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Chapter 1

Introduction

This document is for programmers who are already familiar with the MIPS® architecture and who can read MI1PS
assembler language (if that’s not you yet, you'd probably benefit from reading a generic MIPS book - see Appendix
A, “References’ on page 97).

More precisely, you should definitely be reading this manual if you have an OS, compiler or low-level application
which aready runs on some earlier MIPS CPU, and you want to adapt it to the 24K® or 24KE™ core. So this docu-
ment concentrates on where a MIPS 24K family core behaves differently from its predecessors. That's either:

»  Behavior which is not completely specified by Release 2 of the MIPS32® architecture: these either concern priv-
ileged operation, or are timing-rel ated.

»  Behavior which was standardized only in the recent Release 2 of the M1PS32 specification (and not in previous

versions). All Release 2 features are formally documented in [MIPS32] 1 and [MIPS32V1] contains a brief sum-
mary.

» Butthedetails are widely spread; so you'll find a shortform presentation of the changes here in Section
C.2 “User-level changes with Release 2 of the MIPS32® Architecture”.

» Detailsof timing, relevant to engineers optimizing code (and that very small audience of compiler writers).

Thismanual isintentionally much more focussed and therefore smaller than the full [SUM] manual. It does leave
some material out; if you need to write processor subsystem diagnostics, thiswill not be enough! If you want a very
careful corner-cases-included delineation of exactly what an instruction does, you'll need [MIPS32V2]... and so on.

For readability, some MIPS32 material is repeated here, particularly where areference would involve alarge excur-
sion for the reader for asmall saving for the author. Appendices mention every user-level-programming difference
any active MIPS software engineer is likely to notice when programming the 24K core.

All 24K cores are able to run programs encoded with the MIPS16e™ instruction set extension - which makes the
binary significantly smaller, with some trade-off in performance. MIPS16e code israrely seen - it's aimost exclu-
sively produced by compilers, and in adebugger view is pretty much a subset of the regular M1PS32 instruction set -
so you'll find no further mention of it in this manual; please refer to [M1PS16€].

The document is arranged functionally: very approximately, the features are described in the order they’d come into
play in asystem asit bootstrapsitself and prepares for business. But alot of the CPU-specific datais presented in co-
processor zero (“CPQ”) registers, so you'll find a cross-referenced list of 24K core CPO registersin Appendix B, “CPO
register summary and reference” on page 99.

1. References (in square brackets) are listed in Chapter A, “References’ on page 97.
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1.1 Chapters of this manual

1.1 Chapters of this manual

*  Chapter 2, “Initiaization and identity” on page 17: what happens from power-up? boot ROM material, but a
good place to cover how you recognize hardware options, configure software-controlled ones and recognize your
CPU..

*  Chapter 3, “Memory map, caching, reads, writes and translation” on page 23: everything about memory
accesses.

*  Chapter 4, “Programming the 24K® corein user mode” on page 43: features relevant to user-level programming;
multiply timing, hardware registers, prefetching.

e Chapter 5, “Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture” on page 51: 24K -
core-specific information about privileged mode programming.

»  Chapter 6, “Floating point unit” on page 61: the 24K core's floating point unit, available on models called
24Kf™,

*  Chapter 7, “24K® core features for debug and profiling” on page 70: the debug and PDTrace™ units, plus sepa-
rate watchpoints and performance counters..

* Appendix A, “References’ on page 97: more reading to broaden your knowledge.

*  Appendix B, “CPO register summary and reference” on page 99: all the registers with links back into the main
text.

* Appendix C, “MIPS® Architecture quick-reference sheet(s)” on page 111: basic CPU-independent information,
including a quick description of Release 2 of the MIPS32 Architecture.

1.2 Typographical conventions

CPU register names are in obliqgue monospace. Co-processor 0 (CPO) registersfields are shown after the register
name in brackets, so the interrupt enable bit in the Status register appears as Status[IE]. CPO register numbers are
denoted by n.. s, where “n” isthe register number (between 0-31) and “s” isthe “select” field (0-7). If the select field
isomitted, it's zero. A select field of “x” denotes all eight potential select numbers.

References to other manuals are collected together in Appendix A, “References’ on page 97 and look like this
[MIPS32].

I nstruction mnemonics and assembler code fragments are set inbold monospace, core interface signal namesin
small italics, and C or other programming language constructs in monospace.

To use register and field namesin your program, you'll need a C header file or something similar. It's probably better
and easier not to write your own; see [m32c0.h].

1.3 Register diagrams and field descriptions

It'satradition of MIPS CPUs that most control and status information is passed through registers - the most numer-
ous arethe“CPQ” registers used for kernel-level CPU control operations, but there are al so memory-mapped registers
in the debug unit and to control special memory arrays. All of them are 32 bits wide.
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Many of the registers are broken up into multiple fields with substantially independent meanings and effects. Any
register which is not smply a 32-bit number comes with aregister “figure”, and there’'salist of figures at the start of
this manual. The register figures are growing extrainformation in this version of the manual:

We're introducing color-codes to identify fields. Fieldswhich you can write, have some hardware effect and read
back the same are regarded as “ standard” and have a white background. But the background color tells you
which fields are read-only (green), which are zero or “X” (gray), are purely for software use (blue-green), which
are not just write-and-read-back (yellow), or are reserved and where use might be dangerous (red):

software-only (blue/ | not just write-back | reserved, take care

read-only (green) zero/X (gray) green) (yellow) (red)

If you've printed this manual in black-and-white, those will all ook much the same, sorry! And note that not all
register diagrams are color-coded yet.

Register diagrams may carry athird row (below the field descriptions in the boxes) which tell you about any
value guaranteed to be in the register after a hardware reset. Those values will always be described separately in
the field descriptions, and careful programmers will probably avoid relying on them wherever they can.

1.4 Finding information in this manual

If you're reading this manual on-screen, text shown in blue is a hot-link; click on the text to go to the section, figure
or table referenced. The chapter index and lists of tables and figures at the start of the book is click-through too.

All the special CPO registers are listed in Appendix B, “ CPO register summary and reference” on page 99. That
appendix has the registers listed by name (Table B.1), by number (Table B.2), and by function (Table B.3.) The by-
number table has hot-links to other sections where each is mentioned - and for those reading on paper, all those links
have page numbers.

1.5 24K® core features

11

All 24K family cores conform to Release 2 of the MIPS32 architecture. You may have the following options:

I- and D-Caches: 4-way set associative; may be 8Kbytes, 16K bytes, 32Kbytes or 64Kbytesin size. 32Kbytesis
likely to be the most popular; 64K byte caches will involve some cost in frequency in most processes.

Optionally (but usually) the 32K and 64K D-cache configurations can be made free of “cache aliases’ - see
Section 3.4.8, "Cache aliases’, which explains some software-visible effects. The option is selected when the
“cache wrapper” is defined for the 24K core in your design and shows up as the Config7[AR] bit.

Note that a 4-way set associative cache of 16K byte or less (assuming a 4K byte minimum page size) can’t suffer
from aliases.

Floating point unit (FPU): if fitted, is a 64-bit unit (with 64-bit |oad/store operations), which most often runs at
half the speed of the integer unit.

Fast multiplier: 1-per-clock repeat rate for 32x32 multiply and multiply/accumul ate.
The* CorExtend™” instruction set extension: is available on 24K Pro CPUs. [ CorExtend] defines a hardware

interface which makesit relatively straightforward to add | ogic to implement new computational (register-to-reg-
ister) instructions in your CPU, using predefined instruction encodings. 1t's matched by a set of software tools
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1.6 A brief guide to the 24K® core implementation

which allow users to create assembly language mnemonics and C macros for the new instructions. But there's
very little about the CorExtend ASE in this manual.

»  Optional Co-processor: if your application requires special functions, or hardware implemented very closeto the
CPU, 24K cores define an interface to a customer-implemented “ co-processor 2". This provides a great deal of
freedom to define multiple new registers and instructions (though it will be quite alot of work). The instruction
set defines basic CP2 instructions (to access its registers, for |oads/stores, and branch instructions which test an
associated “ condition bit”.

CP2 implementations are far beyond the scope of this book. Talk to MIPS Technologies.
1.6 A brief guide to the 24K® core implementation

All 24K family cores are based on a nine-stage pipeline, where MIPS Technologies' first 4K™ family products had a
five-stage pipeline: asimplified comparative diagram is at Figure 1.1. By reducing the amount of work to be done
during each pipestage, the long pipeline allowed the design team to push up the operating frequency to alevel unpar-
alleled for a synthesizable design.

If you want to make a high-performance computer, there is no substitute for the highest frequency you can reach; but
the longer pipeline makes it harder to keep issuing one instruction per clock (there are more instructionsin flight
which you might be dependent on). Long-pipeline CPUs can trip up on branches (they don’'t know where to fetch the
next instructions until the branch instruction is substantially complete), and on loads (even on cache hits, the data
cannot be available for some number of instructions); the 24K coreis mainly different from its predecessorsin the
mechanisms used to mitigate those effects.

Figure 1.1 Pipeline differences between the 24K® and 4K™ core families

g e
4K IF RF EX MS WB
/ N ! / \
/ N f \ \ | |
/ N \ ) \ N |
_ N | L | .| |
| o, | - |
\ Iy \ \ \
J |/ \ \ \
24K F-IF-—=}-=IS-=|=IT-— ‘ / | \ ‘
RF AG EX MS ER WB
-4 o - >
instruction fetch stages load/store action stages

1.6.1 Notes on pipeline diagram (Figure 1.1):

Even in such a simplified diagram, there are afew points worth highlighting:

» Longer cache access: the extra pipeline stages are mostly used to give more time for access through the memory
trandlation system (TLB) to the primary caches. Caches do not speed up quite so much aslogic asthe underlying
chip geometry shrinks, and they’ve become the critical path at high frequency. Including address cal culations,
both I- and D-accesses are awarded three clocks.
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*  Semi-detached instruction fetch unit: the 24K core no longer has a single pipeline for most instructions; the
instruction fetch unit (“IFU”) is semi-autonomous. It's also 64 bits wide, and handles two instructions at a bite.

The IFU works a bit like adog being taken for awalk. It rushes on ahead as long as the lead will stretch (the IFU,
processing instructions two at atime, can rapidly get ahead). Even though you'rein charge, your dog likes to go
first - and so it iswith the IFU. Like adog, the IFU guesses where you want to go, strongly influenced by the way
you usualy go. If you make an unexpected turn there isabrief hiatus while the dog comes back and gets up front
again... but now we're anticipating the next section.

TheIFU has a queue to keep instructions in when it’s running ahead of the rest of the CPU. Thiskind of designis
called a*“decoupled” IFU.

»  Sretched |oad/store stages: a dedicated address generation (“AG”) stage precedes the usual “EX” stage where
arithmetic/logic operations happen, and the“MS’ stage where the D-cache is accessed.

» Sightly stretched arithmetic/logical operation time: “EX” has to remain one stage so that dependent instructions
can run next to each other without delay. But some logic can be pushed back into the new “AG” stage.

Now let’s focus on the 24K core's mechanisms to ameliorate branch and load penalties.

1.6.2 Branches and branch delays

The MIPS architecture already defines that the instruction following a branch (the “branch delay slot” instruction) is

always executed?. That means that the CPU has an extra instruction cycle time to figure out where a branch is going
before suffering any delay. But with the 24K core’s long pipeline a branch instruction isn’t resolved until after the
“EX" stage, five stages or so down the pipe; so a naive implementation would suffer at least a 4-clock penalty on
every branch. Several different tricks are used:

e Thedecoupled IFU (the electronic dog) runs ahead of the rest of the CPU by fetching two instructions per clock.
It can get as many as eight instructions ahead.

« Branchinstructions are identified very early (in fact, they’re marked when instructions are fetched into the |-
cache).

» ThelFU’sbranch predictor guesses whether conditional branches will be taken or not - it's not magic, it usesa
Branch History Table of what happened to branches in the past, indexed by the low bits of the location of the
branch instruction. It makes no attempt to discover whether the “history” stored in alocation is realy that of the
current branch, or another one which happened to share the same low bits; it's harmless to be wrong sometimes.
With a bit of cleverness which you could read about in [SUM], it guesses correctly most of the time.

MIPS branches and jumps (at least those not dependent on register values) are easy to decode and the IFU
decodes them locally. Then, armed with the taken/not-taken guess from the BHT, the IFU can predict the target
address and continue to run ahead.

That’s not quite accurate: there are special forms of conditional branches called “branch likely” which are defined to execute
the branch delay slot instruction only when the branch is taken. However, this was aways meant to be done by allowing the
branch delay instruction to run, then squishing it before it changes any machine state; and most implementations - including
the 24K core - do it that way.

Note that the “likely” part of the hame has nothing to do with branch prediction; the 24K core’s branch prediction system
treats the “likelies” just like any other branches.
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In fact, the branch target calculation in the IFU is one clock too slow to guarantee a continuous stream of instruc-
tions: it'sasif your dog takes awhile to choose a path, and temporarily goes slower than you do. But so long as
the dog was afew steps ahead of you to start with, you won't fall over it and it soon bounds ahead again.

* Jump-register instruction targets are unpredictable: the IFU has no knowledge of register data and can’'t in gen-
eral anticipate it. But jump-register instructions are rare, except that...

In the MIPS ISA you return from subroutines using a jump-register instruction, jr $31 (register 31is, by a
strong convention, used to hold the return address). So on every call instruction, the IFU pushes the return
address onto asmall stack; and on every jr $31 it pops the value of the stack and uses that as its guess for the

branch target®.

On jump-register instructions using registers other than $31 the IFU hasto wait for the ALU to resolve the
branch before it can continue.

*  When the IFU guesses wrong, it doesn’t know (the dog just rushes ahead until its owner reaches the fork).

