
D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 1

H2020 ICT-04-2015

Disaggregated Recursive Datacentre-in-a-Box

Grant Number 687632

D2-4 J System Architecture
specification 'b(

WP29 Requirements and Architecture

Specification, Simulations and Interfaces

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 2

Due date9 PM12

Submission date9 20.01.2017

Project start date9 01.01.2016

Project duration9 36 months

Deliverable lead
organization

BSC

Version9 1-0

Status Final

Author's(9

Hugo Meyer 'BSC(

Ferad Zyulkyarov 'BSC(

Jose Carlos Sancho 'BSC(

Mario Nemirovsky 'BSC(

Josue Quiroga 'BSC(
Maciej Bielski 'VOSYS(

Benjamin Boutin 'VOSYS(

Christian Pinto 'VOSYS(

Ilias Syrigos 'UTH(

Evert Pap 'SINTECS(

Dionisios Pnevmatikatos 'FORTH(

Dimitris Theodoropoulos 'FORTH(

Nikolaos Alachiotis 'FORTH(

˶̡̖̖̟̖̠̚ ̦̟̖̣̙̖̠̅̒ '˻˴˿(

Reviewer's(
Kostas Katrinis (IBM)

Michael Enrico (POLATIS)

Andrea Reale (IBM)

Dissemination level

PU Public

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 3

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project
in accordance with the Consortium Agreement and the Grant Agreement No
687632- It solely reflects the opinion of the parties to such agreements on a

collective basis in the context of the Project and to the extent foreseen in such

agreements-

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 4

Acknowledgements

The work presented in this document has been conducted in the context of the EU

Horizon 2020- dReDBox 'Grant No- 687632(is a 36-month project that started on

January 1st, 2016 and is funded by the European Commission-

The partners in the project are IBM IRELAND LIMITED 'IBM-IE(, PANEPISTIMIO

THESSALIAS 'UTH(, UNIVERSITY OF BRISTOL 'UOB(, BARCELONA

SUPERCOMPUTING CENTER J CENTRO NACIONAL DE SUPERCOMPUTACION

'BSC(, SINTECS B-V- 'SINTECS(, FOUNDATION FOR RESEARCH AND

TECHNOLOGY HELLAS 'FORTH(, TELEFONICA INVESTIGACION Y

DESSARROLLO S-A-U- 'TID(, KINESENSE LIMITED 'KS(, NAUDIT HIGH

PERFORMANCE COMPUTING AND NETWORKING SL 'NAUDIT HPC(, VIRTUAL

OPEN SYSTEMS SAS 'VOSYS(, POLATIS LTD- 'POLATIS(-

The content of this document is the result of extensive discussions and decisions

within the dReDBox Consortium as a whole-

More information

Public dReDBox reports and other information pertaining to the project will be
continuously made available through the dReDBox public Web site under

http9..www-dReDBox-eu-

http://www.dredbox.eu/

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 5

Table of Contents

Executive Summary .. 7

List of Acronyms and Naming Conventions ... 8

1 Introduction .. 10

1.1 Requirements and KPIs fulfilment ... 12

2 System Architecture ... 21

2.1 Overview and Naming Conventions .. 21

2.2 dBRICKs Architecture .. 24

2.2.1 Compute Brick Architecture 'dCOMPUBRICK(................................. 24

2.2.2 Memory Brick Architecture 'dMEMBRICK(.. 28

2.2.3 Acceleration Brick Architecture 'dACCELBRICK(............................. 29

2.3 Tray Architecture 'dTRAY(... 31

2.3.1 Power Consumption ... 33

2.4 Rack Architecture 'dRACK(.. 33

3 dReDBox Modular Network Architecture .. 33

3.1 System-level operation .. 34

3.1.1 Optical circuit switching .. 34

3.1.2 Electrical packet switching ... 35

3.1.3 Electrical circuit switching ... 35

3.1.4 Operational hybrid network flow ... 35

3.2 Practical considerations .. 36

3.2.1 Intra-tray connectivity 'within dTRAY(... 36

3.2.2 Inter-tray connectivity 'between dBOXes(.. 37

3.2.3 Cabling Complexity .. 37

4 Scalability Analysis and Considerations ... 38

4.1 dBRICK scalability ... 38

4.2 dTRAY scalability .. 38

4.3 dBOX scalability .. 39

4.4 dRACK scalability ... 41

4.5 Datacenter scalability .. 42

5 Orchestration tools and System Software Architecture 44

5.1 Rack-scale software defined memory system architecture 44

5.2 Memory allocation and deallocation processes ... 45

5.3 Orchestration tools high-level architecture .. 46

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 6

5.3.1 Orchestration tools ... 47

5.3.2 Compute brick system software ... 48

5.3.3 Virtual machine management ... 49

5.4 Shared memory and device virtualization .. 51

6 Implementation considerations ... 54

7 Analysis and Estimations ... 54

7.1 Efficient Resource Utilization ... 55

7.2 Power Estimations and Projections ... 58

7.2.1 Server-level .. 58

7.2.2 Network-level ... 60

8 Conclusions ... 60

9 References .. 61

10 Appendix I ï SoC Selection Process .. 62

11 Appendix II - Arrayed Waveguide Grating Router 'AWGR(based solutions... 65

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 7

Executive Summary

This document describes the architecture design and specification of the prototype
dReDBox system and provides refinements resp. extensions to deliverable D2.3.

̆̒̕ parts of the text which are new compared to D2.3 are written ̢ ̛̠̖̔ ̎ blue font

color. The document was prepared as a result of series of technical discussions

among the project partners and their direct input. The design and specification

described in this document are driven by the requirements set in deliverable D2.1.

