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Executive Summary 

This document describes the architecture design and specification of the prototype 
dReDBox system and provides refinements resp. extensions to deliverable D2.3. 

̆̒̕ parts of the text which are new compared to D2.3 are written ̢ ̛̠̖̔ ̎ blue font 

color. The document was prepared as a result of series of technical discussions 

among the project partners and their direct input. The design and specification 

described in this document are driven by the requirements set in deliverable D2.1. 

Compared to D2.3, this document provides more details and elabort̎es ̓ ̢̡̟̟̒̕ on 

specific architectural design choices. 

Unlike traditional datacenters where the basic building block is a monolithic computer 

node, the basic building resources in the dReDBox system are called bricks. Each 

brick will be a standard hot-pluggable module. The dReDBox system will be 

composed of three types of bricks: 

1. Compute brick ï module with SoC that will run virtual machines 
2. Memory brick ï module with pool of memory to be used as system memory 

by the compute bricks 
3. Accelerator brick ï module with programmable logic that will speed up kernel 

computation 

The proposed dReDBox architecture is a disaggregated rack-scale system that 

consists of arbitrary types of bricks. The system is anticipated to be organized into 

standard 2U rack tray units which will be mounted to a rack. System resources are 

aimed to be connected via multiple networks. High-speed and low-latency electrical 

network will be used for intra-tray data access in memory bricks. High-speed low-
latency optical network will be used for inter-tray data access in memory bricks. PCIe 

network will be used for signaling and remote interrupts. Ethernet network will be 

used for data communication, provisioning and platform management. 

System software and orchestration tools will be used to provision, access and 

manage the system resources. Specifically, the system software will implement 

software-defined memory where the memory is accessed via network. The 

orchestration software and tools will manage the allocation and deallocation of 
memory, allocation of memory address space among virtual machines and also 

access the peripheral devices as well as accelerators.  
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List of Acronyms and Naming Conventions 

Processor Core 

or 

Compute Core 

or Core or 
Processing 
Unit (PU) 

An independent processing unit that reads and execute machine 
program instructions. Manufacturers typically integrate multiple 
cores onto a single integrated circuit die (known as a chip 
multiprocessor or CMP), or onto multiple dies in a single chip 
package. 

Multi-core 
processor 

A multi-core processor implements multiprocessing in a single 
physical package. Designers may couple cores in a multi-core 
device tightly or loosely. For example, cores may or may not 
share caches, and they may implement message passing or 
shared-memory inter-core communication methods. 

LLC Last Level Cache. A CPU cache is a hardware cache used by 
the central processing unit (CPU) of a computer to reduce the 
average cost (time or energy) to access data from the main 
memory. Most CPUs have different independent caches, 
including instruction and data caches, where the data cache is 
usually organized as a hierarchy of more cache levels (L1, L2, 
etc.). The shared highest-level cache, which is called before 
accessing memory, is usually referred to as the Last Level 
Cache (LLC). 

Memory 
Controller (MC) 

Memory controllers contain the logic necessary to read and write 
to DRAM, and to "refresh" the DRAM. Without constant 
refreshes, DRAM will lose the data written to it as the capacitors 
leak their charge within a fraction of a second (not less than 64 
milliseconds according to JEDEC standards). 

Hypervisor A hypervisor, or virtual machine monitor (VMM), is a piece of 
computer software, firmware or hardware that creates and runs 
virtual machines. 

IaaS Infrastructure as a Service (IaaS) is a form of cloud computing 
that provides virtualized computing resources over the Internet.  
In an IaaS model, a third-party provider hosts hardware, 
software, servers, storage and other infrastructure components 
on behalf of its users. IaaS providers also host users' 
applications and handle tasks including system maintenance, 
backup and resiliency planning. 

KVM Kernel-based Virtual Machine (KVM) is a virtualization 
infrastructure for the Linux kernel that turns it into a hypervisor. 
KVM requires a processor with hardware virtualization 
extensions. 

libvirt, libvirtd A toolkit to interact with the virtualization capabilities of recent 
versions of Linux (and other OSes). libvirt provides all APIs 
needed to do the management, such as: provision, create, 
modify, monitor, control, migrate and stop virtual domains - 
within the limits of the support of the hypervisor for those 
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operations. The daemon entity ï part of the libvirt toolkit - 
facilitating remote communication with the hypervisor is called 
libvirtd. 

Direct Memory 

Access (DMA) 
Direct memory access (DMA) is a feature of computer systems 
that allows certain hardware subsystems to access main system 
memory (RAM) independently of the central processing unit 
(CPU). 

NUMA  A NUMA (non-uniform memory access) system is a computer 
system where the latencies for the processor to access its main 
memory varies across the memory address space. These 
systems required modified operating-system kernels with NUMA 
support that explicitly understand the topological properties of 
the system's memory. 

Openstack Openstack software controls large pools of compute, storage, 
and networking resources throughout a datacenter, managed 
through a dashboard or via the Openstack API. Openstack works 
with popular enterprise and open source technologies making it 
ideal for heterogeneous infrastructure. 

OS Operating System 

QEMU QEMU is a generic and open source machine emulator and 
virtualizer. When used as a machine emulator, QEMU can run 
OSes and programs made for one machine (e.g. an ARM board) 
on a different machine (e.g. your own PC). When used as a 
virtualizer, QEMU achieves near native performance by 
executing the guest code directly on the host CPU. 

SDM Agent The Software Defined Memory daemon agent is a process 
running on dReDBox compute bricks to facilitate remote 
provisioning, modification, control and monitoring of virtual 
machines. 

SDM Controller The Software Defined Memory Controller is a centralized control 
entity orchestrating resource management and allocation and 
power management across disaggregated of a dReDBox 
datacenter. 

VM Virtual Machine ï Isolated virtualization unit running its own 
guest operating systems 

VMM Virtual Machine Monitor. See Hypervisor 

Mid-Board 
Optics (MBO) 

MBO is the natural transition technology from current front-panel 
transceivers to more integrated electronic-optical devices. It 
avoids the front-panel bottleneck, improves ports and bandwidth 
scaling of the rack space and may help to solve the packaging 
bottleneck. 
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1 Introduction 

This document is an extension of deliverable D2.3. Parts of the text which are new are 
written in blue font colour. Compared to document D2.3, this document provides more 
details about the architectural decisions taken by the consortium as well as elaborates 
more on the specific techniques such as the memory allocation and remote memory 
addressing. A new sub-section has been added, where the correspondence between 
requirements respectively KPIs (stemming from deliverables D2.1 and D2.2) and 
sections in this document describing architecture choices, where the former are 
addressed. The addition of this section is intended to establish a close relationship 
between requirements and how these are fulfilled through architecture choices, while 
also establish how the latter are relevant to evaluating related KPIs. Furthermore, a 
new section (Section 7) has been added to report an analysis improvement in 
utilization and power consumption of systems based on the dReDBox architecture.  

The architecture of servers has always been designed around trays with a fixed 
number of different, tightly coupled with each other components such as processor, 
memory, and peripherals. Focusing here on datacenters used to materialize, for 
example, cloud or hyperscale computing, conventional architectures thereof typically 
house a large set of interconnected racks, each utilizing multiple interconnected 
server trays, as abstractly illustrated in Figure 1. In general, a server tray consists of ï 
typically multiple ï processing unit(s) (PU) attached via one (resp. multiple) Memory 
Controller(s) (MC) to tray-local Random Access Memory (RAM) for rapid instruction 
read and fast, random read/write byte-level access to data. The PU can also access 
persistent local storage and I/O devices (e.g. flash storage, accelerators) using a 
single or a hierarchy of I/O bridges. Similarly, each server tray also hosts one or 
multiple Network Interface Cards (NICs); the latter leverage physical connectivity to 
dedicated network switches and routers (and rarely also switching capability that is 
available on-board on multi-port NICs) to facilitate data exchange between PUs that 
reside in distinct server trays and potentially in distinct racks.  

 
Figure 1 ï Contemporary datacenter architecture (each rack comprises a set of server trays and multiple 

racks are interconnected to form scalable processing platforms). 

This approach introduces limitations in terms of available system resources and 
scalability, leading to spare resource fragmentation and inefficiencies in current 
datacenters. 

At the same time, current datacenter scale-out workloads mostly perform parallel 
tasks (e.g., Internet search) that require access to vast amounts of data. Hence, to 
tackle the architectureôs poor scalability, previous related works have already 
suggested various approaches, primarily targeting the reduction of remote memory 
access latency.  

For example, in [6] the authors show that such workloads mostly require 



D2.4  System Architecture specification (b) 

H2020 ICT-04-2015 dRedBox  11 

 

communication between compute cores and LLCs, i.e. there is minimal core-to-core 
communication and data coherence activity. Based on these observations, they 
propose a scale-out processor architecture, called NoC-Out that decouples LLCs from 
the cores, placing them in the die center, which eliminates direct core-to-core 
communication, thus reducing the on-chip network complexity. When evaluated on a 
64-core CPM, NoC-Out delivers performance improved by 17%, while reducing 
network area by 28% compared to a tiled mesh-based design. 

Furthermore, in [7] the authors propose the Scale-out NUMA (SO-NUMA) architecture 
that exposes remote memory at user level via a remote memory controller (RMC), 
which converts memory transactions (e.g. RDMAs) to network operations, hence 
bypassing the OS. Results suggest that remote memory access is reduced close to 
4x compared to local memory transactions. 

The work described in [8] presents an interesting study on how different possible 
network interface (NI) placements along many-core SoCs can affect the network 
performance. The authors compare three main approaches, (a) the NI placed at the 
chipôs edge, (b) each core integrating an NI, and (c) splitting memory request 
operations from data accesses, where the former is replicated within each core, and 
the latter placed at the chip boundaries. Results suggest that the latter approach 
delivers the high bandwidth of (a) and low latency of (b). 

dReDBox aims to deliver a disaggregated architecture that will not require memory or 
accelerator to be co-located in the same node as the processor. This will enhance 
elasticity, improve virtual machine migration, and reduce total cost of ownership 
compared to current datacenters. In this new architecture, the main building block is 
not anymore the server, but the brick. Different bricks are designed with different 
functionality like compute, memory and accelerator bricks. 

