An ERETNC is useful in cases where interrupt/exception handlers and kernel code involved in a process context-
swap can guarantee no interference in accessing synchronizable memory across different contexts. ERETNC can also
be used in an OS-level debugger to single-step through code for debug purposes, avoiding the false clearing of the
LLbit and thus failure of an LL and SC sequence in single-stepped code.
Software can detect the presence of ERETNC by reading Config5, | g -
Restrictions:
ERETNC implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes. (For Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream.) The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction in the PC to which the ERETNC returns.
Operation:
if Statusgg; = 1 then
temp ¢ ErrorEPC
Statusgg, < 0
else
temp ¢ EPC
Statusgy;, < 0
if (ArchitectureRevision > 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlegg < SRSCtlpgg
endif
endif
if IsMIPSlé6Implemented () | (Config3;gp > 0) then
PC € tempgy ; || O
ISAMode < temp,
else
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 243

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PC €« temp
endif
ClearHazards ()

Exceptions:
Coprocessor Unusable Exception

244 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EVP Enable Virtual Processor

31 26 25 21 20 16 15 6 5 0
POOL32A 0 s EVP POOL32AXf
000000 00000 0011100101 111100
6 5 5 10 6
Format: Evp microMIPS Release 6
EVP rs microMIPS Release 6

Purpose: Enable Virtual Processor

To enable all virtual processors in a physical core other than the virtual processor that issued the instruction.

Description: GPR [rs] « VPControl ; VPControlprg ¢« 0

Enabling a virtual processor means that instruction fetch is resumed.

After all other virtual processors have been enabled, VPControlpg is cleared. Prior to modification, if rs is non-
zero, sign-extended VPControl is written to GPR[rs].If EVP is specified without rs, then rs must be 0.

See the DVP instruction to learn about the behavior of EVP in the context of WAIT/PAUSE/external-control (“DVP”
on page 237).

The execution of a DVP must be followed by the execution of an EVP. The execution of an EVP causes execution to
resume immediately, where applicable, on all other virtual processors, as if the DVP had not been executed, that is,
execution is completely restorable after the EVP. On the other hand, if an event occurs in between the DVP and EVP
that renders state of the virtual processor UNPREDICTABLE (such as power-gating), then the effect of EVP is
UNPREDICTABLE.

EVP may only take effect if VPControlp,s=1. Otherwise it is treated as a NOP

This instruction never executes speculatively. It must be the oldest unretired instruction to take effect.

This instruction is only available in Release 6 implementations. For implementations that do not support multi-
threading (Config5yp=0), this instruction must be treated as a NOP instruction.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations prior to Release 6 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

The pseudo-code below assumes that the EVP is executed by virtual processor 0, while the target virtual processor is
numbered ‘n’, where n is each of all remaining virtual processors.

if (VPControlpg = 1)

// Pseudo-code in italics provides recommended action wrt other VPs
enable fetch(VPn) {

if PAUSE (VPn) retires prior or at disable event

then VPn execution is not resumed if LLbit is cleared prior to EVP
}
enable interrupt (VPn) {

if WAIT(VPn) retires prior or at disable event

then interrupts are ignored by VPn until EVP

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 245

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EVP Enable Virtual Processor

endif

data ¢« VPControl
GPR[rs] ¢ sign extend(data)
VPControlprg < 0

Exceptions:

Coprocessor Unusable

Reserved Instruction (pre-Release 6 implementations)
Programming Notes:

Before executing an EVP in a DVP/EVP pair, software should first read VPControlpg, returned by DVP, to deter-
mine whether the virtual processors are already disabled. If so, the DVP/EVP sequence should be abandoned. This
step allows software to safely nest DVP/EVP pairs.

Privileged software may use DVP/EVP to disable virtual processors on a core, such as for the purpose of doing a
cache flush without interference from other processes in a system with multiple virtual processors or physical cores.

DVP (and EVP) may be used in other cases such as for power-savings or changing state that is applicable to all virtual
processors in a core, such as virtual processor scheduling priority, as described below:

11 t0 0(a0)

dvp // disable all other virtual processors
pause // wait for LLbit to clear
evp // enable all othe virtual processors

11 to 0(ao0)

dvp // disable all other virtual processors
<change core-wide statex>
evp // enable all othe virtual processors
246 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

EXT Extract Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A " s msbd Isb EXT
000000 (size-1) (pos) 101100
6 5 5 5 5 6
Format: EXT rt, rs, pos, size microMIPS

Purpose: Extract Bit Field
To extract a bit field from GPR rs and store it right-justified into GPR rt.

Description: GPR[rt] ¢ ExtractField(GPR[rs], msbd, lsb)

The bit field starting at bit pos and extending for Size bits is extracted from GPR rs and stored zero-extended and
right-justified in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the
instruction fields mshd (the most significant bit of the destination field in GPR rt), in instruction bits 15..11, and Ish
(least significant bit of the source field in GPR rs), in instruction bits 10..6, as follows:

msbd ¢ size-1
1sb < pos
The values of pos and size must satisfy all of the following relations:
0 < pos < 32
<

0 size < 32
0 pos+size < 32

A

Figure 3-9 shows the symbolic operation of the instruction.

Figure 5.11 Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
UKL MNOP ~—_| QRST
GPR s 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 msbd 0
0 MNOP
GPR rtFinal 32-size size
Value 32-(msbd+1) mshd+1

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The operation is UNPREDICTABLE if Isb+msbd > 31.

If GPR rs does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if ((lsb + msbd) > 31) or (NotWordValue (GPR[rs])) then

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 247

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

UNPREDICTABLE
endif
temp < sign extend
GPR[rt] < temp

(0327 (msbA*D) | | GPR [r8] pepasiep. . 15b)

Exceptions:

Reserved Instruction

248 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

FLOOR.L.fmt Floating Point Floor Convert to Long Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt FLOOR.L POOL32FXf
010101 S 00001100 111011
6 5 5 1 1 3 6

Format: FLOOR.L.fmt
FLOOR.L.S ft, fs MIPS64, microMIPS
FLOOR.L.D ft, fs MIPS64, microMIPS
Purpose: Floating Point Floor Convert to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding down

Description: FPR[ft] < convert and round (FPR[fs])
The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded toward >
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263_1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

¢ 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 249

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

250

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fnt FLOOR.W POOL32FXf
010101 S 00101100 111011
6 5 5 1 1 8 6

Format: FLOOR.W.fmt
FLOOR.W.S ft, fs microMIPS
FLOOR.W.D ft, fs microMIPS

Purpose: Floating Point Floor Convert to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding down

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format and rounded toward —>
(rounding mode 3). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly, an IEEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

¢ 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and ft for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Unimplemented Operation, Inexact

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

INS Insert Bit Field

31 26 25 21 20 16 15 11 10 6 5 0
POOL32A - s msbd Isb INS
000000 (postsize-1) (pos) 001100
6 5 5 5 5 6
Format: INS rt, rs, pos, size microMIPS

Purpose: Insert Bit Field
To merge a right-justified bit field from GPR rs into a specified field in GPR rt.

Description: GPR[rt] ¢ InsertField(GPR[rt], GPR[rs], msb, 1lsb)

The right-most Size bits from GPR rs are merged into the value from GPR rt starting at bit position pos. The result is
placed back in GPR rt. The assembly language arguments pos and Size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 15..11, and Isb (least significant bit of the
field), in instruction bits 10..6, as follows:

msb ¢ pos+size-1

1sb < pos
The values of pos and size must satisfy all of the following relations:
pos < 32

size < 32
pos+size < 32

0 <
0 <
0

A

Figure 3-10 shows the symbolic operation of the instruction.

Figure 5.12 Operation of the INS Instruction

size size-1
31 msb-Isb+1 msb-Isb 0
GPRrs ABCD EFGH
32-size size
32-(msb-Isb+1) msb-Isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
IJKL MNOP QRST
GPR 1t 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1 0
DKL EFGH QRST
GPR rtFinal 32-(pos+size) size pos
Value 32-(msb+1) msb-Isb+1 Isb

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

251

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

tion.
The operation is UNPREDICTABLE if Isb > msh.

If either GPR rs or GPR rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the oper-
ation is UNPREDICTABLE.

Operation:
if (1sb > msb) or (NotWordValue (GPR[rs])) or (NotWordValue (GPR[rt]))) then
UNPREDICTABLE
endif
GPR[rt] <« sign extend(GPRITrtls;. meps1 || GPRITSIpep 1ep..0 || GPRITEI1gn 1. o)

Exceptions:

Reserved Instruction

252 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALRC Jump and Link Register Compact

31 26 25 21 20 16 15 6 5 0
POOL32A ot JALRC POOL32AXf
000000 s 0000111100 111100
6 5 5 10 6
Format: JALRC rs (rt = 31 implied) microMIPS Release 6
JALRC rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact

To execute a procedure call to an instruction address in a register

Description: GPR[rt] ¢ return addr, PC ¢ GPRI[rs]

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,

where execution continues after a procedure call.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt = 0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-

ings.

Restrictions:

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than

one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the

instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules

of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and

address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-

tion.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an

Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions

do not apply in Release 6.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 253

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Operation:

temp ¢ GPR[rs]
GPR[rt] €« PC + 4
if Config3;gy = 1 then

PC <« temp
else
PC « tempgprren-1..1 || O
ISAMode ¢ temp,
endif
Exceptions:
None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rd, if omitted in the assembly language instruction, is GPR 31.

254 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALRC.HB Jump and Link Register Compact with Hazard Barrier

31 26 25 21 20 16 15 6 5 0
POOL32A ot c JALRC.HB POOL32AXf
000000 s 0001111100 111100
6 5 5 10 6
Format: JALRC.HB rs (rt = 31 implied) microMIPS Release 6
JALRC.HB rt, rs microMIPS Release 6

Purpose: Jump and Link Register Compact with Hazard Barrier

To execute a procedure call to an instruction address in a register and clear all execution and instruction hazards

Description: GPR[rt] ¢ return addr, PC ¢« GPR[rs], clear execution and instruction hazards
For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Place the return address link in GPR rt. The return link is the address of the second instruction following the branch,
where execution continues after a procedure call.

JALRC.HB implements a software barrier that resolves all execution and instruction hazards created by Coprocessor
0 state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolv-
ing instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the JALRC.HB instruction jumps. An equivalent
barrier is also implemented by the ERET instruction, but that instruction is only available if access to Coprocessor 0
is enabled, whereas JALRC.HB is legal in all operating modes.

This instruction clears both execution and instruction hazards. Refer to the EHB instruction description for the
method of clearing execution hazards alone.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Availability and Compatibility:

Release 6 maps JR and JR.HB to JALRC and JALRC.HB with rt = 0:

Release 6 assemblers should accept the JR and JR.HB mnemonics, mapping them to the Release 6 instruction encod-
ings.

Restrictions:

After modifying an instruction stream mapping or writing to the instruction stream, execution of those instructions
has UNPREDICTABLE behavior until the instruction hazard has been cleared with JALRC.HB, JALRSC.HB,
JR.HB, ERET, or DERET. Further, the operation is UNPREDICTABLE if the mapping of the current instruction
stream is modified.

Restrictions Related to Multiple Instruction Sets: This instruction can change the active instruction set, if more than
one instruction set is implemented.

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 255

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JALRC.HB Jump and Link Register Compact with Hazard Barrier

256

of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS and if the ISAMode bit of the target address is MIPS (bit 0 of GPR rs is 0)
and address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an
instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump; that is, delay slot restrictions
do not apply in Release 6.

Operation:

temp € GPR[rs]
GPR[rt] <« PC + 4
if Config3:gy = 1 then
PC <« temp
else

PC < tempgprren-1..1 || 0
ISAMode < temp,

endif

ClearHazards ()

Exceptions:

None

Programming Notes:

This branch-and-link instruction can select a register for the return link; other link instructions use GPR 31. The
default register for GPR rt, if omitted in the assembly language instruction, is GPR 31.

Release 6 JR.HB rs is implemented as JALRC.HB r0, rs. For example, as JALRC . HB with the destination set
to the zero register, r 0.

This instruction implements the final step in clearing execution and instruction hazards before execution continues. A
hazard is created when a Coprocessor 0 or TLB write affects execution or the mapping of the instruction stream, or
after a write to the instruction stream. When such a situation exists, software must explicitly indicate to hardware that
the hazard should be cleared. Execution hazards alone can be cleared with the EHB instruction. Instruction hazards
can only be cleared with a JR.HB, JALRC.HB, or ERET instruction. These instructions cause hardware to clear the
hazard before the instruction at the target of the jump is fetched. Note that because these instructions are encoded as
jumps, the process of clearing an instruction hazard can often be included as part of a call (JALR) or return (JR)
sequence, by simply replacing the original instructions with the HB equivalent.

Example: Clearing hazards due to an ASID change

/*
* Code used to modify ASID and call a routine with the new
* mapping established.
*
* a0 = New ASID to establish
* al = Address of the routine to call
*/
mfco v0, CO_EntryHi /* Read current ASID */
1i vl, ~M EntryHiASID /* Get negative mask for field */
and v0, vO0, vl /* Clear out current ASID value */
or v0, vO0, a0 /* OR in new ASID value */
mtcO0 vO0, CO_EntryHi /* Rewrite EntryHi with new ASID */
jalrc.hb al /* Call routine, clearing the hazard */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 257

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JIALC Jump Indexed and Link, Compact

258

31 26 25 21 20 16 15 0
POP50 JALC
101000 00000 it offset
6 5 5 16
Format: JIALC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed and Link, Compact

Description: GPR[31] « PC+4, PC <« (GPR[rt] + sign extend(offset))

The jump target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding bit of the GPR.

Places the return address link in GPR 31. The return link is the address of the following instruction, where execution
continues after a procedure call returns. Compact jumps do not have delay slots. The instruction after the jump is
NOT executed when the jump is executed.

For processors that do not implement the MIPS64 ISA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 ISA:

e Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have delay slots. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors that implement MIPS and if the ISAMode bit of the target is MIPS (bit 0 of GPR rs is 0) and address
bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruction.

For processors that do not implement MIPS ISA, if the intended target ISAMode is MIPS (bit 0 of GPR rs is zero), an
Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign extend(offset)
GPR[31] « PC + 4
if Config3;gpy = 1 then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JIALC Jump Indexed and Link, Compact

PC <« temp

else
PC « (tempgprren-1..1 || 0)
ISAMode <« tempg

endif

Programming Notes:

JIALC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least signifi-
cant bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX
instruction, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the

unshifted offset, specify the target ISAmode.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 259

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

JIC Jump Indexed, Compact

31 26 25 21 20 16 15 0
POP40 it
100000 00000 it offset
6 5 5 16
Format: JIC rt, offset microMIPS32 Release 6

Purpose: Jump Indexed, Compact

Description: PC « (GPR[rt] + sign extend(offset))

The branch target is formed by sign extending the offset field of the instruction and adding it to the contents of GPR
rt.

The offset is NOT shifted, that is, each bit of the offset is added to the corresponding of the GPR.
For processors that do not implement the MIPS64 1SA:

* Jump to the effective target address in GPR rs. Bit 0 of GPR rs is interpreted as the target ISA Mode: if this bit
is 0, signal an Address Error exception when the target instruction is fetched because this target ISA Mode is not
supported. Otherwise, set bit 0 of the target address to zero, and fetch the instruction.

For processors that do implement the MIPS64 I1SA:

* Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs bit 0. Set bit 0 of the
target address to zero. If the target ISA Mode bit is 0 and the target address is not 4-byte aligned, an Address
Error exception will occur when the target instruction is fetched.

Compact jumps do not have a delay slot. The instruction after the jump is NOT executed when the jump is executed.

Restrictions:

If only one instruction set is implemented, then the effective target address must obey the alignment rules of the
instruction set. If multiple instruction sets are implemented, the effective target address must obey the alignment rules
of the intended instruction set of the target address as specified by the bit 0 or GPR rs.

For processors which implement MIPS64 and if the ISAMode bit of the target is MIPS64 (bit 0 of GPR rs is 0) and
address bit 1 is one, an Address Error exception occurs when the jump target is subsequently fetched as an instruc-
tion.

For processors that do not implement MIPS64 ISA, if the intended target ISAMode is MIPS64 (bit 0 of GPR rs is
zero), an Address Error exception occurs when the jump target is fetched as an instruction.

Any instruction, including a branch or jump, may immediately follow a branch or jump, that is, delay slot restrictions
do not apply in Release 6.
Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Exceptions:

None

Operation:

temp <« GPR[rt] + sign_extend(offset)
if Config3;gy = 1 then
PC <« temp
else
PC « tempgppren-1..1 || 0

260 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ISAMode <« temp,
endif

Programming Notes:

JIC does NOT shift the offset before adding it the register. This can be used to eliminate tags in the least significant
bits that would otherwise produce misalignment. It also allows JIALC to be used as a substitute for the JALX instruc-
tion, removed in Release 6, where the lower bits of the target PC, formed by the addition of GPR[rt] and the unshifted
offset, specify the target ISAmode.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 261

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LB Load Byte

31 26 25 21 20 16 15 0
LB32
000111 t base offset
6 5 5 16
Format: LB rt, offset (base) microMIPS

Purpose: Load Byte

To load a byte from memory as a signed value.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] < sign_extend (memdoublewordy, g«pyte. . g+byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

262 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBE Load Byte EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LBE
011000 it base 0110 100 offset
6 5 5 4 3 9
Format: LBE rt, offset (base) microMIPS

Purpose: Load Byte EVA

To load a byte as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, sign-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBE instruction functions the same as the LB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode and executing in kernel mode. Memory segments using UUSK or MUSK
access modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional informa-
tion.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] ¢ sign_extend (memdoublewordy,gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid

Bus Error, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 263

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBU Load Byte Unsigned

31 26 25 21 20 16 15 0
LBU32
000101 rt base offset
6 5 5 16
Format: LBU rt, offset (base) microMIPS

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

None

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] ¢ zero_extend (memdoublewordy, gipyte. . s*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

264 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LBUE Load Byte Unsigned EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LBUE
011000 nt base 0110 000 offset
6 5 5 4 3 9
Format: LBUE rt, offset (base) microMIPS

Purpose: Load Byte Unsigned EVA

To load a byte as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 8-bit byte at the memory location specified by the effective address are fetched, zero-extended,
and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The LBUE instruction functions the same as the LBU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1 3 || (pAddr, , xor ReverseEndian®)
memdoubleword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor BigEndianCPU?

GPR[rt] ¢ zero_extend (memdoublewordy,gspyte. .s*byte)

Exceptions:
TLB Refill, TLB Invalid
Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 265

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LD Load Doubleword

31 26 25 21 20 16 15 0
LD32
110111 t base offset
6 5 5 16
Format: 1D rt, offset (base) microMIPS64

Purpose: Load Doubleword

To load a doubleword from memory

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ¢ memdoubleword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

266 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDC1 Load Doubleword to Floating Point
31 26 25 21 20 16 15 0
LDC132
101111 ft base offset
6 5 5 16
Format: LDC1 ft, offset (base) microMIPS

Purpose: Load Doubleword to Floating Point

To load a doubleword from memory to an FPR.

Description: FPR[ft] ¢ memory [GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in FPR ft. The 16-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
StoreFPR (ft, UNINTERPRETED DOUBLEWORD, memdoubleword)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 267

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDC2 Load Doubleword to Coprocessor 2

31 26 25 21 20 16 15 12 11 10 0
POOL32B LDC2 |0
001000 it base 0010 0 offset
6 5 5 4 1 11
Format: 1DC2 rt, offset (base) microMIPS

Purpose: Load Doubleword to Coprocessor 2

To load a doubleword from memory to a Coprocessor 2 register.

Description: CPR[2,rt,0] €« memory[GPR[base] + offset]

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed in Coprocessor 2 register rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
CPR[2,rt,0] < memdoubleword

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

268 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LDPC Load Doubleword PC-relative

31 26 25 21 20 18 17 0
LDPC
011110 t 110 offset
6 5 3 18
Format: LDPC rt, offset microMIPS64 Release 6

Purpose: Load Doubleword PC-relative

To load a doubleword from memory, using a PC-relative address.

Description: GPR [rt] < memory[(PC&~0x7) + sign extend(offset << 3)]

The bit offset is shifted left by 3 bits, sign-extended, and added to the address of the aligned doubleword containing
the LDPC instruction.

The contents of the 64-bit doubleword at the memory location specified by the effective address are fetched, and
placed in GPR rt.
Restrictions:

LDPC is naturally aligned, by specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation

vAddr <« ((PC&~0x7)+ sign extend(offset))
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword <« LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] <« memdoubleword

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch, Reserved Instruction

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference, rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 269

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LH

270

31

Load Halfword

26 25 21 20 16 15 0

LH32

001111 t base offset

6 5 5 16

Format: LH rt, offset (base) microMIPS

Purpose: Load Halfword

To load a halfword from memory as a signed value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze_1. .3 || (PAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU, || 0)

GPR[rt] ¢« sign_extend (memdoubleword;s,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHE Load Halfword EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LHE
011000 it base 0110 101 offset
6 5 5 4 3 9
Format: LHE rt, offset (base) microMIPS

Purpose: Load Halfword EVA

To load a halfword as a signed value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
sign-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHE instruction functions the same as the LH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU, || 0)

GPR[rt] ¢ sign_extend (memdoubleword;s,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 271

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHU Load Halfword Unsigned
31 26 25 21 20 16 15 0
LHU32
001101 rt base offset
6 5 5 16
Format: LHU rt, offset (base) microMIPS

272

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] ¢ zero_extend(memdoubleword;s,gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LHUE Load Halfword Unsigned EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA | LHUE
011000 it base 0110 001 offset
6 5 5 2 3 9
Format: LHUE rt, offset (base) microMIPS

Purpose: Load Halfword Unsigned EVA

To load a halfword as an unsigned value from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective address are fetched,
zero-extended, and placed in GPR rt. The 9-bit signed offset is added to the contents of GPR base to form the effec-
tive address.

The LHUE instruction functions the same as the LHU instruction, except that address translation is performed using
the user mode virtual address space mapping in the TLB when accessing an address within a memory segment con-
figured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.

Restrictions:

Only usable when access to Coprocessor0 is enabled and accessing an address within a segment configured using
UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr < pAddrpgrge.1 .3 || (pAddr, , xor (ReverseEndian? || 0))
memdoubleword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU? || 0)

GPR[rt] ¢ zero_extend(memdoubleword;s,gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 273

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LL

274

Load Linked Word
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LL32 0
011000 & base 0011 000 offset
6 5 5 5 3 9

Format: LL rt, offset (base) microMIPS
Purpose: Load Linked Word
To load a word from memory for an atomic read-modify-write
Description: GPR[rt] ¢ memory [GPR[base] + offset]
The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.
The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length, and written into GPR rt. The 9-bit signed offset is added to the contents of
GPR base to form an effective address.
This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.
Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.
An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.
Restrictions:
The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition.
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.
Providing misaligned support for Release 6 is not a requirement for this instruction.
Availability and Compatibility
This instruction has been recoded for Release 6.
Operation:

vAddr ¢ sign extend(offset) + GPR[base]

if vAddr,; , # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1 .3 || (PAddr, , xor (ReverseEndian || 02))

memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

byte ¢ vAddr, , xor (BigEndianCPU || 02)

GPR[rt] < sign_extend (memdoubleword;i,g«pyte. .g+byte)

LLbit < 1

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Release 6 implements a 9-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 275

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLD Load Linked Doubleword
31 26 25 21 20 16 15 12 11 0
POOL32C LLD
011000 rt base 0111 offset
6 5 5 4 12
Format: LLD rt, offset (base) microMIPS64

276

Purpose: Load Linked Doubleword

To load a doubleword from memory for an atomic read-modify-write

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 64-bit doubleword at the memory location specified by the aligned effective address are fetched
and placed into GPR rt. The signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLD is executed it starts the active RMW sequence and replaces any other sequence that was active. The
RMW sequence is completed by a subsequent SCD instruction that either completes the RMW sequence atomically
and succeeds, or does not complete and fails.

Executing LLD on one processor does not cause an action that, by itself, would cause an SCD for the same block to
fail on another processor.

An execution of LLD does not have to be followed by execution of SCD; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCD instruction for the formal definition.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] < memdoubleword
LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLE Load Linked Word EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LLE
011000 it base 0110 110 offset
6 5 5 4 3 9
Format: LLE rt, offset (base) microMIPS

Purpose: Load Linked Word EVA

To load a word from a user mode virtual address when executing in kernel mode for an atomic read-modify-write

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The LLE and SCE instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations using user mode virtual addresses while executing in kernel mode.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length, and written into GPR rt. The 9-bit signed offset is added to the contents of
GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LLE is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SCE instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LLE on one processor does not cause an action that, by itself, causes an SCE for the same block to fail on
another processor.

An execution of LLE does not have to be followed by execution of SCE; a program is free to abandon the RMW
sequence without attempting a write.

The LLE instruction functions the same as the LL instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Segmentation Control for additional information.

Implementation of this instruction is specified by the Config5g field being set to one.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result is UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SCE instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
if vAddr; , # 02 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrge.1. .3 || (PAddr, , xor (ReverseEndian || 02))

memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 277

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

byte ¢ vAddr, , xor (BigEndianCPU || 02)
GPR[rt] ¢ sign_extend(memdoubleword;;,gspyte..g*byte)
LLbit « 1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Watch, Coprocessor Unusable

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

278 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

31

26 25 21 20 16 15 12 11 9 8 0

LLX instruction encoding:

POOL32C LLX32
011000 rt base 0001 000 offset

LLDX instruction encoding:

POOL32C LLDX32
011000 rt base 0101 000 offset

LLXE instruction encoding

POOL32C LD-EVA | LLXE32
011000 it base 0110 010 offset
6 5 5 4 3 9

Format: LLX, LLDX, LLXE

LLX rt, offset (base) microMIPS32 Release 6
LLDX rt, offset (base) microMIPS64 Release 6
LLXE rt, offset (base) microMIPS32 Release 6

Purpose: Load Linked Extended {Word,Doubleword, Word EVA}

Load from memory, extending following Load Linked; word, doubleword sized, or word EVA

Description:

The LLX/SCX family of instructions (LLX, LLDX, LLXE, SCX, SCDX, SCXE) extends the MIPS LL/SC mecha-
nism for performing atomic read-modify-writes to permit more than one memory location to be accessed atomically.
The memory locations are constrained to be aligned, adjacent and within both the same synchronization block and the
same cache line (if applicable).

LL-SC and LLE-SCE allow 32-bit aligned atomic memory operations to be performed on MIPS32. LLD-SCD allows
64-bit aligned memory operations to be performed on MIPS64. LLX/LL-SCX/SC and LLXE/LLE-SCXE/SCE allow
64-bit aligned atomic memory operations to be performed on MIPS32. LLDX/LLD-SCDX/SCD allow 128-bit
aligned memory operations to be performed on MIPS64.

LL-SC code sequences in general, and LLX/LL-SCX/SC in particular, provide atomicity if the computer system can
guarantee that, if the SC succeeds, then atomicity has not been violated by operations between the LL and SC. It
should also guarantee eventual success, i.e. that failures will not persist forever.

An LLX family instruction (LLX/LLDX/LLXE) (at PC) must be followed by a matching LL family instruction (LL/
LLD/LLE) (at PC+4), forming an LLX/LL instruction family pair (LLX/LL, LLDX/LLD, LLXE/LLE). See Restric-
tions section for a full description of match requirements, and special case for SDBBP and BREAK breakpoint
instructions.

The signed offset is added to the contents of GPR base to form an effective address. This address must be naturally
aligned.

The memory bytes accessed by the LLX family instruction and the following, matching LL family instruction must
be adjacent, non-overlapping, and aligned. The following, matching, LL family instruction must be aligned to double
the access width. L.e. in an LLX/LL pair, the LL instruction must be aligned to an 8-byte boundary, and the LLX data
address must be 4 bytes higher; similarly for an LLXE/LLE pair, the LLE instruction must be aligned to an 8-byte
boundary, and the LLXE data address must be 4 bytes higher; and in an LLDX/LLD pair, the LLD instruction must
be aligned to a 16-byte boundary, and the LLDX data address must be 8 bytes higher.

For LLX and LLXE: the 32-bit word at the memory location specified by the effective address is fetched, sign-

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 279

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

extended to the GPR register width, and written into GPR rt.

For LLDX: the 64-bit doubleword at the memory location specified by the effective address is fetched, and written
into GPR rt.

If the LLX family instruction is followed by a matching LL family instruction, behavior is as if a double width load

access suitable for starting an atomic sequence is performedl. Memory data corresponding to the low byte addresses
returned is written to GPR rt of the LL family instruction; the part corresponding to high byte addresses is written to
GPR rt of the LLX instruction.

An LLX/LL family instruction pair (LLX/LL, LLDX/LLD, LLXE/LLE) begins a RMW sequence on the current pro-
cessor. There can be only one active RMW sequence per processor. Any subsequent LL family instruction or LLX/LL
family instruction pair, when executed, starts an active RMW sequence replacing any other sequence that was active.
The RMW sequence for an LLX/LL family instruction pair is completed by a subsequent SCX/SC family instruction
pair, which should match the LLX/LL pair in type and size, and which either completes the RMW sequence atomi-
cally and succeeds, or does not and fails.

If the PC and PC+4 instruction encodings do not match, a Reserved Instruction exception is signaled. If the effective
addresses of the LLX/LL or LLXE/LLE family instruction pair are not 32-bit word aligned separately and 64-bit dou-
bleword aligned together, then Address Error is signaled. If the effective addresses of LLDX and LLD are not 64-bit
doubleword aligned separately, and 128-bit aligned together, then Address Error is signaled. If the effective address
of the following LL family instruction (at PC+4) is not the lowest byte address, then an Address Error exception is
signaled. See Restrictions section for a full description of match requirements, and special case for SDBBP and
BREAK breakpoint instructions.

If an exception occurs between the LLX family instruction at PC and the instruction at PC+4 (LL family, SDBBP or
BREAK, or non-matching instruction which will signal a Reserved Instruction exception), the exception is reported
with EPC=PC and Status.BD=1. In this case the LLX family instruction will have partially executed: exceptions
relating solely to the LLX family instruction in isolation will already have been reported, including Address Error and
TLB exceptions, but the actual memory reference will not yet have been performed, since it can only be performed
atomically in conjunction with the following LL family instruction. The target register of the LLX family instruction
will NOT have been updated. However, LLbit will be clear on entry to the exception handler, even if LLbit was set

before the LLX family instruction started.”

Executing an LLX/LL family instruction pair on one processor does not cause an action that, by itself, causes an SC
or SCX/SC pair for the same block to fail on another processor.

An execution of an LLX/LL family instruction pair does not have to be followed by execution of a matching SCX/SC
instruction pair; a program is free to abandon the RMW sequence without attempting a write.
Restrictions:

The following restrictions apply to load-linked and store-conditional extended instructions in the LLX/SCX instruc-
tion family:

Coprocessor 0’s Cause register bit BD is extended to indicate exceptions related to the next instruction after the LLX/
SCX-family instruction. Pseudocode indicates what value Cause.BD should be set to via comments such as
SignalException (AddressError) /*BD=1%*/. Similarly, the status register BadinstrP is extended to hold the
LLX/SCX-family instruction if an exception is signaled for the next instruction, with BD=I.

An LLX/SCX family instruction must be not be placed in a branch delay slot or compact branch forbidden slot: if this
rule is violated, a Reserved Instruction exception will be signaled (with EPC=PC of branch, BD=1).

An LLX/SCX family instruction must be followed by a matching LL/SC-family instruction: An SCX instruction

280

It is implementation dependent whether a single double width access, or two separate normal width accesses, are performed.
E.g. LLX rt, mem; Trap... SC => LLXs rt is not updated, but the SC is required to fail unless the trap handler has successfully
completed the LLX/LL family instruction pair.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

must be followed by an SC instruction of the same type. Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/
SCD, and SCXE/SCE. If the following instruction does not match, a Reserved Instruction exception must be signaled
(with EPC=PC of the LLX/SCX family instruction, BD=1).

Except: An LLX/SCX instruction may be followed by one of the breakpoint instructions BREAK or SDBBP, in
which case the appropriate breakpoint exception takes priority over the Reserved Instruction exception. The BREAK
exception will be signaled with EPC=PC of the LLX/SCX family instruction and BD=1. The debug exception caused
by such an SDBBP will be reported with DEPC=PC of the LLX/SCX family instruction and DBD=1.

The base field must be the same in an LLX/SCX family instruction and the following, matching, LL/SC-family
instruction: If the following instruction does not match, a Reserved Instruction exception must be signaled (with
EPC=PC of the LLX/SCX family instruction, BD=1).