Compared to D2.3, this document provides more details and elabort̎es ̓ ̢̡̟̟̒̕ on

specific architectural design choices.

Unlike traditional datacenters where the basic building block is a monolithic computer

node, the basic building resources in the dReDBox system are called bricks. Each

brick will be a standard hot-pluggable module. The dReDBox system will be

composed of three types of bricks:

1. Compute brick ï module with SoC that will run virtual machines
2. Memory brick ï module with pool of memory to be used as system memory

by the compute bricks
3. Accelerator brick ï module with programmable logic that will speed up kernel

computation

The proposed dReDBox architecture is a disaggregated rack-scale system that

consists of arbitrary types of bricks. The system is anticipated to be organized into

standard 2U rack tray units which will be mounted to a rack. System resources are

aimed to be connected via multiple networks. High-speed and low-latency electrical

network will be used for intra-tray data access in memory bricks. High-speed low-
latency optical network will be used for inter-tray data access in memory bricks. PCIe

network will be used for signaling and remote interrupts. Ethernet network will be

used for data communication, provisioning and platform management.

System software and orchestration tools will be used to provision, access and

manage the system resources. Specifically, the system software will implement

software-defined memory where the memory is accessed via network. The

orchestration software and tools will manage the allocation and deallocation of
memory, allocation of memory address space among virtual machines and also

access the peripheral devices as well as accelerators.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 8

List of Acronyms and Naming Conventions

Processor Core

or

Compute Core

or Core or
Processing
Unit (PU)

An independent processing unit that reads and execute machine
program instructions. Manufacturers typically integrate multiple
cores onto a single integrated circuit die (known as a chip
multiprocessor or CMP), or onto multiple dies in a single chip
package.

Multi-core
processor

A multi-core processor implements multiprocessing in a single
physical package. Designers may couple cores in a multi-core
device tightly or loosely. For example, cores may or may not
share caches, and they may implement message passing or
shared-memory inter-core communication methods.

LLC Last Level Cache. A CPU cache is a hardware cache used by
the central processing unit (CPU) of a computer to reduce the
average cost (time or energy) to access data from the main
memory. Most CPUs have different independent caches,
including instruction and data caches, where the data cache is
usually organized as a hierarchy of more cache levels (L1, L2,
etc.). The shared highest-level cache, which is called before
accessing memory, is usually referred to as the Last Level
Cache (LLC).

Memory
Controller (MC)

Memory controllers contain the logic necessary to read and write
to DRAM, and to "refresh" the DRAM. Without constant
refreshes, DRAM will lose the data written to it as the capacitors
leak their charge within a fraction of a second (not less than 64
milliseconds according to JEDEC standards).

Hypervisor A hypervisor, or virtual machine monitor (VMM), is a piece of
computer software, firmware or hardware that creates and runs
virtual machines.

IaaS Infrastructure as a Service (IaaS) is a form of cloud computing
that provides virtualized computing resources over the Internet.
In an IaaS model, a third-party provider hosts hardware,
software, servers, storage and other infrastructure components
on behalf of its users. IaaS providers also host users'
applications and handle tasks including system maintenance,
backup and resiliency planning.

KVM Kernel-based Virtual Machine (KVM) is a virtualization
infrastructure for the Linux kernel that turns it into a hypervisor.
KVM requires a processor with hardware virtualization
extensions.

libvirt, libvirtd A toolkit to interact with the virtualization capabilities of recent
versions of Linux (and other OSes). libvirt provides all APIs
needed to do the management, such as: provision, create,
modify, monitor, control, migrate and stop virtual domains -
within the limits of the support of the hypervisor for those

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 9

operations. The daemon entity ï part of the libvirt toolkit -
facilitating remote communication with the hypervisor is called
libvirtd.

Direct Memory

Access (DMA)
Direct memory access (DMA) is a feature of computer systems
that allows certain hardware subsystems to access main system
memory (RAM) independently of the central processing unit
(CPU).

NUMA A NUMA (non-uniform memory access) system is a computer
system where the latencies for the processor to access its main
memory varies across the memory address space. These
systems required modified operating-system kernels with NUMA
support that explicitly understand the topological properties of
the system's memory.

Openstack Openstack software controls large pools of compute, storage,
and networking resources throughout a datacenter, managed
through a dashboard or via the Openstack API. Openstack works
with popular enterprise and open source technologies making it
ideal for heterogeneous infrastructure.

OS Operating System

QEMU QEMU is a generic and open source machine emulator and
virtualizer. When used as a machine emulator, QEMU can run
OSes and programs made for one machine (e.g. an ARM board)
on a different machine (e.g. your own PC). When used as a
virtualizer, QEMU achieves near native performance by
executing the guest code directly on the host CPU.

SDM Agent The Software Defined Memory daemon agent is a process
running on dReDBox compute bricks to facilitate remote
provisioning, modification, control and monitoring of virtual
machines.

SDM Controller The Software Defined Memory Controller is a centralized control
entity orchestrating resource management and allocation and
power management across disaggregated of a dReDBox
datacenter.

VM Virtual Machine ï Isolated virtualization unit running its own
guest operating systems

VMM Virtual Machine Monitor. See Hypervisor

Mid-Board
Optics (MBO)

MBO is the natural transition technology from current front-panel
transceivers to more integrated electronic-optical devices. It
avoids the front-panel bottleneck, improves ports and bandwidth
scaling of the rack space and may help to solve the packaging
bottleneck.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 10

1 Introduction

This document is an extension of deliverable D2.3. Parts of the text which are new are
written in blue font colour. Compared to document D2.3, this document provides more
details about the architectural decisions taken by the consortium as well as elaborates
more on the specific techniques such as the memory allocation and remote memory
addressing. A new sub-section has been added, where the correspondence between
requirements respectively KPIs (stemming from deliverables D2.1 and D2.2) and
sections in this document describing architecture choices, where the former are
addressed. The addition of this section is intended to establish a close relationship
between requirements and how these are fulfilled through architecture choices, while
also establish how the latter are relevant to evaluating related KPIs. Furthermore, a
new section (Section 7) has been added to report an analysis improvement in
utilization and power consumption of systems based on the dReDBox architecture.