To build datacenters based on a disaggregated architecture requires new 
breakthrough developments in network, memory interface, hypervisor and 
orchestration layer. dReDBox will advance and address these requirements during 
the project duration.  

Specifically, the network should provide ultra-low latency and high bandwidth to 
efficiently interconnect disaggregated components in the datacenter. Moreover, 
scalable network switches should be used to interconnect large number of 
components. In addition, it is desirable that the network configuration should be 
performed dynamically even during the application execution. And finally, low power 
interconnects will be employed to significantly reduce the cost of owner-ship in 
datacenters.  

Regarding memory, interfaces should be transparent to application.  Remote memory 
should require no changes in current applications and because of that it should be 
accessed as if it is local memory in todayôs systems. Moreover, remote interrupt 
delivery support for Direct Memory Access (DMA) should be provided to interconnect 
with peripherals. Extensions in hypervisorsô memory management and configurable 
logic will coordinate to provide the transparent access to remote memory. 

Finally, the hypervisor and management layer is aimed to support virtual memory 
ballooning and hot-pluggable operations of different bricks. A new software-defined 
global memory and peripheral resource management will be needed to configure on-
the-fly network devices. In addition, the management layer will also reduce drastically 
power through resource management and efficient scheduling of processes/virtual 
machines. Integration with existing standard datacenter resource management will be 
provided through APIs.  

dReDBox aims to showcase its superior value through validation across multiple use 
cases from relevant industries. Three use cases have been identified in the project to 
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illustrate the advantages of this new architecture. They are video-analytics, network 
analytics, and network function virtualization. The project will demonstrate that these 
use cases will directly benefit from accessing a very fast and large shared pool of 
memory and peripherals in dReDBox.  Multiple terabytes of memory will be available 
for the first time to applications. This new capability will drive application efficiencies in 
different commercial workloads. In general, it is envisioned that datacenter workloads 
using multiple terabytes of data will have a substantial benefit of the dReDBox 
architecture since it will significantly reduce the negative effect of memory thrashing 
due to the limited amount of available memory to processes in todayôs servers. In 
contrast, dReDBox will provide vast amounts of memory reducing or even eliminating 
the need to memory swapping to disk.  

This deliverable is structured as follows: 

¶ Section 2 ï System Architecture. Describes the architecture of the system, 
including the architecture of the brick, the tray and the whole rack.  

¶ Section 3 ï Network Architecture. Describes the multi-component connectivity 
and the corresponding network hierarchies and components.   

¶ Section 4 ï Scalability Analysis and Considerations. Explores scalability 
across dReDBox architecture components and discusses relevant 
considerations. 

¶ Section 5 ï Orchestration tools and System Software Architecture. Introduces 
the design of the compute brick operating system/hypervisor and of 
orchestration software.  

¶ Section 6 ï Implementation considerations. Discusses various potential issues 
related to the implementation and their candidate solutions. 

¶ Section 7 ï Includes analysis about the utilization of a disaggregated system 
based on dReDBox as well as power estimates. 

1.1 Requirements and KPIs fulfilment 

Deliverables D2.1 and D2.2 have identified a set of functional and non-functional 
requirements deriving directly or indirectly from the application use-cases and from 
the general objectives of the project. This document draws directly from those 
requirements, and their related KPIs, to define the system architecture. Before going 
into the details of the dReDBox architecture, we summarize, in Table 1 and Table 2, 
the direct links between requirements and architectural choices, which will be 
expanded in the rest of this document. 

Table 1. Mapping of requirements to design choices. 

Requirement Name Fulfilment (Section and description) 

HW-platform-f-01 Brick types per 
functionality 

Sections: 2.2.1, 2.2.2, 2.2.3 

The dReDBox prototype will have 3 types of dBRICKs 
(dCOMPUBRICK in Section 2.2.1, dMEMBRICK in 2.2.2, 
and dACCELBRICK in 2.2.3). 

HW-platform-f-02 Intra-Tray system 
interconnection 

Sections: 2.2, 2.3, 3.2 

Each dBRICK will connect to an intra-tray electrical 
switch dBESM via GTH ports (Section 2.2). The electrical 
switch will be on the dTRAY (Section 2.3). The intra-tray 
connectivity is described in Section 3.2. 
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HW-platform-f-03 Off-Tray system 
interconnection 

Sections: 2.2, 2.3, 3.2.2 

Each dBRICK will connect to an optical switch dBOSM 
via MBO (Section 2.2). The MBO will do electrical to 
optical conversion. dBRICKs will connect to the MBO via 
electrical ports and then the optical ports of the MBO will 
connect to the dBOSM switches. The dBOSM switches 
will be connected to middle-of-the-rack dROSM switch 
and provide inter-tray connectivity (Section 3.2.2) 

HW-platform-f-04 Data and platform 
management brick 
interconnection 

Sections: 2.3, 3 

The dTRAY will have Ethernet controller for layer-2 
connectivity within the dTRAY (Section 2.3) and with 
other dTRAYS (Section 3). 

HW-platform-f-05 Tray network 
switch control 
interconnection 

Sections: 2.3, 3 

The dTRAY has Board Management Computer (BMC) 
responsible for configuring and managing the on tray 
network interfaces (Section 2.3). Additionally, each 
network controller and switch will provide interfaces for 
configuration (Section 3). 

HW-platform-f-06 Tray switching to 
low-power mode 

Section: 2.3 

The dTRAY will have BMC, which will provide for 
programmable management of dTRAYôs power states 
(Section 2.3). 

HW-platform-f-07 Tray position 
identification 

Sections: 2.3, 5, 5.3 

The BMC in a dTRAY will maintain information about the 
position of the tray on the track (Section 2.3). Position 
discovery will be facilitated over orchestration tools 
(Section 5 and 5.3). 

HW-platform-f-08 Field-replacement 
of bricks 

Sections: 2.2, 2.3 

Different types of dBRICK will have standard physical 
interface (Section 2.2) to be plugged in standard dTRAY 
slots (Section 2.3). Any dBRICK can be plugged in any 
available slot on the dTRAY. 

HW-platform-f-09 Hot-plugging/-
Unplugging of 
bricks 

Sections: 2.2, 2.3, 5 

The dBRICKS will be hot-pluggable and the dTRAY will 
discover the plugged or unplugged dBRICK. The HW 
support of hotplugging is described in D5.1 and the SW 
support will be provided and managed via the 
orchestration tools (Section 5). 

HW-platform-f-10 Brick power state 
control and power 
monitoring 

Sections: 2.2, 2.3 

dTRAY will provide physical and software interface for 
turning on/off a specific dBRICK. The dBRICKs circuitry 
will be designed in a way that a brick can be switched off. 
These are described in more details in D5.1 (Section 
2.2). The software interface for turning off dBRICKs is 
provided via the BMC (Section 2.3). 

HW-platform-f-11 Tray temperature Section: 2.3 



D2.4  System Architecture specification (b) 

H2020 ICT-04-2015 dRedBox  14 

 

monitoring and 
cooling control 

dTRAY will have temperature sensors to take 
temperature probes on the tray. The temperature sensors 
can be read via the BMC (Section 2.3). More information 
about the temperature sensors can be found in D5.1. 

HW-platform-f-12 Brick position 
identification 

Sections: 2.2, 2.3, 5 

dBRICKs will be assigned unique ID (Section 2.2). The 
BMC on the dTRAY and the orchestration tools will keep 
track of the location of the dBRICK within a dTRAY and 
the dRACK (Section 2.3, 5). dBRICK identification would 
be implemented via the glue logic or ROM 

HW-platform-f-13 Brick type and 
status 
identification 

Section: 2.2, 2.3 

Each dBRICK will be able to identify its type. dBRICK 
identification is implemented via the glue logic or ROM. 

HW-platform-f-14 Remote 
peripherals 
functionality 

Section: 2.3 

dBRICKS will connect to a PCIe switch located on the 
dTRAY (Section 2.3). The PCIe switch will be 
interconnected to a remote tray with peripherals. 

HW-platform-nf-01 Tray form-factor Section: 4.3 

The tray form factor will be 2U (Section 4.3). 

HW-platform-nf-02 Tray Heat 
Dissipation and 
Cooling 

Section: 2, 3 

The hardware will be able to operate in temperature 
ranges from 10C to 40C. Each tray will have fans for air 
cooling (see D5.1). 

HW-platform-nf-03 Tray brick 
cardinality/density 

Section: 4.1 

dBRICKs sizes are set so that a dTRAY can have up to 
16 dBRICKS of any type. 

Memory-f-01 Correctness Section: 2.2 

The glue logic will take care of address translations and 
correct addressing between virtual-to-physical and then 
physical-to-remote memory. Network switches will be 
configured to interconnect the dBRICKs. 

Memory-f-02 Coherence 
support 

Section: 2.2.1 

The memory coherence will be readily provided by the 
cache coherence implementation on the respective SoC 
on the dCOMPUBRICK. 

Memory-f-03 Memory 
consistency model 

Section: 2.2.2 

When working in non-shared memory allocation, the 
consistency protocol implemented by the SoC is reused 
to guarantee consistency in disaggregated memory. 
Software locks are used to guarantee strict ordering 
when memory areas are shared among compute bricks. 

Memory-f-04 Memory-mapping 
and allocation 
restrictions 

Section: 2.2.2 

The dReDBox design will not impose restrictions other 
than what is already imposed by the selected SoCs. The 
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imposed minimum granularity of allocations will be 1GB, due to OS 
kernel restrictions. 

Memory-f-05 Hot-plug Memory 
expansion 

Sections: 2.2.2, 2.3, 5 

dBRICKs and dTRAYs will support hot-plugging including 
memory. 

