
Document Number: MD00355
Revision 04.63

December 19, 2008

Programming the MIPS32® 24K® Core
Family

3 Programming the MIPS32® 24K® Core Family, Revision 04.63

Table of Contents

Table of Contents ... 3

List of Tables .. 6

List of Figures ... 7

Chapter 1: Introduction .. 9
1.1: Chapters of this manual... 10
1.2: Typographical conventions.. 10
1.3: Register diagrams and field descriptions... 10
1.4: Finding information in this manual... 11
1.5: 24K® core features.. 11
1.6: A brief guide to the 24K® core implementation ... 12

1.6.1: Notes on pipeline diagram (Figure 1.1):... 12
1.6.2: Branches and branch delays.. 13
1.6.3: Loads and load-to-use delays .. 14
1.6.4: Resource limits and consequences ... 15

Chapter 2: Initialization and identity ... 17
2.1: Probing your CPU - Config CP0 registers ... 17

2.1.1: The Config register... 17
2.1.2: The Config1-2 registers.. 19
2.1.3: The Config3 register... 20
2.1.4: CPU-specific configuration — Config7... 21

2.2: PRId register — identifying your CPU type ... 21

Chapter 3: Memory map, caching, reads, writes and translation .. 23
3.1: The memory map .. 23
3.2: Fixed mapping option .. 24
3.3: Reads, writes and synchronization.. 24

3.3.1: Read/write ordering and cache/memory data queues in the 24K® core.. 24
3.3.2: The “sync” instruction in 24K® family cores... 25
3.3.3: Write gathering and “write buffer flushing” in 24K® family cores ... 26

3.4: Caches .. 26
3.4.1: The L2 cache option... 26
3.4.2: Cacheability options ... 27
3.4.3: Uncached accelerated writes ... 28
3.4.4: The cache instruction and software cache management... 28
3.4.5: Cache instructions and CP0 cache tag/data registers ... 31
3.4.6: L1 Cache instruction timing.. 31
3.4.7: Cache management when writing instructions - the “synci” instruction ... 32
3.4.8: Cache aliases... 32
3.4.9: Cache locking... 33
3.4.10: Cache initialization and tag/data registers ... 33
3.4.11: TagLo registers in special modes .. 34
3.4.12: Parity error exception handling and the CacheErr register .. 34

Programming the MIPS32® 24K® Core Family, Revision 04.63 4

3.4.13: ErrCtl register ... 35
3.5: Bus error exception ... 36
3.6: Scratchpad memory/SPRAM... 37
3.7: The TLB and translation .. 38

3.7.1: A TLB entry .. 39
3.7.2: Live translation and micro-TLBs... 40
3.7.3: Reading and writing TLB entries: Index, Random and Wired .. 40
3.7.4: Reading and writing TLB entries - EntryLo0-1, EntryHi and PageMask registers............................ 40
3.7.5: TLB initialization and duplicate entries... 41
3.7.6: TLB exception handlers — BadVaddr and Context ... 42

Chapter 4: Programming the 24K® core in user mode ... 43
4.1: User-mode accessible “Hardware registers” ... 43
4.2: Prefetching data .. 44
4.3: Using “synci” when writing instructions.. 44
4.4: The multiplier ... 45
4.5: Tuning software for the 24K® family pipeline .. 46

4.5.1: Cache delays and mitigating their effect .. 46
4.5.2: Branch delay slot.. 47

4.6: Tuning floating-point .. 47
4.6.1: -Branch misprediction delays ... 48
4.6.2: Data dependency delays classified.. 48

Chapter 5: Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture............ 51
5.1: Hazard barrier instructions .. 51
5.2: MIPS32® Architecture Release 2 - enhanced interrupt system(s) .. 52

5.2.1: Traditional MIPS® interrupt signalling and priority ... 53
5.2.2: VI mode - multiple entry points, interrupt signalling and priority... 53
5.2.3: External Interrupt Controller (EIC) mode.. 54

5.3: Exception Entry Points .. 55
5.3.1: Summary of exception entry points.. 56

5.4: Shadow registers... 57
5.5: Saving Power .. 58
5.6: The HWREna register - Control user rdhwr access.. 59

Chapter 6: Floating point unit.. 61
6.1: Data representation ... 61
6.2: Basic instruction set... 62
6.3: Floating point loads and stores.. 63
6.4: Setting up the FPU and the FPU control registers .. 63

6.4.1: IEEE options .. 63
6.4.2: FPU “unimplemented” exceptions (and how to avoid them) .. 63
6.4.3: FPU control register maps ... 64

6.5: FPU pipeline and instruction timing ... 66
6.5.1: FPU register dependency delays ... 67
6.5.2: Delays caused by long-latency instructions looping in the M1 stage ... 67
6.5.3: Delays on FP load and store instructions... 68
6.5.4: Delays when main pipeline waits for FPU to decide not to take an exception 68
6.5.5: Delays when main pipeline waits for FPU to accept an instruction.. 68
6.5.6: Delays on mfc1/mtc1 instructions .. 69
6.5.7: Delays caused by dependency on FPU status register fields .. 69
6.5.8: Slower operation in MIPS I™ compatibility mode .. 69

5 Programming the MIPS32® 24K® Core Family, Revision 04.63

Chapter 7: 24K® core features for debug and profiling.. 70
7.1: EJTAG on-chip debug unit .. 70

7.1.1: Debug communications through JTAG .. 71
7.1.2: Debug mode... 71
7.1.3: Exceptions in debug mode... 72
7.1.4: Single-stepping .. 72
7.1.5: The “dseg” memory decode region .. 72
7.1.6: EJTAG CP0 registers, particularly Debug.. 74
7.1.7: The DCR (debug control) memory-mapped register.. 76
7.1.8: JTAG-accessible registers ... 77
7.1.9: EJTAG breakpoint registers ... 79
7.1.10: Understanding breakpoint conditions... 81
7.1.11: Imprecise debug breaks... 82
7.1.12: PC Sampling with EJTAG .. 82

7.2: PDtrace™ instruction trace facility... 84
7.2.1: 24K core-specific fields in PDtrace™ JTAG-accessible registers.. 84
7.2.2: CP0 registers for the PDtrace™ logic .. 85
7.2.3: JTAG triggers and local control through TraceIBPC/TraceDBPC.. 87
7.2.4: UserTraceData reg .. 88
7.2.5: Summary of when trace happens .. 88

7.3: CP0 Watchpoints... 90
7.3.1: The WatchLo0-3 registers.. 90
7.3.2: The WatchHi0-3 registers .. 90

7.4: Performance counters ... 91
7.4.1: Reading the event table. .. 92

Appendix A: References .. 97

Appendix B: CP0 register summary and reference... 99
B.1: CP0 registers by name.. 100
B.2: CP0 registers by number .. 100
B.3: CP0 registers by function .. 103
B.4: Miscellaneous CP0 register descriptions .. 104

B.4.1: Status register.. 104
B.4.2: The UserLocal register .. 105
B.4.3: Exception handling: Cause register ... 106
B.4.4: Count and Compare .. 107
B.4.5: The Config7 register .. 108
B.4.6: Cache registers in special diagnostic modes... 109

Appendix C: MIPS® Architecture quick-reference sheet(s) ... 111
C.1: General purpose register numbers and names .. 111
C.2: User-level changes with Release 2 of the MIPS32® Architecture .. 111

C.2.1: Release 2 of the MIPS32® Architecture - new instructions for user-mode 111
C.2.2: Release 2 of the MIPS32® Architecture - Hardware registers from user mode............................ 112

C.3: FPU changes in Release 2 of the MIPS32® Architecture... 113

Appendix D: Revision History ... 115

Programming the MIPS32® 24K® Core Family, Revision 04.63 6

List of Tables

Table 2.1: Roles of Config registers.. 17
Table 2.2: 24K® core releases and PRId[Revision] fields .. 21
Table 3.1: Basic MIPS32® architecture memory map .. 23
Table 3.2: Fixed memory mapping.. 24
Table 3.3: Cache Code Values ... 28
Table 3.4: Operations on a cache line available with the cache instruction.. 30
Table 3.1: Caches and their CP0 cache tag/data registers... 31
Table 3.5: Cache instruction timings. .. 31
Table 4.1: Hints for “pref” instructions... 45
Table 4.2: Register → eager consumer delays... 49
Table 4.3: Lazy producer → register delays ... 49
Table 5.1: All Exception entry points... 56
Table 6.1: FPU (co-processor 1) control registers .. 64
Table 6.2: Long-latency FP instructions.. 68
Table 7.1: JTAG instructions for the EJTAG unit .. 71
Table 7.2: EJTAG debug memory region map (“dseg”) .. 73
Table 7.3: ... 83
Table 7.4: Performance counter events .. 92
Table B.1: Register Index by Name .. 100
Table B.2: Cross-referenced list of CP0 registers by number... 100
Table B.3: CP0 registers grouped by function .. 103
Table B.4: Exception Code values in Cause[ExcCode] .. 107
Table C.1: Conventional names of registers with usage mnemonics ... 111
Table C.2: Release 2 of the MIPS32® Architecture - new instructions... 112

7 Programming the MIPS32® 24K® Core Family, Revision 04.63

List of Figures

Figure 1.1: Pipeline differences between the 24K® and 4K™ core families .. 12
Figure 2.1: Fields in the Config Register... 17
Figure 2.2: Fields in the Config1 Register... 19
Figure 2.3: Fields in the Config2 Register... 19
Figure 2.4: Fields in the Config3 Register... 20
Figure 2.5: Fields in the PRId Register ... 21
Figure 3.1: Fields in the encoding of a cache instruction.. 28
Figure 3.2: Fields in the TagLo Registers ... 33
Figure 3.3: Fields in the CacheErr Register ... 34
Figure 3.4: Fields in the ErrCtl Register .. 36
Figure 3.5: SPRAM (scratchpad RAM) configuration information in TagLo.. 38
Figure 3.6: Fields in a 24K® core TLB entry... 39
Figure 3.7: Fields in the EntryHi and PageMask registers .. 40
Figure 3.8: Fields in the EntryLo0-1 registers ... 41
Figure 3.9: Fields in the Context Register... 42
Figure 5.1: Fields in the IntCtl Register... 53
Figure 5.2: Fields in the EBase Register... 55
Figure 5.3: Fields in the SRSCtl Register ... 57
Figure 5.4: Fields in the SRSMap Register... 58
Figure 5.5: Fields in the HWREna Register .. 59
Figure 6.1: How floating point numbers are stored in a register .. 62
Figure 6.2: Fields in the FIR register... 64
Figure 6.3: Floating point control/status register and alternate views... 65
Figure 6.4: Overview of the FPU pipeline ... 67
Figure 7.1: Fields in the EJTAG CP0 Debug register ... 75
Figure 7.2: Exception cause bits in the debug register ... 76
Figure 7.3: Debug register - exception-pending flags ... 76
Figure 7.4: Fields in the memory-mapped DCR (debug control) register ... 77
Figure 7.5: Fields in the JTAG-accessible ImpCode register.. 78
Figure 7.6: Fields in the JTAG-accessible EJTAG_CONTROL register ... 78
Figure 7.7: Fields in the IBS/DBS (EJTAG breakpoint status) registers ... 80
Figure 7.8: Fields in the hardware breakpoint control registers (IBCn, DBCn) ... 81
Figure 7.9: Fields in the TCBCONTROLA register .. 85
Figure 7.10: Fields in the TCBCONTROLB register ... 85
Figure 7.11: Fields in the TCBCONFIG register ... 85
Figure 7-12: Fields in the TraceControl Register .. 86
Figure 7-13: Fields in the TraceControl2 Register .. 86
Figure 7.14: .. 86
Figure 7.15: Fields in the TraceIBPC/TraceDBPC registers ... 87
Figure 7.16: Fields in the WatchLo0-3 Register.. 90
Figure 7.17: Fields in the WatchHi0-3 Register .. 90
Figure 7.18: Fields in the PerfCtl Registers .. 91
Figure B.1: All Status register fields .. 104
Figure B.2: Fields in the Cause register.. 106
Figure B-3: Fields in the Config7 Register .. 108
Figure B-4: Fields in the TagLo Register (ErrCtl[WST] set) .. 109

Programming the MIPS32® 24K® Core Family, Revision 04.63 8

Chapter 1

Programming the MIPS32® 24K® Core Family, Revision 04.63 9

Introduction

This document is for programmers who are already familiar with the MIPS® architecture and who can read MIPS
assembler language (if that’s not you yet, you’d probably benefit from reading a generic MIPS book - see Appendix
A, “References” on page 97).

More precisely, you should definitely be reading this manual if you have an OS, compiler or low-level application
which already runs on some earlier MIPS CPU, and you want to adapt it to the 24K® or 24KE™ core. So this docu-
ment concentrates on where a MIPS 24K family core behaves differently from its predecessors. That’s either:

• Behavior which is not completely specified by Release 2 of the MIPS32® architecture: these either concern priv-
ileged operation, or are timing-related.

• Behavior which was standardized only in the recent Release 2 of the MIPS32 specification (and not in previous

versions). All Release 2 features are formally documented in [MIPS32]1, and [MIPS32V1] contains a brief sum-
mary.

• But the details are widely spread; so you’ll find a shortform presentation of the changes here in Section
C.2 “User-level changes with Release 2 of the MIPS32® Architecture”.

• Details of timing, relevant to engineers optimizing code (and that very small audience of compiler writers).

This manual is intentionally much more focussed and therefore smaller than the full [SUM] manual. It does leave
some material out; if you need to write processor subsystem diagnostics, this will not be enough! If you want a very
careful corner-cases-included delineation of exactly what an instruction does, you’ll need [MIPS32V2]... and so on.

For readability, some MIPS32 material is repeated here, particularly where a reference would involve a large excur-
sion for the reader for a small saving for the author. Appendices mention every user-level-programming difference
any active MIPS software engineer is likely to notice when programming the 24K core.

All 24K cores are able to run programs encoded with the MIPS16e™ instruction set extension - which makes the
binary significantly smaller, with some trade-off in performance. MIPS16e code is rarely seen - it’s almost exclu-
sively produced by compilers, and in a debugger view is pretty much a subset of the regular MIPS32 instruction set -
so you’ll find no further mention of it in this manual; please refer to [MIPS16e].

The document is arranged functionally: very approximately, the features are described in the order they’d come into
play in a system as it bootstraps itself and prepares for business. But a lot of the CPU-specific data is presented in co-
processor zero (“CP0”) registers, so you’ll find a cross-referenced list of 24K core CP0 registers in Appendix B, “CP0
register summary and reference” on page 99.

1. References (in square brackets) are listed in Chapter A, “References” on page 97.

1.1 Chapters of this manual

Programming the MIPS32® 24K® Core Family, Revision 04.63 10

1.1 Chapters of this manual

• Chapter 2, “Initialization and identity” on page 17: what happens from power-up? boot ROM material, but a
good place to cover how you recognize hardware options, configure software-controlled ones and recognize your
CPU..

• Chapter 3, “Memory map, caching, reads, writes and translation” on page 23: everything about memory
accesses.

• Chapter 4, “Programming the 24K® core in user mode” on page 43: features relevant to user-level programming;
multiply timing, hardware registers, prefetching.

• Chapter 5, “Kernel-mode (OS) programming and Release 2 of the MIPS32® Architecture” on page 51: 24K-
core-specific information about privileged mode programming.

• Chapter 6, “Floating point unit” on page 61: the 24K core’s floating point unit, available on models called
24Kf™.

• Chapter 7, “24K® core features for debug and profiling” on page 70: the debug and PDTrace™ units, plus sepa-
rate watchpoints and performance counters..

• Appendix A, “References” on page 97: more reading to broaden your knowledge.

• Appendix B, “CP0 register summary and reference” on page 99: all the registers with links back into the main
text.

• Appendix C, “MIPS® Architecture quick-reference sheet(s)” on page 111: basic CPU-independent information,
including a quick description of Release 2 of the MIPS32 Architecture.