The architecture of servers has always been designed around trays with a fixed
number of different, tightly coupled with each other components such as processor,
memory, and peripherals. Focusing here on datacenters used to materialize, for
example, cloud or hyperscale computing, conventional architectures thereof typically
house a large set of interconnected racks, each utilizing multiple interconnected
server trays, as abstractly illustrated in Figure 1. In general, a server tray consists of ï
typically multiple ï processing unit(s) (PU) attached via one (resp. multiple) Memory
Controller(s) (MC) to tray-local Random Access Memory (RAM) for rapid instruction
read and fast, random read/write byte-level access to data. The PU can also access
persistent local storage and I/O devices (e.g. flash storage, accelerators) using a
single or a hierarchy of I/O bridges. Similarly, each server tray also hosts one or
multiple Network Interface Cards (NICs); the latter leverage physical connectivity to
dedicated network switches and routers (and rarely also switching capability that is
available on-board on multi-port NICs) to facilitate data exchange between PUs that
reside in distinct server trays and potentially in distinct racks.

Figure 1 ï Contemporary datacenter architecture (each rack comprises a set of server trays and multiple

racks are interconnected to form scalable processing platforms).

This approach introduces limitations in terms of available system resources and
scalability, leading to spare resource fragmentation and inefficiencies in current
datacenters.

At the same time, current datacenter scale-out workloads mostly perform parallel
tasks (e.g., Internet search) that require access to vast amounts of data. Hence, to
tackle the architectureôs poor scalability, previous related works have already
suggested various approaches, primarily targeting the reduction of remote memory
access latency.

For example, in [6] the authors show that such workloads mostly require

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 11

communication between compute cores and LLCs, i.e. there is minimal core-to-core
communication and data coherence activity. Based on these observations, they
propose a scale-out processor architecture, called NoC-Out that decouples LLCs from
the cores, placing them in the die center, which eliminates direct core-to-core
communication, thus reducing the on-chip network complexity. When evaluated on a
64-core CPM, NoC-Out delivers performance improved by 17%, while reducing
network area by 28% compared to a tiled mesh-based design.

Furthermore, in [7] the authors propose the Scale-out NUMA (SO-NUMA) architecture
that exposes remote memory at user level via a remote memory controller (RMC),
which converts memory transactions (e.g. RDMAs) to network operations, hence
bypassing the OS. Results suggest that remote memory access is reduced close to
4x compared to local memory transactions.

The work described in [8] presents an interesting study on how different possible
network interface (NI) placements along many-core SoCs can affect the network
performance. The authors compare three main approaches, (a) the NI placed at the
chipôs edge, (b) each core integrating an NI, and (c) splitting memory request
operations from data accesses, where the former is replicated within each core, and
the latter placed at the chip boundaries. Results suggest that the latter approach
delivers the high bandwidth of (a) and low latency of (b).

dReDBox aims to deliver a disaggregated architecture that will not require memory or
accelerator to be co-located in the same node as the processor. This will enhance
elasticity, improve virtual machine migration, and reduce total cost of ownership
compared to current datacenters. In this new architecture, the main building block is
not anymore the server, but the brick. Different bricks are designed with different
functionality like compute, memory and accelerator bricks.

To build datacenters based on a disaggregated architecture requires new
breakthrough developments in network, memory interface, hypervisor and
orchestration layer. dReDBox will advance and address these requirements during
the project duration.

Specifically, the network should provide ultra-low latency and high bandwidth to
efficiently interconnect disaggregated components in the datacenter. Moreover,
scalable network switches should be used to interconnect large number of
components. In addition, it is desirable that the network configuration should be
performed dynamically even during the application execution. And finally, low power
interconnects will be employed to significantly reduce the cost of owner-ship in
datacenters.

Regarding memory, interfaces should be transparent to application. Remote memory
should require no changes in current applications and because of that it should be
accessed as if it is local memory in todayôs systems. Moreover, remote interrupt
delivery support for Direct Memory Access (DMA) should be provided to interconnect
with peripherals. Extensions in hypervisorsô memory management and configurable
logic will coordinate to provide the transparent access to remote memory.

Finally, the hypervisor and management layer is aimed to support virtual memory
ballooning and hot-pluggable operations of different bricks. A new software-defined
global memory and peripheral resource management will be needed to configure on-
the-fly network devices. In addition, the management layer will also reduce drastically
power through resource management and efficient scheduling of processes/virtual
machines. Integration with existing standard datacenter resource management will be
provided through APIs.

dReDBox aims to showcase its superior value through validation across multiple use
cases from relevant industries. Three use cases have been identified in the project to

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 12

illustrate the advantages of this new architecture. They are video-analytics, network
analytics, and network function virtualization. The project will demonstrate that these
use cases will directly benefit from accessing a very fast and large shared pool of
memory and peripherals in dReDBox. Multiple terabytes of memory will be available
for the first time to applications. This new capability will drive application efficiencies in
different commercial workloads. In general, it is envisioned that datacenter workloads
using multiple terabytes of data will have a substantial benefit of the dReDBox
architecture since it will significantly reduce the negative effect of memory thrashing
due to the limited amount of available memory to processes in todayôs servers. In
contrast, dReDBox will provide vast amounts of memory reducing or even eliminating
the need to memory swapping to disk.

