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1. Features

System level features:

• Up to six coherent MIPS32 P5600 CPU cores

• Cluster Power Controller (CPC) to shut down idle CPU 
cores

• Hardware I/O coherence unit (IOCU)

• Virtualization Module Support
– Configurable from 1 to 7 guests

– Support for the Virtualization Module using “trap 
and emulate” techniques.

– Two new operating modes: privileged (root) and 
unprivileged (guest)

– System resources controlled through privileged 
instructions while executing in privileged mode

– Address translation is performed on the entire 
address space when in unprivileged mode

– I/O Memory Management Unit (IOMMU)
– Virtualized Global Interrupt Controller (GIC)

• L1 data cache supporting the MESI coherence states

• Cache-to-cache data transfers

• Speculative memory reads to reduce latency

• Out-of-order data return

• Integrated 8-way set associative L2 cache controller 
supporting 512 KB to 8 MB cache sizes

• Hardware prefetcher recognizes sequential access pat-
terns and prefetches data into the L2 cache

• Separate clock ratios on memory and IOCU OCP ports

• Clock ratio of 1:1 between Core, CM2, and L2 cache

• SOC system interface supports OCP version 2.1 proto-
col with 32- or 40-bit address and 128-bit or 256-bit 
data paths

• Software controlled core level and cluster level power 
management

• EJTAG Debug 5.0 port supporting multi-CPU debug

• MIPS PDtrace

• Full scan design achieves test coverage in excess of 
99% with memory BIST for internal SRAM arrays

CPU core level features:

• Configurable 32- or 40-bit addressing

• Quad issue integer and dual issue 128-bit (integer/float-
ing point) execution pipes
• Quad integer Out-of-Order issue with dedicated 

integer completion buffers that hold execution 
results until instructions are graduated in program 
order

• Dual floating-point issue with dedicated completion 
buffers that hold execution results until instructions 
are graduated in program order

• Integrated integer Multiply/Divide Unit (MDU)

• 3rd generation Floating Point Unit (FPU3) with SIMD 
support and Out-Of-Order (OOO) execution

• Hardware virtualization support

• Instruction Fetch Unit (IFU) with 4 instructions fetched 
per cycle

• Programmable Memory Management Unit with large 
first-level ITLB/DTLB backed by fast on-core second-
level variable page size TLB (VTLB) and fixed page 
size TLB (FTLB):
• 16-entry Instruction TLB (ITLB) with page sizes of 

4 KB or 16 KB per entry
• 32-entry Data TLB (DTLB) with page sizes of 4 

KB or 16 KB per entry
• 64-dual-entry VTLB with page sizes up to 256 MB 

per entry
• 512 dual-entry 4-way set associative FTLB with 

page sizes of 4 KB or 16 KB per entry
• VTLB and FTLB can be accessed simultaneously 

on lookups

• L1 Instruction and Data Caches can be configured as 32 
or 64 KB per cache

• Enhanced virtual addressing (EVA) mode allows for up 
to 3.0 GB of user or kernel virtual address space
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The IFU also has a hardware-based return prediction stack to 
predict subroutine return addresses.The main predictor con-
tains a BTAC (Branch Target Address Calculator) that can 
correct target mispredicts from lower-level predictors with-
out paying a full branch resolution penalty. The IFU supports 
fully out-of-order branch resolution.

The IFU has a 16-entry micro-Instruction TLB (ITLB) used 
to translate the virtual address into a physical address. This 
translated physical address is used to compare against tags in 
the instruction cache to determine a hit. Refer to Section 
2.6 “Memory Management Unit (MMU)” for more infor-
mation.

A 24-entry instruction buffer decouples the instruction fetch 
from the execution. Up to 4 instructions can be written into 
this buffer, and a maximum of 2 instructions can be read 
from this buffer. To maximize performance, some ‘bonding’ 
(or concatenation) of instructions is done at this stage while 
other types of instruction ‘bonding’ are performed down-
stream.

The IFU can also be configured to allow for hardware 
prefetching of cache lines on a miss. When an instruction 
cache miss is detected, the IFU can prefetch the next 0, 1, or 
2 lines (in addition to the missed line) to reduce average miss 
latency. This mechanism provides excellent performance 
without incurring the area, power and latency costs of more 
overly complicated branch or instruction prefetch strategies.