1.2 Typographical conventions

CPU register names are in oblique monospace. Co-processor 0 (CP0) registers fields are shown after the register
name in brackets, so the interrupt enable bit in the Status register appears as Status[IE]. CP0 register numbers are
denoted by n.s, where “n” is the register number (between 0-31) and “s” is the “select” field (0-7). If the select field
is omitted, it’s zero. A select field of “x” denotes all eight potential select numbers.

References to other manuals are collected together in Appendix A, “References” on page 97 and look like this
[MIPS32].

Instruction mnemonics and assembler code fragments are set in bold monospace, core interface signal names in
small italics, and C or other programming language constructs in monospace.

To use register and field names in your program, you’ll need a C header file or something similar. It’s probably better
and easier not to write your own: see [m32c0.h].

1.3 Register diagrams and field descriptions

It’s a tradition of MIPS CPUs that most control and status information is passed through registers - the most numer-
ous are the “CP0” registers used for kernel-level CPU control operations, but there are also memory-mapped registers
in the debug unit and to control special memory arrays. All of them are 32 bits wide.

 Introduction

11 Programming the MIPS32® 24K® Core Family, Revision 04.63

Many of the registers are broken up into multiple fields with substantially independent meanings and effects. Any
register which is not simply a 32-bit number comes with a register “figure”, and there’s a list of figures at the start of
this manual. The register figures are growing extra information in this version of the manual:

• We’re introducing color-codes to identify fields. Fields which you can write, have some hardware effect and read
back the same are regarded as “standard” and have a white background. But the background color tells you
which fields are read-only (green), which are zero or “X” (gray), are purely for software use (blue-green), which
are not just write-and-read-back (yellow), or are reserved and where use might be dangerous (red):

If you’ve printed this manual in black-and-white, those will all look much the same, sorry! And note that not all
register diagrams are color-coded yet.

• Register diagrams may carry a third row (below the field descriptions in the boxes) which tell you about any
value guaranteed to be in the register after a hardware reset. Those values will always be described separately in
the field descriptions, and careful programmers will probably avoid relying on them wherever they can.

1.4 Finding information in this manual

If you’re reading this manual on-screen, text shown in blue is a hot-link; click on the text to go to the section, figure
or table referenced. The chapter index and lists of tables and figures at the start of the book is click-through too.

All the special CP0 registers are listed in Appendix B, “CP0 register summary and reference” on page 99. That
appendix has the registers listed by name (Table B.1), by number (Table B.2), and by function (Table B.3.) The by-
number table has hot-links to other sections where each is mentioned - and for those reading on paper, all those links
have page numbers.

1.5 24K® core features

All 24K family cores conform to Release 2 of the MIPS32 architecture. You may have the following options:

• I- and D-Caches: 4-way set associative; may be 8Kbytes, 16Kbytes, 32Kbytes or 64Kbytes in size. 32Kbytes is
likely to be the most popular; 64Kbyte caches will involve some cost in frequency in most processes.

Optionally (but usually) the 32K and 64K D-cache configurations can be made free of “cache aliases” - see
Section 3.4.8, "Cache aliases", which explains some software-visible effects. The option is selected when the
“cache wrapper” is defined for the 24K core in your design and shows up as the Config7[AR] bit.

Note that a 4-way set associative cache of 16Kbyte or less (assuming a 4Kbyte minimum page size) can’t suffer
from aliases.

• Floating point unit (FPU): if fitted, is a 64-bit unit (with 64-bit load/store operations), which most often runs at
half the speed of the integer unit.

• Fast multiplier: 1-per-clock repeat rate for 32×32 multiply and multiply/accumulate.

• The “CorExtend™” instruction set extension: is available on 24KPro CPUs. [CorExtend] defines a hardware
interface which makes it relatively straightforward to add logic to implement new computational (register-to-reg-
ister) instructions in your CPU, using predefined instruction encodings. It’s matched by a set of software tools

read-only (green) zero/X (gray)
software-only (blue/

green)
not just write-back

(yellow)
reserved, take care

(red)

1.6 A brief guide to the 24K® core implementation

Programming the MIPS32® 24K® Core Family, Revision 04.63 12

which allow users to create assembly language mnemonics and C macros for the new instructions. But there’s
very little about the CorExtend ASE in this manual.

• Optional Co-processor: if your application requires special functions, or hardware implemented very close to the
CPU, 24K cores define an interface to a customer-implemented “co-processor 2". This provides a great deal of
freedom to define multiple new registers and instructions (though it will be quite a lot of work). The instruction
set defines basic CP2 instructions (to access its registers, for loads/stores, and branch instructions which test an
associated “condition bit”.

CP2 implementations are far beyond the scope of this book. Talk to MIPS Technologies.

1.6 A brief guide to the 24K® core implementation

All 24K family cores are based on a nine-stage pipeline, where MIPS Technologies’ first 4K™ family products had a
five-stage pipeline: a simplified comparative diagram is at Figure 1.1. By reducing the amount of work to be done
during each pipestage, the long pipeline allowed the design team to push up the operating frequency to a level unpar-
alleled for a synthesizable design.

If you want to make a high-performance computer, there is no substitute for the highest frequency you can reach; but
the longer pipeline makes it harder to keep issuing one instruction per clock (there are more instructions in flight
which you might be dependent on). Long-pipeline CPUs can trip up on branches (they don’t know where to fetch the
next instructions until the branch instruction is substantially complete), and on loads (even on cache hits, the data
cannot be available for some number of instructions); the 24K core is mainly different from its predecessors in the
mechanisms used to mitigate those effects.

Figure 1.1 Pipeline differences between the 24K® and 4K™ core families

1.6.1 Notes on pipeline diagram (Figure 1.1):

Even in such a simplified diagram, there are a few points worth highlighting:

• Longer cache access: the extra pipeline stages are mostly used to give more time for access through the memory
translation system (TLB) to the primary caches. Caches do not speed up quite so much as logic as the underlying
chip geometry shrinks, and they’ve become the critical path at high frequency. Including address calculations,
both I- and D-accesses are awarded three clocks.

RF AG EX MS ER WB

ITISIF

RF EX MS WBIF4K

24K

instruction fetch stages load/store action stages

 Introduction

13 Programming the MIPS32® 24K® Core Family, Revision 04.63

• Semi-detached instruction fetch unit: the 24K core no longer has a single pipeline for most instructions; the
instruction fetch unit (“IFU”) is semi-autonomous. It’s also 64 bits wide, and handles two instructions at a bite.

The IFU works a bit like a dog being taken for a walk. It rushes on ahead as long as the lead will stretch (the IFU,
processing instructions two at a time, can rapidly get ahead). Even though you’re in charge, your dog likes to go
first - and so it is with the IFU. Like a dog, the IFU guesses where you want to go, strongly influenced by the way
you usually go. If you make an unexpected turn there is a brief hiatus while the dog comes back and gets up front
again... but now we’re anticipating the next section.

The IFU has a queue to keep instructions in when it’s running ahead of the rest of the CPU. This kind of design is
called a “decoupled” IFU.

• Stretched load/store stages: a dedicated address generation (“AG”) stage precedes the usual “EX” stage where
arithmetic/logic operations happen, and the “MS” stage where the D-cache is accessed.

• Slightly stretched arithmetic/logical operation time: “EX” has to remain one stage so that dependent instructions
can run next to each other without delay. But some logic can be pushed back into the new “AG” stage.

Now let’s focus on the 24K core’s mechanisms to ameliorate branch and load penalties.

1.6.2 Branches and branch delays

The MIPS architecture already defines that the instruction following a branch (the “branch delay slot” instruction) is

always executed2. That means that the CPU has an extra instruction cycle time to figure out where a branch is going
before suffering any delay. But with the 24K core’s long pipeline a branch instruction isn’t resolved until after the
“EX” stage, five stages or so down the pipe; so a naive implementation would suffer at least a 4-clock penalty on
every branch. Several different tricks are used:

• The decoupled IFU (the electronic dog) runs ahead of the rest of the CPU by fetching two instructions per clock.
It can get as many as eight instructions ahead.

• Branch instructions are identified very early (in fact, they’re marked when instructions are fetched into the I–
cache).

• The IFU’s branch predictor guesses whether conditional branches will be taken or not - it’s not magic, it uses a
Branch History Table of what happened to branches in the past, indexed by the low bits of the location of the
branch instruction. It makes no attempt to discover whether the “history” stored in a location is really that of the
current branch, or another one which happened to share the same low bits; it’s harmless to be wrong sometimes.
With a bit of cleverness which you could read about in [SUM], it guesses correctly most of the time.

MIPS branches and jumps (at least those not dependent on register values) are easy to decode and the IFU
decodes them locally. Then, armed with the taken/not-taken guess from the BHT, the IFU can predict the target
address and continue to run ahead.

2. That’s not quite accurate: there are special forms of conditional branches called “branch likely” which are defined to execute
the branch delay slot instruction only when the branch is taken. However, this was always meant to be done by allowing the
branch delay instruction to run, then squishing it before it changes any machine state; and most implementations - including
the 24K core - do it that way.
Note that the “likely” part of the name has nothing to do with branch prediction; the 24K core’s branch prediction system
treats the “likelies” just like any other branches.

1.6 A brief guide to the 24K® core implementation

Programming the MIPS32® 24K® Core Family, Revision 04.63 14

In fact, the branch target calculation in the IFU is one clock too slow to guarantee a continuous stream of instruc-
tions: it’s as if your dog takes a while to choose a path, and temporarily goes slower than you do. But so long as
the dog was a few steps ahead of you to start with, you won’t fall over it and it soon bounds ahead again.

• Jump-register instruction targets are unpredictable: the IFU has no knowledge of register data and can’t in gen-
eral anticipate it. But jump-register instructions are rare, except that...

In the MIPS ISA you return from subroutines using a jump-register instruction, jr $31 (register 31 is, by a
strong convention, used to hold the return address). So on every call instruction, the IFU pushes the return
address onto a small stack; and on every jr $31 it pops the value of the stack and uses that as its guess for the

branch target3.

On jump-register instructions using registers other than $31 the IFU has to wait for the ALU to resolve the
branch before it can continue.

• When the IFU guesses wrong, it doesn’t know (the dog just rushes ahead until its owner reaches the fork).

The mistake will be noticed once the branch instruction has proceeded down the pipeline to the “EX” stage, and
is executed in its full context (“resolved”). The IFU tells the CPU what it did; if it turns out to be wrong the CPU
must discard the instructions based on the guess (which fortunately will not have changed any vital machine
state) and start fetching instructions from the correct target. The tug on the lead which goes out to the IFU is
called a “redirect”.

Incorrect guesses (and unpredictable jumps such as a jr which is not to $31) are relatively expensive: four
clocks are wasted.

1.6.3 Loads and load-to-use delays

Even short-pipeline MIPS CPUs can’t deliver load data to the immediately following instruction without a delay,
even on a cache hit. Simple MIPS pipelines typically deliver the data one clock later: a one clock “load-to-use delay”.
Compilers and programmers try to put some useful and non-dependent operation between the load and its first use.

The 24K core’s long pipeline means that a full D-cache hit takes three clocks to return the data, not two. If (as in the
4K family) the memory access process started in the “EX” stage, that would lead to a two-clock load-to-use delay.
But it’s been found through painful experience that programmers and compilers find it much harder to find two non-
dependent operations...

So the 24K core starts the memory access by doing initial address calculation in a new “AG” stage, before “EX”. That
keeps the load-to-use delay down to a sensible level. You’ll hear this decision to defer the execute stage referred to as
a “skewed ALU”.

There’s no such thing as a free lunch; the downside is that a load/store instruction whose address generation depends
on the immediately preceding instruction will have to wait for one clock. Compilers probably find it easier to move
the address calculation back one place in the instruction stream, rather than to find yet another useful instruction
which can be moved between the load and use of the data. But code which follows pointer chains is guaranteed to
take at least three cycles per pointer.

3. The return-stack guess will be wrong for subroutines containing nested calls deeper than the size of the return stack; but sub-
routines high up the call tree are much more rarely executed, so this isn’t so bad.

 Introduction

15 Programming the MIPS32® 24K® Core Family, Revision 04.63

1.6.4 Resource limits and consequences

The long pipeline, data interlocks, and the semi-autonomous IFU mean that the whole pipeline does not advance in
lock-step as in the simplest MIPS CPUs. Updates to internal states are not so easy to schedule at fixed times; instead
they tend to wait in queues until a convenient moment. Most of the time, the convenient moment arrives quickly and
there is no software-visible effect. But sometimes an unusual code sequence causes updates to be generated faster
than they can be dealt with, the queue fills up and execution of the program has to be suspended while the updates are
done.

Queues which can fill up include:

• Cache refills in flight (four or eight): that’s the size of the “FSB” queue - this and other queues are described in
more detail under Section 3.3, "Reads, writes and synchronization". The CPU may run in parallel with a cache
refill process because of its non-blocking loads, but usually only for a handful of instruction times. So you’re
unlikely to reach this limit unless you are using prefetch or otherwise deliberately optimizing loops. If a series of
prefetches use enough available resources, the fourth outstanding load-miss will stall the pipeline. It’s likely to
be good practice for code making conscious use of prefetches to ration itself to two or three outstanding opera-
tions.

• Non-blocking loads to registers (four or nine): there are just four entries in the “LDQ”, each of which remembers
one outstanding load, and which register the data is destined to return to. Compiled code is unlikely to reach this
limit. If you write carefully optimized code where you try to fill load-use delays (perhaps for data you think will
not hit in the D-cache) you may hit this problem.

• Lines evicted from the cache awaiting writeback (4+): writes are collected in the “WBB” queue. The 24K core’s
ability to write data will in almost all circumstances exceed the bandwidth available to memory; so a long enough
burst of writes will eventually slow to memory speed. There is probably nothing you can do about this.

1.6 A brief guide to the 24K® core implementation

Programming the MIPS32® 24K® Core Family, Revision 04.63 16

Chapter 2

Programming the MIPS32® 24K® Core Family, Revision 04.63 17

Initialization and identity

What happens when the CPU is first powered up? These functions are perhaps more often associated with a ROM
monitor than an OS.

2.1 Probing your CPU - Config CP0 registers

The four registers Config and Config1-3 are 32-bit CP0 registers which contain information about the CPU’s capa-
bilities. Config1-3 are strictly read-only. The few writable fields in Config — notably Config[K0] — are there for
historic compatibility, and are typically written once soon after bootstrap and never changed again.

The 24K core also defines Config7 for some implementation-specific settings (which most programmers will never
use).

Broadly speaking the registers have these roles:

While initializing your CPU you might also want to look at the EBase register, which can be used to relocate your
exception entry points: see Figure 5.2 and the text round it.

2.1.1 The Config register

Figure 2.1 Fields in the Config Register

In Figure 2.1:

M: reads 1 if Config1 is available (it always is).

Table 2.1 Roles of Config registers

Config A mix of historical and CPU-dependent information, described in Figure 2.1 below. Some
fields are writable.

Config1 Read-only, strictly to the MIPS32 architecture. Config1 shows the primary cache configura-
tion and basic CPU capabilities, while Config2 shows information about L2 and L3 caches, if
fitted (the L2 cache is optional and the L3 cache is unavailable in 24K family cores). Shown in
Figure 2.2 and Figure 2.3 below.

Config2

Config3 Read-only, strictly to Release 2 of the [MIPS32] architecture.
More CPU capability information.

Config7 24K-core-specific, with both read-only and writable fields. It’s a strong convention that the
writable fields should default to “expected” behavior, so beginners may simply leave these
fields alone. The fields are described later, in Section B.4.5 “The Config7 register”.