Memory-f-06 Redundancy for 
reliability and 
availability 

Sections: 2.2.2, 5 

The redundancy can be implemented with a combination 
of the glue logic (Section 2.2.2) and the hypervisor 
(Section 5). 

Memory-nf-07 Disaggregated 
Memory Latency 

Sections: 2.2.1, 2.2.2 

Latency to access remote memory is aimed to be less 
than 1000ns. Low latency dBESM and dBOSM switches 
will be used to keep it low. 

Memory-nf-08 Memory 
Bandwidth 

Sections: 2.2.1, 2.2.2 

Bandwidth depends on the bandwidth of the GTH ports, 
and the switches interconnecting the GTH ports. 
Bandwidth can be aggregated by connecting dBRICKs 
via multiple links. 

Memory-nf-09 Application-level 
Memory 
Bandwidth 

Sections: 2.2.1, 2.2.2 

Additionally, to the memory bandwidth characterization 
described above, the local CPU caches may have the 
effect of further improving the available bandwidth as 
seen by applications. 

Memory-nf-10 Scalability Sections: 2.2.1, 2.2.2 

Each dCOMPUBRICK can attach to multiple 
dMEMBRICKs. 

Network-f-01 Topology Sections: 3, 3.2.2, 4.3 

It is possible to interconnect every dBRICK with any other 
dBRICK. 

Network-f-02 Dynamic on-
demand network 
connectivity 

Sections: 2.2.1, 3, 5 

dBOSM and dBESM switches can be configured 
dynamically.  

Network-f-03 Optimization of 
network resources 

Sections: 3, 3.1, 5 

Dynamic reconfiguration of switches allows on demand 
connection configuration.  

Network-f-04 Automated 
network 
configuration 

Section: 3, 3.1, 5 

The interfaces exposed by switching components will 
allow the orchestrator to implement algorithm to optimize 
network utilization. 

Network-f-05 Network 
scalability 

Sections: 2.3, 4.3 

dReDBox can scale to multiple racks, as explained in 
Section 4.3. 

Network-f-06 Network resource Sections: 3.1, 5 
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discovery Network resource discovery will be handled in software 
and the information made available to the orchestration 
tools (Section 3.1, 5) 

Network-f-07 Network 
monitoring, 
management and 
control 

Sections: 3.1, 5 

Network monitoring and management will be 
implemented in software and exposed together with the 
orchestration dashboard. 

Network-nf-01 Data rate Sections: 2.3 

Use of high-speed network switching technologies. 

Network-nf-02 Latency Sections: 2.3, 3 

Use of ultra-low-latency network switching technologies. 

Network-nf-03 Port count Section: 2.2, 2.3, 3.2 

High-port density switching architecture at tray and rack 
level 

Network-nf-04 Reconfiguration 
time 

Sections: 3, 4.3, 5 

Port and network configuration mainly happens at VM 
creation times; reconfigurations in other moments is 
expected to happen very infrequently. Because of that 
network configuration time will not affect the overall 
performance. 

Network-nf-05 Power Sections: 2.3, 7.2.2 

Use of low power density switches and transceivers. 

Network-nf-06 Bandwidth density Sections: 2.3, 4.1 

The bandwidth density depends on the network devices 
and switches.  

Software-f-01 Topology 
registration 

Section: 5.3 

A registration interface is exposed by the SDM-Controller. 

Software-f-02 Virtual Machine 
definition 

Section: 5.3 

The SDM-Controller is responsible of accepting VM 
definitions. 

Software-f-03 Virtual Machine 
instantiation 

Section: 5.3 

SDM-Controller, in conjunction with SDM-Agent and 
system software components co-operate to instantiate 
VMs. 

Software-f-04 Virtual Machine 
resizing 

Section: 5.3 

Memory resizing is supported through a combination of 
ballooning and hot-plug techniques and coordinated by 
SDM Controller and SDM Agent. 

Software-f-05 Virtual Machine 
migration 

Section: 5.3 

The orchestration supports relocating VM memory to 
other nodes for VM migration. 

Software-nf-06 Standard Section: 5.3 
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interfaces The orchestration tools and system software integrate 
with existing and widely used industry standard software 
and tools such as Openstack and KVM. 

Software-nf-07 Power 
optimization 

Section: 5.3 

The orchestration and management tools will be able to 
dynamically resize and power off or power on resources 
on demand via standard interfaces.  

Software-nf-08 Authentication 
and authorization 

Section: 5.3 

The orchestration and management tools will implement 
authentication and authorization, login page, roles, etc. 

Software-nf-09 Scalability Section: 5.3 

The SDM-Controller and orchestration components are 
deployed expected to scale comparably to standard cloud 
management tools 

Software-nf-10 Reliability Section: 5.3 

Resource management and status data will be persistent 
on reliable storage. 

Software-f-11 Support 
Virtualization on 
disaggregated 
resources 

Sections: 2, 5.3 

The selected HW platform supports HW virtualization. 
KVM will be used as a hypervisor and VMs will be 
launched on dCOMPUBRICKs. 

Software-f-12 Resizing of 
resources 

Sections: 5.2, 5.3 

The orchestration and management software will 
implement memory resizing and configuration. 

Software-f-13 Support virtual 
machine migration 

Sections: 5.3 

SDM-Agent and kernel extensions implement mechanism 
that permit to identify VM-specific memory areas, 
snapshot them and enable their migration.  

Software-nf-14 Differentiate 
between non-
uniform memory 
access latencies 

Section: 5.3 

System software will provide NUMA support for memory 
access to local/remote memory. 

Software-nf-15 Inter-brick 
communication 
mechanisms 

Sections: 2.3, 5.4, 6 

Different bricks will be able to signal each other via 
remote interrupts implemented over PCIe network. 

 

Table 2. Facilitation of KPIs estimation. 

KPI Name Section 

hw-platform-kpi-01 Utilization of resources Sections: 2, 3 

Facilitated by design for disaggregation (pooling) 
of IT resources 

hw-platform-kpi-02 Energy proportionality Sections: 5 and 7 
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Section 7 provides preliminary operating 
estimations of static power proportionality. 
Resource management including power control 
facilitates estimation of KPI in the dynamic range. 

Memory-kpi-01 System-level latency Sections: 3.2, 3.2.2, 7.1 

Based on the specs of dBESM, dBOSM, and 
estimating the overheads of glue logic, the system 
level latency is expected within the target. Section 
7.1 makes estimations via simulations about the 
target latency. 

Memory-kpi-02 Application-level latency Sections: 3.2, 3.2.2, 5 

Application level latency is to be improved 
(compared to raw latency) and evaluated via 
system software mechanisms (NUMA support, 
prefetching of remote pages).  

Memory-kpi-03 System-level bandwidth Sections: 2.2, 3.2, 3.2.2 

dBRICKs can be interconnected with multiple links. 
For example, a dCOMPUBRICK can connect to 
dMEMBRICK with 8 GTH ports each with 10Gbps 
bandwidth and achieve 80Gbps aggregate 
bandwidth.  

Memory-kpi-04 Application-level bandwidth Sections: 2.2, 3.2, 3.2.2 

The application-level bandwidth can be observed 
to be up to 10% lower because of the header 
overheads. 

Network-kpi-01 Port count Section: 4.3 

dBOX will have multiple Polatis Series 6000 
single-sided 48xCC OSM, each providing 24 
bidirectional ports. 

Network-kpi-02 Module volume per port Sections: 3.2.2, 4.3 

Based on selected optical switches the module 
volume per port will be within the target range. 

Network-kpi-03 Operating frequencies Sections: 3.2.2, 4.3 

Based on selected optical switches the operating 
frequency will be within the target range. 

Network-kpi-04 Typical insertion loss Sections: 3.2.2, 4.3 

Based on selected optical switches the insertion 
loss will be within the target range. 

Network-kpi-05 Crosstalk Section: 3.2.2, 4.3 

Based on selected optical switches the cross talk 
will be within the target range. 

Network-kpi-06 Switching configuration 
time 

Section: 3.2, 3.2.2, 4.3 

Based on selected switches the switching 
configuration will be within the target range. 
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Network-kpi-07 Switching latency Section: 3.2.2, 4.3 

Based on selected optical switches the switching 
latency will be within the target range. 

Network-kpi-08 Power consumption Section: 3.2, 3.2.2, 4.3 

Based on selected optical switches the power 
consumption will be within the target range. 

Network-kpi-09 Capacity Section: 3.2.2, 4.3 

Based on the selected MBO the capacity will be 
within the target range. 

Network-kpi-10 Channels Section: 3.2.2, 4.3 

Based on the selected MBO, the MBO will have 8 
channels at 25Gb/s 

Network-kpi-11 Bandwidth Density Section: 3.2.2, 4.3 

Based on the selected MBO, bandwidth density 
will be within the target range. 

Network-kpi-12 Centre frequency Section: 3.2.2, 4.3 

Based on the selected MBO, center frequency will 
be within the target range. 

Network-kpi-13 Energy efficiency Section: 3.2.2, 4.3 

Based on the selected MBO, energy efficiency will 
be within the target range. 

Network-kpi-14 Power budget Section: 3.2.2, 4.3 

Based on the selected MBO, power budget will be 
within the target range. 

software-kpi-01 VM creation delay (without 

image transfer) 

Section: 5 

Compared to VM startup in traditional datacenters, 
there will be delays due to remote memory latency. 
However, given that traditional VM startup times 
are in the order of seconds due to VM-image 
copying, the target KPI is expected to carry 
insignificant overhead as perceived by the end 
user. 

software-kpi-02 Memory Elasticity Section: 5 

Memory resizing is not expected to be a frequent 
operation, especially resizing at the remote 
memory dMEMBRICK. It can be optimized by 
allocating more memory in advance and using 
memory ballooning at VM/host level. 

software-kpi-03 VM migration completion 

time 

Section: 5 

VM migration would not require copying memory. 
The only significant overhead would be re-
configuration of network. This is confidently 
expected to be within the target range of tenths of 
seconds per 1GiB VM. 
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software-kpi-04 Latency of remote 

peripheral communication 

Section: 2.3, 5.4 

Access to peripherals will be implemented via virtio 
and transmitted via the fast-electrical optical 
networks for memory communication. The latency 
for communication with the remote peripherals is 
expected to be within the target range of about 
1000ns. 
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2 System Architecture 

This section presents the overall architecture of a dReDBox datacenter. The 
presentation starts with an overview of a dReDBox 2U carrier box1, followed by an 
overview of a dReDBox rack; a set of multiple dReDBox racks builds up ï 
interconnected via an appropriate datacenter network -  to form a dReDBox 
datacenter. As part of the overview, we also include a comprehensive definition of 
components and their naming conventions specific to dReDBox. Subsequently, we 
present the rack-level architecture, following a bottom-up approach. While inevitably 
some detail is given pertaining to the memory/data interconnect, we defer a 
comprehensive presentation thereof until Section 3.  