The base and rt fields of the LLX family instruction must not be the same. If they are the same a Reserved Instruction
exception must be signaled (with EPC=PC of the LLX/SCX family instruction, BD=0).

The LLX/SCX and following LL/SC family instructions must match in their offset field: Given matching in instruc-
tion type and base, the difference between the offset fields of the instruction at PC and the instruction at PC+4 should
be the data size, and 4 for LLX/LLE/SCX/SCXE and 8 for LLDX/SCDX. Programmers should follow this rule in
coding. However, implementations do not need to explicitly check this rule, since it is implied by other rules. TBD

Natural Alignment: The effective address must be naturally aligned for any LLX/SCX family instruction; if not natu-
rally aligned, an Address Error exception is signaled. I.e. for LLX, LLXE, SCX and SCXE, if the two least significant
bits of the effective address are not both zero, an Address Error exception is signaled; for LLDX and SCDX, if the
three least significant bits of the effective address are not all zero, an Address Error exception is signaled. Such an
Address Error exception is signaled with EPC=PC of the LLX/SCX family instruction, BD=0.

Release 6 requires systems to provide support for misaligned memory accesses for all ordinary memory reference
instructions such as LW (Load Word). However, this instruction is a special memory reference instruction for which
misaligned support is NOT provided, and for which signalling an exception (AddressError) on a misaligned access is
required.

Double Width Alignment: In addition to natural alignment, the memory bytes written by the LLX/SCX family
instruction and the following LL/SC family instruction must be adjacent, non-overlapping, and must have the align-
ment natural for double the memory access size: The lowest byte address in an LLX/LL, LLXE/LLE, SCX/SC or
SCXE/SCE pair must be 8-byte aligned. The lowest byte address in an LLDX/LLD or SCDX/SCD pair must be 16-
byte aligned. It is required that the LL/SC family instruction byte address be lower than that of the LLX/SCX family
instruction. i.e. that the LL/SC family instruction in an LLX/LL or SCX/SC family instruction pair must be naturally
aligned for double the memory access width.

The double width alignment condition must be satisfied for both virtual and physical addresses. If this condition is
not met, then an Address Error exception is signaled, with EPC = PC of first instruction, and BD=1. This condition is
guaranteed to be met in the physical address if met in the virtual address and if the SCX and SC translations are con-
sistent.

Exception Priority: although LLX and LL may complete execution together, all exceptions for an LLX instruction (at
PC) must be signaled, with EPC=PC and BD=0, before any exceptions are signaled, with EPC=PC and BD=1, for the
next instruction (at PC+4) or for any exceptions caused by the interaction between the LLX instruction and the next
instruction. This is as if the LLX instruction is executed enough to signal all exceptions, followed by exception
checks for the combination of LLX and the next instruction. Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/
SCD, and SCXE/SCE instructions.

Exceptions relating to an LLX/SCX family instruction are reported with EPC=PC of the LLX/SCX family instruc-
tion, and BD=0.

Exceptions relating to interaction between an LLX/SCX family instruction and the following instruction are reported
with EPC=PC of LLX/SCX instruction and BD=1.

Debug single step exceptions are reported with DEPC=PC of the LLX/SCX family instruction, and BD=0. No debug

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 281

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

single step exception will be reported for the SC instruction of an SCX/SC pair: For the purposes of debug single
stepping, the SCX/SC pair is atomic. Similarly for LLX/LL, LLDX/LLD, LLE/LLXE, SCDX/SCD, and SCXE/SCE
pairs of instructions.

Exceptions related to the SCX/SC family instruction pair before following instruction cancel SCX but do not clear
LLbit: if an exception or interrupt occurs at or after the SCX-family instruction and before or at the next instruction,
the SCX is canceled, but LLbit is not cleared. I.e. the LLX/LL-SCX/SC atomic is not necessarily forced to fail. Excep-
tions are therefore reported with EPC=PC of SCX, and BD=0 or 1 as appropriate. Exception handling software should
return (ERET or ERETNC) to the PC of the SCX instruction, re-executing the SCX/SC pair. Adjusting EPC or DEPC
and returning to the SC instruction without re-executing the SCX instruction will result in incorrect behavior.

For exceptions related to an LLX/LL family instruction pair:

* No memory access is performed.

» Neither target register of the LLX/LL family instruction pair is updated.
e LLbitis not set.

* EPC (or DEPC) is set to the PC of the LLX family instruction.

» Status.BD is set to 0 or 1 as appropriate, as described below.

Exception handling software should return (ERET or ERETNC) to the PC of the LLX instruction, re-executing the
LLX/LL pair. Adjusting EPC or DEPC and returning to the LL instruction without re-executing the LLX instruction
will result in incorrect behavior.

LLX/LL and SCX/SC matching: the LL-family instruction, the SC-family instruction, and the optional LLX/SCX-

family instructions in a MIPS atomic sequence should® match. Portable software should not rely on mismatching
LLX/LL/SCX/SC to complete successfully, nor to fail. Implementations are permitted to cause the SC to fail if the
LL/SCX/SC do not match, but are not required to do so. Matching LLX/LL/SCX/SC should be of the same instruc-
tion type (word (LLX/LL/SCX/SC), doubleword (LLXD/LLD/SCXD/SCD) or word EVA (LLXE/LLE/SCXE/
SCE)). Table 5.25 summarizes these rules for LL/SC family instructions.

282

Terminology: “Should” is a recommendation. Implementations are encouraged to provide should behavior, but are not
required to do so. Portable software should not rely on such behavior, but is encouraged to follow should rules. “Must” behav-
ior are requirements: Implementations are required to implement such behavior, and software that violates such requirements
will fail, typically with a exception such as a Reserved Instruction exception or Address Error.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

Table 5.25 Recommended and non-recommended LL/SC family instructions
to start and end atomic code sequences

Start of atomic sequence

LLX [LLDX|LLXE
LL | LLD | LLE | /LL | /LLD| /LLE

e ok! | BAD | BAD | BAD | BAD | BAD
SCD BAD2| OK | BAD | BAD | BAD | BAD
SCE BAD | BAD | OK | BAD | BAD | BAD

SCX/SC BAD | BAD | BAD | OK | BAD | BAD

SCDX/SCD BAD | BAD | BAD | BAD | OK | BAD
BAD | BAD | BAD | BAD | BAD | OK

SCXE/SCE

End of Atomic Sequence

1. Cells marked OK indicate recommended combinations of instruc-
tions to start and end LL/SC atomic code sequences.

2. Cells marked BAD (and shaded) indicate non-recommended combi-
nations of instructions to start and end LL/SC atomic code
sequences. Software should not be coded in this way. Implementa-
tions are not required to enforce this restriction, but software coded
this way may succeed on some implementations, and fail on other
implementations. L.e. success or failure of the SC family instruction
is UNPREDICTABLE.

The LL and SC virtual and physical addresses should match completely. However, the memory addressing mode - the
and offset - need not match between LLX/LL and SCX/SC. All physical address bits in the LL physical address and
the corresponding bits in the SC physical address should match to the alignment required for the size of the LL/SC

family instructions or LLX/LL and SCX/SC family instruction pairs.4 This applies to atomic code sequences created
via LL/SC, LLD/SCD, LLE/SCE, and their corresponding extended versions LLX/LL-SCX/SC, LLDX/LLD-SCDX/
SCD, LLXE/LLE-SCXE/SC.

Translation Consistency: It is required that LL and SC match addresses, and that LLX/SCX family instructions lie in
the same synchronization block. Even if all virtual addresses match, on a processor with hardware page table walking
it is possible for physical address translation to change between LL and SC, and between the execution phase of LLX,
LL, SCX and SC family instructions. e.g. between the time that SCX is first executed, and the time that the SCX store
data is committed along with SC. The SCX/SC must only succeed if the SCX and SC physical addresses are consis-
tent. If the address translations are inconsistent, implementations are required to fail the SCX/SC pair, or to retry them
in a manner transparent to software. Similarly for LLX/LL pairs. Similarly for other information obtained from trans-
lation, such as the CCA (Cacheability and Coherence Attribute).

It is required that LLX/LL or SCX/SC instruction pairs act as if only a single address translation is done for the first
instruction in the pair, and that translation is used for the second instruction, changing only lower address bits 3:0.
Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/SCD, and SCXE/SCE instruction pairs.

Synchronizable memory type (CCA): The addressed location must be synchronizable by all processors and I/O
devices sharing the location; if it is not, the result is UNPREDICTABLE. Which storage is synchronizable is a func-
tion of both CPU and system implementations. See the documentation of the SC instruction for the formal definition.

4. Note that the implementation dependent LLAddr register (Load Linked Address (CPO Register 17, Select 0)) does
not hold physical address bits 0 to 4 as of Release 5 or after. The requirement all LL and SC address bits match
therefore involves comparing LL address bits not stored in any software accessible register state.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 283

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

LLX/LL need not be writeable: The addressed location need not be writable for LL or LLX family instructions. If it is
not writable a subsequent SC or SCX family instruction will fault, but LL or LLX family instructions may be used in
situations that do not generate such faults, e.g. the PAUSE instruction.

LLX/LL and PAUSE: If an LLX/LL family instruction pair is followed by a PAUSE instruction, the PAUSE instruc-
tion must terminate if it cannot be guaranteed that any of the memory bytes address by the LLX/LL instruction pair
have not been modified.

Memory Ordering of LL/SC family instructions (included LLX/SCX family instructions):

* An SCX/SC family instruction pair is executed atomically as seen by the processor executing these instructions
and by other processors. I.e. the SC will not be seen to be executed before the SCX, and no other instruction, pro-
cessor or device, can observe the SCX store without also being able to observe the SC store, or vice versa.

* LLX/LL family instruction pairs are not required to perform a double width atomic read of memory, but viola-
tions of atomicity will be detected, clearing LLbit, so that the matching SC will fail.?

* Atomicity of LLX/LL family instruction pairs may be provided by MIPS CPU implementations as and if
required by certain system configurations for uncached memory. ¢

e All LL/SC family instructions, including LLX/LL and SCX/SC family instruction pairs, are ordered by their
implicit dependency on LLbit: e.g. a later LL will not be executed before an earlier SC from the same processor,
even if their data memory addresses do not overlap.

e In the MIPS memory consistency architecture, LL/SC family instructions (including LLX/SCX family instruc-
tions) are not ordered with respect to other memory accesses from the same processor, except when their

addresses overlap, or explicit SYNC instructions lie between them. E.g. a later LL can be executed before an ear-

lier SW, or vice versa.’

An LLX family instruction should not overwrite its own base register: code sequences such as that below
LLX rl0, (rl0)4
LL r8, (r10)0

where the rt and base fields of an LLX family instruction specify the same GPR are discouraged.

LLX/LL family instruction pair writing the same target GPR rt: in code sequences such as that below
LLX r4, (rlo)4
LL 14, (rlo0)o

where the rt fields are the same for both members of an LLX/LL family instruction pair, the value loaded and written
by the last instruction, the LL family member, will be the value written. The value loaded and supposedly written into
the register by the first instruction, the LLX family member, is not directly observable: if an exception prevents the

284

For example, an implementation of LLX/LL in cached memory may have LLX set LLaddr and then perform the LLX word
load, and then may execute LL separately. A separate processor may perform an atomic doubleword write that changes both
the LLX and LL memory locations, such that the values returned by LLX and LL may not have both been simultaneously
present in memory. However, if atomicity is violated in this way, then LLbit must be cleared. The LL instruction of an LLX/
LL instruction pair will not set LLbit if it has been cleared after the LLX instruction. Overall, LLX/LL family instruction
pairs are not required to be atomic; whereas SCX/SC family instruction pairs are required to be atomic, if performed.
However, certain system configurations, for uncached memory in particular, require that the LLX/LL family instruction
pair be performed atomically via a single bus transaction.
MIPS recommends that implementations perform a double width atomic read memory access for LLX/LL family instruction
pairs, for cached as well as uncached memory, but does not require this. Portable software should not assume that an LLX/LL
family instruction pair is atomic without using a matching SCX/SC family instruction pair to detect possible violations of
atomicity.
Note that this applies also to ordinary load instructions lying between LL and SC, inside the atomic RMW sequence.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

LL from executing, the LLX target register is not written.
Availability and Compatibility:
The LLX/SCX instruction family is introduced by and required as of the MIPS Release 6 and microMIPS Release 6

architecture.

LLX and SCX are introduced by and required as of microMIPS32 Release 6. LLDX and SCDX are introduced by
and required as of microMIPS64 Release 6. LLXE and SCXE are introduced by and required as of microMIPS32
Release 6 when EVA is also implemented, which is indicated by bit EVA of coprocessor 0’s Config5 register.

The microMIPS Release 6 instruction encodings for the LLX family of instructions conflict with encodings used by
valid instructions in microMIPS pre-Release 6: LLX conflicts with pre-Release 6 LWR, LLDX conflicts with pre-
Release 6 LDR, and LLXE conflicts with pre-Release 6 LWLE.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 285

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

Operation:

~
*

pseudocode for LLX and for the following instruction;
this replaces the following instruction pseudocode.

this instruction

LLX instruction at PC during instruction time I
next instruction = instruction at PC+4 during instruction time I

= instruction at PC during instruction time I+1

= LL, or BREAK or SDBBP, else invalid
‘LLX’ and ‘LL’ are generic, applicable to LLX-family and LL-family.

All exceptions are signaled with EPC or DEPC = PC of LLX instruction.
All exceptions in instruction time I are signaled with BD=0.

All exceptions in instruction time I+1 are signaled with BD=1.

/

I: /* LLX-only execution in instruction time I */

/* perform address calculation and translation and LLX-only checks. */

L I I S T . N

/* LLbit is set only on successful completion;

LLbit is cleared after all unsuccessful completions of LLX/LL pairs
including when exceptions are signalled

* (unlike all other situations, where exceptions do not affect LLbit)

*/
if this_instruction is LLX then
size <4
else if this_instruction is LLDX then
size « 8

else if this instruction is LLXE then
EVA Checks() /*BD=0%/
size «4

else
assert (IMPOSSIBLE)

endif

/* LLX family instructions must not write their base register */
if this_instruction.base # this_instruction.rt
then SignalException(ReservedInstruction) /*BD=0%*/ endif

this va < GPR[this instruction.base] + sign extend(this instruction.offset)
if this va & (size-1) # 0 then SignalException(AddressError) /*BD=0*/ endif

/* AddressTranslation of first instruction

* will be used for the second instruction as well,

* changing lower address bits,

* to avoid translation consistency issues */

(this pa,this cca) <« AddressTranslation(this va, DATA, LOAD) /*BD=0%*/

/* complete LLX execution in instruction time I+1 */

I+1:

/* LLX execution time I+l and next instruction execution time I combined */
/* All exceptions in instruction time I+1 are signaled with BD=1. */

LLX _SCX family common_code (
/*in:*/ this instruction, this pa, this cca, size,

286 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

/*out:*/ next instruction, next va, next pa, next cca

/* Actual execution of the double-width LLX/LL family instruction pair
* LLX/LL // LLDX/LLD // LLXE/LLE */
/* note that next pa is derived from this pa® */
if this instruction is LLX or this instruction is LLXE then
memdoubleword ¢ LoadMemory (next_cca, 8, next_pa, next_va, DATA)
/* extended for special uncached bus transaction */
if BigEndianCPU then
GPR[this.rt] ¢ sign_extend(memdoubleword;;)
GPR [next.rt] ¢ sign extend(memdoublewordg; 3,)
else
GPR[this.rt] ¢ sign_extend(memdoublewordgs ;)
GPR [next.rt] ¢ sign_extend(memdoublewords;;)
endif /* endianness */
else if this instruction is LLDX then
memguadword < LoadMemory (next cca, 16, next pa, next va, DATA)
/* extended for special uncached bus transaction */
if BigEndianCPU then
GPR[this.rt] ¢ memguadwordgs o
GPR [next.rt] ¢ memquadwordis; ¢4
else
GPR[this.rt] ¢ memguadword;ss; ¢4
GPR [next.rt] ¢ memguadwordgs
endif /* endianness */
endif

/* LLbit is set only on successful completion;
* LLbit is cleared after all unsuccessful completions of LLX/LL pairs
* including when exceptions are signalled
* (unlike all other situations, where exceptions do not affect LLbit)
*/

LLbit « 1

/* end of combined LLX/ LLpseudocode */
where /* helper pseudocode */

/* LoadMemory and StoreMemory pseudocode library functions are extended
* to perform 128-bit memory accesses as required by LLDX / SCDX.

In addition, it is extended to perform the special bus transactions
* required to do LL/SC style accesses to uncached memory */

function EVA_checks (vaddress)
if (Configbgya=0) then SignalException(ReservedInstruction) endif
if !IsCoprocessorEnabled(0)
then SignalException (CoprocessorUnusable, 0)endif
AM = SegmentAM (vaddress)

if (AM != UUSK && AM != MUSK && AM != MUSUK)
then SignalException (AddressError) endif
| end function

8. Note that LLX SCX common_code() sets next_pa = this_pa-size = this_pa & (size-1), assuming all other constraints are
met. Only a single address translation is required.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 287

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

function LLX_SCX family common_code (
/*inputs: */ this instruction, this pa, this cca, size,
/*outputs:*/ next instruction, next va, next pa, next cca

/* begin function */

if next instruction is BREAK or SDBBP then
/* Execute BREAK or SDBBP in normal I+l manner,
* as if in a branch delay slot or compact branch forbidden slot.
* gignaling appropriate exception */

endif

/* next instruction must be matching non-extended LL/SC family
* - this pseudocode replaces normal pseudocode for next instruction. */

if (this_instruction is LLX and next instruction is not LL)

or (this instruction is LLDX and next instruction is not LLD)

or (this instruction is LLXE and next instruction is not LLE)

or (this instruction is SCX and next instruction is not SC)
(
(

or (this instruction is SCDX and next instruction is not SCD)
or (this_instruction is SCXE and next_instruction is not SCE)
then

SignalException (ReservedInstruction) /*BD=1%*/
endif
/* next instruction is non-extended LL/SC family: consistency checks */

/* Check base register field for consistency */
if this_instruction.base # next_instruction.base
then SignalException (ReservedInstruction) /#*BD=1%*/ endif

/* Address computation for LL/SC-family next instruction */
next va <« GPR[next instruction.base] + sign extend(next instruction.offset)

/* LL/SC following LLX/SCX virtual address must be doublewidth aligned
if next va & (size*2-1) # 0
then SignalException (AddressError) /*BD=1*/ endif

/* LLX/SCX and LL/SC address virtual addresses must be adjacent
* (adjacent, nonoverlapping, doubleword aligned) */

if this_va&(2*size-1) - next_va&(2*size-1) #size
then SignalException (AddressError) /*BD=1%*/ endif
/* assert(this va-next va # size) */

/* Check offsets for consistency */
/* assert(this instruction.offset - next instruction.offset = size) */
/* offset check not needed - other constraints ensure */

/* LL/SC virtual to physical address translation
/* Reuse the translation of the first instruction to ensure consistency. */
/* Note: after all RI and AE exceptions, for standard exception priority. */
next pa <« this pa & (2*size-1)

/* given alignment constraints,

* next pa = this pa - size = this pa & (2*size-1) */
next_cca <« this cca

end function /* LLX_ SCX family common code */

288 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LLX, LLDX, LLXE Load Linked Extended {Word,Doubleword,Word EVA}

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

Reserved Instruction

Programming Notes:

There is no Load Linked Word Unsigned Extended operation corresponding to Load Word Unsigned.

Implementation Notes:

The synchronization block of memory used for LL/SC (and when extended by LLX/SCX) is typically the largest
cache line in use.

Implementations of LL/SC in general, and LLX/LL-SCX/SC in particular, provide atomicity if the computer system
can guarantee that, if the SC passes, then atomicity has not been violated by transactions between the LL and SC. It
should also guarantee eventual success, i.e. that failures will not persist forever.

Correct implementation depends on the system, both the CPU and the external memory subsystem. For example, the
CPU may implement LL/SC correctly for cacheable coherent memory, but if the I/O subsystem can write to memory
without being exposed to the cache coherency mechanism, LL/SC will not detect violations of atomicity caused by
such non-coherent I/O accesses. Similarly, the CPU may implement uncached memory requests for LL and SC, but if
the external memory subsystem performs an SC request and returns success without guaranteeing atomicity, LL/SC
may not provide the expected guarantee of atomicity.

If it is not possible to guarantee such atomicity then it is recommended that implementations cause the SC to fail,
returning the failure code in GPR[rt] without performing the store.

LL/SC and LLX/LL-SCX/SC code sequences should only be used for the following memory types (Cache and
Coherency Attributes (CCAs)):

» cached coherent: if the cache protocol can guarantee that atomicity has not been violated by transactions between
the LL and SC.

* uncached:
» for uncached memory that is memory-like, i.e. which does not have memory-mapped I/O side effects
« if the CPU supports bus transactions visible to external hardware so that such external hardware can guaran-
tee that atomicity has not been violated by transactions between the LL and SC, and can signal success or

failure by replying to the uncached bus transaction triggered by the SC-family instruction.

« orif the system configuration is such that the CPU can observe all memory transactions that would violate
atomicity

« cached noncoherent or uncached (no side effects): on uniprocessor systems lacking cache coherence or external
hardware that can make atomicity assertions, LL-SC and LLX/LL-SCX/SC code sequences can be used to detect
violations of atomicity caused by interrupt handling

« for other memory types: it may be UNPREDICTABLE whether the SC and possible SCX stores are performed,
and whether the SC reports success or failure.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 289

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LSA Load Scaled Address, Doubleword Load Scaled Address
31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32A LSA
000000 it rs rd sa 000 001111
POOL32S DLSA
010110 nt rs rd sa 100 000100
6 5 5 5 2 3 6

290

Format: wnsa
LSA rt, rs, rd, sa microMIPS32 Release 6
DLSA rt, rs,rd, sa microMIPS64 Release 6

Purpose: Load Scaled Address, Doubleword Load Scaled Address

Description:
LSA: GPR[rd] < sign extend.32((GPR[rs] << (sa+l)) + GPR[rt])
DLSA: GPR[rd] <« (GPR[rs] << (sa+l)) + GPRI[rtl]

LSA adds two values derived from registers rs and rt, with an optional scaling shift on rs. The scaling shift is
formed by adding 1 to the 2-bit sa field, which is interpreted as unsigned. The scaling left shift varies from 1 to 5, cor-
responding to multiplicative scaling values of x2, x4, x8, x16, bytes, or 16, 32, 64, or 128 bits.

LSA is a MIPS32 compatible instruction, sign extending its result from bit 31 to bit 63.
DLSA is a MIPS64 compatible instruction, performing the scaled index calculation fully 64-bits wide.

Restrictions:

None

Availability and Compatibility:

LSA instruction is introduced by and required as of Release 6.

DLSA instruction is introduced by and required as of Release 6.

Operation
LSA: GPR[rd] <« sign_extend.32(GPR[rs] << (sa+l) + GPR[rt])
DLSA: GPR[rd] <« GPR[rs] << (sa+l) + GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LUI Load Upper Immediate
31 26 25 21 20 16 15 0
LUI/AUI . .
000100 rt 00000 immediate
6 5 5 16
Format: LUI rs, immediate microMIPS, Assembly Idiom Release 6
Purpose: Load Upper Immediate
To load a constant into the upper half of a word
Description: GPR[rs] ¢« sign extend (immediate || 0%°)
The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is sign-
extended and placed into GPR rt.
Restrictions:
None
Availability and Compatibility
This instruction has been recoded for Release 6.
Operation:
GPR[rs] ¢« sign_extend (immediate || 0'%)

Exceptions:
None
Programming Notes:
In Release 6, LUI is an assembly idiom of AUI with rs=0.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 291

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LW Load Word

31 26 25 21 20 16 15 0
LW32
11111 t base offset
6 5 5 16
Format: 1w rt, offset (base) microMIPS

Purpose: Load Word

To load a word from memory as a signed value

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 16-bit signed offset is added to the con-
tents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze-1. .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU || 0?)

GPR[rt] ¢ sign_extend (memdoublewords,,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

292 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWC1 Load Word to Floating Point
31 26 25 21 20 16 15 0
LWC132
100111 ft base offset
6 5 5 16
Format: 1wci ft, offset (base)

Purpose: Load Word to Floating Point

To load a word from memory to an FPR

Description: FPR[ft] ¢ memory [GPR[base] + offset]

microMIPS

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of FPR ft. If FPRs are 64 bits wide, bits 63..32 of FPR ft become UNPREDICTABLE. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .3 || (PAddr, o xor (ReverseEndian || 07))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, DATA)
bytesel < vAddr, , xor (BigEndianCPU || 02)

StoreFPR(ft, UNINTERPRETED WORD, memdoublewords;;,gspytesel..s*bytesel)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

293

LWC2 Load Word to Coprocessor 2

31 26 25 21 20 16 15 12 11 0
POOL32B LWC2 0
001000 rt base 0000 0 offset
6 5 5 4 1 11
Format: 1wc2 rt, offset (base) microMIPS

Purpose: Load Word to Coprocessor 2

To load a word from memory to a COP2 register.

Description: CPR[2,rt,0] €« memory[GPR[base] + offset]
The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
placed into the low word of COP2 (Coprocessor 2) general register rt. The signed offset is added to the contents of
GPR base to form the effective address.
Restrictions:
Pre-Release 6: An Address Error exception occurs if +EffectiveAddress; o # 0 (not word-aligned).
Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.
Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.
Availability and Compatibility
This instruction has been recoded for Release 6.
Operation:
vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pAddr « pAddrpgrze.1 .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
bytesel ¢« vAddr, , xor (BigEndianCPU || 0?)

CPR[2,rt,0] < sign_extend(memdoublewords;,gsbytesel..s*bytesel)

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction, Coprocessor Unusable, Watch

Programming Notes:

Release 6 implements an 11-bit offset, whereas all release levels lower than Release 6 implement a 16-bit offset.

294 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWE Load Word EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C LD-EVA LWE
011000 it base 0110 111 offset
6 5 5 4 3 9
Format: LWE rt, offset (base) microMIPS

Purpose: Load Word EVA

To load a word from user mode virtual address space when executing in kernel mode.

Description: GPR[rt] ¢ memory [GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt. The 9-bit signed offset is added to the contents
of GPR base to form the effective address.

The LWE instruction functions the same as the LW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g, field being set to one.
Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:
vAddr ¢ sign extend(offset) + GPR[base]
| (pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢ pAddrpgrze.1. .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte € vAddr, , xor (BigEndianCPU || 0?)

GPR[rt] ¢« sign_extend (memdoublewords;,g«pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 295

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWPC Load Word PC-relative

31 26 25 21 20 19 18 0
PCREL LWPC
011110 n 01 offset
6 5 2 19
Format: LwPC rt, offset microMIPS32 Release 6

Purpose: Load Word PC-relative

To load a word from memory as a signed value, using a PC-relative address.

Description: GPR [rt] <« memory[PC & ~0x3 + sign extend(offset << 2)]

The offset is shifted left by 2 bits, sign-extended, and added to the address of the LWPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, sign-
extended to the GPR register length if necessary, and placed in GPR rt.

Restrictions:

LWPC is naturally aligned, by specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Operation

VAddr <« (PC & ~0x3 + sign_extend(offset)<<2)
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] <« sign extend(memword)

Exceptions:

TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

296 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

LWUPC Load Word Unsigned PC-relative

31 26 25 21 20 19 18 0
011110 IS LWUPC offset
10
6 5 2 19
Format: LWUPC rt, offset microMIPS64 Release 6

Purpose: Load Word Unsigned PC-relative

To load a word from memory as an unsigned value, using a PC-relative address.

Description: GPR [rt] <« memory[PC + sign extend(offset << 2)]

The 19-bit offset is shifted left by 2 bits, sign-extended, and added to the address of the LWUPC instruction.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended to the GPR register length if necessary, and placed in GPR rt.

Restrictions:

LWUPC is naturally aligned, by specification.

Availability and Compatibility:
This instruction is introduced by and required as of MIPS64 Release 6.

Operation

vAddr <« (PC + sign extend(offset)<< 2)

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
memword < LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] <« zero_ extend(memword)

Exceptions:
TLB Refill, TLB Invalid, TLB Read Inhibit, Bus Error, Address Error, Watch

Programming Note
The Release 6 PC-relative loads (LWPC, LWUPC, LDPC) are considered data references.

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data reference rather than an instruction reference. That is, the watchpoint
or breakpoint is triggered only if enabled for data references.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 297

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Lwu Load Word Unsigned

31 26 25 21 20 16 15 12 11 0
POOL32C LWU
011000 rt base 1110 offset
6 5 5 4 12
Format: LWU rt, offset (base) microMIPS64

Purpose: Load Word Unsigned

To load a word from memory as an unsigned value.

Description: GPR[rt] < memory[GPR[base] + offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched, zero-
extended, and placed in GPR rt. The 12-bit signed offset is added to the contents of GPR base to form the effective
address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)

pAddr ¢ pAddrpgrze.1. .3 || (PAddr, , xor (ReverseEndian || 02))
memdoubleword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
byte ¢ vAddr, , xor (BigEndianCPU || 02)

GPR[rt] « 032 | memdoublewordsy g«pyte. . 8*byte

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error, Reserved Instruction, Watch

298 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

31 26 25 21 20 16 15 11 10 9 8 0
POOL32F MADDF
010101 fi fs fd fimt 110111000
POOL32F MSUBF
010101 fi fs fd fimt 111111000
6 5 5 5 2 9

Format: MADDF.fmt MSUBF.fmt

MADDF.S fd, fs, ft microMIPS32 Release 6
MADDF.D fd, fs, ft microMIPS32 Release 6
MSUBF.S fd, fs, ft microMIPS32 Release 6
MSUBF.D fd, fs, ft microMIPS32 Release 6

Purpose: Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract
MADDF.fmt: To perform a fused multiply-add of FP values.
MSUBEF.fmt: To perform a fused multiply-subtract of FP values.

Description:
MADDF.fmt: FPR[fd] <« FPR[fd] + (FPR[fs] x FPR[ft])
MSUBF.fmt: FPR[fd] <« FPR[fd] - (FPR[fs] xFPR[ft])

The value in FPR fs is multiplied by the value in FPR ft to produce an intermediate product. The intermediate product
is calculated to infinite precision. The product is added to the value in FPR fd. The result sum is calculated to infinite
precision, rounded according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result
are values in format fmt.

(For MSUBEF.fmt, the product is subtracted from the value in FPR fd.)

Cause bits are ORed into the Flag bits if no exception is taken.

Restrictions:

None

Availability and Compatibility:
MADDF.fmt and MSUBF.fmt are required in Release 6.
MADDF.fmt and MSUBF.fmt are not available in architectures pre-Release 6.

The fused multiply add instructions, MADDF.fmt and MSUBF.fmt, replace pre-Release 6 instructions such as
MADD.fmt, MSUB.fmt, NMADD.fmt, and NMSUB.fmt. The replaced instructions were unfused multiply-add, with
an intermediate rounding, although in some earlier implementations they were fused. Instructions such as MADD.fmt
were usually unfused, but were occasionally fused. Release 6 provides consistent behavior: MADDF.fmt and
MSUBEF.fmt are required to be fused in all implementations.

Release 6 MSUBF.fmt, £d«fd-£fsxft, corresponds more closely to pre-Release 6 NMADD.fmt, £d«fr-fsxft,
than to pre-Release 6 MSUB.fmt, fd«fsxft-fr.

FPU scalar MADDF.fmt corresponds to MSA vector MADD.df.
FPU scalar MSUBF.fmt corresponds to MSA vector MSUB.df.

Operation:

if not IsCoprocessorEnabled (1)
then SignalException (CoprocessorUnusable, 1) end if

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 299

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MADDF.fmt MSUBF.fmt Floating Point Fused Multiply Add, Floating Point Fused Multiply Subtract

300

if not IsFloatingPointImplemented (fmt))
then SignalException (ReservedInstruction) end if
if fmt=D and FIR.D=0
then SignalFPException (UnimplementedOperation) end if

vfr <« ValueFPR (fr, fmt)
vfs <« ValueFPR(fs, fmt)
vfd <« ValueFPR (fd, fmt)
MADDF.fmt: vinf « vfd +, (vfs *, vft)
MADDF.fmt: vinf <« vfd -, (vfs *, vft)
StoreFPR (fd, fmt, wvinf)

Special Considerations:

The fused multiply-add computation is performed in infinite precision, and signals Inexact, Overflow, or Underflow
if and only if the final result differs from the infinite precision result in the appropriate manner.

Like most FPU computational instructions, if the flush-subnormals-to-zero mode, FCSR.FS=1, then subnormals are
flushed before beginning the fused-multiply-add computation, and Inexact may be signaled.