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU ISP DSP UDI SB 0 WC MM 0 BM BE AT AR MT 0 VI K0

1 2 2 0 1 0 1 0 2

2.1 Probing your CPU - Config CP0 registers

Programming the MIPS32® 24K® Core Family, Revision 04.63 18

K23, KU, K0: set the cacheability attributes of chunks of the memory map by writing these fields. All share a 3-bit
encoding with the cacheability field found in TLB entries, which is described in Table 3.3 in Section
3.4.2 “Cacheability options”.

Config[K0] sets the cacheability of kseg0, but it would be very unusual to make that anything other than cacheable
(on different, cache-coherent CPUs, it may want to be set to cacheable-coherent). The power-on value of this standard
field is not mandated by the [MIPS32] architecture; but the 24K core follows the recommendation to set it to "2",
making "kseg0" uncached. That can be surprising; early system initialization software typically re-writes it to "3" in
order that kseg0 will be cached, as expected.

If your 24K core-based system uses fixed mapping instead of having a TLB, Config[K23] is for program addresses
0xC000.0000-0xFFFF.FFFF (the “kseg2” and “kseg3” areas), while Config[KU] is for program addresses
0x0000.0000-0x7FFF.FFFF (the “kuseg” area). If you have a TLB, these regions are mapped and these fields are
unused (write only zeroes to them).

ISP, DSP: read 1 if I-side and/or D-side scratchpad (SPRAM) is fitted, see Section 3.6, "Scratchpad memory/
SPRAM".

(Don’t confuse this with the MIPS DSP ASE, whose presence is indicated by Config3[DDSP].)

UDI: reads 1 if your core implements user-defined "CorExtend" instructions. “CorExtend” is available on cores whose
name ends in "Pro".

SB: read-only "SimpleBE" bus mode indicator. If set, means that this core will only do simple partial-word transfers on
its OCP interface; that is, the only partial-word transfers will be byte, aligned half-word and aligned word.

If zero, it may generate partial-word transfers with an arbitrary set of bytes enabled (which some memory controllers
may not like).

WC: Warning: this is a diagnostic/test field, not intended for customer use, and may vanish without notice from a
future version of the core.

Set this 1 to make the Config1[IS] and Config1[DS] fields writable, which allows you to reduce the number of avail-
able L1 I- and D-cache ``sets per way'', and shrink the usable cache size. You'd never want to do this in a real system,
but it is conceivable it might be useful for debug or performance analysis.

MM: writable: set 1 if you want writes resulting from separate store instructions in write-through mode merged into a
single (possibly burst) transaction at the interface. This has no affect on cache writebacks (which are always whole
blocks together) or uncached writes (which are never merged).

BM: read-only - tells you whether your bus uses sequential or sub-block burst order; set by hardware to match your sys-
tem controller.

BE: reads 1 for big-endian, 0 for little-endian.

AT: MIPS32 or MIPS64 compliance On 24K family cores it will read “0”, but the possible values are:

0 MIPS32
1 MIPS64 instruction set but MIPS32 address map
2 MIPS64 instruction set with full address map

 Initialization and identity

19 Programming the MIPS32® 24K® Core Family, Revision 04.63

AR: Architecture revision level. On 24K family cores it will read “1”, denoting release 2 of the MIPS32 specification.

MT: MMU type (all MIPS Technologies cores may be configured as type 1 or 3):

VI: 1 if the L1 I-cache is virtual (both indexed and tagged using virtual address). No contemporary MIPS Technologies
core has a virtual I-cache.

K0: as described in the notes above on Config[K23] etc, this field determines the cacheing behaviour of the fixed kseg0
memory region .

2.1.2 The Config1-2 registers

These two read-only registers tell you the size of the TLB, and the size and organization of L1, L2 and L3 caches (a
zero “line size” is used to indicate a cache which isn’t there). They’re best described together.

Config1 has some fields which tell you about the presence of some of the older extensions to the base MIPS32 archi-
tecture are implemented on this core. These bits ran out, and other extensions are noted in Config3.

Figure 2.2 Fields in the Config1 Register

Figure 2.3 Fields in the Config2 Register

Config1[M]: continuation bit, 1 if Config2 is implemented.

Config1[MMUSize]: the size of the TLB array (the array has MMUSize+1 entries).

Config1[IS,IL,IA,DS,DL,DA]: for each cache this reports

So if (IS, IL, IA) is (2,4,3) you have 256 sets/way, 32 bytes per line and 4-way set associative: that’s a 32Kbyte cache.

0 MIPS32/MIPS64 Release 1
1 MIPS32/MIPS64 Release 2

0 None
1 MIPS32/64 compliant TLB
2 “BAT” type
3 MIPS-standard fixed mapping

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMUSize IS IL IA DS DL DA C2 MD PC WR CA EP FP

1 4 3 4 3 0 1 1 1 1

31 30 28 27 24 23 20 19 16 15 13 12 11 8 7 4 3 0

M TU TS TL TA SU SS SL SA

1 0 0 0 0 0

S Number of sets per way. Calculate as: 64 × 2S

L Line size. Zero means no cache at all, otherwise calculate as: 2 × 2L

A Associativity/number of ways - calculate as A + 1

2.1 Probing your CPU - Config CP0 registers

Programming the MIPS32® 24K® Core Family, Revision 04.63 20

Config1[C2,FP]: 1 if coprocessor 2 or or an FPU (coprocessor 1) fitted, respectively. A coprocessor 2 would be a cus-
tomer-designed coprocessor.

Config1[MD]: 1 if MDMX ASE is implemented in the floating point unit (very unlikely for the 24K core).

Config1[PC]: there is at least one performance counter implemented, see Section 7.4 “Performance counters”.

Config1[WR]: reads 1 because the 24K core always has watchpoint registers, see Section 7.3 “CP0 Watchpoints”.

Config1[CA]: reads 1 because the MIPS16e compressed-code instruction set is available (as it generally is on MIPS
Technologies cores).

Config1[EP]: reads 1 because an EJTAG debug unit is always provided, see Section 7.1, "EJTAG on-chip debug unit".

Config2[M]: continuation bit, 1 if Config3 is implemented.

Config2[TU]: implementation-specific bits related to tertiary cache, if fitted. Can be writable.

Config2[TS,TL,TA]: tertiary cache size and shape - encoded just like Config1[IS,IL,IA] which see above.

Config2[SU]: implementation-specific bits for secondary cache, if fitted. Can be writable.

Config2[SS,SL,SA]: secondary cache size and shape, encoded like Config1[IS,IL,IA] above.

2.1.3 The Config3 register

Config3 provides information about the presence of optional extensions to the base MIPS32 architecture. A few of
them were in Config2, but that ran out of bits.

Figure 2.4 Fields in the Config3 Register

Fields shown in Figure 2.4 include:

Config3[M]: continuation bit, zero because there is no Config4.

Config3[ULRI]: reads 1 if the core implements the UserLocal register, typically used by software threads packages.
More information in Section B.4.2 “The UserLocal register”.

DSP2P, DSPP: DSPP reads 0 because the MIPS DSP extension is not available for this CPU. DSP2P distinguishes
revision 2 of the DSP ASE .

VEIC: read-only bit from the core input signal SI_EICPresent which should be set in the SoC to alert software to the
availability of an EIC-compatible interrupt controller, see Section 5.2, "MIPS32® Architecture Release 2 - enhanced
interrupt system(s)".

VInt: reads 1 to tell you that the 24K core can handle vectored interrupts.

SP: reads 0 to tell you the 24K core does not support sub-4Kbyte page sizes.

31 30 14 13 12 11 10 9 7 6 5 4 3 2 1 0

M 0 ULRI 0 DSP2P DSPP 0 VEIC VInt SP 0 MT SM TL

0 0 1 0 0 0

 Initialization and identity

21 Programming the MIPS32® 24K® Core Family, Revision 04.63

MT: reads 0 - no 24K family cores implement the MIPS MT (multithreading) extension.

SM: reads 0, the 24K core does not handle instructions from the "SmartMIPS" ASE.

TL: reads 1 if your core is configured to do instruction trace.

2.1.4 CPU-specific configuration — Config7

Config7 is packed with implementation-specific fields. Most of the time, you leave them alone (a few of them might
sometimes need to be set as required by your SoC designer). So we’ve left these registers defined in the all-CP0
appendix, in Section B.4.5 “The Config7 register”.

2.2 PRId register — identifying your CPU type

This register identifies the CPU to software. It’s appropriately printed as part of the start-up display by any software
telling the world about the CPU on start-up; but when portable software is configuring itself around different CPU
attributes, it’s always preferable to sense those attributes directly — look in other Config registers, or perhaps use a
directed software probe.

Figure 2.5 Fields in the PRId Register

PRId[CoOpt]: Whatever is specified by the SoC builder who synthesizes the core — refer to your SoC manual. It
should be a number between 0 and 127 — higher values are reserved by MIPS Technologies.

PRId[CoID]: Company ID, which in this case is “1” for MIPS Technologies Inc.:

PRId[Imp]: Identifies the particular processor, which in this case is 0x93 for the 24K family. Any processor with differ-
ent CP0 features must have a new PRId field.

PRId[Rev]: The revision number of the core design, used to index entries in errata lists etc. By MIPS Technologies’
convention the revision field is divided into three subfields: a major and minor number; with a nonzero "patch" revi-
sion number is for a release with no functional change. Core licensees can consult [ERRATA] for authoritative infor-
mation about the revision IDs associated with releases of the 24K core.

The following incomplete and possibly not up-to-date table of historical revisions is provided as a guide to program-
mers who don’t have [ERRATA] to hand::

31 24 23 16 15 8 7 5 4 2 1 0

CoOpt CoID Imp
Rev

Major Minor Patch

1 0x93

Table 2.2 24K® core releases and PRId[Revision] fields

Release
Identifier

PRId[Revision]
Maj.min.patch/hex Description Date

2_0_* 2.0.0 / 0x40 General availability of 24K core. March 19, 2004

3_0_* 3.0.0 / 0x60 COP2 option improvements. September 30, 2004

3_2_* 3.2.0 / 0x68 PDtrace available. March 18, 2005

3_4_* 3.4.0 / 0x6c ISPRAM (I-side scratchpad) option added June 30, 2005

2.2 PRId register — identifying your CPU type

Programming the MIPS32® 24K® Core Family, Revision 04.63 22

3_5_* 3.5.0 / 0x74 8KB cache option December 30, 2005

3_6_* 3.6.0 / 0x78 L2 support., 64KB alias-free D-cache option, option to
have up to 8 outstanding cache misses (previous maximum
4).

July 12, 2006

3_7_* 3.7.0 / 0x7c Less interlocks round cache instructions, relocatable
reset exception vector location.

January 3, 2007

4_0_* 4.0.0 / 0x80 New UserLocal register, alias-proof I-cache hit-invalidate
operation, can wait with interrupts disabled.

October 31, 2007

4_1_* 4.1.0/0x84 Errata fixes January, 2009

Table 2.2 24K® core releases and PRId[Revision] fields

Chapter 3

Programming the MIPS32® 24K® Core Family, Revision 04.63 23

Memory map, caching, reads, writes and translation

In this chapter:

• Section 3.1, "The memory map": basic memory map of the system.

• Section 3.3, "Reads, writes and synchronization"

• Section 3.4, "Caches"

• Section 3.6, "Scratchpad memory/SPRAM": optional on-chip, high-speed memory (particularly useful when
dual-ported to the OCP interface).

• Section 3.7, "The TLB and translation": how translation is done and supporting CP0 registers.

3.1 The memory map

A 24K core system can be configured with either a TLB (virtual memory translation unit) or a fixed memory map-
ping.

A TLB-equipped CPU sees the memory map described by the [MIPS32] architecture (which will be familiar to any-
one who has used a 32-bit MIPS architecture CPU) and is summarized in Table 3.1. The TLB gives you access to a
full 32-bits physical address on the system interface. More information about the TLB in Section 3.7, "The TLB and
translation".

Table 3.1 Basic MIPS32® architecture memory map
Segment Virtual range What happens to accesses here?

Name
kuseg 0x0000.0000-0x7FFF.FFFF The only region accessible to user-privilege programs.

Mapped by TLB entries.
kseg0 0x8000.0000-0x9FFF.FFFF a fixed-mapping window onto physical addresses

0x0000.0000-0x1FFF.FFFF. Almost invariably cache-
able - but in fact other choices are available, and are
selected by Config[K0], see Figure 2.1.
Accessible only to kernel-privilege programs.

kseg1 0xA000.0000-0xBFFF.FFFF a fixed-mapping window onto the same physical
address range 0x0000.0000-0x1FFF.FFFF as “kseg0”
- but accesses here are uncached.
Accessible only to kernel-privilege programs.

kseg2 0xC000.0000-0xDFFF.FFFF Mapped through TLB, accessible with supervisor or
kernel privilege (hence the alternate name).sseg

kseg3 0xE000.0000-0xFFFF.FFFF Mapped through TLB, accessible only with kernel
privileges.

3.2 Fixed mapping option

Programming the MIPS32® 24K® Core Family, Revision 04.63 24

3.2 Fixed mapping option

To save chip area for applications not needing a full TLB, your core can use a simple fixed mapping (“FMT”) mem-
ory translator, which plays the same role. You can find out whether a core has fixed mappings by reading the CP0
field Config[MT] (see Figure 2.1 and descriptions). With the fixed mapping option, virtual address ranges are hard-
wired to particular physical address windows, and cacheability options are set through CP0 register fields as summa-
rized in Table 3.2:

Even in fixed-mapping mode, the cache parity error status bit Status[ERL] still has the effect (required by the MIPS32
architecture) of taking over the normal mapping of “kuseg”; addresses in that range are used unmapped as physical
addresses, and all accesses are uncached, until Status[ERL] is cleared again.

3.3 Reads, writes and synchronization

The MIPS architecture permits implementations a fair amount of freedom as to the order in which loads and stores
appear at the CPU interface. Most of the time anything goes: so long as the software behaves correctly, the MIPS
architecture places few constraints on the order of reads and writes seen by some other agent in a system.

3.3.1 Read/write ordering and cache/memory data queues in the 24K® core

To understand the timing of loads and stores (and sometimes instruction fetches), we need to say a little more about
the internal construction of the 24K core. In order to maximize performance:

• Loads are non-blocking: execution continues “through” a load instruction, and only stops when the program tries
to use the GPR value it just loaded.

• Writes are “posted”: a write from the core is put aside (the hardware stores both address and data) until the CPU
can get access to the system interface and send it off.

• Cache refills are completed “opportunistically”: the CPU may still be running on from a non-blocking load or
prefetch when data arrives back from the cache. The data required to make good a miss is forwarded to the rele-
vant GP register, so the returning data is not urgently needed in the cache. The data waits until a convenient
moment before it gets put into the cache line.

All of these are implemented with “queues”, called the LDQ, WBB and FSB (for “fill/store buffer” — it’s used both
for writes which hit and for refills after a cache miss) respectively. All the queues handle data first-come, first served.
The WBB and FSB queues need to be snooped - a subsequent store to a location with a load pending had better not be
allowed to go ahead until the original load data has reached the cache, for example. So each queue entry is tagged
with the address of the data it contains.

An LDQ entry is required for every load that misses in the cache. Moreover, an LDQ entry must be available for any
load - even if it will hit in the cache, the logic requires that the LDQ entry is available if needed. This queue allows the

Table 3.2 Fixed memory mapping
Segment Virtual range Physical range Cacheability

Name bits from
kuseg 0x0000.0000-0x7FFF.FFFF 0x4000.0000-0xBFFF.FFFF Config[KU]
kseg0 0x8000.0000-0x9FFF.FFFF 0x0000.0000-0x1FFF.FFFF Config[K0]
kseg1 0xA000.0000-0xBFFF.FFFF 0x0000.0000-0x1FFF.FFFF (uncached)

kseg2/3 0xC000.0000-0xFFFF.FFFF 0xC000.0000-0xFFFF.FFFF Config[K23]

 Memory map, caching, reads, writes and translation

25 Programming the MIPS32® 24K® Core Family, Revision 04.63

CPU to keep running even though there are outstanding loads. When the load data is finally returned from the system,
the LDQ and the main core logic act together to write this data into the correct GPR (which will then restart the pro-
gram, if it was blocked on an attempt to use this register).