 

2.1 Overview and Naming Conventions  
The dReDBox architecture comprises pluggable compute/memory/accelerator 
modules (termed ñbricksò in dReDBox terminology) as the minimum field replaceable 
units. A single or sets of multiples of each brick type forms an IT resource pool of the 
respective type. A mainboard tray with compatible brick slots and on-board 
interconnection, flash storage and baseboard management components is used to 
carry (up to 16) bricks. A 2U carrier box (visually corresponding from the outside to a 
conventional, rack-mountable datacenter server) in turns hosts the mainboard tray 
and the intra-tray optical switch modules.  

 
Figure 2 - Overview of a dReDBox carrier box (ñdReDBox-Boxò), hosting a tray that carries arbitrary 

combinations of compute/memory/accelerator bricks, an electronic switch matrix for intra-tray connectivity 

and a set of optical switches for off-tray interconnection. 

                                                

1 We deliberately avoid to use the term ñdReDBox serverò to distinguish from the ramifications that 
conventional datacenter server structures bring to utilization, Total Cost of Ownership and further 
limitations, as discussed in details in Section 1. 
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Figure 2 illustrates the design briefly described above. The figure is best understood 
by defining the nomenclature and the concise scope and role of each of its main and 
distinguishing constituent components2, as given below: 

dBOX 

 

A dReDBox-Box houses the main components of 
the dReDBox system and can be considered the 
heart of the dReDBox system. The dBOX will be 
compatible with standard datacenter infrastructures 
and will look like any other server. 

dTRAY A dReDBox-Tray provides the interconnection and 
supporting functions for the different dReDBox-
modules. It serves as a ñmotherboardò in the dBOX. 

dBRICK 

 

A dReDBox-Brick forms the minimum, 
independently replaceable unit in the dReDBox 
datacenter. There are three different types of 
dReDBox-Bricks: compute, memory and accelerator 
bricks. At any hierarchy level, dBRICKs are 
interchangeable and can be deployed in arbitrary 
combinations to closely match service provider 
and/or user needs. 

dCOMPUBRICK The dReDBox-Compute-Brick constitutes the 
minimum replaceable unit providing general-purpose 
application processing to the dReDBox datacenter. 

dMEMBRICK The dReDBox-Memory-Brick constitutes the 
minimum replaceable unit providing disaggregated 
memory to the dReDBox datacenter. 

dACCELBRICK The dReDBox-Accelerator-Brick constitutes the 
minimum replaceable unit providing programmable, 
application-specific accelerated processing to the 
dReDBox datacenter. It will also have the ability to 
interface with a 100GbE interface on the dTRAY.  

dBESM The dReDBox-Box-ESM is a Custom-Off-The-Shelf 
(COTS) Electrical Switch Matrix (ESM) used to 
interconnect dBRICKs residing with the same dBOX.  

dBOSM The dReDBox-Box-OSM is a COTS Optical Switch 
Matrix (OSM) used to interconnect dBRICKs residing 
within a dBOX to dBRICKs residing in remote 
dBOXes (either in the same or in distinct racks). The 
OSM can also be used for intra-tray dBRICK 
interconnection, coupling the ESM to increase 
density and/or throughput of connectivity in the tray. 

The dBOX forms the basic building block to construct a dReDBox rack (termed 

                                                

2 Since this is an overview of the architecture and for the sake of controlling complexity, we defer here a 
rigorous reference to every single component, such as e.g. tray-level non-volatile memory to store 
firmware and boot images, PCIe connectivity to peripherals, Ethernet connectivity and baseboard 
management components. These are outlined in detail in the rest of this section.  
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ñdRACKò). Unlike the dBOX, the dRACK resembles more of a conventional 
datacenter rack: carrier boxes are stacked up into a 42U rack, including network 
switches that facilitate intra-rack communication, as well as connectivity to the rest of 
the datacenter racks through the datacenter-level network.  

 

Figure 3 ï Overview of a dReDBox rack (resp. datacenter) architecture comprising several dBOXes 

interconnected with hybrid optical and electrical switching (ñdROSMò). 

Figure 3 illustrates the rack (resp. datacenter) design briefly described above. Similar 
to the approach followed in the previous to present the seminal components 
comprising a dBOX, the respective list of definitions pertaining to a dReDBox rack 
(resp. datacenter) is given below: 

dRACK A dReDBox-Rack houses multiple, interconnected dBOXes. 

In the scope of the project, it forms the complete dReDBox 

system. The dRACK is the final Hardware deliverable 

associated with ñD5.2: Hardware integration and tests of all 

bricks and tray (b)ñ. The dRACK will be used as the platform 

for the different demonstrators. 

dPERTRAY The dReDBox-Peripheral-Tray is a COTS product providing 

convenient support for attaching different kind of peripherals 

(notably secondary storage) through a PCIe bus. This will be 

a ñplug-and-playò solution which can be connected to a 
dBOX using a standard PCIe cable. 
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dROSM The dReDBox-Rack-OSM is a COTS Optical Switch Matrix 

used to interconnect dBRICKs residing in distinct dBOXes 
with the same dRACK. It also serves as a leaf-switch to route 
traffic emanating from (resp. terminated at) the local dRACK 
to a datacenter destination (resp. from a datacenter source) 
residing off the local dRACK. In the project, we also aim to 
experiment with an embodiment of a dROSM featuring hybrid 
optical/electronic (i.e. both fiber- and packet-switching).  

dDOSM The dReDBox-Datacenter-OSM is used to interconnect the 

different dRACKs in a datacenter. It will connect to the 

different dROSMs in the datacenter. The dDOSM is here 

referenced for the sake of completeness and to facilitate a 
discussion of the overall scalability potential of a dReDBox 
datacenters. However, its further materialization is out of the 
scope of the project.  

dCLUST A dReDBox-Cluster is a logical grouping of dBOXes residing 

within the same dRACK. The decision of sub-dividing a 

dRACK into dCLUSTs is mainly motivated by the port density 
limits of a dROSM, as the largest commercially-available 
dROSM is not capable of interconnecting all the dBOXes 

within a 42U dRACK. 

dCLUSTPSU The dReDBox-Box-PSU is an AC/DC power supply, capable 

of providing enough power to a fully provisioned dCLUST. 

We note that the above defined nomenclature will be used throughout the project 
(also in the rest of this deliverable) to refer to any of the above components, forming 
the master section of reference for any dReDBox-specific term. While future 
deliverables may reiterate ï partly or in their entirety ï these definitions for the sake of 
being self-contained, or even further specialize by adding additional context-specific 
definitions, we will strive to keep the above set of definitions consistent and complete 
throughout the project. 

 

2.2 dBRICKs Architecture 

dBRICKs are the smallest realization unit in the dReDBox architecture. The term 

encompasses general-purpose processing (dCOMPUBRICK), random-access 

memory (dMEMBRICK) and application-specific ñacceleratorsò (dACCELBRICK). As 

described above, dBRICKs will be connected to the rest of the system by means of a 
tray that besides connectivity will also provide the necessary power to each brick.  

2.2.1 Compute Brick Architecture 'dCOMPUBRICK( 
The dReDBox compute brick (dCOMPUBRICK) is the main processing block in the 
system; a block diagram depicting the architecture of the dCOMPUBRICK is shown 
in Figure 4. Following a rigorous comparative evaluation of candidate SoCs (cf. 
Appendix I ï SoC Selection Processò), the consortium has decided to use the Xilinx 
Zynq Ultrascale+ MPSoC (EG version) [10] as the compute brickôs System-On-Chip. 
The selected SoC integrates a quad-core A53 ARM Application Processing Unit 
(APU) and a dual-core ARM Cortex R5 Real-time Processing Unit (RPU). Among 
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others, this choice reduces the number of components (no separate FPGA chip 

needed), eventually leading to smaller dBRICKs sizes and power consumption. 
Another benefit of using a reconfigurable SoC as PUs is their flexibility in terms of 
supporting access to memory modules of different technologies (e.g. HMC). The 
same would require a major investment in the case of ASIC-based SoCs. Trading off 
these advantages, it must be noted that reconfigurable SoCs integrate less powerful 
software processing units, compared to multicore platforms at the same cost range. 

The compute brick hosts local off-chip memory (DDR4) for low-latency and high-
bandwidth instruction read and read/write data access, as well as Ethernet and PCIe 
ports for data and system communication and configuration. Also, each 
dCOMPUBRICK features QSPI-compatible flash storage (16-32 MB)  and a micro-
SD card socket (not shown in Figure 4) to ease flashing of firmware and boot images 
from locally, in case of disconnection or for debugging purposes. 
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Figure 4 - Block diagram of a dCOMPUBRICK, featuring the Xilinx Zynq Ultrascale+ MPSoC (EG version) as 

a quad-core SoC. The MPSoC integrates a quad-core ARM Application Processing Unit (APU) for software 

execution. The on-chip programmable logic on the SoC is used to host transaction glue logic, housekeeping 

state, and communication logic, required for accessing disaggregated resources. The local DMA engines 

allow the system software to efficiently migrate pages from remote memory regions to local DDR memory. 