The Global History register is internal to the IFU block and 
supports a novel history computation scheme that factors dif-
ferent information into the history for different kinds of con-
trol transfer instructions. These novel hashing schemes 
enable significantly lower mispredict rates than other com-
peting processors, directly translating to real world perfor-
mance in many different applications.

The P5600 level 1 (L1) instruction cache incorporates ‘next 
fetch way’ hit prediction logic. This allows the IFU to power 
on only those cache tag and data arrays that will provide the 
final instruction bytes and contributes to low power con-
sumption.

2.3 Instruction Issue Unit (IIU)

The Instruction Issue Unit (IIU) is responsible for receiving 
instructions from the IFU and dispatching them to the out-of-
order instruction scheduling windows and global instruction 
tracking window at a rate of 4 instructions per cycle. 

The IIU tracks dynamic data flow dependencies between 
operations and issues them to the various pipes as efficiently 

as possible. Two schedulers, called the ALU DDQ and the 
AGU DDQ, service the various integer pipes.

The schedulers employ multiple dependency wake-up and 
pick schemes to enable age-based scheduling at high fre-
quency. Having only two schedulers, rather than a low-fre-
quency centralized scheduler or a large number of 
distributed reservation stations, is key to providing superior 
performance and power characteristics.

The IIU helps to ‘bond’ load and store operations whereby 
two 32-bit loads or stores to adjacent locations are ‘bonded’ 
or concatenated into one 64-bit memory access. This allows 
a factor of two improvement in certain memory intensive 
codes. 

Instructions are first renamed using a rename map, replacing 
the architectural register names with microarchitectural 
names from a global rename pool. The IIU also keeps track 
of the progress of each instruction through the pipeline, 
updating the availability of operands in the ‘rename map’ 
and in all dependent instructions. Renamed instructions are 
steered to the most appropriate schedulers, taking opcode 
and other information into account.

The IIU also keeps track of global pipeline flushes, adjusting 
the rename map and other control structures to deal with 
interrupts, exceptions and other unexpected changes of con-
trol. 

2.4 Level 1 Instruction Cache 

The Level-1 (L1) instruction cache is configurable at 32 or 
64 KB in size and is organized as 4-way set associative. Up 
to four instruction cache misses can be outstanding. The 
instruction cache is virtually indexed and physically tagged 
to make the data access independent of virtual to physical 
address translation. Instruction cache tag and data access are 
staggered across 2 cycles, with up to 4 instructions fetched 
per cycle.

Each instruction cache entry contains a tag portion, a data 
portion, and a way select portion.

An instruction tag entry holds 21 - 29 bits of physical 
address (depending on the addressing mode), a valid bit, a 
lock bit, and a parity bit. There are 7 precode bits per instruc-
tion pair, making a total of 55 - 63 bits per tag entry. The data 
entry consists of 256 bits (8 MIPS32 instructions) of data 
and 32 bits of parity for a total of 288 bits. The way-select 
entry contains a 6 bit least-recently-used (LRU) field.

The P5600 core supports instruction-cache locking. Cache 
locking allows critical code segments to be locked into the 
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cache on a “per-line” basis, enabling the system programmer 
to maximize the performance of the system cache.

The cache-locking function is always available on all 
instruction-cache entries. Entries can be marked as locked or 
unlocked on a per entry basis using the CACHE instruction.

The P5600 core implements virtual aliasing for the instruc-
tion cache, although this function can be disabled by the 
user.

2.5 Level 1 Data Cache 

The Level 1 (L1) data cache is configurable at 32 or 64 KB 
in size. It is also organized as 4-way set-associative. Data 
cache misses are non-blocking and up to nine misses may be 
outstanding. The data cache is virtually indexed and physi-
cally tagged to make the data access independent of virtual-
to-physical address translation. To achieve the highest possi-
ble frequencies using commercially available SRAM genera-
tors, cache access and hit determination are spread across 
three pipeline stages, dedicating an entire cycle for the 
SRAM access. 