This deliverable is structured as follows:

¶ Section 2 ï System Architecture. Describes the architecture of the system,
including the architecture of the brick, the tray and the whole rack.

¶ Section 3 ï Network Architecture. Describes the multi-component connectivity
and the corresponding network hierarchies and components.

¶ Section 4 ï Scalability Analysis and Considerations. Explores scalability
across dReDBox architecture components and discusses relevant
considerations.

¶ Section 5 ï Orchestration tools and System Software Architecture. Introduces
the design of the compute brick operating system/hypervisor and of
orchestration software.

¶ Section 6 ï Implementation considerations. Discusses various potential issues
related to the implementation and their candidate solutions.

¶ Section 7 ï Includes analysis about the utilization of a disaggregated system
based on dReDBox as well as power estimates.

1.1 Requirements and KPIs fulfilment

Deliverables D2.1 and D2.2 have identified a set of functional and non-functional
requirements deriving directly or indirectly from the application use-cases and from
the general objectives of the project. This document draws directly from those
requirements, and their related KPIs, to define the system architecture. Before going
into the details of the dReDBox architecture, we summarize, in Table 1 and Table 2,
the direct links between requirements and architectural choices, which will be
expanded in the rest of this document.

Table 1. Mapping of requirements to design choices.

Requirement Name Fulfilment (Section and description)

HW-platform-f-01 Brick types per
functionality

Sections: 2.2.1, 2.2.2, 2.2.3

The dReDBox prototype will have 3 types of dBRICKs
(dCOMPUBRICK in Section 2.2.1, dMEMBRICK in 2.2.2,
and dACCELBRICK in 2.2.3).

HW-platform-f-02 Intra-Tray system
interconnection

Sections: 2.2, 2.3, 3.2

Each dBRICK will connect to an intra-tray electrical
switch dBESM via GTH ports (Section 2.2). The electrical
switch will be on the dTRAY (Section 2.3). The intra-tray
connectivity is described in Section 3.2.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 13

HW-platform-f-03 Off-Tray system
interconnection

Sections: 2.2, 2.3, 3.2.2

Each dBRICK will connect to an optical switch dBOSM
via MBO (Section 2.2). The MBO will do electrical to
optical conversion. dBRICKs will connect to the MBO via
electrical ports and then the optical ports of the MBO will
connect to the dBOSM switches. The dBOSM switches
will be connected to middle-of-the-rack dROSM switch
and provide inter-tray connectivity (Section 3.2.2)

HW-platform-f-04 Data and platform
management brick
interconnection

Sections: 2.3, 3

The dTRAY will have Ethernet controller for layer-2
connectivity within the dTRAY (Section 2.3) and with
other dTRAYS (Section 3).

HW-platform-f-05 Tray network
switch control
interconnection

Sections: 2.3, 3

The dTRAY has Board Management Computer (BMC)
responsible for configuring and managing the on tray
network interfaces (Section 2.3). Additionally, each
network controller and switch will provide interfaces for
configuration (Section 3).

HW-platform-f-06 Tray switching to
low-power mode

Section: 2.3

The dTRAY will have BMC, which will provide for
programmable management of dTRAYôs power states
(Section 2.3).

HW-platform-f-07 Tray position
identification

Sections: 2.3, 5, 5.3

The BMC in a dTRAY will maintain information about the
position of the tray on the track (Section 2.3). Position
discovery will be facilitated over orchestration tools
(Section 5 and 5.3).

HW-platform-f-08 Field-replacement
of bricks

Sections: 2.2, 2.3

Different types of dBRICK will have standard physical
interface (Section 2.2) to be plugged in standard dTRAY
slots (Section 2.3). Any dBRICK can be plugged in any
available slot on the dTRAY.

HW-platform-f-09 Hot-plugging/-
Unplugging of
bricks

Sections: 2.2, 2.3, 5

The dBRICKS will be hot-pluggable and the dTRAY will
discover the plugged or unplugged dBRICK. The HW
support of hotplugging is described in D5.1 and the SW
support will be provided and managed via the
orchestration tools (Section 5).

HW-platform-f-10 Brick power state
control and power
monitoring

Sections: 2.2, 2.3

dTRAY will provide physical and software interface for
turning on/off a specific dBRICK. The dBRICKs circuitry
will be designed in a way that a brick can be switched off.
These are described in more details in D5.1 (Section
2.2). The software interface for turning off dBRICKs is
provided via the BMC (Section 2.3).

HW-platform-f-11 Tray temperature Section: 2.3

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 14

monitoring and
cooling control

dTRAY will have temperature sensors to take
temperature probes on the tray. The temperature sensors
can be read via the BMC (Section 2.3). More information
about the temperature sensors can be found in D5.1.

HW-platform-f-12 Brick position
identification

Sections: 2.2, 2.3, 5

dBRICKs will be assigned unique ID (Section 2.2). The
BMC on the dTRAY and the orchestration tools will keep
track of the location of the dBRICK within a dTRAY and
the dRACK (Section 2.3, 5). dBRICK identification would
be implemented via the glue logic or ROM

HW-platform-f-13 Brick type and
status
identification

Section: 2.2, 2.3

Each dBRICK will be able to identify its type. dBRICK
identification is implemented via the glue logic or ROM.

HW-platform-f-14 Remote
peripherals
functionality

Section: 2.3

dBRICKS will connect to a PCIe switch located on the
dTRAY (Section 2.3). The PCIe switch will be
interconnected to a remote tray with peripherals.

HW-platform-nf-01 Tray form-factor Section: 4.3

The tray form factor will be 2U (Section 4.3).

HW-platform-nf-02 Tray Heat
Dissipation and
Cooling

Section: 2, 3

The hardware will be able to operate in temperature
ranges from 10C to 40C. Each tray will have fans for air
cooling (see D5.1).