L.e. Inexact may be signaled both by input flushing and/or by the fused-multiply-add: the conditions or ORed.

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

31 26 25 21 20 16 15 11 10 9 0
POOL32F MAX
010101 fi fs fd fimt 000001011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MAXA
010101 fi fs fd fimt 000101011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MIN
010101 fi fs fd fimt 000000011
6 5 5 5 2 9
31 26 25 21 20 16 15 11 10 9 0
POOL32F MINA
010101 fi fs fd fimt 000100011
6 5 5 5 2 9

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Format: MAX.fmt MIN.fmt
MAX.S fd,fs, ft
MAX.D fd, fs, ft
MAXA.S fd, fs, ft
MAXA.D fd, fs, ft
MIN.S fd,fs, ft
MIN.D fd,fs, ft
MINA.S fd,fs, ft
MINA.D fd, fs, ft

MAXA.fmt MINA.fmt

Purpose: Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Scalar Floating-Point Maximum

Scalar Floating-Point Minimum
Scalar Floating-Point argument with Maximum Absolute Value

Scalar Floating-Point argument with Minimum Absolute Value

Description:

MAX. fmt:
MIN. fmt:

FPR [fd] - maxNum (FPR [fs] ,FPR[ft])
FPR [fd] <~ minNum (FPR [fs] ,FPR[ft])

MAXA.fmt: FPR[fd]<« maxNumMag (FPR[fs],FPR[ft])
MINA. fmt: FPR[fd] ¢~ minNumMag (FPR [fs] ,FPR[ft])

MAX.fmt writes the maximum value of the inputs £s and £t to the destination £d.

MIN.fmt writes the minimum value of the inputs £s and £t to the destination £d.

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6

MAXA . .fmt takes input arguments £s and £t and writes the argument with the maximum absolute value to the desti-

nation f£d.

MINA.fmt takes input arguments £s and £t and writes the argument with the minimum absolute value to the desti-

nation £d.

The instructions MAX.fmt/MIN.fmt/MAXA .fmt/MINA.fmt correspond to the IEEE 754-2008 operations maxNum/

301

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

minNum/maxNumMag/minNumMag.
* MAX.fmt corresponds to the IEEE 754-2008 operation maxNum.
* MIN.fmt corresponds to the IEEE 754-2008 operation minNum.
* MAXA.fmt corresponds to the IEEE 754-2008 operation maxNumMag.

* MINA.fmt corresponds to the IEEE 754-2008 operation minNumMag.
Numbers are preferred to NaNs: if one input is a NaN, but not both, the value of the numeric input is returned. If both
are NaNs, the NaN in fs is returned.!

The scalar FPU instructions MAX.fmt/MIN.fmt/MAXA.fmt/MINA.fmt correspond to the MSA instructions
FMAX.df/FMIN.df/FMAXA.df/FMINA.df.

* Scalar FPU instruction MAX.fmt corresponds to the MSA vector instruction FMAX.df.

* Scalar FPU instruction MIN.fmt corresponds to the MSA vector instruction FMIN.df.

* Scalar FPU instruction MAXA.fmt corresponds to the MSA vector instruction FMAX A.df.
* Scalar FPU instruction MINA.fmt corresponds to the MSA vector instruction FMIN_A.df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754 ™.
2008. See also the section “Special Cases”, below.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Operation:

if not IsCoprocessorEnabled (1)

then SignalException (CoprocessorUnusable, 1) endif
if not IsFloatingPointImplemented (fmt)

then SignalException (ReservedInstruction) endif

vl <« ValueFPR(fs, fmt)
v2 <« ValueFPR(ft, fmt)

if SNaN(vl) or SNaN(v2) then
then SignalException (InvalidOperand) endif

if NaN(vl) and NaN(v2)then
ftmp « vl
elseif NaN(vl) then
ftmp <« v2
elseif NaN(v2) then
ftmp « vl
else
case instruction of

1. IEEE standard 754-2008 allows either input to be chosen if both inputs are NaNs. Release 6 specifies that the first input must
be propagated.

302 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt

FMAX . fmt: ftmp <« MaxFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMIN. fmt: ftmp <« MinFP.fmt (ValueFPR (fs, fmt) ,ValueFPR(ft, fmt))
FMAXA . fmt: ftmp <« MaxAbsoluteFP.fmt (ValueFPR (fs, fmt), ValueFPR(ft, fmt))
FMINA. fmt: ftmp <« MinAbsoluteFP.fmt (ValueFPR (fs, fmt),ValueFPR(ft, fmt))
end case

endif

StoreFPR (fd, fmt, ftmp)
/* end of instruction */

function MaxFP(tt, ts, n)
/* Returns the largest argument. */
endfunction MaxFP

function MinFP(tt, ts, n)
/* Returns the smallest argument. */
endfunction MaxFP

function MaxAbsoluteFP(tt, ts, n)
/* Returns the argument with largest absolute value.
For equal absolute values, returns the largest positive argument.*/
endfunction MinAbsoluteFP

function MinAbsoluteFP(tt, ts, n)
/* Returns the argument with smallest absolute value.
For equal absolute values, returns the smallest positive argument.*/
endfunction MinAbsoluteFP

function NaN(tt, ts, n)
/* Returns true if the value is a NaN */
return SNaN (value) or QNaN (value)
endfunction MinAbsoluteFP

Table 5.26 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
-0.0 0.0 0.0 -0.0 0.0 -0.0
0.0 -0.0
QNaN # # # # #
QNaN
QNaN1 QNaN2 Release 6 QNanl QNaN1 QNaN1 QNaN1
IEEE Arbitrary choice. Not allowed to clear sign bit.
754 2008

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Scalar Floating-Point Max/Min/maxNumMag/minNumMag

303

MAX.fmt MIN.fmt MAXA.fmt MINA.fmt Scalar Floating-Point Max/Min/maxNumMag/minNumMag

Table 5.26 Special Cases for FP MAX, MIN, MAXA, MINA

Operand Release 6 Instructions
Other
fs ft MAX MIN MAXA MINA
Either or both operands Invalid Signal Invalid Operation Exception.
SNaN Operation | Destination not written.
exception
enabled
... disabled | Treat as if the SNaN were a QNaN (do not quieten the result).

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

304 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFCO Move from Coprocessor 0
31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A " 00 sl MFCO0 POOL32AXf
000000 s 00011 111100
6 5 5 3 5 6
Format: MFCO rt, rs microMIPS
MFCO rt, rs, sel microMIPS

Purpose: Move from Coprocessor 0

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[rt] ¢ CPR[O,rs,sel]

The contents of the coprocessor 0 register specified by the combination of rs and sel are sign-extended and loaded
into general register rt. Not all coprocessor 0 registers support the Sel field. In those instances, the sel field must be

Z€10.

When the coprocessor 0 register specified is the EntryLoO or the EntryLol register, the RI/XI fields are moved to
bits 31:30 of the destination register. This feature supports MIPS32 backward compatibility on a MIPS64 system.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Operation:

reg = rs

data < CPR[O,reg,sell;;

if (reg,sel

GPR[rt]s;
GPR[rt] s,

GPRI[rt]lgs

else

= EntryLol or reg,sel = EntryLoO then
GPR[rt] g

.0 € datazg. o

€ datagy

€ datag,

35 € sign_extend(datags)

GPR[rt] ¢ sign extend(data)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 305

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFC1 Move Word From Floating Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 MEFCl1 POOL32FXf
010101 s 10000000 111011
6 5 5 2 8 6
Format: MFC1 rt, fs microMIPS

Purpose: Move Word From Floating Point

To copy a word from an FPU (CP1) general register to a GPR.

Description: GPR[rt] ¢ FPR[fs]

The contents of FPR fs are sign-extended and loaded into general register rt.
Restrictions:

Operation:

data ¢« ValueFPR(fs, UNINTERPRETED WORD),; g
GPR[rt] €« sign extend(data)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Historical Information:

For MIPS I, MIPS 1II, and MIPS III the contents of GPR rt are UNPREDICTABLE for the instruction immediately
following MFC1.

306 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFC2 Move Word From Coprocessor 2

31 26 25 21 20 16 15 6 5 0
POOL32A ot Imol MFC2 POOL32AXf
000000 P 0100110100 111100
6 5 5 10 6
Format: MFC2 rt, Impl microMIPS

The syntax shown above is an example using MFC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From Coprocessor 2

To copy a word from a COP2 general register to a GPR.

Description: GPR[rt] <« CP2CPR[Impl]

The contents of the coprocessor 2 register denoted by the Impl field are sign-extended and placed into general register
rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the
architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist.

Operation:

data < CP2CPR[Impll;;
GPR[rt] ¢ sign extend(data)

Exceptions:

Coprocessor Unusable

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 307

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHCO Move from High Coprocessor 0

308

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A ” s 00 sel MFHCO POOL32P
000000 00011 110100
6 5 5 3 5 6
Format: MFHCO rt, rs microMIPS Release 5
MFHCO rt, rs, sel microMIPS Release 5

Purpose: Move from High Coprocessor 0

To move the contents of the upper 32 bits of a Coprocessor 0 register, extended by 32-bits, to a general register.

Description: GPR[rt] < CPRI[O,rs,sel] [63:32]

The contents of the Coprocessor 0 register specified by the combination of rs and sel are sign-extended and loaded
into general register rt. Not all Coprocessor 0 registers support the sel field, and in those instances, the sel field must
be zero.

When the Coprocessor 0 register specified is the EntryLoO or the EntryLol register, MFHCO must undo the effects of
MTHCO, that is, bits 31:30 of the register must be returned as bits 1:0 of the GPR, and bits 32 and those of greater sig-
nificance must be left-shifted by two and written to bits 31:2 of the GPR.

Restrictions:

The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel, or the register
exists but is not extended by 32-bits, or the register is extended for XPA, but XPA is not supported or enabled.
Availability and Compatibility:

This feature supports MIPS32 backward-compatibility of MIPS64 systems.

Operation:

PABITS is the total number of physical address bits implemented. PABITS is defined in the descriptions of EntryLoO
and EntryLol.

reg < rs
data ¢« CPR[O0, reg, sel]
if (reg,sel = EntrylLol or reg,sel = EntryLoO) then
if (Config3;pa = 1 and PageGraingppa = 1) then // PABITS > 36
GPR([rtl;,.9 ¢ datag; 39
GPR[rtles 5, © (datag;)3? // sign-extend
endif
else
GPR[rt] < sign_extend(datags. 35)
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MFHC1 Move Word From High Half of Floating Point Register
31 26 25 21 20 16 15 14 13
POOL32F " " 00 MFHCI POOL32FXf
010101 s 1100000 111011
6 5 5 2 P 6
Format: MFHC1 rt, fs microMIPS

Purpose: Move Word From High Half of Floating Point Register

To copy a word from the high half of an FPU (CP1) general register to a GPR.

Description: GPR[rt] ¢« sign extend (FPR[fslg;. 35)

The contents of the high word of FPR fs are sign-extended and loaded into general register rt. This instruction is pri-
marily intended to support 64-bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined

for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-

tion.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

data ¢« ValueFPR(fs, UNINTERPRETED DOUBLEWORD) .5 s,

GPR[rt] €« sign extend(data)

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

309

MFHC2 Move Word From High Half of Coprocessor 2 Register

310

31 26 25 21 20 16 15 6 5 0
POOL32A ot Imol MFHC2 POOL32AXf
000000 P 1000110100 111100
6 5 5 10 6
Format: MFHC2 rt, Impl microMIPS

The syntax shown above is an example using MFHC1 as a model. The specific syntax is implementation dependent.

Purpose: Move Word From High Half of Coprocessor 2 Register
To copy a word from the high half of a COP2 general register to a GPR.

Description: GPR[rt] < sign extend (CP2CPR[Impllg; 15)

The contents of the high word of the coprocessor 2 register denoted by the Impl field are sign-extended and placed
into GPR rt. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not speci-
fied by the architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:

data < CP2CPR[Impllgs. 33
GPR[rt] ¢ sign extend(data)

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOV.fmt Floating Point Move
31 26 25 21 20 16 15 14 13 12 5
POOL32F fi f 0 fmt MOV POOL32FXf
010101 s 0000001 111011
6 5 5 1 2 7 6
Format: Mov.fmt

MOV.S ft, fs microMIPS
MOV.D ft, fs microMIPS

Purpose: Floating Point Move

To move an FP value between FPRs.

Description: FPR[ft] < FPR[fs]

The value in FPR fs is placed into FPR ft. The source and destination are values in format fmt. In paired-single format,

both the halves of the pair are copied to ft.

The move is non-arithmetic; it causes no IEEE 754 exceptions.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-

DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Availability and Compatibility:
MOV.PS has been removed in Release 6.

Operation:

StoreFPR (ft,

Exceptions:

fmt,

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

fmt))

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

311

MTCO Move to Coprocessor O

31 26 25 21 20 16 15 14 13 11 10 6 5 0
POOL32A " s 00 sel MTCO POOL32AXf
000000 01011 111100
6 5 5 2 3 5 6
Format: MTCO rt, rs microMIPS
MTCO rt, rs, sel microMIPS

Purpose: Move to Coprocessor 0

To move the contents of a general register to a coprocessor 0 register.

Description: CPrR[0, rs, sel]l < GPRI[rt]

The contents of general register rt are loaded into the coprocessor 0 register specified by the combination of rs and
sel. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be set to zero.

When the COPO destination register specified is the EntryLoO or the EntryLo1 register, bits 31:30 appear
in the RI/XT fields of the destination register. This feature supports MIPS32 backward compatibility on a MIPS64
system.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rs and sel.

Operation:

data < GPRI[rt]
reg €< rs
if (reg,sel = EntryLol or EntryLoO) then
CPR[0,reg,sell,g o € datasg o
CPR[0,reg,sel] sy € datas;
CPR[0,reg,sellq, ¢« dataj,
CPR[0,reg,sellg .39 < 032
else if (Width(CPR[0,reg,sel]) = 64) then
CPR[0,reg,sel] < data
else
CPR[0,reg,sel] <« data,;

endif

Exceptions:
Coprocessor Unusable

Reserved Instruction

312 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTC1 Move Word to Floating Point
31 26 25 21 20 16 15 14 13 6 5
POOL32F f 00 MTC1 POOL32FXf
010101 s 10100000 111011
6 5 2 P 6
Format: wmTC1 rt, microMIPS

Purpose: Move Word to Floating Point

To copy a word from a GPR to an FPU (CP1) general register.

Description: FPR[fs] « GPR[rt]
The low word in GPR rt is placed into the low word of FPR fs. If FPRs are 64 bits wide, bits 63..32 of FPR fs become

UNPREDICTABLE.

Restrictions:

Operation:

data < GPR[rtl;; g

StoreFPR (fs, UNINTERPRETED WORD, data)

Exceptions:

Coprocessor Unusable

Historical Information:

For MIPS I, MIPS II, and MIPS III the value of FPR fs is UNPREDICTABLE for the instruction immediately fol-

lowing MTC1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

313

MTC2 Move Word to Coprocessor 2

31 26 25 21 20 16 15 6 5 0
POOL32A ot Imol MTC2 POOL32AXf
000000 P 0101110100 111100
6 5 5 10 6
Format: MTC2 rt, Impl microMIPS

The syntax shown above is an example using MTC1 as a model. The specific syntax is implementation-dependent.

Purpose: Move Word to Coprocessor 2

To copy a word from a GPR to a COP2 general register.

Description: CP2CPR[Impl] < GPR[rt]

The low word in GPR rt is placed into the low word of a Coprocessor 2 general register denoted by the Impl field. If
Coprocessor 2 general registers are 64 bits wide; bits 63..32 of the register denoted by the Impl field become
UNPREDICTABLE. The interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is
not specified by the architecture.

Restrictions:

The results are UNPREDICTABLE if the Impl field specifies a Coprocessor 2 register that does not exist.

Operation:

data < GPR[rtl;; o
CP2CPR [Impl] < data

Exceptions:
Coprocessor Unusable

Reserved Instruction

314 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHCO Move to High Coprocessor O

31 26 25 21 20 16 15 14 13 1 10 6 5 0
POOL32A " s 00 sel MTHCO POOL32P
000000 01011 110100
6 5 5 2 3 5 6
Format: MTHCO rt, rs microMIPS Release 5
MTHCO rt, rs, sel microMIPS Release 5

Purpose: Move to High Coprocessor 0
To copy a word from a GPR to the upper 32 bits of a COP2 general register that has been extended by 32 bits.

Description: CPR[0, rs, sell [63:32] < GPR[rt]

The contents of general register rt are loaded into the Coprocessor 0 register specified by the combination of rs and
sel. Not all Coprocessor 0 registers support the sel field; the sel field must be set to zero.

When the Coprocessor 0 destination register specified is the EntryLoO or EntryLol register, bits 1:0 of the GPR appear
at bits 31:30 of EntryLoO or EntryLol. This is to compensate for Rl and XI, which were shifted to bits 63:62 by MTCO
to EntryLoO or EntryLol. If RI/XI are not supported, the shift must still occur, but an MFHCO instruction returns Os for
these two fields. The GPR is right-shifted by two to vacate the lower two bits, and two Os are shifted in from the left.
The result is written to the upper 32 bits of MIPS64 EntryLoO or EntryLol, excluding RI/XI, which were placed in bits
63:62, that is, the write must appear atomic, as if both MTC0O and MTHCO occurred together.

This feature supports MIPS32 backward compatibility of MIPS64 systems.

Restrictions:

The results are UNDEFINED if Coprocessor 0 does not contain a register as specified by rs and sel, or if the register
exists but is not extended by 32 bits, or the register is extended for XPA, but XPA is not supported or enabled.

In a 64-bit processor, the MTHCO instruction writes only the lower 32 bits of register rt into the upper 32 bits of the
Coprocessor register specified by rd and sel if the register is extended by MIPS32 Release 5. The only registers
extended by MIPS32 Release 5 are those required for the XPA feature. These registers are identical to the same regis-
ters in the MIPS64 Architecture, other than EntryLoO and EntryLo1l.

Operation:

data < GPR[rt]
reg €< rs
if (reg,sel = EntrylLol or reg,sel = EntryLoO) then
if (Config3;pp = 1 and PageGraing;p, = 1) then // PABITS > 36
CPR[0,reg,selly; 3o € data;
CPR[0,reg,sellg;.3, € dataz; , and ((1<<(PABITS-36))-1)
CPR[0,reg,sell ;.¢p < 02
endif
else
CPR[0,reg,sel] [63:32] < dataj; g
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 315

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHC1 Move Word to High Half of Floating Point Register

316

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F ot f 00 MTHCI1 POOL32FXf
010101 s 11100000 111011
6 5 5 2 8 6
Format: MTHC1 rt, fs microMIPS

Purpose: Move Word to High Half of Floating Point Register
To copy a word from a GPR to the high half of an FPU (CP1) general register.

Description: FPR[fsl¢; 3, < GPRIrtls;

The low word in GPR rt is placed into the high word of FPR fs. This instruction is primarily intended to support 64-
bit floating point units on a 32-bit CPU, but the semantics of the instruction are defined for all cases.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

The results are UNPREDICTABLE if Statusgg = 0 and fs is odd.

Operation:

newdata € GPR[rtlszq o
olddata ¢ ValueFPR(fs, UNINTERPRETED DOUBLEWORD);;
StoreFPR (fs, UNINTERPRETED DOUBLEWORD, newdata || olddata)

Exceptions:
Coprocessor Unusable

Reserved Instruction

Programming Notes

When paired with MTCI1 to write a value to a 64-bit FPR, the MTC1 must be executed first, followed by the MTHCI.
This is because of the semantic definition of MTC1, which is not aware that software is using an MTHC1 instruction
to complete the operation, and sets the upper half of the 64-bit FPR to an UNPREDICTABLE value.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MTHC2 Move Word to High Half of Coprocessor 2 Register

31 26 25 21 20 16 15 6 5 0
POOL32A ot Imol MTHC2 POOL32AXf
000000 P 1001110100 111100
6 5 5 10 6
Format: MTHC2 rt, Impl microMIPS
The syntax shown above is an example using MTHCI1 as a model. The specific syntax is implementation dependent.
Purpose: Move Word to High Half of Coprocessor 2 Register
To copy a word from a GPR to the high half of a COP2 general register.
Description: CP2CPR[Impllg¢sy 3, € GPR[rtls;
The low word in GPR rt is placed into the high word of coprocessor 2 general register denoted by the Impl field. The
interpretation of the Impl field is left entirely to the Coprocessor 2 implementation and is not specified by the archi-
tecture.
Restrictions:
The results are UNPREDICTABLE if the Impl field specifies a coprocessor 2 register that does not exist, or if that
register is not 64 bits wide.
In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.
Operation:
data < GPR[rtl;; o
CP2CPR[Impl] ¢« data || CPR[2,rd,sell;; o
Exceptions:
Coprocessor Unusable, Reserved Instruction
Programming Notes
When paired with MTC2 to write a value to a 64-bit CPR, the MTC2 must be executed first, followed by the
MTHC?2. This is because of the semantic definition of MTC2, which is not aware that software is using an MTHC2
instruction to complete the operation, and sets the upper half of the 64-bit CPR to an UNPREDICTABLE value.
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 317

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU

318

Multiply Integers (with result to GPR)

31 26 25 21 20 16 15 11 10 9 6 5 0
POOL32A rt N i 0 MUL
000000 0000011000
POOL32A MUH
000000 nt s rd 0 000101100
POOL32A u . » 0 MULU
000000 s 0010011000
POOL32A N . i 0 MUHU
000000 s 0011011000
6 5 5 5 1 10
31 26 25 21 20 16 15 11 10 9 8 6 5 0
POOL32S DMUL
010110 it s rd 00 000011000
POOL32S DMUH
010110 n s rd 00 001011000
POOL32S t ’ 00 DMULU
010110 r s : 010011000
POOL32S t . i 00 DMUHU
010110 r r 011011000
6 5 5 5 2 9
Format: MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU

MUL rd,rs,rt
MUH rd,rs,rt
MULU rd,rs,rt
MUHU rd, rs,rt
DMUL rd,rs,rt
DMUH rd,rs,rt
DMULU rd, rs,rt
DMUHU rd,rs,rt

Purpose: Multiply Integers (with result to GPR)

MUL: Multiply Words Signed, Low Word
MUH: Multiply Words Signed, High Word
MULU: Multiply Words Signed, Low Word
MUHU: Multiply Words Signed, High Word

DMUL: Multiply Doublewords Signed, Low Doubleword
DMUH: Multiply Doublewords Signed, High Doubleword
DMULU: Multiply Doublewords Signed, Low Doubleword
DMUHU: Multiply Doublewords Signed, High Doubleword

Description:

MUL : GPR [rd] <« sign extend.32(lo word(multiply.signed(GPR[rs] x
MUH : GPR [rd] <« sign extend.32(hi word(multiply.signed(GPR[rs] x
MULU: GPR[rd] <« sign extend.32(lo word(multiply.unsigned(GPR[rs]
MUHU: GPR[rd] <« sign extend.32(hi word(multiply.unsigned(GPR[rs]
DMUL: GPR[rd] <« lo doubleword(multiply.signed(GPR[rs] x GPR[rt])
DMUH: GPR[rd] <« hi doubleword(multiply.signed(GPR[rs] x GPR[rt])

microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS32 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6
microMIPS64 Release 6

GPRI[rt])
GPRI[rt])
x GPR[rt])
xGPR [rt])

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU MUL: Multiply Words Signed, Low Word MUH:

DMULU: GPR[rd] <« lo doubleword(multiply.unsigned(GPR[rs] x GPR[rt])
DMUHU: GPR[rd] <« hi_doubleword(multiply.unsigned(GPR[rs] xGPR[rt])

The Release 6 multiply instructions multiply the operands in GPR[rs] and GPR([rd], and place the specified high or
low part of the result, of the same width, in GPR[rd].

MUL performs a signed 32-bit integer multiplication, and places the low 32 bits of the result in the destination regis-
ter.

MUH performs a signed 32-bit integer multiplication, and places the high 32 bits of the result in the destination regis-
ter.

MULU performs an unsigned 32-bit integer multiplication, and places the low 32 bits of the result in the destination
register.

MUHU performs an unsigned 32-bit integer multiplication, and places the high 32 bits of the result in the destination
register.

DMUL performs a signed 64-bit integer multiplication, and places the low 64 bits of the result in the destination reg-
ister.

DMUH performs a signed 64-bit integer multiplication, and places the high 64 bits of the result in the destination reg-
ister.

DMULU performs an unsigned 64-bit integer multiplication, and places the low 64 bits of the result in the destination
register.

DMUHU performs an unsigned 64-bit integer multiplication, and places the high 64 bits of the result in the destina-
tion register.

Restrictions:

On a 64-bit CPU, MUH is UNPREDICTABLE if its inputs are not signed extended 32-bit integers.

MUL behaves correctly even if its inputs are not sign extended 32-bit integers. Bits 32-63 of its inputs do not affect
the result.

On a 64-bit CPU, MUHU is UNPREDICTABLE if its inputs are not zero or sign extended 32-bit integers.

MULU behaves correctly even if its inputs are not zero or sign extended 32-bit integers. Bits 32-63 of its inputs do
not affect the result.

On a 64-bit CPU, the 32-bit multiplications, both signed and unsigned, sign extend the result as if it is a 32-bit signed
integer.

Availability and Compatibility:

These instructions are introduced by and required as of Release 6.

Programming Notes:

The low half of the integer multiplication result is identical for signed and unsigned. Nevertheless, there are distinct
instructions MUL MULU DMUL DMULU. Implementations may choose to optimize a multiply that produces the
low half followed by a multiply that produces the upper half. Programmers are recommended to use matching lower
and upper half multiplications.

Release 6 MUL instruction has the same opcode mnemonic as the pre-Release 6 MUL instruction. The semantics of
these instructions are almost identical: both produce the low 32-bits of the 32x32=64 product; but the pre-Release 6
MUL is unpredictable if its inputs are not properly sign extended 32-bit values on a 64 bit machine, and is defined to
render the HI and LO registers unpredictable, whereas the Release 6 version ignores bits 32-63 of the input, and there
are no HI/LO registers in Release 6 to be affected. If disambiguation is necessary, say Release 6 versus pre-Release 6
or specify the instruction string.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 319

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU MUL: Multiply Words Signed, Low Word MUH:

Operation:

MUH: if NotWordValue (GPR[rs]) then UNPREDICTABLE endif
MUH: if NotWordValue (GPR[rt]) then UNPREDICTABLE endif
MUHU: if not(zero or sign extended.32(GPR[rs])) then UNPREDICTABLE endif
MUHU: if not(zero or sign extended.32(GPR[rt])) then UNPREDICTABLE endif

/* recommended imnplementation: ignore bits 32-63 for MUL, MUH, MULU, MUHU */

MUL, MUH:
sl <« signed word(GPR[rs])
s2 <« signed word(GPR[rt])
MULU, MUHU:
sl <« unsigned word(GPR[rs])
s2 <« unsigned _word (GPR[rt])
DMUL, DMUH:
sl <« signed doubleword (GPR[rs])
s2 <« signed doubleword(GPR[rt])
DMULU, DMUHU:
sl <« unsigned doubleword (GPR[rs])
s2 <« unsigned_doubleword (GPR[rt])

product <« sl xs2 /* product is twice the width of sources */
MUL: GPR[rd] <« sign extend.32(lo word(product)
MUH : GPR[rd] < sign extend.32(hi word(product)
MULU: GPR[rd] <« sign_extend.32(lo_word(product)
MUHU: GPR[rd] <« sign_extend.32(hi_word(product)
DMUL: GPR[rd] <« lo_doubleword(product)
DMUH: GPR[rd] <« hi doubleword(product)
DMULU: GPR[rd] <« lo _doubleword(product)
DMUHU: GPR[rd] <« hi doubleword(product)
endif

Exceptions:

None

320 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MUL.fmt Floating Point Multiply
31 26 25 21 20 16 15 11 10 9 8 0
POOL32F MUL
010101 fi fs fd 0| fmt 10110000
6 5 5 5 1 2 P
Format: MUL.fmt

MUL.S fd, fs, microMIPS
MUL.D fd, fs, microMIPS

Purpose: Floating Point Multiply

To multiply FP values.

Description: FPR[fd] « FPR[fs] x FPR[ft]

The value in FPR fs is multiplied by the value in FPR ft. The result is calculated to infinite precision, rounded accord-
ing to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in format fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is

UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
MUL.PS has been removed in Release 6.

Operation:

StoreFPR (fd,

Exceptions:

fmt,

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

fmt) oog,e ValueFPR(ft,

Inexact, Unimplemented Operation, Invalid Operation, Overflow, Underflow

fmt))

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

321

NEG.fmt Floating Point Negate

322

31 26 25 21 20 16 15 14 13 12 6 5 0
POOL32F NEG POOL32FXf
010101 fi fs 0| fmt 0101101 111011
6 5 5 1 2 7 6

Format: NEG.fmt
NEG.S ft, fs microMIPS
NEG.D ft, fs microMIPS
Purpose: Floating Point Negate

To negate an FP value.

Description: FPR[ft] ¢ -FPR[fs]

The value in FPR fs is negated and placed into FPR ft. The value is negated by changing the sign bit value. The oper-
and and result are values in format fmt.

If FIRa52008=0 or FCSR ygs200g=0 then this operation is arithmetic. For this case, any NaN operand signals invalid

operation.

If FCSRARs200s=1 then this operation is non-arithmetic. For this case, both regular floating point numbers and NAN
values are treated alike, only the sign bit is affected by this instruction. No IEEE 754 exception can be generated for

this case.
Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE. The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value
of the operand FPR becomes UNPREDICTABLE.

Availability and Compatibility:
NEG.PS has been removed in Release 6.

Operation:

StoreFPR (ft, fmt, Negate (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NOP No Operation
31 26 25 21 20 16 15 11 10 5
POOL32A 0 0 0 0 SLL
000000 00000 00000 00000 00000 000000
6 5 5 5 5 6

Format: Nop

Purpose: No Operation

To perform no operation.

Description:

Assembly Idiom microMIPS

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as SLL

r0, 10, 0.

Restrictions:

None

Operations:

None

Exceptions:

None

Programming Notes:

The zero instruction word, which represents SLL, 10, 10, 0, is the preferred NOP for software to use and to pad out

alignment sequences.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

323

31 26 25 21 20 16 15 11 10 9 0
POOL32A o q 0 NOR
000000 s : 1011010000
6 5 5 5 1 10
Format: NOR rd, rs, rt microMIPS

Purpose: Not Or
To do a bitwise logical NOT OR.

Description: GPR[rd] ¢ GPR[rs] NOR GPR[rt]

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR operation. The result is
placed into GPR rd.

Restrictions:

None

Operation:
GPR[rd] <« GPR[rs] nor GPR|[rt]

Exceptions:

None

324 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 11 10 9 0
POOL32A OR
000000 it s rd 0 1010010000
6 5 5 5 1 10
Format: OR rd, rs, rt microMIPS

Purpose: Or

To do a bitwise logical OR.

Description: GPR[rd] < GPR[rs] or GPR[rt]
The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR operation. The result is

placed into GPR rd.

Restrictions:

None

Operations:

GPR[rd] < GPR[rs] or GPR[rt]

Exceptions:

None

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

325

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ORI Or Immediate
31 26 25 21 20 16 15 0
ORI32 . .
010100 rt rs immediate
6 5 5 16

Format: ORI rt, rs, immediate microMIPS
Purpose: Or Immediate
To do a bitwise logical OR with a constant.
Description: GPR[rt] ¢ GPR[rs] or immediate
The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a bitwise logical OR
operation. The result is placed into GPR rt.
Restrictions:
None
Operations:

GPR[rt] € GPR[rs] or zero extend(immediate)
Exceptions:
None

326 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PAUSE Wait for the LLBit to clear.

31 26 25 6 5 0
POOL32A 0 0 5 0 SLL
000000 00000 00000 00101 00000 000000
6 5 5 5 5 6
Format: PAUSE microMIPS

Purpose: Wait for the LLBIt to clear.

Description:

Locks implemented using the LL/SC (or LLD/SCD) instructions are a common method of synchronization between
threads of control. A lock implementation does a load-linked instruction and checks the value returned to determine
whether the software lock is set. If it is, the code branches back to retry the load-linked instruction, implementing an
active busy-wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the
instruction stream until such time as the load-linked instruction has a chance to succeed in obtaining the software
lock.

The PAUSE instruction is implementation-dependent, but it usually involves descheduling the instruction stream
until the LLBiIt is zero.