The compute brick can reach disaggregated resources, such as memory and 
accelerators, via dReDBox-specific glue intellectual property (termed ñTransaction 
Glue Logicò) on the data-path and communication endpoints implemented on the 
programmable logic of the dCOMPUBRICKôs Zynq Ultrascale+ MPSoC. System 
interconnection to disaggregated resources occurs via multiple ports leading to 
circuit-switched tray- and rack-level interconnects (dBESM/dBOSM and dROSM 
respectively, as defined in Section 2.1). As also shown in Figure 4, we also plan to 
experiment with packet-level system/data interconnection, using Network Interface 
(NI) and a brick-level packet switch (also implemented on programmable logic of the 
dCOMPUBRICK MPSoC), on top of the inherently circuit-based interconnect 
substrate. While not in the critical path in terms of project delivery and impact, there 
is potential value in such an approach, specifically in terms of increasing the 
connectivity of a dCOMPUBRICK due to multi-hopping and thus creating an 
opportunity to increase the span of resource pools reachable from a single 
dCOMPUBRICK.  
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For each request arriving to the Transaction Glue Logic (TGL) block, the Remote 
Memory Segment Table (RMST) is consulted to identify if and where the request 
should be forwarded to. The RMST is a custom module (aimed to be implemented in 
custom logic on the MPSoC Programmable Logic) that acts as a proxy for the remote 
nodes (memory or accelerator), and can be configured by the orchestration tools via 
the APU Master High-Perforamnce Port 0 (MHP0) port. Moreover, the APU forwards 
all remote memory requests to the RMST via its Master High-Performance Port 1 
(MHP1). When transmitting data to a remote node, the TGL is responsible for 
receiving the request from the APU, decoding it to determine where it should be sent, 
and forwarding it to the appropriate outgoing high-speed port, which leads to a 
circuit-switched path that would have been already set up via orchestration 
procedures. Along with the corresponding output link, the RMST will also be provided 
with other management information necessary (remote memory size, offset, etc.). 
The RMST is a fully associative structure, whose entries identify large and 
contiguous portions of memory space, so we expect that a few tens of entries will be 
able to address very large amounts of disaggregated memory space. 
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Figure 5 - The Remote Memory Segment Table (RMST) performs address translation for accessing remote 

memory and store receiving data. The remote offset field is used to translate the local address to the 

disaggregated (remote) memory module space. The RMST provides additional information such as the 

output link to send each request. 

Figure 5 shows how the RMST translates local virtual memory addresses to remote 
physical addresses and vice versa. At boot time of a dCOMPUBRICK and among 
other tasks, the orchestration tools: (a) divide the nodeôs visible memory space to 
local segments, each one associated with a running VM, (b) allocate a set of 
corresponding remote physical memory segments, adjusted with a fixed offset, and 
(c) configure the local TGL block (via the MHP0 port) by writing to it for each local 
segment its start address, end address and remote offset. When the local 
dCOMPUBRICK issues a store to a memory address that falls within the remote 
region, then the local address is adjusted by the TGL translation unit with the 
corresponding offset, then encapsulated with the data plus required network 
information, and transmitted to the network. On the reverse path, incoming data 
consist of the requested payload, the segment id, and the remote memory address. 
Based on the segment ID, the translator subtracts the required offset and forwards 
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the locally translated address with the payload to the Processing System of the local 
dCOMPUBRICK.  
Table 3 - Input / output port of the HLS-based RMST implementation. 

Port name Direction Description 

memTransactionAddr egress VM address to be translated 

segmentId ingress 
The segment number that a remote 
memory transaction belongs to 

remoteMemTransactionAddr ingress 
The remote memory address that 
needs to be translated back to the local 
VM visible region 

translatedAddr egress The VM translated address 

netId egress 
The network interface id that a local 
memory transaction should be 
forwarded to 

remoteAddressTranslated ingress 
The remote address translated back to 
the local VM visible region 

 

In order have a first indication of the required resources and achievable performance 
of the RMST, we implemented it in hardware using the Xilinx Vivado HLS 2016.2 
tool, and mapped it on the Xilinx ZU9EG device, based on the Zynq Ultrascale+ 
architecture. The current implementation supports up to 8 segments; each segment 
entry includes its start / end address, a preset offset by the orchestration tools, and 
the output network interface id that the memory transaction should be forwarded to.  

Table 3 provides the glue logic ingress and egress ports from the VM perspective. 
More specifically, regarding egress-related ports, ñmemTransactionAddrò is a 64-bit 
physical address that needs to be adjusted (translated) by the required offset to point 
to the correct remote memory location, ñtranslatedAddrò is the 64-bit adjusted 
address, and ñnetIdò the network interface id that this memory transaction should be 
forwarded to.  

Regarding ingress-related ports, ñsegmentIdò is the segment that an incoming 
memory transaction (e.g. the response of a remote memory read) belongs to, 
ñremoteMemTransactionAddrò is the corresponding 64-bit remote memory address, 
and finally ñremoteAddressTranslatedò is the brick local address within the range of 
the physical address space of the compute brick.  

Table 4 - Estimated resources utilization on the ZU9EG Zynq Ultrascale+ device 

Resource type Number of elements % occupancy 

Flip flops 151 / 548160 ~0% 

Look-up tables (LUTs) 1191 / 274080 ~0% 

Estimated, clock period: 4.47nsec (233 MHz), 1 cc latency, 1cc intermediate interval 

 

In terms of performance, Table 4 shows the estimated resource utilization of the 
RMST module instance, provided by the Xilinx HLS estimator, when mapped on the 
ZU9EG device. As seen, resource utilization is extremely low. Moreover, the 
estimated clock frequency is at 4.47 nsec with a 1-cycle latency, and intermediate 
interval 1 cycle, meaning that it can perform 1 translation / cc at 223MHz. In other 
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words the current implementation can achieve an estimated 64bit * 233 MHz = 
14.9Gbps throughput per network interface. This fact agrees with the memory 
system KPI reported in the revised version of D2.1 (Section 3.2) for system level  
reconfigurability (a few msecs) and fine grained memory allocation (few hundreds of 
Mbytes). This is the software defined configuration depth intended in obj3.3 of the 
dReDBox DoW. Moreover, intercepting requests at the AXI cache coherent 
interconnect and directly sending data over the dReDBox network totally decouples 
dynamic memory storage technologies and provides the ability to implement a 
transparent access scheme (obj3.1 of the dReDBox DoW). This is the first step 
towards serving the obj1.1 of the dReDBox project DoW towards realizing a vertical 
software defined infrastructure. Obj3.2 will be addressed in the next version of this 
deliverable.   

2.2.2 Memory Brick Architecture 'dMEMBRICK( 
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Figure 6 - dMEMBRICK architecture featuring the Xilinx Zynq Ultrascale+ MPSoC (EG version); the local 

switch forwards system / application data to the memory brick glue logic, which interfaces different memory 

module technologies. 

Figure 6 shows the memory brick (dMEMBRICK) architecture, which is a key 
disaggregation feature of dReDBox. It will be used to provide a large and flexible pool 
of memory resources which can be partitioned and (re)distributed among all 
processing nodes (and corresponding VMs) in the system. dMEMBRICKs can support 
multiple links. These links can be used to provide more aggregate bandwidth, or can 
be partitioned by the orchestrator and assigned to different dCOMPUBRICKs, 
depending on the resource allocation policy used. This functionality can be used in 
two ways. First, the nodes can share the memory space of the dMEMBRICK, 
implementing essentially a shared memory block (albeit shared among a limited 
number of nodes). Second, the orchestrator can also partition the memory of the 
dMEMBRICK, creating private ñpartitionsò for each client. This functionality allows for 
finer-grained memory allocation. It also requires some translation and protection 
support in the glue logic (transaction glue logic block) of the dMEMBRICK.  

The glue logic which does memory translation interfaces with the requesting 
dCOMPUBRICKs, both of which are coordinated by the orchestrator software. 
Besides network encapsulation, the memory translator under the control of the 
orchestrator controls the possible sharing of the memory space among multiple 
dCOMPUBRICKs, enabling support for both sharing among and protection between 
dCOMPUBRICKs. The control registers allow the local mapping of external requests 
to local addresses to allow more flexible mapping and allocation of memory. 

A dMEMBRICK can be dimensioned in terms of memory size as well as on the 
number of memory controllers it supports, so as to adapt to the size and bandwidth 
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needs at the tray and system levels. In the scope of the project and due to constraints 
posed by the logic available on the cutting-edge FPGA module that is to be used for 
prototyping the dMEMBRICK (Xilinx Zynq Ultrascale+ MPSoC), we plan to implement 
up to 2 (two) memory controllers on the dMEMBRICK. Also, in reference to Figure 6, 
we note that the dMEMBRICK architecture is not limited to a specific memory 
technology, as long as this is supported by the transaction glue logic implementation. 
For example, the dMEMBRICK architecture can seamlessly support both DDR and 
HMC memory technologies; the glue logic is connected to an AXI interconnect, hence 
directly interfacing both Xilinx DDR and HMC controller IPs. When a new memory 
request arrives (write or read), the AXI interconnect checks the memory address, and 
forwards it to the corresponding controller. However, in the scope of the project, 
prototyping and evaluation is planned using only DDR4 memory modules.  

2.2.3 Acceleration Brick Architecture 'dACCELBRICK( 
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Figure 7 - dACCELBRICK architecture integrating local memory. The brick is implemented using the Xilinx 

Zynq Ultrascale+ MPSoC (EG version) 

dACCELBRICK hosts the accelerator modules that can be used to enhance 
application execution based on the near-data processing scheme [3]; instead of 
transmitting data to a remote dCOMPUBRICK, certain calculations can be performed 
by local accelerators, thus improving performance and at the same time reduce 
network utilization. In fact, the project leader IBM, recently presented the ConTutto 
reconfigurable platform for near-memory acceleration, used in the memory subsystem 
of the OpenPOWER processing platform [1] [2].  