Each instruction cache entry contains a tag portion, a data 
portion, a way-select portion, and a dirty status portion.

A data tag entry holds 21 bits of physical address in 32-bit 
addressing mode (29 bits in 40-bit addressing mode), a valid 
bit, a state bit, and a parity bit, making a total of 24 - 32 bits 
per tag entry. The data entry consists of 256 bits consisting 
of 32 bytes of data of data and 32 bits of parity for a total of 
288 bits. The way-select entry contains a 6 bit least-recently-
used (LRU) field, a 4-bit lock field, and a 4-bit lock parity 
field for a total of 14 bits. The Dirty state entry contains a 4-
bit dirty field and a 4-bit dirty parity field.

The P5600 core supports a data-cache locking mechanism 
identical to that used in the instruction cache. Critical data 
segments are locked into the cache on a “per-line” basis. The 
locked contents can be updated on a store hit, but are not 
selected for replacement on a cache miss.

The P5600 core implements virtual aliasing for the data 
cache. This function is managed in hardware and is transpar-
ent to the user.

2.6 Memory Management Unit (MMU)

The P5600 core contains a Memory Management Unit 
(MMU) that is primarily responsible for converting virtual 
addresses to physical addresses and providing attribute infor-
mation for different segments of memory. The P5600 MMU 

contains the following Translation Lookaside Buffer (TLB) 
types:

• 16-entry Instruction TLB (ITLB) with 4 KB or 16 KB 
per entry

• 32-entry Data TLB (DTLB) with up to 4 KB or 16 KB 
per entry

• 64 dual-entry Variable Page Size Translation Lookaside 
Buffer (VTLB) with up to 256 MB per entry

• 512 dual-entry 4-way set associative Fixed Page Size 
Translation Lookaside Buffer (FTLB) with up to 16 KB 
per entry

2.6.1 Instruction TLB (ITLB)

The ITLB is a 16-entry high speed TLB dedicated to per-
forming translations for the instruction stream. The ITLB 
maps only 4 KB or 16 KB pages. Larger pages are split into 
smaller pages of one of these two sizes and installed in the 
ITLB.

The ITLB is managed by hardware and is transparent to soft-
ware. The larger VTLB and FTLB structures are used as a 
backup structure for the ITLB. If a fetch address cannot be 
translated by the ITLB, the VTLB/FTLB attempts to trans-
late it in the following clock cycle or when available. If suc-
cessful, the translation information is copied into the ITLB 
for future use. 

2.6.2 Data TLB (DTLB)

The DTLB is a 32-entry high speed TLB dedicated to per-
forming translations for the data stream. The DTLB maps 
only 4 KB or 16 KB pages. Larger pages are split into one of 
these configured sizes and installed in the DTLB. 

The DTLB is managed by hardware and is transparent to 
software. The larger VTLB and FTLB structures are used as 
a backup structure for the DTLB. If a fetch address cannot be 
translated by the DTLB, the VTLB/FTLB attempts to trans-
late it in the following clock cycle or when available. If suc-
cessful, the translation information is copied into the DTLB 
for future use. 

2.6.3 Variable Page Size TLB (VTLB)

The VTLB is a fully associative variable translation looka-
side buffer with 64 dual entries that can map variable size 
pages from 4KB to 256MB. When an instruction address is 
calculated, the virtual address is first compared to the con-
tents of the ITLB and DTLB. If the address is not found in 
either the ITLB or DTLB, the VTLB/FTLB is accessed. If 
the entry is found in the VTLB, that entry is then written into 
the ITLB or DTLB. If the address is not found in the VTLB, 
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Figure 6. Remapping Kernel and User Virtual Address Space Using EVA 

Figure 6 shows an example of how the traditional MIPS ker-
nel virtual address space can be remapped using programma-
ble memory segmentation to facilitate an extended virtual 
address space. As a result of defining the larger kernel seg-
ment as xkseg0, the kernel has unmapped access to the lower 
3GB of the virtual address space. This allows for a total of 
3GB of DRAM to be supported in the system.

To allow for efficient kernel access to user space, new load 
and store instructions have been defined which allow kernel 
mapped access to useg. 

