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The MIPS32® 1004K™ Coherent Processing System (CPS) from MIPS Technologies is a high-performance coherent
multiprocessor cluster of one to four MIPS32® 1004K™ CPUs and an optional coherent I/O port. The 1004K CPU features
Multi-Threading and Digital Signal Processing Application Specific Extensions and is based on the proven MIPS32® 34K®
core. Multi-CPU coherence is managed in hardware by a Coherence Manager (CM), using extensions to the OCP-IP protocol
and an OCP-based intervention port on each CPU. Figure 1 shows a block diagram of the Cluster.

The 1004K CPS Cluster can optionally be connected to the MIPS® SOC-it® L2 Cache Controller. When connected to the L2
cache, 256-bit datapaths are utilized to take advantage of the full bandwidth available from the L2 cache design. When the L2
cache is not present, the interface is restricted to 64-bit datapaths so that it matches the memory interface of existing non-
coherent CPU core products from MIPS Technologies. The L2 or memory interface uses non-coherent OCP protocols.

The 1004K Cluster includes other modules that handle common system-level functions. The optional I/O Coherence Unit
supports HW I/O coherence by bridging a non-coherent OCP I/O interconnect to the CM and handling ordering requirements.
The Global Interrupt Controller handles the distribution of interrupts between and among the CPUs in the Cluster. Additionally,
the Cluster Power Controller can gate off the clocks and power to idle cores to save power.

Figure 1 1004K™ Coherent Processing System Block Diagram
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1004K™ CPS Features
• 1 - 4 coherent MIPS32 1004K™ CPU cores

• Power Controller to shut down idle CPU cores

• Optional hardware I/O coherence port

• MESI coherence states in L1 data caches

• Supports cache to cache data transfers

• Speculative memory reads to reduce latency

• Out-of-order data return

• Optimized 256b interface to SOC-it L2 cache controller

• Cluster EJTAG TAP included to control a shared on-chip
PDtrace buffer

Supported Configurations

Refer to Section “Test Capability” for a complete list of
configuration options.

The following configuration options are restricted:

• CPU:CM clock ratio fixed at 1:1

• CM:IOCU clock ratio fixed at 1:1

Area/Frequency
• The 1004K CPU is approximately 5% larger than an

equivalent non-coherent 34K CPU, primarily because of
the duplicated cache tags.

• The CM and other common logic adds 300-400K gates
depending on configuration.

• The 1004K CPU does not have any frequency
degradation relative to an equivalent non-coherent 34K.

• The CM runs at the same frequency as the CPUs.

Software Support

Modifications to the Linux operating system are available
from MIPS Technologies that support SMP (for 1 VPE per
CPU) and SMVP (for more than 1 VPE per CPU) build
options.

The product is also supported by third party software releases
as part of the on-going development of the ecosystem by
MIPS.

Coherence Protocol

The coherence protocol is characterized by the following
properties:

• Writeback cache - Uses a writeback cache to ensure high
performance.

• Cache-line based - Coherence and ownership is
maintained per cache line.

• Snoopy protocol - Each CPU snoops the stream of
transactions and updates its cache state accordingly.

• Invalidate - A line is invalidated in the cache (possibly
with a writeback to memory) when a store from another
processor is seen.

Cache States

MESI cache states are used in the L1 data cache. A cache line
can exist in one of the following states:

• Modified: The line has been modified. This is the only
valid copy of the data in the system. No other L1 data
caches will have a copy of this line in a valid state.

• Exclusive: No other L1 data caches have a copy of this
line in a valid state. This CPU ‘owns’ the line and can
modify it. The data for this line is consistent with
memory.

• Shared: Cache line potentially exists in more than one L1
data cache. Read-only in all caches.

• Invalid: The line is not valid in this cache.

Ordering

Weak ordering is used within the Cluster. Reads and writes to
different addresses can occur out of program order unless
explicitly ordered through the use of a SYNC instruction.

Coherent OCP Extensions

The 1004K Cluster makes use of extensions to the OCP
protocol to include information about coherent traffic. These
extensions include:

• Coherent Request Types as shown in Table 1.

• Coherent state slave responses. On an intervention,
indicates what MESI state the CPU had the line in. On a
request, indicates what MESI state the line should be
installed in.
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• Dataless response - allows a dataless Upgrade transaction
and is also a common response on the intervention port.

Intervention Port

Devices with coherent caches include a second OCP port
referred to as the intervention port. Coherency is maintained
by sending all coherent requests to all devices via the
intervention port. This includes requests by the device itself;
referred to as a self-intervention, this provides a mechanism
for the agent to determine the global ordering of its request
with respect to requests from other agents.

Each device updates its cache state for the intervention and
responds when the state transition has completed. The
previous state of the line is indicated in the response. If a read
type intervention hits on a line that the CPU has in a Modified
or Exclusive state, the CPU returns the cache line with its
response.

A cacheless device, such as the IOCU, does not require an
intervention port.

Table 1 Coherent Requests

Request Description

(Legacy) Non-coherent Reads/Writes.

CohReadShared Request for a line in a Shared state
(load miss). Data can remain in other
data caches in the Shared state. Line
may be upgraded to Exclusive if
there are no other Sharers.

CohReadOwn Request for Exclusive ownership of
the line (store miss). Following this
request, the line cannot remain in
any other L1 data caches.

CohUpgrade Request to upgrade line from shared
to exclusive (store hit on shared).
Following this request, the line will
not remain in any other data caches.
The upgrade can be done without
transferring data.

CohWriteBack Writeback of data (eviction). CPU is
writing data back to memory. This
request is not sent to other CPUs, as
it is known they will not have valid
copies of the line.

CohInvalidate Invalidate the line in all caches
(PREF Prepare for Store, CACHE
HitInvalidate).

CohCopyBack Write dirty data back to memory
from any cache (CACHE HitWrite-
Back).

CohCopyBackInv Write dirty data back to memory
from any cache and invalidate in all
(CACHE HitWriteBackInvalidate).

CohWriteInvalidate Write data to memory (I/O write).
This write data is replacing the exist-
ing data. A partial line write will be
merged with data from the caches
and memory, and a full line write
will invalidate the line in the caches
and overwrite memory.

CohReadSharedDiscard Read data from coherence domain
(I/O read). Gets the most up-to-date
data, but because the data is not
going to a coherent cache, the state
of the line does not need to change.

CohReadSharedAlways Request line in Shared state only -
cannot be installed as Exclusive or
Modified. (Not used in this system -
could be used by a caching
I/O agent or for a coherent I-Cache
fetch.)

Table 1 Coherent Requests (Continued)

Request Description
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MIPS32® 1004K™ CPU

The MIPS32® 1004K™ CPU is a high-performance, low-
power, 32-bit MIPS RISC CPU designed for coherent
system-on-silicon applications. It is based on the MIPS32®
34K® core, but features extensions for cache coherence. Two
variants of the 1004K CPU exist: the 1004Kf CPU that
features a floating point unit and the 1004Kc CPU that does
not.

The 1004K CPU implements the MIPS32 Release 2
Architecture. In addition to the base architecture, it features
the following application specific extensions (ASE):

• The MIPS MT ASE which defines multi-threaded
operation.

• The MIPS DSP ASE which provides support for signal
processing instructions.

• The MIPS16e™ ASE which reduces code size

This standard architecture allows support by a wide range of
industry standard tools and development systems.