Figure 7 depicts the dACCELBRICK architecture. The dACCELBRICK consists of the 
dynamic and the static infrastructure. The dynamic infrastructure consists of a 
predefined, reconfigurable slot within the PL that hosts hardware accelerators. As 
depicted in Figure 7, the accelerator wrapper template integrates a set of registers 
that can be accessed by the glue logic to monitor and control (e.g. debug) the 
hardware accelerator status. Moreover, the wrapper provides a set of high-speed 
transceivers (e.g. GTHs) for direct communication of the accelerator and other 
external resources. Finally, an AXI-compatible port interfaces directly an AXI DDR 
controller, allowing the hardware accelerator to utilize the local PL DDR memory 
during data processing. 

The static infrastructure hosts all required modules for: (a) supporting dynamic 
hardware reconfiguration, (b) interfacing with the hardware accelerator, and (c) 
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establishing communication with remote dCOMPUBRICKs. To support hardware 
reconfiguration, in the current implementation, the local APU executes a ñthinò 
middleware responsible for: (i) receiving bitstreams from remote dCOMPUBRICKs 
(through the accelerator brick glue logic), (ii) storing bitstreams in the APU DDR 
memory, and (iii) reconfiguring the PL with the required hardware IP via the PCAP 
port. To monitor/control the hardware accelerator, the glue logic can read/write the 
wrapper registers. In addition, the glue logic interfaces the local NI/switch for data 
transfers between the dACCELBRICK and remote dCOMPUBRICKs that are stored in 
the PL DDR. 

In the scope of the project, we aim at showcasing acceleration capability made 
possible by the SoC to be used for materializing the dACCELBRICK; as with the 
dMEMBRICK, the local NI module is responsible for transmitting / receiving packet-
based data to / from remote nodes, while circuit-based data are forwarded to the local 
interconnection module. For dACCELBRICKs with local memory, the accelerator 
translator logic again provides memory translation and protection. Finally, the 
compute node will be able to: (a) configure all available accelerators by writing to a 
predefined set of memory mapped registers, and (b) monitor their status by reading 
another set of memory mapped registers. 
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accelerator input data 

to dACCELBRICK
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by accelerator IP
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Figure 8 - Data offloading procedure from a dCOMPUBRICK to a dACCELBRICK; the dCOMPUBRICK 

transfers all required bitstreams to the dACCELBRICK (bootstrap). Prior to offloading operations on an 
accelerator, the dCOMPUBRICK instructs the dACCELBRICK to configure the required accelerator, and then 

transmits all input data for processing. Upon completion of execution on the dACCELBRICK, results are 

transmitted back to the dCOMPUBRICK. Processing resumes on the dCOMPUBRICK until the next set of 

data needs to be offloaded to the dACCELBRICK for execution. If the dACCELBRICK is already configured 

with the required accelerator, the configuration step is omitted. 

Figure 8 depicts the procedure for configuring a dACCELBRICK and offloading data 
for execution. At first, the dCOMPUBRICK transmits all required hardware accelerator 
bitstreams to the dACCELBRICK (bootstrap). The dCOMPUBRICK then 
starts/resumes application execution. Before data offloading, if required, the 
dCOMPUBRICK instructs the dACCELBRICK to configure the needed hardware 
accelerator, and then transmits input data, which are stored to the dACCELBRICK PL 
DDR memory. Upon data processing completion, results are transmitted back to the 
dCOMPUBRICK, which resumes application execution, until the next set of data need 
to be offloaded for execution. 
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2.3 Tray Architecture 'dTRAY( 
dTRAYs may be composed of arbitrary combinations of the three different types of 
dBRICKs  detailed above. A dTRAY will have standard 2U size and may contain up to 
16 bricks. It is expected that the number of dMEMBRICKs will be larger than the 
number of dCOMPUBRICKs and dACCELBRICKs, since a dCOMPUBRICK is 
expected to access multiple dMEMBRICKs. The different dBRICKs are 
interconnected among each other within the dTRAY and also with other dBRICKs 
from different dTRAYs. Figure 9 illustrates the dTRAY architecture.  

Four different networks, one low-latency high speed electrical network, one Ethernet 
network, one low-latency high speed optical network, and one PCIe network will 
provide connectivity between the different bricks.  

Accessing remote memory will use both optical and electrical low-latency high-speed 
networks. Accesses to remote memory placed in a dMEMBRICK within a dTRAY will 
be implemented via an electrical circuit crossbar switch (dBESM in Figure 9 is labelled 
as High Speed Electrical Switch) and will interconnect directly to the GTH interface 
ports available on the programmable logic of the bricks. The dBESM switch will have 
160 ports. This is the largest dBESM switch available on the market today supporting 
our speed requirements. The latency will be as low as 0.5ns and the bandwidth per 
port will be 12Gbps. This network will be used for intra-tray memory traffic between 
different bricks inside the tray. dBESM will not be used for inter-tray memory traffic 
due the limitations of the electrical communication in larger distances (latency). In 
addition, using electrical network for intra-tray communication instead of an optical 
network would not require signal conversion from electrical to optical and vice versa 
and thus it will be lower latency and lower power consumption. 
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Figure 9 ï Sample tray architecture with multiple bricks interconnected through optical and electrical 

interconnection networks. All brick types are based on the Xilinx Zynq Ultrascale+ MPSoC. 

The optical network is aimed to provide inter-tray connectivity for exchange of 
memory data and I/O communication. The optical network on the dTRAY will be 
implemented with multiple optical switch modules (dBOSM in dReDBox terminology) 
that will be provided by Polatis.  Each dBOSM switch will have 24 optical ports. The 
latency of the dBOSM optical switch would be around 5ns and the bandwidth would 
be in the range of 384Gbps. dBRICKs will connect to the dBOSM via GTH interface 
ports available on the programmable logic of the SoC. The GTH bandwidth is 
16Gbps. A total of 24 GTH ports will be available in the SoC, 8 of them will be used to 
connect the SoC to the dBOSM. On a fully populated tray hosting 16 bricks, a 
maximum of 256 optical ports may be used to fully interconnect the bricks of each 
tray. The Mid-Board Optics (MBO) device mounted on each dBRICK will be used to 
convert the electrical signals coming from the GTH ports and aggregate them into a 
single fibre ribbon; the other end of the ribbon will be attached to local dBOXôs 
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dBOSM optical switch. Each MBO supports up to eight ports.   

The dBRICKs will use the up to 10 GTH ports to connect to dBOSM. The number of 
GTHôs per SoC connecting to the dBOSM is limited by the size of the dBOSM. A 160-
port dBOSM could support at maximum 10 GTH per dBRICK, given a maximum of 16 
dBRICKs on a tray. 

An Ethernet (ETH) network will be used for regular network communication and board 
management communication (BMC). The bandwidth will be 1Gbps and it will have a 
hierarchical topology. 

Inside the tray and across trays within a dRACK, the dBRICKs will also interconnect 
via PCIe interface. Such interconnection will be provided via a PCIe switch, which will 
exit the tray with one or more PCIe cable connectors. The PCIe interface will be used 
for signalling and interrupts, as well as for attachment to remote peripherals. This 
network can also be used to (re)configure the FPGAs in each SoC.  

2.3.1 Power Consumption 

The upper bound power consumption for a 2U dTRAY is expected to be in the order 
of 750W, The expected power consumption of a dBRICK is expected to be in the 
order of 20W. These power numbers are conservative (budgeted) values and provide 
for an early estimation. Operating estimations related to power consumption are given 
in section 7.2.  

2.4 Rack Architecture 'dRACK( 
Figure 3 has already introduced the high-level dRACK architecture of the dReDBox 
project. Multiple dTRAYs of different configurations can be placed in the same 
dRACK. These dTRAYs can feature a different balance between Compute, Memory 
and Accelerators. dRACKs would be sub-divided into dCLUST. The decision of sub-
dividing a dRACK into dCLUSTs is mainly motivated by a constraint that the largest 
dROSM will not be able to interconnect all the optical links from the dTRAYs. Besides 
this constraint, sub-rack based organization would also facilitate and simplify the 
locality management. 

 

3 dReDBox Modular Network Architecture 

Figure 10 zooms on the dReDBox architecture from a connectivity perspective. It 
shows dRACKs housing multiple interconnected dBOXes. Each dBOX hosts 
pluggable arbitrary combinations of compute/memory/accelerator bricks, an electronic 
cross-point circuit switch for intra dBOX connectivity and a set of optical switches for 
intra and inter dBOX networking. Each rack mounted dBOX will support up to 16 
bricks. All bricks are interconnected to all other bricks in the same dBOX by means of 
the electronic L1 crosspoint circuit switch (dBESM) and the optical circuit switch 
(dBOSM). Communication between dBRICKs in different dBOXes is strictly via optical 

circuit switching. Independently on their nau̡re (compute, memory, or accelerator), 

each brick uses a reconfigurable System on Chip to perform networking functions 
beyond only the basic interfacing that traditional network interface cards typically 
support. The brick will embed and support forwarding, switching, and aggregation at 
either packet or circuit level. It will potentially deliver protocol independent 
programmable ports to support protocols and functions that can best suit the required 
type of communication (i.e. compute-to-memory, compute-to-end user, etc). 
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Figure 10 ï dReDBox rack-scale architecture interconnected with hybrid optical and electrical switching. 

3.1 System-level operation 

In this section, we present an overview of the operating principle and network 
features of the proposed architecture. The architecture supports hybrid switching and 

multiplexing techniques, which include: optical circuit switching (distributed over a 
number of optical circuit switching elements ï namely the dBOSM, dROSM and 
dDOSM), electrical packet switching (EPS) and electrical circuit switching (dBESM). 
These hybrid techniques allow for reconfigurable topologies and dynamic functions 
for different traffic requests. Figure 11 presents an overview of the proposed 
architecture with some examples of reconfigurable topologies and functions using 
OCS and ECS. 

 

Figure 11. Function and Topology Reconfigurable Network. 