Note that the attributes of xkseg0 are the same as the previ-
ous kseg0 space in that it is a kernel unmapped, uncached 
region.

2.6.6 Virtualization Support

Virtualization defines a set of extensions to the MIPS32 
Architecture for efficient implementation of virtualized sys-
tems.

Virtualization is enabled by software. The key element is a 
control program known as a Virtual Machine Monitor 
(VMM) or hypervisor. The hypervisor is in full control of 
machine resources at all times.

When an operating system (OS) kernel runs within a virtual 
machine (VM), it becomes a guest of the hypervisor. All 
operations performed by a guest must be explicitly permitted

by the hypervisor. To ensure that it remains in control, the 
hypervisor always runs at a higher level of privilege than a 
guest operating system kernel.

The hypervisor is responsible for managing access to sensi-
tive resources, maintaining the expected behavior for each 
VM, and sharing resources between multiple VMs. 

In a traditional operating system, the kernel (or supervisor) 
typically runs at a higher level of privilege than user applica-
tions. The kernel provides a protected virtual-memory envi-
ronment for each user application, inter-process 
communications, IO device sharing and transparent context 
switching. The hypervisor performs the same basic functions 
in a virtualized system, except that the hypervisor’s clients 
are full operating systems rather than user applications.

The virtual machine execution environment created and 
managed by the hypervisor consists of the full Instruction 
Set Architecture (ISA), including all Privileged Resource 
Architecture (PRA) facilities, plus any device-specific or 
board-specific peripherals and associated registers. It 
appears to each guest operating system as if it is running on a 
real machine with full and exclusive control.

The Virtualization Module enables full virtualization, and is 
intended to allow VM scheduling to take place while meet-
ing real-time requirements, and to minimize costs of context 
switching between VMs.
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2.7 Execution Pipelines

The P5600 core contains the following execution pipelines; 

• Arithmetic Logic Pipeline

• Multiply-Divide Pipeline

• Memory Pipeline

• Branch Pipeline

• Two FPU Pipelines (if implemented)

Each of these execution units is described in the following 
subsections. Instructions intended for the arithmetic logic 
pipeline are driven by the out-of-order ALU Decode and 
Dispatch queue inside the Instruction Issue Unit (IIU) as 
shown in Figure 2. The other four pipelines are driven by the 
out-of-order Address Generation unit (AGU) Decode and 
Dispatch queue also located in the IIU.

2.7.1 Arithmetic Logic Pipeline

The arithmetic unit pipeline consists of one execution unit, 
called the ALU (Arithmetic Logic Unit), which performs 
integer instructions such as adds, shifts and bitwise logical 
operations with a single cycle latency. 

If the IIU decodes a single-cycle instruction, it is usually sent 
to the ALU dispatch queue that feeds the arithmetic unit 
pipeline. This pipeline also contributes to performing 
‘bonded’ loads. Refer to Section 2.3 for a definition of 
instruction ‘bonding’.

2.7.2 Multiply/Divide Pipeline

The multiply/divide pipeline executes integer multiplies, 
integer divides, and integer multiply-accumulate instruc-
tions. The multiply/divide pipeline incorporates a new very 
high-speed integer divider.

The MDU consists of a 32 × 32 multiplier, result/accumula-
tion registers (HI and LO), a divide state machine, and all 
necessary multiplexers and control logic.

The MDU supports execution of one multiply or multiply-
accumulate operation every clock cycle whereas divides can 
be executed as fast as one every six cycles.

2.7.3 Memory Pipeline

The memory pipeline primarily contains the LSU (Load 
Store Unit), which is responsible for interfacing with the 

AGU dispatch queue (see Figure 2) and processing load/
store instructions to read/write data from data caches and 
downstream memory. 

This unit is capable of handling loads and stores issued out-
of-order. The ability to receive loads and stores in almost any 
order enables very high performance compared to an in-
order machine. Such instruction-level parallelism allows 
maximum utilization of the memory pipe resources with 
minimal area and power.