The MT ASE allows the CPU to operate more efficiently by
executing multiple program streams concurrently. The CPU
can be configured with 1 or 2 Virtual Processing Elements
(VPEs), each of which contain much of the privileged
coprocessor 0 state, including a full Memory Management
Unit (MMU), to allow multiple OSes to operate concurrently
on the processor. Additionally, the core can be configured to
have from 1-9 Thread Contexts (TCs). A TC consists of a
register file, a Program Counter, and a limited amount of
privileged state. TCs offer lightweight multi-threading to
allow cooperative or independent threads to run concurrently

The DSP ASE provides support for a number of powerful
data processing operations. There are instructions for
fractional arithmetic (Q15/Q31) and for saturating arithmetic.
Additionally, for smaller data sizes, SIMD operations are
supported, allowing 2x16b or 4x8b operations to occur

simultaneously. Another feature of the ASE is the inclusion
of additional HI/LO accumulator registers to improve the
parallelization of independent accumulation routines.

The 1004Kf CPU also features an IEEE 754 compliant
Floating Point Unit (FPU). The FPU supports both single and
double precision instructions.

The synthesizable 1004K CPU includes a high performance
Multiply/Divide Unit (MDU) by default. The MDU is fully
pipelined to support a single cycle repeat rate for 32x32 MAC
instructions. Further, in the 1004K Pro™ CPU, the optional
CorExtend block can utilize the HI/LO registers in the MDU
block. The CorExtend block allows specialized functions to
be efficiently implemented.

Instruction and data level one caches are configurable at
0(Instruction only), 8, 16, 32, or 64 KB in size. Each cache is
organized as 4-way set associative by default. Data cache
misses are non-blocking and up to 8 may be outstanding. Two
instruction cache misses can be outstanding. To achieve high
frequencies while using commercially available SRAM
generators, the cache access is spread across two pipeline
stages, dedicating nearly an entire cycle for the SRAM
access.

The Bus Interface Unit implements the Open Core Protocol
(OCP) which has been developed to address the needs of SOC
designers. This implementation features 64-bit read and write
data buses to efficiently transfer data to and from the L1
caches.

An Enhanced JTAG (EJTAG) block allows for software
debugging of the processor. This includes a TAP controller
with PC sampling and Fast Debug Channel features. Optional
features include instruction and data trace as well as
instruction and data virtual address/value breakpoints.

Figure 2 shows a block diagram of the 1004K CPU. The
dashed boxes indicate blocks that can be modified by the
customer for specific applications.
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Figure 2 1004K™ CPU Block Diagram
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1004K™ CPU Features
• 8-9-stage pipeline (a thread selection stage is bypassed

on single-TC CPUs, yielding 8 stages)

• 32-bit address paths

• 64-bit data paths to caches and external interface

• MIPS32 Release2 Instruction Set and Privileged
Resource Architecture

• MIPS16e™ Code Compression (optional)

• MIPS MT Application Specific Extension (ASE)

– Support for 1 or 2 Virtual Processing Elements
(VPEs) each with 1 Thread Context (TC)

– Inter-Thread Communication (ITC) memory for
efficient communication & data transfer.

• MIPS DSP ASE (optional)

– 3 additional pairs of accumulator registers.
– Fractional data types (Q15, Q31)
– Saturating arithmetic
– SIMD instructions operate on 2x16b or 4x8b

simultaneously.

• Programmable Memory Management Unit

– 16/32/64 dual-entry JTLB per VPE
– 4-5 entry MT-optimized ITLB
– 8-entry DTLB
– Optional simple Fixed Mapping Translation (FMT)

mechanism
– Programmable L1 Cache Sizes
– Individually configurable instruction and data caches
– 4-Way Set Associative sizes of 4/8/16/32/64 KB
– Up to 9 outstanding load misses
– MESI coherent cache states in L1 data cache
– 32-byte cache line size
– Virtually indexed, physically tagged
– Cache line locking support
– Non-blocking prefetches
– Optional parity support

• Scratchpad RAM support

– Separate RAMs for Instruction and Data
– Independent of cache configuration
– Maximum size of 1MB
– Reference design available that features two 64 bit

OCP interfaces for external DMA

• Bus Interface

– OCP interface with 32-bit address and 64-bit data
– Extensions for communicating coherence

information about the request

– Intervention port for receiving snoop requests from
Coherence Manager

– Burst size of four 64-bit beats
– 8 entry write buffer
– “Simple” byte enable mode allows easier bridging to

other bus standards
– Extensions for front-side L2 cache

• Multiply/Divide Unit (High Performance)

– Maximum issue rate of one 32x32 multiply per
clock

– 5 cycle multiply latency
– Early-in iterative divide. Minimum 11 and

maximum 34 clock latency (dividend (rs) sign
extension-dependent)

• Multiply/Divide Unit (Iterative)

– Reduced area option that maintains full MIPS32
compatibility

– Iterative 1 bit per cycle processing of multiplies and
divides

– Not available with DSP ASE or CorExtend access

• CorExtend™ User Defined Instruction Set Extensions

– Allows user to define and add instructions to the
CPU at build time

– Maintains full MIPS32 compatibility
– Supported by industry standard development tools
– Single or multi-cycle instructions
– Includes access to HI and LO registers

• Floating Point Unit (FPU) (1004Kf CPU only)

– IEEE-754 compliant Floating Point Unit
– Compliant to MIPS 64b FPU standards
– Supports single and double precision data types
– Optionally run at 1:1 or 2:1 CPU/FPU clock ratio
– Supports Multiple thread contexts

• Coprocessor 2 interface

– 64 bit interface to a user designed coprocessor

• Power Control

– Minimum frequency: 0 MHz
– Power-down mode (triggered by WAIT instruction)
– Support for software-controlled clock divider
– Support for extensive use of fine-grained clock

gating

• EJTAG Debug

– Support for single stepping
– Instruction address and data address/value

breakpoints
– TAP controller is chainable for multi-CPU debug
– Cross-CPU breakpoint support
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• MIPS Trace

– PC, data address and data value tracing w/ trace
compression

– Includes features for correlation with CM trace
– Support for on-chip and off-chip trace memory

• Testability

– Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

– Optional memory BIST for internal SRAM arrays

Pipeline Flow

The 1004K CPU implements a 8-9-stage pipeline. One stage
is bypassed if the CPU is configured with a single TC. Two
extra fetch stages are conditionally added when executing
MIPS16e instructions. This pipeline allows the processor to
achieve a high frequency while maintaining reasonable area
and power numbers.

Figure 3 shows a diagram of the 1004K CPU pipeline.

Figure 3 1004K™ CPU Pipeline
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IT - Instruction Fetch Third

• Instruction Buffer

• Thread selection

• This stage is bypassed on single TC configurations when
the instruction buffer is empty.

• Branch target calculation

RF - Register File Access

• Register File access

• Instruction decoding/dispatch logic

• Bypass muxes

AG - Address Generation

• D-cache Address Generation

• bypass muxes

EX - Execute/Memory Access

• skewed ALU

• DTLB

• DCache SRAM access

• Branch Resolution

• Data watch and EJTAG break address compares

MS - Memory Access Second

• DCache hit detection

• Way select mux

• Load align

ER- Exception Resolution

• Instruction completion

• Register file write setup

• Exception processing

WB - Writeback

• Register file writeback occurs on rising edge of this cycle

1004K™ CPU Logic Blocks

The 1004K CPU consists of the following logic blocks,
shown in Figure 2. These logic blocks are defined in the
following subsections.

Fetch Unit

This block is responsible for fetching instructions for all
Thread Contexts (TCs). Each TC has an 8-entry instruction
buffer (IBF) that decouples the fetch unit from the execution

unit. When executing instructions from multiple TCs, a
portion of the IBF is used as a skid buffer. Instructions are
held in the IBF after being sent to the execution unit. This
allows stalled instructions to be flushed from the execution
pipeline without needing to be refetched.