HW-platform-nf-03 Tray brick
cardinality/density

Section: 4.1

dBRICKs sizes are set so that a dTRAY can have up to
16 dBRICKS of any type.

Memory-f-01 Correctness Section: 2.2

The glue logic will take care of address translations and
correct addressing between virtual-to-physical and then
physical-to-remote memory. Network switches will be
configured to interconnect the dBRICKs.

Memory-f-02 Coherence
support

Section: 2.2.1

The memory coherence will be readily provided by the
cache coherence implementation on the respective SoC
on the dCOMPUBRICK.

Memory-f-03 Memory
consistency model

Section: 2.2.2

When working in non-shared memory allocation, the
consistency protocol implemented by the SoC is reused
to guarantee consistency in disaggregated memory.
Software locks are used to guarantee strict ordering
when memory areas are shared among compute bricks.

Memory-f-04 Memory-mapping
and allocation
restrictions

Section: 2.2.2

The dReDBox design will not impose restrictions other
than what is already imposed by the selected SoCs. The

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 15

imposed minimum granularity of allocations will be 1GB, due to OS
kernel restrictions.

Memory-f-05 Hot-plug Memory
expansion

Sections: 2.2.2, 2.3, 5

dBRICKs and dTRAYs will support hot-plugging including
memory.

Memory-f-06 Redundancy for
reliability and
availability

Sections: 2.2.2, 5

The redundancy can be implemented with a combination
of the glue logic (Section 2.2.2) and the hypervisor
(Section 5).

Memory-nf-07 Disaggregated
Memory Latency

Sections: 2.2.1, 2.2.2

Latency to access remote memory is aimed to be less
than 1000ns. Low latency dBESM and dBOSM switches
will be used to keep it low.

Memory-nf-08 Memory
Bandwidth

Sections: 2.2.1, 2.2.2

Bandwidth depends on the bandwidth of the GTH ports,
and the switches interconnecting the GTH ports.
Bandwidth can be aggregated by connecting dBRICKs
via multiple links.

Memory-nf-09 Application-level
Memory
Bandwidth

Sections: 2.2.1, 2.2.2

Additionally, to the memory bandwidth characterization
described above, the local CPU caches may have the
effect of further improving the available bandwidth as
seen by applications.

Memory-nf-10 Scalability Sections: 2.2.1, 2.2.2

Each dCOMPUBRICK can attach to multiple
dMEMBRICKs.

Network-f-01 Topology Sections: 3, 3.2.2, 4.3

It is possible to interconnect every dBRICK with any other
dBRICK.

Network-f-02 Dynamic on-
demand network
connectivity

Sections: 2.2.1, 3, 5

dBOSM and dBESM switches can be configured
dynamically.

Network-f-03 Optimization of
network resources

Sections: 3, 3.1, 5

Dynamic reconfiguration of switches allows on demand
connection configuration.

Network-f-04 Automated
network
configuration

Section: 3, 3.1, 5

The interfaces exposed by switching components will
allow the orchestrator to implement algorithm to optimize
network utilization.

Network-f-05 Network
scalability

Sections: 2.3, 4.3

dReDBox can scale to multiple racks, as explained in
Section 4.3.

Network-f-06 Network resource Sections: 3.1, 5

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 16

discovery Network resource discovery will be handled in software
and the information made available to the orchestration
tools (Section 3.1, 5)

Network-f-07 Network
monitoring,
management and
control

Sections: 3.1, 5

Network monitoring and management will be
implemented in software and exposed together with the
orchestration dashboard.

Network-nf-01 Data rate Sections: 2.3

Use of high-speed network switching technologies.

Network-nf-02 Latency Sections: 2.3, 3

Use of ultra-low-latency network switching technologies.

Network-nf-03 Port count Section: 2.2, 2.3, 3.2

High-port density switching architecture at tray and rack
level

Network-nf-04 Reconfiguration
time

Sections: 3, 4.3, 5

Port and network configuration mainly happens at VM
creation times; reconfigurations in other moments is
expected to happen very infrequently. Because of that
network configuration time will not affect the overall
performance.

Network-nf-05 Power Sections: 2.3, 7.2.2

Use of low power density switches and transceivers.

Network-nf-06 Bandwidth density Sections: 2.3, 4.1

The bandwidth density depends on the network devices
and switches.

Software-f-01 Topology
registration

Section: 5.3

A registration interface is exposed by the SDM-Controller.

Software-f-02 Virtual Machine
definition

Section: 5.3

The SDM-Controller is responsible of accepting VM
definitions.

Software-f-03 Virtual Machine
instantiation

Section: 5.3

SDM-Controller, in conjunction with SDM-Agent and
system software components co-operate to instantiate
VMs.

Software-f-04 Virtual Machine
resizing

Section: 5.3

Memory resizing is supported through a combination of
ballooning and hot-plug techniques and coordinated by
SDM Controller and SDM Agent.

Software-f-05 Virtual Machine
migration

Section: 5.3

The orchestration supports relocating VM memory to
other nodes for VM migration.

Software-nf-06 Standard Section: 5.3

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 17

interfaces The orchestration tools and system software integrate
with existing and widely used industry standard software
and tools such as Openstack and KVM.

Software-nf-07 Power
optimization

Section: 5.3

The orchestration and management tools will be able to
dynamically resize and power off or power on resources
on demand via standard interfaces.

Software-nf-08 Authentication
and authorization

Section: 5.3

The orchestration and management tools will implement
authentication and authorization, login page, roles, etc.

Software-nf-09 Scalability Section: 5.3

The SDM-Controller and orchestration components are
deployed expected to scale comparably to standard cloud
management tools

Software-nf-10 Reliability Section: 5.3

Resource management and status data will be persistent
on reliable storage.