The LSU can execute loads and stores at twice the rate of 
regular operations by concatenating data from two 32-bit 
memory to form a single 64-bit entity. This ‘bonding’ of 
instructions allows the LSU to provide almost all the benefits 
of dual memory access pipes without incurring the area and 
power costs of multiple tag, data and TLB structures.

The Memory Pipe receives instructions from the Instruction 
Issue Unit (IIU) and interfaces to the L1 data cache. Loads 
are non-blocking in the P5600 core. Loads that miss in the 
data cache are allowed to proceed with their destination reg-
ister marked unavailable. Consumers of this destination reg-
ister are held back and replayed as needed once the cache 
miss has been serviced by the downstream memory subsys-
tem, which includes the high performance L2 cache.

Graduated load misses and store hits and misses are sent in 
order to the Load/Store Graduation Buffer (LSGB). The 
LSGB has corresponding data and address buffers to hold all 
relevant attributes. 

An 8-entry Fill Store Buffer (FSB) tracks outstanding fill or 
copy-back requests. It fills the data cache at the rate of 128-
bits per cycle when an incoming line is completely received. 
Each FSB entry can hold an entire cache line. 

The Load Data Queue (LDQ) keeps track of outstanding 
load misses and forwards the critical data to the main pipe as 
soon as it becomes available.

Hardware anti-aliasing allows using the core with operating 
systems that do not support software page coloring. The 
fully-associative DTLB operates a clock earlier in the LSU 
pipeline, making use of fast add-and-compare logic to enable 
virtual address to physical address translations that do not 
require the area and power expense of virtual tagging. All of 
this is done completely transparent to software.
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2.7.4 Branch Pipeline

The Branch pipeline performs the following functions:

• Executes Branch and Jump instructions

• Performs Branch resolution

• Performs Jump resolution

• Sends the redirect to the Instruction Fetch Unit (IFU)

• Performs a write-back to the Link registers

2.7.5 Floating Point Pipelines

The optional Floating Point Unit (FPU) with SIMD contains 
two execution pipelines. One pipeline executes SIMD logi-
cal ops, SIMD integer adds, FP compares and stores. The 
other pipeline executes SIMD integer multiplies, SIMD vec-
tor shuffles, FP adds, FP multiplies, and FP divides.  

For more information, refer to Section 2.12 “Floating Point 
Unit (FPU3)”.

2.7.6 Graduation Unit (GRU)

The Graduation Unit (GRU) is responsible for committing 
execution results and releasing buffers and resources used by 
these instructions. The GRU is also responsible for evaluat-
ing the exception conditions reported by execution units and 
taking the appropriate exception. Asynchronous interrupts 
are funneled into the GRU, which prioritizes those events 
with existing conditions and takes the appropriate interrupt.

The GRU reads the next set of completed instructions from 
the global instruction window every cycle and then reads the 
corresponding completion buffers and associated informa-
tion. After processing the exception conditions, the GRU 
performs the following functions:

• Destination register(s) are updated and the completion 
buffers are released.

• Graduation information is sent to the IIU so it can 
update the rename maps to reflect the state of execution 
results (i.e., GPRs, Accumulators, etc.). 

• Resolved branch information is sent to the IFU so that 
branch history tables can be updated and if needed, a 
pipeline redirect can be initiated. If sequential control 
flow is aborted for any reason, the GRU signals all core 
units to flush and recover microarchitectural state. After 
recovery is complete, it allows the IIU to resume dis-
patching instructions.

2.8 Bus Interface (BIU)

The Bus Interface Unit (BIU) controls a 128/256-bit inter-
face to the CM2. The interface implements the Open Core 
Protocol (OCP). 

2.8.1 Write Buffer

The BIU contains a merging write buffer. The purpose of this 
buffer is to store and combine write transactions before issu-
ing them to the external interface. The write buffer is orga-
nized as eight, 32-byte buffers. Each buffer can contain data 
from a single 32-byte aligned block of memory.

When using the write-through cache policy or performing 
uncached accelerated writes, the write buffer significantly 
reduces the number of write transactions on the external 
interface and reduces the amount of stalling in the core 
caused by the issuance of multiple writes in a short period of 
time.

The write buffer also holds eviction data for write-back lines. 
The load-store unit extracts dirty data from the cache and 
sends it to the BIU. In the BIU, the dirty data is gathered in 
the write buffer and sent out as a bursted write.