In order to fetch instructions without intervention from the
execution unit, the fetch unit contains branch prediction logic.
A 512-entry Branch History Table (BHT) is used to predict
the direction of branch instructions. It uses a bimodal
algorithm with two bits of history information per entry. Also,
a 4-entry Return Prediction Stack (RPS) is a simple structure
to hold the return address from the most recent subroutine
calls. The link address is pushed onto the stack whenever a
JAL, JALR, or BGEZAL instruction is seen. Then that
address is popped when a JR instruction occurs. The BHT is
shared by all TCs on the processor, while the RPS is
dynamically associated with a single TC.

Thread Schedule Unit (TSU)

This unit is responsible for dispatching instructions from
different Thread Contexts (TCs). An external policy manager
assigns priorities for each TC. The TSU determines which
TCs are runnable and selects the highest priority one
available. If multiple are available, a round-robin mechanism
will select between them fairly.

The policy manager is a customer configurable block. Simple
round-robin or fixed priority policies can be implemented by
tying off signals on the interface. A reference policy manager
is also included that implements a weighted round-robin
algorithm for long-term distribution of execution bandwidth.

Execution Unit

The 1004K CPU execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit. Each
TC on a 1004K CPU contains thirty-one 32-bit general-
purpose registers used for integer operations and address
calculation.  The register file consists of two read ports and
one write port and is fully bypassed to minimize operation
latency in the pipeline.

 The execution unit includes:

• 32-bit adder used for calculating the data address

• Logic for verifying branch prediction

• Load aligner

• Bypass multiplexers used to avoid stalls when executing
instructions streams where data producing instructions
are followed closely by consumers of their results
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• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bitwise
logical operations

• Shifter & Store Aligner

MIPS16e™ Application Specific Extension

The 1004K CPU includes support for the MIPS16e ASE.
This ASE improves code density through the use of 16-bit
encodings of many MIPS32 instructions plus some MIPS16e-
specific instructions. PC relative loads allow quick access to
constants. Save/Restore macro instructions provide for single
instruction stack frame setup/teardown for efficient
subroutine entry/exit.

Multiply/Divide Unit (MDU)

The 1004K CPU includes a multiply/divide unit (MDU) that
contains a separate pipeline for integer multiply and divide
operations. This pipeline operates in parallel with the integer
unit pipeline and does not stall when the integer pipeline
stalls. This allows any long-running MDU operations to be
masked by instructions on other TCs and/or other integer unit
instructions.

The standard MDU consists of a pipelined 32x32 multiplier,
result/accumulation registers (HI and LO), a divide state
machine, and the necessary multiplexers and control logic.

The MDU supports execution of one multiply or multiply
accumulate operation every clock cycle.

Divide operations are implemented with a simple 1 bit per
clock iterative algorithm. An early-in detection checks the
sign extension of the dividend (rs) operand. If rs is 8 bits
wide, 23 iterations are skipped. For a 16-bit-wide rs, 15
iterations are skipped, and for a 24-bit-wide rs, 7 iterations
are skipped. Any attempt to issue a subsequent MDU
instruction while a divide is still active causes a pipeline stall
until the divide operation is completed.

Table 1 lists the repeat rate (peak issue rate of cycles until the
operation can be reissued) and latency (number of cycles until
a result is available) for the 1004K CPU multiply and divide
instructions. The approximate latency and repeat rates are
listed in terms of pipeline clocks. For a more detailed
discussion of latencies and repeat rates, refer to Chapter 9 of
Programming the MIPS32 1004K™ Core Family.

For applications which will not use the MDU much, an
iterative MDU is also available. This MDU saves area while
still preserving MIPS32 compatibility. Both multiplies and
divides are processed using a 1-bit per cycle iterative
algorithm and have 34 cycle latencies.

Floating Point Unit (FPU) / Coprocessor 1

The 1004K CPU Floating Point Unit (FPU) implements the
MIPS64 ISA (Instruction Set Architecture) for floating-point
computation. The implementation supports the ANSI/IEEE
Standard 754 (IEEE Standard for Binary Floating-Point
Arithmetic) for single and double precision data formats. The
FPU contains thirty-two 64-bit floating-point registers per-
thread used for floating point operations.

The FPU can be configured at build time to run at either the
same or one-half the clock rate of the integer CPU. The FPU
is not as deeply pipelined as the integer CPU so the maximum
CPU frequency will only be attained with the FPU running at
one-half the CPU frequency. The FPU is connected via an
internal 64-bit coprocessor interface. Note that clock cycles
related to floating point operations are listed in terms of FPU
clocks, not integer CPU clocks.

The performance is optimized for single precision formats.
Most instructions have one FPU cycle throughput and four
FPU cycle latency. The FPU implements the MIPS64
multiply-add (MADD) and multiply-sub (MSUB)
instructions with intermediate rounding after the multiply
function. The result is guaranteed to be the same as executing

Table 1     1004K™ CPU Integer Multiply/Divide Unit
Latencies and Repeat Rates (High Performance MDU)

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

32 bits 5 1

MUL 32 bits 5 1*

DIV/DIVU

8 bits 12/14 12/14

16 bits 20/22 20/22

24 bits 28/30 28/30

32 bits 36/38 36/38

* If there is no data dependency, a MUL can be issued
every cycle.
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a MUL and an ADD instruction separately, but the instruction
latency, instruction fetch, dispatch bandwidth, and the total
number of register accesses are improved.

IEEE denormalized input operands and results are supported
by hardware for some instructions. IEEE denormalized
results are not supported by hardware in general, but a fast
flush-to-zero mode is provided to optimize performance. The
fast flush-to-zero mode is enabled through the FCCR register,
and use of this mode is recommended for best performance
when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction
execution. This pipeline operates in parallel with the integer
pipeline and does not stall when the integer pipeline stalls.
This allows long-running FPU operations, such as divide or
square root, to be partially masked by system stalls and/or
other integer unit instructions. Arithmetic instructions are
always dispatched and completed in order, but loads and
stores can complete out of order. The exception model is
‘precise’ at all times. The FPU is also denoted as
“Coprocessor 1”.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:

• Decode, register read and unpack (FR stage)

• Multiply tree - double pumped for double (M1 stage)

• Multiply complete (M2 stage)

• Addition first step (A1 stage)

• Addition second and final step (A2 stage)

• Packing to IEEE format (FP stage)

• Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the
result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to
the FPU register and then read it back.

Figure 4 shows the FPU pipeline

Figure 4 FPU Pipeline

FPU Instruction Latencies and Repeat Rates

Table 2 contains the floating point instruction latencies and
repeat rates for the 1004K CPU. In this table ‘Latency’ refers
to the number of FPU cycles necessary for the first instruction
to produce the result needed by the second instruction. The
‘Repeat Rate’ refers to the maximum rate at which an
instruction can be executed per FPU cycle

Table 2  1004K™ FPU Latency and Repeat Rate

Opcode*

Latency
(FPU

cycles)

Repeat
Rate
(FPU

cycles)

ABS.[S,D], NEG.[S,D],
ADD.[S,D], SUB.[S,D],
C.cond.[S,D], MUL.S

4 1

MADD.S, MSUB.S, NMADD.S,
NMSUB.S, CABS.cond.[S,D]

4 1

CVT.D.S, CVT.PS.PW,
CVT.[S,D].[W,L]

4 1

CVT.S.D, CVT.[W,L].[S,D],
CEIL.[W,L].[S,D],
FLOOR.[W,L].[S,D],
ROUND.[W,L].[S,D],
TRUNC.[W,L].[S,D]

4 1

MOV.[S,D], MOVF.[S,D],
MOVN.[S,D], MOVT.[S,D],
MOVZ.[S,D]

4 1

MUL.D 5 2

MADD.D, MSUB.D, NMADD.D,
NMSUB.D

5 2

RECIP.S 13 10

RECIP.D 26 21

RSQRT.S 17 14

RSQRT.D 36 31

DIV.S, SQRT.S 17 14

* Format: S = Single, D = Double, W = Word, L = Longword

FR M1 M2 A1 A2 FP FWFPU Pipeline

Bypass

Bypass

Bypass

FPU Clock
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System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the
exception control system, the processor’s diagnostic
capability, the operating modes (kernel, user, supervisor, and
debug), and whether interrupts are enabled or disabled.
Configuration information, such as cache size and
associativity, presence of features like MIPS16e or floating
point unit, is also available by accessing the CP0 registers.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors.