The WBB (Write Back Buffer) queue holds data waiting to be sent out over the system interface, either from D-cache
writebacks or uncached/write-through store instructions.

FSB (Fill Store buffer) queue entries are used to hold data that is waiting to be written into the D-cache. An FSB entry
gets used during a cache miss (when it holds the refill data), or a write which hits in the cache (when it holds the data
the CPU wrote). Loads and stores snoop the FSB so that accesses to lines “in flight” can be dealt with correctly.

All this has a number of consequences which may be visible to software:

• Number of non-blocking loads which may be pending: the CPU has either four or nine LDQ entries according to
configuration. That limits the number of outstanding loads. As mentioned above, you can’t start a load - even one
which will in fact hit in the cache - unless you have a free LDQ entry.

• Hit-under-miss: the D-cache continues to supply data on a hit, even when there are outstanding misses with data
in flight. FSB entries remember the in-flight data. So it is quite normal for a read which hits in the cache to be
“completed” - in the sense that the data reaches a register - before a previous read which missed.

• Write-under-miss: the CPU pipeline continues and can generate external store cycles even though a read is pend-
ing, so long as WBB slots are available. The 24K core’s “OCP” interface is non-blocking too (reads consist of
separate address and data phases, and writes are permitted between them), so this behavior can often be visible to
the system.

• Miss under miss: the 24K core can continue to run until the pending read operations exhaust FSB or LDQ entries.
More often, of course, it will try to use the data from the pending miss and stall before it gets that far.

• Core interface ordering: at the core interface, read operations may be split into an address phase and a later data
phase, with other bus operations in between.

The 24K core - as is permitted by [MIPS32] - makes only limited promises about the order in which reads and
writes happen at the system interface. In particular, uncached or write-through writes may be overtaken by cache
line reads triggered by a load/store cache miss later in sequence. However, uncached reads and writes are always
presented in their program sequence. When some particular program needs to do things “really in order”, the
sync instruction can help, as described in the next section.

Cache management operations interact with several queues: see Section 3.4.6 “L1 Cache instruction timing”.

3.3.2 The “sync” instruction in 24K® family cores

If you want to be sure that some other agent in the system sees a pair of transactions to uncached memory in the order
of the instructions that caused them, you should put a sync instruction between the instructions. Other MIPS32/64-

compliant CPUs may reorder loads and stores even more; portable code should use sync4.

But sometimes it’s useful to know more precisely what sync does on a particular core. On 24K sync:

4. Note that sync is described as only working on “uncached pages or cacheable pages marked as coherent”. But sync also
acts as a synchronization barrier to the effects produced by routine cache-manipulation instructions - hit-writeback and hit-
invalidate.

3.4 Caches

Programming the MIPS32® 24K® Core Family, Revision 04.63 26

• Stalls until all loads, stores, refills are completed and all write buffers are empty (that is until the LDQ, FSB and
WBB are empty);

• In some systems the CPU will also generate a synchronizing transaction on the OCP system interface if

Config7[ES] bit is set5. Not all systems do this. See Section B.4.5 “The Config7 register” for more details.

3.3.3 Write gathering and “write buffer flushing” in 24K® family cores

We mentioned above that writes to the system (whether uncached writes or cache write-backs) are performed some-
what lazily, the write being held in the WBB queue until a convenient moment. That can have two system-visible
effects:

• Writes can happen later than you think. Your write will happen before the next uncached read or write, but that’s
all you know. To make sure that a write has gone out on the OCP bus you can use a sync (as above): but that
meaning of sync is CPU-dependent, so that code is non-portable. And your write might still be posted some-
where in a system controller, unless you know your system is built to prevent it. Sometimes it’s better to code a
dummy uncached read from a nearby location (which will “flush out” buffered writes on pretty much any sys-
tem).

• If your cache is configured for write-through, then cached writes to locations in the same “cache line”-sized
chunk of memory may be gathered - stored together in the WBB, and then dealt with by a single “wider” OCP
write than the one you originally coded. Sometimes, this is what you want. When it isn’t, put a sync between
your successive writes. Regular uncached writes are never merged, but special “uncached accelerated” writes
may be — see Section 3.4.3 below.

3.4 Caches

Most of the time caches just work and are invisible to software... though your programs would go twenty times
slower without them. But this section is about when caches aren’t invisible any more.

Like most modern MIPS CPUs, the 24K core has separate primary I- and D-caches. They are virtually-indexed and
physically-tagged, so you may need to deal with cache aliases, see Section 3.4.8, "Cache aliases". The design pro-
vides for 8Kbyte, 16Kbyte, 32Kbyte or 64Kbyte caches; but the largest of those are likely to come with some speed
penalty. The 24K core’s primary caches are 4-way set associative.

But don’t hard-wire any of this information into your software. Instead, probe the Config1 register defined by
[MIPS32] (and described in Section 2.1.2 “The Config1-2 registers”) to determine the shape and size of the L1 and
any L2 cache.

3.4.1 The L2 cache option

The L2 cache is an option available to your SoC builder. Basic facts and figures:

• The L2 cache is attached to the core’s standard 64-bit OCP system interface, and when you fit it everything else
is attached to the core through the L2 cache, which has a system-side interface for that purpose. The core-side
interface is enhanced and augmented to support cache instructions targeted at the L2, and to carry back perfor-
mance counter information and so on.

5. This will be a read with the signal OC_MReqInfo[3] set. Handling of this transaction is system dependent, but a typical sys-
tem controller will flush any external write buffers and complete all pending transactions before telling the CPU that the
transaction is completed. Ask your system integrator how it works in your SoC.

 Memory map, caching, reads, writes and translation

27 Programming the MIPS32® 24K® Core Family, Revision 04.63

• The L2 ‘s size can be 128Kbytes, 256Kbytes, 512Kbytes or 1Mbyte. However, there are options which allow the
SoC builder to have one or more of the ways of the cache memory array visible as normal system memory
instead. There’s very little in this manual about that option. — see [L2CACHE].

• The L2 cache is indexed and tagged with the physical address, so is unaffected by cache aliases.

• Cache lines are either 32 bytes long (matching the L1 caches) or 64 bytes. The L2 cache’s memories are accessed
256 bits at a time internally, though it has 64-bit interfaces.

• It can be configured with 4-way or 8-way set-associative organization. In a 4-way cache the line replacement
policy is “least recently used” (LRU); true LRU is impractical for an 8-way set associative cache, so something
simpler (a “pseudo-LRU”) is used.

• The cache has an option for error detection and correction. 1-bit data errors can be corrected and all 2-bit errors
detected with an 8-bit-per-doubleword ECC field. Check bits are provided on cache tags, too. If your L2 has
ECC fitted, ErrCtl[L2P] will be writable — see Section 3.4.13 “ErrCtl register” for details.

• The cache is write-back but does not allocate a line on a write miss (write miss data is just sent directly to the sys-
tem memory). It is write-through for memory regions which request that policy -- see Section
3.4.2 “Cacheability options” for details.

• The L2 cache can run synchronously to the CPU core, but (particularly for memory arrays larger than
256Kbytes) would typically then be the critical path for timing. It will more often use a 1:2 or 2:3 clock ratio.
The L2’s far-side OCP interface may run at any of a wide range of ratios from the L2 clock down.

• In an effort to keep everything going the cache manages multiple outstanding transactions (it can handle as many
as 15 outstanding misses). Misses are resolved and responses sent as they happen, not in the order of presenta-
tion.

• Latency: the L2 logic allows the memory access to be pipelined, a reasonable choice for larger or slower arrays:
ask your SoC builder. The L2 delivers hit data in a burst of four 64-bit doublewords. The first doubleword
appears after 9 or 10 L2 clocks (10 for pipelined-array systems) and the rest of the burst follows on consecutive
clocks. Added to this is some extra time taken for the original L1 miss to be discovered, synchronizing to the L2
clock, and returning the data to the CPU: typically, add 5 CPU clocks.

An L2 miss is slightly more expensive than an L1 miss from the same memory, since we don’t start the memory
access until we’ve discovered that the data isn’t in the L2.

Because the CPU connects to the rest of the system through the L2 cache, it also adds 4 L2 cycles to the latency
of all transactions which bypass the L2.

• The L2 cache requires software management, and you can apply the same cache instructions to it as to the L1 D-
cache.

3.4.2 Cacheability options

Any read or write made by the 24K core will be cacheable or not according to the virtual memory map. For addresses
translated by the TLB the cacheability is determined by the TLB entry; the key field appears as EntryLo[C]. Table 3.3
shows the code values used in EntryLo[C] - the same codes are used in the Config entries used to set the behavior of
regions with fixed mappings (the latter are described in Table 3.2.)

3.4 Caches

Programming the MIPS32® 24K® Core Family, Revision 04.63 28

Some of the undefined cacheability code values are reserved for use in cache-coherent systems.

3.4.3 Uncached accelerated writes

The 24K core permits memory regions to be marked as “uncached accelerated”. This type of region is useful to hard-
ware which is “write only” - perhaps video frame buffers, or some other hardware stream. Sequential word stores in
such regions are gathered into cache-line-sized chunks, before being written with a single burst cycle on the CPU
interface.

Such regions are uncached for read, and partial-word or out-of-sequence writes have “unpredictable” effects - don’t
do them. The burst write is normally performed when software writes to the last location in the memory block or does
an uncached-accelerated write to some other block; but it can also be triggered by a sync instruction, a
pref nudge, a matching load or any exception. If the block is not completely written by the time it’s pushed out, it
will be written using a series of doubleword or smaller write cycles over the 24K core’s 64-bit memory interface.

3.4.4 The cache instruction and software cache management

The 24K core’s caches are not fully “coherent” and require OS intervention at times. The cache instruction is the
building block of such OS interventions, and is required for correct handling of DMA data and for cache initializa-
tion. Historically, the cache instruction also had a role when writing instructions (unless the programmer takes some
action, those instructions may only be in the D-cache whereas you need them to be fetched through the I-cache when
the time comes). But where possible use synci for that purpose, as described in Section 3.4.7 “Cache management
when writing instructions - the “synci” instruction”.

A cache operation instruction is written cache op,addr where addr is just an address format, written as for a load/
store instruction. Cache operations are privileged and can only run in kernel mode (synci works in user mode,
though). Generally we’re not showing you instruction encodings in this book (you have software tools for that stuff)
but in this case it’s probably necessary, so take a look at Figure 3.1.

The op field packs together a 2-bit field which selects which cache to work on:

Table 3.3 Cache Code Values

Code Cached? How it Writes Notes

0 cached write-through An unusual choice for a high-speed CPU, probably only for debug

2 uncached

3 cached writeback All normal cacheable areas

7 uncached “Uncached Accel-
erated”

Unusual and interesting mode for high-bandwidth write-only hardware; see
Section 3.4.3, "Uncached accelerated writes".

31 26 25 21 20 18 17 16 15 0
cache base op offset
47 register what to do which cache

Figure 3.1 Fields in the encoding of a cache instruction

0 L1 I-cache
1 L1 D-cache
2 reserved for L3 cache
3 L2 cache

 Memory map, caching, reads, writes and translation

29 Programming the MIPS32® 24K® Core Family, Revision 04.63

and then adds a 3-bit field which encodes a command to be carried out on the line the instruction selects.

Before we list out the individual commands in Table 3.4; the cache commands come in three flavors which differ in
how they pick the cache entry (the “cache line”) they will work on:

• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache. If this loca-
tion is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this location is not in the
cache, nothing happens.

• Address-type cache operation: presents an address of some memory data, which is processed just like a cached
access - if the cache was previously invalid the data is fetched from memory.

• Index-type cache operation: as many low bits of the address as are required are used to select the byte within the
cache line, then the cache line address inside one of the four cache ways, and then the way. You have to know the
size of your cache (discoverable from the Config1-2 registers, see Section 2.1.2 “The Config1-2 registers”) to
know exactly where the field boundaries are, but your address is used something like this:

Beware: the MIPS32 specification leaves CPU designers to choose whether to derive the index from the virtual
or physical address. Don’t leave it to chance: with index-type operations use a kseg0 address, so that the virtual
and physical address are the same (at least apart from some high bits which certainly won’t affect any cache
index). This also avoids a potential pitfall related to cache aliases.

The L1 caches are 4-way set-associative, so data from any given address has four possible cache locations - same
index, different value of the “Way1-0” bits as above.

Don’t define your own C names for cache manipulation operation codes, at least not if you can use a standard header
file from MIPS Technologies on open-source terms: see [m32c0 h].

31 5 4 0

Unused Way1-0 Index byte-within-line

3.4 Caches

Programming the MIPS32® 24K® Core Family, Revision 04.63 30

Table 3.4 Operations on a cache line available with the cache instruction

Value Command What it does

0 Index invalidate Sets the line to “invalid”. If it’s a D-cache line which is valid and “dirty” (has been
written by CPU since fetched from memory), then write the contents back to
memory first. This is the best and simplest way to invalidate an I-cache when ini-
tializing the CPU - though if your cache is parity-protected, you also need to fill it
with good-parity data, see Fill below.
This instruction is not suitable for initializing caches, where it might cause ran-
dom write-backs: see the Index Store Tag type below.

1 Index Load Tag Read the cache line tag bits and addressed doubleword data into the TagLo etc
registers (see Table 3.1 for names). Operation for diagnostics and geeks only.

2 Index Store Tag Set the cache tag from the TagLo registers.
To initialize a writable cache from an unknown state, set the TagLo registers to
zero and then do this to each line.

3 Index Store Data Write cache-line data. Not commonly used for caches, but it is used for manage-
ment of scratchpad RAM regions described in Section 3.6 “Scratchpad memory/
SPRAM”.

4 Hit invalidate hit-type invalidate - do not writeback the data even if dirty. May cause data loss
unless you know the line is not dirty.
Certain CPUs implement a special form of the I-side hit invalidate, where multi-
ple searches are done to ensure that any line matching the effective physical
address is invalidated (even if it doesn’t match the supplied virtual address for
page color) — see Section 3.4.8 “Cache aliases” below.

5 Sorry, different meanings for code “5” on L1 I-cache.

Writeback invalidate On the L1D-cache: (hit-type operation) invalidate the line but only after writing it
back, if dirty. This is the recommended way of invalidating a writable line in a
running cache.

Fill On an L1 I-cache: (address-type operation) fill a suitable cache line from the data
at the supplied address - it will be selected just as if you were processing an I-
cache miss at this address.
Used to initialize an I-cache line’s data field, which should be done when setting
up the CPU when the cache is parity protected.

6 Hit writeback If the line is dirty, write it back to memory but leave it valid in the cache. Used in
a running system where you want to ensure that data is pushed into memory for
access by a DMA device or other CPU.

7 Fetch and Lock An address-type operation. Get the addressed data into the same line as would be
used on a regular cached reference (if the data wasn’t already cached that might
involve writing back the previous occupant of the cache line).
Then lock the line. Locked lines are not replaced on a cache miss.
It stays locked until explicitly invalidated with a cache
An attempt to lock the last entry available at some particular index fails silently.

 Memory map, caching, reads, writes and translation

31 Programming the MIPS32® 24K® Core Family, Revision 04.63

3.4.5 Cache instructions and CP0 cache tag/data registers

MIPS Technologies’ cores use different CP0 registers for cache operations targeted at different caches. That’s
already quite confusing, but to make it more interesting these registers have somehow got different names — those
used here and in C header files. I hope Table 3.1 helps. In the rest of this document we’ll either use the full software
name or (quite often) just talk of TagLo without qualification.:

3.4.6 L1 Cache instruction timing

Most CP0 instructions are used rarely, in code which is not timing-critical. But an OS which has to manage caches
around I/O operations or otherwise may have to sit in a tight loop issuing hundreds of cache operations at a time, so
performance can be important. Firstly, any D-side cache instruction will check the FSB queue (as described in

Section 3.3 “Reads, writes and synchronization”) for potentially matching entries6. The “potential match” check uses
the cache index, and avoids taking any action for most irrelevant FSB activity. But on a potential match the cacheop
waits (stalling the whole CPU pipeline) while any pending cache refills happen, and while any dirty lines evicted
from the cache are sent out at least to the CPU’s write buffer. Typically, this will not take more than a few clocks.