Software-f-11 Support
Virtualization on
disaggregated
resources

Sections: 2, 5.3

The selected HW platform supports HW virtualization.
KVM will be used as a hypervisor and VMs will be
launched on dCOMPUBRICKs.

Software-f-12 Resizing of
resources

Sections: 5.2, 5.3

The orchestration and management software will
implement memory resizing and configuration.

Software-f-13 Support virtual
machine migration

Sections: 5.3

SDM-Agent and kernel extensions implement mechanism
that permit to identify VM-specific memory areas,
snapshot them and enable their migration.

Software-nf-14 Differentiate
between non-
uniform memory
access latencies

Section: 5.3

System software will provide NUMA support for memory
access to local/remote memory.

Software-nf-15 Inter-brick
communication
mechanisms

Sections: 2.3, 5.4, 6

Different bricks will be able to signal each other via
remote interrupts implemented over PCIe network.

Table 2. Facilitation of KPIs estimation.

KPI Name Section

hw-platform-kpi-01 Utilization of resources Sections: 2, 3

Facilitated by design for disaggregation (pooling)
of IT resources

hw-platform-kpi-02 Energy proportionality Sections: 5 and 7

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 18

Section 7 provides preliminary operating
estimations of static power proportionality.
Resource management including power control
facilitates estimation of KPI in the dynamic range.

Memory-kpi-01 System-level latency Sections: 3.2, 3.2.2, 7.1

Based on the specs of dBESM, dBOSM, and
estimating the overheads of glue logic, the system
level latency is expected within the target. Section
7.1 makes estimations via simulations about the
target latency.

Memory-kpi-02 Application-level latency Sections: 3.2, 3.2.2, 5

Application level latency is to be improved
(compared to raw latency) and evaluated via
system software mechanisms (NUMA support,
prefetching of remote pages).

Memory-kpi-03 System-level bandwidth Sections: 2.2, 3.2, 3.2.2

dBRICKs can be interconnected with multiple links.
For example, a dCOMPUBRICK can connect to
dMEMBRICK with 8 GTH ports each with 10Gbps
bandwidth and achieve 80Gbps aggregate
bandwidth.

Memory-kpi-04 Application-level bandwidth Sections: 2.2, 3.2, 3.2.2

The application-level bandwidth can be observed
to be up to 10% lower because of the header
overheads.

Network-kpi-01 Port count Section: 4.3

dBOX will have multiple Polatis Series 6000
single-sided 48xCC OSM, each providing 24
bidirectional ports.

Network-kpi-02 Module volume per port Sections: 3.2.2, 4.3

Based on selected optical switches the module
volume per port will be within the target range.

Network-kpi-03 Operating frequencies Sections: 3.2.2, 4.3

Based on selected optical switches the operating
frequency will be within the target range.

Network-kpi-04 Typical insertion loss Sections: 3.2.2, 4.3

Based on selected optical switches the insertion
loss will be within the target range.

Network-kpi-05 Crosstalk Section: 3.2.2, 4.3

Based on selected optical switches the cross talk
will be within the target range.

Network-kpi-06 Switching configuration
time

Section: 3.2, 3.2.2, 4.3

Based on selected switches the switching
configuration will be within the target range.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 19

Network-kpi-07 Switching latency Section: 3.2.2, 4.3

Based on selected optical switches the switching
latency will be within the target range.

Network-kpi-08 Power consumption Section: 3.2, 3.2.2, 4.3

Based on selected optical switches the power
consumption will be within the target range.

Network-kpi-09 Capacity Section: 3.2.2, 4.3

Based on the selected MBO the capacity will be
within the target range.

Network-kpi-10 Channels Section: 3.2.2, 4.3

Based on the selected MBO, the MBO will have 8
channels at 25Gb/s

Network-kpi-11 Bandwidth Density Section: 3.2.2, 4.3

Based on the selected MBO, bandwidth density
will be within the target range.

Network-kpi-12 Centre frequency Section: 3.2.2, 4.3

Based on the selected MBO, center frequency will
be within the target range.

Network-kpi-13 Energy efficiency Section: 3.2.2, 4.3

Based on the selected MBO, energy efficiency will
be within the target range.

Network-kpi-14 Power budget Section: 3.2.2, 4.3

Based on the selected MBO, power budget will be
within the target range.

software-kpi-01 VM creation delay (without

image transfer)

Section: 5

Compared to VM startup in traditional datacenters,
there will be delays due to remote memory latency.
However, given that traditional VM startup times
are in the order of seconds due to VM-image
copying, the target KPI is expected to carry
insignificant overhead as perceived by the end
user.

software-kpi-02 Memory Elasticity Section: 5

Memory resizing is not expected to be a frequent
operation, especially resizing at the remote
memory dMEMBRICK. It can be optimized by
allocating more memory in advance and using
memory ballooning at VM/host level.

software-kpi-03 VM migration completion

time

Section: 5

VM migration would not require copying memory.
The only significant overhead would be re-
configuration of network. This is confidently
expected to be within the target range of tenths of
seconds per 1GiB VM.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 20

software-kpi-04 Latency of remote

peripheral communication

Section: 2.3, 5.4

Access to peripherals will be implemented via virtio
and transmitted via the fast-electrical optical
networks for memory communication. The latency
for communication with the remote peripherals is
expected to be within the target range of about
1000ns.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 21

2 System Architecture

This section presents the overall architecture of a dReDBox datacenter. The
presentation starts with an overview of a dReDBox 2U carrier box1, followed by an
overview of a dReDBox rack; a set of multiple dReDBox racks builds up ï
interconnected via an appropriate datacenter network - to form a dReDBox
datacenter. As part of the overview, we also include a comprehensive definition of
components and their naming conventions specific to dReDBox. Subsequently, we
present the rack-level architecture, following a bottom-up approach. While inevitably
some detail is given pertaining to the memory/data interconnect, we defer a
comprehensive presentation thereof until Section 3.