Most of CP0 is replicated per VPE. A small amount of state
is replicated per TC and some is shared between the VPEs.

Interrupt Handling

Each 1004K VPE includes support for six hardware interrupt
pins, two software interrupts, a timer interrupt, and a
performance counter interrupt. These interrupts can be used
in the following interrupt modes:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode

is architecturally optional; but it is always present on the
1004K CPU, so the VInt bit will always read as a 1 for
the 1004K CPU.

If a TC is configured to be used as a shadow register set, the
VI interrupt mode can specify which shadow set should be
used upon entry to a particular vector. The shadow registers
further improve interrupt latency by avoiding the need to save
context when invoking an interrupt handler.

Modes of Operation

The 1004K CPU supports four modes of operation: user
mode, supervisor mode, kernel mode, and debug mode. User
mode is most often used for application programs. Supervisor
mode gives an intermediate privilege level with access to the
ksseg address space. Supervisor mode is not supported with
the fixed mapping MMU. Kernel mode is typically used for
handling exceptions and operating system kernel functions,
including CP0 management and I/O device accesses. An
additional Debug mode is used during system bring-up and
software development. Refer to "EJTAG Debug Support" on
page 15 for more information on debug mode.

Memory Management Unit (MMU)

Each 1004K VPE contains a Memory Management Unit
(MMU) that is primarily responsible for converting virtual
addresses to physical addresses and providing attribute
information for different segments of memory. At synthesis
time, the type of MMU can be chosen independently for each
VPE from the following options:

• Translation Lookaside Buffer (TLB)

• Fixed Mapping Translation (FMT)

In a dual-TLB configuration, each VPE contains a separate
JTLB so that the translations for each are independent from
each other.

The following sections explain the MMU options in more
detail.

Translation Lookaside Buffer (TLB)

The basic TLB functionality is specified by the MIPS32
Privileged Resource Architecture. A TLB provides mapping
and protection capability with per-page granularity. The
1004K implementation allows a wide range of page sizes to
be present simultaneously.

The TLB contains a fully associative Joint TLB (JTLB). To
enable higher clock speeds, two smaller micro-TLBs are also
implemented: the Instruction Micro TLB (ITLB) and the
Data Micro TLB (DTLB). When an instruction or data

DIV.D, SQRT.D 32 29

MTC1, DMTC1, LWC1, LDC1,
LDXC1, LUXC1, LWXC1

4 1

MFC1, DMFC1, SWC1, SDC1,
SDXC1, SUXC1, SWXC1

1 1

Table 2  1004K™ FPU Latency and Repeat Rate

Opcode*

Latency
(FPU

cycles)

Repeat
Rate
(FPU

cycles)

* Format: S = Single, D = Double, W = Word, L = Longword
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address is calculated, the virtual address is compared to the
contents of the appropriate micro TLB (uTLB). If the address
is not found in the uTLB, the JTLB is accessed. If the entry is
found in the JTLB, that entry is then written into the uTLB. If
the address is not found in the JTLB, a TLB exception is
taken.

Figure 5 shows how the ITLB, DTLB, and JTLB are
implemented in the 1004K CPU.

Figure 5 Address Translation During a Cache
Access

Joint TLB (JTLB)

The JTLB is a fully associative TLB cache containing 16, 32,
or 64-dual-entries mapping up to 128 virtual pages to their
corresponding physical addresses. The address translation is
performed by comparing the upper bits of the virtual address
(along with the ASID) against each of the entries in the tag
portion of the joint TLB structure.

The JTLB is organized as pairs of even and odd entries
containing pages that range in size from 4 KB to 256 MB, in
factors of four, into the 4 GB physical address space. The
JTLB is organized in page pairs to minimize the overall size.
Each tag entry corresponds to two data entries: an even page
entry and an odd page entry. The highest order virtual address
bit not participating in the tag comparison is used to
determine which of the data entries is used. Since page size
can vary on a page-pair basis, the determination of which
address bits participate in the comparison and which bit is
used to make the even-odd determination is decided
dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is dedicated to performing translations for the
instruction stream. The ITLB is a hybrid structure having 3
entries that are shared by all TCs plus an additional entry
dedicated to each TC.

The ITLB only maps 4 KB or 1 MB pages/subpages. For 4
KB or 1 MB pages, the entire page is mapped in the ITLB. If
the main TLB page size is between 4 KB and 1 MB, only the
current 4 KB subpage is mapped. Similarly, for page sizes
larger than 1 MB, the current 1 MB subpage is mapped.

The ITLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing structure for
the ITLB. If a fetch address cannot be translated by the ITLB,
the JTLB is used to attempt to translate it in the following
clock cycle, or when available. If successful, the translation
information is copied into the ITLB for future use. There is a
minimum two cycle ITLB miss penalty.

Data TLB (DTLB)

The DTLB is an 8-entry, fully associative TLB dedicated to
performing translations for loads and stores. All entries are
shared by all TCs. Similar to the ITLB, the DTLB only maps
either 4 KB or 1 MB pages/subpages.

The DTLB is managed by hardware and is transparent to
software. The larger JTLB is used as a backing structure for
the DTLB. If a load/store address cannot be translated by the
DTLB, a lookup is done in the JTLB. If the JTLB translation
is successful, the translation information is copied into the
DTLB for future use. The DTLB miss penalty is also two
cycles.

Fixed Mapping Translation (FMT)

The FMT is much simpler and smaller than the TLB-style
MMU, and is a good choice when the full protection and
flexibility of the TLB is not needed. Like a TLB, the FMT
performs virtual-to-physical address translation and provides
attributes for the different segments. Those segments that are
unmapped in a TLB implementation (kseg0 and kseg1) are
handled identically by the FMT.

Data Cache

The data cache is an on-chip memory block of 4/8/16/32/64
KB, with 4-way associativity. Direct mapped caches of 0/1/2/
4/8/16 KB are also supported, though not generally
recommended for performance reasons. A tag entry holds 20
or 21 bits of physical address, two cache state bits, and an
optional parity bit. The data entry holds 64 bits of data per
way, with optional parity per byte. There are 4 data entries for
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each tag entry. The tag and data entries exist for each way of
the cache. There is an additional array that holds the dirty and
LRU replacement algorithm bits for all 4 ways(6b LRU, 4b
dirty, and optionally 4b dirty parity).

Using 4KB pages in the TLB and 32 or 64KB cache sizes it
would normally be possible to get virtual aliasing. Because it
is quite challenging for software to manage virtual aliases
across multiple devices, these larger cache arrays are banked
on the aliased 1 or 2 physical address bits to eliminate the
virtual aliases.

When built with a 4-way cache, the 1004K CPU supports
data-cache locking. Cache locking allows critical code or data
segments to be locked into the cache on a “per-line” basis,
enabling the system programmer to maximize the efficiency
of the system cache. The locked contents can be updated on a
store hit, but will not be selected for replacement on a cache
miss. Locked lines do not participate in the coherence scheme
so processes which lock lines into a particular cache should
be locked to that processor and prevented from migrating.

The cache-locking function is always available on all data-
cache entries. Entries can then be marked as locked or
unlocked on a per entry basis using the CACHE instruction.