For uncached accelerated writes, the write buffer can gather 
multiple writes together and then perform a bursted write in 
order to increase the efficiency of the bus.

Gathering of uncached accelerated stores can start on any 
arbitrary address and can be combined in any order within a 
cache line. Uncached accelerated stores that do not meet the 
conditions required to start gathering are treated like regular 
uncached stores.

2.9 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation and cache protocols, the 
exception control system, the processor’s diagnostic capabil-
ity, the operating modes (kernel, user, supervisor, and 
debug), and whether interrupts are enabled or disabled. Con-
figuration information, such as cache size and associativity, 
and the presence of features like a floating point unit, are 
also available by accessing the CP0 registers.

CP0 also contains the state used for identifying and manag-
ing exceptions. Exceptions can be caused by a variety of 
sources, including boundary cases in data, external events, or 
program errors. 
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2.10 Interrupt Handling

The P5600 core supports six hardware interrupts, two soft-
ware interrupts, a timer interrupt, and a performance counter 
interrupt. These interrupts can be used in any of three inter-
rupt modes, as defined by Release 3 of the MIPS32 Archi-
tecture:

• Interrupt compatibility mode, which acts identically to 
that in an implementation of Release 1 of the Architec-
ture.

• Vectored Interrupt (VI) mode, which adds the ability to 
prioritize and vector interrupts to a handler dedicated to 
that interrupt. The presence of this mode is denoted by 
the VInt bit in the Config3 register. As VI mode is 
always present on the P5600 core, the VInt bit will 
always read 1.

• External Interrupt Controller (EIC) mode, which pro-
vides support for an external interrupt controller that 
handles prioritization and vectoring of interrupts. The 
presence of this mode is denoted by the VEIC bit in the 
Config3 register. Note that EIC mode is not enabled at 
reset and must be enabled using the CP0 register inter-
face.

2.11 Modes of Operation

The P5600 core supports four modes of operation: 

• Two user modes (guest and root), most often used for 
application programs.

• Two supervisor modes (guest and root) provides an 
intermediate privilege level with access to the ksseg 
(kernel supervisor segment) address space.

• Two kernel modes (guest and root), typically used for 
handling exceptions and operating system kernel func-
tions, including CP0 management and I/O device 
accesses. 

• Debug mode is used during system bring-up and soft-
ware development. Refer to Section 2.14 “EJTAG 
Debug Support” for more information on debug mode.

2.12 Floating Point Unit (FPU3)

The P5600 core features an optional IEEE 754 compliant 3rd 
generation Floating Point Unit (FPU3) with SIMD.1

The FPU contains thirty-two, 128-bit vector registers shared 
between SIMD and FPU instructions. Single precision float-

ing point instructions use the lower 32 bits of the 128 bit reg-
ister. Double precision floating point instructions use the 
lower 64 bits of the 128 bit register. SIMD instructions use 
the entire 128 bit register interpreted as  multiple vector ele-
ments; 16 x 8-bit, 8 x 16-bit, 4 x 32-bit, and 2 x 64 bit vector 
elements.

SIMD instructions enable:

• Efficient vector parallel arithmetic operations on inte-
ger, fixed-point and floating-point data.

• Operations on absolute value operands.

• Rounding and saturation options available.

• Full precision multiply and multiply-add.

• Conversions between integer, floating-point, and fixed-
point data.

• Complete set of vector-level compare and branch 
instructions with no condition flag.

• Vector (1D) and array (2D) shuffle operations.

• Typed load and store instructions for endian-indepen-
dent operation.

The FPU plus SIMD is fully synthesizable and operates at 
the same clock speed as the CPU.  The IIU can issue up to 
two instructions per cycle to the FPU.

The FPU contains two execution pipelines for floating point 
and SIMD instruction execution. These pipelines operate in 
parallel with the integer core and do not stall when the inte-
ger pipeline stalls.  This allows long-running FPU/SIMD 
operations such as divide or square root, to be partially 
masked by system stall and/or other integer unit instructions.