Once this is done, hit-type cache instructions which miss in the cache and therefore do nothing (and that’s probably
much the commonest case) run through the pipeline with no delay. Instructions which take some action, though, stall
the pipeline and delay all subsequent instructions by a few cycles. The various possibilities are shown in Table 3.5.

Table 3.1 Caches and their CP0 cache tag/data registers

Cache CP0 Registers CP0 number

L1 I-cache

ITagLo 28.0

IDataLo 28.1

IDtataHi 29.1

L1 D-cache

DTagLo 28.2

DDataLo 28.3

6. In earlier versions of the 24K and 34K family cores, no index check is performed and any D-side cacheop waits until the FSB
is empty. There are unusual conditions where this can noticeably impact performance.

Table 3.5 Cache instruction timings.

Operation
Line
State Action

Delay (CPU
cycles)

Hit Invalidate × Invalidate cache line, no memory traffic 3

Hit writeback Clean Nothing happens 4

Dirty Write back cache line 8

Hit writeback invalidate Clean Invalidate line 5

Dirty Write back line and invalidate 8

Index Store Tag Update tag 3

Fetch and lock Hit Line is in cache, just lock it 3

Miss Line has to be fetched into cache, and this is a
blocking operation. Wait for that then add...

7

3.4 Caches

Programming the MIPS32® 24K® Core Family, Revision 04.63 32

3.4.7 Cache management when writing instructions - the “synci” instruction

The synci instruction (new to the MIPS32 Release 2 update) provides a clean mechanism - available to user-level
code, not just at kernel privilege level - for ensuring that instructions you’ve just written are correctly presented for
execution (it combines a D-cache writeback with an I-cache invalidate). You should use it in preference to the tradi-
tional alternative of a D-cache writeback followed by an I-cache invalidate.

3.4.8 Cache aliases

The 24K core has L1 caches which are virtually indexed but physically tagged. Since it’s quite routine to have multi-
ple virtual mappings of the same physical data, it’s possible for such a cache to end up with two copies of the same
data. That becomes troublesome:

• When you want to write the data: if a line is stored in two places, you’ll only update one of them and some data
will be lost (at least, there’s a 50% chance it will be lost!) This is obviously disastrous: systems generally work
hard to avoid aliases in the D-cache.

• When you want to invalidate the line in the cache: there’s a danger you might invalidate one copy but not the
other. This (more subtle) problem can affect the I-cache too.

It can be worked around. There’s no problem for different virtual mappings which generate the same cache index;
those lines will all compete for the 4 ways at that index, and then be correctly identified through the physical tag.

The 24K CPU’s smallest page size is 4Kbytes, that’s 212 bytes. The paged memory translation means that the low 12
bits of a virtual address is always reproduced in the physical address. Since a 16Kbyte, 4-way set-associative, cache
gets its index from the low 12 bits of the address, the 16Kbyte cache is alias-free. In general, you can’t get aliases if
each cache “way” is no larger than the page size.

In 32Kbyte and 64Kbyte caches, one or two top bits used for the index are not necessarily the same as the correspond-
ing bits of the physical address, and aliases are possible. The value of the one or two critical virtual address bits is
sometimes called the page color.

It’s possible for software to avoid aliases if it can ensure that where multiple virtual mappings to a physical page
exist, they all have the same color. An OS can do that by enforcing virtual-memory alignment rules (to at least a
16Kbyte boundary) for shareable regions. It turns out this is practicable over a large range of OS activities: sharing
code and libraries, and deliberate interprocess shared memory. It is not so easy to do in other circumstances, particu-

larly when pages to be mapped start their life as buffers for some disk or network operation7...

So the 24K core contains logic to make a 32Kbyte or 64Kbyte D-cache alias-free (effectively one or two index bits
are from the physical address, and used late in the cache access process to maintain performance). This logic is a
build option, and Config7[AR] flag should read 1 if your core was built to have an alias-free D-cache.

A 32Kbyte or 64Kbyte I-cache is subject to aliases. It’s not immediately obvious why this matters; you certainly can’t
end up losing writes, as you might in an alias-prone D-cache. But I-cache aliases can lead to unexpected events when
you deliberately invalidate some cache content using the cache instruction. An invalidation directed at one virtual
address translated to a particular physical line may leave an undesirable valid copy of the same physical data indexed
by a virtual alias of a different color. To solve this, some 24K cores are built to strengthen hit-type I-cache invalidate

7. There’s a fair amount of rather ugly code in the MIPS Linux kernel to work around aliases. D-cache aliases (in particular) are
dealt with at the cost of quite a large number of extra invalidate operations.

 Memory map, caching, reads, writes and translation

33 Programming the MIPS32® 24K® Core Family, Revision 04.63

instructions (those include hit-type cache instructions and the synci instruction), so as to guarantee that no copy of
the addressed physical line remains in the cache. This facility is available if the Config7[IAR] bit reads 1; but if it’s
available but your software doesn’t need it, you can restore “legacy” behavior by setting Config7[IVA] to 1. Refer to
Section B.4.5 “The Config7 register” for details.

3.4.9 Cache locking

[MIPS32] provides for a mechanism to lock a cache line so it can’t be replaced. This avoids cache misses on one par-
ticular piece of data, at the cost of reducing overall cache efficiency.

Caution: in complex software systems it is hard to be sure that cache locking provides any overall benefit - most often,
it won’t. You should probably only use locking after careful measurements have shown it to be effective for your
application.

Lock a line using a cache FetchAndLock (it will not in fact re-fetch a line which is already in the cache). Unlock

it using any kind of relevant cache “invalidate” instruction8 - but note that synci won’t do the job, and should not
be used on data/instruction locations which are cache-locked.

3.4.10 Cache initialization and tag/data registers

The cache tag/data registers (listed out in Table 3.1) are used for staging tag information being read from or written to
the cache (the 24K core has no “TagHi” registers, which are only needed for CPUs with a bigger physical address
range). [MIPS32] declares that the contents of these registers is implementation dependent, so they need some words
here.

ITagLo is used for the I-cache, DTagLo for the D-cache, and L23TagLo for the L2 cache, if configured. Some other
MIPS CPUs use the same staging register for all caches, and initialization software written for such CPUs is not por-
table to the 24K core.

Before getting into the details, note that it’s a strong convention that you can write all-zeros to the appropriate TagLo
register and then use cache IndexStoreTag to initialize a cache entry to a legitimate (but empty) state. Your
cache initialization software should rely on that, not on the details of the registers.

Only diagnostic and test software will need to know details; but Figure 3.2 shows all the fields:

Figure 3.2 Fields in the TagLo Registers

ITagLo and DTagLo can be used in a special mode; when ErrCtl[WST] is 1, the appropriate TagLo register’s fields
change completely, as shown in Figure 3.5 and its notes below. But let’s look at the standard fields first:

TagLo: the cache address tag — the low 12 bits of the address are implied by the position of the data in the cache.

×: a field not described for the 24K core but which might not always read zero.

V: 1 when this cache line is valid.

8. It’s possible to lock and unlock lines by manipulating values in the TagLo register and then using a
cacheIndex_Load_Tag instruction... but highly non-portable and likely to cause trouble. Probably for diagnostics only.

31 12 11 10 8 7 6 5 4 1 0

TagLo U 0 V D L 0 P

3.4 Caches

Programming the MIPS32® 24K® Core Family, Revision 04.63 34

D: 1 when this cache line is dirty (that is, it has been written by the CPU since being read from memory).

L: 1 when this cache line is locked, see Section 3.4.9, "Cache locking".

P: parity bit for tag fields other than the TagLo[D] bit, which is actually held separately in the "way-select" RAM. When
you use the TagLo register to write a cache tag with cacheIndexStoreTag the TagLo[P]: bit is generally not used
- instead the hardware puts together your other fields and ensures it writes correct parity. However, it is possible to
force parity to exactly this value by first setting ErrCtl[PO].

3.4.11 TagLo registers in special modes

The usual TagLo register fields are a view of the underlying cache tags. But load-tag/store tag cacheops act differ-
ently in special modes activated by setting bits in ErrCtl (see Section 3.4.13 “ErrCtl register” for details):

• When ErrCtl[SPR] is set, the L1 TagLo registers are used to configure scratchpad memory, if fitted. That’s
described in Section 3.6 “Scratchpad memory/SPRAM” below, where you’ll find a field diagram for the TagLo
registers in that mode.

• When ErrCtl[WST] is set, the tag registers are used to provide diagnostic/test software with direct read-write
access to the “way select RAM” — parts of the cache array. This is highly CPU-dependent and is described in
Section B.4.6 “Cache registers in special diagnostic modes”.

3.4.12 Parity error exception handling and the CacheErr register

The 24K core does not check parity on data (or control fields) from the external interface - so this section really is just
about parity protection in the cache. It’s a build-time option, selected by your system integrator, whether to include
check bits in the cache and logic to monitor them.

At a system level, a cache parity exception is usually fatal - though recovery might be possible sometimes, when it is
useful to know that the exception is taken in “error mode” (that is, Status[ERL] is set), the restart address is in
ErrorEPC and you can return from the exception with an eret — it uses ErrorEPC when Status[ERL] is set.

But mainly, diagnostic-code authors will probably find the CacheErr register’s extra information useful.

Figure 3.3 Fields in the CacheErr Register

ER: was the error on an I-fetch (0) or on data (1)? Applicable only to L1 cache errors.

EC: in L1 cache (0) or L2-or-higher cache (1)?

ED,ET: 1 for error in data field/tag field respectively.

EB: 1 if data and instruction-fetch error reported on same instruction, which is unrecoverable. If so, the rest of the regis-
ter reports on the instruction-fetch error.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 0

ER EC ED ET 0 EB EF SP EW Way 0 Index

For L2 cache errors only Way

 Memory map, caching, reads, writes and translation

35 Programming the MIPS32® 24K® Core Family, Revision 04.63

EF: unrecoverable (fatal) error (other than the EB type above). Some parity errors can be fixed by invalidating the cache
line and relying on good data from memory. But if this bit is set, all is lost... It’s one of the following:

1. Line being displaced from cache (“victim”) has a tag parity error, so we don’t know whether to write it back,
or whether the writeback location (which needs a correct tag) would be correct.

2. The victim’s tag indicates it has been written by the CPU since it was obtained from memory (the line is
“dirty” and needs a write-back), but it has a data parity error.

3. Writeback store miss and CacheErr[EW] error.

4. At least one more cache parity error happened concurrently with or after this one, but before we reached the
relative safety of the cache parity error exception handler.

SP: error affecting a scratchpad RAM access, see Section 3.6, "Scratchpad memory/SPRAM" below.

EW: parity error on the “dirty” (cache modified) or way-selection bits. This means loss of LRU information, which —
most of the time — is recoverable.

Way: the way-number of the cache entry where the error occurred. Caution: for the L1 caches (which are no more than
4-way set associative) this is a two-bit field. But an L2 cache might be more highly set-associative, and then this field
grows down.

Index: the index (within the cache way) of the cache entry where the error occurred... except that the low bits are not
meaningful. The index is aligned as if it’s a byte address, which is good because that’s what Index-type cache
instructions need. It resolves the failing doubleword for a data error, or just the failing line for a tag error. We’ve
shown a 14-bit field, because that’s large enough to provide the index for the 24K core’s largest configurable (4 ways
by 16KB) L1 cache option.

Two other fields are related to the processing of cache errors. Other implementations have laid claim to all of the bits
in this register, so these bits were relegated to the ErrCtl register. The FE and SE bits in that register are used to detect
nested cache errors and are described in the next section.

If you want to study this error further, you’ll probably use an index-type cache instruction to read out the tags and/
or data. The cache instruction’s “index” needs the way-number bits added to CacheErr[Index]’s contents; see Figure
3.1 and its notes above for how to do that.

3.4.13 ErrCtl register

This register has two distinct roles. It contains “mode bits” which provide different views of the TagLo registers
when they’re used for access to internal memory arrays and cache diagnostics. But it also controls parity protection of
the caches (if it was configured in your core in the first place).

3.5 Bus error exception

Programming the MIPS32® 24K® Core Family, Revision 04.63 36

Figure 3.4 Fields in the ErrCtl Register

Two fields are ‘overflow’ from the CacheErr register and relate to the error state:

FE/SE: Used to detect nested errors. FE (FirstError) is set on any cache error. SE (Second Error) is set when an error is
seen and FE is set. Software should clear FE once it has logged enough error information that taking a second error
will not be fatal.

The rest of the fields can be summarized as such: running software should set just the parity enable (PE) bit to enable
cache parity checking as required, and leave it zero otherwise. The fields are as follows:

PE: 1 to enable cache parity checking. Hard-wired to zero if parity isn’t implemented.

PO: (parity overwrite) - set 1 to set the parity bit regardless of parity computation, which is only for diagnostic/test pur-
poses.

After setting this bit you can use cache IndexStoreTag to set the cache data parity to the value currently in
ErrCtl[PI] (for I-cache) or ErrCtl[PD] (for D-cache), while the tag parity is forcefully set from TagLo[P].

WST: test mode for cache IndexLoadTag/cache IndexStoreTag instructions, which then read/write the
cache’s internal "way-selection RAM" instead of the cache tags.

SPR: when set, index-type cache instructions work on the scratchpad/SPRAM, if fitted - see Section 3.6, "Scratchpad
memory/SPRAM".

PI/PD: parity bits being read/written to caches (I- and D-cache respectively).

LBE, WABE: field indicating whether a bus error (the last one, if there’s been more than one) was triggered by a load or
a write-allocate respectively: see below. Where both a load and write-allocate are waiting on the same cache-line
refill, both could be set. These bits are “sticky”, remaining set until explicitly written zero.

L2P: Controls ECC checking of an L2 cache, if it's fitted and has that capability.

3.5 Bus error exception

The CPU’s “OCP” hardware interface rules permit a slave device attached to the system interface to signal back when
something has gone wrong with a read. This should not be used to report a read parity error; if parity is checked exter-
nally, it would have to be reported through an interrupt. Typically a bus error means that some subsystem has failed to
respond. Bus errors are not signalled on an OCP write cycle, and (if they were) the 24K core ignores them.

Instruction bus error exceptions are precise (when the exception happens EPC always points to the instruction where
fetch failed). But a data-side bus error is usually caused by a load, and the (non-blocking) load which caused it may
have happened a long time before the busy cycle finishes and the error is signalled. So a bus error exception caused by
a load or store is imprecise; EPC does not necessarily (or even usually) point to the instruction causing the memory
read..

31 30 29 28 27 26 25 24 23 22 21 20 19 18 13 12 11 4 3 0

PE PO WST SPR LBE
WAB

E
L2P 0 SE FE 0 PI PD

0 0 0 0 0 0 0 0 0

 Memory map, caching, reads, writes and translation

37 Programming the MIPS32® 24K® Core Family, Revision 04.63

If software knows that a particular read might encounter a bus error - typically it’s some kind of probe - it should be
careful to stall and wait for the load value immediately, by reading the value into a register, and make sure it can han-
dle a bus error at that point.

There is an obscure corner case. The 24K core’s D-cache is “write-allocate”: so a write which misses in the cache will
trigger a read, to fill the cache line ready to receive the new data. If you’re unlucky enough to get a bus error on that
read-for-refill, the bus error will be associated with a store. After a bus error you can look at ErrCtl[LBE]/ErrCtl[WABE]
to see whether the error was caused by a load or write-allocate.