2.1 Overview and Naming Conventions
The dReDBox architecture comprises pluggable compute/memory/accelerator
modules (termed ñbricksò in dReDBox terminology) as the minimum field replaceable
units. A single or sets of multiples of each brick type forms an IT resource pool of the
respective type. A mainboard tray with compatible brick slots and on-board
interconnection, flash storage and baseboard management components is used to
carry (up to 16) bricks. A 2U carrier box (visually corresponding from the outside to a
conventional, rack-mountable datacenter server) in turns hosts the mainboard tray
and the intra-tray optical switch modules.

Figure 2 - Overview of a dReDBox carrier box (ñdReDBox-Boxò), hosting a tray that carries arbitrary

combinations of compute/memory/accelerator bricks, an electronic switch matrix for intra-tray connectivity

and a set of optical switches for off-tray interconnection.

1 We deliberately avoid to use the term ñdReDBox serverò to distinguish from the ramifications that
conventional datacenter server structures bring to utilization, Total Cost of Ownership and further
limitations, as discussed in details in Section 1.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 22

Figure 2 illustrates the design briefly described above. The figure is best understood
by defining the nomenclature and the concise scope and role of each of its main and
distinguishing constituent components2, as given below:

dBOX

A dReDBox-Box houses the main components of
the dReDBox system and can be considered the
heart of the dReDBox system. The dBOX will be
compatible with standard datacenter infrastructures
and will look like any other server.

dTRAY A dReDBox-Tray provides the interconnection and
supporting functions for the different dReDBox-
modules. It serves as a ñmotherboardò in the dBOX.

dBRICK

A dReDBox-Brick forms the minimum,
independently replaceable unit in the dReDBox
datacenter. There are three different types of
dReDBox-Bricks: compute, memory and accelerator
bricks. At any hierarchy level, dBRICKs are
interchangeable and can be deployed in arbitrary
combinations to closely match service provider
and/or user needs.

dCOMPUBRICK The dReDBox-Compute-Brick constitutes the
minimum replaceable unit providing general-purpose
application processing to the dReDBox datacenter.

dMEMBRICK The dReDBox-Memory-Brick constitutes the
minimum replaceable unit providing disaggregated
memory to the dReDBox datacenter.

dACCELBRICK The dReDBox-Accelerator-Brick constitutes the
minimum replaceable unit providing programmable,
application-specific accelerated processing to the
dReDBox datacenter. It will also have the ability to
interface with a 100GbE interface on the dTRAY.

dBESM The dReDBox-Box-ESM is a Custom-Off-The-Shelf
(COTS) Electrical Switch Matrix (ESM) used to
interconnect dBRICKs residing with the same dBOX.

dBOSM The dReDBox-Box-OSM is a COTS Optical Switch
Matrix (OSM) used to interconnect dBRICKs residing
within a dBOX to dBRICKs residing in remote
dBOXes (either in the same or in distinct racks). The
OSM can also be used for intra-tray dBRICK
interconnection, coupling the ESM to increase
density and/or throughput of connectivity in the tray.

The dBOX forms the basic building block to construct a dReDBox rack (termed

2 Since this is an overview of the architecture and for the sake of controlling complexity, we defer here a
rigorous reference to every single component, such as e.g. tray-level non-volatile memory to store
firmware and boot images, PCIe connectivity to peripherals, Ethernet connectivity and baseboard
management components. These are outlined in detail in the rest of this section.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 23

ñdRACKò). Unlike the dBOX, the dRACK resembles more of a conventional
datacenter rack: carrier boxes are stacked up into a 42U rack, including network
switches that facilitate intra-rack communication, as well as connectivity to the rest of
the datacenter racks through the datacenter-level network.

Figure 3 ï Overview of a dReDBox rack (resp. datacenter) architecture comprising several dBOXes

interconnected with hybrid optical and electrical switching (ñdROSMò).

Figure 3 illustrates the rack (resp. datacenter) design briefly described above. Similar
to the approach followed in the previous to present the seminal components
comprising a dBOX, the respective list of definitions pertaining to a dReDBox rack
(resp. datacenter) is given below:

dRACK A dReDBox-Rack houses multiple, interconnected dBOXes.

In the scope of the project, it forms the complete dReDBox

system. The dRACK is the final Hardware deliverable

associated with ñD5.2: Hardware integration and tests of all

bricks and tray (b)ñ. The dRACK will be used as the platform

for the different demonstrators.

dPERTRAY The dReDBox-Peripheral-Tray is a COTS product providing

convenient support for attaching different kind of peripherals

(notably secondary storage) through a PCIe bus. This will be

a ñplug-and-playò solution which can be connected to a
dBOX using a standard PCIe cable.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 24

dROSM The dReDBox-Rack-OSM is a COTS Optical Switch Matrix

used to interconnect dBRICKs residing in distinct dBOXes
with the same dRACK. It also serves as a leaf-switch to route
traffic emanating from (resp. terminated at) the local dRACK
to a datacenter destination (resp. from a datacenter source)
residing off the local dRACK. In the project, we also aim to
experiment with an embodiment of a dROSM featuring hybrid
optical/electronic (i.e. both fiber- and packet-switching).

dDOSM The dReDBox-Datacenter-OSM is used to interconnect the

different dRACKs in a datacenter. It will connect to the

different dROSMs in the datacenter. The dDOSM is here

referenced for the sake of completeness and to facilitate a
discussion of the overall scalability potential of a dReDBox
datacenters. However, its further materialization is out of the
scope of the project.

dCLUST A dReDBox-Cluster is a logical grouping of dBOXes residing

within the same dRACK. The decision of sub-dividing a

dRACK into dCLUSTs is mainly motivated by the port density
limits of a dROSM, as the largest commercially-available
dROSM is not capable of interconnecting all the dBOXes

within a 42U dRACK.

dCLUSTPSU The dReDBox-Box-PSU is an AC/DC power supply, capable

of providing enough power to a fully provisioned dCLUST.