The mistake will be noticed once the branch instruction has proceeded down the pipeline to the “EX” stage, and
isexecuted in itsfull context (“resolved”). The IFU tellsthe CPU what it did; if it turns out to be wrong the CPU
must discard the instructions based on the guess (which fortunately will not have changed any vital machine
state) and start fetching instructions from the correct target. The tug on the lead which goes out to the IFU is
called a“redirect”.

Incorrect guesses (and unpredictable jumps such asa jr which isnot to $31) arerelatively expensive: four
clocks are wasted.

1.6.3 Loads and load-to-use delays

Even short-pipeline MIPS CPUs can’t deliver load data to the immediately following instruction without a delay,
even on a cache hit. Simple MIPS pipelinestypically deliver the data one clock later: aone clock “load-to-use delay”.
Compilers and programmers try to put some useful and non-dependent operation between the load and itsfirst use.

The 24K core’s long pipeline means that afull D-cache hit takes three clocks to return the data, not two. If (asin the
4K family) the memory access process started in the “EX” stage, that would lead to a two-clock |oad-to-use delay.
But it's been found through painful experience that programmers and compilers find it much harder to find two non-
dependent operations...

So the 24K core starts the memory access by doing initial address calculationinanew “AG” stage, before“EX”. That
keeps the load-to-use delay down to asensible level. You'll hear this decision to defer the execute stage referred to as
a“skewed ALU”.

There's no such thing as a free lunch; the downside is that aload/store instruction whose address generation depends
on the immediately preceding instruction will have to wait for one clock. Compilers probably find it easier to move
the address cal cul ation back one place in the instruction stream, rather than to find yet another useful instruction
which can be moved between the load and use of the data. But code which follows pointer chains is guaranteed to
take at least three cycles per pointer.

3. Thereturn-stack guess will be wrong for subroutines containing nested calls deeper than the size of the return stack; but sub-
routines high up the call tree are much more rarely executed, so thisisn’t so bad.
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1.6.4 Resource limits and consequences

Thelong pipeline, datainterlocks, and the semi-autonomous |FU mean that the whole pipeline does not advance in
lock-step as in the simplest MIPS CPUs. Updatesto internal states are not so easy to schedule at fixed times; instead
they tend to wait in queues until a convenient moment. Most of the time, the convenient moment arrives quickly and
there is no software-visible effect. But sometimes an unusual code sequence causes updates to be generated faster
than they can be dealt with, the queue fills up and execution of the program has to be suspended while the updates are
done.

Queues which can fill up include:

Cacherefillsin flight (four or eight): that's the size of the “FSB” queue - this and other queues are described in
more detail under Section 3.3, "Reads, writes and synchronization". The CPU may run in parallel with a cache
refill process because of its non-blocking loads, but usually only for a handful of instruction times. So you're
unlikely to reach thislimit unless you are using prefetch or otherwise deliberately optimizing loops. If a series of
prefetches use enough available resources, the fourth outstanding load-miss will stall the pipeline. It'slikely to
be good practice for code making conscious use of prefetches to ration itself to two or three outstanding opera-
tions.

Non-blocking loads to registers (four or nine): there are just four entriesin the “LDQ", each of which remembers
one outstanding load, and which register the data is destined to return to. Compiled codeis unlikely to reach this
limit. If you write carefully optimized code where you try to fill load-use delays (perhaps for data you think will
not hit in the D-cache) you may hit this problem.

Lines evicted from the cache awaiting writeback (4+): writes are collected in the “WBB” queue. The 24K core's

ability towritedatawill in almost al circumstances exceed the bandwidth available to memory; so along enough
burst of writeswill eventually slow to memory speed. There is probably nothing you can do about this.
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Chapter 2

Initialization and identity

What happens when the CPU isfirst powered up? These functions are perhaps more often associated with a ROM
monitor than an OS.

2.1 Probing your CPU - Config CPO registers

The four registers Config and Config1-3 are 32-bit CPO registers which contain information about the CPU’s capa-
bilities. Config1-3 are strictly read-only. The few writable fieldsin Config — notably Config[KO] — are there for
historic compatibility, and are typically written once soon after bootstrap and never changed again.

The 24K core also defines Config7 for some implementation-specific settings (which most programmers will never
use).

Broadly speaking the registers have these roles:

Table 2.1 Roles of Config registers

Config A mix of historical and CPU-dependent information, described in Figure 2.1 below. Some
fields are writable.

Configl Read-only, strictly to the MIPS32 architecture. Configl shows the primary cache configura-
Config2 tion and basic CPU capabilities, while Config2 shows information about L2 and L3 caches, if

fitted (the L2 cacheis optional and the L3 cacheis unavailablein 24K family cores). Shownin
Figure 2.2 and Figure 2.3 below.

Config3 Read-only, strictly to Release 2 of the [M1PS32] architecture.
More CPU capability information.

Config7 24K -core-specific, with both read-only and writable fields. It's a strong convention that the
writable fields should default to “ expected” behavior, so beginners may simply leave these
fields aone. Thefields are described |ater, in Section B.4.5 “The Config7 register”.

While initializing your CPU you might also want to look at the EBase register, which can be used to relocate your
exception entry points: see Figure 5.2 and the text round it.

2.1.1 The Config register

Figure 2.1 Fields in the Config Register
3130 2827 25 24 23 22 21 20 19 18 17 16 15 141312 109 76 4 3 2 O

M| K23 KU [ISP|DSP|UDI|(SB|0|WC|MM|O0|BMBE| AT | AR | MT | 0 |VI| KO

1 2 2 0 1 0 1 0 2

InFigure2.1:

M: reads 1 if Configl isavailable (it dwaysis).
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K23, KU, KO: set the cacheability attributes of chunks of the memory map by writing these fields. All share a 3-bit
encoding with the cacheability field found in TLB entries, which is described in Table 3.3 in Section
3.4.2 “Cacheability options”.

Config[K0] sets the cacheability of ksegO, but it would be very unusual to make that anything other than cacheable
(on different, cache-coherent CPUs, it may want to be set to cacheable-coherent). The power-on value of this standard
field is not mandated by the [M1PS32] architecture; but the 24K core follows the recommendation to set it to 2",
making "kseg0" uncached. That can be surprising; early system initialization software typically re-writesitto "3" in
order that ksegO will be cached, as expected.

If your 24K core-based system uses fixed mapping instead of having a TLB, Config[K23] isfor program addresses
0xC000.0000-0x FFFF.FFFF (the “kseg2” and “kseg3” areas), while Config[KU] isfor program addresses
0x0000.0000-0x7FFF.FFFF (the “kuseg™ area). If you have a TLB, these regions are mapped and these fields are
unused (write only zeroes to them).

ISP, DSP: read 1 if I-side and/or D-side scratchpad (SPRAM) isfitted, see Section 3.6, " Scratchpad memory/
SPRAM".

(Don't confuse this with the M1PS DSP ASE, whose presence is indicated by Config3[DDSP].)

UDI: reads 1 if your core implements user-defined " CorExtend" instructions. “ CorExtend” is available on cores whose
nameendsin "Pro".

SB: read-only "SimpleBE" bus mode indicator. If set, means that this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte, aligned half-word and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of bytes enabled (which some memory controllers
may not like).

WC: Warning: thisis adiagnostic/test field, not intended for customer use, and may vanish without notice from a
future version of the core.

Set this 1 to make the Config1[IS] and Configl[DS] fields writable, which alows you to reduce the number of avail-
able L1 I- and D-cache "“sets per way", and shrink the usable cache size. You'd never want to do thisin areal system,
but it is conceivable it might be useful for debug or performance analysis.

MM: writable: set 1 if you want writes resulting from separate store instructions in write-through mode merged into a
single (possibly burst) transaction at the interface. This has no affect on cache writebacks (which are always whole
blocks together) or uncached writes (which are never merged).

BM: read-only - tells you whether your bus uses sequential or sub-block burst order; set by hardware to match your sys-
tem controller.

BE: reads 1 for big-endian, O for little-endian.
AT: MIPS32 or M1PS64 compliance On 24K family coresit will read “0”, but the possible values are:
0 MIPS32

1 MIPS64 instruction set but M1PS32 address map
2 MIPS64 instruction set with full address map
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AR: Architecture revision level. On 24K family coresit will read “1”, denoting release 2 of the MIPS32 specification.

0 MIPS32/MIPS64 Release 1
1 MIPS32/M|PS64 Release 2

MT: MMU type (all MIPS Technologies cores may be configured astype 1 or 3):
0 None
1 MIPS32/64 compliant TLB

2 “BAT” type
3 MIPS-standard fixed mapping

VI: 1if the L1 I-cacheisvirtual (both indexed and tagged using virtual address). No contemporary MIPS Technologies
core has avirtual |-cache.

KO: as described in the notes above on Config[K 23] etc, this field determines the cacheing behaviour of the fixed kseg0
memory region .

2.1.2 The Configl-2 registers

These two read-only registers tell you the size of the TLB, and the size and organization of L1, L2 and L3 caches (a
zero “line size” is used to indicate a cache which isn't there). They're best described together.

Config1l has some fields which tell you about the presence of some of the older extensions to the base MIPS32 archi-
tecture are implemented on this core. These bits ran out, and other extensions are noted in Config3.

Figure 2.2 Fields in the Configl Register

31 30 25 24 2221 19 18 16 15 13 12 109 7 6 5 4 3 2 1 0
M| MMUSize IS IL 1A DS DL DA (C2|MD |PC|WR|CA |EP|FP
1 4 3 4 3 o 1 1 1 1

Figure 2.3 Fields in the Config2 Register

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0
M TU TS TL TA SU SS SL SA
1 0 0 0 0 0

Config1[M]: continuation bit, 1 if Config2 isimplemented.
Configl[MMUSize]: the size of the TLB array (the array has MMUSize+1 entries).

Config1[IS,IL,IA,DS,DL,DA]: for each cache this reports

S Number of sets per way. Calculate as: 64 x 25

L Linesize. Zero means no cache at all, otherwise calculate as; 2 x 2t
A Associativity/number of ways - calculateas A + 1

Soif (IS, IL, I1A) is(2,4,3) you have 256 sets/way, 32 bytes per line and 4-way set associative: that’s a 32K byte cache.
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2.1 Probing your CPU - Config CPO registers
Configl[C2,FP]: 1 if coprocessor 2 or or an FPU (coprocessor 1) fitted, respectively. A coprocessor 2 would be a cus-
tomer-designed coprocessor.
Configl[MD]: 1if MDMX ASE isimplemented in the floating point unit (very unlikely for the 24K core).
Config1[PC]: thereis at least one performance counter implemented, see Section 7.4 “Performance counters”.
Configl[WRY]: reads 1 because the 24K core always has watchpoint registers, see Section 7.3 “CP0 Watchpoints’.

Config1[CA]: reads 1 because the MIPS16e compressed-code instruction set is available (asit generally ison MIPS
Technologies cores).

Config1[EP]: reads 1 because an EJTAG debug unit is always provided, see Section 7.1, "EJTAG on-chip debug unit".
Config2[M]: continuation bit, 1 if Config3 isimplemented.

Config2[TU]: implementation-specific bits related to tertiary cache, if fitted. Can be writable.

Config2[TS,TL, TA]: tertiary cache size and shape - encoded just like Config1[IS,IL,IA] which see above.
Config2[SU]: implementation-specific bits for secondary cache, if fitted. Can be writable.

Config2[SS,SL,SA]: secondary cache size and shape, encoded like Config1[IS,IL,IA] above.

2.1.3 The Config3 register

Config3 providesinformation about the presence of optional extensions to the base MIPS32 architecture. A few of
them werein Config2, but that ran out of bits.

Figure 2.4 Fields in the Config3 Register

31 30 14 13 122 1 10 9 7 6 5 43 2 1 0
M 0 ULRI| 0 |DSP2P|DSPP| 0 |VEIC|VInt|SP|O|MT|SM|TL
0 0 10 0 O

Fields shown in Figure 2.4 include:
Config3[M]: continuation bit, zero because there is no Config4.

Config3[ULRI]: reads 1 if the core implements the UserLocal register, typically used by software threads packages.
Moreinformation in Section B.4.2 “The UserLocal register”.

DSP2P, DSPP: DSPP reads 0 because the MIPS DSP extension is not available for this CPU. DSP2P distinguishes
revision 2 of the DSP ASE .

VEIC: read-only bit from the core input signal SI_EICPresent which should be set in the SoC to alert software to the
availability of an EIC-compatible interrupt controller, see Section 5.2, "MIPS32® Architecture Release 2 - enhanced
interrupt system(s)".

VInt: reads 1 to tell you that the 24K core can handle vectored interrupts.

SP: reads 0 to tell you the 24K core does not support sub-4Kbyte page sizes.
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Initialization and identity

MT: reads O - no 24K family cores implement the MIPS MT (multithreading) extension.

SM: reads 0, the 24K core does not handle instructions from the "SmartMIPS" ASE.

TL: reads 1 if your coreis configured to do instruction trace.

2.1.4 CPU-specific configuration — Config7

Config7 is packed with implementation-specific fields. Most of the time, you leave them aone (afew of them might
sometimes need to be set as required by your SoC designer). So we've left these registers defined in the al-CPO
appendix, in Section B.4.5 “The Config7 register”.

2.2 PRId register — identifying your CPU type

Thisregister identifies the CPU to software. 1t's appropriately printed as part of the start-up display by any software
telling the world about the CPU on start-up; but when portable software is configuring itself around different CPU

attributes, it's always preferable to sense those attributes directly — look in other Config registers, or perhaps use a
directed software probe.

31

Figure 2.5 Fields in the PRId Register

24 23

16 15 8 7 5 4 2 1 0

CoOpt

ColD Imp

Major Minor | Patch

1 0x93

PRIA[CoOpt]: Whatever is specified by the SoC builder who synthesizes the core — refer to your SoC manual. It
should be a number between 0 and 127 — higher values are reserved by MIPS Technologies.