* In a single-threaded processor, this may be implemented as a short-term WAIT operation which resumes at the
next instruction when the LLBit is zero or on some other external event such as an interrupt.

e On a multi-threaded processor, this may be implemented as a short term YIELD operation which resumes at the
next instruction when the LLBit is zero.

In either case, it is assumed that the instruction stream which gives up the software lock does so via a write to the lock
variable, which causes the processor to clear the LLBit as seen by this thread of execution.

The encoding of the instruction is such that it is backward compatible with all previous implementations of the archi-
tecture. The PAUSE instruction can therefore be placed into existing lock sequences and treated as a NOP by the pro-
cessor, even if the processor does not implement the PAUSE instruction.

Restrictions:

Pre-Release 6: The operation of the processor is UNPREDICTABLE if a PAUSE instruction is executed placed in
the delay slot of a branch or jump instruction.

Operations:

if LLBit # 0 then
EPC <« PC + 4 /* Resume at the following instruction */
DeschedulelInstructionStream()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is included in the following example:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 327

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

acquire lock:

11 t0, 0(a0) /* Read software lock, set hardware lock */
bnezc tO0, acquire lock retry: /* Branch if software lock is taken */
addiu tO0, to, 1 /* Set the software lock */
sc t0, 0(a0) /* Try to store the software lock */
bnezc tO0, 10f /* Branch if lock acquired successfully */
sync

acquire lock retry:
pause /* Wait for LLBIT to clear before retry */
bc acquire lock /* and retry the operation */

10:
Critical region code

release_lock:

sync
sw zero, 0(a0) /* Release software lock, clearing LLBIT */
/* for any PAUSEd waiters */
328 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREF Prefetch

l 31 26 25 21 20 16 15 12 11 9 8 0
POOL32C . PREF 0
ffset
011000 hint base 0010 000 OHse
I 6 5 5 5 3 9
Format: PREF hint,offset (base) microMIPS

Purpose: Prefetch

To move data between memory and cache.

Description: prefetch memory (GPR[base] + offset)

PREF adds the signed offset to the contents of GPR base to form an effective byte address. The hint field supplies
information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Table 6.27 Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 329

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREF Prefetch

Table 6.27 Values of hint Field for PREF Instruction (Continued)

Value Name Data Use and Desired Prefetch Action

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2 L1 LRU hint Pre-Release 6: Reserved for Architecture. Implementation dependent in
Release 6. This hint code marks the line as LRU in the L1 cache and thus pre-
ferred for next eviction. Implementations can choose to writeback and/or
invalidate as long as no architectural state is modified.

3 Reserved Pre-Release 6: Reserved for Architecture. Release 6: Available for implemen-
tation dependent use.

4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15 Reserved In the Release 6 architecture, hint codes 8 - 15 are treated the same as hint
codes 0 - 7 respectively, but operate on the L2 cache.

16-23 Reserved In the Release 6 architecture, hint codes 16 - 23 are treated the same as hint
codes 0 - 7 respectively, but operate on the L3 cache.

24 Reserved Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.

This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

25 writeback invalidate (also Use: Data is no longer expected to be used.
known as “nudge”) Action: For a writeback cache, schedule a writeback of any dirty data. At the
Reserved in Release 6 completion of the writeback, mark the state of any cache lines written back as

invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

26-29 | Reserved Pre-Release 6: Unassigned by the Architecture — available for implementa-
tion-dependent use. These hints are not implemented in the Release 6 architec-
ture and generate a Reserved Instruction exception (RI).

330 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREF Prefetch

Table 6.27 Values of hint Field for PREF Instruction (Continued)

Value Name Data Use and Desired Prefetch Action
30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
Reserved in Release 6 involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

This hint is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

31 Reserved. Pre-Release 6: Unassigned by the Architecture — available for implementa-
tion-dependent use. This hint is not implemented in the Release 6 architecture
and generates a Reserved Instruction exception (RI).

Restrictions:
None

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Availability and Compatibility:

| This instruction has been recoded for Release 6.

Operation:
vAddr ¢ GPR[base] + sign extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 2:3, 10:11, 18:19 behave as a NOP if not implemented. Hint codes 24:31 are
not implemented (treated as reserved) and always signal a Reserved Instruction exception (RI).

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 331

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

332 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE Prefetch EVA

31 26 25 21 20 16 15 12 11 9 8 0
POOL32C hint ba ST-EVA P%}foF E offset
011000 s¢ 1010
6 5 5 4 3 9
Format: PREFE hint,offset (base) microMIPS

Purpose: Prefetch EVA

To move data between user mode virtual address space memory and cache while operating in kernel mode.

Description: prefetch memory (GPR[base] + offset)

PREFE adds the 9-bit signed offset to the contents of GPR base to form an effective byte address. The hint field sup-
plies information about the way that the data is expected to be used.

PREFE enables the processor to take some action, causing data to be moved to or from the cache, to improve program
performance. The action taken for a specific PREFE instruction is both system and context dependent. Any action,
including doing nothing, is permitted as long as it does not change architecturally visible state or alter the meaning of
a program. Implementations are expected either to do nothing, or to take an action that increases the performance of
the program. The PrepareForStore function is unique in that it may modify the architecturally visible state.

PREFE does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs.However even if no data is
moved, some action that is not architecturally visible, such as writeback of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction.

PREFE neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (for example, ksegl), the programmed
cacheability and coherency attribute of a segment (for example, the use of the KO, KU, or K23 fields in the Config
register), or the per-page cacheability and coherency attribute provided by the TLB.

If PREFE results in a memory operation, the memory access type and cacheability & coherency attribute used for the
operation are determined by the memory access type and cacheability & coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREFE instruction and the memory transactions which are sourced by the PREFE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

The PREFE instruction functions in exactly the same fashion as the PREF instruction, except that address translation
is performed using the user mode virtual address space mapping in the TLB when accessing an address within a
memory segment configured to use the MUSUK access mode. Memory segments using UUSK or MUSK access
modes are also accessible. Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to one.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 333

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE

334

Prefetch EVA

Table 6.28 Values of hint Field for PREFE Instruction

Value

Name

load

Data Use and Desired Prefetch Action

Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

Reserved
Implementation Dependent

Reserved for future use - not available to implementations.

Implementation dependent in Release 6. This hint code marks the line as LRU
in the L1 cache and thus preferred for next eviction. Implementations can
choose to writeback and/or invalidate as long as no architectural state is modi-
fied.

Reserved
Implementation Dependent

Reserved for future use - not available to implementations.
This hint code is unused In the Release 6 architecture.

load_streamed

Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”

store_streamed

Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”

load retained

Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

store_retained

Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”

8-15

Reserved

In the Release 6 architecture, hint codes 8 - 15 are treated the same as hint
codes 0 - 7 respectively, but operate on the L2 cache.

16-23

Reserved

In the Release 6 architecture, hint codes 16 - 23 are treated the same as hint
codes 0 - 7 respectively, but operate on the L3 cache.

8-20

Reserved

Reserved for future use - not available to implementations.

21-23

Implementation Dependent

Unassigned by the Architecture - available for implementation-dependent use.

24

Implementation Dependent

Reserved in Release 6

Unassigned by the Architecture - available for implementation-dependent use.

This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE Prefetch EVA

Table 6.28 Values of hint Field for PREFE Instruction (Continued)

Value Name Data Use and Desired Prefetch Action
25 writeback_invalidate (also Use: Data is no longer expected to be used.
known as “nudge”) Action: For a writeback cache, schedule a writeback of any dirty data. At the
Reserved in Release 6 completion of the writeback, mark the state of any cache lines written back as

invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.

This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

26-29 | Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.
Reserved in Release 6 These hint codes are not implemented in the Release 6 architecture and gener-
ate a Reserved Instruction exception (RI).

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the overhead
Reserved in Release 6 involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

31 Implementation Dependent Unassigned by the Architecture - available for implementation-dependent use.
Reserved in Release 6 This hint code is not implemented in the Release 6 architecture and generates a
Reserved Instruction exception (RI).

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured
using UUSK, MUSK or MUSUK access mode.

| This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GGPR[base] + sign extend(offset)
(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Bus Error, Cache Error, Address Error, Reserved Instruction, Coprocessor Usable

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

In the Release 6 architecture, hint codes 0:23 behave as a NOP and never signal a Reserved Instruction exception
(RI). Hint codes 24:31 are not implemented (treated as reserved) and always signal a Reserved Instruction exception
(RI).

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 335

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

PREFE Prefetch EVA

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREFE instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

336 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Purpose: Read Hardware Register

RDHWR Read Hardware Register
31 26 25 21 20 16 15 14 13 11 10 9 8 0
POOL32A 0 0 RDHWR
rt rs sel
000000 00 0 0111000000
| 6 5 5 2 3 1 10
| Format: RDHWR rt,rs,sel microMIPS

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-

leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in

kernel mode.

Description: GPR[rt] ¢« HWR[rs]; GPR[rt] <« HWR[rs, sell

The available hardware registers, and the encoding of the rs field for each, are shown in Table 6.29.

Table 6.29 RDHWR Register Numbers

In Release 6, a sel field has been added to allow a register with multiple instances to be read selectively. Specifically
it is used for PerfCtr.

If access is allowed to the specified hardware register, the contents of the register specified by rs (optionally sel in
Release 6) is sign-extended and loaded into general register rt. Access control for each register is selected by the bits
in the coprocessor 0 HWREnNa register. Where applicable

Register
Number
(rd Value)

Mnemonic

Description

CPUNum

Number of the CPU on which the program is currently running. This register pro-
vides read access to the coprocessor 0 EBasecpnym field.

SYNCI_Step

Address step size to be used with the SYNCI instruction, or zero if no caches need
be synchronized. See that instruction’s description for the use of this value.

CcC

High-resolution cycle counter. This register provides read access to the coprocessor
0 Count Register.

CCRes

Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

CCRes Value Meaning

CC register increments every CPU cycle

2 CC register increments every second CPU cycle

CC register increments every third CPU cycle

etc.

PerfCtr

Performance Counter Pair. Even sel selects the Control register, while odd sel
selects the Counter register in the pair. The value of sel corresponds to the value of
sel used by MFCO to read the COPO register.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

337

RDHWR Read Hardware Register
Table 6.29 RDHWR Register Numbers
Register
Number
(rd Value) | Mnemonic Description
XNP Indicates support for Release 6 Double-Width LLX/SCX family of instructions. If

set to 1, then LLX/SCX family of instructions is not present, otherwise present in the
implementation. In absence of hardware support for double-width or extended atom-
ics, user software may emulate the instruction’s behavior through other means. See
Configbyyp.

6-28

These registers numbers are reserved for future architecture use. Access results in a
Reserved Instruction Exception.

29

ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block.

30-31

These register numbers are reserved for implementation-dependent use. If they are
not implemented, access results in a Reserved Instruction Exception.

Restrictions:

In implementations of Release 1 of the Architecture, this instruction resulted in a Reserved Instruction Exception.

Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or if the corresponding bit is set in
the HWREna register. If access is not allowed or the register is not implemented, a Reserved Instruction Exception is

signaled.

Availability and Compatibility:

This instructions has been recoded for Release 6. The instruction supports a sel field in Release 6.

Operation:
case rs
0: temp ¢« sign_extend (EBasecpyyum)
1: temp ¢ sign extend(SYNCI StepSize())
2: temp ¢ sign extend (Count)
3: temp ¢ sign extend(CountResolution())

if (>=2) // 4,5 - Release 6

4: temp ¢ sign extend if 32bit op(PerfCtr([sell)

5: temp ¢ sign extend(0x00000001 && Config5.NXP)//zero-extend really
endif

29: temp ¢ sign extend if 32bit op(UserLocal)
30: temp ¢ sign extend if 32bit op(Implementation-Dependent-Value)
31: temp ¢« sign_extend if 32bit_op(Implementation-Dependent-Value)
otherwise: SignalException (ReservedInstruction)

endcase

GPR[rt] <« temp

function sign extend if 32bit op(value)
if (width(value) = 64) and Are64BitOperationsEnabled() then
sign extend if 32bit op < value
else
sign extend if 32bit op ¢ sign extend(value)
endif
end sign extend if 32bit op

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:

Reserved Instruction

For a register that does not require Sel, the compiler must support an assembly syntax without sel that is ‘RDHWR rt,
rs’. Another valid syntax is for sel to be 0 to map to pre-Release 6 register numbers which do not require use of sel

that is, ‘RDHWR rt, rs, 0°.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 339

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RDPGPR Read GPR from Previous Shadow Set

340

31 26 25 21 20 16 15 6 5 0
POOL32A ot c RDPGPR POOL32AXS
000000 s 1110000101 111100
6 5 5 10 6
Format: RDPGPR rt, rs microMIPS

Purpose: Read GPR from Previous Shadow Set

To move the contents of a GPR from the previous shadow set to a current GPR.

Description: GPR[rt] ¢ SGPR[SRSCtlpgg, rs]
The contents of the shadow GPR register specified by SRSCltlpgg (signifying the previous shadow set number) and rs

(specifying the register number within that set) is moved to the current GPR rt.

Restrictions:
In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

GPR[rt] ¢ SGPR[SRSCtlpgg, rs]

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RECIP.fmt Reciprocal Approximation

26 25 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt RECIP POOL32FXf
010101 s 01001000 111011
6 5 5 1 1 8 6

Format: RECIP.fmt
RECIP.S ft, fs microMIPS
RECIP.D ft, fs microMIPS
Purpose: Reciprocal Approximation

To approximate the reciprocal of an FP value (quickly).

Description: FPR[ft] ¢« 1.0 / FPRI[fs]

The reciprocal of the value in FPR fs is approximated and placed into FPR ft. The operand and result are values in for-
mat fmt.

The numeric accuracy of this operation is implementation dependent. It does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from the both the exact result and the IEEE-mandated
representation of the exact result by no more than one unit in the least-significant place (ULP).

It is implementation dependent whether the result is affected by the current rounding mode in FCSR.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RECIP.S and RECIP.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1,

StatUSFRZO or 1)

Operation:

StoreFPR(ft, fmt, 1.0 / valueFPR(fs, fmt))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Op, Invalid Op, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 341

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RINT.fmt Floating-Point Round to Integral

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F RINT
010101 fs fd 00000 fimt 000100000
6 5 5 5 2 9

Format: RINT.fmt
RINT fd, fs microMIPS32 Release 6

Purpose: Floating-Point Round to Integral

Scalar floating-point round to integral floating point value.

Description: FPR[£fd] <« round int (FPR[fs])

The scalar floating-point value in the register £s is rounded to an integral valued floating-point number in the same
format based on the rounding mode bits RM in the FPU Control and Status Register FCSR. The result is written to
fd.

The operands and results are values in floating-point data format fmt.

The RINT.fmt instruction corresponds to the roundTolntegralExact operation in the IEEE Standard for Floating-

Point Arithmetic 754T™-2008. The Inexact exception is signaled if the result does not have the same numerical value
as the input operand.

The floating point scalar instruction RINT.fmt corresponds to the MSA vector instruction FRINT.df. I.e. RINT.S cor-
responds to FRINT.W, and RINT.D corresponds to FRINT.D.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754 -
2008.
Availability and Compatibility:
This instruction is introduced by and required as of Release 6.
Operation:
RINT.fmt:
if not IsCoprocessorEnabled (1)
then SignalException (CoprocessorUnusable, 1) end if
if not IsFloatingPointImplemented (fmt))
then SignalException (ReservedInstruction) end if
if fmt=D and FIR.D=0
then SignalFPException (UnimplementedOperation) end if
fin « ValueFPR(fs, fmt)
ftmp «RoundIntFP(fin, fmt)
if(fin # ftmp) SignalFPException (InExact)
StoreFPR (fd, fmt, ftmp)
function RoundIntFP(tt, n)
/* Round to integer operation, using rounding mode FCSR.RM*/
endfunction RoundIntFP
Exceptions:
Coprocessor Unusable, Reserved Instruction
342 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact, Overflow, Underflow

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 343

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROTR Rotate Word Right
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A ; . 0 ROTR
000000 s sa 0011000000
6 5 5 5 1 10

344

Format: ROTR rt, rs, sa

Purpose: Rotate Word Right

To execute a logical right-rotate of a word by a fixed number of bits.

Description: GPR[rt] ¢ GPR[rs] x(right) sa

SmartMIPS Crypto, microMIPS

The contents of the low-order 32-bit word of GPR rs are rotated right; the word result is sign-extended and placed in

GPR rt. The bit-rotate amount is specified by sa.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rt]) or

((ArchitectureRevision() < 2) and (Config3gy

UNPREDICTABLE
endif
s € sa
temp ¢« GPR[rslg; , || GPRIrsls; o
GPR[rt] €« sign extend(temp)

Exceptions:

Reserved Instruction

0))

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROTRV Rotate Word Right Variable

31 26 25 21 20 16 15 1 10 9 0
POOL32A ot c d 0 ROTRV
000000 s 0011010000
6 5 5 5 1 10
Format: ROTRV rd, rt, rs SmartMIPS Crypto, microMIPS

Purpose: Rotate Word Right Variable

To execute a logical right-rotate of a word by a variable number of bits.

Description: GPR[rd] < GPR[rt] x(right) GPR[rs]

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is sign-extended and placed in
GPR rd. The bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

If GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is
UNPREDICTABLE.

Operation:
if NotWordvValue (GPR[rt]) or
((ArchitectureRevision() < 2) and (Config3gy = 0)) then
UNPREDICTABLE
endif
s ¢« GPR[rsl, o
temp ¢« GPR[rtlg; o || GPRIrtls; 4

GPR[rd] € sign extend(temp)

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 345

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROUND.L.fmt Floating Point Round to Long Fixed Point

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt ROUND.L POOL32FXf
010101 S 11001100 111011
6 5 5 1 1 8 6

Format: ROUND.L.fmt
ROUND.L.S ft, fs microMIPS
ROUND.L.D ft, fs microMIPS

Purpose: Floating Point Round to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding to nearest.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 64-bit long fixed point format and rounded to nearest/
even (rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

¢ 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model. It is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

346 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ROUND.W.fmt Floating Point Round to Word Fixed Point

31

26 25 22 21 20 16 15 14 13 6 5 0

POOL32F i f 0 | fint ROUND.W POOL32FXf
010101 s 11101100 111011

6 5 5 1 1 8 6

Format: ROUND.W.fmt
ROUND.W.S ft, fs microMIPS
ROUND.W.D ft, fs microMIPS

Purpose: Floating Point Round to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding to nearest.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format rounding to nearest/even
(rounding mode 0). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. The Invalid Operation flag is set in the FCSR.
If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation exception is
taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the default result is

2931, On cores with FCSR.NAN2008=1, the default result is:

¢ 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Unimplemented Operation, Invalid Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 347

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

RSQRT.fmt Reciprocal Square Root Approximation

348

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F RSQRT.fmt POOL32FXf
010101 fi fs 0 | fmt 00001000 111011
6 5 5 1 1 8 6

Format: RSQRT.fmt
RSQRT.S ft, fs microMIPS
RSQRT.D ft, fs microMIPS
Purpose: Reciprocal Square Root Approximation

To approximate the reciprocal of the square root of an FP value (quickly).

Description: FPR[ft] < 1.0 / sqgrt (FPR[fs])

The reciprocal of the positive square root of the value in FPR fs is approximated and placed into FPR ft. The operand
and result are values in format fmt.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
IEEE 754 Floating Point standard. The computed result differs from both the exact result and the IEEE-mandated
representation of the exact result by no more than two units in the least-significant place (ULP).

The effect of the current FCSR rounding mode on the result is implementation dependent.

Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.
Availability and Compatibility:

RSQRT.S and RSQRT.D: Required in all versions of MIPS64 since MIPS64 Release 1. Not available in MIPS32
Release 1. Required in MIPS32 Release 2 and all subsequent versions of MIPS32. When required, required whenever
FPU is present, whether a 32-bit or 64-bit FPU, whether in 32-bit or 64-bit FP Register Mode (FIRgg,=0 or 1,

StatUSFRZO or 1)

Operation:

StoreFPR (ft, fmt, 1.0 / SquareRoot (valueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Division-by-zero, Unimplemented Operation, Invalid Operation, Overflow, Underflow

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SB Store Byte
31 26 25 21 20 16 15 0
SB32
000110 t base offset
6 5 5 16
Format: SB rt, offset (base) microMIPS

Purpose: Store Byte

To store a byte to memory.

Description: memory [GPR [base] + offset] < GPR[rt]

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

None

Operation:

vAddr ¢ sign extend(offset) + GPR[basel

(pAddr, CcCA)

< AddressTranslation (vAddr,
pAddr & pAddrpgrze.1 .3 || (pAddr, , xor ReverseEndian?)

bytesel ¢« vAddr, , xor BigEndianCPu?

datadoubleword ¢ GPRIrtlgs; gspyresel..
StoreMemory (CCA, BYTE,

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

datadoubleword, pAddr,

DATA, STORE)

o || OS*bytesel

DATA)

349

SBE Store Byte EVA
31 26 25 21 20 16 15 12 11 9 8 0
SBE
POOL32C ST-EVA
011000 rt base 1010 100 offset
6 5 5 4 3 9

350

Format: SBE rt, offset (base)

Purpose: Store Byte EVA

To store a byte to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] ¢« GPR[rt]

microMIPS

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effective address. The

9-bit signed offset is added to the contents of GPR base to form the effective address.

The SBE instruction functions the same as the SB instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.

Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy, field being set to 1.

Restrictions:

Only usable when access to Coprocessor0 is enabled and when accessing an address within a segment configured

using UUSK, MUSK or MUSUK access mode.

Operation:

vAddr ¢ sign_extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrze-1 .3 || (pAddr, , xor ReverseEndian?)
bytesel ¢« vAddr, , xor BigEndianCpPU?

datadoubleword ¢ GPRIrtlgs_gspyresel..o || g8rbytesel
StoreMemory (CCA, BYTE, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid
Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable,

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC Store Conditional Word

l 31 26 25 21 20 16 15 12 11 9 8 0
POOL32C SC 0
ffset
011000 it base 1011 000 oHise
I 6 5 5 5 3 9
Format: sc rt, offset (base) microMIPS

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic update then memory [GPR[base] + offset] <« GPR[rt], GPR[rt] « 1
else GPR[rt] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations. In Release 5, the behavior of SC is modified when Config5 | g=1.

The least-significant 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned
effective address. The signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

* The least-significant 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective
address.

* A one, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC fails:

* A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation-dependent, but it is
at least one word and at most the minimum page size.

* A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5; | g=1; else whether such a store causes the SC to fail is not

predictable).
* An ERET instruction is executed. (Release 5 includes ERETNC, which will not cause the SC to fail.)

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5, | g=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

* A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

* Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

* A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 351

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC

352

Store Conditional Word

* The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5, | g=1. If Config5 | g=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5, | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached noncoherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached noncoherent or cached coherent; if it does not, the
result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr <« sign extend(offset) + GPR[base]
if vAddr, , # 02 then
SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

pAddr < pAddrpgrze.1. 3 || (pAddr, , xor (ReverseEndian || 02))
bytesel <« vAddr, , xor (BigEndianCPU || 02)

datadoubleword < GPRI[rtlgs_gspytesel..o || p8*bytesel

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SC Store Conditional Word

if LLbit then
StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

endif

GPR[rt] « 0°° || LLbit

LLbit « 0 // if Config5;;5=1, SC always clears LLbit regardless of address match.
Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL T1l, (T0) # load counter
ADDI T2, T1l, 1 # increment
scC T2, (T0) # try to store, checking for atomicity

BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

As shown in the instruction drawing above, Release 6 implements a 9-bit offset, whereas all release levels lower than
Release 6 of the MIPS architecture implement a 16-bit offset.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 353

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCE Store Conditional Word EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SCE
011000 it base 1010 110 offset
6 5 5 4 3 9
Format: SCE rt, offset (base) microMIPS

354

Purpose: Store Conditional Word EVA

To store a word to user mode virtual memory while operating in kernel mode to complete an atomic read-modify-
write.

Description: if atomic_update then memory [GPR[base] + offset] « GPR[rt], GPR[rt] « 1 else
GPR[rt] <« 0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The least-significant 32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned
effective address. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

The SCE completes the RMW sequence begun by the preceding LLE instruction executed on the processor. To com-
plete the RMW sequence atomically, the following occurs:

* The least-significant 32-bit word of GPR rt is stored to memory at the location specified by the aligned effective
address.

* A 1, indicating success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.
If either of the following events occurs between the execution of LL and SC, the SC fails:

e A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the word. The size and alignment of the block is implementation dependent, but it is
at least one word and at most the minimum page size.

« An ERET instruction is executed.

If either of the following events occurs between the execution of LLE and SCE, the SCE may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause one of these events.

* A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLE/SCE.

* The instructions executed starting with the LLE and ending with the SCE do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SCE is UNPREDICTABLE:
* Execution of SCE must have been preceded by execution of an LLE instruction.

* An RMW sequence executed without intervening events that would cause the SCE to fail must use the same
address in the LLE and SCE. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LLE/SCE semantics. Whether a memory location is
synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCE Store Conditional Word EVA

* Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

* 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

The SCE instruction functions the same as the SC instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5g,, field being set to 1.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
the result is UNPREDICTABLE.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

| Providing misaligned support for Release 6 is not a requirement for this instruction.
Operation:
vAddr ¢ sign extend(offset) + GPR[base]
| if vAddr, , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
pAddr ¢ pAddrpgrze.1. .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel < vAddr, , xor (BigEndianCPU || 02)

datadoubleword ¢ GPRIrtlg; gspytesel..o || p8*bytesel

if LLbit then

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] <« 0°° || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch, Reserved Instruction, Coprocessor Unusable

Programming Notes:

LLE and SCE are used to atomically update memory locations, as shown below.

Ll:
LLE T1, (T0) # load counter
ADDI T2, T1l, 1 # increment
SCE T2, (T0) # try to store, checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

Exceptions between the LLE and SCE cause SCE to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 355

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

assistance.

LLE and SCE function on a single processor for cached non coherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

356 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCD Store Conditional Doubleword

I 31 26 25 21 20 16 15 12 11 9 8 6 5 0
POOL32C SCD 0
011000 it base 1111 000 offset
I 6 5 5 4 3 9
Format: ScD rt, offset (base) microMIPS

Purpose: Store Conditional Doubleword

To store a doubleword to memory to complete an atomic read-modify-write.

Description: if atomic_update then memory[GPR[base] + offset] ¢ GPR[rt], GPR[rt] « 1 else
GPR[rt] < 0

The LLD and SCD instructions provide primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The 64-bit doubleword in GPR rt is conditionally stored in memory at the location specified by the aligned effective
address. The signed offset is added to the contents of GPR base to form an effective address.

The SCD completes the RMW sequence begun by the preceding LLD instruction executed on the processor. If SCD
completes the RMW sequence atomically, the following occurs:

e The 64-bit doubleword of GPR rt is stored into memory at the location specified by the aligned effective address.

¢ A1, indicates success, is written into GPR rt.
Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.

If either of the following events occurs between the execution of LLD and SCD, the SCD fails:

* A coherent store is completed by another processor or coherent I/O module into the block of synchronizable
physical memory containing the doubleword. The size and alignment of the block is implementation dependent,
but it is at least one doubleword and at most the minimum page size.

* An ERET instruction is executed.

If either of the following events occurs between the execution of LLD and SCD, the SCD may succeed or it may fail;
the success or failure is not predictable. Portable programs should not cause the following events:

* A memory access instruction (load, store, or prefetch) is executed on the processor executing the LLD/SCD.

* The instructions executed starting with the LLD and ending with the SCD do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following two conditions must be true or the result of the SCD is UNPREDICTABLE:
* Execution of the SCD must be preceded by execution of an LLD instruction.

* An RMW sequence executed without intervening events that would cause the SCD to fail must use the same
address in the LLD and SCD. The address is the same if the virtual address, physical address, and cache-coher-
ence algorithm are identical.

Atomic RMW is provided only for synchronizable memory locations. A synchronizable memory location is one that
is associated with the state and logic necessary to implement the LL/SC semantics. Whether a memory location is

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 357

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCD

358

Store Conditional Doubleword

synchronizable depends on the processor and system configurations, and on the memory access type used for the
location:

» Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be
made with memory access type of either cached non coherent or cached coherent. All accesses must be to one or
the other access type, and they may not be mixed.

* MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made
with a memory access type of cached coherent.

+ 1/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location must be made with
a memory access type of cached coherent. If the I/O system does not use coherent memory operations, then
atomic RMW cannot be provided with respect to the I/O reads and writes.

Restrictions:

The addressed location must have a memory access type of cached non coherent or cached coherent; if it does not,
the result is UNPREDICTABLE.

The effective address must be naturally-aligned. If any of the 3 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Providing misaligned support for Release 6 is not a requirement for this instruction.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
if vAddr, , # 0° then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
datadoubleword ¢ GPR[rt]
if LLbit then
StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
endif
GPR[rt] <« 0% || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

Programming Notes:

LLD and SCD are used to atomically update memory locations, as shown below.

Ll:
load counter
increment
try to store,
checking for atomicity
BEQC T2, 0, L1 # if not atomic (0), try again

LLD T1, (TO)
ADDI T2, T1, 1
SCD T2, (TO)

Exceptions between the LLD and SCD cause SCD to fail, so persistent exceptions must be avoided. Examples are
arithmetic operations that trap, system calls, and floating point operations that trap or require software emulation
assistance.

LLD and SCD function on a single processor for cached non coherent memory so that parallel programs can be run
on uniprocessor systems that do not support cached coherent memory access types.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 359

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

360 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

31 26 25 21 20 16 15 12 11 9 8 0

| SCX instruction encoding:
Coe e e e
| SCDX instruction encoding:

o e e e
| SCXE instruction encoding

e [e A [o

6 5 5 4 3 9

Format: scx, SCDX, SCXE

SCX rt, offset (base) microMIPS32 Release 6
SCDX rt, offset (base) microMIPS64 Release 6
SCXE rt, offset (base) microMIPS32 Release 6

Purpose: Store Conditional Extended {Word,Doubleword, Word EVA}
Store to memory as part of an extended LLX/LL-SCX/SC sequence; word, doubleword sized, or word EVA

Description:

The LLX/SCX family of instructions (SCX, SCDX, SCXE) extends the MIPS LL/SC mechanism for performing
atomic read-modify-writes to permit more than one memory location to be written atomically. The memory locations
are constrained to be aligned, adjacent and within both the same synchronization block and the same cache line (if
applicable).

LL-SC code sequences in general, and LLX/LL-SCX/SC in particular, provide atomicity if the computer system can
guarantee that, if the SC passes, then atomicity has not been violated by transactions between the LL and SC. It
should also guarantee eventual success, i.e. that failures will not persist forever.

The signed offset is added to the contents of GPR base to form an effective address. This address must be naturally
aligned.

An SCX/SCDX/SCXE instruction (at PC) must be followed by a matching SC/SCD/SCE instruction (at PC+4).

For SCX and SCXE the least-significant 32-bit word in GPR rt is concatenated with the least-significant 32-bit word
of the following SC instruction’s GPR rt to form the 64-bit doubleword data to be conditionally stored.

For SCDX the 64-bit doubleword in GPR rt is concatenated with the 64-bit doubleword of the following SC instruc-
tions GPR rt to form the 128-bit data to be conditionally stored.

The SCX/SC family instruction double width store data is performed if it can be guaranteed that there has been no
violation of atomicity since the preceding LLX/LL family instruction. If such atomicity cannot be guaranteed, then
the conditional store fails. A value is written into the rt register of the SC family instruction that follows the SCX
family instruction: 0 if failure, 1 if success.

If the following SC-family (SC, SCD, SCE) instruction succeeds, then the SCX-family instruction (SCX, SCDX,

| SCXE) also succeeds, and the store data from both the SCX and SC are concatenated and committed to memory
atomically as a double width transaction. If the SC fails, then the SCX also fails, and neither commit to memory. The
SC instruction at PC+4 modifies a GPR to indicate success or failure of both the SC and SCX.

In particular, the SCX/SCDX/SCXE and SC/SCD/SCE data addresses must be adjacent, within the same synchroni-

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 361

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

362

zation block, non-overlapping, and naturally-aligned appropriately (for a 64-bit access for SCX/SC and SCXE/SCE,
or a 128-bit access for SCDX/SCD). The SC/SCD/SCE data address must be the address of the lowest byte in the
double width memory access.

If the PC and PC+4 instruction encodings do not match, a Reserved Instruction exception is signaled. If the effective
addresses of SCX and SC or SCXE and SCE are not 32-bit word aligned separately and 64-bit doubleword aligned
together, then Address Error is signaled. If the effective addresses of SCDX and SCD are not 64-bit doubleword
aligned separately, and 128-bit aligned together, then Address Error is signaled. If the effective address of the follow-
ing SC/SCD/SCE instruction (at PC+4) is not the lowest byte address, then an Address Error exception is signaled.
See Restrictions section for a full description of match requirements, and special case for SDBBP and BREAK
breakpoint instructions.