3.6 Scratchpad memory/SPRAM

The 24K core (like most of MIPS Technologies’ cores) can be equipped with modestly-sized high speed on-chip data
memory, called scratchpad RAM or SPRAM. SPRAM is connected to a cache interface, alongside the I- and/or D-
cache, so is available separately for the I- and D-side (ISPRAM and DSPRAM).

MIPS Technologies provide the interface on which users can build many types and sizes of SPRAM. We also provide
a “reference design” for both ISPRAM and DSPRAM, which is what is described here. If you keep the programming
interface the same as the reference design, you’re more likely to be able to find software support. The reference
design allows for on-chip memories of up to 1Mbytes in size.

There are two possible motives for incorporating SPRAM:

SPRAM can be made larger than the maximum cache size.

Even for smaller sizes, it is possible to envisage applications where some particularly heavily-used piece of data
is well-served by being permanently installed in SPRAM. Possible, but unusual. In most cases heavily-used data
will be handled well by the D-cache, and until you really know otherwise it’s better for the SoC designer to max-
imize cache (compatible with his/her frequency needs.)

But there’s another more compelling use for a modest-size SPRAM:

• “DMA” accessible to external masters on the OCP interface: the SPRAM can be configured to be accessible
from an OCP interface. OCP masters will see it just as a chunk of memory which can be read or written.

Because SPRAM stands in for the cache, data passed through the SPRAM in this way doesn’t require any soft-
ware cache management. This makes it spectacularly efficient as a staging area for communicating with complex
I/O devices: a great way to implement “push” style I/O (that is where the device writes incoming data close to the
CPU).

SPRAM must be located somewhere within the physical address map of the CPU, and is usually accessed through
some “cached” region of memory (uncached region accesses to scratchpad work with the 24K reference design, but
may not do so on other implementations - better to access it through cacheable regions). It’s usually better to put it in
the first 512Mbytes of physical space, because then it will be accessible through the simple kseg0 “cached,
unmapped” region - with no need to set up specific TLB entries.

Because the SPRAM is close to the cache, it inherits some bits of cache housekeeping. In particular the cache
instruction and the cache tag CP0 registers are used to provide a way for software to probe for and establish the size

of SPRAM9.

9. What follows is a hardware convention which SoC designers are not compelled to follow; but MIPS Technologies recom-
mends designers to do SPRAM this way to ease software porting.

3.7 The TLB and translation

Programming the MIPS32® 24K® Core Family, Revision 04.63 38

Probing for SPRAM configuration

The presence of scratchpad RAM in your core is indicated by a “1” bit in one or both of the CP0 Config[ISP,DSP]
register flags described in Figure 2.1. The MIPS Technologies reference design requires that you can query the size of
and adjust the location of scratchpad RAM through “cache tags”.

To access the SPRAM “tags” (where the configuration information is to be found) first set the ErrCtl[SPR] bit (see
Section 3.4.13 “ErrCtl register”).

Now a cache Index_Load_Tag_D, KSEG0_BASE+010 instruction fetches half the configuration information
into DTagLo, and a cache Index_Load_Tag, KSEG0_BASE+8 gets the other half (the “8” steps to the next
feasible tag location - an artefact of the 64-bit width of the cache interface.) The corresponding operations directed at
the primary I-cache read the halves of the I-side scratchpad tag, this time into ITagLo. The “tag” for I-side and D-side
SPRAM appears in TagLo fields as shown in Figure 3.5.

Where:

• base address[31:12]: the high-order bits of the physical base address of this chunk of SPRAM;

• En: enable the SPRAM. From power-up this bit is zero, and until you set it to 1 the SPRAM is invisible. The En
bit is also visible in the second (size) configuration word — it can even be written there, but it’s not a good idea
to write the size word other than for far-out diagnostics;

• size of region in bytes/4KB: the number of page-size chunks of data mapped. If you take the whole 32 bits, it
returns the size in bytes (but it will always be a multiple of 4KB).

In some MIPS cores using this sort of tag setup there could be multiple scratchpad regions indicated by two or more
of these tag pairs. But the reference design provided with the 24K core can only have one I-side and one D-side
region.

You can load software into the ISPRAM using cacheops. Each pair of instructions to be loaded are put in the registers
IDataHi/IDataLo, and then you use a cache Index_Store_Data_I at the appropriate index. The two data regis-
ters work together to do a 64-bit transfer. Note that he 24K core’s instruction memory really is 128 bits wide, so
you’ll need two cacheops to fully write a specific index. For a CPU configured big-endian the first instruction in
sequence is loaded into IDataHi, but for a CPU configured little-endian the first instruction is loaded into IDataLo.

Don’t forget to set ErrCtl[SPR] back to zero when you’re done.

3.7 The TLB and translation

The TLB is the key piece of hardware which MIPS architecture CPUs have for memory management. It’s a hardware
array, and for maintenance you access fields by their index. For memory translation, it’s a real content-addressed

10. The instructions are written as if using C “#define” names from [m32c0 h]

Figure 3.5 SPRAM (scratchpad RAM) configuration information in TagLo
31 12 11 8 7 6 5 4 1 0

addr == 0 base address[31:12] 0 En 0
addr == 8 size of region in bytes/4KB 0 En 0

 Memory map, caching, reads, writes and translation

39 Programming the MIPS32® 24K® Core Family, Revision 04.63

memory, whose input is a virtual page address together with the “address space identifier” from EntryHi[ASID]. The
table also stores a physical address plus “cacheability” attributes, which becomes the output of the translation lookup.

The hardware TLB is relatively small, configurable with 16, 32 or 64 entries (read Config1[MMUSize] for the num-
ber configured for your core). Each entry can map a 2-page-size virtual region to a pair of physical pages. Entries can
map different size pages, too.

System software maintains the TLB as a cache of a much larger number of possible translations. An attempt to use a
mapped-space address for which no translation is in the hardware TLB invokes a special exception handler which is
carefully crafted to find and load the right entry as quickly as possible. Read on for a summary of all the fields and
how it gets used; but the OS ramifications are far too extensive to cover here; for a better description in context see
[SEEMIPSRUN]:, and for full details of the architectural specification see [MIPS32].

3.7.1 A TLB entry

Let’s start with a sketch of a TLB entry. For MIPS32 cores, that consists of a virtual address portion to match against
and two output sections, something like Figure 3.6 - which also shows which TLB fields are carried in which CP0
registers.

Some points to make about the TLB entry:

• The input-side virtual address fields (to the left) have the fields necessary to match an incoming address against
this entry. “VPN” is (by OS tradition) a “virtual page number” - the high bits of the program (virtual) address.

“VPN2” is used to remind you that this address is for a double-page-size virtual region which will map to a pair
of physical pages...

• The right-hand side (physical) fields are the information used to output a translation. There are a pair of outputs
for each input-match, and which of them is used is determined by the highest within-match address bit. So in
standard form (when we’re using 4Kbyte pages) each entry translates an 8Kbyte region of virtual address, but we
can map each 4Kbyte page onto any physical address (with any permission flag bits).

• The size of the input region is configurable because the “PageMask” determines how many incoming address bits
to match. The 24K core allows page sizes of 4Kbytes, 16Kbytes and going on in powers of 4 up to 256Mbytes.
That’s expressed by the legal values of PageMask, shown below.

• The “ASID” field extends the virtual address with an 8-bit, OS-assigned memory-space identifier so that transla-
tions for multiple different applications can co-exist in the TLB (in Linux, for example, each application has dif-
ferent code and data lying in the same virtual address region).

• The “G” (global) bit is not quite sure whether it’s on the input or output side - there’s only one, but it can be read
and written through either of EntryLo0-1. When set, it causes addresses to match regardless of their ASID value,
thus defining a part of the address space which will be shared by all applications. For example, Linux applica-
tions share some “kseg2” space used for kernel extensions.

Figure 3.6 Fields in a 24K® core TLB entry
EntryHi EntryHi

VPN2 PageMask ASID G PFN
Flags

PFN
Flags

C D V C D V

PageMask EntryLo1 EntryLo0

3.7 The TLB and translation

Programming the MIPS32® 24K® Core Family, Revision 04.63 40

3.7.2 Live translation and micro-TLBs

When you’re really tuning out the last cycle, you need to know that in the 24K core the translation is actually done by
two little tables local to the instruction fetch unit and the load/store unit - called the ITLB and DTLB respectively
(collectively they’re “micro-TLBs” or “uTLBs”). There are only 4 entries in the ITLB, and 8 in the DTLB and they
are functionally invisible to software: they’re automatically refilled from the main TLB (in this context it’s often
called the joint TLB or JTLB) when required, and automatically cleared whenever the TLB is updated. It costs just
three extra clocks to refill the uTLB for any access whose translation is not already in the appropriate uTLB.

uTLB entries can only map 4KB and 1MB pages (main TLB entries can handle a whole range of sizes from 4KB to
256MB). When the uTLB is reloaded a translation marked for a size other than 4KB or 1MB is down-converted as
required.

3.7.3 Reading and writing TLB entries: Index, Random and Wired

Two CP0 registers work as simple indexes into the TLB array for programming: Index and Random. The oddly-
named Wired controls Random’s behavior.

Of these: Index determines which TLB entry is accessed by tlbwi. It’s also used for the result of a tlbp (the
instruction you use to see whether a particular address would be successfully translated by the CPU). Index only
implements enough bits to index the TLB, however big that is; but a tlbp which fails to find a match for the speci-
fied virtual address sets bit 31 of Index (it’s easy to test for).

Random is implemented as a full CPU clock-rate downcounter. It won’t decrement below the value of Wired (when it
gets there it bounces off and starts again at the highest legal index). In practice, when used inside the TLB refill
exception handler, it delivers a random index into the TLB somewhere between the value of Wired and the top.
Wired can therefore be set to reserve some TLB entries from random replacement - a good place for an OS to keep
translations which must never cause a TLB translation-not-present exception.

3.7.4 Reading and writing TLB entries - EntryLo0-1, EntryHi and PageMask registers

The TLB is accessed through staging registers which between them represent all the fields in each TLB entry; they’re
called EntryHi, PageMask and EntryLo0-1. The fields from EntryHi and PageMask are shown in Figure 3.7.

All these fields act as staging posts for entries being written to or read from the TLB. But some of them are more
magic than that...

EntryHi[VPN2]: is the page-pair address to be matched by the entry this reads/writes - see above.

However, on a TLB-related exception VPN2 is automagically set to the virtual address we were trying to translate
when we got the exception. If - as is most often the case - the outcome of the exception handler is to find and install a
translation to that address, VPN2 (and generally the whole of EntryHi) will turn out to already have the right values in
it.

Figure 3.7 Fields in the EntryHi and PageMask registers
31 29 28 13 12 8 7 0

EntryHi VPN2 0 ASID

PageMask 0 Mask 0

 Memory map, caching, reads, writes and translation

41 Programming the MIPS32® 24K® Core Family, Revision 04.63

EntryHi[ASID]: does double-duty. It is used to stage data to and from the TLB, but in normal running software it’s also
the source of the current "ASID" value, used to extend the virtual address to make sure you only get translations for
the current process.

PageMask[Mask]: acts as a kind of backward mask, in that a 1 bit means "don’t compare this address bit when matching
this address". However, only a restricted range of PageMask values are legal (that’s with "1"s filling the
PageMask[Mask] field from low bits upward, two at a time):

Note that the uTLBs handle only 4Kbyte and 1Mbyte page sizes; other page sizes are down-converted to 4Kbyte or
1Mbyte as they are referenced. For other page sizes this may cause an unexpectedly high rate of uTLB misses, which
could be noticeable in unusual circumstances.

Then moving our attention to the output side, the two EntryLo0-1 are identical in format as shown in Figure 3.8.

In EntryLo0-1:

PFN: the "physical frame number" - traditional OS name for the high-order bits of the physical address. 24 bits of PFN
together with 12 bits of in-page address make up a 36-bit physical address; but the 24K core has a 32-bit physical
address bus, and does not implement the four highest bits (which always read back as zero).

C: a code indicating how to cache data in this page - pages can be marked uncacheable and various flavours of cache-
able. The codes here are shared with those used in CP0 registers for the cacheability of fixed address regions: see
Table 3.3 in Section 3.4.2, "Cacheability options" on page 27 .

D: the "dirty" flag. In hardware terms it’s just a write-enable (when it’s 0 you can’t do a store using addresses translated
here, you’ll get an exception instead). However, software can use it to track pages which have been written to; when
you first map a page you leave this bit clear, and then a first write causes an exception which you note somewhere in
the OS’ memory management tables (and of course remember to set the bit).

V: the "valid" flag. You’d think it doesn’t make much sense - why load an entry if it’s not valid? But this is very helpful
so you can make just one of a pair of pages valid.

G: the "global" bit. This really belongs to the input side, and there aren’t really two independent values for it. So you
should always make sure you set EntryLo0[G] and EntryLo1[G} the same.

3.7.5 TLB initialization and duplicate entries

TLB entries come up to random values on power-up, and must be initialized by hardware before use. Generally, early
bootstrap software should go through setting each entry to a harmless “invalid” value.

PageMask Size of each output page PageMask Size of each output page
0x0000.0000 4Kbytes 0x007F.E000 4Mbytes
0x0000.6000 16Kbytes 0x01FF.E000 16Mbytes
0x0001.E000 64Kbytes 0x07FF.E000 64Mbytes
0x0007.E000 256Kbytes 0x1FFF.E000 256Mbytes
0x001F.E000 1Mbyte

Figure 3.8 Fields in the EntryLo0-1 registers
31 30 29 6 5 3 2 1 0

0 PFN C D V G

3.7 The TLB and translation

Programming the MIPS32® 24K® Core Family, Revision 04.63 42

Since the TLB is a fully-associative array and entries are written by index, it’s possible to load duplicate entries - two
or more entries which match the same virtual address/ASID. In older MIPS CPUs it was essential to avoid duplicate
entries - even duplicate entries where all the entries are marked “invalid”. Some designs could even suffer hardware
damage from duplicates. Because of the need to avoid duplicates, even initialization code ought to use a different vir-
tual address for each invalid entry; it’s common practice to use “kseg0” virtual addresses for the initial all-invalid
entries.

Most MIPS Technologies cores protect themselves and you by taking a “machine check” exception if a TLB update
would have created a duplicate entry - but in the 24K core that only happens if both entries are valid. Some earlier
MIPS Technologies cores suffer a machine check even if duplicate entries are both invalid. That can happen when ini-
tializing. For example, when an OS is initializing the TLB it may well re-use the same entries as already exist - per-
haps the ROM monitor already initialized the TLB, and (derived from the same source code) happened to use the
same dummy addresses. If you do that, your second initialization run will cause a machine check exception. The solu-
tion is for the initializing routine to check the TLB for a matching entry (using the tlbp instruction) before each
update.

For portability you should probably include the probe step in initialization routines: it’s not essential on the 24K core,
where we repeat that the machine check exception doesn’t happen unless the old and new entry are both marked as
valid.

3.7.6 TLB exception handlers — BadVaddr and Context

These two registers are provided mainly to simplify TLB refill handlers.

BadVAddr is a plain 32-bit register which holds the virtual address which caused the last address-related exception,
and is read-only. It is set for the following exception types only: Address error (AdEL or AdES), TLB/XTLB Refill,
TLB Invalid (TLBL, TLBS) and TLB Modified (for more on exception codes in Cause[ExcCode], see the notes to
Table B.4.)

Context contains the useful mix of pre-programmed and borrowed-from-BadVAddr bits shown in Figure 3.9.

Figure 3.9 Fields in the Context Register

Context[PTEBase,BadVPN2]: the PTEBase field is just software-writable and readable, with no hardware effect.

In a preferred scheme for software management of page tables, PTEBase can be set to the base address of a (suitably
aligned) page table in memory; then the BadVPN2 number (see below) comes from the virtual address associated
with the exception—-it’s just bits from BadVAddr, repackaged. In this case the virtual address bits are shifted such
that each ascending 8Kbyte translation unit generates another step through a page table (assuming that each entry is
2 x 32-bit words in size — reasonable since you need to store at least the two candidate EntryLo0-1 values in it).