PRId[ColID]: Company ID, which in thiscaseis“1” for MIPS Technologies Inc.:

PRId[Imp]: Identifiesthe particular processor, which in this case is 0x93 for the 24K family. Any processor with differ-
ent CPO features must have anew PRId field.

PRId[RevV]: The revision number of the core design, used to index entriesin erratalists etc. By MIPS Technologies
convention the revision field is divided into three subfields: a major and minor number; with a nonzero "patch” revi-
sion number isfor arelease with no functional change. Core licensees can consult [ERRATA] for authoritative infor-
mation about the revision IDs associated with releases of the 24K core.

The following incomplete and possibly not up-to-date table of historical revisionsis provided as a guide to program-
mers who don’'t have [ERRATA] to hand::

Table 2.2 24K® core releases and PRId[Revision] fields

Release PRId[Revision]

Identifier | Maj.min.patch/hex Description Date
20 2.0.0/0x40 General availability of 24K core. March 19, 2004
30* 3.0.0/ 0x60 COP2 option improvements. September 30, 2004
32* 3.2.0/0x68 PDtrace available. March 18, 2005
34* 3.4.0/ 0x6c ISPRAM (I-side scratchpad) option added June 30, 2005

21
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2.2 PRId register — identifying your CPU type

Table 2.2 24K® core releases and PRId[Revision] fields

35* 3.5.0/0x74 8KB cache option December 30, 2005
36* 3.6.0/0x78 L2 support., 64KB alias-free D-cache option, option to July 12, 2006
have up to 8 outstanding cache misses (previous maximum
4).
37* 3.7.0/0x7c Lessinterlocks round cache instructions, relocatable January 3, 2007
reset exception vector location.
4 0* 4.0.0/0x80 New UserLocal register, alias-proof 1-cache hit-invalidate | October 31, 2007
operation, can wait with interrupts disabled.
41* 4.1.0/0x84 Errata fixes January, 2009
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Chapter 3

Memory map, caching, reads, writes and translation

In this chapter:

e Section 3.1, "The memory map": basic memory map of the system.
e Section 3.3, "Reads, writes and synchronization”

*  Section 3.4, "Caches"

»  Section 3.6, "Scratchpad memory/SPRAM": optional on-chip, high-speed memory (particularly useful when
dual-ported to the OCP interface).

* Section 3.7, "The TLB and translation": how trandation is done and supporting CPO registers.
3.1 The memory map

A 24K core system can be configured with either a TLB (virtual memory trandation unit) or a fixed memory map-
ping.

A TLB-equipped CPU sees the memory map described by the [M1PS32] architecture (which will be familiar to any-
one who has used a 32-bit MI1PS architecture CPU) and is summarized in Table 3.1. The TLB gives you accessto a
full 32-bits physical address on the system interface. More information about the TLB in Section 3.7, "The TLB and

trandation".
Table 3.1 Basic MIPS32® architecture memory map
Segment Virtual range What happens to accesses here?
Name
kuseg| 0x0000.0000-0x7FFF.FFFF |Theonly region accessible to user-privilege programs.

Mapped by TLB entries.

kseg0| 0x8000.0000-0x9FFF.FFFF |afixed-mapping window onto physical addresses
0x0000.0000-0x1FFF.FFFF. Almost invariably cache-
able - but in fact other choices are available, and are
selected by Config[K0], see Figure 2.1.

Accessible only to kernel-privilege programs.

ksegl| 0xA000.0000-0xBFFF.FFFF |afixed-mapping window onto the same physical
address range 0x0000.0000-0x 1FFF.FFFF as “ kseg0”
- but accesses here are uncached.

Accessible only to kernel-privilege programs.

kseg2| 0xC000.0000-0xDFFF.FFFF |Mapped through TLB, accessible with supervisor or

sseg kernel privilege (hence the alternate name).
kseg3| 0xE000.0000-0xFFFF.FFFF |Mapped through TLB, accessible only with kernel
privileges.
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3.2 Fixed mapping option

3.2 Fixed mapping option

To save chip areafor applications not needing afull TLB, your core can use asimple fixed mapping (“FMT”) mem-
ory tranglator, which plays the same role. You can find out whether a core has fixed mappings by reading the CPO
field Config[MT] (see Figure 2.1 and descriptions). With the fixed mapping option, virtual address ranges are hard-
wired to particular physical address windows, and cacheability options are set through CPO register fields as summa-

rizedin Table 3.2:
Table 3.2 Fixed memory mapping
Segment Virtual range Physical range Cacheabhility
Name bits from

kuseg| 0x0000.0000-0x7FFF.FFFF | 0x4000.0000-0xBFFF .FFFF |Config[KU]
ksegO| 0x8000.0000-0x9FFF.FFFF | 0x0000.0000-0x1FFF.FFFF |Config[KO]
ksegl| 0xA000.0000-0xBFFF.FFFF | 0x0000.0000-0x1FFF.FFFF |(uncached)
kseg2/3| 0xC000.0000-0xFFFF.FFFF | 0xC000.0000-0xFFFF.FFFF |Config[K23]

Even in fixed-mapping mode, the cache parity error status bit Status[ERL] still hasthe effect (required by the MIPS32
architecture) of taking over the normal mapping of “kuseg”; addressesin that range are used unmapped as physical
addresses, and all accesses are uncached, until Status[ERL] is cleared again.

3.3 Reads, writes and synchronization

The MIPS architecture permits implementations a fair anount of freedom as to the order in which loads and stores
appear at the CPU interface. Most of the time anything goes: so long as the software behaves correctly, the MIPS
architecture places few constraints on the order of reads and writes seen by some other agent in a system.

3.3.1 Read/write ordering and cache/memory data queues in the 24K® core

To understand the timing of loads and stores (and sometimes instruction fetches), we need to say alittle more about
theinternal construction of the 24K core. In order to maximize performance:

» Loadsare non-blocking: execution continues “through” aload instruction, and only stops when the program tries
to use the GPR value it just loaded.

* Writesare*” posted” : awrite from the coreis put aside (the hardware stores both address and data) until the CPU
can get access to the system interface and send it off.

»  Cacheréfills are completed “ opportunistically” : the CPU may still be running on from a non-blocking load or
prefetch when data arrives back from the cache. The data required to make good a missis forwarded to the rele-
vant GP register, so the returning data is not urgently needed in the cache. The data waits until a convenient
moment before it gets put into the cache line.

All of these are implemented with “queues’, called the LDQ, WBB and FSB (for “fill/store buffer” — it’s used both
for writes which hit and for refills after a cache miss) respectively. All the queues handle data first-come, first served.
The WBB and FSB queues need to be snooped - a subsequent store to alocation with aload pending had better not be
allowed to go ahead until the original load data has reached the cache, for example. So each queue entry is tagged
with the address of the data it contains.

An LDQ entry isrequired for every load that missesin the cache. Moreover, an LDQ entry must be available for any
load - even if it will hitinthe cache, thelogic requiresthat the LDQ entry isavailable if needed. Thisqueue alowsthe
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CPU to keep running even though there are outstanding loads. When the load dataisfinally returned from the system,
the LDQ and the main core logic act together to write this data into the correct GPR (which will then restart the pro-
gram, if it was blocked on an attempt to use this register).

The WBB (Write Back Buffer) queue holds data waiting to be sent out over the system interface, either from D-cache
writebacks or uncached/write-through store instructions.

FSB (Fill Store buffer) queue entries are used to hold data that is waiting to be written into the D-cache. An FSB entry
gets used during a cache miss (when it holds the refill data), or awrite which hitsin the cache (when it holds the data
the CPU wrote). Loads and stores snoop the FSB so that accesses to lines “in flight” can be dealt with correctly.

All this has a number of consequences which may be visible to software:

Number of non-blocking loads which may be pending: the CPU has either four or nine LDQ entries according to
configuration. That limits the number of outstanding loads. As mentioned above, you can't start aload - even one
which will in fact hit in the cache - unless you have afree LDQ entry.

Hit-under-miss: the D-cache continues to supply data on a hit, even when there are outstanding misses with data
in flight. FSB entries remember the in-flight data. So it is quite normal for aread which hitsin the cache to be
“completed” - in the sense that the data reaches aregister - before a previous read which missed.

Write-under-miss: the CPU pipeline continues and can generate external store cycles even though aread is pend-
ing, so long as WBB dlots are available. The 24K core’s “OCP’ interface is hon-blocking too (reads consist of
separate address and data phases, and writes are permitted between them), so this behavior can often be visible to
the system.

Miss under miss: the 24K core can continue to run until the pending read operations exhaust FSB or LDQ entries.
More often, of course, it will try to use the data from the pending miss and stall before it gets that far.

Coreinterface ordering: at the core interface, read operations may be split into an address phase and a later data
phase, with other bus operationsin between.

The 24K core - asis permitted by [MIPS32] - makes only limited promises about the order in which reads and
writes happen at the system interface. In particular, uncached or write-through writes may be overtaken by cache
line reads triggered by aload/store cache miss later in sequence. However, uncached reads and writes are always
presented in their program sequence. When some particular program needs to do things “really in order”, the
sync instruction can help, as described in the next section.

Cache management operations interact with several queues: see Section 3.4.6 “L1 Cache instruction timing”.

3.3.2 The “sync” instruction in 24K® family cores

If you want to be sure that some other agent in the system sees apair of transactions to uncached memory in the order
of the instructions that caused them, you should put a sync instruction between the instructions. Other M1PS32/64-

compliant CPUs may reorder loads and stores even more; portable code should use sync™

4

But sometimesit’s useful to know more precisely what sync does on a particular core. On 24K sync:

Note that sync is described as only working on “uncached pages or cacheable pages marked as coherent”. But sync also

acts as a synchronization barrier to the effects produced by routine cache-manipulation instructions - hit-writeback and hit-
invalidate.
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3.4 Caches

o Stallsuntil al loads, stores, refills are completed and all write buffers are empty (that is until the LDQ, FSB and
WBB are empty);

* In some systems the CPU will also generate a synchronizing transaction on the OCP system interface if
Config7[ES] bit is set®. Not all systems do this. See Section B.4.5 “The Config7 register” for more details.

3.3.3 Write gathering and “write buffer flushing” in 24K® family cores

We mentioned above that writes to the system (whether uncached writes or cache write-backs) are performed some-

what lazily, the write being held in the WBB queue until a convenient moment. That can have two system-visible
effects:

»  Writes can happen later than you think. Your write will happen before the next uncached read or write, but that’s
all you know. To make sure that a write has gone out on the OCP bus you can use a sync (as above): but that
meaning of sync is CPU-dependent, so that code is hon-portable. And your write might till be posted some-
where in a system controller, unless you know your system is built to prevent it. Sometimes it’s better to code a

dummy uncached read from a nearby location (which will “flush out” buffered writes on pretty much any sys-
tem).

» |If your cacheis configured for write-through, then cached writes to locationsin the same “ cache line”-sized
chunk of memory may be gathered - stored together in the WBB, and then dealt with by a single “wider” OCP
write than the one you originally coded. Sometimes, thisis what you want. When it isn’t, put a sync between
your successive writes. Regular uncached writes are never merged, but specia “uncached accelerated” writes
may be — see Section 3.4.3 below.

3.4 Caches

Most of the time caches just work and are invisible to software... though your programs would go twenty times
slower without them. But this section is about when caches aren’t invisible any more.

Like most modern MIPS CPUs, the 24K core has separate primary |- and D-caches. They are virtually-indexed and
physically-tagged, so you may need to deal with cache aliases, see Section 3.4.8, "Cache diases'. The design pro-
vides for 8Kbyte, 16K byte, 32Kbyte or 64K byte caches; but the largest of those are likely to come with some speed
penalty. The 24K core's primary caches are 4-way set associative.

But don't hard-wire any of thisinformation into your software. Instead, probe the Configl register defined by

[MIPS32] (and described in Section 2.1.2 “The Configl-2 registers’) to determine the shape and size of the L1 and
any L2 cache.

3.4.1 The L2 cache option

The L2 cacheisan option available to your SoC builder. Basic facts and figures:

» Thel2 cacheis attached to the core’s standard 64-bit OCP system interface, and when you fit it everything else
is attached to the core through the L 2 cache, which has a system-side interface for that purpose. The core-side

interface is enhanced and augmented to support cache instructions targeted at the L2, and to carry back perfor-
mance counter information and so on.

5. Thiswill be aread with the signal OC_MReqInfo[3] set. Handling of this transaction is system dependent, but atypical sys-
tem controller will flush any external write buffers and complete all pending transactions before telling the CPU that the
transaction is completed. Ask your system integrator how it worksin your SoC.
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The L2 ‘ssize can be 128K bytes, 256K bytes, 512K bytes or 1M byte. However, there are options which alow the
SoC builder to have one or more of the ways of the cache memory array visible as hormal system memory
instead. There's very little in this manual about that option. — see [L2CACHE].

The L2 cacheisindexed and tagged with the physical address, so is unaffected by cache aliases.

Cachelines are either 32 byteslong (matching the L1 caches) or 64 bytes. The L2 cache’'s memories are accessed
256 hits at atime internally, though it has 64-bit interfaces.

It can be configured with 4-way or 8-way set-associative organization. In a4-way cache the line replacement
policy is*least recently used” (LRU); true LRU isimpractical for an 8-way set associative cache, so something
simpler (a“pseudo-LRU”) is used.

The cache has an option for error detection and correction. 1-bit data errors can be corrected and all 2-bit errors
detected with an 8-bit-per-doubleword ECC field. Check bits are provided on cache tags, too. If your L2 has
ECC fitted, ErrCtl[L2P] will be writable — see Section 3.4.13 “ErrCtl register” for details.

The cache iswrite-back but does not allocate aline on awrite miss (write miss dataisjust sent directly to the sys-
tem memory). It is write-through for memory regions which request that policy -- see Section
3.4.2 “Cacheability options” for details.