Instruction Cache

The instruction cache is an on-chip memory block of 8/16/32/
64 KB, with 4-way associativity.Direct mapped caches of 0/
1/2/4/8/16 KB are also supported, though not generally
recommended for performance reasons. A tag entry holds 20
or 21 bits of physical address, a valid bit, a lock bit, and an
optional parity bit. The instruction data entry holds two
instructions (64 bits), 6 bits of pre-decode information to
speed the decode of branch and jump instructions, and 9
optional parity bits (one per data byte plus one more for the
pre-decode information). There are four data entries for each
tag entry. The tag and data entries exist for each way of the
cache. The LRU replacement bits (6b) are shared among the
4 ways and are stored in a separate array.

The instruction cache block also contains and manages the
instruction line fill buffer. Besides accumulating data to be
written to the cache, instruction fetches that reference data in
the line fill buffer are serviced either by a bypass of that data,
or data coming from the external interface. The instruction
cache control logic controls the bypass function.

Just like the data cache, with certain cache and TLB page
sizes, it is possible to have virtual aliasing in the instruction
cache. This is less of a problem because the instruction cache
is not written so the aliases are always consistent. If

instruction memory is modified, all of the aliases should be
flushed from the instruction cache. The CPU can
automatically check all possible aliases when invalidating an
address from the instruction cache.

The 1004K CPU also supports instruction-cache locking
when configured as 4-way set associative. Cache locking
allows critical code or data segments to be locked into the
cache on a “per-line” basis, enabling the system programmer
to maximize the efficiency of the system cache.

The cache-locking function is always available on all
instruction-cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE
instruction.

Cache Memory Configuration

The 1004K CPU incorporates on-chip instruction and data
caches that are usually implemented from readily available
single-port synchronous SRAMs and accessed in two cycles:
one cycle for the actual SRAM read and another cycle for the
tag comparison, hit determination, and way selection. The
instruction and data caches each have their own 64-bit data
paths and can be accessed simultaneously. Table 1 lists the
1004K CPU instruction and data cache attributes.

Table 1    1004K™ CPU Instruction and Data Cache
Attributes

Parameter Instruction Data

Size and
Organization

4, 8, 16, 32, or 64
KB* 4-way set
associative

4, 8, 16, 32, or 64
KB 4-way set
associative

0,1,2,4,8 or 16
KB* Direct
Mapped

0,1,2,4,8 or 16
KB Direct
Mapped

Line Size 32 Bytes* 32 Bytes

Read Unit 64 bits* 64 bits

Write Policies N/A

coherent and non-
coherent write-
back with write
allocate

Miss restart after
transfer of

miss word miss word

Cache Locking per line  per line

*Logical size of instruction cache. Cache physi-
cally contains some extra bits used for precod-
ing the instruction type.
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Cache Protocols

The 1004K CPU supports the following cache protocols:

• Non-coherent, uncached: Addresses in a memory area
indicated as uncached are not read from the cache. Stores
to such addresses are written directly to main memory,
without changing cache contents.

• Non-coherent, write-back, write allocate: Loads and
stores that miss in the cache will cause a cache refill. The
memory read request will be marked as non-coherent.
However, once the data is written to the cache, there is no
distinction between coherent and non-coherent data.
Caches lines that are written by stores will be marked as
dirty. If a dirty line is selected for replacement, the cache
line will be written back to main memory.

• Non-coherent, uncached Accelerated: Like uncached,
data is never loaded into the cache. Store data can be
gathered in a write buffer before being sent out on the
bus as a bursted write. This is more efficient than sending
out individual writes as occurs in regular uncached mode.

• Coherent, write-back, write allocate, exclusive on
write: Use coherent data. Load misses will bring the data
into the cache in a shared state. Multiple caches can
contain data in the shared state. Stores will bring data
into the cache in an exclusive state - no other caches can
contain that same line. If a store hits on a shared line in
the cache, a request will be made to upgrade to exclusive.

• Coherent, write-back, write allocate, exclusive:
Similar to the above, but load misses will bring data into
the cache in an exclusive state rather than shared. This
can be used if data is not shared and will eventually be
written. This can reduce bus traffic because the line does
not have to be refetched in an exclusive state when a
store is done.

Intervention Processing

The CPU includes a duplicate set of tags for the data cache as
well as the fill-store buffer and write-back buffer. Duplicate
tags allow intervention lookups to be done in parallel with
regular cache accesses for loads and stores. If an intervention
hits and needs to change the cache state or read the cache data
array, load and store accesses from the main pipe are stalled.

Interventions that ‘miss’ can be fully pipelined. Intervention
lookups are speculatively started assuming a miss on previous
interventions. If there is a hit, subsequent interventions are
killed and then restarted after intervention processing has
completed.

If a read-type intervention hits in the cache on a line that is
Exclusive or Modified, the CPU reads the data out of the
cache and returns it on the intervention port. This data is
staged through the write-back buffer and at least one entry of
the buffer will always be available for interventions to avoid
deadlock conditions.

Intervention latencies are 5 cycles for a miss and 9 cycles to
get a response and the first dword of data (if required) for a
hit. While data is being returned, the CPU can resume
processing subsequent interventions and provide responses in
parallel.

Scratchpad RAM

The 1004K CPU allows blocks of scratchpad RAM to be
attached to the load/store and fetch units. These allow low-
latency access to a fixed block of memory.

These blocks can be modified by the customer. A reference
design is provided which includes an SRAM array as well as
an external DMA port to allow the system to directly access
the array.

InterThread Communication Unit (ITU)

This block provides a mechanism for efficient
communication between TCs using gating storage. This
block has a number of locations that can be accessed using
different views. These views provide the mechanisms to
implement a number of useful communication methods such
as mailboxes, FIFO mailboxes, mutexes, and semaphores.

This block can be modified by the customer to target a
specific application. A reference multi-core ITU design is
included with the CPS that implements some basic views and
functionality.

Bus Interface (BIU)

The Bus Interface Unit (BIU) controls the external interface
signals. The primary interface implements the Open Core
Protocol (OCP). Additionally, the BIU includes a write
buffer.

Write Buffer

The BIU contains a merging write buffer. The purpose of this
buffer is to store and combine write transactions before
issuing them to the external interface. The write buffer is
organized as eight 32-byte buffers. Each buffer contains data
from a single 32-byte aligned block of memory.
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The write buffer also holds eviction data for write-back lines.
The load-store unit opportunistically pulls dirty data from the
cache and sends it to the BIU. It is gathered in the write buffer
and sent out as a bursted write.

For uncached accelerated references, the write buffer can
gather multiple writes together and then perform a bursted
write to increase the efficiency of the bus. Uncached
accelerated gathering is supported for word or dword stores.

Gathering of uncached accelerated stores will start on cache-
line aligned addresses, i.e. 32 byte aligned addresses. Once an
uncached accelerated store starts gathering, a gather buffer is
reserved for this store. All subsequent uncached accelerated
word or double word stores to the same 32B region will write
sequentially into this buffer, independent of the word address
associated with these latter stores. The uncached accelerated
buffer is tagged with the address of the first store. An
uncached accelerated store that does not merge and does not
go to an aligned address will be treated as a regular uncached
store.

SimpleBE Mode

To aid in attaching the 1004K CPU to structures which cannot
easily handle arbitrary byte enable patterns, there is a mode
that generates only “simple” byte enables. Only byte enables
representing naturally aligned byte, halfword, word, and
doubleword transactions will be generated.

The only case where a read can generate “non-simple” byte
enables is on an uncached tri-byte load (LWL/LWR). In
SimpleBE mode, such a read will be converted into a word
read on the external interface.

Writes with non-simple byte enable patterns can arise when a
sequence of stores is processed by the merging write buffer,
or from uncached tri-byte stores (SWL/SWR). In SimpleBE
mode, these stores will be broken into multiple write
transactions.