3.1.1 Optical circuit switching 

The overall dReDBox optical switching architecture shown in Figure 11 shows a 
multi-stage Clos fabric in which the first stage is implemented within and distributed 
across the dBOXes (in the dBOSMs). The second and third stages are implemented 
in the dROSM(s) and the dDOSM(s) respectively.  

Architecturally, the optical fabric can be implemented in any number of ways 
depending on the switching functionality of the various component switching modules 
(whether they are any-to-any or symmetric N×N or asymmetric N×M switches), the 
port density of these modules and the levels of blocking probability that would be 
acceptable within a given dReDBox installation. 

Another factor to take into consideration is that the end-to-end optical switching fabric 
can be implemented as a number of parallel non-interconnected planes where this 
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number corresponds to the number of channels presented from the dBRICKs via the 
MBOs. This is because any switching that may be necessary between these planes 
can be done within the MPSoC on the dBRICK. This is important as it significantly 
reduces the radix requirements of the switch modules making up the three stages of 
the Clos fabric. This in turn means that the different stages of the Clos switching 
fabric can be incrementally built up from conveniently (and practically) smaller 
switching modules ï e.g. the first stage of the switching fabric in a dBOX need not be 
implemented as a single high radix switch (a single dBOSM) but can instead be 
implemented as a number of smaller switching modules which can then be grown as 
a dBOX is filled with dBRICKs. This is clearly convenient from the perspective of (i) 
supporting more of a pay-as-you-grow operational model for dReDBox and (ii) the 
sizes/densities of state-of-the-art optical switching modules that are commercially 
available. 

The scalability aspects of the optical circuit switching function within dReDBox are 
described in Section 4.4. 

3.1.2  Electrical packet switching 

Management-related communication will happen via an electronic packet switched 
network. This electrical packet (1 gigabit Ethernet) switching between dBRICKs 
extend throughout a dReDBox installation and will be implemented as COTS one or 
two 1U gigabit Ethernet switches per dRACK with 1 or 10Gbps uplinks to one or 
more COTS switches interconnecting all the dRACKs. As explained elsewhere, this 
network is to support dBRICK management functions and tenant access. 
Architecturally and as visualised in Figure 10, the programmable logic area of each 
dBRICK could be used to realise a programmable electronic packet switch so they 
can offer increased forwarding/aggregation/switching flexibility on data from/to 
compute/memory/accelerator bricks.  

3.1.3 Electrical circuit switching 

Each of the dBOXes comprises a large radix COTS Electrical CrossPoint Switch. 
This allows for low cost on-dBOX communication and is able to provide any-to-any 
connectivity between all dBRICKs of a dBOX while having 8 channels per brick. 

3.1.4 Operational hybrid network flow 

Each dTRAY may contain dCOMPUBRICK, dMEMBRICK or dACCELBRICK bricks 
and dBOSM or any combination thereof. The operational flow to interconnect 
dBRICKs is depicted in Figure 12.  



D2.4  System Architecture specification (b) 

H2020 ICT-04-2015 dRedBox  36 

 

 

Figure 12. System Level operational flow for the network. 

Each of the requests by the orchestrator to establish connection amongst dBRICKs is 
handled based on their availability and location. The appropriate flow will be selected 
depending on the type of the path requested. The request from the orchestrator 
(allocation for dCOMPUBRICK, dMEMBRICK or dACCELBRICK) could be served by 
the same dTRAY or it might be possible that it could be served by different dTRAYs. 
dReDBox orchestration layer configures the on chip network and port on each 
dBRICK. It also sends command to the optical and electrical switches (dDOSM, 
dROSM, dBOSM and dBESM) to configure their ports to establish the connection.  

3.2 Practical considerations 

3.2.1 Intra-tray connectivity 'within dTRAY( 
The approach for dTRAY architectural design is presented in Figure 13. It presents a 
heterogeneous tray architecture design composed of dCOMPUBRICK, dMEMBRICK 
with optical switches (dBOSM), electrical switches (dBESM), PCIe switch and 
Ethernet switch for hybrid optical and electrical network interconnect. This architecture 
provides both port-to-port optical circuit switching (OCS) and electrical circuit 
switching (ECS) network interconnect. This approach eliminates optical-electrical-
optical (OEOP) conversion and reduces the latency for dBRICK to dBRICK intra-
dTRAY communication. Note that each dBRICK only uses one FPGA or 
optical/electrical mid board to connect to both the optical and electrical switch. Due to 
the size and port dimension of currently available dBOSM, the dBOSM switch(es) are 
planned be placed outside the tray and within the dBOX (we remind that dTRAY is 
like motherboard placed in dBOX).  
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Figure 13. Heterogeneous dTRAY architectures with hybrid optical and electrical network interconnect 

between bricks within a dTRAY. 

Different Configurations of dTRAY architectures can be realized by varying; number of 
dBRICKS in a dTRAY, port dimension configuration per dBRICK, number of dBOSMs 
in a tray and port dimensions of dBOSMs in a dTRAY. One MBO per dBRICK is used 
to reduce the cable complexity and PCB form factor by replacing and SFP+ per high 
speed serial port with an MPO connector that can handle 8 ports. 

3.2.2 Inter-tray connectivity 'between dBOXes( 
Figure 3 presented our proposed dRACK scale architecture with heterogeneous 
dTRAY architecture that includes hybrid optical and electrical interconnect. The 
dRACK scale architecture comprises of different stacks of heterogeneous dTRAYS 
connected to the optical switch(es) (middle of rack) placed at the middle of the stack 
of dTRAYs in the dRACK. The optical switches are in the middle of dRACK because 
this approach reduces length of fibre required to connect the dTRAYS to optical 
switch for inter-dTRAY communications. This leads to a reduction in latency and fibre 
length when compared to the traditional server-centric datacenter architectures with 
Top of Rack (ToR) switches. In addition, functional modules such as packet switches 
can easily be connected to the dROSM to provide dynamic functionality for 
processing traffic requests for inter tray and inter rack communication.  A top of cluster 
(dDOSM) optical switch is placed at the top of all dRACKS to provide inter-dRACK 
communications (dBRICK in one dRACK to dBRICK in another dRACK). 

In addition, by varying the number of dBOSMs, port configuration of dBOSMs, 
numbers of dROSMs and port connectivity ratio (inter dTRAY traffic to intra dTRAY 
traffic) used in the dRACK scale architectures design, different configurations of 
dRACK scale architectures are achieved.  

3.2.3 Cabling Complexity  

The optical network is aimed to provide inter-tray connectivity for exchange of 
memory data and I/O communication. dBRICKs will connect to the dBOSM via 8 GTH 
interface ports available on the programmable logic of the SoC. On a fully populated 
dTRAY hosting 16 bricks, a maximum of 256 optical ports may be used to fully 
interconnect the dBRICKs to the dBOSMs of each dTRAY. One MBO device mounted 
on each dBRICK will combine 8 GTH channels into a single fibre ribbon (equivalent to 
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16 single mode optical patch cables); the other end of the ribbon will be attached to 
the local dBOXôs dBOSMs optical switch ports. 

4 Scalability Analysis and Considerations 

This section analyses the main factors that govern the scalability in the number of 
components of the system. Specifically, it will analyze the scalability of the number of 
dBRICKs, dTRAYs, and dCLUSTs, and dRACKs.    

4.1 dBRICK scalability 

The scalability of the dBRICK in terms of number of computing processors is 
dominated by the physical dimensions. Figure 14 shows the physical dimensions of 
the dBRICK. As it is shown, a dBRICK has a length of 180mm and a height of 67 
mm. The Xilinx Zynq UltraScale+ EG MPSoC ZU19EG has dimensions of around 
35mm x 35mm and, one SODIMM memory module has dimensions of around 60mm 
x 30mm. Therefore, only one Zynq UltraScale+ EG MPSoC could be placed on a 
dBRICK.   
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Figure 14 ï dBRICK dimensions 

The number of GTH ports available in the Zynq UltraScale+ EG MPSoC are 16 or 24 
depending on the model. The Zynq UltraScale+ EG MPSoC XCZU9EG-
2FFVB1156E has 24 GTH ports, whereas the Zynq UltraScale+ EG MPSoC 
XCZU9EG-2FFVC900E has 16 GTH ports.  

One or two MBO devices (Luxtera LUX62608) can be placed in a dBRICK. In the 
case of placing two MBOs, then the dBRICK is bigger forcing to use a 3U dTRAYs 
instead of the 2U housing standard as preferred. 

Regarding the number of memory SO-DIMMs, two or four SO-DIMM memories could 
be placed in a dBRICK. However, four SODIMMs need a bigger dBRICK that again 
forces the use of the 3U dTRAYs. On the other hand, two SO-DIMMs could be used 
in a 2U dTRAY.  

4.2 dTRAY scalability 

This section analyzes the scalability of the dTRAY in terms of the number of 
dBRICKs that could be allocated in a dTRAY.  

The dimensions of a standard 2U dTRAY are width 40cm, length 45 cm, and height 
75mm. The maximum number of dBRICKs that can accommodate a dTRAY is 
sixteen based on the physical dimensions of the dBRICKs and dTRAY. In the 
unfortunate (but improbable) case during prototyping of running out of floorplan 
budget on a dTRAY due to space needed by other components needed (such as the 
power supply or forced use of switches of other dimensions), the number of dBRICK 
slots per tray could be reduced down to twelve.    
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4.3 dBOX scalability 

As discussed in Section 3.1.1, the dBOX will support various number of internal 
optical switches (dBOSM) to provide connectivity to other dBOXes in the rack or in 
other racks  

The selected dBOSM will be the one developed by Polatis for dReDBox building on 
the technology and knowhow used for the Series 6000 single-sided 48xCC OSM that 
provides 24 bidirectional ports. The dimensions of this COTS device are 41mm x 
122mm x 266mm. This is the most compact optical switch module available from 
Polatis and thus this was the reason to select this switch. Polatis is also developing 
the next generation of OSM which will provide 96 ports in the same form factor as the 
48xCC OSM. Due to space limitations in a dBOX, the maximum number of dBOSMs 
that could be placed there would be six (see Figure 15 ï the components marked as 
OSM are the dBOSM switches). Since six dBOSMs would have to be arranged as 
two layers of three then this arrangement is subject to studies of the cooling air flow 
through the dBOX.  