An OS which can accept a page table in this format can contrive that in the time-critical simple TLB refill exception,
Context automagically points to the right page table entry for the new translation.

This is a great idea, but modern OS’ tend not to use it — the demands of portability mean it’s too much of a stretch to
bend the page table information to fit this model.

31 23 22 4 3 0

PTEBase BadVPN2 0

Chapter 4

Programming the MIPS32® 24K® Core Family, Revision 04.63 43

Programming the 24K® core in user mode

This chapter is not very long, because in user mode one MIPS32-compliant CPU looks much like another. But not
everything — sections include:

• Section 4.1, "User-mode accessible “Hardware registers”"

• Section 4.2, "Prefetching data": how it works.

• Section 4.3, "Using “synci” when writing instructions": writing instructions without needing to use privileged
cache management instructions.

• Section 4.4, "The multiplier": multiply, multiply/accumulate and divide timings.

• Section 4.5, "Tuning software for the 24K® family pipeline": for determined programmers, and for compiler
writers. It includes information about the timing of the DSP ASE instructions.

• Section 4.6 “Tuning floating-point”: the floating-point unit often runs at half speed, and some of its interactions
(particularly about potential exceptions) are complicated. This section offers some guidance about the timing
issues you’ll encounter.

4.1 User-mode accessible “Hardware registers”

The 24K core complies with Revision 2 of the MIPS32 specification, which introduces hardware registers; CPU-
dependent registers which are readable by unprivileged user space programs, usually to share information which is
worth making accessible to programs without the overhead of a system call.

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rdhwr instruction. [MIPS32] defines four registers so far. The OS can control access to
each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access — see Section 5.6 “The
HWREna register - Control user rdhwr access”. Privileged code can access any hardware register.

The five standard registers are:

• CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

• SYNCI_Step (1): the effective size of an L1 cache line11; this is now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you’ve written visible for execu-
tion. Then SYNCI_Step tells you the “step size” - the address increment between successive synci’s required to
cover all the instructions in a range.

11. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them different.

4.2 Prefetching data

Programming the MIPS32® 24K® Core Family, Revision 04.63 44

If SYNCI_Step returns zero, that means that your hardware ensures that your caches are instruction/data coher-
ent, and you don’t need to use synci at all.

• CC (2): user-mode read-only access to the CP0 Count register, for high-resolution counting. Which wouldn’t be
much good without.

• CCRes (3): which tells you how fast Count counts. It’s a divider from the pipeline clock — if you read a value of
“2”, then Count increments every 2 cycles, at half the pipeline clock rate. For 24K family cores that is precisely
what you will read.

• UL (30): user-mode read-only access to the CP0 UserLocal register. This register can be used to provide a
thread identifier to user-mode programs. See Section B.4.2 “The UserLocal register” for more details

4.2 Prefetching data

MIPS32 CPUs are being increasingly used for computations which feature loops accessing large arrays, and the run-
time is often dominated by cache misses.

These are excellent candidates for using the pref instruction, which gets data into the cache without affecting the
CPUs other state. In a well-optimized loop with prefetch, data for the next iteration can be fetched into the cache in
parallel with computation for the last iteration.

It’s a pretty major principle that pref should have no software-visible effect other than to make things go faster.

pref is logically a no-op12.

The pref instruction comes with various possible “hints” which allow the program to express its best guess about the
likely fate of the cache line. In 24K family cores the “load” and “store” variants of the hints do the same thing; but it
makes good sense to use the hint which matches your program’s intention - you might one day port it to a CPU where
it makes a difference, and it can’t do any harm.

The 24K core acts on hints as summarized in Table 4.1.

4.3 Using “synci” when writing instructions

The synci instruction (introduced with Revision 2 of the MIPS32 architecture specification, [MIPS32]) ensures that
instructions written by a program (necessarily through the D-cache, if you’re running cached) get written back from
the D-cache and corresponding I-cache locations invalidated, so that any future execution at the address will reliably
execute the new instructions. synci takes an address argument, and it takes effect on a whole enclosing cache-line
sized piece of memory. User-level programs can discover the cache line size because it’s available in a “hardware reg-
isters” accessed by rdhwr, as described in Section 4.1, "User-mode accessible “Hardware registers”" above.

Since synci is modifying the program’s own instruction stream, it’s inherently an “instruction hazard”: so when
you’ve finished writing your instructions and issued the last synci, you should then use a jr.hb or equivalent to call
the new instructions — see Section 5.1 “Hazard barrier instructions”.

12. This isn’t quite true any more; pref with the “PrepareForStore” hint can zero out some data which wasn’t previously zero.

 Programming the 24K® core in user mode

45 Programming the MIPS32® 24K® Core Family, Revision 04.63

4.4 The multiplier

As is traditional with MIPS CPUs, the integer multiplier is a semi-detached unit with its own pipeline. All MIPS32
CPUs implement:

• mult/multu: a 32×32 multiply of two GPRs (signed and unsigned versions) with a 64-bit result delivered in the
multiply unit’s pseudo-registers hi and lo (readable only using the special instructions mfhi and mflo, which are
interlocked and stall until the result is available).

• madd, maddu, msub, msubu: multiply/accumulate instructions collecting their result in hi/lo.

• mul/mulu: simple 3-operand multiply as a single instruction.

• div/divu: divide - the quotient goes into lo and the remainder into hi.

No multiply/divide operation ever produces an exception - even divide-by-zero is silent - so compilers typically insert
explicit check code where it’s required.

The 24K core multiplier is high performance and pipelined; multiply/accumulate instructions can run at a rate of 1
per clock, but a 32×32 3-operand multiply takes four clocks longer than a simple ALU operation. Divides use a bit-
per-clock algorithm, which is short-cut for smaller dividends. Multiply/divide instructions are generally slow enough
that it is difficult to arrange programs so that their results will be ready when needed.

Table 4.1 Hints for “pref” instructions
Hint What happens in the 24K core Why would you use it?

No Name
0 load Read the cache line into the D-cache if

not present.
When you expect to read the data soon.
Use “store” hint if you also expect to
modify it.

1 store

4 load_streamed Fetch data, but always use cache way
zero - so a large sequence of “streamed”
prefetches will only ever use a quarter of
the cache.

For data you expect to process sequen-
tially, and can afford to discard from the
cache once processed

5 store_streamed

6 load_retained Fetch data, but never use cache way
zero. That means if you do a mixture of
“streamed” and “retained” operations,
they will not displace each other from
the cache.

For data you expect to use more than
once, and which may be subject to com-
petition from “streamed” data.

7 store_retained

25 writeback_invalidate/
nudge

If the line is in the cache, invalidate it
(writing it back first if it was dirty).
Otherwise do nothing.
However (with the 24K core only): if
this line is in a region marked for
“uncached accelerated write” behavior,
then write-back this line.

When you know you’ve finished with
the data, and want to make sure it loses
in any future competition for cache
resources.

30 PrepareForStore If the line is not in the cache, create a
cache line - but instead of reading it
from memory, fill it with zeroes and
mark it as “dirty”.
If the line is already in the cache do
nothing - this operation cannot be relied
upon to zero the line.

When you know you will overwrite the
whole line, so reading the old data from
memory is unnecessary.
A recycled line is zero-filled only
because its former contents could have
belonged to a sensitive application -
allowing them to be visible to the new
owner would be a security breach.

4.5 Tuning software for the 24K® family pipeline

Programming the MIPS32® 24K® Core Family, Revision 04.63 46

4.5 Tuning software for the 24K® family pipeline

This section is addressed to low-level programmers who are tuning software by hand and to those working on effi-
cient compilers or code translators.

The 24K core is a pipelined design, and the pipeline and some of its consequences are described in Section 1.6 “A
brief guide to the 24K® core implementation”. That leads to a class of possible delays to do with data dependencies
and resource limitations.

For software tuning purposes it’s usually enough to know the delay which results when one instruction (the “pro-
ducer”) generates a value in some particular register for the use of the next instruction in sequence (the “consumer”).
The delay is in processor cycle time units, but it makes good sense to think of that delay as a lost opportunity to run an
instruction. To tune round data dependencies, the programmer or compiler needs to re-order the instructions so that
enough useful but independent instructions are placed between the producer and consumer that the consumer runs
without delay.

There are times when interactions are more complicated than that. While you can pore over hardware books to try to
figure out what the pipeline is doing, when it gets that difficult we advise that you should obtain a cycle-accurate sim-
ulator or other well-instrumented test environment, and try your software out.

But before getting on to data delays, we’ll look at the most important causes of slow-down: cycles lost to cache
misses and branches.

4.5.1 Cache delays and mitigating their effect

In a typical 24K CPU implementation a cache miss which has to be refilled from DRAM memory (in the very next
chip on the board) will be delayed by a period of time long enough to run 50-200 instructions. A miss or uncached
read (perhaps of a device register) may easily be several times slower. These really are important!

Because these delays are so large, there’s not a lot you can do to help a cache-missing program make progress. But
every little bit helps. The 24K core has non-blocking loads, so if you can move your load instruction producer away
from its consumer, you won’t start paying for your memory delay until you try to run the consuming instruction.

Compilers and programmers find it difficult to move fragments of algorithm backwards like this, so the architecture
also provides prefetch instructions (which fetch designated data into the D-cache, but do nothing else). Because
they’re free of most side-effects it’s easier to issue prefetches very early. Any loop which walks predictably through a
large array is a candidate for prefetch instructions, which are conveniently placed within one iteration to prefetch data
for the next.

The pref PrepareForStore prefetch saves a cache refill read, for cache lines which you intend to overwrite in
their entirety. Read more about prefetch in Section 4.2, "Prefetching data" above.

Tuning data-intensive common functions

Bulk operations like bcopy() and bzero() will benefit from CPU-specific tuning. To get excellent performance
for in-cache data, it’s only necessary to reorganize the software enough to cover the address-to-store and load-to-use
delays. But to get the loop to achieve the best performance when cache missing, you probably want to use some
prefetches. MIPS Technologies may have example code of such functions — ask.

 Programming the 24K® core in user mode

47 Programming the MIPS32® 24K® Core Family, Revision 04.63

4.5.2 Branch delay slot

It’s a feature of the MIPS architecture that it always attempts to execute the instruction immediately following a
branch. The rationale for this is that it’s extremely difficult to fetch the branch target quickly enough to avoid a delay,
so the extra instruction runs “for free”...

Most of the time, the compiler deals well with this single delay slot. MIPS low-level programmers find it odd at first,
but you get used to it!

4.6 Tuning floating-point

It seemed to make more sense to put this information into the FPU chapter: read from Section 6.5 “FPU pipeline and
instruction timing”.

Programming the MIPS32® 24K® Core Family, Revision 04.63 48

4.6.1 Branch misprediction delays

In a long-pipeline design like this, branches would be expensive if you waited until the branch was executed before
fetching any more instructions. See Section 1.6 “A brief guide to the 24K® core implementation” for what is done
about this: but the upshot is that where the fetch logic can’t compute the target address, or guesses wrong, that’s going
to cost five or more lost cycles. It does depend what sort of branch: the conditional branch which closes a tight loop
will almost always be predicted correctly after the first time around.

However, too many branches in too short a period of time can overwhelm the ability of the instruction fetch logic to
keep ahead with its predictions. Where branchy code can be replaced by conditional moves, you’ll get significant
benefits.

The branch-likely13 instructions (officially deprecated by the MIPS32 architecture because they may perform poorly
on more sophisticated or wider-issue hardware) are predicted just like any other branch.

Although deprecated, the branch-likely instructions will probably improve the performance of loops where there is no
other way of avoiding a no-op in a loop-closing branch’s delay slot. If you’re tempted to use this, we strongly recom-
mend you make the code conditional on a #define variable tied specifically to the 24K family. If that’s difficult in
your environment and the code might need to be portable, it’s probably better not to use this.

4.6.2 Data dependency delays classified

We’ve attempted to tabulate all possible producer/consumer delays affecting user-level code (we’re not discussing
CP0 registers here), but excluding floating point (which is in the next section).

In fact, we won’t set out the tables exactly like that. The MIPS instruction set is efficient because, most of the time,
dependent instructions can be run nose-to-tail without delay. For all registers, there is a “standard” place in the pipe-

line where the producer should deliver its value and another place in the pipeline where the consumer picks it up14.
Producer/consumer delays happen when either the producer is late delivering a result to the register (we’ll abbreviate
to “lazy”), or the consumer insists on obtaining its operand early (we’ll abbreviate to “eager”). Of course, both may
happen: in that case the delays add up.

It’s important to be clear what class of registers is involved in any of these delays. For non-floating-point user-level
code, there are just two classes of registers to consider:

• General purpose registers (“GPR”);

• The hi/lo pair (“ACC”);

So that gives us two tables.

13. The “likely” in the instruction name is historical, and pretty misleading.
14. These are brought closer together by the magic of register file bypasses, but we don’t need to get into the details here.

49 Programming the MIPS32® 24K® Core Family, Revision 04.63

Delays caused by “eager consumers” reading values early

Delays caused by “lazy producers” delivering values late

How to use the tables

Suppose we’ve got an instruction sequence like this one:

addiu $a0, $a0, 8
lw $t0, 0($a0) # [1]
lw $t1, 4($a0)
addu $t2, $t0, $t1# [2]
mul $v0, $t2, $t3
sw $v0, 0($a1) # [3]

Then a look at the tables should help us discover whether any instructions will be held up. Look at the dependencies
where an instruction is dependent on its predecessor:

[1] The lw will be held up by one clock, because its GPR address operand $a0 was computed by the immediately pre-
ceding instruction (see the first box of Table 4.2.) The second lw will be OK.

[2] The addu will be one clock late, because the load data from the preceding lw arrives late in the GPR $t1 (see the
first box of Table 4.3.)

[3] The sw will be 4 clocks late starting while it waits for a result from the multiply pipe (the second box of Table 4.3.)

These can be additive. In the pointer-chasing sequence:

lw $t1, 0($t0)
lw $t2, 0($t1)

Table 4.2 Register → eager consumer delays
Reg → Eager consumer Del Applies when...

GPR → load/store 1 the GPR value is an address operand (store data is
not needed early).

ACC → multiply instructions 1 the ACC value came from an mthi/mtlo instruc-
tion.

Table 4.3 Lazy producer → register delays
Lazy producer → Reg Del Applies when...

Load → GPR 1 Always (familiar as the “load delay slot”).
Integer multiply unit instructions produc-

ing a GPR result.
→ GPR 4 Always (because the multiply unit pipeline is

longer than the integer unit’s).
Instructions reading accumulators and

writing GPR (e.g. mflo).
Integer divide instruction → ACC 7 8-bit dividend

9 8-bit dividend & negative operand to div
15 16-bit dividend
17 16-bit dividend & negative operand to div
23 24-bit dividend
25 24-bit dividend & negative operand to div
31 full-size dividend
33 full-size dividend & negative operand to div

Programming the MIPS32® 24K® Core Family, Revision 04.63 50

The second load will be held up two clocks: one because of the late delivery of load data in $t1 (first box of Table
4.3), plus another because that data is required to form the address (first box of Table 4.2.)

More complicated dependencies

There can be delays which are dependent on the dynamic allocation of resources inside the CPU. In general you can’t
really figure out how much these matter by doing a static code analysis, and we earnestly advise you to get some kind
of high-visibility cycle-accurate simulator or trace equipment (probably based on Section 7.2, "PDtrace™ instruction
trace facility").

 CP0 register summary and reference

107 Programming the MIPS32® 24K® Core Family, Revision 04.63

ExcCode: what caused that last exception. Lots of values, listed in Table B.4.