Restrictions:

The following restrictions apply to load-linked and store-conditional extended instructions in the LLX/SCX instruc-
tion family:

Coprocessor 0’s Cause register bit BD is extended to indicate exceptions related to the next instruction after the LLX/
SCX-family instruction. Pseudocode indicates what value Cause.BD should be set to via comments such as
SignalException (AddressError) /*BD=1*/. Similarly, the status register BadinstrP is extended to hold the
LLX/SCX-family instruction if an exception is signaled for the next instruction, with BD=1.

An LLX/SCX family instruction must be not be placed in a branch delay slot or compact branch forbidden slot: if this
rule is violated, a Reserved Instruction exception will be signaled (with EPC=PC of branch, BD=1).

An LLX/SCX family instruction must be followed by a matching LL/SC-family instruction: An SCX instruction
must be followed by an SC instruction of the same type. Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/
SCD, and SCXE/SCE. If the following instruction does not match, a Reserved Instruction exception must be signaled
(with EPC=PC of the LLX/SCX family instruction, BD=1).

Except: An LLX/SCX instruction may be followed by one of the breakpoint instructions BREAK or SDBBP, in
which case the appropriate breakpoint exception takes priority over the Reserved Instruction exception. The BREAK
exception will be signaled with EPC=PC of the LLX/SCX family instruction and BD=1. The debug exception caused
by such an SDBBP will be reported with DEPC=PC of the LLX/SCX family instruction and DBD=1.

The base field must be the same in an LLX/SCX family instruction and the following, matching, LL/SC-family
instruction: If the following instruction does not match, a Reserved Instruction exception must be signaled (with
EPC=PC of the LLX/SCX family instruction, BD=1).

The base and rt fields of the LLX family instruction must not be the same. If they are the same a Reserved Instruction
exception must be signaled (with EPC=PC of the LLX/SCX family instruction, BD=0).

The LLX/SCX and following LL/SC family instructions must match in their offset field: Given matching in instruc-
tion type and base, the difference between the offset fields of the instruction at PC and the instruction at PC+4 should
be the data size, and 4 for LLX/LLE/SCX/SCXE and 8 for LLDX/SCDX. Programmers should follow this rule in
coding. However, implementations do not need to explicitly check this rule, since it is implied by other rules. TBD

Natural Alignment: The effective address must be naturally aligned for any LLX/SCX family instruction; if not natu-
rally aligned, an Address Error exception is signaled. I.e. for LLX, LLXE, SCX and SCXE, if the two least significant
bits of the effective address are not both zero, an Address Error exception is signaled; for LLDX and SCDX, if the
three least significant bits of the effective address are not all zero, an Address Error exception is signaled. Such an
Address Error exception is signaled with EPC=PC of the LLX/SCX family instruction, BD=0.

Release 6 requires systems to provide support for misaligned memory accesses for all ordinary memory reference
instructions such as LW (Load Word). However, this instruction is a special memory reference instruction for which
misaligned support is NOT provided, and for which signalling an exception (AddressError) on a misaligned access is
required.

Double Width Alignment: In addition to natural alignment, the memory bytes written by the LLX/SCX family

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

instruction and the following LL/SC family instruction must be adjacent, non-overlapping, and must have the align-
ment natural for double the memory access size: The lowest byte address in an LLX/LL, LLXE/LLE, SCX/SC or
SCXE/SCE pair must be 8-byte aligned. The lowest byte address in an LLDX/LLD or SCDX/SCD pair must be 16-
byte aligned. It is required that the LL/SC family instruction byte address be lower than that of the LLX/SCX family
instruction. i.e. that the LL/SC family instruction in an LLX/LL or SCX/SC family instruction pair must be naturally
aligned for double the memory access width.

The double width alignment condition must be satisfied for both virtual and physical addresses. If this condition is
not met, then an Address Error exception is signaled, with EPC = PC of first instruction, and BD=1. This condition is
guaranteed to be met in the physical address if met in the virtual address and if the SCX and SC translations are con-
sistent.

Exception Priority: although LLX and LL may complete execution together, all exceptions for an LLX instruction (at
PC) must be signaled, with EPC=PC and BD=0, before any exceptions are signaled, with EPC=PC and BD=1, for the
next instruction (at PC+4) or for any exceptions caused by the interaction between the LLX instruction and the next
instruction. This is as if the LLX instruction is executed enough to signal all exceptions, followed by exception
checks for the combination of LLX and the next instruction. Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/
SCD, and SCXE/SCE instructions.

Exceptions relating to an LLX/SCX family instruction are reported with EPC=PC of the LLX/SCX family instruc-
tion, and BD=0.

Exceptions relating to interaction between an LLX/SCX family instruction and the following instruction are reported
with EPC=PC of LLX/SCX instruction and BD=1.

Debug single step exceptions are reported with DEPC=PC of the LLX/SCX family instruction, and BD=0. No debug
single step exception will be reported for the SC instruction of an SCX/SC pair: For the purposes of debug single
stepping, the SCX/SC pair is atomic. Similarly for LLX/LL, LLDX/LLD, LLE/LLXE, SCDX/SCD, and SCXE/SCE
pairs of instructions.

Exceptions related to the SCX/SC family instruction pair before following instruction cancel SCX but do not clear
LLbit: if an exception or interrupt occurs at or after the SCX-family instruction and before or at the next instruction,
the SCX is canceled, but LLbit is not cleared. I.e. the LLX/LL-SCX/SC atomic is not necessarily forced to fail. Excep-
tions are therefore reported with EPC=PC of SCX, and BD=0 or | as appropriate. Exception handling software should
return (ERET or ERETNC) to the PC of the SCX instruction, re-executing the SCX/SC pair. Adjusting EPC or DEPC
and returning to the SC instruction without re-executing the SCX instruction will result in incorrect behavior.

For exceptions related to an LLX/LL family instruction pair:

* No memory access is performed.

* Neither target register of the LLX/LL family instruction pair is updated.
e LLbit is not set.

* EPC (or DEPC) is set to the PC of the LLX family instruction.

» Status.BD is set to 0 or 1 as appropriate, as described below.

Exception handling software should return (ERET or ERETNC) to the PC of the LLX instruction, re-executing the
LLX/LL pair. Adjusting EPC or DEPC and returning to the LL instruction without re-executing the LLX instruction
will result in incorrect behavior.

LLX/LL and SCX/SC matching: the LL-family instruction, the SC-family instruction, and the optional LLX/SCX-

family instructions in a MIPS atomic sequence should!' match. Portable software should not rely on mismatching
LLX/LL/SCX/SC to complete successfully, nor to fail. Implementations are permitted to cause the SC to fail if the
LL/SCX/SC do not match, but are not required to do so. Matching LLX/LL/SCX/SC should be of the same instruc-

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 363

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

tion type (word (LLX/LL/SCX/SC), doubleword (LLXD/LLD/SCXD/SCD) or word EVA (LLXE/LLE/SCXE/
SCE)). Table 6.30 summarizes these rules for LL/SC family instructions.

Table 6.30 Recommended and non-recommended LL/SC family instructions
to start and end atomic code sequences

Start of atomic sequence

LLX [LLDX|LLXE
LL | LLD | LLE | /LL | /LLD | /LLE

e ok! | BAD | BAD | BAD | BAD | BAD
ScD BAD?| OK | BAD | BAD | BAD | BAD
SCE BAD | BAD | OK | BAD | BAD | BAD

SCX/SC BAD | BAD | BAD | OK | BAD | BAD

SCDX/SCD BAD | BAD | BAD | BAD | OK | BAD
BAD | BAD | BAD | BAD | BAD | OK

End of Atomic Sequence

SCXE/SCE

1. Cells marked OK indicate recommended combinations of instruc-
tions to start and end LL/SC atomic code sequences.

2. Cells marked BAD (and shaded) indicate non-recommended combi-
nations of instructions to start and end LL/SC atomic code
sequences. Software should not be coded in this way. Implementa-
tions are not required to enforce this restriction, but software coded
this way may succeed on some implementations, and fail on other
implementations. L.e. success or failure of the SC family instruction
is UNPREDICTABLE.

The LL and SC virtual and physical addresses should match completely. However, the memory addressing mode - the
and offset - need not match between LLX/LL and SCX/SC. All physical address bits in the LL physical address and
the corresponding bits in the SC physical address should match to the alignment required for the size of the LL/SC

family instructions or LLX/LL and SCX/SC family instruction pairs.2 This applies to atomic code sequences created
via LL/SC, LLD/SCD, LLE/SCE, and their corresponding extended versions LLX/LL-SCX/SC, LLDX/LLD-SCDX/
SCD, LLXE/LLE-SCXE/SC.

Translation Consistency: It is required that LL and SC match addresses, and that LLX/SCX family instructions lie in
the same synchronization block. Even if all virtual addresses match, on a processor with hardware page table walking
it is possible for physical address translation to change between LL and SC, and between the execution phase of LLX,
LL, SCX and SC family instructions. e.g. between the time that SCX is first executed, and the time that the SCX store
data is committed along with SC. The SCX/SC must only succeed if the SCX and SC physical addresses are consis-
tent. If the address translations are inconsistent, implementations are required to fail the SCX/SC pair, or to retry them
in a manner transparent to software. Similarly for LLX/LL pairs. Similarly for other information obtained from trans-
lation, such as the CCA (Cacheability and Coherence Attribute).

It is required that LLX/LL or SCX/SC instruction pairs act as if only a single address translation is done for the first

364

Terminology: “Should” is a recommendation. Implementations are encouraged to provide should behavior, but are not
required to do so. Portable software should not rely on such behavior, but is encouraged to follow should rules. “Must” behav-
ior are requirements: Implementations are required to implement such behavior, and software that violates such requirements
will fail, typically with a exception such as a Reserved Instruction exception or Address Error.

Note that the implementation dependent LLAddr register (Load Linked Address (CPO Register 17, Select 0)) does
not hold physical address bits 0 to 4 as of Release 5 or after. The requirement all LL and SC address bits match
therefore involves comparing LL address bits not stored in any software accessible register state.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

instruction in the pair, and that translation is used for the second instruction, changing only lower address bits 3:0.
Similarly for LLX/LL, LLDX/LLD, LLXE/LLE, SCDX/SCD, and SCXE/SCE instruction pairs.

Synchronizable memory type (CCA): The addressed location must be synchronizable by all processors and 1/O
devices sharing the location; if it is not, the result is UNPREDICTABLE. Which storage is synchronizable is a func-
tion of both CPU and system implementations. See the documentation of the SC instruction for the formal definition.

LLX/LL need not be writeable: The addressed location need not be writable for LL or LLX family instructions. If it is
not writable a subsequent SC or SCX family instruction will fault, but LL or LLX family instructions may be used in
situations that do not generate such faults, e.g. the PAUSE instruction.

LLX/LL and PAUSE: If an LLX/LL family instruction pair is followed by a PAUSE instruction, the PAUSE instruc-
tion must terminate if it cannot be guaranteed that any of the memory bytes address by the LLX/LL instruction pair
have not been modified.

Memory Ordering of LL/SC family instructions (included LLX/SCX family instructions):

* An SCX/SC family instruction pair is executed atomically as seen by the processor executing these instructions
and by other processors. I.e. the SC will not be seen to be executed before the SCX, and no other instruction, pro-
cessor or device, can observe the SCX store without also being able to observe the SC store, or vice versa.

 LLX/LL family instruction pairs are not required to perform a double width atomic read of memory, but viola-
tions of atomicity will be detected, clearing LLbit, so that the matching SC will fail.3

e Atomicity of LLX/LL family instruction pairs may be provided by MIPS CPU implementations as and if

required by certain system configurations for uncached memory. 4

* All LL/SC family instructions, including LLX/LL and SCX/SC family instruction pairs, are ordered by their
implicit dependency on LLbit: e.g. a later LL will not be executed before an earlier SC from the same processor,
even if their data memory addresses do not overlap.

* Inthe MIPS memory consistency architecture, LL/SC family instructions (including LLX/SCX family instruc-
tions) are not ordered with respect to other memory accesses from the same processor, except when their
addresses overlap, or explicit SYNC instructions lie between them. E.g. a later LL can be executed before an ear-

lier SW, or vice versa.’

Availability and Compatibility:

The LLX/SCX family of instructions is introduced by and required as of the MIPS Release 6 architecture and the

3. For example, an implementation of LLX/LL in cached memory may have LLX set LLaddr and then perform the LLX word
load, and then may execute LL separately. A separate processor may perform an atomic doubleword write that changes both
the LLX and LL memory locations, such that the values returned by LLX and LL may not have both been simultaneously
present in memory. However, if atomicity is violated in this way, then LLbit must be cleared. The LL instruction of an LLX/
LL instruction pair will not set LLbit if it has been cleared after the LLX instruction. Overall, LLX/LL family instruction
pairs are not required to be atomic; whereas SCX/SC family instruction pairs are required to be atomic, if performed.

However, certain system configurations, for uncached memory in particular, require that the LLX/LL family instruction
pair be performed atomically via a single bus transaction.

4. MIPS recommends that implementations perform a double width atomic read memory access for LLX/LL family instruction
pairs, for cached as well as uncached memory, but does not require this. Portable software should not assume that an LLX/LL
family instruction pair is atomic without using a matching SCX/SC family instruction pair to detect possible violations of
atomicity.

5. Note that this applies also to ordinary load instructions lying between LL and SC, inside the atomic RMW sequence.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 365

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

366

microMIPS Release 6 architecture.

LLX and SCX are introduced by and required as of microMIPS32 Release 6. LLDX and SCDX are introduced by
and required as of microMIPS64 Release 6. SCXE is introduced by and required as of microMIPS32 Release 6 when
EVA is also implemented, which is indicated by bit EVA of coprocessor 0’s Config5 register.

The microMIPS Release 6 instruction encodings for the SCX family of instructions conflict with encodings used by
valid instructions in microMIPS pre-Release 6: SCX conflicts with pre-Release 6 SWR, SCDX conflicts with pre-
Release 6 SDR, and SCXE conflicts with pre-Release 6 SWLE.

Operation:

/* pseudocode for SCX and for the following instruction;
* this replaces the following instruction pseudocode.

this_instruction SCX instruction at PC during instruction time I
next instruction = instruction at PC+4 during instruction time I

= instruction at PC during instruction time I+1

= SC, or BREAK or SDBBP, else invalid
‘SCX’ and ‘SC’ are generic, applicable to SCX-family and SC-family.

All exceptions are signaled with EPC or DEPC = PC of SCX instruction.
All exceptions in instruction time I are signaled with BD=0.
All exceptions in instruction time I+1 are signaled with BD=1.

L I S S T . T R

I: /* SCX-only execution in instruction time I */
/* perform address calculation and translation and SCX-only checks. */
successful_so_far « 1

if this instruction is SCX then
size «4

else if this instruction is SCDX then
size « 8

else if this_instruction is SCXE then
EVA Checks() /*BD=0*/
size «4

else
assert (IMPOSSIBLE)

endif

scx_va <« GPR[this_instruction.base] + sign extend(this_instruction.offset)
if scx va & (size-1) # 0 then SignalException (AddressError) /*BD=0*/ endif

(scx_pa,scx _cca) <« AddressTranslation(scx va, DATA, STORE) /*BD=0%*/
scx store data <« GPR[this instruction.rt]
/* complete SCX execution in instruction time I+1 */
I+1:
/* SCX execution time I+l and next instruction execution time I combined */
/* All exceptions in instruction time I+l are signaled with BD=1. */
LLX SCX family common_code (

/*inputs:*/ this instruction, scx pa, scx cca, size,
/*returns:*/ next instruction, sc_va, sc_pa, sc_cca

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

sc_store data <« GPR[next instruction.rt]
store data_ 2xwide <« (scx_store data << (size*8)) || sc_store data
/* Not shown: byte swapping default Little Endian to BigEndian, if needed */

/* Required check that LL and SC physical addresses match (all bits) */
/* Note that LLAddr CP0 register may not hold full LL physical address */
if sc_pa; # LL physical address bit i for any bit i

then successful so_far <« 0 endif

/* Fundamental LLBit check for LL/SCX/SC */

if successful so far and LLbit = 1

then
/* Optionally check that LL matches SCX/SC - opcode, size, etc. */
StoreMemory(CCA, 2*size, store data 2xwide, sc_pa, sc_va, DATA)
scx_and sc_successful « 1

else
scx_and_sc_successful <« 0

endif

GPR [next_instruction.rt] <« scx_and sc_successful
LLbit « 0
/* end of combined SCX / SC pseudocode */

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 367

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE

368

where /* helper function */

function EVA_checks
if (Configb5gya=0) then SignalException(ReservedInstruction) endif
if !IsCoprocessorEnabled(0)
then SignalException (CoprocessorUnusable, 0)endif
AM = SegmentAM(address) /* TBD: bug in SCE pseudocode */
if (AM != UUSK && AM != MUSK && AM != MUSUK)
then SignalException (AddressError) endif
end function

function LLX SCX family common code (
/*inputs: */ this instruction, this pa, this cca, size,
/*outputs:*/ next instruction, next va, next pa, next cca

/* begin function */

if next instruction is BREAK or SDBBP then
/* Execute BREAK or SDBBP in normal I+l manner,
* as if in a branch delay slot or compact branch forbidden slot.
* gignaling appropriate exception */

endif

/* next instruction must be matching non-extended LL/SC family
* - this pseudocode replaces normal pseudocode for next instruction. */

if (this_instruction is LLX and next instruction is not LL)

or (this_instruction is LLDX and next instruction is not LLD)

or (this instruction is LLXE and next instruction is not LLE)

or (this instruction is SCX and next instruction is not SC)
(
(

or (this instruction is SCDX and next instruction is not SCD)
or (this instruction is SCXE and next instruction is not SCE)
then

SignalException (ReservedInstruction) /*BD=1%/
endif
/* next instruction is non-extended LL/SC family: consistency checks */

/* Check base register field for consistency */
if this_instruction.base # next_instruction.base

then SignalException(ReservedInstruction) /*BD=1%*/ endif

/* Address computation for LL/SC-family next instruction */

next va < GPR[next instruction.base] + sign extend(next instruction.offset)

/* LL/SC following LLX/SCX virtual address must be doublewidth aligned
if next_va & (size*2-1) # 0
then SignalException (AddressError) /*BD=1%*/ endif

/* LLX/SCX and LL/SC address virtual addresses must be adjacent
* (adjacent, nonoverlapping, doubleword aligned) */

if this_va&(2*size-1) - next_va&(2*size-1) #size
then SignalException (AddressError) /*BD=1%*/ endif
/* assert(this va-next va # size) */

/* Check offsets for consistency */
/* assert(this_ instruction.offset - next instruction.offset = size) */
/* offset check not needed - other constraints ensure */

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Store Conditional Extended {Word,Doubleword,Word EVA}

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

/* LL/SC virtual to physical address translation
/* Reuse the translation of the first instruction to ensure consistency. */
/* Note: after all RI and AE exceptions, for standard exception priority. */
next pa <« this pa & (2*size-1)
/* given alignment constraints,
* next pa = this pa - size = this pa & (2*size-1) */
next cca <« this cca

end function /* LLX SCX family common code */

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Reserved Instruction

Programming Notes:
LL/SC (and LLX/SCX) code sequences function on multiprocessor systems for cached coherent memory.

LL/SC (and LLX/SCX) code sequences function on multiprocessor systems for uncached memory if the CPU sup-
ports bus transactions visible to external hardware so that such external hardware can guarantee that atomicity has not
been violated. Such support is implementation dependent.

LL/SC (and LLX/SCX) code sequences function on a single processor for cached noncoherent memory so that paral-
lel programs can be run on uniprocessor systems that do not support cached coherent memory access types, and so
that violations of atomicity caused by exception handling can be detected.

LL/SC (and LLX/SCX) code sequences on a single processor for uncached memory so that parallel programs can be
run on uniprocessor systems that do not support cached memory access types, and so that violations of atomicity
caused by exception handling can be detected.

Example: MIPS32 64-bit compare and swap using LLX/LL-SCX/SC code sequence:
cas2x32 retry loop:

(t0,tl) is value to be compared against value in memory at (tA,tA+4)
(t2,t3) is value to be written

MOV T2, T2'# add t2’', r0, t2 # copy because SC destroys store data

LLX T5, (TA)4 # load hi

LL T4, (TA) # load lo

BNEC Tl, T5, cas2x32 fail # compare hi

NOP # CTI not allowed in forbidden slot

BNEC TO, T4, cas2x32_fail # compare lo

NOP # SCX not allowed in forbidden slot

SCX T3, (TA)4 # store-conditional hi

scC T2', (TA) # store-conditional lo, checking for atomicity
BEQZC T2', cas2x32 retry loop # if not atomic (0), try again

cas2x32_fail:

Exceptions between the LLX/LL and SCX/SC may cause the SC to fail, so persistent exceptions must be avoided.
Some examples of these are arithmetic operations that trap, system calls, and floating point operations that trap or
require software emulation assistance. However, exceptions per se do not necessarily cause failure: the ERETNC
instruction allows an exception handler to complete without clearing LLbit.

Example: MIPS32 64-bit atomic store using LLX/LL-SCX/SC code sequence:

R1 = 64-bit aligned address, R2=1o 32 bits, R3=high 32 bits
st2x32 retry loop:

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 369

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

370

LLX R5, (R1)4 # throwing LLX/LL load data away

LL R5, (R1)

MOV R2, R2' # copy store data because SCX destroys

SCX R3, (R1)4 # store-conditional hi

scC R2’, (R1) # store-conditional lo, checking for atomicity

BEQZC R2'’, st2x32 retry loop # if not atomic (0), try again
if we get here, then 64-bit store accomplished

MIPS recommends that the LLX/LL match the SCX/SC. Similarly LLDX/LLD should match SCDX/SCD, and
LLXE/LLE should match SCXE/SCE. This recommendation may not be enforced by some implementations. If LLX/
LL do not match LLDX/LLD, e.g. if there is only a single LL setting up for an SCX/SC pair, success or failure may
be UNPREDICTABLE.

Example: MIPS32 64-bit atomic load using LLX/SCX:
R1 = 64-bit aligned address, R2 and R3 will receive values loaded

1d2x32 retry loop:
LLX R3, (R1)4

LL R2, (R1)

MOV R2, R2’

SCX R3, (R1)4 # store value read back

scC R2’, (R1) # store-conditional lo, checking for atomicity
BEQZC R4, 1d2x32 retry loop # if not atomic (0), try again

if we get here, then 64-bit load accomplished

Note that an SCX/SC instruction pair is required to test atomicity. Because atomicity cannot be tested without doing
at least a SC store conditional instruction, this instruction sequence cannot be used to perform double width atomic
reads from memory that the reader cannot write.

Example: MIPS32 64-bit atomic load using LL/SC without LLX/SCX:

Rl = 64-bit aligned address, R2 and R3 will receive values loaded
1d2x32 retry loop:

LL R2, (R12)

SYNC

LW R3, (R13)

MOV R2, R2’

SYNC

scC R2’, (R12)# store-conditional lo, checking for atomicity

BEQZC R4, 1d2x32 retry loop # if not atomic (0), try again
if we get here, then 64-bit load accomplished

Note that the load of (R2,R3) above is atomic in the sense that if the SC succeeds, then at some point between the LL
and SC the values (R2,R3) were both present in memory at their corresponding memory locations (R12,R13). If
(R12,R13) lie in the same synchronization block, then they are both present in memory at the time of the SC. If
(R12,R13) are not in the same synchronization block, then while they were both present in memory at some time
between LL and SC, the value of R13, the location which is not monitored by LL/SC, may have changed by the time
of the SC.

Note also that SYNC instructions are needed between the LL and the LW, and between the LW and the SC, to prevent
reordering of these memory accesses. Because such SYNCs are expensive, MIPS recommends the LLX/LL-SCX/SC
code sequence over the LL-SYNC-LW-SYNC-SC code sequence.

Implementation Notes:

The synchronization block of memory used for LL/SC is typically the largest cache line in use.

Implementations of LL/SC in general, and LLX/LL-SCX/SC in particular, provide atomicity if the computer system
can guarantee that, if the SC passes, then atomicity has not been violated by transactions between the LL and SC. It
should also guarantee eventual success, i.e. that failures will not persist forever.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SCX, SCDX, SCXE Store Conditional Extended {Word,Doubleword,Word EVA}

Correct implementation depends on the system, both the CPU and the external memory subsystem. For example, the
CPU may implement LL/SC correctly for cacheable coherent memory, but if the I/O subsystem can write to memory
without being exposed to the cache coherency mechanism, LL/SC will not detect violations of atomicity caused by
such non-coherent I/0 accesses. Similarly, the CPU may implement uncached memory requests for LL and SC, but if
the external memory subsystem performs an SC request and returns success without guaranteeing atomicity, LL/SC
may not provide the expected guarantee of atomicity.

If it is not possible to guarantee such atomicity then it is recommended that implementations cause the SC to fail,
returning the failure code in GPR[rt] without performing the store.

LL/SC and LLX/LL-SCX/SC code sequences should only be used for the following memory types (Cache and
Coherency Attributes (CCAs)):

» cached coherent: if the cache protocol can guarantee that atomicity has not been violated by transactions between
the LL and SC.

* uncached:
o for uncached memory that is memory-like, i.e. which does not have memory-mapped I/O side effects
« if the CPU supports bus transactions visible to external hardware so that such external hardware can guaran-
tee that atomicity has not been violated by transactions between the LL and SC, and can signal success or

failure by replying to the uncached bus transaction triggered by the SC-family instruction.

» or if the system configuration is such that the CPU can observe all memory transactions that would violate
atomicity

+ cached noncoherent or uncached (no side effects): on uniprocessor systems lacking cache coherence or external
hardware that can make atomicity assertions, LL-SC and LLX/LL-SCX/SC code sequences can be used to detect
violations of atomicity caused by interrupt handling

« for other memory types: it may be UNPREDICTABLE whether the SC and possible SCX stores are performed,
and whether the SC reports success or failure.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 371

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SD Store Doubleword

31 26 25 21 20 16 15 0
SD32
110110 rt base offset
6 5 5 16
Format: SD rt, offset (base) microMIPS64

Purpose: Store Doubleword

To store a doubleword to memory.

Description: memory [GPR [base] + offset] ¢« GPR[rt]

The 64-bit doubleword in GPR rt is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-release 6: The effective address must be naturally-aligned. If any of the 3 least-significant bits of the effective
address is non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[basel

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)
datadoubleword < GPR[rt]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction, Watch

372 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDBBP Software Debug Breakpoint
31 26 25 16 15 6 5
POOL32A q I SDBBP POOL32AXE
000000 code - use sysca 1101101101 111100
6 10 10 6

Format: SDBBP code

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

EJTAG microMIPS

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpgyccode field to the value 0x9 (Bp). The code field can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word

containing the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

Operation:

if Config5.SBRI=1 then /* SBRI is a MIPS Release 6 feature */

SignalException (ReservedInstruction)

If Debugpy = 1 then SignalDebugModeBreakpointException() endif // nested

SignalDebugBreakpointException ()

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

// normal

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

373

SDC1 Store Doubleword from Floating Point

31 26 25 21 20 16 15 0
SDC132
101110 ft base offset
6 5 5 16
Format: sbci ft, offset (base) microMIPS

Purpose: Store Doubleword from Floating Point

To store a doubleword from an FPR to memory.

Description: memory [GPR [base] + offset] €« FPR[ft]

The 64-bit doubleword in FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢« AddressTranslation(vAddr, DATA, STORE)

datadoubleword ¢ ValueFPR(ft, UNINTERPRETED DOUBLEWORD)

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:

Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

374 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SDC2 Store Doubleword from Coprocessor 2

I 31 26 25 21 20 16 15 12 11 10 0
POOL32B sDC2 | 0
et
110110 it base 1010 0 oltse
I 6 5 5 4 1 11
Format: spc2 rt, offset (base) microMIPS

Purpose: Store Doubleword from Coprocessor 2

To store a doubleword from a Coprocessor 2 register to memory

Description: memory [GPR [base] + offset] <« CPR[2,rt,0]

The 64-bit doubleword in Coprocessor 2 register It is stored in memory at the location specified by the aligned effec-
tive address. The 12-bit signed offset is added to the contents of GPR base to form the effective address.
Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress, ¢ # 0 (not doubleword-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr <« sign extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
datadoubleword <« CPR[2,rt, 0]

StoreMemory (CCA, DOUBLEWORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 375

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SEB Sign-Extend Byte
31 26 25 21 20 16 15 6 5 0
POOL32A " - SEB POOL32AXf
000000 s 0010101100 111100
6 5 5 10 6
Format: SEB rt, rs microMIPS

376

Purpose: Sign-Extend Byte
To sign-extend the least significant byte of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢« SignExtend(GPR[rsl,)

The least significant byte from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

Prior to architecture Release 2, this instruction resulted in a Reserved Instruction Exception.

If GPR r does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is UNPRE-
DICTABLE.

Operation:

if NotWordvalue (GPR[r]) then
UNPREDICTABLE

endif

GPR[rt] < sign extend(GPRI[rsl,;)

Exceptions:

Reserved Instruction

Programming Notes:

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

Expected Instruction Function Equivalent Instruction
ZEB rX,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,O0xFFFF
SEW rx,ry Sign-Extend Word SLL rx,ry,0

ZEW rx,rx! Zero-Extend Word DINSP32 rx,r0,32,32

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SEH Sign-Extend Halfword
31 26 25 21 20 16 15 6 5 0
POOL32A " - SEH POOL32AXf
000000 s 0011101100 111100
6 5 5 10 6
Format: SEH rt, rs microMIPS

Purpose: Sign-Extend Halfword
To sign-extend the least significant halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] ¢« SignExtend(GPRIrsl s o)

The least significant halfword from GPR rs is sign-extended and stored in GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

If GPR r does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is UNPRE-
DICTABLE.
Operation:

if NotWordvalue (GPR[r]) then
UNPREDICTABLE
endif
GPR[rt] < sign extend(GPR[rsl;s o)
Exceptions:

Reserved Instruction

Programming Notes:

The SEH instruction can be used to convert two contiguous halfwords to sign-extended word values in three instruc-
tions. For example:

1w t0, 0(al) /* Read two contiguous halfwords */
seh tl, toO /* tl = lower halfword sign-extended to word */
sra to, tO0, 16 /* t0 = upper halfword sign-extended to word */

Zero-extended halfwords can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.

For symmetry with the SEB and SEH instructions, you expect that there would be ZEB and ZEH instructions that
zero-extend the source operand and expect that the SEW and ZEW instructions would exist to sign- or zero-extend a
word to a doubleword. These instructions do not exist because there are functionally-equivalent instructions already
in the instruction set. The following table shows the instructions providing the equivalent functions.

Expected Instruction Function Equivalent Instruction
ZEB rx,ry Zero-Extend Byte ANDI rx,ry, OXFF
ZEH rx,ry Zero-Extend Halfword ANDI rx,ry,O0xFFFF
SEW rx,ry Sign-Extend Word SLL rx,ry,0
ZEW rX,TrX! Zero-Extend Word DINSP32 rx,r0,32,32
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 377

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1. The equivalent instruction uses rx for both source and destination, so the expected
instruction is limited to one register

378 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SEL.fmt Select floating point values with FPR condition

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F SEL
010101 fi fs fd fimt 010111000
6 5 5 5 2 9

Format: SEL.fmt
SEL fd, fs, ft, fmt microMIPS32 Release 6

Purpose: Select floating point values with FPR condition

Description: FPR[£fd] « FPR[fd] .bit0 ? FPR[ft] : FPR[fs]

SEL.fmt is a select operation, with a condition input in FPR £d, and 2 data inputs in FPRs ft and fs.
e Ifthe condition is true, the value of £t is written to £d.

e Ifthe condition is false, the value of £s is written to £d.

The condition input is specified by FPR £d, and is overwritten by the result.

The condition is true only if bit 0 of the condition input FPR £d is set. Other bits are ignored.

This instruction has floating point formats S and D, but these specify only the width of the operands. SEL.S can be
used for 32-bit W data, and SEL.D can be used for 64 bit L data.

This instruction has no exception behavior. It does not trap on NaNs. It does not set the FPU Cause bits.