An out-of-order scheduler in the FPU issues instructions to 
the two execution units. The exception model is ‘precise’ at 
all times.

The FPU supports fused multiply-adds as defined by the 
IEEE Standard for Floating-Point Arithmetic 754TM-2008. 
The FPU is optimized for SIMD performance.  Most FPU 
and SIMD instructions have one cycle throughput. All float-
ing point denormalized input operands and results are fully 
supported in hardware. 

Figure 7 shows a simplified block diagram of the FPU3 
floating point unit. 

1. Requires separate MIPS license.
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L2 Pipeline Tasks

The L2 pipeline manages the flow of data to and from the L2 
cache. The L2 pipeline performs the following tasks:

• Accesses the tags and data RAMs located in the mem-
ory block (MEM).

• Returns data to the RSU for cache hits.

• Issues L2 miss requests.

• Issues L2 write and eviction requests.

• Returns L2 write data to the SMU. The SMU issues 
refill requests to the L2 for installation of data for L2 
allocations

L2 Cache Features

• Supports write-back operation. 

• Pseudo-LRU replacement algorithm

• Programmable wait state generator to accommodate a 
wide variety of SRAMs.

• L2 prefetcher. Hardware recognizes streams of sequen-
tial accesses and prefetches memory data into the L2 
cache.

• Operates at same clock frequency as CPU.

• Cache line locking support

• ECC support for resilience to soft errors

• Single-bit error correction and 2-bit error detection sup-
port for Tag and Data arrays

• Single bit detection only for WS array

• Bypass mode

• Fully static design: minimum frequency is 0 MHz

• Sleep mode

• Support for extensive use of fine-grained clock gating

• Memory BIST for internal SRAM arrays, with support 
for integrated (March C+, IFA-13) or custom BIST con-
troller.

3.2.7 CM2 Configuration Registers

The Registers block (GCR) contains the control and status 
registers for the CM2. It also contains the Trace Funnel, 
EJTAG TAP state machine, and other multi-core features.

3.2.8 PDtrace Unit

The CM2 PDtrace Unit (PDT) is used to collect, pack and 
send out CM2 debug information. If implemented, the 
PDtrace unit can be on- or off-chip.

3.2.9 Performance Counter Unit

The CM2 implements a Performance Counter Unit (PERF) 
that contains the performance counters and associated logic.

3.2.10 Coherence Manager Performance

The CM2 has a number of high performance features: 

• 256-bit wide internal data paths throughout the CM2

• 256-bit wide system OCP interface

• Cache to Cache transfers: If a read request hits in 
another L1 cache in the EXCLUSIVE or MODIFIED 
state, it will return the data to the CM2 and it will be for-
warded to the requesting CPU, thus reducing latency on 
the miss.

• Speculative Reads: Coherent read requests are for-
warded to the memory interface before they are looked 
up in the other caches. This is speculating that the cache 
line will not be found in another CPU’s L1 cache. If 
another cache was able to provide the data, the memory 
request is not needed, and the CM2 cancels the specula-
tive request—dropping the request if it has not been 
issued, or dropping the memory response if it has.

3.3 I/O Coherence Unit (IOCU)

Hardware I/O coherence is provided by the I/O Coherence 
Unit (IOCU), which maintains I/O coherence of the caches 
in all coherent CPUs in the cluster. 

The IOCU acts as an interface block between the Coherence 
Manager (CM2) and I/O devices. Reads and writes from I/O 
devices may access the L1 and L2 caches by passing through 
the IOCU and the CM2. Each request from an I/O device 
may be marked as coherent, non-coherent cached, or 
uncached. Coherent requests access the L1 and L2 caches. 
Non-coherent cached requests access only the L2 cache. 
Uncached requests bypass both the L1 and L2 caches and are 
routed to main memory. An example system topology is 
shown in Figure 11.

The IOCU also provides a legacy (without coherent exten-
sions) OCP slave interface to the I/O interconnect for I/O 
devices to read and write system memory. The reference 
design also includes an OCP Master port to the I/O intercon-
nect that allows the CPUs to access registers and memory on 
the I/O devices.
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3.4 Global Interrupt Controller

The Global Interrupt Controller (GIC) handles the distribu-
tion of interrupts between and among the CPUs in the clus-
ter. This block has the following features:

• Software interface through relocatable memory-mapped 
address range.