B.4.4 Count and Compare

These two 32-bit registers form a useful and flexible timer. Count just counts. For the 24K core, that’s usually at the
full pipeline clock rate. But portable software can discover how fast Count counts by reading the “hardware register”
called “CCRes”, see Section 4.1 “User-mode accessible “Hardware registers””.

Table B.4 Exception Code values in Cause[ExcCode]

Val Code What just happened?

0 Int Interrupt

1 Mod Store, but page marked as read-only in the TLB

2 TLBL Load or fetch, but page marked as invalid in the TLB

3 TLBS Store, but page marked as invalid in the TLB

4 AdEL Address error on load/fetch or store respectively. Address is either wrongly aligned, or a privilege vio-
lation.5 AdES

6 IBE Bus error signaled on instruction fetch

7 DBE Bus error signaled on load/store (imprecise)

8 Sys System call, ie syscall instruction executed.

9 Bp Breakpoint, ie break instruction executed.

10 RI Instruction code not recognized (or not legal)

11 CpU Co-processor instruction encoding for co-processor which is not enabled in Status[CU3-0].

12 Ov Overflow from trapping form of integer arithmetic instructions.

13 Tr Condition met on one of the conditional trap instructions teq etc.

14 - Reserved

15 FPE Floating point unit exception - more details in FCSR.

16 - Available for implementation dependent use

17 CeU CorExtend instruction attempted when not enable by Status[CEE]

18 C2E Reserved for precise Coprocessor 2 exceptions

19-21 - Reserved

22 MDMX Tried to run an MDMX instruction but Status[MX] wasn’t set (most likely, the CPU doesn’t do
MDMX)

23 WATCH Instruction or data reference matched a watchpoint

24 MCheck “Machine check” - tried to write conflicting TLB entries

26 DSP Tried to run an instruction from the MIPS DSP ASE, but it’s not enabled (that is, Status[MX] is zero).

27-29 - Reserved

30 CacheErr Parity/ECC error somewhere in the core, on either instruction fetch, load or cache refill. In fact you
never see this value in Cause[ExcCode]; but some of the codes in this table including this one can be
visible in the “debug mode” of the EJTAG debug unit - see Section 7.1 “EJTAG on-chip debug unit”,
and in particular the notes on the Debug register in Figure 7.1.

31 - Reserved

B.4 Miscellaneous CP0 register descriptions

Programming the MIPS32® 24K® Core Family, Revision 04.63 108

You can write Count to set a value in it, but it’s generally more valuable for an OS to leave it as a free-running
counter.

When the value of Count coincides with the value in Compare, an interrupt is raised. The interrupt is cleared every
time Compare is written. This is handy:

• For a periodic interrupt, simply advance Compare by a fixed amount each time (and check for the possibility that
Count has overrun it).

• To set a timer for some point in the future, just set Compare to an increment more than the current value of
Count.

The timer interrupt is implemented as an output signal at the core interface; but it’s conventional (well, pretty com-
pulsory if you want OS’ to work) to return it to the CPU core on an interrupt line. Your system integrator should wire
information pins to show where the timer interrupt is connected: see the notes on IntCtl[IPTI] below Figure 5.1. How-
ever, if you have an “EIC” interrupt controller (see Section 5.2.3 “External Interrupt Controller (EIC) mode”) you’ll
need to send the timer interrupt all the way out to the interrupt controller and back.

B.4.5 The Config7 register

The Config7 register holds CPU-specific one-time setup and basic information fields.

Figure B-3 Fields in the Config7 Register

Config7: read-only fields

Config7[WII]: Read-only bit which tells you how wait behaves. When this bit is set, an interrupt which would occur
just so long as Status[IE] is set 1 will always be enough to terminate a wait instruction.

24K family CPUs where WII reads 0 will remain in the wait condition forever if entered with interrupts disabled.

The MIPS32 Architecture Specification permits either behavior.

But with the WII-set feature it’s safe to wait with interrupts disabled using Status[IE]. This allows OS code to avoid
a tricky race condition.

Config7[PCT]: read-only field which reads 1 if the core has two performance counters, replicated per-TC (older cores
had four performance counters, not replicated): see Section 7.4 “Performance counters”.

Config7[HCI]: read-only field which is always zero on 34K family cores. It reads 1 for some software-simulated CPUs,
to indicate that the software-modelled cache does not require initialization. Most software should ignore this bit.

Config7[FPR]: read-only field. Reads 1 if an FPU is fitted but (as is common) it runs at half the main core clock rate.

Config7[AR]: read-only field, indicating that the D-cache is configured to avoid cache aliases.

Config7[IAR]: a read-only field which tells you that you have an I-cache whose cacheops can be made alias-proof, as
described in Section 3.4.8 “Cache aliases”.

31 30 20 19 18 17 16 15 11 10 9 8 7 6 5 4 3 2 1 0

WII 0 PCT HCI FPR AR 0 IAR IVA ES 0 0 NBLSU ULB BP RPS BHT SL

0 0 0 0 0 0 0 0 0

 CP0 register summary and reference

109 Programming the MIPS32® 24K® Core Family, Revision 04.63

Config7: writable fields

Config7[IVA]: is hard-wired zero when the cache is inherently alias-free, as when the cache size is 16KB or less.
Otherwise this field can be used to enforce legacy behaviour on a CPU which has “alias-proof” I-cache cacheops —
see Config7[IAR] field above.

Config7[ES]: when it is set to "1", the sync instruction will be signalled on the core’s OCP interface as an "ordering
barrier" transaction, using a sync-specific encoding. It defaults to zero at system reset

Config7[ES] bit cannot be set (will always read zero and will have no effect) unless the OCP input signal
SI_SyncTxEn is asserted — it’s interpreted as agreement from the connected OCP device/interconnect that it can
handle the barrier transaction.

The remaining fields default to zero and are uncommonly set. It is therefore always safe not to write Config7. Some
of these bits are for diagnostics and experimentation only:

Config7[NBLSU]: set 1 to arrange that load/store pipeline stalls will stop the main pipeline too, keeping them
synchronized. For debug and investigation only.

Config7[ULB]: set 1 to make all uncached loads blocking (a program usually only blocks when it uses the data which is
loaded). You want to do this only when nothing else will work...

Config7[BP]: when set, no branch prediction is done, and all branches and jumps cause instruction fetch to be
suspended until they are resolved.

Config7[RPS]: when set, the return address branch predictor is disabled, so jr $31 is treated just like any other jump
register. Instruction fetch stalls after the branch delay slot, until the jump instruction reaches the "EX" stage in the
pipeline and can provide the right address (typically adds 5 clocks compared to a successfully predicted return
address).

Config7[BHT]: when set, the branch history table is disabled and all branches are predicted taken.

Config7[SL]: when set, disables non-blocking loads. Normally the 34K core will keep running after a load instruction
even if it misses in the D-cache, until the data is used. With this disable bit set, the CPU will stall on any load D-
cache miss.

B.4.6 Cache registers in special diagnostic modes

Most of the way that cache tag registers work is common (to a large extent) over most recent MIPS Technologies
cores. Those common features are described in Section 3.4.10 “Cache initialization and tag/data registers”. More
obscure features are here.

DTagLo, ITagLo registers when accessing Way Select RAM

This is the view you get when ErrCtl[WST] is set.

Figure B-4 Fields in the TagLo Register (ErrCtl[WST] set)

TagLo-WST[WSD,WSDP]: cache line dirty bits are held in the "way select" RAM, to make them easier to update.
Here you can see all of them, and each has a parity bit.

31 24 23 20 19 16 15 10 9 8 7 5 4 1 0

U WSDP WSD LRU 0 U 0 U

B.4 Miscellaneous CP0 register descriptions

Programming the MIPS32® 24K® Core Family, Revision 04.63 110

TagLo-WST[LRU]: when you read or write the tag in way select test mode (that is, with ErrCtl[WST] set) this field
reads or writes the LRU ("least recently used") state bits, held in the way select RAM.

Appendix C

Programming the MIPS32® 24K® Core Family, Revision 04.63 111

MIPS® Architecture quick-reference sheet(s)

C.1 General purpose register numbers and names

By ancient convention the general-purpose registers in the MIPS architecture have conventional names which remind
you of their standard usage in popular MIPS ABIs. Table C.1 shows those names related to both the “o32” ABI
(almost universally used for 32-bit MIPS applications), but also the minor variations in the “n32” and “n64” ABIs
defined by Silicon Graphics.

If you’re not sure what an ABI is, just read the “o32” column!

C.2 User-level changes with Release 2 of the MIPS32® Architecture

With the Release 2 update the MIPS32 instruction set gains some useful extra features, shown below. User-level pro-
grams also get limited access to “hardware registers”, useful for user-privilege software but which wants to adapt
(portably) to get the best out of the CPU.

C.2.1 Release 2 of the MIPS32® Architecture - new instructions for user-mode

The following instructions are new with the MIPS32 release 2 update:

Table C.1 Conventional names of registers with usage mnemonics
Register Nos name use
$0 zero always zero
$1 AT assembler temporary
$2-$3 v0-v1 return value from function
$4-$7 a0-a3 arguments

o32 n32/n64
name use name use

$8-$11 t0-t3 temporaries a4-a7 more arguments
$12-$15 t4-t7 t0-t3 temporaries
$24-$25 t8-t9 t8-t9
$16-$23 s0-s7 saved registers
$26-$27 k0-k1 reserved for interrupt/trap handler
$28 gp global pointer
$29 sp stack pointer
$30 s8/fp frame pointer if needed (additional saved register if not)
$31 ra Return address for subroutine

C.2 User-level changes with Release 2 of the MIPS32® Architecture

Programming the MIPS32® 24K® Core Family, Revision 04.63 112

C.2.2 Release 2 of the MIPS32® Architecture - Hardware registers from user mode

The hardware registers provide useful information about the hardware, even to unprivileged (user-mode) software,
and are readable with the rdhwr instruction. [MIPS32] defines four registers so far. The OS can control access to
each register individually, through a bitmask in the CP0 register HWREna - (set bit 0 to enable register 0 etc).
HWREna is cleared to all-zeroes on reset, so software has to explicitly enable user access. Privileged code can access
any hardware register.

The four registers are:

• CPUNum (0): Number of the CPU on which the program is currently running. This comes directly from the
coprocessor 0 EBase[CPUNum] field.

• SYNCI_Step (1): the effective size of an L1 cache line30; this is now important to user programs because they can
now do things to the caches using the synci instruction to make instructions you’ve written visible for execu-
tion. Then SYNCI_Step tells you the “step size” - the address increment between successive synci’s required
to cover all the instructions in a range.

If SYNCI_Step returns zero, that means that you don’t need to use synci at all.

Table C.2 Release 2 of the MIPS32® Architecture - new instructions
Instruction(s) Description

ehb
jalr.hb rd, rs
jr.hb rs

Hazard barriers; wait until side-effects from earlier instructions are all complete (that is,
can be guaranteed to apply in full to all instructions issued after the barrier).
These defend you respectively against:
ehb - execution hazards (side-effects of old instructions which affect how an instruction
executes, but excluding those which affect the instruction fetch process).
jalr.hb/jr.hb - hazards of all kinds.
Note that eret is also a barrier to all kinds of hazard.

ext rt, rs, pos, size
ins rt, rs, pos, size

Bitfield extract and insert operations.

mfhc1 rt, fs
mthc1 rt, fs

Coprocessor/general register move instructions targeting the high-order bits of a 64-bit
floating point unit (CP1) register when the integer core is 32-bit.

mfhc2 rt, rd
mthc2 rt, rd

Coprocessor2 might be 64 bits, too (but this is typically a customer special unit).

rdhwr rt,rd “read hardware register” - user-mode access read-only access to low-level CPU informa-
tion - see “Hardware Registers” below.

rotr rd, rt, sa
rotrv rd, rt, rs

Bitwise rotate instructions (like shifts, one has the rotate amount as an immediate field
sa, the other in an additional register argument rs).

seb rd, rt
seh rd, rt

Register-to-register sign extend instructions.

synci offset(base) Synchronize caches to make instruction write effective. Instructions written by the CPU
for itself to execute must be written back from the D-cache and any stale data at that loca-
tion invalidated from the I-cache, before it will work properly. synci is a user-privilege
instruction which does all that is required for the enclosing cache-line sized memory
block. Very useful to JIT interpreters.

wsbh rd, rt swap the bytes in each halfword within a 32-bit word. It was introduced together with the
rotate instructions rot/ rotv and the sign-extenders seb/ seh.
Between them you can make big savings on common byte-twiddling operations; for
example, you can swap the bytes in $2 using rot$2,$2,16; wsbh$2,$2.

30. Strictly, it’s the lesser of the I-cache and D-cache line size, but it’s most unusual to make them different.

 MIPS® Architecture quick-reference sheet(s)

113 Programming the MIPS32® 24K® Core Family, Revision 04.63

• CC (2): user-mode read-only access to the CP0 Count register, for high-resolution counting. Which wouldn’t be
much good without...

• CCRes (3): which tells you how fast Count counts. It’s a divider from the pipeline clock (if you read a value of
“2”, then Count increments every 2 cycles, at half the pipeline clock rate).

C.3 FPU changes in Release 2 of the MIPS32® Architecture

The main change is that a 32-bit CPU (like the 24K core) can now be paired with a 64-bit floating point unit. The FPU
itself is compatible with the description in [MIPS64V2].

The only new feature of the instruction set are the mfhc1/mthc1 instructions described in Section C.2, "Release 2 of
the MIPS32® Architecture - new instructions".

But it’s worth stressing that the floating point unit implements 64-bit load and store instructions. The FPU of the 24K
core is described in Chapter 6, “Floating point unit” on page 61.

C.3 FPU changes in Release 2 of the MIPS32® Architecture

Programming the MIPS32® 24K® Core Family, Revision 04.63 114

Appendix D

Programming the MIPS32® 24K® Core Family, Revision 04.63 115

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Revision Date Description

2.00 15th March 2004 First generally available version, to coincide with general availability of the
24K core.

2.01 22nd March 2004 Config7[ES] now defaults to zero.

2.02 4th June 2004 Improvements to the multiply/divide unit timings table and description.

2.03 29th September 2004 For RTL MR1 release.
Made the debug section into a chapter in its own right. Added sections on
scratchpad and EJTAG. Other minor fixes.

3.00 22nd April 2005 Added I-side scratchpad information to Section 3.6, "Scratchpad memory/
SPRAM" and Section 7.2 “PDtrace™ instruction trace facility” section, for
the MR3 release of the 24K core.
Added description of the Config1-3 CP0 registers.

3.01 Minor typographical fixes.

4.00 1st July 2005 Update for maintenance release of the MIPS 24Kc core family.
Minor updates on EJTAG debug and PDtrace sections.

4.10 21st December 2005 Update for maintenance release of the MIPS 24Kc core family.
Added 8K cache option and improved description of scratchpad RAM.

4.20 22nd June 2006 Update for maintenance release.

4.51 23rd April 2007 L2 cache option documented.
Updated for core version 3.7
Change bars are against 4.20

4.53 10th September 2007 Minor fix (FSB/LSB configurability missed in intro).

4.61 20th September 2007 Candidate for v4.0 release of the 24K core. Changes include:
• New CP0 register, see Section B.4.2 “The UserLocal register”.
• Alias-proof I-cache operations, see Section 3.4.8 “Cache aliases”.
• Can wait with interrupts disabled, see Section 5.5 “Saving Power”.
• The L2 access registers are renamed to L23TagLo etc (used to be “STagLo”

etc).
• Miscellaneous fixes.
Change bars are vs 4.51.

Programming the MIPS32® 24K® Core Family, Revision 04.63 116

4.62 31st October 2007 Minor cleanup for release
• Add notes on L2 feature enhancement - 64B lines
• Added missing UserLocal references
Change bars are vs. 4.51

4.63 19th December 2008 • Exception table wrongly indicated machine check could not happen
• Fixed read value of CCRes
• Added example idle loop code making use of Config7[WII]

Revision Date Description

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