Restrictions:

None

Availability and Compatibility:

SEL.fmt is introduced by and required as of microMIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp <« ValueFPR (fd, UNINTERPRETED_WORD)
cond « tmp.bito
if cond then

tmp <« ValueFPR(ft, fmt)

else

tmp < ValueFPR (fs, fmt)

endif
StoreFPR (fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 379

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Floating Point Exceptions:

Unimplemented Operation

380 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SELEQZ SELNEZ Select integer GPR value or zero
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A SELEQZ
000000 i s d 0 0101000000
POOL32A it s d 0 SELNEZ
000000 0110000000
6 5 5 5 1 10

Format: SELEQZ SELNEZ
SELEQZ rd,rs,rt
SELNEZ rd,rs,rt
Purpose: Select integer GPR value or zero

Description:

SELEQZ: GPR[rd] <« GPR[rt]=0? GPR[rs]:0
SELNEZ: GPR[rd] <« GPR[rt] #O0?GPR[rs]:0

microMIPS32 Release 6
microMIPS32 Release 6

« SELEQZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit
data input 0. The condition is true only if all bits in GPR rt are zero.

* SELNEZ is a select operation, with a condition input in GPR rt, one explicit data input in GPR rs, and implicit

data input 0. The condition is true only if any bit in GPR rt is nonzero

If the condition is true, the value of rs is written to rd.

If the condition is false, the zero written to rd.

This instruction operates on all GPRLEN bits of the CPU registers, that is, all 32 bits on a 32-bit CPU, and all 64 bits
on a 64-bit CPU. All GPRLEN bits of rt are tested.

Restrictions:

None

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

None

Operation:

SELNEZ: cond « GPR[rt] # 0
SELEQZ: cond « GPR[rt] = 0
if cond then

result <« GPR[rs]
else

result <=0
endif
GPR[rd] <« result

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 381

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SELEQZ SELNEZ Select integer GPR value or zero

Programming Note:

Release 6 removes the Pre-Release 6 instructions MOVZ and MOVN:
MOVZ: if GPR[rt] = 0 then GPR[rd] <« GPR[rs]
MOVN: if GPR[rt] # 0 then GPR[rd] <« GPR[rs]

MOVZ can be emulated using Release 6 instructions as follows:
SELEQZ at, rs, rt
SELNEZ rd, rd, rt
OR rd, rd, at

Similarly MOVN:
SELNEZ at, rs, rt
SELEQZ rd, rd, rt
OR rd, rd, at

The more general select operation requires 4 registers (1 output + 3 inputs (1 condition + 2 data)) and can be

expressed:
rD < if rC then rA else rB

The more general select can be created using Release 6 instructions as follows:
SELNEZ at, rB, rC
SELNEZ rD, rA, xC
OR rD, rD, at

382 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SELEQZ.fmt SELNEQZ.fmt Select floating point value or zero with FPR condition.

31 26 25 21 20 16 15 11 10 6 5 0
POOL32F SELEQZ.fint
010101 fi fs fd fimt 000111000
POOL32F SELNEZ.fmt
010101 fi fs fd fimt 001111000
6 5 5 5 2 9

Format: SELEQZ.fmt SELNEQZ.fmt

SELEQZ.S fd,fs, ft microMIPS32 Release 6
SELEQZ.D fd, fs, ft microMIPS32 Release 6
SELNEZ.S fd, fs, ft microMIPS32 Release 6
SELNEZ.D £fd, fs, ft microMIPS32 Release 6

Purpose: Select floating point value or zero with FPR condition.

Description:

SELEQZ.fmt: FPR[fd] « FPR[ft].bit0 ? 0 : FPR[fs]
SELNEZ.fmt: FPR[fd] <« FPR[ft].bit0 ? FPR[fs]: O

* SELEQZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR £t is zero.

* SELNEZ.fmt is a select operation, with a condition input in FPR ft, one explicit data input in FPR fs, and
implicit data input 0. The condition is true only if bit 0 of FPR £t is nonzero.

If the condition is true, the value of £s is written to £d.
If the condition is false, the value that has all bits zero is written to £d.

This instruction has floating point formats S and D, but these specify only the width of the operands. Format S can be
used for 32-bit W data, and format D can be used for 64 bit L data. The condition test is restricted to bit 0 of FPR ft.
Other bits are ignored.

This instruction has no execution exception behavior. It does not trap on NaNs. It does not set the FPU Cause bits.

Restrictions:

FPR £d destination register bits beyond the format width are UNPREDICTABLE. For example, if £mt is S, then £d
bits 0-31 are defined, but bits 32 and above are UNPREDICTABLE. For example, if £mt is D, then £d bits 0-63 are
defined.

Availability and Compatibility:

These instructions are introduced by and required as of MIPS32 Release 6.

Special Considerations:

Only formats S and D are valid. Other format values may be used to encode other instructions. Unused format encod-
ings are required to signal the Reserved Instruction exception.

Operation:

tmp <« ValueFPR (ft, UNINTERPRETED_WORD)
SELEQZ: cond <« tmp.bit0 = 0
SELNEZ: cond <« tmp.bit0 # 0
if cond then
tmp <« ValueFPR (fs, fmt)
else

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 383

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

tmp <0 /* all bits set to zero */
endif
StoreFPR(fd, fmt, tmp)

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

384 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SH

31

26 25

21 20

Store Halfword

16 15 0

SH32
001110

rt

base offset

6

Format: sH rt,

5

Purpose: Store Halfword

To store a halfword to memory.

offset (base)

microMIPS

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset)
¢« AddressTranslation (vAddr, DATA, STORE)
(pAddr, , xor (ReverseEndian? || 0))

(pAddr,

CCA)

pAddr < pAddrpsrzg 1.3 ||
bytesel ¢« vAddr, , xor (BigEndianCPU? || 0)

datadoubleword < GPR[rt] 63-8*bytesel. .
(CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)

StoreMemory

Exceptions:

+ GPR [base]

0 || OB*bytesel

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 385

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SHE Store Halfword EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SHE
011000 it base 1010 101 offset
6 5 5 4 3 9
Format: SHE rt, offset (base) microMIPS

386

Purpose: Store Halfword EVA

To store a halfword to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by the aligned effec-
tive address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SHE instruction functions the same as the SH instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If the least-significant bit of the address is non-zero,
an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrze.1 .3 || (PAddr, , xor (ReverseEndian? || 0))

bytesel ¢« vAddr, , xor (BigEndianCPU? || 0)

datadoubleword ¢ GPRIrtles_gspytesel..o || g8rbytesel

StoreMemory (CCA, HALFWORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SIGRIE Signal Reserved Instruction Exception

31 26 25 22 21 6 5 0
POOL32A SIGRIE
000000 0000 code 11111
6 4 16 6
Format: SIGRIE code MIPS32 Release 6

Purpose: Signal Reserved Instruction Exception

The SIGRIE instruction signals a Reserved Instruction Exception.

Description: SignalException (ReservedInstruction)

The SIGRIE instruction signals a Reserved Instruction Exception. Implementations should use exactly the same
mechanisms as they use for reserved instructions that are not defined by the Architecture.

The 16-bit code field is available for software use.

Restrictions:

The 16-bit code field is available for software use. The value zero in the code field should never be overloaded for
any other purpose. Software may provide extended functionality by interpreting nonzero values of the code field in a
manner that is outside the scope of this architecture specification.

Availability and Compatibility:

This instruction is introduced by and required as of Release 6.

Pre-Release 6: this instruction encoding was reserved, and required to signal a Reserved Instruction exception. There-
fore this instruction can be considered to be both backwards and forwards compatible.

The rs field of the SIGRIE instruction, bits 21-25,is required to be zero such as,000001.00000.10011.code.

Operation:

SignalException (ReservedInstruction)

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 387

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLL Shift Word Left Logical
31 26 25 21 20 16 15 11 10 9 0
POOL32A y . 0 SLL32
000000 s sa 0000000000
6 5 5 5 1 10
Format: sSLL rt, rs, sa microMIPS

388

Purpose: Shift Word Left Logical
To left-shift a word by a fixed number of bits.

Description: GPR[rt] ¢ GPR[rs] << sa

The contents of the low-order 32-bit word of GPR rs are shifted left, inserting zeros into the emptied bits. The word
result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

None

Operation:
s €< sa
temp € GPR([rs] (315 .0 || 0°
GPR[rt] ¢ sign extend(temp)
Exceptions:

None

Programming Notes:

The SLL input operand does not have to be a properly sign-extended word value to produce a valid sign-extended
32-bit result. The result word is always sign-extended into a 64-bit destination register; this instruction with a zero
shift amount truncates a 64-bit value to 32 bits and sign-extends it.

SLL r0, 10, 0, expressed as NOP, is the assembly idiom used to denote no operation.

SLL 10, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that causes an issue break on
superscalar processors.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLLV Shift Word Left Logical Variable
31 26 25 21 20 16 15 11 10 9 0
POOL32A " - d 0 SLLV
000000 s 00000010000
6 5 5 5 1 10
Format: sLiv rd, rt, rs microMIPS

Purpose: Shift Word Left Logical Variable

To left-shift a word by a variable number of bits.

Description: GPR[rd] « GPR[rt] << GPR[rs]

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emptied bits. The result-
ing word is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

None

Operation:

s ¢« GPR[rsl, o

temp ¢ GPR[rtl 3;.¢). .0 || 0°

GPR[rd] € sign extend(temp)
Exceptions:

None

Programming Notes:

The input operand does not have to be a properly sign-extended word value to produce a valid sign-extended 32-bit
result. The result word is always sign-extended into a 64-bit destination register; this instruction with a zero shift
amount truncates a 64-bit value to 32 bits and sign-extends it.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 389

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLT Set on Less Than

31 26 25 21 20 16 15 11 10 0
POOL32A SLT
000000 it s rd 0 1101010000
6 5 5 5 1 10
Format: SLT rd, rs, rt microMIPS

Purpose: Set on Less Than

To record the result of a less-than comparison.

Description: GPR[rd] ¢ (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as signed integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None
Operation:
if GPR[rs] < GPR[rt] then
GPR [rd] P OGPRLEN-I | | 1
else
GPR [rd] <« OGPRLEN
endif
Exceptions:
None
390 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLTI Set on Less Than Immediate
31 26 25 21 20 16 15 0
SLTI32 . .
100100 rt s immediate
6 5 5 16
Format: SLTI rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant.

Description: GPR[rt] < (GPR[rs] < sign_extend(immediate))

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; record the Boolean result of the

comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if GPR[rs] < sign_ extend(immediate)

GPR [rt] P OGPRLEN-1| | 1

else

GPR[rt] <« OGPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

then

391

SLTIU Set on Less Than Immediate Unsigned

31 26 25 21 20 16 15 0
SLTIU32))
101100 rt s immediate
6 5 5 16
Format: SLTIU rt, rs, immediate microMIPS

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant.

Description: GPR[rt] < (GPR[rs] < sign extend (immediate))

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers; record the Boolean
result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1 (true); otherwise, it is 0 (false).

Because the 16-bit immediate is sign-extended before comparison, the instruction can represent the smallest or largest
unsigned numbers. The representable values are at the minimum [0, 32767] or maximum [max_unsigned-32767,
max_unsigned] end of the unsigned range.

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None
Operation:
if (0 || GPRI[rs]) < (0 || sign extend(immediate)) then
GPR[rt] <« QGPRLEN-1 I 1
else
GPR []’_‘t] -« OGPRLEN
endif
Exceptions:
None
392 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLTU Set on Less Than Unsigned
31 26 25 21 20 16 15 11 10 0
POOL32A " - d 0 SLTU
000000 s 1110010000
6 5 5 5 1 10
Format: SLTU rd, rs, microMIPS

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: GPR[rd] ¢ (GPR[rs] < GPR[rt])

Compare the contents of GPR rs and GPR rt as unsigned integers; record the Boolean result of the comparison in
GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is O (false).

The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:

None

Operation:

if (0 || GPRIrs]) < (0 || GPR[rt]) then
GPR [rd] P OGPRLEN-I | | 1

else

GPR [rd] <« OGPRLEN

endif

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

393

SQRT.fmt Floating Point Square Root

394

31 26 25 21 20 16 15 14 13 6 5 0
POOL32F SQRT.fmnt POOL32FXf
010101 fi fs 0 | fmt 00101000 111011
6 5 5 1 1 8 6

Format: SQRT.fmt
SQRT.S ft, fs MIPS32
SQRT.D ft, fs MIPS32
Purpose: Floating Point Square Root

To compute the square root of an FP value.

Description: FPR[ft] ¢ SQRT(FPR[fs])

The square root of the value in FPR fs is calculated to infinite precision, rounded according to the current rounding
mode in FCSR, and placed into FPR ft. The operand and result are values in format fmt.

If the value in FPR fs corresponds to — 0, the result is — 0.

Restrictions:
If the value in FPR fs is less than 0, an Invalid Operation condition is raised.

The fields fs and ft must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is UNPRE-
DICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, fmt, SquareRoot (ValueFPR(fs, fmt)))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Invalid Operation, Inexact, Unimplemented Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SRA Shift Word Right Arithmetic
31 26 25 21 20 16 15 11 10 0
POOL32A ; . 0 SRA
000000 s sa 0010000000
6 5 5 5 1 10
Format: sra rt, sa microMIPS

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fixed number of bits.

Description: GPR[rt] ¢ GPR[rs] >> sa

(arithmetic)

The contents of the low-order 32-bit word of GPR rs are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR r does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[r])

UNPREDICTALBE

endif

s € sa
temp ¢« GPR[rsl;;)® || GPRIrsls; o
GPR[rt] ¢ sign_extend(temp)

Exceptions:

None

then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

395

SRAV Shift Word Right Arithmetic Variable

396

31 26 25 21 20 16 15 11 10 9 0
POOL32A o ’ 0 SRAV
000000 s : 0010010000
6 5 5 5 1 10
Format: Srav rd, rt, rs microMIPS

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: GPR[rd] ¢ GPR[rt] >> GPR[rs] (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit 31) in the emptied
bits; the word result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits
of GPR rs.

Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:
if NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
s ¢« GPR[rsl, o
temp ¢« (GPR[rtl;;)® || GPRIrtls; o

GPR[rd] ¢ sign_extend(temp)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SRL Shift Word Right Logical
31 26 25 21 20 16 15 11 10 0
POOL32A ; . 0 SRL32
000000 s sa 0001000000
6 5 5 5 1 10
Format: SRL rt, sa microMIPS

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fixed number of bits.

Description: GPR[rt] ¢ GPR[rs] >> sa

(logical)

The contents of the low-order 32-bit word of GPR rs are shifted right, inserting zeros into the emptied bits. The word

result is sign-extended and placed in GPR rt. The bit-shift amount is specified by sa.

Restrictions:

On 64-bit processors, if GPR r does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:
if NotWordValue (GPR[r]) then
UNPREDICTABLE
endif
s € sa
temp ¢« 0° || GPR[rsls; o
GPR[rt] ¢ sign_extend(temp)
Exceptions:
None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

397

SRLV Shift Word Right Logical Variable

31 26 25 21 20 16 15 11 10 9 0
POOL32A ; q 0 SRLV
000000 s : 00010010000
6 5 5 5 1 10
Format: SRLV rd, rt, rs microMIPS

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits.

Description: GPR[rd] ¢ GPR[rt] >> GPR[rs] (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emptied bits; the word
result is sign-extended and placed in GPR rd. The bit-shift amount is specified by the low-order 5 bits of GPR rs.
Restrictions:

On 64-bit processors, if GPR rt does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Operation:

if NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

s ¢« GPR[rsl, o

temp ¢« 0° || GPR[rtls; o

GPR[rd] ¢ sign_extend(temp)

Exceptions:

None

398 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SSNOP Superscalar No Operation

31 26 25 11 10 6 5 0
POOL32A 0 0 1 0 SLL32
000000 00000 00000 00001 0000 000000
6 5 5 5 5 6
Format: ssnop microMIPS

Purpose: Superscalar No Operation

Break superscalar issue on a superscalar processor.

Description:

SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is interpreted by the
hardware as SLL 10, r0, 1.

This instruction alters the instruction issue behavior on a superscalar processor by forcing the SSNOP instruction to
single-issue. The processor must then end the current instruction issue between the instruction previous to the SSNOP
and the SSNOP. The SSNOP then issues alone in the next issue slot.

On a single-issue processor, this instruction is a NOP that takes an issue slot.

Restrictions:

None

Availability and Compatibility

Release 6: the special no-operation instruction SSNOP is deprecated: it behaves the same as a conventional NOP. Its
special behavior with respect to instruction issue is no longer guaranteed. Release 6 requires interlocks, and the
SYNC and JR.HB instructions are provided if stronger serialization are needed.

Assemblers targeting specifically Release 6 should reject the SSNOP instruction with an error.

Operation:

None

Exceptions:

None

Programming Notes:

SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by converting instructions
into cycles in a superscalar processor. For example, to insert at least two cycles between an MTCO and an ERET, one
would use the following sequence:

mtcO X, Y
ssnop
ssnop
eret

The MTCO issues in cycle T. Because the SSNOP instructions must issue alone, they may issue no earlier than cycle
T+1 and cycle T+2, respectively. Finally, the ERET issues no earlier than cycle T+3. Although the instruction after an
SSNOP may issue no earlier than the cycle after the SSNOP is issued, that instruction may issue later. This is because
other implementation-dependent issue rules may apply that prevent an issue in the next cycle. Processors should not
introduce any unnecessary delay in issuing SSNOP instructions.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 399

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SUB Subtract Word
31 26 25 21 20 16 15 11 10 0
POOL32A SUB
000000 it s rd 0 0110010000
6 5 5 5 1 10
Format: SUB rd, rs, rt microMIPS

400

Purpose: Subtract Word

To subtract 32-bit integers. If overflow occurs, then trap.

Description: GPR[rd] ¢ GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit result. If the sub-
traction results in 32-bit 2’s complement arithmetic overflow, then the destination register is not modified and an Inte-
ger Overflow exception occurs. If it does not overflow, the 32-bit result is sign-extended and placed into GPR rd.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then

the result of the operation is UNPREDICTABLE.

Operation:
if NotWordValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp € (GPR[rslj;||GPRIrslsyy. o) — (GPRIrtls;||GPRIrtlsy. o)

if temp;, # temp;; then
SignalException (IntegerOverflow)

else

GPR[rd] ¢ sign_extend(tempsz; o)

endif

Exceptions:

Integer Overflow

Programming Notes:

SUBU performs the same arithmetic operation but does not trap on overflow.

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

SUB.fmt Floating Point Subtract
31 26 25 21 20 16 15 11 10 9 8 5 0
POOL32F SUB.fmt
010101 fi fs fd 0| fmt 01110000
6 5 5 5 1 2 P
Format: sSuUB.fmt

SUB.S fd, fs, microMIPS
SUB.D fd, fs, microMIPS

Purpose: Floating Point Subtract

To subtract FP values.

Description: FPR[fd] ¢« FPR[fs] — FPRI[ft]

The value in FPR ft is subtracted from the value in FPR fs. The result is calculated to infinite precision, rounded
according to the current rounding mode in FCSR, and placed into FPR fd. The operands and result are values in for-

mat fmt.

Restrictions:

The fields fs, ft, and fd must specify FPRs valid for operands of type fmt. If the fields are not valid, the result is

UNPREDICTABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the

operand FPRs becomes UNPREDICTABLE.

Availability and Compatibility:
SUB.PS has been removed in Release 6.

Operation:

StoreFPR (fd,

CPU Exceptions:

fmt,

ValueFPR (fs,

Coprocessor Unusable, Reserved Instruction

FPU Exceptions:

fmt) —fue ValueFPR(ft,

Inexact, Overflow, Underflow, Invalid Op, Unimplemented Op

fmt))

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

401

SUBU Subtract Unsigned Word
31 26 25 21 20 16 15 11 10 6 5 0
POOL32A " s d 0 SUBU32
000000 0111010000
6 5 5 5 1 10
Format: suBU rd, rs, rt microMIPS

402

Purpose: Subtract Unsigned Word
To subtract 32-bit integers.

Description: GPR[rd] ¢ GPR[rs] — GPR[rt]

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arithmetic result is sign-
extended and placed into GPR rd.

No integer overflow exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then
the result of the operation is UNPREDICTABLE.

Operation:

if NotWordvValue (GPR[rs]) or NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
temp ¢« GPR[rs] — GPR[rtl]
GPR[rd] ¢ sign extend(temp)
Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SW Store Word

31 26 25 21 20 16 15 0
SW32
111110 rt base offset
6 5 5 16
Format: sw rt, offset (base) microMIPS

Purpose: Store Word

To store a word to memory.

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrze-1. .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel ¢« vAddr, , xor (BigEndianCPU || 0?)
datadoubleword ¢ GPRI[rtlg;_gspytesel..o || o8 bytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 403

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWE Store Word EVA
31 26 25 21 20 16 15 12 11 9 8 0
POOL32C ST-EVA SWE
011000 it base 1010 11 offset
6 5 5 4 3 9
Format: SWE rt, offset (base) microMIPS

404

Purpose: Store Word EVA

To store a word to user mode virtual address space when executing in kernel mode.

Description: memory [GPR [base] + offset] €« GPR[rt]

The least-significant 32-bit word of GPR rt is stored in memory at the location specified by the aligned effective
address. The 9-bit signed offset is added to the contents of GPR base to form the effective address.

The SWE instruction functions the same as the SW instruction, except that address translation is performed using the
user mode virtual address space mapping in the TLB when accessing an address within a memory segment config-
ured to use the MUSUK access mode. Memory segments using UUSK or MUSK access modes are also accessible.
Refer to Volume III, Enhanced Virtual Addressing section for additional information.

Implementation of this instruction is specified by the Config5gy field being set to 1.

Restrictions:

Only usable in kernel mode when accessing an address within a segment configured using UUSK, MUSK or
MUSUK access mode.

Pre-Release 6: The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is
non-zero, an Address Error exception occurs.

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrze-1 .3 || (PAddr, , xor (ReverseEndian || 02))

bytesel ¢« vAddr, , xor (BigEndianCPU || 0?)

datadoubleword ¢ GPRIrtles_ gspytesel..o || g8rbytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)
Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Watch, Reserved Instruction, Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWC1 Store Word from Floating Point

31 26 25 21 20 16 15 0
SWC132
100110 ft base offset
6 5 5 16
SWC1 ft, offset (base) microMIPS

Purpose: Store Word from Floating Point

To store a word from an FPR to memory.

Description: memory [GPR [base] + offset] < FPR[ft]
The low 32-bit word from FPR ft is stored in memory at the location specified by the aligned effective address. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; (# 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Operation:

vAddr ¢ sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

pAddr ¢ pAddrpgrge.1. .3 || (PAddr, , xor (ReverseEndian || 02))
bytesel ¢ vAddr, , xor (BigEndianCPU || 0?)
datadoubleword ¢ ValueFPR(ft, UNINTERPRETED WORD) || o8*Pvtesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 405

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SWC2 Store Word from Coprocessor 2

31 26 25 21 20 16 15 12 11 10 0
POOL32B swc2 | o
001000 it base 1000 0 offset
6 5 5 4 1 11
Format: swc2 rt, offset (base) microMIPS

Purpose: Store Word from Coprocessor 2

To store a word from a COP2 register to memory

Description: memory [GPR [base] + offset] <« CPR[2,rt,0]
The low 32-bit word from COP2 (Coprocessor 2) register It is stored in memory at the location specified by the
aligned effective address. The signed offset is added to the contents of GPR base to form the effective address.

Restrictions:

Pre-Release 6: An Address Error exception occurs if EffectiveAddress; # 0 (not word-aligned).

Release 6 allows hardware to provide address misalignment support in lieu of requiring natural alignment.

Note: The pseudocode is not completely adapted for Release 6 misalignment support as the handling is implementa-
tion dependent.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:

vAddr <« sign extend(offset) + GPR[base]
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, STORE)

pAddr < pAddrpgrze.1. .3 || (pAddr, , xor (ReverseEndian || 07))
bytesel <« vAddr, , xor (BigEndianCPU || 0?)
datadoubleword <« CPRI[2,rt,0]4;3 gspytese1..o || o8rbytesel

StoreMemory (CCA, WORD, datadoubleword, pAddr, vAddr, DATA)

Exceptions:
Coprocessor Unusable, Reserved Instruction, TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

As shown in the instruction drawing above, Release 6 implements an 11-bit offset, whereas all release levels lower
than Release 6 of the MIPS architecture implement a 16-bit offset.

406 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNC Synchronize Shared Memory
31 26 25 16 15 6 5
POOL32A 0 stvpe SYNC POOL32AXf
000000 0000000000 P 0110101101 111100
6 5 5 10 6
Format: SYNC (stype = 0 implied) microMIPS
SYNC stype microMIPS

Purpose: Synchronize Shared Memory

To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

Completion Barriers

Ordering Barriers

Completion Barrier — Simple Description:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Completion Barrier — Detailed Description:

Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined.This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

A completion barrier is required, potentially in conjunction with SSNOP (in Release 1 of the Architecture)
or EHB (in Release 2 of the Architecture), to guarantee that memory reference results are visible across
operating mode changes. For example, a completion barrier is required on some implementations on entry to
and exit from Debug Mode to guarantee that memory effects are handled correctly.

SYNC behavior when the stype field is zero:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 407

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNC

408

Synchronize Shared Memory

A completion barrier that affects preceding loads and stores and subsequent loads and stores.

Ordering Barrier — Simple Description:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Ordering Barrier — Detailed Description:

Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

If any memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That
is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNC

Synchronize Shared Memory

Table 6.31 lists the available completion barrier and ordering barriers behaviors that can be specified using the stype

field.

Table 6.31 Encodings of the Bits[10:6] of the SYNC instruction; the SType Field

Olderinstructions
which must reach

Younger
instructions
which must reach

Olderinstructions
which must be

the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNC 0
0x4 SYNC_WMB Stores Stores Optional
or
SYNC 4
0x10 SYNC _MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11| SYNC ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12| SYNC RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor Spe-
cific Sync Types
0x14 - Ox1F RESERVED Reserved for MIPS
Technologies for
future extension of
the architecture.
Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

409

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNC Synchronize Shared Memory

410

written by the store. The load by B must use the same memory access type as the store.

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent 1/0 module: A coherent I/O module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNC Synchronize Shared Memory

ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not

defined.

Processor A (writer)
Conditions at entry:

The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LT R2, 1
1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures

that DATA 1is not read until after the FLAG value indicates that the shared data is valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the

hardware does not perform the barrier behavior expected by the software, the system may fail.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

411

SYNCI Synchronize Caches to Make Instruction Writes Effective

412

POOL321 SYNCI b et
010000 01100 ¢ otise
6 5 5 16
Format: SYNCI offset (base) microMIPS

Purpose: Synchronize Caches to Make Instruction Writes Effective

To synchronize all caches to make instruction writes effective.

Description:

This instruction is used after a new instruction stream is written to make the new instructions effective relative to an
instruction fetch, when used in conjunction with the SYNC and JALR.HB, JR.HB, or ERET instructions, as
described below. Unlike the CACHE instruction, the SYNCI instruction is available in all operating modes in an
implementation of Release 2 of the architecture.

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used to address the cache line in all caches which may need to be synchronized with the write of
the new instructions. The operation occurs only on the cache line which may contain the effective address. One
SYNCI instruction is required for every cache line that was written. See the Programming Notes below.

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur as a by product of this
instruction. This instruction never causes TLB Modified exceptions nor TLB Refill exceptions with a cause code of
TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit exceptions.

A Cache Error exception may occur as a by product of this instruction. For example, if a writeback operation detects
a cache or bus error during the processing of the operation, that error is reported via a Cache Error exception. Simi-
larly, a Bus Error Exception may occur if a bus operation invoked by this instruction is terminated in an error.

An Address Error Exception (with cause code equal AJEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a SYNCI instruction whose address matches the
Watch register address match conditions.Restrictions:

The operation of the processor is UNPREDICTABLE if the effective address references any instruction cache line
that contains instructions to be executed between the SYNCI and the subsequent JALR.HB, JR.HB, or ERET instruc-
tion required to clear the instruction hazard.

The SYNCI instruction has no effect on cache lines that were previously locked with the CACHE instruction. If cor-
rect software operation depends on the state of a locked line, the CACHE instruction must be used to synchronize the
caches.

Full visibility of the new instruction stream requires execution of a subsequent SYNC instruction, followed by a
JALR.HB, JR.HB, DERET, or ERET instruction. The operation of the processor is UNPREDICTABLE if this
sequence is not followed.

SYNCI globalization:

Release 6: SYNCI globalization (as described below) is required: compliant implementations must globalize SYNCI.
Portable software can rely on this behavior, and use SYNCI rather than expensive “instruction cache shootdown”
using inter-processor interrupts.

Pre-Release 6: portable software could not rely on the optional globalization (see below) of SYNCI meant that
strictly portable software without implementation specific awareness could only rely on expensive “instruction cache
shootdown using inter-processor interrupts.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYNCI Synchronize Caches to Make Instruction Writes Effective

The SYNCI instruction acts on the current processor at a minimum. Implementations are required to affect caches
outside the current processor to perform the operation on the current processor (as might be the case if multiple pro-
cessors share an L2 or L3 cache).

In multiprocessor implementations where instruction caches are coherently maintained by hardware, the SYNCI
instruction should behave as a NOP instruction.

In multiprocessor implementations where instruction caches are not coherently maintained by hardware, the SYNCI
instruction may optionally affect all coherent icaches within the system. If the effective address uses a coherent
Cacheability and Coherency Attribute (CCA), then the operation may be globalized, meaning it is broadcast to all of
the coherent instruction caches within the system. If the effective address does not use one of the coherent CCAs,
there is no broadcast of the SYNCI operation. If multiple levels of caches are to be affected by one SYNCI instruc-
tion, all of the affected cache levels must be processed in the same manner - either all affected cache levels use the
globalized behavior or all affected cache levels use the non-globalized behavior.

Availability and Compatibility

This instruction has been recoded for Release 6.

Operation:
vaddr ¢ GPR[base] + sign_extend(offset)
SynchronizeCacheLines (vaddr) /* Operate on all caches */
Exceptions:

Reserved Instruction Exception (Release 1 implementations only)
TLB Refill Exception

TLB Invalid Exception

Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

When the instruction stream is written, the SYNCI instruction should be used in conjunction with other instructions
to make the newly-written instructions effective. The following example shows a routine which can be called after the
new instruction stream is written to make those changes effective. The SYNCI instruction could be replaced with the
corresponding sequence of CACHE instructions (when access to Coprocessor 0 is available), and that the JR.HB
instruction could be replaced with JALR.HB, ERET, or DERET instructions, as appropriate. A SYNC instruction is
required between the final SYNCI instruction in the loop and the instruction that clears instruction hazards.

/*
* This routine makes changes to the instruction stream effective to the
* hardware. It should be called after the instruction stream is written.
* On return, the new instructions are effective.
*
* Inputs:
* a0 = Start address of new instruction stream
* al = Size, in bytes, of new instruction stream
*/
beq al, zero, 20f /* If size==0, */
nop /* branch around */
addu al, a0, al /* Calculate end address + 1 */
/* (daddu for 64-bit addressing) */
rdhwr vO0, HW SYNCI Step /* Get step size for SYNCI from new */
/* Release 2 instruction */
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 413

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

beqg v0, zero, 20f /* If no caches require synchronization, */
nop /* branch around */

10: synci 0(a0) /* Synchronize all caches around address */
addu a0, a0, vO /* Add step size in delay slot */

/* (daddu for 64-bit addressing) */

sltu v1, a0, al /* Compare current with end address */
bne v1l, zero, 10b /* Branch if more to do */
nop /* branch around */
sync /* Clear memory hazards */

20: jr.hb ra /* Return, clearing instruction hazards */
nop

414 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SYSCALL System Call
31 26 25 16 15
POOL32A q SYSCALL POOL32AXf
000000 code 1000101101 111100
6 10 10 6
Format: syscaLLn microMIPS

Purpose: System Call

To cause a System Call exception.

Description:

A system call exception occurs, immediately and unconditionally transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved by the exception handler only by loading

the contents of the memory word containing the instruction.

Restrictions:

None

Operation:

SignalException (SystemCall)

Exceptions:

System Call

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

415

TEQ Trap if Equal

31 26 25 21 20 16 15 12 11 6 5 0
POOL32A o . q TEQ POOL32AXf
000000 s code 000000 111100
6 5 5 4 6 6
Format: TEQ rs, rt microMIPS

Purpose: Trap if Equal

To compare GPRs and do a conditional trap.