EJTAG Debug Support

The 1004K CPU includes an Enhanced JTAG (EJTAG) block
for use in the software debug of application and kernel code.
In addition to standard user/supervisor/kernel modes of
operation, the 1004K CPU provides a Debug mode that is
entered after a debug exception (derived from a hardware
breakpoint, single-step exception, etc.) is taken and continues

until a debug exception return (DERET) instruction is
executed. During this time, the processor executes the debug
exception handler routine.

The EJTAG interface operates through the Test Access Port
(TAP), a serial communication port used for transferring test
data in and out of the 1004K CPU. In addition to the standard
JTAG instructions, special instructions defined in the EJTAG
specification define what registers are selected and how they
are used.

Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the EJTAG specification. These breakpoints stop
the normal operation of the CPU and force the system into
debug mode. There are two types of simple hardware
breakpoints implemented in the 1004K CPU: Instruction
breakpoints and Data breakpoints.

During synthesis, the 1004K CPU can be configured to
support the following breakpoint options per VPE:

• Zero instruction and zero data

• Two instruction and one data

• Four instruction and two data

Instruction breaks occur on instruction fetch operations, and
the break is set on the virtual address. Instruction breaks can
also be made on the ASID value used by the MMU. A mask
can be applied to the virtual address to set breakpoints on a
range of instructions.

Data breakpoints occur on load and/or store transactions.
Breakpoints are set on virtual address and ASID values,
similar to the Instruction breakpoint. Data breakpoints can
also be set based on the value of the load/store operation.
Finally, masks can be applied to both the virtual address and
the load/store value.

Fast Debug Channel

The 1004K CPU includes the EJTAG Fast Debug Channel
(FDC) as a mechanism for efficient bidirectional data transfer
between the CPU and the debug probe. Data is transferred
serially via the TAP interface. A pair of memory- mapped
FIFOs buffer the data, isolating software running on the CPU
from the actual data transfer. Software can configure the FDC
block to generate an interrupt based on the FIFO occupancy
or can poll the status.
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Figure 6 Fast Debug Channel

MIPS Trace

The 1004K CPU includes optional MIPS Trace support for
real-time tracing of instruction addresses, data addresses and
data values. The trace information is sent out of the CPU to a
trace funnel where it is interleaved with trace data from the

other CPUs and Coherence Manager. The trace information is
collected in an on-chip or off-chip memory, for post-capture
processing by trace regeneration software. On-chip trace
memory may be configured in size from 0 to 1MB; it is
accessed through the existing EJTAG TAP interface and
requires no additional chip pins. Off-chip trace memory is
accessed through a special trace probe and can be configured
to use 4, 8, or 16 data pins plus a clock.

Coherence Manager

The Coherence Manager (CM) is the glue that holds the
coherent devices together. It is responsible for establishing
the global ordering of requests as well as collecting the
intervention responses and sending the correct data back to

the requester. A high-level view of the request flow through
the CM is shown in Figure 7. Each of the sub-units is
described in more detail below.
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Figure 7 Coherence Manager Transaction Flow

Request Unit (RQU)

This block receives requests from the coherent devices and
serializes them. Non-coherent requests are forwarded to the
Memory Interface Unit. Coherent requests are sent to the
Intervention Unit.

The CM supports a speculative read. On a coherent read
request, the memory request is started assuming that the line
will not be available from another L1 cache. This avoids
increasing the memory latency for the common case when it
is not. In order to avoid a read after write hazard, the read
address is compared against pending coherent requests that
can generate writes. If a match is detected, the read will not
be started speculatively.

Intervention Unit (IVU)

This block receives the serialized stream of coherent requests
from the Request Unit. These requests are sent as
interventions to each of the coherent caching agents. The
caching agent updates its cache state appropriately for the
intervention and gives a response. If the cache has the line in
an Exclusive or Modified state, it returns the data with its
response on a read type intervention. The Intervention Unit
gathers the responses from each of the agents and takes care
of the following actions:

Request Unit (RQU)

Memory Interface Unit (MIU)

Intervention Unit (IVU)

Response Unit (RSU)

CPU 0

Non-coherent reads/writes

Coherent

L2/Memory
Read Responses

Reads/Writes

Coherent
Interventions

CPU n
I/O Port 0

I/O Port n

CPU 0

CPU n

CPU 0

CPU n

CPU 0

CPU n
I/O Port 0

I/O Port n

L2/Memory

Coherence ManagerRequest OCP

Intervention OCP

Response OCP

Memory OCP

Speculative coherent reads

Cache-to-Cache
Transfers

L2/Memory

Memory
Mapped Reg

Memory
Mapped Reg

Access to I/O regs, GIC, GCR



18 MIPS32® 1004K™ Coherent Processing System Datasheet, Revision 01.20

• Speculative reads are resolved (confirmed or cancelled).

• Memory reads that are required because they were not
speculated are issued to the Memory Interface Unit.

• Any Modified data returned from the CPU is sent to the
Memory Interface Unit to be written back to memory.

• Any data returned from the CPU is forwarded to the
Response Unit to be sent to the requester.

• The MESI state in which the line is installed by the
requesting CPU is determined (the install state). If there
are no other CPUs with the data, a Shared request is
upgraded to Exclusive.

Memory Interface Unit (MIU)

This block handles the interface to the L2 cache or memory.
Non-coherent reads and writes as well as speculative coherent
reads are sent to the Memory Interface Unit from the Request
Unit. Coherent writes and late reads are generated from the
Intervention Unit.

The external interface may run at a lower frequency than the
CM, and the external block may not be able to accept as many
requests as multiple CPUs can generate, so there is some
buffering of requests here.

This block is responsible for staging the read data back to
each of the agents. There are independent staging registers for
each agent, which allows concurrent data return to different
agents. This block buffers the read data returned from the
system if the read is still speculative or if the response unit is
busy.

Response Unit (RSU)

This block is responsible for returning data to the requesting
agent. It can send data from the Intervention Unit, the
Memory Interface Unit, or from memory-mapped accesses to
the GCR/GIC/MMIO.

Performance

The CM has a number of features that improve performance:

• Cache to Cache transfers: If a read request hits in another
L1 cache in the Exclusive or Modified state, it will return
the data to the CM and it will be forwarded to the
requesting CPU, reducing latency on the miss.

• Speculative Reads: Coherent read requests are forwarded
to the memory interface before they are looked up in the
other caches. This is speculating that the cache line will
not be found in another CPU’s L1 cache. If another cache
was able to provide the data, the memory request is not

needed, and the CM will cancel the speculative request
—dropping the request if it has not been issued or
dropping the memory response if it has.

Table 3 provides a cycle-by-cycle description of the latency
added by the CM to a read request (assuming the internal
queues are all empty). In this case, the CM adds 6 cycles to
the round-trip latency of the request.

I/O Coherence Unit (IOCU)

The 1004K CPS cluster optionally supports hardware I/O
coherence. This allows I/O devices to access memory while
maintaining coherence with the caches in the CPUs. Coherent
reads and writes from I/O devices will generate interventions
to the CPU cores that will query the L1 data caches. Reads
will be able to get the latest data values from the caches or
memory. Writes will invalidate the stale data from the caches
and will merge the newer write data with the older existing
data as needed.

Hardware I/O coherence is supported through the I/O
Coherence Unit (IOCU). The IOCU acts an interface block
between the Coherence Manager and coherent I/O devices. A
possible system topology is shown in Figure 8.

A reference design is provided for the IOCU. This block
provides a legacy (without coherent extensions) OCP slave
interface to the I/O interconnect for I/O devices to read and
write system memory. Further, an OCP Master port to the
I/O interconnect is included to allow the CPUs to access
registers and memory on the I/O devices.