The L2 cache can run synchronously to the CPU core, but (particularly for memory arrays larger than
256K bytes) would typically then be the critical path for timing. It will more often usea 1:2 or 2:3 clock ratio.
The L2 sfar-side OCP interface may run at any of awide range of ratios from the L2 clock down.

In an effort to keep everything going the cache manages multiple outstanding transactions (it can handle as many
as 15 outstanding misses). Misses are resolved and responses sent as they happen, not in the order of presenta-
tion.

Latency: the L2 logic allows the memory access to be pipelined, areasonable choice for larger or slower arrays:
ask your SoC builder. The L2 delivers hit datain a burst of four 64-bit doublewords. The first doubleword
appears after 9 or 10 L2 clocks (10 for pipelined-array systems) and the rest of the burst follows on consecutive
clocks. Added to thisis some extra time taken for the original L1 missto be discovered, synchronizing to the L2
clock, and returning the data to the CPU: typically, add 5 CPU clocks.

An L2 missis slightly more expensive than an L1 miss from the same memory, since we don't start the memory
access until we've discovered that the dataisn’t inthe L2.

Because the CPU connects to the rest of the system through the L2 cache, it also adds 4 L2 cyclesto the latency
of al transactions which bypassthe L2.

The L2 cache requires software management, and you can apply the same cache instructionstoit asto theL1 D-
cache.

3.4.2 Cacheability options

Any read or write made by the 24K core will be cacheable or not according to the virtual memory map. For addresses
translated by the TLB the cacheability is determined by the TLB entry; the key field appears as EntryLo[C]. Table 3.3
shows the code values used in EntryLo[C] - the same codes are used in the Config entries used to set the behavior of
regions with fixed mappings (the latter are described in Table 3.2.)
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Some of the undefined cacheability code values are reserved for use in cache-coherent systems.

Table 3.3 Cache Code Values

Code | Cached? How it Writes Notes
0| cached |write-through An unusual choice for a high-speed CPU, probably only for debug
2 uncached
3| cached |writeback All normal cacheable areas
7| uncached |[“Uncached Accel- |Unusua and interesting mode for high-bandwidth write-only hardware; see
erated” Section 3.4.3, "Uncached accelerated writes'.

3.4.3 Uncached accelerated writes

The 24K core permits memory regionsto be marked as “ uncached accelerated”. This type of region is useful to hard-
ware which is“write only” - perhaps video frame buffers, or some other hardware stream. Sequential word storesin
such regions are gathered into cache-line-sized chunks, before being written with a single burst cycle on the CPU
interface.

Such regions are uncached for read, and partial-word or out-of-sequence writes have “unpredictable” effects - don't
do them. The burst write is normally performed when software writesto the last |ocation in the memory block or does
an uncached-accel erated write to some other block; but it can also be triggered by a syne instruction, a

pref nudge, amatching load or any exception. If the block is not completely written by the timeit’s pushed out, it
will be written using a series of doubleword or smaller write cycles over the 24K core's 64-hit memory interface.

3.4.4 The cache instruction and software cache management

The 24K core's caches are not fully “coherent” and require OS intervention at times. The cache instruction isthe
building block of such OS interventions, and is required for correct handling of DMA data and for cache initidiza-
tion. Historically, the cache instruction also had a role when writing instructions (unless the programmer takes some
action, those instructions may only bein the D-cache whereas you need them to be fetched through the I-cache when
the time comes). But where possible use synci for that purpose, as described in Section 3.4.7 “Cache management
when writing instructions - the “synci” instruction”.

A cache operation instruction iswritten cache op, addr where addr isjust an address format, written as for aload/
store instruction. Cache operations are privileged and can only run in kernel mode (synci worksin user mode,
though). Generally we're not showing you instruction encodings in this book (you have software tools for that stuff)
but in this case it’s probably necessary, so take alook at Figure 3.1.

31 26 25 21 20 18 17 16 15 0
cache base op offset
47 register what todo | which cache

Figure 3.1 Fields in the encoding of a cache instruction
The op field packs together a 2-bit field which selects which cache to work on;
0 L1I-cache
1 L1 D-cache

2 reserved for L3 cache
3 L2 cache
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and then adds a 3-hit field which encodes a command to be carried out on the line the instruction selects.

Before we list out the individual commands in Table 3.4; the cache commands come in three flavors which differ in
how they pick the cache entry (the “ cache line”) they will work on:

Hit-type cache operation: presents an address (just like aload/store), which islooked up in the cache. If thisloca-
tionisin the cache (it * hits”) the cache operation is carried out on the enclosing line. If thislocation is not in the
cache, nothing happens.

Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previously invalid the data is fetched from memory.

Index-type cache operation: as many low bits of the address as are required are used to select the byte within the
cache line, then the cache line address inside one of the four cache ways, and then the way. You have to know the
size of your cache (discoverable from the Configl-2 registers, see Section 2.1.2 “The Configl-2 registers’) to
know exactly where the field boundaries are, but your address is used something like this:

31 5 4 0

| Unused | Way1-0| Index | byte-within-line

Beware: the MIPS32 specification leaves CPU designers to choose whether to derive the index from the virtual
or physical address. Don't leave it to chance: with index-type operations use a kseg0 address, so that the virtual
and physical address are the same (at least apart from some high bits which certainly won't affect any cache
index). This also avoids a potential pitfall related to cache aliases.

The L1 caches are 4-way set-associative, so datafrom any given address has four possible cache locations - same
index, different value of the “Way1-0" bits as above.

Don't define your own C names for cache manipulation operation codes, at least not if you can use a standard header
file from MIPS Technol ogies on open-source terms: see [m32c0 h].
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Table 3.4 Operations on a cache line available with the cache instruction

3.4 Caches

Value Command

What it does

0 Index invalidate

Setsthelineto“invalid”. If it'saD-cachelinewhichisvalid and “dirty” (hasbeen
written by CPU since fetched from memory), then write the contents back to
memory first. Thisisthe best and simplest way to invalidate an I-cache when ini-
tializing the CPU - though if your cache is parity-protected, you also need to fill it
with good-parity data, see Fill below.

Thisinstruction is not suitable for initializing caches, where it might cause ran-
dom write-backs: seethe Index Store Tag type below.

1 Index Load Tag

Read the cache line tag bits and addressed doubleword data into the TagLo etc
registers (see Table 3.1 for names). Operation for diagnostics and geeks only.

2 Index Store Tag

Set the cache tag from the TagLo registers.
To initialize awritable cache from an unknown state, set the TagLo registersto
zero and then do thisto each line.

3 Index Store Data

Write cache-line data. Not commonly used for caches, but it is used for manage-
ment of scratchpad RAM regions described in Section 3.6 “ Scratchpad memory/
SPRAM”.

4 Hitinvalidate

hit-type invalidate - do not writeback the data even if dirty. May cause dataloss
unless you know the lineis not dirty.

Certain CPUs implement a specia form of the I-side hit invalidate, where multi-
ple searches are done to ensure that any line matching the effective physical
addressisinvalidated (even if it doesn’t match the supplied virtual address for
page color) — see Section 3.4.8 “Cache diases’ below.

Sorry, different meanings for code “ 5" on L1 I-cache.

Writeback invalidate

On the L1D-cache: (hit-type operation) invalidate the line but only after writing it
back, if dirty. Thisis the recommended way of invalidating awritablelinein a
running cache.

Fill

Onan L1 I-cache: (address-type operation) fill a suitable cache line from the data
at the supplied address - it will be selected just asif you were processing an |-
cache miss at this address.

Used to initialize an I-cache line's data field, which should be done when setting
up the CPU when the cache is parity protected.

6 Hit writeback

If thelineis dirty, write it back to memory but leave it valid in the cache. Used in
arunning system where you want to ensure that data is pushed into memory for
access by aDMA device or other CPU.

7 Fetch and Lock

An address-type operation. Get the addressed data into the same line as would be
used on aregular cached reference (if the datawasn’t already cached that might
involve writing back the previous occupant of the cache line).

Then lock the line. Locked lines are not replaced on a cache miss.

It stays locked until explicitly invalidated with a cache

An attempt to lock the last entry available at some particular index fails silently.
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3.4.5 Cache instructions and CPO cache tag/data registers

MIPS Technologies' cores use different CPO registers for cache operations targeted at different caches. That's
already quite confusing, but to make it more interesting these registers have somehow got different names — those
used here and in C header files. | hope Table 3.1 helps. In the rest of this document we'll either use the full software
name or (quite often) just talk of TagLo without qualification.:

Table 3.1 Caches and their CPO cache tag/data registers

Cache CPO Registers CPO number
ITagLo 28.0
IDatalLo 28.1
L1 I-cache
IDtataHi 29.1
DTagLo 28.2
L1 D-cache DDatalLo 28.3

3.4.6 L1 Cache instruction timing

Most CPO instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches
around 1/O operations or otherwise may haveto sit in atight loop issuing hundreds of cache operations at atime, so
performance can be important. Firstly, any D-side cache instruction will check the FSB queue (as described in

Section 3.3 “Reads, writes and synchronization”) for potentially matching entries®. The“potential match” check uses
the cache index, and avoids taking any action for most irrelevant FSB activity. But on a potential match the cacheop
waits (stalling the whole CPU pipeline) while any pending cache refills happen, and while any dirty lines evicted
from the cache are sent out at least to the CPU’s write buffer. Typically, thiswill not take more than afew clocks.

Oncethisis done, hit-type cache instructions which missin the cache and therefore do nothing (and that’s probably

much the commonest case) run through the pipeline with no delay. Instructions which take some action, though, stall
the pipeline and delay al subsequent instructions by afew cycles. The various possibilities are shown in Table 3.5.

Table 3.5 Cache instruction timings.

Line Delay (CPU
Operation State Action cycles)
Hit Invalidate x | Invalidate cache line, no memory traffic 3
Hit writeback Clean | Nothing happens 4
Dirty | Write back cacheline 8
Hit writeback invalidate | Clean | Invalidate line 5
Dirty | Write back line and invalidate 8
Index Store Tag Update tag 3
Fetch and lock Hit |Lineisin cache, just lock it 3
Miss | Line hasto be fetched into cache, and thisisa 7
blocking operation. Wait for that then add...

In earlier versions of the 24K and 34K family cores, no index check is performed and any D-side cacheop waits until the FSB
isempty. There are unusua conditions where this can noticeably impact performance.
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3.4.7 Cache management when writing instructions - the “synci” instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a clean mechanism - available to user-level
code, not just at kernel privilege level - for ensuring that instructions you've just written are correctly presented for

execution (it combines a D-cache writeback with an I-cache invalidate). You should useit in preference to the tradi-
tional alternative of a D-cache writeback followed by an |-cache invalidate.

3.4.8 Cache aliases

The 24K core has L1 caches which are virtually indexed but physically tagged. Sinceit’s quite routine to have multi-
ple virtual mappings of the same physical data, it's possible for such a cache to end up with two copies of the same
data. That becomes troublesome:

*  When you want to write the data: if alineis stored in two places, you'll only update one of them and some data
will belost (at least, there’'s a 50% chance it will belost!) Thisis obviously disastrous: systems generally work
hard to avoid aliases in the D-cache.

*  When you want to invalidate the line in the cache: there’s a danger you might invalidate one copy but not the
other. This (more subtl€) problem can affect the I-cache too.

It can be worked around. There’'s no problem for different virtual mappings which generate the same cache index;
those lines will all compete for the 4 ways at that index, and then be correctly identified through the physical tag.

The 24K CPU’s smallest page size is 4Kbytes, that's 212 bytes. The paged memory trandation means that the low 12
bits of avirtual addressis always reproduced in the physical address. Since a 16Kbyte, 4-way set-associative, cache
getsitsindex from the low 12 bits of the address, the 16K byte cacheis alias-free. In general, you can't get aliasesiif
each cache “way” isno larger than the page size.

In 32K byte and 64K byte caches, one or two top bits used for the index are not necessarily the same as the correspond-
ing bits of the physical address, and aiases are possible. The value of the one or two critical virtual address bitsis
sometimes called the page color.

It's possible for software to avoid aliasesif it can ensure that where multiple virtual mappingsto aphysical page
exist, they all have the same color. An OS can do that by enforcing virtual-memory alignment rules (to at least a
16K byte boundary) for shareable regions. It turns out thisis practicable over alarge range of OS activities: sharing
code and libraries, and deliberate interprocess shared memory. It is not so easy to do in other circumstances, particu-

larly when pages to be mapped start their life as buffers for some disk or network operation’...

So the 24K core contains logic to make a 32K byte or 64K byte D-cache aias-free (effectively one or two index bits
are from the physical address, and used late in the cache access process to maintain performance). Thislogicisa
build option, and Config7[AR] flag should read 1 if your core was built to have an alias-free D-cache.

A 32Kbyte or 64Kbyte |-cacheis subject to aliases. It’'s not immediately obvious why this matters; you certainly can’t
end up losing writes, as you might in an alias-prone D-cache. But |-cache aliases can |ead to unexpected events when
you deliberately invalidate some cache content using the cache instruction. An invalidation directed at one virtual

address tranglated to a particular physical line may leave an undesirable valid copy of the same physical dataindexed
by avirtual alias of adifferent color. To solve this, some 24K cores are built to strengthen hit-type I-cache invalidate

7. There'safair amount of rather ugly codein the MIPS Linux kernel to work around aliases. D-cache aliases (in particular) are
dealt with at the cost of quite alarge number of extrainvalidate operations.
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instructions (those include hit-type cache instructions and the synci instruction), so as to guarantee that no copy of
the addressed physical line remainsin the cache. Thisfacility isavailableif the Config7[IAR] bit reads 1; but if it's

available but your software doesn’t need it, you can restore “legacy” behavior by setting Config7[IVA] to 1. Refer to
Section B.4.5 “The Config7 register” for details.

3.4.9 Cache locking

[MIPS32] provides for amechanism to lock a cacheline so it can't be replaced. This avoids cache misses on one par-

ticular piece of data, at the cost of reducing overall cache efficiency.