• Configurable number of system interrupts - from 8 to 
256 in multiples of 8.

• Support for different interrupt types:
• Level-sensitive: active high or low.
• Edge-sensitive: positive-, negative-, or double-edge 

sensitive.

• Virtualization support allows each interrupt to be 
mapped to Guest or Root. 

• Ability to mask and control routing of interrupts to a 
particular CPU.

• Support for NMI routing.

• Standardized mechanism for sending inter-processor 
interrupts.

3.5 Global Configuration Registers (GCR)

The Global Configuration Registers (GCR) are a set of mem-
ory-mapped registers that are used to configure and control 
various aspects of the Coherence Manager and the coherence 
scheme.

3.5.1 Reset Control

The reset input of the system resets the Cluster Power Con-
troller (CPC). Reset sideband signals are required to qualify 
a reset as system cold, or warm start. Register setting deter-
mine the course of action:

• Remain in powered-down

• Go into clock-off mode

• Power-up and start execution

This prevents random power up of power domains before the 
CPC is properly initialized. In case of a system cold start, 
after reset is released, the CPC powers up the P5600 CPUs 
as directed in the CPC cold start configuration. If at least one 
CPU has been chosen to be powered up on system cold start, 
the CM2 is also powered up. 

When supply rail conditions of power gated CPUs have 
reached a nominal level, the CPC will enable clocks and 

schedule reset sequences for those CPUs and the coherence 
manager.

At a warm start reset, the CPC brings all power domains into 
their cold start configuration. However, to ensure power 
integrity for all domains, the CPC ensures that domain isola-
tion is raised before power is gated off. Domains that were 
previously powered and are configured to power up at cold 
start remain powered and go through a reset sequence.

Within a warm start reset, sideband signals are also used to 
qualify if coherence manager status registers and GIC watch 
dog timers are to be reset or remain unchanged. The CPC, 
after power up of any CPU, provides a test logic reset 
sequence per domain to initialize TAP and PDTrace logic.

Note that unused CPUs are not held in reset until released by 
writing into the configuration registers. Rather, unused CPUs 
remain powered down and are held isolated towards the rest 
of the cluster. If power-gating is not selected for a given 
implementation, unused CPUs are powered but receive no 
clock and remain isolated until activated by the CPC. 

In addition to controlling the deassertion of the CPC reset 
signal, there are memory-mapped registers that can set the 
value for each CPU’s SI_ExceptionBase pins. This allows 
different boot vectors to be specified for each of the cores so 
they can execute unique code if required. Each of the cores 
will have a unique CPU number, so it is also possible to use 
the same boot vector and branch based on that.

3.5.2 Inter-CPU Debug Breaks

The MPS includes registers that enable cooperative debug-
ging across all CPUs. Each core features an EJ_DebugM out-
put that indicates it has entered debug mode (possibly 
through a debug breakpoint). Registers are defined that 
allow CPUs to be placed into debug groups such that when-
ever one CPU within the group enters debug mode, a debug 
interrupt is sent to all CPUs within the group, causing them 
to also enter debug mode and stop executing non-debug 
mode instructions.

3.5.3 CM2 Control Registers

Control registers in the CM2 allow software to configure and 
control various aspects of the operation of the CM2. Some of 
the control options include:

• Address map: the base address for the GCR and GIC 
address ranges can be specified. An additional four 
address ranges can be defined as well. These control 
whether non-coherent requests go to memory or to 
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5.2 Memory BIST

The P5600 core provides an integrated memory BIST solu-
tion for testing of all internal SRAMs. These BIST control-
lers can be configured to utilize the March C+ or IFA-13 
algorithms.

Memory BIST can also be inserted with a CAD tool or other 
user-specified method. Wrapper modules and signal buses of 
configurable width are provided within the core to facilitate 
this approach.

6. Revision History

The following table shows the revision history for the P5600 
Multiprocessing System data sheet.

Revision Date Description

01.00 March 6, 2014 Initial release of the P5600 data sheet.
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