Table 3 Read Request Timing

Cycle Description

0 CPU sends out request, captured by input buffers in
CM.RQU.

1 Serialization of requests in CM.RQU. One request is
selected in Round-robin fashion from all sources.

2 Request is sent from CM.RQU to CM.MIU (bypass-
ing internal queues).

3 Request is presented on L2/memory interface.

3+N Response from L2 on bus. Captured by input flops in
CM.MIU.

4+N Lookup in table to determine what to do with
response (drop, wait for intervention, etc.). Response
data forwarded to CM.MIU output queue.

5+N Response is forwarded to the CM.RSU.

6+N Response is sent back to the CPU.
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The reference IOCU design provides several features for
easier integration:

• Customer-defined mapping unit can define cache
attributes for each request—coherent or not, cacheable
(in L2) or not, and L2 allocation policy.

• Supports incremental bursts up to 16 beats on I/O side.
These requests are split into cache-line sized requests on
the CM side.

• Ensures proper ordering of responses for the split
requests and tagged requests.

In addition, the reference design has a number of features that
support the producer-consumer ordering model and help
ensure that transaction ordering can be enforced. These
features include:

• Set-aside buffer: This buffer can hold up read responses
from the I/O device until previous writes have completed.

• Writes are issued to the CM in the order they were
received.

• CM provides ACK to the IOCU when writes are
“visible” (guaranteed that a subsequent CPU read will
receive that data):

• non-coherent write is ACK'ed after serialization

• coherent write is ACK'ed after intervention
complete on all CPUs

• IOCU can be configured to treat incoming writes as non-
posted and provide a write ACK when they become
visible.

Figure 8 I/O Coherent System

Software I/O Coherence

Taking advantage of hardware I/O coherence may require
some redesign of existing systems that may not always be
feasible. The CPUs and Coherence Manager are designed to
efficiently support software-managed I/O coherence as well.
This support is through the globalization of Hit-type CACHE
instructions. When a coherent address is used for the CACHE
operations, the CPU makes a corresponding coherent request.
The CM will send interventions for the request to all of the
CPUs, allowing all of the L1 caches to be maintained
together. The basic software coherence routines developed
for single CPU systems can be reused with minimal
modifications.

L2 Cache Interface

When the CM is used with the SOC-it L2 cache controller, an
optimized 256b interface is used. The L2 cache controller is
able to access 256b at a time, so expanding the interface
allows that cache bandwidth to be better utilized.

This interface is not a true 256b OCP interface. Because the
CM-CPU interface and L2-memory interfaces are 64b OCP,
converting to a true 256b OCP would add two additional
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• Data can be returned either 64b or 256b at a time. On L2
misses, the data will be returning from the system 64b at
a time and can be passed directly back, rather than
forcing the L2 to gather all 256b before responding.

• Data is aligned such that the critical dword of the original
request is always in bits [63:0], which eases timing
pressure when the critical dword bypasses the CM’s read
buffer.

This interface can be thought of as a 64b OCP interface,
where all 4 beats of a burst can be returned in a single cycle.

System Features

Global Configuration Registers (GCR)

The Cluster includes a set of memory-mapped registers that
are used to configure and control various aspects of the
Coherence Manager and the coherence scheme.

Reset Control

The reset input from the system will reset the entire Cluster,
including all 1004K CPUs, IOCU, and the Coherence
Manager. After reset is released, the Coherence Manager,
IOCU, and CPU0 will be active, but the remaining CPUs will
continue to be held in reset. This allows CPU0 to initialize the
system resources and perform the bringup in a controlled
manner. Software must explicitly enable each of the other
CPUs by writing to a reset register.

In addition to controlling the deassertion of the CPU reset
signals, there are memory-mapped registers that can set the
value for each CPU’s SI_ExceptionBase pins. This allows
different boot vectors to be specified for each of the CPUs so
they can execute unique code if required.

Following reset, the caches are uninitialized and coherent
requests should not be looked up in the cache. A coherence-
enable register can be set after the caches have been flushed
and the CPU is ready to start participating in the coherence
scheme.

Inter-CPU Debug Breaks

The 1004K Cluster includes registers that enable cooperative
debugging across all CPUs. Each VPE features an
EJ_DebugM output that indicates it has entered debug mode
(possibly through a debug breakpoint). Registers are defined
that allow CPUs to be placed into debug groups such that
whenever one CPU within the group enters debug mode, a
debug interrupt is sent to all CPUs within the group, causing
them to also enter debug mode and stop executing non-debug
mode instructions.

CM Control

Registers in the GCR allow software to configure and control
various aspects of the operation of the Coherence Manager.
Some of the control options include:

• Address map: the base address for the GCR and GIC
address ranges can be specified. An additional 4 address
ranges can be defined as well. These control whether
non-coherent requests go to memory or to memory-
mapped I/O. A default can also be selected for addresses
that do not fall within any range.

• Error reporting and control: Logs information about
errors detected by the CM and controls how errors are
handled (ignored, interrupt, etc.)

• Control Options: Various features of the CM can be
disabled or configured. Examples of this are disabling
speculative reads and preventing ReadShared requests
from being upgraded to Exclusive.

Global Interrupt Controller

The Cluster includes an interrupt controller is included in.
This block has the following features:

• Software interface through relocatable memory-mapped
address range.

• Configurable number of system interrupts - from 8 to 256
in multiples of 8.

• Support for different interrupt types:

• Level-sensitive - active high or low.

• Edge-sensitive - positive, negative, or double
edge-sensitive.

• Ability to mask and control routing of interrupts to a
particular CPU and VPE.

• NMI and Yield Qualifier routing is also supported.

• Standardized mechanism for sending inter-processor
interrupts.

• Support for External Interrupt Controller (EIC) mode.

Clock and Power Considerations

The following sections describe clocking and power
management features.

Clocking

The CPU has 3 primary clock domains:
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• Core domain - This is the main CPU clock domain,
controlled by the SI_ClkIn clock input.

• OCP domain - This domain controls the OCP bus
interface logic. Because the Coherence Manager runs at
the same frequency as the CPU, this is effectively the
same as the rest of the core domain.

• TAP domain - This is a low-speed clock domain for the
EJTAG TAP controller, controlled by the EJ_TCK pin. It
is asynchronous to SI_ClkIn.

The CM, IOCU, and all CPU cores must operate at the same
frequency. Additionally, the TAP signals are daisy chained
through each of the CPUs and thus will operate at the same
frequency.

Clock ratios are supported at the following interfaces:

• Between the CM and L2

• Between the CM and memory if the L2 is not present

• Between the L2 and memory

• Between the IOCU and the I/O interconnect.

Clock ratios are established by enabling the input and output
registers in the appropriate cycles to match up with the slower
device. The two clocks are still expected to be synchronous
even though they operate at different frequencies.

Power Management

The 1004K Cluster offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The logic
features a static design style that supports slowing or halting
the clocks, which reduces system power consumption during
idle periods.

Cluster Power Controller

Individual CPUs within the cluster can have their clock and/
or power gated off when they are not in use. This gating is
managed by the Cluster Power Controller (CPC). The CPC
handles the power shutdown and ramp-up of CPUs in the
Cluster. Any 1004K CPU supporting power-gating features
will be managed by the CPC. The CPC also organizes power
cycling of the CM dependent on the individual core status and
shutdown policy. Reset and root level clock gating of
individual CPUs is considered part of this sequencing.

Local clock gating

A significant portion of the power consumed by the 1004K
CPU is often in the clock tree and clocking registers. The
CPU has support for extensive use of local gated clocks.
Power-conscious implementors can use these gated clocks to
significantly reduce power consumption within the CPU.

Instruction-Controlled Power Management

The primary mechanism for invoking power-down mode is
through execution of the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended;
however, the internal timer and some of the input pins (for
example SI_Int[5:0], SI_Int_1[5:0], SI_NMI, SI_NMI_1, and
SI_Reset) continue to run. Once the CPU is in instruction-
controlled power management mode, any interrupt, NMI, or
reset condition causes the CPU to exit this mode and resume
normal operation.