Caution: in complex software systemsit is hard to be sure that cache locking provides any overall benefit - most often,
it won't. You should probably only use locking after careful measurements have shown it to be effective for your
application.

Lock alineusing acache FetchAndLock (it will notinfact re-fetch alinewhich isalready inthe cache). Unlock

it using any kind of relevant cache “invalidate” instruction® - but note that synei won't do the job, and should not
be used on data/instruction locations which are cache-locked.

3.4.10 Cache initialization and tag/data registers

The cachetag/dataregisters (listed out in Table 3.1) are used for staging tag information being read from or written to
the cache (the 24K core has no “TagHi” registers, which are only needed for CPUs with a bigger physical address

range). [M1PS32] declares that the contents of these registersis implementation dependent, so they need some words

here.

ITagLo isused for the I-cache, DTagLo for the D-cache, and L23TagLo for the L2 cache, if configured. Some other
MIPS CPUs use the same staging register for all caches, and initialization software written for such CPUs is not por-
table to the 24K core.

Before getting into the details, note that it's a strong convention that you can write all-zeros to the appropriate TagLo
register and then use cache IndexStoreTag to initialize acache entry to alegitimate (but empty) state. Your
cache initialization software should rely on that, not on the details of the registers.

Only diagnostic and test software will need to know details; but Figure 3.2 shows all the fields:

Figure 3.2 Fields in the TagLo Registers
31 12 11 10 8 7 6 5 4 1 0

TagLo U 0O [V|D|L 0 P

ITagLo and DTagLo can be used in a special mode; when ErrCt]WST] is 1, the appropriate TagLo register’s fields
change completely, as shown in Figure 3.5 and its notes below. But let’s ook at the standard fields first:

TagLo: the cache address tag — the low 12 bits of the address are implied by the position of the datain the cache.
x: afield not described for the 24K core but which might not always read zero.

V: 1 when this cachelineisvalid.

8. It'spossibleto lock and unlock lines by manipulating valuesin the TagLo register and then using a
cacheIndex_Load_Tag instruction... but highly non-portable and likely to cause trouble. Probably for diagnostics only.
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D: 1 when this cachelineisdirty (that is, it has been written by the CPU since being read from memory).
L: 1 when this cache line islocked, see Section 3.4.9, "Cache locking".

P: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select” RAM. When
you usethe TagLo register to write a cache tag with cache IndexStoreTag the TagLo[P]: bit isgenerally not used
- instead the hardware puts together your other fields and ensures it writes correct parity. However, it is possible to
force parity to exactly this value by first setting ErrCtI[PO].

3.4.11 TagLo registers in special modes

The usua TagLo register fields are aview of the underlying cache tags. But |oad-tag/store tag cacheops act differ-
ently in special modes activated by setting bitsin ErrCtl (see Section 3.4.13 “ErrCtl register” for details):

»  When ErrCtl[SPR] is set, the L1 TagLo registers are used to configure scratchpad memory, if fitted. That's
described in Section 3.6 “ Scratchpad memory/SPRAM” below, where you'll find afield diagram for the TagLo
registersin that mode.

*  When ErrCtl[WST] is set, the tag registers are used to provide diagnostic/test software with direct read-write
access to the “way select RAM” — parts of the cache array. Thisis highly CPU-dependent and is described in
Section B.4.6 “Cache registersin special diagnostic modes”.

3.4.12 Parity error exception handling and the CachekErr register

The 24K core does not check parity on data (or control fields) from the external interface - so this section really isjust
about parity protection in the cache. It's a build-time option, selected by your system integrator, whether to include
check bitsin the cache and logic to monitor them.

At asystem level, acache parity exception isusually fatal - though recovery might be possible sometimes, when it is
useful to know that the exception is taken in “error mode” (that is, Status[ERL] is set), the restart addressisin
ErrorEPC and you can return from the exception with an eret — it uses ErrorEPC when Status[ERL] is set.

But mainly, diagnostic-code authors will probably find the CacheErr register’s extrainformation useful.

Figure 3.3 Fields in the CacheErr Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 0

ER | EC | ED | ET 0 EB |EF |SP|EW | Way | O Index

For L2 cache errors only Way

ER: wasthe error on an I-fetch (0) or on data (1)? Applicable only to L1 cache errors.
EC: in L1 cache (0) or L2-or-higher cache (1)?
ED,ET: 1 for error in datafield/tag field respectively.

EB: 1if dataand instruction-fetch error reported on same instruction, which is unrecoverable. If so, the rest of the regis-
ter reports on the instruction-fetch error.
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EF: unrecoverable (fatal) error (other than the EB type above). Some parity errors can be fixed by invalidating the cache
line and relying on good data from memory. But if this bit is set, all islost... It's one of the following:

1. Linebeing displaced from cache (*victim”) has atag parity error, so we don’'t know whether to write it back,
or whether the writeback location (which needs a correct tag) would be correct.

2. Thevictim’'stag indicates it has been written by the CPU since it was obtained from memory (thelineis
“dirty” and needs awrite-back), but it has a data parity error.

3. Writeback store miss and CacheErr[EW] error.

4. At least one more cache parity error happened concurrently with or after this one, but before we reached the
relative safety of the cache parity error exception handler.

SP: error affecting a scratchpad RAM access, see Section 3.6, "Scratchpad memory/SPRAM" below.

EW: parity error on the “dirty” (cache modified) or way-selection bits. This means|oss of LRU information, which —
most of the time — isrecoverable.

Way: the way-number of the cache entry where the error occurred. Caution: for the L1 caches (which are no more than
4-way set associative) thisisatwo-hit field. But an L2 cache might be more highly set-associative, and then thisfield
grows down.

Index: the index (within the cache way) of the cache entry where the error occurred... except that the low bits are not
meaningful. Theindex isaligned asif it's a byte address, which is good because that’s what Index-type cache
instructions need. It resolves the failing doubleword for adata error, or just the failing line for atag error. We've
shown a 14-bit field, because that’s large enough to provide the index for the 24K core’s largest configurable (4 ways
by 16KB) L1 cache option.

Two other fields are related to the processing of cache errors. Other implementations have laid claim to all of the bits
in thisregister, so these bits were relegated to the ErrCtl register. The FE and SE bitsin that register are used to detect
nested cache errors and are described in the next section.

If you want to study this error further, you'll probably use an index-type cache instruction to read out the tags and/

or data. The cacheinstruction’s“index” needs the way-number bits added to CacheErr[Index]’s contents; see Figure
3.1 and its notes above for how to do that.

3.4.13 ErrCitl register

Thisregister has two distinct roles. It contains “maode bits’ which provide different views of the TagLo registers
when they're used for accessto internal memory arrays and cache diagnostics. But it also controls parity protection of
the caches (if it was configured in your corein thefirst place).
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Figure 3.4 Fields in the ErrCtl Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 13 12 11 43 0
PE|PO|WST|SPR LBE WéB L2P 0 SE | FE 0 Pl PD
0 0o 0 0 O o0 0 0 O

Two fields are ‘overflow’ from the CacheErr register and relate to the error state:

FE/SE: Used to detect nested errors. FE (FirstError) is set on any cache error. SE (Second Error) is set when an error is
seen and FE is set. Software should clear FE once it has logged enough error information that taking a second error
will not be fatal.

Therest of the fields can be summarized as such: running software should set just the parity enable (PE) bit to enable
cache parity checking as required, and leave it zero otherwise. The fields are as follows:

PE: 1 to enable cache parity checking. Hard-wired to zero if parity isn't implemented.

PO: (parity overwrite) - set 1 to set the parity bit regardless of parity computation, which is only for diagnostic/test pur-
poses.

After setting this bit you can use cache IndexStoreTag to set the cache data parity to the value currently in
ErrCti[PI] (for I-cache) or ErrCtl[PD] (for D-cache), while the tag parity is forcefully set from TagLo[P].

WST: test mode for cache IndexLoadTag/cache IndexStoreTag instructions, which then read/write the
cache'sinternal "way-selection RAM" instead of the cache tags.

SPR: when set, index-type cache instructions work on the scratchpad/SPRAM, if fitted - see Section 3.6, " Scratchpad
memory/SPRAM".

P1/PD: parity bits being read/written to caches (I- and D-cache respectively).

LBE, WABE: field indicating whether a bus error (the last one, if there's been more than one) was triggered by aload or
awrite-allocate respectively: see below. Where both aload and write-allocate are waiting on the same cache-line
refill, both could be set. These hits are “ sticky”, remaining set until explicitly written zero.

L2P: Controls ECC checking of an L2 cache, if it's fitted and has that capability.

3.5 Bus error exception

The CPU’'s“OCP’ hardware interface rules permit a slave device attached to the system interface to signal back when
something has gone wrong with aread. This should not be used to report aread parity error; if parity is checked exter-
nally, it would have to be reported through an interrupt. Typically abus error means that some subsystem hasfailed to
respond. Bus errors are not signalled on an OCP write cycle, and (if they were) the 24K core ignores them.

Instruction bus error exceptions are precise (when the exception happens EPC always points to the instruction where
fetch failed). But a data-side bus error is usually caused by aload, and the (non-blocking) load which caused it may
have happened along time before the busy cycle finishes and the error is signalled. So abus error exception caused by
aload or storeisimprecise; EPC does not necessarily (or even usually) point to the instruction causing the memory
read..
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If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can han-
dleabus error at that point.

Thereisan obscure corner case. The 24K core’'s D-cacheis“write-allocate”: so awrite which missesin the cache will
trigger aread, to fill the cache line ready to receive the new data. If you're unlucky enough to get a bus error on that

read-for-refill, the bus error will be associated with astore. After abus error you can look at ErrCtl[LBE]/ErrCtl[WABE]
to see whether the error was caused by aload or write-allocate.

3.6 Scratchpad memory/SPRAM

37

The 24K core (like most of MIPS Technologies' cores) can be equipped with modestly-sized high speed on-chip data
memory, called scratchpad RAM or SPRAM. SPRAM is connected to a cache interface, alongside the |- and/or D-
cache, so is available separately for the |- and D-side (ISPRAM and DSPRAM).

MIPS Technologies provide the interface on which users can build many types and sizes of SPRAM. We a so provide
a“reference design” for both ISPRAM and DSPRAM, which iswhat is described here. If you keep the programming
interface the same as the reference design, you're more likely to be able to find software support. The reference
design allows for on-chip memories of up to IMbytesin size.

There are two possible motives for incorporating SPRAM:
SPRAM can be made larger than the maximum cache size.

Even for smaller sizes, it is possible to envisage applications where some particularly heavily-used piece of data
iswell-served by being permanently installed in SPRAM. Possible, but unusual. In most cases heavily-used data
will be handled well by the D-cache, and until you really know otherwise it's better for the SoC designer to max-
imize cache (compatible with his/her frequency needs.)

But there's another more compelling use for a modest-size SPRAM:

* “DMA”" accessible to external masters on the OCP interface: the SPRAM can be configured to be accessible
from an OCP interface. OCP masters will seeit just as a chunk of memory which can be read or written.

Because SPRAM stands in for the cache, data passed through the SPRAM in thisway doesn’t require any soft-
ware cache management. This makesit spectacularly efficient as a staging areafor communicating with complex
I/O devices. agreat way to implement “push” style I/O (that is where the device writesincoming data close to the
CPU).

SPRAM must be located somewhere within the physical address map of the CPU, and is usually accessed through
some “cached” region of memory (uncached region accesses to scratchpad work with the 24K reference design, but
may not do so on other implementations - better to access it through cacheable regions). It's usually better to putitin
the first 512Mbytes of physical space, because then it will be accessible through the simple ksegO “ cached,
unmapped” region - with no need to set up specific TLB entries.

Because the SPRAM is close to the cache, it inherits some bits of cache housekeeping. In particular the cache
instruction and the cache tag CPO registers are used to provide away for software to probe for and establish the size

of SPRAM?.

What follows is a hardware convention which SoC designers are not compelled to follow; but MIPS Technologies recom-
mends designers to do SPRAM this way to ease software porting.
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Probing for SPRAM configuration

The presence of scratchpad RAM in your coreisindicated by a“1” bit in one or both of the CPO Config[ISP,DSP]
register flags described in Figure 2.1. The MIPS Technol ogies reference design requires that you can query the size of
and adjust the location of scratchpad RAM through “cache tags’.

To access the SPRAM “tags’ (where the configuration information isto be found) first set the ErrCtl[SPR] bit (see
Section 3.4.13 “ErrCtl register”).

Now acache Index Load_Tag D, KSEGO_BASE+0Cinstruction fetches half the configuration information
into DTagLo, and acache Index Load Tag, KSEGO0_BASE+8 getsthe other half (the 8" stepsto the next
feasible tag location - an artefact of the 64-bit width of the cache interface.) The corresponding operations directed at
the primary |-cache read the halves of the |-side scratchpad tag, thistimeinto ITagLo. The“tag” for I-side and D-side
SPRAM appearsin TagLo fields as shown in Figure 3.5.

Figure 3.5 SPRAM (scratchpad RAM) configuration information in TagLo

31 12 11 8 7 6 5 4 1 O
addr == base address[31:12] 0 En 0
addr == 8| size of region in bytes/4KB 0 En 0

Where:
» base addresg[31:12]: the high-order bits of the physical base address of this chunk of SPRAM;

*  En: enable the SPRAM. From power-up this bit is zero, and until you set it to 1 the SPRAM isinvisible. The En
bit isalso visible in the second (size) configuration word — it can even be written there, but it’s not a good idea
to write the size word other than for far-out diagnostics;

» sizeof region in bytes/4KB: the number of page-size chunks of data mapped. If you take the whole 32 bits, it
returns the sizein bytes (but it will always be a multiple of 4KB).

In some MIPS cores using this sort of tag setup there could be multiple scratchpad regions indicated by two or more
of these tag pairs. But the reference design provided with the 24K core can only have one I-side and one D-side
region.