With 6 dBOSMs, the total number of bidirectional ports in a dBOX would be 576 ports 
in total. 288 ports will be facing the dBRICKs and 288 ports facing the second stage 
of the Clos fabric (the dROSMs). This would allow 1:1 subscription (this is full intra 
and inter tray connectivity) for all 16 bricks. This is shown as the leftmost blue 
column in the chart shown in Figure 16. 
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Figure 15 ï dBOX maximum dimensions in millimeters 

 

Figure 16 - dBOSM scaling for different subscription ratios 
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4.4 dRACK scalability 

Figure 17 shows the standard full size rack of 42U, with 1.8m height. A dRACK will 
consist of the dROSM(s) and several dBOXes. The height of a dBOX will be 2U. 12 
dBOXes will consume 24U allowing 16U for dROSMs and any other elements that 
need to be accommodated in a dRACK (e.g. the ñtop of rackò gigabit Ethernet switch 
providing the EPS functionality). Central to this discussion is the nature and port 
density of the dROSM(s), which affects the number of rack units they consume.  

Figure 18 shows the dimensioning of the dROSM(s) based on the assumption that 
the Polatis Series 7000 384×384 port optical switch is used as the building block of 
the second stage of the Clos fabric and that a dRACK will accommodate up to 12 
dBOXes. Each of these switches occupies 4U in the dRACK. (Note that it is expected 
that this density will approximately double over the next 3-4 years and so have two of 
these units on a 4U slot.) 

Another possibility for the realization of the dROSM is to use the same 96-port switch 
module used in the dBOSM. This may provide a denser solution (in terms of rack 
units occupied) and this option will be further studied in the dReDBox project. 

  

 

Figure 17 ï Dimensions and components in a dRACK. a) dRACK with 4x4U dROSM switches and 12 
dBOXes; b) dRACK with 2x4U dROSM switches and 16 dBRICKs. The dROSM switches are placed in 

between the dBOXes to reduce the cabling.  
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Figure 18 - dROSM scaling for different oversubscription ratios. 

The leftmost blue column in the chart in Figure 18 shows that four 384×384 port 
switches will provide sufficient ports to allow a non-oversubscribed switching 
between all the dBRICKs in a dRACK housing 16 dBOXes in which there are 16 
dBRICKs per dTRAY/dBox with 8 bidirectional fibre links per dBRICK. As for the 
dBOSMs, smaller numbers of dROSMs can be used if higher oversubscription levels 
can be tolerated. 

4.5 Datacenter scalability 

This section analyses the maximum number of dRACKS in a datacenter. Figure 19 
shows a possible solution for interconnecting the different dRACKS in a datacenter. It 
consists of using a number of higher-level OSM (dDOSM) on top of the existing 
dROSMs in order to implement the third stage of the Clos fabric and interconnect 
every different dRACK in a datacenter. Every dRACK can connect to the dDOSMs 
using one or more fibre pairs (n). Table 5 shows the resulting maximum number of 
dRACKs and corresponding dBRICKs that can be supported by the same 384×384 
Series 7000 switch from Polatis as proposed for the dROSM. It can be seen that the 
largest datacenter could allocate up to 73,728 dBRICKs (16 dBRICKs x 12 dTRAYs x 
384 dRACKs = 73,728 dBRICKs).  Notice that in this case, it is assumed an over-
subscription network where only one dBRICK from each dRACK could communicate 
to another dBRICK in another dRACK. This is an extreme case that provides 
maximum system scalability. On the other hand, dReDBox does not limit the number 
of fibres coming out from the dRACKs. There could be other possible system 
configurations where the number of fibre pairs per dRACK could be higher. For 
illustration purposes, Table 5 shows the case when there are 8 fibre pairs coming out 
from each dRACK. In this case, the maximum number of dBRICKs will amount to 
9,216 (16 dBRICKs x 12 dTRAYs x 48 dRACKs = 9,216 dBRICKs). 
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Figure 19 ï dRACKs interconnection in a data center 

 

Table 5 - Data center size- 

Number of fibre 
pairs per dRACK 

(n) 

dRACKs dBRICKs 

1 384 73,728  

(16 dBRICKs_per_tray x 12 
dTRAYs_per_rack x 384 dRACKs) 

8 48 9,216 

(16 dBRICKs_per_tray x 12 
dTRAYs_per_rack x 48 dRACKs) 

 

Figure 20 illustrates the scalability of the Data Centre in terms of the number of 
dDOSMs used for a range of subscription ratios at both levels of the network. For 
example, to interconnect 8 dRacks each with 12 dBoxes and each dBox with 16 
dBricks we need 8 dDOSMs to deliver an oversubscription ratio of 2 at both levels 
(see green line). In such configuration, there will be 1536 dBricks. 
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Figure 20 - dDOSM scaling for different subscription ratios. 

5 Orchestration tools and System Software 
Architecture 

This section describes the System Software components that are employed to 
manage and orchestrate the dReDBox hardware, and exploit the benefits of its 
disaggregated architecture. Compared to D2.3, this deliverable has been updated 
with additional details about the design and ongoing implemenation of these 
components. 

This chapter is organized as following. Section 5.1 explains how the concept of 
Software Defined Memory (SDM) is reflected in dReDBox system software, and 
Section 5.2 extends this description by exemplifying the main ideas behind the 
software-defined memory allocation and deallocation.  Finally, Section 5.3 provides a 
more detailed architectural-level description of the main System Software 
components, while Section 5.4 concludes the discussion by describing a software-
based mechanism to implement shared memory on top of the dReDBox architecture.  

5.1 Rack-scale software defined memory system architecture  

dReDBox is a vertical disaggregated architecture that requires hardware and 
software synergy to implement resource pooling. In the spirit of the Software Defined 
Infrastructure (SDI) vision, dReDBox aims at an architecture that will allow authorized 
tenants to describe in software and reserve system resources, at a fine-grained level, 
to execute their applications. Accordingly, the dReDBox system adopts the virtual 
machine as the execution container and type-I Virtual Machine Monitor (VMM) 
architecture to support a software defined deployment. Therefore, the challenges that 
need to be addressed in the context of the dReDBox orchestration and system 
software architecture are the following:  

a) Design and development of a fine-grained resource reservation support and 
appropriate interconnect configuration subsystem. 

b) Global Memory address space management and allocation/freeing 
mechanisms at all involved layers. 
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c) Virtual Machine Monitor (VMM) memory subsystem enhancements to 
facilitate memory hot plugging as well as to integrate remote memory in the 
NUMA hierarchy and possible page relocation policies to improve execution 
performance 

d) VMM-based memory access control for prohibiting accesses to physical 
memory regions that are not currently/yet interfaced to a physical memory 
resource. 

e) Architectural changes and enhancements that are related to the ability to 
dynamically change, at runtime, the physical hardware platform configuration. 
VM migrations will be also addressed in this context.     

5.2 Memory allocation and deallocation processes 

From the point of view of a dReDBox User, Virtual Machines (VMs) are the principal 
unit of resource allocation; users request VMs with a selected number of virtual 
CPUs (vCPUs) and amount of main memory, and the System Software will 
transparently set-up the underlying hardware infrastructure and allocate the 
resources needed to satisfy user requirements from memory bricks to compute 
bricks, and finally start the user VMs. 

There are two distinct but similar processes through which memory is allocated to 
VMs and, consequently, to compute bricks:  

a) at VM initialization and deployment, and  
b) at VM runtime to respond to dynamically changing memory requirements. 

The dReDBox orchestration component receives VM allocation and deallocation 
requests from users. This request will contain at least three required parameters (see 
also D2.6): 

1. Number of vCPUs to allocate to the VM 
2. Amount of guaranteed memory to allocate to the VM 
3. Maximum amount of memory for the VM 

While the meaning of the number of vCPUs is quite obvious, the differentiation 
between guaranteed and maximum memory is less straightforward. Guaranteed 
memory is the minimum amount of memory that the VM will be assigned at any point 
in time, independently on its actual memory consumption. At the same time, a VM is 
allowed to expand and shrink its currently allocated memory beyond the guaranteed 
limit, based on dynamic usage; the maximum memory value controls the amount of 
memory that a VM is allowed to request, subject to global availability. 

At VM initialization and deployment time the orchestration subsystem determines the 
compute brick on which the VM should run, reserves the requested guaranteed 
memory, and sets the rack interconnect up so that the selected compute brick can 
access that memory, before letting the system software running on the compute brick 
deploy and start the VM. 

At runtime, the VM can expand its memory up to the maximum memory threshold by 
using memory ballooning, a software technique that is transparently able to resize 
the amount of physical memory assigned to a VM. The memory balloning driver and 
device used in QEMU have been extended to benefit from disaggregated memory. 
Additional memory resources can be obtained by VMs in two ways. First, the guest 
will try to reclaim pages owned by the memory balloon driver and further, in case the 
balloon does not provide any pages, it will ask the hypervisor to allocate additional 
memory from the disaggregated pool and perform a guest memory hot-plug 
operation. Symmetrically, it is planned to enable memory release functionality in 
order to provide dynamic runtime VM memory management means.  
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Finally, when a VM is stopped the memory is also returned to the global memory 
pool, although the association with the compute brick might or might not be canceled 
immediately, depending on optimization policies. The process described in this 
section is at the core of the dReDBox elastic resource management functionalities  
and will be implemented by a set of distributed software components. 

5.3 Orchestration tools high-level architecture  

 

Figure 21 - Orchestration tools high-level architecture 

In this section, an overview of these components, emphasizing the main design 
decisions in respect of their role and the interplay among each other provide, is 
presented. Figure 21 shows a coarse grain architectural overview of the dReDBox 
system software stack, and more detailed descriptions of individual software modules 
are provided in the following subsections. 








