The 1004K CPU asserts the SI_Sleep signal, which is part of
the system interface, whenever it has entered low-power
operation and gone to sleep. It will enter sleep mode when all
bus transactions are complete and all TCs are not running
instructions. This happens when a TC is:

• Blocked due to a WAIT instruction

• Blocked due to an outstanding ITC operation

• Yielded

• Halted

• Not Active

When the CPU enters low-power operation, it will monitor
the intervention interface and will wake up to service
coherence requests. Upon completion of the intervention
processing, the CPU can go back to sleep. For a deep-sleep
mode, software can flush the caches and write to a GCR to
take the CPU out of the coherence domain before entering
sleep mode via the WAIT instruction. This will allow the
CPU to stay asleep while other CPUs continue to process
coherent data.

Test Capability

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.
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Memory BIST

The core provides an integrated memory BIST solution for
testing the internal cache SRAMs, the on-chip trace memory,
and SPRAM using BIST controllers and logic tightly coupled
to the cache subsystem. These BIST controllers can be
configured to utilize the following algorithms: March C+ or
IFA-13.

Memory BIST can also be inserted with a CAD tool or other
user-specified method. Wrapper modules and signal buses of
configurable width are provided within the core to facilitate
this approach.

User-specified BIST signals are also provided for the other
data arrays that can be implemented with generator based
SRAM cells in place of the standard registers

Build-Time Configuration Options

The 1004K core allows a number of features to be customized
based on the intended application. Table 4 summarizes the
key configuration options that can be selected when the core
is synthesized and implemented.

For a core that has already been built, software can determine
the value of many of these options by querying an appropriate
register field. Refer to the MIPS32 1004K CPU Family
Software User’s Manual for a more complete description of
these fields. The value of some options that do not have a
functional effect on the core are not visible to software.

Table 4 Build-time Configuration Options

Option Choices Software Visibility

System Options

Number of CPUs 1,2,3,4 GCR_CONFIGPCORES

I/O Coherence Unit Present or not GCR_CONFIGNUMIOCU

MConnID mask 0-8b N/A

MIPS Trace support Present or not Config3TL

MIPS Trace memory location On-core, off-chip, or both TCBCONFIGOnT, TCBCONFIGOfT

MIPS Trace on-chip memory size 256B - 1MB TCBCONFIGSZ

Probe Interface Block - Number of data
pins

4,8,16 N/A

IOCU Options

IODB implementation style Flops or generator N/A

Advanced IOCU Config - fine tuning
of buffer sizes, etc.

Varies N/A

Coherence Manager Options

RWDB implementation style Flops or generator N/A

RDB implementation style Flops or generator N/A

Number of Address Regions 0,4,6 GCR_CONFIGNUM_ADDR_REGIONS

Default GCR base address &
writeability

Any 32KB-aligned physical address
Hardwired or programmable

GCR_BASE

Default Exception Base for each CPU Any 4KB-aligned physical address GCR_Cx_RESET_BASE

* These bits indicate the presence of external blocks. Bit will not be set if interface is present, but block is not.
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Advanced CM Config - fine tuning of
buffer sizes, etc.

Varies N/A

Global Interrupt Controller Options

Number of system interrupts 8*[1-32] GIC_SH_CONFIGNUMINTERRUPTS

Local routing of CPU sourced inter-
rupts (per VPE)

Present or not N/A

Local routing of CPU Timer Interrupt Enabled or not GIC_VPEj_CTLTIMER_ROUTABLE

Local routing of CPU Performance
Counter Interrupt

Enabled or not GIC_VPEj_CTLPERFCOUNT_ROUTABLE

Local routing of CPU Fast Debug
Channel Interrupt

Enabled or not GIC_VPEj_CTLFDC_ROUTABLE

Local routing of CPU Software Inter-
rupts

Enabled or not GIC_VPEj_CTLSWINT_ROUTABLE

ITU Options

Number of single entry mailboxes 0,1,2,4,8,16
ITCAddressMap1NumEntries

Number of 4 entry FIFOs 0,1,2,4,8,16

Cluster Power Controller Options

Microstep delay in cycles 1-1024

RailEnable delay 1-1024

Power Gating Enabled Enabled or not

Clock Gating Enabled Enabled or not

CPU Options

Number of VPEs 1 or 2 MVPConf0PVPE

Number of Shadow Register Sets
(Includes required 1 per VPE)

1-8 MVPConf0PTC

Number of TCs 1-9 MVPConf0PTC

Integer register file implementation
style

Flops or generator N/A

Number of outstanding data cache
misses

4 or 8 N/A

Number of outstanding Loads 4 or 9 N/A

Memory Management Type (per VPE) TLB or FMT ConfigMT

TLB Size (per VPE) 16, 32, or 64 dual entries Config1MMUSize

TLB data array implementation style Flops or generator N/A

Table 4 Build-time Configuration Options (Continued)

Option Choices Software Visibility

* These bits indicate the presence of external blocks. Bit will not be set if interface is present, but block is not.
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MIPS16e Support Present or not Config1CA

DSP ASE Support Present or not Config3DSPP

MDU High Performance or Iterative ConfigMDU

Watch Registers Present or Not Config1WR

UserLocal Register Present or Not Config3ULRI

Performance Counters Present or Not Config3PC

Branch Prediction Dynamic or Static Config7BHT Config7RPS

Instruction Buffer Depth 8 or 6 none

L2 Cache Support Present or Not Config2SL*

Instruction hardware breakpoints (per
VPE)

0, 2, or 4 DCRIB, IBSBCN

Data hardware breakpoints (per VPE) 0, 1, or 2 DCRDB, DBSBCN

Fast Debug FIFO Sizes Min (2Tx,2Rx), Useful(12Tx, 4Rx) FDCFG

MIPS Trace triggers 0 - 8 TCBCONFIGTRIG

FPU clock ratio relative to integer CPU 1:1 or 1:2 Config7FPR

Coprocessor2 interface Present or not Config1C2*

Data ScratchPad RAM interface Present or not ConfigDSP*

Instruction ScratchPad RAM interface Present or not ConfigISP*

I-cache size 0,1,2,4, 8, 16, 32, or 64 KB Config1IL, Config1IA, Config1IS

D-cache size  1,2,4,8, 16, 32, or 64 KB Config1DL, Config1DA, Config1DS

Cache parity Present or not ErrCtlPE

PrID Company Option 0x0-0x7f PrIDCompanyOption

General Options (applicable to multiple blocks)

Memory BIST Integrated (March C+ or March C+ plus
IFA-13), custom, or none

N/A

Clock gating Top-level, integer register file array, FPU
register file array, TLB array, fine-grain,
or none

N/A

Table 4 Build-time Configuration Options (Continued)

Option Choices Software Visibility

* These bits indicate the presence of external blocks. Bit will not be set if interface is present, but block is not.
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Document Revision History

Change bars (vertical lines) in the margins of this document
indicate significant changes in the document since its last
release. Change bars are removed for changes that are more
than one revision old. This document may refer to

Architecture specifications (for example, instruction set
descriptions and EJTAG register definitions), and change
bars in these sections indicate changes since the previous
version of the relevant Architecture document.

Table 5 Revision History

Revision Date Description

00.90 December 7, 2007 • Updated document for initial product release

01.00 June 23, 2008 • Updated details for GA release and incorporated more details on the processor core

01.01 July 29, 2008 • Update nomenclature.

01.10 July 15, 2009

• Added Cluster Power Controller
• Support of heterogeneous core configurations
• IT bypass added for single TC configurations
• Support for on-chip trace memory

01.20 January 21, 2011 • Fixed maximum size of on-chip trace buffer (1MB)
• Added number of area reduction options
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