You can load software into the ISPRAM using cacheops. Each pair of instructionsto be loaded are put in the registers
IDataHi/IDataLo, and then you use acache Index Store_ Data_TI at the appropriateindex. Thetwo dataregis-
ters work together to do a 64-hit transfer. Note that he 24K core's instruction memory really is 128 bits wide, so
you'll need two cacheops to fully write a specific index. For a CPU configured big-endian the first instruction in
sequence is loaded into IDataHi, but for a CPU configured little-endian the first instruction is loaded into IDatalo.

Don't forget to set ErrCtl[SPR] back to zero when you're done.
3.7 The TLB and translation

The TLB isthe key piece of hardware which MIPS architecture CPUs have for memory management. It's a hardware
array, and for maintenance you access fields by their index. For memory trandation, it'sareal content-addressed

10. Theinstructions are written asif using C “#define” names from [m32c0 h]
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memory, whose input is avirtual page address together with the “ address space identifier” from EntryHi[ASID]. The
table also stores a physical address plus “ cacheability” attributes, which becomes the output of the translation lookup.

The hardware TLB isrelatively small, configurable with 16, 32 or 64 entries (read Configl[MMUSize] for the num-
ber configured for your core). Each entry can map a 2-page-size virtual region to a pair of physical pages. Entries can
map different size pages, too.

System software maintains the TLB as a cache of a much larger number of possible trandations. An attempt to use a
mapped-space address for which no trandation is in the hardware TLB invokes a special exception handler which is
carefully crafted to find and load the right entry as quickly as possible. Read on for a summary of all the fields and
how it gets used; but the OS ramifications are far too extensive to cover here; for a better description in context see
[SEEMIPSRUN]:, and for full details of the architectural specification see [MIPS32].

3.7.1 ATLB entry

Let's start with a sketch of a TLB entry. For MIPS32 cores, that consists of avirtual address portion to match against
and two output sections, something like Figure 3.6 - which also shows which TLB fields are carried in which CPO

registers.
Figure 3.6 Fields in a 24K® core TLB entry
EntryHi EntryHi
VPN2 PageMask | ASD |G PFN Flags PFN Flags
C DbV C DV
PageMask EntryLol EntryLoO

Some points to make about the TLB entry:

The input-side virtual address fields (to the |eft) have the fields necessary to match an incoming address against
thisentry. “VPN" is (by OS tradition) a“virtual page number” - the high bits of the program (virtual) address.

“VPN2" isused to remind you that this addressis for a double-page-size virtual region which will map to a pair
of physical pages...

The right-hand side (physical) fields are the information used to output a translation. There are a pair of outputs
for each input-match, and which of them is used is determined by the highest within-match address bit. Soin
standard form (when we're using 4K byte pages) each entry translates an 8K byte region of virtual address, but we
can map each 4K byte page onto any physical address (with any permission flag bits).

The size of the input region is configurable because the “ PageMask” determines how many incoming address bits
to match. The 24K core allows page sizes of 4Kbytes, 16K bytes and going on in powers of 4 up to 256Mbytes.
That's expressed by the legal values of PageMask, shown below.

The“ASID” field extends the virtual address with an 8-bit, OS-assigned memory-space identifier so that transla-
tions for multiple different applications can co-exist in the TLB (in Linux, for example, each application has dif-
ferent code and data lying in the same virtual address region).

The“G” (global) bit isnot quite sure whether it's on the input or output side - there's only one, but it can be read
and written through either of EntryLo0-1. When sgt, it causes addresses to match regardless of their ASID value,
thus defining a part of the address space which will be shared by all applications. For example, Linux applica
tions share some “kseg2” space used for kernel extensions.
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3.7.2 Live translation and micro-TLBs

When you're really tuning out the last cycle, you need to know that in the 24K core the trandation is actually done by
two little tableslocal to the instruction fetch unit and the |oad/store unit - called the ITLB and DTLB respectively
(collectively they're “micro-TLBS’ or “uTLBS"). There are only 4 entriesin the ITLB, and 8 inthe DTLB and they
are functionally invisible to software: they're automatically refilled from the main TLB (in this context it's often
called the joint TLB or JTLB) when required, and automatically cleared whenever the TLB is updated. It costs just
three extra clocksto refill the uTLB for any access whose translation is not already in the appropriate uTLB.

uTLB entries can only map 4KB and 1MB pages (main TLB entries can handle awhole range of sizes from 4KB to
256MB). When the uTLB isreloaded a translation marked for a size other than 4KB or 1IMB is down-converted as
required.

3.7.3 Reading and writing TLB entries: Index, Random and Wired

Two CPO registers work as simple indexes into the TLB array for programming: Index and Random. The oddly-
named Wired controls Random’s behavior.

Of these: Index determines which TLB entry is accessed by t1bwi. It'salso used for the result of at1bp (the
instruction you use to see whether a particular address would be successfully trandated by the CPU). Index only
implements enough bits to index the TLB, however big that is; but a t 1bp which failsto find a match for the speci-
fied virtual address sets bit 31 of Index (it's easy to test for).

Random isimplemented as afull CPU clock-rate downcounter. It won't decrement below the value of Wired (when it
gets there it bounces off and starts again at the highest legal index). In practice, when used inside the TLB refill
exception handler, it delivers arandom index into the TLB somewhere between the value of Wired and the top.
Wired can therefore be set to reserve some TLB entries from random replacement - a good place for an OS to keep
tranglations which must never cause a TLB translation-not-present exception.

3.7.4 Reading and writing TLB entries - EntryLo0-1, EntryHi and PageMask registers

The TLB is accessed through staging registers which between them represent all the fieldsin each TLB entry; they’re
called EntryHi, PageMask and EntryLo0-1. The fields from EntryHi and PageMask are shown in Figure 3.7.

Figure 3.7 Fields in the EntryHi and PageMask registers

31 2928 1312 87 0
EntryHi| VPN2 | 0 | ASID |

PageMask| 0 | Mask | 0 |

All these fields act as staging posts for entries being written to or read from the TLB. But some of them are more
magic than that...

EntryHI[VPN2]: is the page-pair address to be matched by the entry this reads/writes - see above.
However, on a TLB-related exception VPN2 is automagically set to the virtual address we were trying to translate
when we got the exception. If - asis most often the case - the outcome of the exception handler isto find and install a

tranglation to that address, VPN2 (and generally the whole of EntryHi) will turn out to already have the right valuesin
it.
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EntryHi[ASID]: does double-duty. It is used to stage data to and from the TLB, but in normal running software it’s also
the source of the current "ASID" value, used to extend the virtual address to make sure you only get trandations for
the current process.

PageMask[Mask]: acts as akind of backward mask, in that a1 bit means "don’t compare this address bit when matching
this address’. However, only arestricted range of PageMask values are legal (that’s with "1"sfilling the
PageMask[Mask] field from low bits upward, two at atime):

PageMask Sze of each output page PageMask Sze of each output page
0x0000.0000 4Kbytes| 0x007F.E000 4Mbytes
0x0000.6000 16Kbytes| 0x01FF.E000 16Mbytes
0x0001.E000 64Kbytes| 0x07FF.E000 64Mbytes
0x0007.E000 256Kbytes| 0x1FFF.E000 256Mbytes
0x001F.E000 1Mbyte

Note that the uTL Bs handle only 4K byte and 1M byte page sizes; other page sizes are down-converted to 4K byte or
1Mbyte asthey are referenced. For other page sizes this may cause an unexpectedly high rate of uTLB misses, which
could be noticeable in unusual circumstances.

Then moving our attention to the output side, the two EntryLo0-1 are identical in format as shown in Figure 3.8.

Figure 3.8 Fields in the EntryLoO-1 registers
31 3029 65 32 10
[ 0 ] PFN [ C [D]V]G]

In EntryLo0-1:

PFN: the "physical frame number" - traditional OS name for the high-order bits of the physical address. 24 bits of PFN
together with 12 bits of in-page address make up a 36-bit physical address; but the 24K core has a 32-bit physical
address bus, and does not implement the four highest bits (which aways read back as zero).

C: acodeindicating how to cache datain this page - pages can be marked uncacheable and various flavours of cache-
able. The codes here are shared with those used in CPO registers for the cacheability of fixed address regions: see
Table 3.3 in Section 3.4.2, "Cacheability options' on page 27 .

D: the"dirty" flag. In hardware termsit’s just a write-enable (when it's 0 you can't do a store using addresses trand ated
here, you'll get an exception instead). However, software can use it to track pages which have been written to; when
you first map a page you leave this bit clear, and then afirst write causes an exception which you note somewherein
the OS'" memory management tables (and of course remember to set the bit).

V: the "valid" flag. You'd think it doesn’t make much sense - why load an entry if it's not valid? But thisis very helpful
s0 you can make just one of apair of pages valid.

G: the "global" bit. Thisreally belongs to the input side, and there aren’t really two independent values for it. So you
should always make sure you set EntryLoO[G] and EntryLo1[G} the same.

3.7.5 TLB initialization and duplicate entries

TLB entries come up to random values on power-up, and must be initialized by hardware before use. Generally, early
bootstrap software should go through setting each entry to a harmless “invalid” value.
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3.7 The TLB and translation

Sincethe TLB isafully-associative array and entries are written by index, it’'s possible to load duplicate entries - two
or more entries which match the same virtual address/ASID. In older MIPS CPUs it was essential to avoid duplicate
entries - even duplicate entries where all the entries are marked “invalid”. Some designs could even suffer hardware
damage from duplicates. Because of the need to avoid duplicates, even initialization code ought to use a different vir-
tual address for each invalid entry; it's common practice to use “kseg0” virtual addresses for the initial all-invalid
entries.

Most MIPS Technol ogies cores protect themselves and you by taking a “ machine check” exception if a TLB update
would have created a duplicate entry - but in the 24K core that only happensif both entries are valid. Some earlier
MIPS Technologies cores suffer amachine check even if duplicate entries are both invalid. That can happen when ini-
tializing. For example, when an OSisinitializing the TLB it may well re-use the same entries as already exist - per-
haps the ROM monitor already initialized the TLB, and (derived from the same source code) happened to use the
same dummy addresses. If you do that, your second initialization run will cause a machine check exception. The solu-
tion isfor theinitializing routine to check the TLB for a matching entry (using the t1bp instruction) before each
update.

For portability you should probably include the probe step in initialization routines: it’'s not essential on the 24K core,

where we repeat that the machine check exception doesn’t happen unless the old and new entry are both marked as
valid.

3.7.6 TLB exception handlers — BadVaddr and Context

These two registers are provided mainly to simplify TLB refill handlers.

BadVAddr isaplain 32-hit register which holds the virtual address which caused the last address-related exception,
and isread-only. It is set for the following exception types only: Address error (AdEL or AdES), TLB/XTLB Réfill,
TLB Invalid (TLBL, TLBS) and TLB Modified (for more on exception codesin Cause[ExcCode], see the notesto
TableB.4.)

Context contains the useful mix of pre-programmed and borrowed-from-BadVVAddr bits shown in Figure 3.9.

Figure 3.9 Fields in the Context Register
31 23 22 4 3 0

PTEBase BadVPN2 0

Context[PTEBase,BadVPNZ2]: the PTEBase field isjust software-writable and readable, with no hardware effect.

In apreferred scheme for software management of page tables, PTEBase can be set to the base address of a (suitably
aligned) page table in memory; then the BadVPN2 number (see below) comes from the virtual address associated
with the exception—-it'sjust bits from BadVAddr, repackaged. In this case the virtual address bits are shifted such
that each ascending 8K byte translation unit generates another step through a page table (assuming that each entry is
2 x 32-bit wordsin size— reasonable since you need to store at |east the two candidate EntryLo0-1 valuesin it).

An OS which can accept a page tablein thisformat can contrive that in the time-critical simple TLB refill exception,
Context automagically points to the right page table entry for the new trand ation.

Thisisagreat idea, but modern OS' tend not to use it — the demands of portability mean it's too much of a stretch to
bend the page table information to fit this model.
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Chapter 4

Programming the 24K® core in user mode

This chapter is not very long, because in user mode one M1PS32-compliant CPU looks much like another. But not
everything — sections include:

e Section 4.1, "User-mode accessible “Hardware registers’™
e Section 4.2, "Prefetching data’: how it works.

»  Section 4.3, "Using “synci” when writing instructions': writing instructions without needing to use privileged
cache management instructions.

»  Section 4.4, "The multiplier": multiply, multiply/accumulate and divide timings.

»  Section 4.5, "Tuning software for the 24K® family pipeline": for determined programmers, and for compiler
writers. It includes information about the timing of the DSP ASE instructions.

*  Section 4.6 “Tuning floating-point”: the floating-point unit often runs at half speed, and some of its interactions
(particularly about potential exceptions) are complicated. This section offers some guidance about the timing
issues you'll encounter.

4.1 User-mode accessible “Hardware registers”

The 24K core complies with Revision 2 of the M1PS32 specification, which introduces hardware registers, CPU-
dependent registers which are readable by unprivileged user space programs, usually to share information which is
worth making accessible to programs without the overhead of a system call.

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rahwr instruction. [M1PS32] defines four registers so far. The OS can control accessto
each register individually, through a bitmask in the CPO register HWREna - (set bit O to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access — see Section 5.6 “The
HWREnaregister - Control user rdhwr access’. Privileged code can access any hardware register.

Thefive standard registers are:

e CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

«  SYNCI_Sep (1): the effective size of an L1 cache line!?; thisis now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you've written visible for execu-
tion. Then SYNCI_Step tellsyou the “ step size” - the address increment between successive synei’srequired to
cover all the instructionsin arange.

11. Strictly, it'sthelesser of the I-cache and D-cache line size, but it's most unusual to make them different.
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4.2 Prefetching data

If SYNCI_Step returns zero, that means that your hardware ensures that your caches are instruction/data coher-
ent, and you don’t need to use synci at all.

e CC (2): user-mode read-only access to the CPO Count register, for high-resolution counting. Which wouldn’t be
much good without.