Description: if GPR[rs] = GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is equal to GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.
Restrictions:

None

Operation:

if GPR[rs] = GPR[rt] then
SignalException (Trap)
endif

Exceptions:

Trap

416 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TGE Trap if Greater or Equal
31 26 25 21 20 16 15 12 11 6 5
POOL32A d TGE POOL32AXf
000000 s code 001000 111100
6 5 4 6 6
Format: TGE rs, microMIPS
Purpose: Trap if Greater or Equal
To compare GPRs and do a conditional trap.
Description: if GPR[rs] > GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is greater than or equal to GPR rt, then take
a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, the system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR|[rs]

> GPR([rt]

then

SignalException (Trap)

endif

Exceptions:

Trap

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

417

TGEU Trap if Greater or Equal Unsigned

31 26 25 21 20 16 15 12 11 6 5 0
POOL32A rt q TGEU POOL32AXf
000000 s code 010000 111100
6 5 5 4 6 6
Format: TGEU rs, rt microMIPS

Purpose: Trap if Greater or Equal Unsigned

To compare GPRs and do a conditional trap.

Description: if GPR[rs] > GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers. If GPR rs is greater than or equal to GPR rt, then
take a Trap exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, the system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPRIrs]) = (0 || GPR[rt]) then
SignalException (Trap)
endif
Exceptions:
Trap
418 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBINV TLB Invalidate

31 26 25 16 15 6 5 0
POOL32A TLBINV POOL32Axf
000000 0000000000 0100001101 111100
6 10 10 6
Format: TLBINV microMIPS

Purpose: TLB Invalidate

TLBINYV invalidates a set of TLB entries based on ASID and Index match. The virtual address is ignored in the entry
match. TLB entries which have their G bit set to 1 are not modified.

Implementation of the TLBINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Support for TLBINV is recommend for implementations supporting VTLB/FTLB type of MMU.
Implementation of EntryHIgny field is required for implementation of TLBGINV instruction.

Description:

On execution of the TLBINV instruction, the set of TLB entries with matching ASID are marked invalid, excluding
those TLB entries which have their G bit set to 1.

The EntryHIagp field has to be set to the appropriate ASID value before executing the TLBINV instruction.

Behavior of the TLBINV instruction applies to all applicable TLB entries and is unaffected by the setting of the Wired
register.

* For JTLB-based MMU (Configyt=1):

All matching entries in the JTLB are invalidated. The Index register is unused.

* For VTLB/FTLB -based MMU (Configy1=4):

A TLBINV with thelndex register set in VTLB range causes all matching entries in the VTLB to be invalidated.

A TLBINV with the Index register set in FTLB range causes all matching entries in the single corresponding
FTLB set to be invalidated.

If TLB invalidate walk is implemented in software (Config4g=2), then software must do these steps to flush the
entire MMU:

1. one TLBINV instruction is executed with an index in VTLB range (invalidates all matching VTLB entries)
2. aTLBINV instruction is executed for each FTLB set (invalidates all matching entries in FTLB set)

If TLB invalidate walk is implemented in hardware (Config4;g=3), then software must do these steps to flush the
entire MMU:

1. one TLBINV instruction is executed (invalidates all matching entries in both FTLB & VTLB). In this case,
Index is unused.
Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (For the case of Configy1=4).

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 419

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBINV TLB Invalidate

420

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Availability and Compatibility:

Implementation of the TLBINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Implementation of EntryHIgyny field is required for implementation of TLBINV instruction.

Pre-Release 6, support for TLBINV is recommended for implementations supporting VTLB/FTLB type of MMU.
Release 6 (and subsequent releases) support for TLBINV is required for implementations supporting VTLB/FTLB
type of MMU.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configyt =2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

if (Configyr=1 or (Configy;=4 & Configd;z=2 & Index < Configlyyy srzg-1))
startnum « 0 -
endnum ¢ Configlywy srzE-1
endif -
// treating VTLB and FTLB as one array
if (Configyr=4 & Configd;g=2 & Index > Configlymy s1zE-1)
startnum < start of selected FTLB set // implementation specific
endnum < end of selected FTLB set - 1 //implementation specifc
endif

if (Configyp=4 & Configd;g=3))

startnum < 0

endnum ¢ Configlyyy grze-1 + ((Configdprrpyays + 2) * Configéprrpsets)
endif -

for (i = startnum to endnum)
if (TLBI[i].ASID = EntryHigrp & TLB[i].G = 0)

TLB[ilypnz invalid € 1

endif
endfor

Exceptions:

Coprocessor Unusable

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBINVF TLB Invalidate Flush

31 26 25 16 15 6 5 0
POOL32A TLBINV POOL32Axf
000000 0000000000 0101001101 111100
6 10 10 6
Format: TLBINVF microMIPS

Purpose: TLB Invalidate Flush

TLBINVF invalidates a set of TLB entries based on Index match. The virtual address and ASID are ignored in the
entry match.

Implementation of the TLBINVF instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Support for TLBINVF is recommend for implementations supporting VTLB/FTLB type of MMU.
Implementation of the EntryHIEHINV field is required for implementation of TLBINV and TLBINVF instructions.

Description:
On execution of the TLBINVF instruction, all entries within range of Index are invalidated.

Behavior of the TLBINVF instruction applies to all applicable TLB entries and is unaffected by the setting of the
Wired register.

* For JTLB-based MMU (Configyt=1):

TLBINVF causes all entries in the JTLB to be invalidated. Index is unused.
* For VILB/FTLB-based MMU (Configy1=4):

TLBINVF with Index in VTLB range causes all entries in the VTLB to be invalidated.

TLBINVF with Index in FTLB range causes all entries in the single corresponding set in the FTLB to be invali-
dated.

If TLB invalidate walk is implemented in your software (Config4,g=2), then your software must do these steps to
flush the entire MMU:

1. one TLBINV instruction is executed with an index in VTLB range (invalidates all VTLB entries)
2. a TLBINV instruction is executed for each FTLB set (invalidates all entries in FTLB set)

If TLB invalidate walk is implemented in hardware (Config4|g=3), then software must do these steps to flush the
entire MMU:

1. one TLBINV instruction is executed (invalidates all entries in both FTLB & VTLB). In this case, Index is
unused.
Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (Configd|g=2).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 421

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBINVF TLB Invalidate Flush

Availability and Compatibility:

Implementation of the TLBINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Implementation of EntryHIgy field is required for implementation of TLBINV instruction.

Pre-Release 6, support for TLBINV is recommended for implementations supporting VTLB/FTLB type of MMU.
Release 6 (and subsequent releases) support for TLBINV is required for implementations supporting VTLB/FTLB
type of MMU.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configyt = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

if (Configyr=1 or (Configyr=4 & Configd;p=2 & Index < Configlyyy srzg-1))
startnum < 0 a
endnum ¢ Configlyyy srze-1
endif -
// treating VTLB and FTLB as one array
if (Configyp=4 & Configd;z=2 & Index > Configlyyy s1zE-1)
startnum ¢« start of selected FTLB set // implementation specific
endnum < end of selected FTLB set - 1 //implementation specifc
endif

if (Configyp=4 & Configd;g=3))

startnum < 0

endnum ¢ Configlyyy grze-1 +((Configéprrpyays + 2) * Configéprppgets)
endif -

for (i = startnum to endnum)

TLB[ilypn2 invalia € 1

endfor

Exceptions:

Coprocessor Unusable

422 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBP Probe TLB for Matching Entry
31 26 25 16 15
POOL32A 0 TLBP POOL32AXf
000000 0000000000 0000001101 111100
6 10 10 6
Format: TLBP microMIPS

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The Index register is loaded with the address of the TLB entry whose contents match the contents of the EntryHi reg-
ister. If no TLB entry matches, the high-order bit of the Index register is set.

* InRelease | of the Architecture, it is implementation dependent whether multiple TLB matches are detected on a
TLBP. However, implementations are strongly encouraged to report multiple TLB matches only on a TLB write.

e In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.

* InRelease 3 of the Architecture, multiple TLB matches may be reported on either TLB write or TLB probe.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configyt =2

or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

Index ¢ 1 || UNPREDICTABLE>!
for i in 0 # TLBEntries-1

if ((TLB[ilypyy, and not (TLBI[ilyagk)) =
(EntryHiypy, and not (TLBI[ilyger))) and
(TLB[i]z = EntryHiy) and
((TLB[ilg = 1) or (TLB[ilpagrp = EntryHi,grp)) then
Index < i
endif
endfor
Exceptions:

Coprocessor Unusable, Machine Check

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

423

TLBR Read Indexed TLB Entry

31 26 25 16 15 6 5 0
POOL32A 0 TLBR POOL32AXS
000000 0000000000 0001001101 111100
6 10 10 6
Format: TLBR microMIPS

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The EntryHi, EntryLoO, EntryLol, and PageMask registers are loaded with the contents of the TLB entry pointed
to by the Index register.

* InRelease | of the Architecture, it is implementation dependent whether multiple TLB matches are detected on a
TLBR. However, implementations are strongly encouraged to report multiple TLB matches only on a TLB write.

* In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write.

* InRelease 3 of the Architecture, multiple TLB matches may be detected on a TLBR.

In an implementation supporting TLB entry invalidation (Config4|g = 2 or Config4 g = 3), reading an invalidated
TLB entry causes 0 to be written to EntryHi, EntryLoO, EntryLol registers and the PageMasky,ask register field.
The value written to the EntryHi, EntryLoO, and EntryLo1 registers may be different from the original written value
to the TLB via these registers in that:

* The value returned in the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least-significant bit of VPN2 corresponds to the least-significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

e The value returned in the PFN field of the EntryLoO and EntryLo1 registers may have those bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

¢ The value returned in the G bit in both the EntryLoO and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLoO and EntryLol when
the TLB was written.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configyt = 2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i ¢« Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
if ((Config4;g = 2 or Config4;g = 3) and TLBI[ilypny invalia = 1) then
424 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Pagemasky,gr < 0
EntryHi €« 0
EntryLol < 0
EntryLo0 < 0
EntryHiggyy < 1

else
PageMaskyagr < TLBI[1i]lyask
EntryHi ¢ TLB[i]gp || 0F*%l ||
(TLB[1]ypyz @nd not TLB[ily.ex) || # Masking implem dependent
0° || TLBIilagp
EntryLol ¢ 0F+tl ||
(TLB[i] ppy; and not TLB[ilwaek) || # Masking mplem dependent
TLB[iley || TLBIilp; || TLBIily; || TLBIilg
EntryLo0 < 0Fil ||
(TLB[1] ppyo @nd not TLB[ilu.ex) || # Masking mplem dependent
TLB[ilge || TLBIilpy || TLBIilye || TLBIilg
endif
Exceptions:
Coprocessor Unusable
Machine Check

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

425

TLBWI Write Indexed TLB Entry
31 26 25 16 15 0
POOL32A TLBWI POOL32Axf
000000 0000000000 0010001101 111100
6 10 10 6
Format: TLBWI microMIPS

426

Purpose: Write Indexed TLB Entry

To write or invalidate a TLB entry indexed by the Index register.

Description:

If Configdg < 2 or EntryHigny=0:

The TLB entry pointed to by the Index register is written from the contents of the EntryHi, EntryLoO, EntryLo1,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a
TLBWI. In such an instance, a Machine Check Exception is signaled.

In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. The information
written to the TLB entry may be different from that in the EntryHi, EntryLoO, and EntryLo1 registers, in that:

e The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the
one bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

e The value written to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero correspond-
ing to the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to
the least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or
zeroed during a TLB write.

* The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLoO and EntryLol

registers.

IfCOnfig4|E > 1 and EntryHiEH”\]\/:ll

The TLB entry pointed to by the Index register has its VPN2 field marked as invalid. This causes the entry to be

ignored on TLB matches for memory accesses. No Machine Check is generated.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB

entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configyr = 2

or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i ¢« Index

if (Config4;g = 2 or Config4|g

TLB[ilypn2_invalid
if (EntryHIgyyy=1) then

< 0

then

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLB[ilyenz invalia < 1
break

endif
endif
TLB[ilyasx € PageMaskyagx
TLB[i]ly ¢ EntryHip
TLB [1]ypye, € EntryHiypy, and not PageMasky,g, # Implementation dependent
TLB[i] pqrp € EntryHipgrp
TLB[i]lg < EntryLolg and EntryLoOg
TLB[ilppy; € EntryLolppy and not PageMasky,q # Implementation dependent
TLB[i]ls; ¢ EntryLolg
TLB[i]p; ¢ EntrylLolp
TLB[i]y; ¢ EntryLoly
TLB [i] ppyo € EntryLoOppy and not PageMasky,q # Implementation dependent
TLB[i]l¢y ¢ EntryLoOq
TLB[ilpy, ¢ EntryLoOp
TLB[ily, < EntryLoOy

Exceptions:
Coprocessor Unusable
Machine Check

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 427

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLBWR Write Random TLB Entry

31 26 25 16 15 6 5 0
POOL32A TLBWR POOL32Axf
000000 0000000000 0011001101 111100
6 10 10 6
Format: TLBWR microMIPS

Purpose: Write Random TLB Entry
To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register is written from the contents of the EntryHi, EntryLoO, EntryLol,
and PageMask registers. It is implementation dependent whether multiple TLB matches are detected on a TLBWR.
In such an instance, a Machine Check Exception is signaled.

In Release 2 of the Architecture, multiple TLB matches may only be reported on a TLB write. The information writ-
ten to the TLB entry may be different from that in the EntryHi, EntryLoO, and EntryLo1 registers, in that:

e The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

e The value written to the PFNO and PFNI1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

* The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLoO and EntryLo1 regis-
ters.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6: Processors that include a Block Address Translation (BAT) or Fixed Mapping (FM) MMU (Configy,t =2
or 3), the operation of this instruction causes a Reserved Instruction exception (RI).

Operation:

i < Random
if (Config4;p = 2 or Config4;p = 3) then
TLB[i]VPNZ_invalid < 0
endif
TLB[1i]lyagx € PageMasky,gx
TLB[i]lg ¢ EntryHig
TLB[i]lypyy € EntryHiypy, and not PageMasky,qx # Implementation dependent
TLB[i]agrp € EntryHipgrp
TLB[i]; ¢« EntryLolg and EntryLoOg
TLB[i]lppy1 € EntryLolppy and not PageMasky,qr # Implementation dependent
TLB[i]lc; ¢ EntryLolg
TLB[i]lp; ¢ EntryLolp
TLB[i]y; € EntryLoly
TLB[i]ppyg ¢ EntryLoOpgy and not PageMasky,gx # Implementation dependent
TLB[i]l¢y ¢ EntryLoOc
TLB[i]lpy < EntryLoOp

428 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLB[i]lyo ¢ EntryLoOy

Exceptions:
Coprocessor Unusable

Machine Check

| MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 429

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLT Trap if Less Than

31 26 25 21 20 16 15 12 11 6 5 0
POOL32A rt q TLT POOL32AXf
000000 s code 100000 111100
6 5 5 4 6 6
Format: TLT rs, rt microMIPS

Purpose: Trap if Less Than

To compare GPRs and do a conditional trap.

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is less than GPR rt, then take a Trap excep-
tion.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.
Restrictions:

None

Operation:

if GPR[rs] < GPR[rt] then
SignalException (Trap)
endif

Exceptions:

Trap

430 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TLTU Trap if Less Than Unsigned
31 26 25 21 20 16 15 12 11
POOL32A d TLTU POOL32AXf
000000 s code 101000 111100
6 5 4 6 6
Format: TLTU rs, microMIPS

Purpose: Trap if Less Than Unsigned

To compare GPRs and do a conditional trap.

Description: if GPR[rs] < GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers. If GPR rs is less than GPR rt, then take a Trap

exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.

To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None
Operation:
if (0 || GPRIrs]) < (0 || GPR[rt]) then
SignalException (Trap)
endif
Exceptions:
Trap

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

431

TNE Trap if Not Equal

31 26 25 21 20 16 15 12 11 6 5 0
POOL32A rt q TNE POOL32AXf
000000 s code 110000 111100
6 5 5 4 6 6
Format: TNE rs, rt microMIPS

Purpose: Trap if Not Equal

To compare GPRs and do a conditional trap.

Description: if GPR[rs] # GPR[rt] then Trap

Compare the contents of GPR rs and GPR rt as signed integers. If GPR rs is not equal to GPR rt, then take a Trap
exception.

The contents of the code field are ignored by hardware and may be used to encode information for system software.
To retrieve the information, system software must load the instruction word from memory.

Restrictions:

None

Operation:

if GPR[rs] # GPR[rt] then
SignalException (Trap)
endif

Exceptions:

Trap

432 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point

31 26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 | fmt TRUNC.L POOL32FXf
010101 s 10001100 111011
6 5 5 1 1 8 6

Format: TRUNC.L.fmt
TRUNC.L.S ft, fs microMIPS
TRUNC.L.D ft, fs microMIPS
Purpose: Floating Point Truncate to Long Fixed Point

To convert an FP value to 64-bit fixed point, rounding toward zero.

Description: FPR[ft] < convert and round (FPR[fs])
The value in FPR fs, in format fmt, is converted to a value in 64-bit long-fixed point format and rounded toward zero
(rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 263 t0 263-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation
exception is taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the

default result is 2°>~1. On cores with FCSR.NAN2008=1, the default result is:

e 0 when the input value is NaN

« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for long fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

The result of this instruction is UNPREDICTABLE if the processor is executing in the FR=0 32-bit FPU register
model; it is predictable if executing on a 64-bit FPU in the FR=1 mode, but not with FR=0, and not on a 32-bit FPU.

Operation:

StoreFPR (ft, L, ConvertFmt (ValueFPR(fs, fmt), fmt, L))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Inexact

I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 433

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

434

26 25 22 21 20 16 15 14 13 6 5 0
POOL32F fi f 0 fm TRUNC.W POOL32FXf
010101 s t 10101100 111011
6 5 5 1 1 8 6

Format: TRUNC.W.fmt
TRUNC.W.S ft, fs microMIPS
TRUNC.W.D ft, fs microMIPS
Purpose: Floating Point Truncate to Word Fixed Point

To convert an FP value to 32-bit fixed point, rounding toward zero.

Description: FPR[ft] < convert and round (FPR[fs])

The value in FPR fs, in format fmt, is converted to a value in 32-bit word fixed point format using rounding toward
zero (rounding mode 1). The result is placed in FPR ft.

When the source value is Infinity, NaN, or rounds to an integer outside the range 230 231-1, the result cannot be
represented correctly and an IEEE Invalid Operation condition exists. In this case the Invalid Operation flag is set in
the FCSR. If the Invalid Operation Enable bit is set in the FCSR, no result is written to ft and an Invalid Operation
exception is taken immediately. Otherwise, a default reason is written to ft. On cores with FCSR.NAN2008=0, the

default result is 2°>~1. On cores with FCSR.NAN2008=1, the default result is:

e 0 when the input value is NaN
« 291 when the input value is +00 or rounds to a number larger than 2631

« 2291 when the input value is —00 or rounds to a number smaller than 291

Restrictions:

The fields fs and ft must specify valid FPRs: fs for type fmt and fd for word fixed point. If the fields are not valid, the
result is UNPREDICTABLE.

The operand must be a value in format fmt; if it is not, the result is UNPREDICTABLE and the value of the operand
FPR becomes UNPREDICTABLE.

Operation:

StoreFPR (ft, W, ConvertFmt (ValueFPR(fs, fmt), fmt, W))

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Inexact, Invalid Operation, Unimplemented Operation

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

WAIT Enter Standby Mode
31 26 25 16 15 6 5 0
POOL32A Lol tation-denendent cod WAIT POOL32AXf
000000 mplémentation-acpendent coae 1001001101 111100
6 10 10 6
Format: waIT microMIPS

Purpose: Enter Standby Mode
Wait for Event

Description:

The WAIT instruction performs an implementation-dependent operation, involving a lower power mode. Software
may use the code bits of the instruction to communicate additional information to the processor. The processor may
use this information as control for the lower power mode. A value of zero for code bits is the default and must be
valid in all implementations.

The WAIT instruction is implemented by stalling the pipeline at the completion of the instruction and entering a
lower power mode. The pipeline is restarted when an external event, such as an interrupt or external request occurs,
and execution continues with the instruction following the WAIT instruction. It is implementation-dependent whether
the pipeline restarts when a non-enabled interrupt is requested. In this case, software must poll for the cause of the
restart. The assertion of any reset or NMI must restart the pipeline and the corresponding exception must be taken.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).
Restrictions:

Pre-Release 6: The operation of the processor is UNDEFINED if a WAIT instruction is executed in the delay slot of
a branch or jump instruction.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

I: Enter implementation dependent lower power mode
I+1l:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 435

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

WRPGPR Write to GPR in Previous Shadow Set

436

31 26 25 21 20 16 15 6 5 0
POOL32A ot c WRPGPR POOL32AXS
000000 s 1111000101 111100
6 5 5 10 6
Format: WRPGPR rt, rs microMIPS

Purpose: Write to GPR in Previous Shadow Set

To move the contents of a current GPR to a GPR in the previous shadow set.

Description: SGPR[SRSCtlpgg, rt] ¢ GPRI[rs]

The contents of the current GPR rs is moved to the shadow GPR register specified by SRSCtlpgg (signifying the pre-
vious shadow set number) and rt (specifying the register number within that set).

Restrictions:

In implementations prior to Release 2 of the Architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

Operation:

SGPR [SRSCtlpgg, rt] € GPR[rs]

Exceptions:
Coprocessor Unusable

Reserved Instruction

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

WSBH Word Swap Bytes Within Halfwords

31 26 25 21 20 16 15 6 5 0
POOL32A ot c WSBH POOL32AXS
000000 s 0111101100 111100
6 5 5 10 6
Format: WwWsSBH rt, rs microMIPS

Purpose: Word Swap Bytes Within Halfwords
To swap the bytes within each halfword of GPR rs and store the value into GPR rt.

Description: GPR[rt] < SwapBytesWithinHalfwords (GPR[rs])

Within each halfword of the lower word of GPR rs the bytes are swapped, the result is sign-extended, and stored in
GPR rt.

Restrictions:

In implementations prior to Release 2 of the architecture, this instruction resulted in a Reserved Instruction Excep-
tion.

If GPR r does not contain a sign-extended 32-bit value (bits 63..31 equal), then the result of the operation is UNPRE-
DICTABLE.
Operation:

if NotWordValue (GPR[rt]) then
UNPREDICTABLE
endif
GPR[rt] <« sign extend(GPRI[rl,3 16 || GPRIrlsq. o4 || GPRIrl, o || GPRIrl ;s)

Exceptions:

Reserved Instruction

Programming Notes:

The WSBH instruction can be used to convert halfword and word data of one endianness to another endianness. The
endianness of a word value can be converted using the following sequence:

1w to, 0(al) /* Read word value */
wsbh t0, tO /* Convert endiannes of the halfwords */
rotr to, to, 16 /* Swap the halfwords within the words */

Combined with SEH and SRA, two contiguous halfwords can be loaded from memory, have their endianness con-
verted, and be sign-extended into two word values in four instructions. For example:

1w to, 0(al) /* Read two contiguous halfwords */
wsbh t0, tO /* Convert endiannes of the halfwords */
seh tl, toO /* tl = lower halfword sign-extended to word */
sra to, to, 16 /* t0 = upper halfword sign-extended to word */
Zero-extended words can be created by changing the SEH and SRA instructions to ANDI and SRL instructions,
respectively.
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 437

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31 26 25 21 20 16 15 11 10 9 0
POOL32A o q 0 XOR
000000 s : 1100010000
6 5 5 5 1 10
Format: XOR rd, rs, rt microMIPS

Purpose: Exclusive OR

To do a bitwise logical Exclusive OR.

Description: GPR[rd] ¢ GPR[rs] XOR GPR[rt]

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and place the result into

GPR rd.

Restrictions:

None

Operation:

GPR [rd]

Exceptions:

None

438

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

< GPR[rs] xor GPR|[rt]

MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

XORI Exclusive OR Immediate
31 26 25 21 20 16 15 0
XORI32 . .
011100 rt s immediate
6 5 5 16
Format: XORI rt, rs, immediate microMIPS

Purpose: Exclusive OR Immediate

To do a bitwise logical Exclusive OR with a constant.

Description: GPR[rt] ¢ GPR[rs] XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result into GPR rt.

Restrictions:

None

Operation:

GPR[rt] €« GPR[rs] xor zero_ extend(immediate)

Exceptions:

None

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

439

440 MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 7

Opcode Map

This chapter defines the bit-level encoding of all microMIPS64 instructions, using a series of opcode tables. The
basic format of the tables is shown in Figure 7.1. The topmost row contains the high-order opcode bits (in the exam-
ple table shown here, bits 31..29), and the left-most column of the table lists the next most-significant bits of the
opcode field (bits 28..26). Decimal and binary values are shown for both rows and columns.

An instruction’s encoding is the value at the intersection of a row and column. For example, the opcode value for the
instruction EX1 is 33 (decimal) or 011011 (binary). Similarly, the opcode value for EX2 is 64 (decimal), or 110100

(binary).

Figure 7.1 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode 18 1t immediate
I

6 5 5 16

Binary encoding of
‘ opcode (31..29)

/ Decimal encoding of
* opcode (31..29)

opcode MSB..MSB-2 \

)
0 1 2 3 4 5 6 7
y

MSB-3..
.MSB-5 000 001 010 011 100 101 110 m

000
001
010
011 EX1
100
101
110 EX2
111

Nl o o] M| W[N] R O

Binary encoding of
Decimal encoding of opcode (28..26)
opcode (28..26)

7.1 Major Opcodes
Table 7.2 defines the major opcode for each instruction. The symbols used in the table are described in Table 7.1.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 441

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Opcode Map

442

Every major opcode name starting with “POOL” requires a minor opcode, as defined in Section 7.2 “Minor
Opcodes”. All other major opcodes refer to a particular instruction.

Release 6 introduces additional nomenclature to the opcode tables for Release 6 instructions. For new instructions,
bits 31:26 are generically named POPXY where X is the row number, and Y is the column number. This convention is
extended to sub-opcode tables, except bits 5:0 are generically named SOPXY where X is the row number, and Y is the
column number. This naming convention is applied where a specific encoded value are shared by multiple instruc-
tions.

In the opcode tables, MSB denotes either bit 15 or 31 , depending on instruction size.

Table 7.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values
for another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level or a new revision of the Architecture. Executing such an instruction must cause
a Reserved Instruction Exception.

L Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing with 64-bit operations enabled, execution proceeds normally. In other cases, executing
such an instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is not
allowed).

\% Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
are legal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or coprocessor
instruction encodings for a coprocessor to which access is allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which access is not allowed).

A Instructions formerly marked V in some earlier versions of manuals, corrected and marked A in
revision 5.03. Legal on MIPS64r1 but not MIPS32r1; in release 2 and above, legal in both
MIPS64 and MIPS32, in particular even when running in “32-bit FPU Register File mode”,
FR=0, as well as FR=1.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved Instruction Exception
(SPECIAL2 encodings or coprocessor instruction encodings for a coprocessor to which access is
allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a copro-
cessor to which access is not allowed).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

7.2 Minor Opcodes

Table 7.1 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol

Meaning

(o2

Field codes marked with this symbol represent an EJTAG support instruction and implementa-
tion of this encoding is optional for each implementation. If the encoding is not implemented,
executing such an instruction must cause a Reserved Instruction Exception. If the encoding is

implemented, it must match the instruction encoding as shown in the table.

Operation or field codes marked with this symbol are reserved for MIPS Application-Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved

Instruction Exception.

Table 7.2 microMIPS64 Encoding of Major Opcode Field

Major | MSB..MSB-2
0 1 2 3 4 5 6 7
MSB-3..
MSB-5 000 001 010 011 100 101 110 111
BLEZALC/ | BGTZALC/
BGEZALC/ | BLTZALC
0 | 000 | POOL32AS | POOL32BS | POOL32i5 | POOL32C 5 | BEQZCAMIC |BNEZCMIALC| BGEUC BLTUC
1 | 001 | PoOL16AS | POOL16B S | POOL16C 5 LWGP POOL16F * * *
2 | o10 LBU16 LHU16 LWSP16 LW16 SB16 SH16 SWSP16 SW16
3 | o112 | MovEle ANDI16 | POOL16D & | POOLI6ES | BEQZC16 | BNEZCI16 BC16 LI16
4 | 100 | AulLUI ADDIU32 ORI32 XORI32 SLTI32 SLTIU32 ANDI32 DAUI
BOVC/ BGTZC/ BLEZC/
BEQZALC/ BLTZC/ BGEZC/
5 | 101 LBU32 LHU32 POOL32F 5 BEQC BC BALC BLTC BGEC
ADDIUPC/
AUIPC
ALUIPC/
LDPC/
LWPC/
6 | 110 SB32 SH32 POOL32S3S | LWUPC SWC132 SDC132 SD32 L Sw32
BNVC/
BNEZALC/
7 | 11 LB32 LH32 DADDIU32 1 BNEC LWC132 LDC132 LD32 L LW32
Examples:

1. The 32-bit instruction LW32 is assigned to the major opcode LW32 with the encoding “111111”.

2. The 16-bit instruction SUBU16 is assigned to the major opcode POOL16A with the encoding “000001”.

7.2

Minor Opcodes

While major opcodes have a fixed length of 6 bits, minor opcodes are variable in length. The minor opcodes are
defined by opcode tables of one, two, or three dimensions, depending on the size of the opcode. Minor opcodes less
than four bits are represented in a one-dimensional table (see Table 7.15), from four to six bits in a two-dimensional
table (shown in Figure 7.1 and Table 7.9), and from 7 to 10 bits in a three-dimensional table (Table 7.4). In a three-
dimensional table, the two-dimensional table is expanded to include a column on the right side that encodes the extra
bits. In the case of minor opcodes requiring multiple table cells, the instruction name appears in all cells, but the addi-
tional entries have a black background to indicate that this opcode is blocked (see Table 7.4 and the legend shown in
Table 7.3).

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

443

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Opcode Map

Example:
SRL rl, rl, 7 binary opcode fields: 000000 00001 00001 00111 00001 000O0O0O
interpretation: POOL32A rl rl 7 SRL
hex representation: 0021 3840

All minor opcode fields are right-aligned except those in 16-bit instructions and in 32-bit instructions with a 16-bit
immediate field. These left-aligned fields are defined in a bit-reverse order, which is why, in order to accommodate
the variable length of the field to the right, a given row and column in POOL32I represents bit 20..22 and 23..25
instead of bit 22..20 and 25..23.

If table entries are marked grey, then not all available bits of the instruction have been used for the encoding, leaving

a field of empty bits. The empty bits are shown in the instruction tables in Chapter 5, “microMIPS Instruction Set” on
page 55.