*  CCRes(3): whichtells you how fast Count counts. It's adivider from the pipeline clock — if you read a value of
“2", then Count increments every 2 cycles, at half the pipeline clock rate. For 24K family cores that is precisely
what you will read.

* UL (30): user-mode read-only access to the CPO UserLocal register. This register can be used to provide a
thread identifier to user-mode programs. See Section B.4.2 “The UserLocal register” for more details

4.2 Prefetching data

MIPS32 CPUs are being increasingly used for computations which feature loops accessing large arrays, and the run-
time is often dominated by cache misses.

These are excellent candidates for using the pre£ instruction, which gets data into the cache without affecting the
CPUs other state. In awell-optimized loop with prefetch, data for the next iteration can be fetched into the cache in
parallel with computation for the last iteration.

It's apretty major principle that pre£ should have no software-visible effect other than to make things go faster.
pref islogically ano-op?.

Thepref instruction comes with various possible “ hints’ which allow the program to express its best guess about the
likely fate of the cache line. In 24K family coresthe “load” and “store” variants of the hints do the same thing; but it
makes good sense to use the hint which matches your program’sintention - you might one day port it to a CPU where
it makes a difference, and it can’'t do any harm.

The 24K core acts on hints as summarized in Table 4.1.
4.3 Using “synci” when writing instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification, [M1PS32]) ensures that
instructions written by a program (necessarily through the D-cache, if you're running cached) get written back from
the D-cache and corresponding I-cache locations invalidated, so that any future execution at the address will reliably
execute the new instructions. synci takes an address argument, and it takes effect on awhole enclosing cache-line
sized piece of memory. User-level programs can discover the cache line size becauseit’'s availablein a“ hardware reg-
isters’ accessed by rdhwr, as described in Section 4.1, "User-mode accessible “ Hardware registers’™ above.

Since synci is modifying the program’s own instruction stream, it’s inherently an “instruction hazard”: so when
you've finished writing your instructions and issued the last syneci, you should then use ajr . hb or equivalent to call
the new instructions — see Section 5.1 “Hazard barrier instructions”.

12. Thisisn't quite true any more; pref£ with the “ PrepareForStore” hint can zero out some data which wasn't previously zero.
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Table 4.1 Hints for “pref” instructions

Hint What happensin the 24K core Why would you use it?
No Name
0 load Read the cache line into the D-cache if |When you expect to read the data soon.
1 store not present. Use “store” hint if you also expect to
modify it.
4 load_streamed Fetch data, but always use cacheway  |For datayou expect to process sequen-

5 store_streamed

zero - so alarge sequence of “streamed”
prefetcheswill only ever use aquarter of
the cache.

tialy, and can afford to discard from the
cache once processed

6 load_retained
7 store retained

Fetch data, but never use cache way
zero. That meansif you do a mixture of
“streamed” and “retained” operations,
they will not displace each other from
the cache.

For data you expect to use more than
once, and which may be subject to com-
petition from “ streamed” data.

25 writeback_invalidate/
nudge

If thelineisin the cache, invalidate it
(writing it back first if it was dirty).
Otherwise do nothing.

However (with the 24K core only): if
thislineisin aregion marked for
“uncached accelerated write” behavior,
then write-back this line.

When you know you've finished with
the data, and want to make sure it loses
in any future competition for cache
resources.

30 PrepareforStore

If thelineis not in the cache, create a
cache line - but instead of reading it
from memory, fill it with zeroes and
mark it as“dirty”.

If the line is @ready in the cache do
nothing - this operation cannot berelied
upon to zero theline.

When you know you will overwrite the
whole line, so reading the old data from
Memory is unnecessary.

A recycled lineis zero-filled only
because its former contents could have
belonged to a sensitive application -
alowing them to be visible to the new
owner would be a security breach.

4.4 The multiplier

Asistraditional with MIPS CPUSs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32

CPUs implement:

*  mult/multu: a32x32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the
multiply unit’'s pseudo-registers hi and lo (readable only using the special instructionsm£hi and m€lo, which are

interlocked and stall until the result is available).

* madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo.

*  mul/mulu: Simple 3-operand multiply as a singleinstruction.

* div/divu: divide - the quotient goesinto lo and the remainder into hi.

No multiply/divide operation ever produces an exception - even divide-by-zero is silent - so compilerstypically insert
explicit check code where it's required.

The 24K core multiplier is high performance and pipelined; multiply/accumulate instructions can run at arate of 1
per clock, but a 32x32 3-operand multiply takes four clocks longer than asimple ALU operation. Divides use a bit-
per-clock algorithm, which is short-cut for smaller dividends. Multiply/divide instructions are generally slow enough
that it is difficult to arrange programs so that their results will be ready when needed.
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4.5 Tuning software for the 24K® family pipeline

4.5 Tuning software for the 24K® family pipeline

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code translators.

The 24K coreis apipelined design, and the pipeline and some of its consequences are described in Section 1.6 “A
brief guide to the 24K® core implementation”. That leads to a class of possible delays to do with data dependencies
and resource limitations.

For software tuning purposesit’s usually enough to know the delay which results when one instruction (the “pro-
ducer”) generates avalue in some particular register for the use of the next instruction in sequence (the “ consumer™).
Thedelay isin processor cycletime units, but it makes good sense to think of that delay asalost opportunity to run an
instruction. To tune round data dependencies, the programmer or compiler needs to re-order the instructions so that
enough useful but independent instructions are placed between the producer and consumer that the consumer runs
without delay.

There are times when interactions are more complicated than that. While you can pore over hardware booksto try to
figure out what the pipelineis doing, when it gets that difficult we advise that you should obtain a cycle-accurate Sim-
ulator or other well-instrumented test environment, and try your software out.

But before getting on to data delays, we'll ook at the most important causes of slow-down: cycleslost to cache
misses and branches.

4.5.1 Cache delays and mitigating their effect

Inatypica 24K CPU implementation a cache miss which hasto be refilled from DRAM memory (in the very next
chip on the board) will be delayed by a period of time long enough to run 50-200 instructions. A miss or uncached
read (perhaps of adevice register) may easily be several times slower. These really are important!

Because these delays are so large, there’s not alot you can do to help a cache-missing program make progress. But
every little bit helps. The 24K core has non-blocking loads, so if you can move your load instruction producer away
from its consumer, you won't start paying for your memory delay until you try to run the consuming instruction.

Compilers and programmers find it difficult to move fragments of algorithm backwards like this, so the architecture
also provides prefetch instructions (which fetch designated data into the D-cache, but do nothing else). Because
they’re free of most side-effectsit’s easier to issue prefetches very early. Any loop which walks predictably through a
large array is a candidate for prefetch instructions, which are conveniently placed within one iteration to prefetch data
for the next.

Thepref PrepareForStore prefetch savesacache refill read, for cache lines which you intend to overwritein
their entirety. Read more about prefetch in Section 4.2, "Prefetching data" above.

Tuning data-intensive common functions

Bulk operationslikebcopy () and bzero () will benefit from CPU-specific tuning. To get excellent performance
for in-cache data, it's only necessary to reorganize the software enough to cover the address-to-store and load-to-use
delays. But to get the loop to achieve the best performance when cache missing, you probably want to use some
prefetches. MIPS Technol ogies may have example code of such functions — ask.
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4.5.2 Branch delay slot
It's afeature of the MIPS architecture that it always attempts to execute the instruction immediately following a

branch. Therationale for thisisthat it's extremely difficult to fetch the branch target quickly enough to avoid adelay,
so the extrainstruction runs “for free”...

Most of the time, the compiler deals well with this single delay slot. MIPS low-level programmersfind it odd at first,
but you get used to it!

4.6 Tuning floating-point

It seemed to make more sense to put this information into the FPU chapter: read from Section 6.5 “FPU pipeline and
instruction timing”.
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4.6.1 Branch misprediction delays

In along-pipeline design like this, branches would be expensive if you waited until the branch was executed before
fetching any more instructions. See Section 1.6 “A brief guide to the 24K® core implementation” for what is done
about this: but the upshot isthat where the fetch logic can’t compute the target address, or guesses wrong, that’s going
to cost five or more lost cycles. It does depend what sort of branch: the conditional branch which closes atight loop
will almost always be predicted correctly after the first time around.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to
keep ahead with its predictions. Where branchy code can be replaced by conditional moves, you'll get significant
benefits.

The branch-likely!2 instructions (officially deprecated by the M1PS32 architecture because they may perform poorly
on more sophisticated or wider-issue hardware) are predicted just like any other branch.

Although deprecated, the branch-likely instructionswill probably improve the performance of loopswhere thereisno
other way of avoiding ano-op in aloop-closing branch’'s delay slot. If you're tempted to use this, we strongly recom-
mend you make the code conditional on a #define variable tied specifically to the 24K family. If that’s difficult in
your environment and the code might need to be portable, it's probably better not to use this.

4.6.2 Data dependency delays classified

WEe've attempted to tabulate al possible producer/consumer delays affecting user-level code (we're not discussing
CPO registers here), but excluding floating point (which isin the next section).

In fact, we won't set out the tables exactly like that. The MIPS instruction set is efficient because, most of the time,
dependent instructions can be run nose-to-tail without delay. For all registers, thereisa*“ standard” place in the pipe-

line where the producer should deliver its value and another place in the pipeline where the consumer picks it up™.
Producer/consumer delays happen when either the producer islate delivering aresult to the register (we'll abbreviate
to “lazy”), or the consumer insists on obtaining its operand early (we'll abbreviate to “eager”). Of course, both may
happen: in that case the delays add up.

It'simportant to be clear what class of registersisinvolved in any of these delays. For non-floating-point user-level
code, there are just two classes of registersto consider:

»  Genera purpose registers (“GPR");
*  Thehillo pair (“ACC");

So that gives us two tables.

13. The*“likely” in the instruction nameis historical, and pretty misleading.
14. These are brought closer together by the magic of register file bypasses, but we don't need to get into the details here.
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Delays caused by “eager consumers” reading values early

Table 4.2 Register — eager consumer delays

Reg — Eager consumer Del Applies when...
GPR — load/store 1|the GPR value Is an address operand (store data s
not needed early).
ACC — multiply instructions 1|the ACC value came from an mthi/mt 1o Instruc-
tion.

Delays caused by “lazy producers” delivering values late

Table 4.3 Lazy producer — register delays

Lazy producer — Reg Del Applies when...
Load — GPR 1|Always (familiar asthe “load delay slot”).
Integer multiply unit instructions produc- — GPR 4| Always (because the multiply unit pipelineis
ing a GPR result. longer than the integer unit’s).
Instructions reading accumulators and
writing GPR (e.g. m£10).
Integer divideinstruction — ACC 7|8-bit dividend
9|8-hit dividend & negative operand to div
15|16-hit dividend
17{16-bit dividend & negative operand to div
23|24-bit dividend
25|24-bit dividend & negative operand to div
31|full-size dividend
33|full-size dividend & negative operand to div

How to use the tables

Suppose we've got an instruction sequence like this one:

addiu $a0, %$al0, 8

1w $t0, 0($a0l) # [1]
1w stl, 4(sa0)

addu St2, $t0, stl# [2]
mul sv0, $t2, s$t3

sw $v0, 0(sal) # [3]

Then alook at the tables should help us discover whether any instructions will be held up. Look at the dependencies
where an instruction is dependent on its predecessor:

[1] The 1w will be held up by one clock, because its GPR address operand $a0 was computed by the immediately pre-
ceding instruction (see the first box of Table 4.2.) The second 1w will be OK.

[2] The addu will be one clock late, because the |oad data from the preceding 1w arrives late in the GPR $t1 (seethe
first box of Table 4.3.)

[3] The sw will be 4 clocks late starting while it waits for aresult from the multiply pipe (the second box of Table 4.3.)

These can be additive. In the pointer-chasing sequence:

1w $tl, 0(st0)
1w $t2, 0(s$tl)
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The second load will be held up two clocks: one because of the late delivery of load datain $t1 (first box of Table
4.3), plus another because that datais required to form the address (first box of Table 4.2.)

More complicated dependencies

There can be delays which are dependent on the dynamic allocation of resourcesinside the CPU. In general you can’t
really figure out how much these matter by doing a static code analysis, and we earnestly advise you to get somekind

of high-visibility cycle-accurate simulator or trace equipment (probably based on Section 7.2, "PDtrace™ instruction
trace facility™).
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ExcCode: what caused that last exception. Lots of values, listed in Table B.4.

Table B.4 Exception Code values in Cause[ExcCode]

Val Code What just happened?
0 Int Interrupt
1 Mod Store, but page marked as read-only inthe TLB
2 TLBL Load or fetch, but page marked asinvalidinthe TLB
3 TLBS Store, but page marked asinvalid in the TLB
4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a privilege vio-
5 AdES lation.
6 IBE Bus error signaled on instruction fetch
7 DBE Bus error signaled on load/store (imprecise)
8 Sys System cdll, ie syscall instruction executed.
9 Bp Breakpoint, ie break instruction executed.
10 RI Instruction code not recognized (or not legal)
11 CpU Co-processor instruction encoding for co-processor which is not enabled in Status[CU3-0].
12 ov Overflow from trapping form of integer arithmetic instructions.
13 Tr Condition met on one of the conditional trap instructions teq etc.
14 - Reserved
15 FPE Floating point unit exception - more detailsin FCSR.
16 - Available for implementation dependent use
17 CeU CorExtend instruction attempted when not enable by Status[CEE]
18 C2E Reserved for precise Coprocessor 2 exceptions
19-21 - Reserved
22 MDMX Tried to run an MDMX instruction but Status[MX] wasn't set (most likely, the CPU doesn’t do
MDMX)
23| WATCH Instruction or data reference matched a watchpoint
24| MCheck [|“Machine check” - tried to write conflicting TLB entries
26 DSP Tried to run an instruction from the MIPS DSP ASE, but it's not enabled (that is, Status[MX] is zero).
27-29 - Reserved
30| cacheErr | Parity/ECC error somewhere in the core, on either instruction fetch, load or cache refill. In fact you
never see thisvalue in Cause[ExcCode]; but some of the codes in this table including this one can be
visiblein the “debug mode” of the EJTAG debug unit - see Section 7.1 “EJTAG on-chip debug unit”,
and in particular the notes on the Debug register in Figure 7.1.
31 - Reserved

B.4.4 Count and Compare

These two 32-bit registers form a useful and flexible timer. Count just counts. For the 24K core, that’s usually at the
full pipeline clock rate. But portable software can discover how fast Count counts by reading the “ hardware register”
called “CCRes’, see Section 4.1 “User-mode accessible “Hardware registers’”.
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B.4 Miscellaneous CPO register descriptions

You can write Count to set avaluein it, but it's generally more valuable for an OSto leave it as a free-running
counter.

When the value of Count coincides with the value in Compare, an interrupt is raised. Theinterrupt is cleared every
time Compare iswritten. Thisis handy:

»  For aperiodic interrupt, simply advance Compare by afixed amount each time (and check for the possibility that
Count has overrun it).

» Toset atimer for some point in the future, just set Compare to an increment more than the current val ue of
Count.

The timer interrupt isimplemented as an output signal at the core interface; but it's conventional (well, pretty com-
pulsory if you want OS' to work) to return it to the CPU core on an interrupt line. Your system integrator should wire
information pins to show where the timer interrupt is connected: see the notes on IntCtI[IPTI] below Figure 5.1. How-

ever, if you have an “EIC” interrupt controller (see Section 5.2.3 “External Interrupt Controller (EIC) mode™) you'll
need to send the timer interrupt all the way out to the interrupt controller and back.

B.4.5 The Config7 register

The Config7 register holds CPU-specific one-time setup and basic information fields.

Figure B-3 Fields in the Config7 Register

31 30 20 19 18 17 16 15 11 10 9 8 7 6 5 4 3 2 1 0
WII 0 PCT|HCI |[FPR|AR 0 IAR|IVA |ES 0 O|NBLSU |ULB|BP|RPS|BHT |SL
0 0 O 0 0 0 O 0 O

Config7: read-only fields

Config7[WII]: Read-only bit which tells you how wait behaves. When this bit is set, an interrupt which would occur
just so long as Status[IE] is set 1 will always be enough to terminate await instruction.

24K family CPUs where WII reads O will remain in the wait condition forever if entered with interrupts disabled.
The MIPS32 Architecture Specification permits either behavior.

But with the WII-set feature it's safe towait with interrupts disabled using Status[IE]. Thisalows OS code to avoid
atricky race condition.

Config7[PCT]: read-only field which reads 1 if the core has two performance counters, replicated per-TC (older cores
had four performance counters, not replicated): see Section 7.4 “Performance counters’.

Config7[HCI]: read-only field which is always zero on 34K family cores. It reads 1 for some software-simulated CPUS,
to indicate that the software-modelled cache does not require initialization. Most software should ignore this bit.

Config7[FPR]: read-only field. Reads 1 if an FPU isfitted but (asis common) it runs at half the main core clock rate.
Config7[AR]: read-only field, indicating that the D-cache is configured to avoid cache aliases.
Config7[IAR]: aread-only field which tells you that you have an I-cache whose cacheops can be made aias-proof, as

described in Section 3.4.8 “Cache aliases”.
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Config7: writable fields

Config7[IVA]: is hard-wired zero when the cache isinherently alias-free, as when the cache sizeis 16KB or less.
Otherwise this field can be used to enforce legacy behaviour on a CPU which has “alias-proof” |-cache cacheops —
see Config7[IAR] field above.

Config7[ES]: whenitissetto "1", the sync instruction will be signalled on the core’s OCP interface as an "ordering
barrier" transaction, using a synec-specific encoding. It defaults to zero at system reset

Config7[ES] bit cannot be set (will always read zero and will have no effect) unless the OCP input signal
Sl_SyncTxEn is asserted — it's interpreted as agreement from the connected OCP device/interconnect that it can
handle the barrier transaction.

The remaining fields default to zero and are uncommonly set. It is therefore aways safe not to write Config7. Some
of these hits are for diagnostics and experimentation only:

Config7[NBLSU]: set 1 to arrange that |oad/store pipeline stalls will stop the main pipeline too, keeping them
synchronized. For debug and investigation only.

Config7[ULBJ: set 1 to make all uncached loads blocking (a program usually only blocks when it uses the datawhichis
loaded). Y ou want to do this only when nothing else will work...

Config7[BP]: when set, no branch prediction is done, and al branches and jumps cause instruction fetch to be
suspended until they are resolved.

Config7[RPS]: when set, the return address branch predictor isdisabled, so jr $31 istreated just like any other jump
register. Instruction fetch stalls after the branch delay slot, until the jump instruction reaches the "EX" stagein the
pipeline and can provide the right address (typically adds 5 clocks compared to a successfully predicted return
address).

Config7[BHT]: when set, the branch history table is disabled and all branches are predicted taken.

Config7[SL]: when set, disables non-blocking loads. Normally the 34K core will keep running after aload instruction
even if it missesin the D-cache, until the datais used. With this disable bit set, the CPU will stall on any load D-
cache miss.

B.4.6 Cache registers in special diagnostic modes

Most of the way that cache tag registers work is common (to alarge extent) over most recent MIPS Technologies
cores. Those common features are described in Section 3.4.10 “Cache initialization and tag/data registers’. More
obscure features are here.

DTaglLo, ITagLo registers when accessing Way Select RAM
Thisisthe view you get when ErrCtl[WST] is set.

Figure B-4 Fields in the TagLo Register (ErrCtI[WST] set)
31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

U WSDP WSD LRU 0 U 0 U

TagLo-WST[WSD,WSDP]: cache line dirty hits are held in the "way select” RAM, to make them easier to update.
Here you can see al of them, and each has a parity bit.
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B.4 Miscellaneous CPO register descriptions

TagLo-WST[LRU]: when you read or write the tag in way select test mode (that is, with ErrCtl]WST] set) thisfield
reads or writes the LRU ("least recently used") state bits, held in the way select RAM.
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Appendix C

MIPS® Architecture quick-reference sheet(s)

C.1 General purpose register numbers and names

By ancient convention the general-purpose registers in the MIPS architecture have conventional names which remind
you of their standard usage in popular MIPS ABIls. Table C.1 shows those names related to both the “032” ABI
(almost universally used for 32-bit MIPS applications), but also the minor variationsin the “n32” and “n64” ABIs
defined by Silicon Graphics.

If you're not sure what an ABI is, just read the “ 032" column!

Table C.1 Conventional names of registers with usage mnemonics

Register Nos name use
$0 zero  awayszero
$1 AT assembler temporary
$2-$3 v0-v1l return vaue from function
$4-57 a0-a3 arguments
032 n32/n64

name use name use
$8-$11 t0-t3 temporaries ad-a’7 more arguments
$12-$15 td-t7 t0-t3 temporaries
$24-525 £8-t9 t8-t9

$16-$23 s0-s7 saved registers
$26-5$27 k0-k1 reserved for interrupt/trap handler

$28 ap global pointer

$29 sp stack pointer

$30 s8/fp frame pointer if needed (additional saved register if not)
$31 ra Return address for subroutine

C.2 User-level changes with Release 2 of the MIPS32® Architecture

With the Release 2 update the MIPS32 instruction set gains some useful extra features, shown below. User-level pro-
grams also get limited access to “hardware registers’, useful for user-privilege software but which wants to adapt
(portably) to get the best out of the CPU.

C.2.1 Release 2 of the MIPS32® Architecture - new instructions for user-mode

The following instructions are new with the M1PS32 release 2 update:

Programming the MIPS32® 24K® Core Family, Revision 04.63 111



C.2 User-level changes with Release 2 of the MIPS32® Architecture

Table C.2 Release 2 of the MIPS32® Architecture - new instructions

Instruction(s)

Description

ehb
jalr.hb rd, rs
jr.hb rs

Hazard barriers; wait until side-effects from earlier instructions are all complete (that is,
can be guaranteed to apply in full to all instructions issued after the barrier).

These defend you respectively against:

ehb - execution hazards (side-effects of old instructions which affect how an instruction
executes, but excluding those which affect the instruction fetch process).
jalr.hb/jr.hb - hazards of all kinds.

Notethat eret isalso abarrier to al kinds of hazard.

ext rt, rs, pos, size
ins rt, rs, pos, size

Bitfield extract and insert operations.

mfhecl rt, fs
mthcl rt, £fs

Coprocessor/general register move instructions targeting the high-order bits of a 64-bit
floating point unit (CP1) register when the integer core is 32-hit.

mfhc2 rt, rd
mthec2 rt, rd

Coprocessor2 might be 64 hits, too (but thisistypically a customer specia unit).

rdhwr rt,rd

“read hardware register” - user-mode access read-only accessto low-level CPU informa:
tion - see “Hardware Registers’ below.

rotr rd, rt, sa
rotrv rd, rt, rs

Bitwise rotate instructions (like shifts, one has the rotate amount as an immediate field
sa, the other in an additional register argument rs).

seb rd, rt
seh rd, rt

Register-to-register sign extend instructions.

synci offset (base)

Synchronize caches to make instruction write effective. Instructions written by the CPU
for itself to execute must be written back from the D-cache and any stale data at that loca-
tion invalidated from the I-cache, before it will work properly. synci isauser-privilege
instruction which does all that is required for the enclosing cache-line sized memory
block. Very useful to JIT interpreters.

wsbh rd, rt

swap the bytes in each halfword within a 32-bit word. It was introduced together with the
rotate instructions rot/ rotv and the sign-extenders seb/ seh.

Between them you can make big savings on common byte-twiddling operations; for
example, you can swap the bytesin $2 using rot $2, $2, 16; wsbh$2, $2.

C.2.2 Release 2 of the MIPS32® Architecture - Hardware registers from user mode

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rahwx instruction. [MIPS32] defines four registers so far. The OS can control accessto
each register individually, through a bitmask in the CPO register HWREna - (set bit 0 to enable register O etc).
HWREna iscleared to all-zeroes on reset, so software hasto explicitly enable user access. Privileged code can access

any hardware register.

Thefour registers are:

e CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

*  SYNCI_Sep (1): the effective size of an L1 cache line3%; thisis now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you've written visible for execu-
tion. Then SYNCI_Step tellsyou the “step size” - the address increment between successive synci’s required
to cover al the instructionsin arange.

If SYNCI_Step returns zero, that means that you don’'t need to use synci at all.

30. Strictly, it'sthe lesser of the I-cache and D-cache line size, but it's most unusual to make them different.
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e CC (2): user-mode read-only access to the CPO Count register, for high-resolution counting. Which wouldn’t be
much good without...

*  CCRes(3): which tellsyou how fast Count counts. It's adivider from the pipeline clock (if you read a value of
“2", then Count increments every 2 cycles, at half the pipeline clock rate).

C.3 FPU changes in Release 2 of the MIPS32® Architecture

The main changeisthat a32-hit CPU (likethe 24K core) can now be paired with a 64-bit floating point unit. The FPU
itself is compatible with the description in [M1PS64V2].

The only new feature of the instruction set are themfhe1/mthel instructions described in Section C.2, "Release 2 of
the MIPS32® Architecture - new instructions'.

But it's worth stressing that the floating point unit implements 64-bit load and store instructions. The FPU of the 24K
core is described in Chapter 6, “Floating point unit” on page 61.
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C.3 FPU changes in Release 2 of the MIPS32® Architecture
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Appendix D

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changesto this document sinceitslast release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Revision Date Description

2.00 15th March 2004 | First generally available version, to coincide with general availability of the
24K core.

201 22nd March 2004 | Config7[ES] now defaults to zero.

2.02 4th June 2004 Improvements to the multiply/divide unit timings table and description.

2.03 | 29th September 2004 | For RTL MRL1 release.

Made the debug section into a chapter in its own right. Added sections on
scratchpad and EJTAG. Other minor fixes.

3.00 22nd April 2005 | Added I-side scratchpad information to Section 3.6, " Scratchpad memory/
SPRAM" and Section 7.2 “PDtrace™ instruction trace facility” section, for
the MR3 release of the 24K core.

Added description of the Config1-3 CPO registers.

3.01 Minor typographical fixes.

4.00 1st July 2005 Update for maintenance release of the MIPS 24K ¢ core family.
Minor updates on EJTAG debug and PDtrace sections.

4.10 | 21st December 2005 | Update for maintenance release of the MIPS 24K c core family.

Added 8K cache option and improved description of scratchpad RAM.

4.20 22nd June 2006 Update for maintenance release.

451 23rd April 2007 | L2 cache option documented.

Updated for core version 3.7
Change bars are against 4.20
453 10th September 2007 | Minor fix (FSB/LSB configurability missed in intro).
4.61 | 20th September 2007 | Candidate for v4.0 release of the 24K core. Changesinclude:
* New CPO register, see Section B.4.2 “The UserLocal register”.
« Alias-proof I-cache operations, see Section 3.4.8 “Cache dliases’.
e Canwait withinterrupts disabled, see Section 5.5 “Saving Power”.
* TheL2 accessregisters are renamed to L23TagLo etc (used to be“ STagLo”
etc).
¢ Miscellaneous fixes.
Change bars are vs 4.51.
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Revision

Date

Description

4.62

31st October 2007

Minor cleanup for release

Change bars are vs. 4.51

¢ Add notes on L2 feature enhancement - 64B lines
* Added missing UserLocal references

4.63

19th December 2008

* Fixed read value of CCRes

« Exception table wrongly indicated machine check could not happen

» Added exampleidleloop code making use of Config7[WII]
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