Table 7.3 Legend for Minor Opcode Tables

Symbol Meaning

OPCODE Occupied by Opcode

Space Utilized by another Opcode

Table 7.4 POOL32A Encoding of Minor Opcode Field

’W bit 5..3
0 1 2 3 4 5 6 7
bit 2..0 000 001 010 o011 100 101 110 111
bit 9..6

0 | 000 SLL32 * SLLV MUL * * * * 0000 | O
0 | 000 SRL32 * SRLV MUH * * * * 0001 | 1
0 | 000 SRA * SRAV MULU * * * * 0010 | 2
0 | 000 ROTR * ROTRV MUHU * * * * 0011 | 3
0 | 000 * * ADD DIV * * * * 0100 | 4
0 | 000 SELEQZ * ADDU32 MOD * * * * 0101 | 5
0 | 000 SELNEZ * SuB DIVU * * * * 0110 | 6
0 | 000 RDHWR * SUBU32 MODU * * * * o1 | 7
0 | 000 * * * * * * * * 1000 | 8
0 | 000 * * AND * * * * * 1001 | 9
0 | 000 * * OR32 * * * * * 1010 | a
0 | 000 * * NOR * * * * * 1011 | b
0 | 000 * * XOR32 * * * * * 1100 | ¢
0 | 000 * * SLT * * * * * 1101 | d
0 | 000 * * SLTU * * * * * 1110 | e
0 | 000 * * * * * * * * 111 | f

| 1 | 001 | SPECIAL26 | SPECIAL2 6 SPECIAL2 6 | SPECIAL26 | SPECIAL26 | SPECIAL26 | SPECIAL26 | SPECIAL2 6

"
444 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

7.2 Minor Opcodes

Table 7.4 POOL32A Encoding of Minor Opcode Field (Continued)

| 2 | 010 | CoP2 6 | coP2 6 | COoP2 0 | COP2 0 | COP20 | coP2 6 | coP2 0 | COoP2 0 |
[3]ou] woe [woio] ubIe | ube | ubie [woie [ubie [uble |
[4 [200] ’ [ows - | [+ [et [* [rooeaxs|
o] e [e | & | | I | = |
D
I e S A S N N N

Not Shown

SLL 10, 10, r0 = NOP
SLL 10, 10, 1 = SSNOP
SLL 10, 10, 3 = EHB

SLL, 10, 10, 5 = PAUSE

Table 7.5 POOL32Axf Encoding of Minor Opcode Extension Field

m bit 11..9
bit 8..6 0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111
| 0 | 000 | TEQ | TGE | TGEU | * | TLT TLTU | TNE *
o] ¢ | = | - | s | = R :
‘ 2 ‘ 010 | € ‘ € ‘ € | € ‘ € € ‘ € €
[SToa] weo [wis [[

bit15..12

4 | 100 g £ * * * BITSWAP * JALRC 0000
4 | 100 g £ * * * * * JALRC.HB | 0001
4 | 100 g * * * * SEB * * 0010
4 | 100 g * * * * SEH * * 0011
4 | 100 g * * * * cLo MFC2 * 0100
4 | 100 g * * * * cLz MTC2 * 0101
4 | 100 g * * * * * DMFC2 * 0110
4 | 100 g £ * * * WSBH DMTC2 * 0111
4 | 100 * * * * * MFHC2 * 1000
4 | 100 g £ * * * * MTHC2 * 1001
4 | 100 * * * * * * * 1010
4 | 100 g £ * * * * * * 1011
4 | 100 * * * * * * CFC2 * 1100
4 | 100 g g * * * * cTe? * 1101

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

445

Opcode Map

Table 7.5 POOL32Axf Encoding of Minor Opcode Extension Field (Continued)

4 | 100 * * * * * * * * 1110 | e
4 | 100 € * * * * * * * 11 | f
bit15..12
5 | 101 * TLBP € * * * * * 0000 | O
5 | 101 * TLBR € * * * * * 0001 |1
5 | 101 * TLBWI € * * * * * 0010 | 2
5 | 101 * TLBWR € * * * * * 0011 | 3
5 | 101 * * * DI * * * * 0100 | 4
5 | 101 * * * El * * * * 0101 | 5
5 | 101 * * * * * SYNC * * 0110 | 6
5 | 101 * * * * * * * * o1 | 7
5 | 101 * * * * * SYSCALL * * 1000 | 8
5 | 101 * WAIT * * * * * * 1001 | 9
5 | 101 * * * * * * * * 1010 | a
5 | 101 * * * * * * * * 1011 | b
5 | 101 * * * * * * * * 1100 | ¢
5 | 101 * € * * * SDBBP * * 1101 | d
5 | 101 | RDPGPR DERET * * * * * * 1110 | e
101 | WRPGPR ERET * * * * * * 11 | f
‘ 6 ‘ 110 | € g * * g ‘ « . ‘ . ‘
‘ 7 ‘ m | € € € * * ‘ * * ‘ * ‘
Not Shown: JR = JALR r0
Table 7.6 POOL32F Encoding of Minor Opcode Field
’W bit 5..3
0 1 2 3 4 5 6 7
bit 2..0 000 001 010 011 100 101 110 111
bit 8..6
0 | 000 * * * € RINT.fmt * ADD.fmt | SELEQZ.fmt | 000 | O
0 | 000 * * * € CLASS.fmt * SUB.fmt | SELNEZfmt | 001 | 1
0 | 000 * * * € * * MUL.fmt SEL.fmt 010 | 2
0 | 000 * * * € * * DIV.fmt * 011 |3
0 | 000 * * * * * ADD.fmt 100 | 4
0 | 000 * * * * * SUB.fmt 101 |5
0| 000 | CVTPSSV * * * * * MUL.fmt MADDF.fmt | 110 | 6
0 | 000 * * * * * * DIV.fmt MSUBFfmt | 111 | 7
| 1 | 001 | " " " " " " " "
446 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 7.6 POOL32F Encoding of Minor Opcode Field (Continued)

7.2 Minor Opcodes

2 010 * * * * * * * *
[2][] | | | | | | | |
| 3 | 011 | MIN.fmt | MAX.fmt | * | * | * | MAXA. fmt | * |POOL32Fxf8|
o - [-~ | - [e« [-~ [-] -~ [- |
| 5 | 101 | COMP.cond.S | * | CMP.cond.D | * | * | * | * | * |
11 * * * * * * * *
[6] uo] | | | | | | | |
7 110 * * * * * * * *
[7 [uo] | | | | | | | |
Table 7.7 POOL32Fxf Encoding of Minor Opcode Extension Field
Extension bit10..8
0 1 2 3 4 5 6 7
bit 7..6 000 001 010 o011 100 101 110 111
bit
13.11
0| oo * CVT.LMmtV | RSQRT.fmt A | FLOOR.L.fmt V * * * € 000 | O
0| 00 * CVT.W.fmt SQRT.fmt | FLOOR.W.fmt * * * € 001 |1
0| 00 CFC1 * RECIPfmtA | CEILL.fmtV * * * « 010 | 2
0| o0 cTCl * * CEIL.W.fmt * * * * o11 |3
0| 00 MFC1 * * TRUNC.LfmtV | DMFC1 * * 100 | 4
0| oo MTC1 * * TRUNC.W.fmt DMTC1 * * * 101 |5
0| oo MFHC1 V * * ROUND.L.fmt V * * * 110 | 6
0| 00 MTHC1 V * * ROUND.W.fmt * * * * m |7
bit
12.11
1| o1 MOV.fmt MOVF * ABS.fmt * * * € 0 |0
1| o1 * MOVT * NEG.fmt * * * * 01 |1
1| o1 * * * CVT.D.fmt * * * € 10 |2
1| o1 * * * CVT.S.fmt * * * * 1 |3
2 10 * * * * * * * *
[2] w0] | | | |
3 ll * * * * * * * *
BN | | | |
MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 447

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Opcode Map

Table 7.8 POOL32B Encoding of Minor Opcode Field

448

’W bit 15

0 1
bit 14.12 0 1
0 | 000 Lwc2 swcz
1 001 LWP SWP
2 010 LDC2 L SDC2 L
3| on g €
4 100 LDP L SDP L
5 101 LWM32 SWM32
6 110 CACHE *
7 111 LDM L SDM L

Table 7.9 POOL32C Encoding of Minor Opcode Field

’W bit 15
bit 14..12 0 1
o | ooo * *
1 | oo1 LLX Scx
2 | o10 PREF ST-EVA S
3 | on LL sC
4 | 100 * *
5 | 101 LLDX SCDX
6 | 110 | LD-EVAS LWU
7 | LLD ScD

Table 7.10 LD-EVA Encoding of Minor Opcode Field

Minor

bit 11..9

0 | 000 LBUE
1 | 001 LHUE
2 | 010 LLXE
3 | o1l *

4 | 100 LBE

5 | 101 LHE

6 | 110 LLE

7 | 111 LWE

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 7.11 ST-EVA Encoding of Minor Opcode Field

bit 11..9

0 | 000 SCXE
1 | 001 *

2 | 010 PREFE
3 | o1l CACHEE
4 | 100 SBE

5 | 101 SHE

6 | 110 SCE

7 | 111 SWE

Table 7.12 POOL32I Encoding of Minor Opcode Field

Minor bit 22..21
0 1 2 3
bit 25..23 00 01 10 11
0	000	BNZ.df	BNZ.df	BNZ.df	BNZ.df
1	001	BZ.df	BZ.df	BZ.df	BZ.df
2	010	BC1EQZ	BCINEZC	BC2EQZC	BC2NEZC
‘ 3 ‘ 011 ‘ SYNCI ‘ * ‘ g	€ ‘				
4	100	DATI*	DAHI*	BNZ.V	BZ.V
(s -~ [- [= 1 = |
lefw] - [- [& [& |
bit16
7] 1 * * * * 0
7 | 111 g £ € € 1

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

7.2 Minor Opcodes

449

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Opcode Map

Table 7.13 POOL32S Encoding of Minor Opcode Field

Minor bit 5..3
0 1 2 3 4 5 6 7
bit 2..0 000 001 010 o011 100 101 110 111
bit 8..6
o | ooo DSLL DSLL32 DSLLV DMUL * * * * * 000 | 0O
o | ooo DSRL DSRL32 DSRLV DMUH * * * * * 001 |1
0 | ooo DSRA DSRA32 DSRAV DMULU * * * * * 010 | 2
o | ooo DROTR DROTR32 DROTRV DMUHU * * * * * o011 |3
0 | ooo DLSA * * DADD * DDIV * * * * * 100 | 4
0 | ooo * * DADDU * DMOD * * * * * 101 | 5
0 | ooo * * DSUB DDIVU * * * * * 10 | 6
0 | ooo * * DSUBU DMODU * * * * * 1 |7
‘ 1 ‘ 001 | € | € | € | € € ‘ € ‘ € | t ‘
‘ 2 ‘ 010 | € | € | S | S e | e | P | P ‘
lafou] - | - [&] s e | s | e] e |
| 4 | 100 | DINSM | DINS | DEXTU | DALIGN | DEXTM | DEXT | DINSU |POOL3ZSxf8|
o] | = | s | = : [- | = [|
BEI I ' - e N
HENE ' - N R
Table 7.14 POOL32Sxf Encoding of Minor Opcode Extension Field
Extension bit 11..9
bit 8..6 0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
lofoof - [- [- S i e |
‘ 1 ‘ 001 | * ‘ € ‘ € € ‘ £ S ‘ S S ‘
‘ 2 ‘ 010 | € ‘ € ‘ &€ € ‘ S &€ ‘ € i ‘
| 3 | 011 | DMFCO | DMTCO | * * DMFCO DMTCO * * |
bit15..12
4 | 100 € € * * * DBITSWAP * * * 0000 | O
4 | 100 € € * * * * * * 0001 | 1
4 | 100 € € * * * * * * 0010 | 2

450

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

7.2 Minor Opcodes

Table 7.14 POOL32Sxf Encoding of Minor Opcode Extension Field (Continued)

4 | 100 * * * * * * * * o011 | 3
4 | 100 € * * * * DCLO * * 0100 | 4
4 | 100 € € € * * DCLZ * * 0101 | 5
4 | 100 € € € * * * * 0110 | 6
4 | 100 € € * * * DSBH * om1 |7
4 | 100 * * * * * * * * 1000 | 8
4 | 100 € € * * * * * * 1001 | 9
4 | 100 * * * * * * * * 1010 | a
4 | 100 € € * * * * * * 1011 | b
4 | 100 * * * * * * * * 1100 | ¢
4 | 100 € € * * * * * * 1101 | d
4 | 100 * * * * * * * * 1110 | e
4 | 100 € * * * * DSHD * * m | f

peef - ¢ - r - r - r-r- - Jr-/|
lefwf = [= | - [- - [- - [- |
B2 N I R I T R N R .
Table 7.15 POOL16A Encoding of Minor Opcode Field
bit 0
0| ADDU16
1| SuBuie
Table 7.16 POOL16B Encoding of Minor Opcode Field
bit 0
0 SLL16
1| SRL16
I MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set, Revision 6.02 451

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Opcode Map

Table 7.17 POOL16C Encoding of Minor Opcode Field

| Minor | bit6.4
0 1 2 3 4 5 6 7

bit9..7 000 001 010 011 100 101 110 111
B
[T [
BT
[+ [ou [o
| 4] 100 wmovep _ MOVEP | MOVEP | MOVEP - MOVEP | MOVEP |
| 5 | 101 | MOVEP | MOVEP | MOVEP | MOVEP | MOVEP | MOVEP | MOVEP | MOVEP |
[6] 10] wmovep _ MOVEP [MOVEP | MOVEP | MOVEP [MOVEP [MOVEP |
|7] | wmover | wmover | wmovePr | MoveP | MOVEP | MOVEP | MOVEP | MOVEP |

For Release 6:

¢ NOTI16, AND16, XOR16, OR16, LWM16, SWM16, and BREAK16, and SDBBP16 instructions have been
repositioned in POOL16C and are not shown in the above table.

* JRADDIUSP has been converted to JRCADDIUSP and repositioned in POOL16C.

e MOVEP has moved from POOL16F to POOL16C.

Table 7.18 POOL16D Encoding of Minor Opcode Field

bit 0

0 ADDIUS5
1 ADDIUSP

Table 7.19 POOL16E Encoding of Minor Opcode Field

bit 0

0 ADDIUR2
1 | ADDIURLISP

452 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

7.3 Floating Point Unit Instruction Format Encodings

Table 7.20 POOL16F Encoding of Minor Opcode Field

bit 0

0 *
1 *

7.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section.

If the instruction allows Single, Double and Pair-Single formats, the following encoding is used:

Table 7.21 Floating Point Unit Format Encodings - S, D, PS

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 D Double 64 Floating
Point
2 2 PS Paired Sin- 2x32 Floating
gle Point
3 3 Reserved for future use by the architecture.

If the instruction only allows Single and Double formats, the following encoding is used:

Table 7.22 Floating Point Unit Format Encodings - S, D 1-bit

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 D Double 64 Floating
Point

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

453

Opcode Map

Table 7.23 Floating Point Unit Instruction Format Encodings - S, D 2-bits

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 D Double 64 Floating
Point
2,3 2,3 Reserved for future use by the architecture.

If the instruction allows Single, Word and Long formats, the following encoding is used:

Table 7.24 Floating Point Unit Format Encodings - S, W, L

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 S Single 32 Floating
Point
1 1 W Word 32 Integer
2 2 L Long 64 Integer
3 3 Reserved for future use by the architecture.

If the instruction allows Double, Word and Long formats, the following encoding is used:

454

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 7.25 Floating Point Unit Format Encodings - D, W, L

fmt field
Decimal Hex Mnemonic Name Bit Width Data Type
0 0 D Double 64 Floating
Point
1 1 w Word 32 Integer
2 2 L Long 64 Integer
3 3 Reserved for future use by the architecture.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Chapter 8

Compatibility

This chapter covers various aspects of compatibility. microMIPS64 is the preferred replacement for the existing
MIPS16e ASE and uses the same mode-switch mechanism. Although microMIPS includes almost all MIPS64
instructions and therefore does not require the original MIPS64 encodings, initially it will be implemented together
with MIPS64-encoded instruction execution.

8.1 Assembly-Level Compatibility

microMIPS64 includes a re-encoding of the MIPS64 instructions, including all ASEs and UDI space. Therefore,
microMIPS provides assembly-level compatibility. Only the following cases cause some side effects:

Re-encoded MIPS64 instructions with reduced operand fields
There are 3 classes of reduced fields:

1. Reserved or unsupported bits and encodings. This category is not a problem because utilizing a reserved or
unsupported field causes an exception, no operation, or undefined behavior, and often these cannot be
accessed by the compiler anyway. An example of this category is the ‘fmt’ field.

2. Bitfields and ranges which are defined but typically never used. This category is usually not a problem. The
assembler generates an error message if a constant is outside of the re-defined range.

3. Bit fields which are used but were reduced in order to utilize the new opcode map most efficiently. The han-
dling of these cases is similar to category 2 above—compilers do not generate such scenarios, and assem-
blers generate error messages. In the latter case, the programmer has to either fix the code or switch to the
MIPS64 encoding.

Re-encoded Branch and Jump instructions

Branch instructions support 16-bit aligned branch target addresses, providing full flexibility for microMIPS.
Because the offset field size of the 32-bit encoded branch instructions is the same as the MIPS64-encoded
instructions, and because all branch target addresses of the MIPS64 encoding are 32-bit aligned, the branch range
in microMIPS is smaller. This is partially compensated by the smaller code size of microMIPS.

Jump instructions also support 16-bit aligned target addresses. This reduces the addressable target region for J,
JAL to 128 MB instead of 256 MB. For these instructions, the effective target address is in the ‘current’ 128 MB-
aligned region. For larger ranges, the jump register instructions (JR, JRC, and JRADDIUSP) can be used.

MIPS64 assembly instructions manually encoded using the .WORD directive
Manual encoding of MIPS64 assembly instructions can be used in assembly code as well as assembly macros in

C functions. To differentiate between microMIPS-encoded instructions and other encoded instructions or data,
the following compiler directives have been introduced:

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 455

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Compatibility

.set micromips ; lnstruction stream is microMIPS

.set nomicromips ; instruction stream is MIPS64

.insn ; If in microMIPS instruction stream mode, the location associated
; with the previous label is aligned to 16-bit bits instead of
; 32-bits

; If in microMIPS instruction stream mode and if the previous
; label is loaded to a register as the target of a jump or branch,
; the ISAMode bit is set within the branch/jump register value.

The programmer must use these directives to encode instructions in microMIPS.

For example, to manually encode a microMIPS NOP:
.set micromips

labell:

.insn

.word O ; labell location - represents microMIPS NOP32 instruction
label2:

.insn

.half 0x0c00 ; label2 location - represents microMIPS NOP1lé instruction
label3:

.half 0x0c00 ; label3 location - represents data value of 3072 (decimal)

To manually encode a MIPS64 NOP:

.set nomicromips
.word O ; represents MIPS64 NOP instruction

For MIPS64 instruction stream mode, the “.insn” directive has no effect.

* Branch likely instructions

microMIPS does not support branch likely instructions in hardware. Assembly-level compatibility is maintained
because assemblers replace branch likely instructions either by an instruction sequence or by a regular branch
instruction, and they perform some instruction reordering if reordering is possible.

8.2 ABI Compatibility

456

microMIPS is compatible with the existing ABIs 032, n32, and n64 calling conventions. However, a few new reloca-
tion types need to be added to these ABIs for microMIPS support, as some of the additional offset field sizes required
for microMIPS become visible to the linker. For example, the offset fields of J and SW using GP are visible to the
linker, while B and SWSP are hidden within the object files.

Functions remain 32-bit aligned as in the MIPS64 encoding as well as MIPS16e. This guarantees that static and
dynamic linking processes can link microMIPS object files with MIPS64 object files.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

8.3 Branch and Jump Offsets

Programs can be composed of both microMIPS and MIPS64 modules, using either the JALX instructions (and/or JR
instructions with setting the ISAMode bit appropriately) to switch instruction set modes when calling routines com-
piled in an ISA different from that of the caller routine.

microMIPS provides flexibility for potential future ABIs.
8.3 Branch and Jump Offsets

microMIPS branch targets are half-word (16-bit) aligned to match half-word sized instructions. Please refer to
Section 2.5, "Branch and Jump Offsets."

8.4 Relocation Types

Compiler and linker toolchains need to be modified with new relocation types to support microMIPS. Reasons for
these new relocation types include:

1. The placement of instruction halfwords is determined by memory endianness. MIPS64 instructions are always of
word size, so there were no halfword placement issues.

2. microMIPS has 7-bit, 10-bit and 16-bit PC-relative offsets.

3. Branch and Jump offset fields are left-shifted by 1 bit (instead of 2 bits in MIPS64) to create effective target
addresses.

4. Some code-size optimizations can only be done at link time instead of compile time. Some new relocation types
are used solely within the linker to keep track of address and data information.

8.5 Boot-up Code shared between microMIPS64 and MIPS64

In some systems, it would be advantageous to place both microMIPS64 and MIPS64 executables in the same boot
memory. In that way, a single system could be used for either instruction set.

To enable this, a binary code sequence is required that can be run in either instruction set and change code paths
depending on the instruction set that is being used.

The following binary sequence achieves this goal:

0x1000wxyz // where w,x,y,z represent hexadecimal digits
0x00000000

For the MIPS64 instruction set, this binary sequence is interpreted as:
BEQ $0, $0, wxyz // branch to location of more MIPS64 instructions
NOP

For the microMIPS instruction set, this binary sequence is interpreted as:

ADDI32 $0, $0, wxyz // do nothing
NOP // fall through to more microMIPS instructions

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 457

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Compatibility

8.6 Coprocessor Unusable Behavior

When a coprocessor instruction is executed when the associated coprocessor has not been implemented, it is allowed
for the RI exception to be signalled instead of the Coprocessor Unusable exception. Please refer to Section 2.6,
"Coprocessor Unusable Behavior."

8.7 Other Issues Affecting Software and Compatibility

microMIPS instructions can cross cache lines and page boundaries. Hardware must handle these cases so that soft-
ware need not avoid them. Since MIPS64 requires instructions to be 32-bit aligned, there is no forward compatibility
issue when transitioning to microMIPS.

458 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Appendix C

References

This appendix lists other publications available from Imagination Technologies, some of which are referenced else-
where in this document. They may be included in the SMIPS HOME/S$SMIPS CORE/doc area of a typical soft or
hard core release, or in some cases may be available on the MIPS web site, http://www.imgtec.com.

* MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS64® Architecture

* MIPS® Architecture For Programmers, Volume II: The MIPS64® Instruction Set

* MIPS® Architecture For Programmers, Volume III: The MIPS64® and microMIPS64™ Privileged Resource
Architecture

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02 459

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

http://www.mimgtec.com

References

460 MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Appendix D

Revision History

Revision Date Description

1.08 November 25, 2009 Clean-up for external release.

1.09 January 7, 2010 Added shared boot-up code sequence in Compatibility Chapter.

3.00 March 25, 2010 Changed document revision numbering to match other Release 3 documents.
Hopefully this will be less confusing.

Moved MIPS32/64 version of JALX to Volume II-A.

3.01 October 30, 2010 User mode instructions not allowed to product UNDEFINED results.
Updated copyright page.

Removed Margin Note - “Preliminary - Subject to Change” in some chap-
ters.

3.02 December 6, 2010 POOL32Sxf binary encoding was incorrect for individual instruction
description pages.

3.03 December 10, 2010 microMIPS AFP versions security reclassification.

3.04 March 21, 2011 RSQRT/RECIP does not need 64-bit FPU.
MADD.fmt/NMADD.fmt/MSUB.fmt/NMSUB.fmt psuedo-code was incor-
rect for PS format check.

3.05 April 4, 2011 The text description was incorrect for the offset sizes for these instructions -
CACHE, LDC2, LL, LWC2, LWL, LWR, PREF, SDC2, SWL, SWR.
CACHE & WAIT instruction descriptions were using the wrong instruction
bit numbers.

LWU was incorrectly included int the microMIPS32 version.

3.06 October 17, 2012 CVT.D.fmt and CVT.S.fmt were in wrong positions within Table
POOL32Fxf.

3.07 October 26, 2012 Fix Figure 6.1 - columns & rows were transposed from the real tables.

5.00 December 14, 2012 Some of the microMIPS instructions were not listed in alphabetical order.
Fixed. No content change.

RS changes: DSP and MT ASEs -> Modules

NMADD.fmt, NMSUB.fmt - for IEEE2008 negate portion is arithmetic.
5.01 December 16, 2012 No technical context change:

Update cover with microMIPS logo

Update copyright text.

Update pdf filname.
5.03 August 21, 2012 Resolved inconsistencies with regards to the availability of instructions in

MIPS32r2: MADD.fmt family (MADD.S, MADD.D, NMADD.S,
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIP.fmt fam-
ily (RECIP.S, RECIP.D, RSQRT.S, RSQRT.D), and indexed FP loads and
stores (LWXC1, LDXC1, SWXC1, SDXC1). These instructions are required
to be available in all FPUs. .

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

461

Revision History

Revision

Date

Description

5.04

January 15, 2014

LLSC Related Changes

* Added ERETNC. New.

* Modified SC handling: refined, added, and elaborated cases where SC can
fail or was UNPREDICTABLE.

XPA Related Changes

¢ Added MTHCO, MFHCO to access extensions. All new.

* Modified MTCO for MIPS32 to zero out the extended bits which are write-
able. This is to support compatibility of XPA hardware with non XPA soft-
ware. In pseudo-code, added registers that are impacted.

* MTHCO0 and MFHCO - Added RI conditions.

6.0

February 27, 2015

* Release 6 compatible microMIPS. See Section 2.7, "Release 6 of the MIPS
Architecture," for instructions that have been added, removed, and recoded.

6.01

June 9, 2015

* Removed the Release 6 NAL instruction; it is not required in microMIPS.

* Removed the “Jump and Link Restartability” paragraph from JAL-type
instructions; it is not applicable for compact jumps.

+ Fixed text in jump instructions related to the behavior of ISAMode switch-
ing, or lack thereof, in microMIPS.

» Removed delay-slot references; all branches/jumps are compact.

* Removed references to JALX.

* Removed LWXS (bug).

* MOVEP: in encoding, changed bit 2 to 1 (bug).

» All PC-related instructions: qualify PC with 0x3. Always word aligned.
microMIPS only (ADDIUPC, LWPC, AUIPC, ALUIPC).

» Release 6 BC: shift-corrected to 1 bit. microMIPS only.

* JALRC, JALRC.HB: replace Configl.CA with Config3.ISA (bug).

* Added Release 5 TLBINV/TLBINVF (incorrectly excluded from book).

* Added Release 6 DVP/EVP instructions.

* Added new Release 6 LLX/SCX family instructions.

* General opcode map cleanup for consistency with Release 6.

» CACHE, PREF, LL, SC, LLD, SCD, LLX, SCX, LLDX, AND SCDX off-
sets changed to 9 bits.

« LWC2, SWC2, LDC2, AND SDC?2 offsets changed to 11-bits for consis-
tency with MIPS Release 6.

Specific opcode map changes:

* Moved BGTZC/BLTZC/BLTC to (5,6) location

* Moved BLEZC/BGEZC/BGEC to (5,7) location to free up 16-bit instruction
rows for 16-bit instructions (only)

* Moved BEQZC/JIC to (0,4) location.

* Moved BNEZC/JIALC to (0,5) location bit for differentiating EQ vs NE
type made consistent with other branches of this type.

6.02

462

July 13,2015

* Added SIGRIE instruction.

* Added Config5.SBRI dependence to SDBBP16 as in SDBBP(32)

* Corrected mistake in 6.01. AUIPC PC should not be qualified with 0x3.

* Added misaligned 1d/st support. 1d/st that must be aligned are indicated as
such.

* Added RDHWR with sel field - read all.

MIPS® Architecture for Programmers Volume 1I-B: microMIPS64™ Instruction Set, Revision 6.02

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

	MIPS® Architecture for Programmers Volume II-B: microMIPS64™ Instruction Set
	Contents
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 Notation for Register Field Accessibility
	1.5 For More Information

	Introduction
	2.1 Default ISA Mode
	2.2 Software Detection
	2.3 Compliance and Subsetting
	2.4 ISA Mode Switch
	2.5 Branch and Jump Offsets
	2.6 Coprocessor Unusable Behavior
	2.7 Release 6 of the MIPS Architecture

	Guide to the Instruction Set
	3.1 Understanding the Instruction Fields
	3.1.1 Instruction Fields
	3.1.2 Instruction Descriptive Name and Mnemonic
	3.1.3 Format Field
	3.1.4 Purpose Field
	3.1.5 Description Field
	3.1.6 Restrictions Field
	3.1.7 Availability and Compatibility Fields
	3.1.8 Operation Field
	3.1.9 Exceptions Field
	3.1.10 Programming Notes and Implementation Notes Fields

	3.2 Operation Section Notation and Functions
	3.2.1 Instruction Execution Ordering
	3.2.2 Pseudocode Functions
	3.2.2.1 Coprocessor General Register Access Functions
	3.2.2.2 Memory Operation Functions
	3.2.2.3 Floating Point Functions
	3.2.2.4 Pseudocode Functions Related to Sign and Zero Extension
	3.2.2.5 Miscellaneous Functions

	3.3 Op and Function Subfield Notation
	3.4 FPU Instructions

	Instruction Formats
	4.1 Instruction Stream Organization and Endianness

	microMIPS Instruction Set
	5.1 16-Bit Category
	5.1.1 Frequent MIPS64 Instructions
	5.1.2 Frequent MIPS64 Instruction Sequences
	5.1.3 Instruction-Specific Register Specifiers and Immediate Field Encodings

	5.2 16-bit Instruction Register Set
	5.3 32-Bit Category
	5.3.1 New 32-bit instructions

	5.4 Instructions Specific to microMIPS
	ADDIUR1SP
	ADDIUR2
	ADDIUS5
	ADDIUSP
	ADDU16
	AND16
	ANDI16
	BC16
	BEQZC16
	BNEZC16
	BREAK16
	JALRC16
	JRCADDIUSP
	JRC16
	LBU16
	LDM
	LDP
	LHU16
	LI16
	LWP
	LW16
	LWM32
	LWM16
	LWGP
	LWSP
	MOVE16
	MOVEP
	NOT16
	OR16
	SB16
	SDBBP16
	SDM
	SDP
	SH16
	SLL16
	SRL16
	SUBU16
	SW16
	SWSP
	SWM16
	SWM32
	SWP
	XOR16

	5.5 Recoded MIPS Instructions
	ABS.fmt
	ADD
	ADD.fmt
	ADDIU
	ADDIUPC
	ADDU
	ALIGN DALIGN
	ALUIPC
	AND
	ANDI
	AUI DAUI DAHI DATI
	AUIPC
	BALC
	BC1EQZC BC1NEZC
	BC2EQZC BC2NEZC
	B{LE,GE,GT,LT,EQ,NE}ZALC
	B<cond>C
	BC
	BREAK
	BITSWAP DBITSWAP
	BOVC BNVC
	CACHE
	CACHEE
	CEIL.L.fmt
	CEIL.W.fmt
	CFC1
	CFC2
	CLASS.fmt
	CLO
	CLZ
	CMP.condn.fmt
	COP2
	CTC1
	CTC2
	CVT.D.fmt
	CVT.L.fmt
	CVT.S.fmt
	CVT.W.fmt
	DADD
	DADDIU
	DADDU
	DCLO
	DCLZ
	DERET
	DEXT
	DEXTM
	DEXTU
	DI
	DINS
	DINSM
	DINSU
	DIV.fmt
	DIV MOD DIVU MODU DDIV DMOD DDIVU DMODU
	DMFC0
	DMFC1
	DMFC2
	DMTC0
	DMTC1
	DMTC2
	DROTR
	DROTR32
	DROTRV
	DSBH
	DSHD
	DSLL
	DSLL32
	DSLLV
	DSRA
	DSRA32
	DSRAV
	DSRL
	DSRL32
	DSRLV
	DSUB
	DSUBU
	DVP
	EHB
	EI
	ERET
	ERETNC
	EVP
	EXT
	FLOOR.L.fmt
	FLOOR.W.fmt
	INS
	JALRC
	JALRC.HB
	JIALC
	JIC
	LB
	LBE
	LBU
	LBUE
	LD
	LDC1
	LDC2
	LDPC
	LH
	LHE
	LHU
	LHUE
	LL
	LLD
	LLE
	LLX, LLDX, LLXE
	LSA
	LUI
	LW
	LWC1
	LWC2
	LWE
	LWPC
	LWUPC
	LWU
	MADDF.fmt MSUBF.fmt
	MAX.fmt MIN.fmt MAXA.fmt MINA.fmt
	MFC0
	MFC1
	MFC2
	MFHC0
	MFHC1
	MFHC2
	MOV.fmt
	MTC0
	MTC1
	MTC2
	MTHC0
	MTHC1
	MTHC2
	MUL MUH MULU MUHU DMUL DMUH DMULU DMUHU
	MUL.fmt
	NEG.fmt
	NOP
	NOR
	OR
	ORI
	PAUSE
	PREF
	PREFE
	RDHWR
	RDPGPR
	RECIP.fmt
	RINT.fmt
	ROTR
	ROTRV
	ROUND.L.fmt
	ROUND.W.fmt
	RSQRT.fmt
	SB
	SBE
	SC
	SCE
	SCD
	SCX, SCDX, SCXE
	SD
	SDBBP
	SDC1
	SDC2
	SEB
	SEH
	SEL.fmt
	SELEQZ SELNEZ
	SELEQZ.fmt SELNEQZ.fmt
	SH
	SHE
	SIGRIE
	SLL
	SLLV
	SLT
	SLTI
	SLTIU
	SLTU
	SQRT.fmt
	SRA
	SRAV
	SRL
	SRLV
	SSNOP
	SUB
	SUB.fmt
	SUBU
	SW
	SWE
	SWC1
	SWC2
	SYNC
	SYNCI
	SYSCALL
	TEQ
	TGE
	TGEU
	TLBINV
	TLBINVF
	TLBP
	TLBR
	TLBWI
	TLBWR
	TLT
	TLTU
	TNE
	TRUNC.L.fmt
	TRUNC.W.fmt
	WAIT
	WRPGPR
	WSBH
	XOR
	XORI

	Opcode Map
	7.1 Major Opcodes
	7.2 Minor Opcodes
	7.3 Floating Point Unit Instruction Format Encodings

	Compatibility
	8.1 Assembly-Level Compatibility
	8.2 ABI Compatibility
	8.3 Branch and Jump Offsets
	8.4 Relocation Types
	8.5 Boot-up Code shared between microMIPS64 and MIPS64
	8.6 Coprocessor Unusable Behavior
	8.7 Other Issues Affecting Software and Compatibility

	References
	Revision History