We note that the above defined nomenclature will be used throughout the project
(also in the rest of this deliverable) to refer to any of the above components, forming
the master section of reference for any dReDBox-specific term. While future
deliverables may reiterate ï partly or in their entirety ï these definitions for the sake of
being self-contained, or even further specialize by adding additional context-specific
definitions, we will strive to keep the above set of definitions consistent and complete
throughout the project.

2.2 dBRICKs Architecture

dBRICKs are the smallest realization unit in the dReDBox architecture. The term

encompasses general-purpose processing (dCOMPUBRICK), random-access

memory (dMEMBRICK) and application-specific ñacceleratorsò (dACCELBRICK). As

described above, dBRICKs will be connected to the rest of the system by means of a
tray that besides connectivity will also provide the necessary power to each brick.

2.2.1 Compute Brick Architecture 'dCOMPUBRICK(
The dReDBox compute brick (dCOMPUBRICK) is the main processing block in the
system; a block diagram depicting the architecture of the dCOMPUBRICK is shown
in Figure 4. Following a rigorous comparative evaluation of candidate SoCs (cf.
Appendix I ï SoC Selection Processò), the consortium has decided to use the Xilinx
Zynq Ultrascale+ MPSoC (EG version) [10] as the compute brickôs System-On-Chip.
The selected SoC integrates a quad-core A53 ARM Application Processing Unit
(APU) and a dual-core ARM Cortex R5 Real-time Processing Unit (RPU). Among

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 25

others, this choice reduces the number of components (no separate FPGA chip

needed), eventually leading to smaller dBRICKs sizes and power consumption.
Another benefit of using a reconfigurable SoC as PUs is their flexibility in terms of
supporting access to memory modules of different technologies (e.g. HMC). The
same would require a major investment in the case of ASIC-based SoCs. Trading off
these advantages, it must be noted that reconfigurable SoCs integrate less powerful
software processing units, compared to multicore platforms at the same cost range.

The compute brick hosts local off-chip memory (DDR4) for low-latency and high-
bandwidth instruction read and read/write data access, as well as Ethernet and PCIe
ports for data and system communication and configuration. Also, each
dCOMPUBRICK features QSPI-compatible flash storage (16-32 MB) and a micro-
SD card socket (not shown in Figure 4) to ease flashing of firmware and boot images
from locally, in case of disconnection or for debugging purposes.

D
D

R
 m

e
m

o
ry

MHP1

MC

transaction

glue logic

Zynq US+
PL

MHP0

local

NI / switch

...

GTHGTH

regs

dCOMPUBRICK

SHPC0

SHPC1

AXI

I/C

DMA

engine

DMA

engine

AXI

I/C

APU

P
C

Ie
E

th
e

rn
e

t

...

RMST

GTH GTH

...

p
a

c
k
e

t-
b

a
s
e

d

c
ir
c
u

it
-b

a
s
e

d

Legend: CBN = circuit-based network, PBN = packet-based network
PBNCBN

Figure 4 - Block diagram of a dCOMPUBRICK, featuring the Xilinx Zynq Ultrascale+ MPSoC (EG version) as

a quad-core SoC. The MPSoC integrates a quad-core ARM Application Processing Unit (APU) for software

execution. The on-chip programmable logic on the SoC is used to host transaction glue logic, housekeeping

state, and communication logic, required for accessing disaggregated resources. The local DMA engines

allow the system software to efficiently migrate pages from remote memory regions to local DDR memory.

The compute brick can reach disaggregated resources, such as memory and
accelerators, via dReDBox-specific glue intellectual property (termed ñTransaction
Glue Logicò) on the data-path and communication endpoints implemented on the
programmable logic of the dCOMPUBRICKôs Zynq Ultrascale+ MPSoC. System
interconnection to disaggregated resources occurs via multiple ports leading to
circuit-switched tray- and rack-level interconnects (dBESM/dBOSM and dROSM
respectively, as defined in Section 2.1). As also shown in Figure 4, we also plan to
experiment with packet-level system/data interconnection, using Network Interface
(NI) and a brick-level packet switch (also implemented on programmable logic of the
dCOMPUBRICK MPSoC), on top of the inherently circuit-based interconnect
substrate. While not in the critical path in terms of project delivery and impact, there
is potential value in such an approach, specifically in terms of increasing the
connectivity of a dCOMPUBRICK due to multi-hopping and thus creating an
opportunity to increase the span of resource pools reachable from a single
dCOMPUBRICK.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 26

For each request arriving to the Transaction Glue Logic (TGL) block, the Remote
Memory Segment Table (RMST) is consulted to identify if and where the request
should be forwarded to. The RMST is a custom module (aimed to be implemented in
custom logic on the MPSoC Programmable Logic) that acts as a proxy for the remote
nodes (memory or accelerator), and can be configured by the orchestration tools via
the APU Master High-Perforamnce Port 0 (MHP0) port. Moreover, the APU forwards
all remote memory requests to the RMST via its Master High-Performance Port 1
(MHP1). When transmitting data to a remote node, the TGL is responsible for
receiving the request from the APU, decoding it to determine where it should be sent,
and forwarding it to the appropriate outgoing high-speed port, which leads to a
circuit-switched path that would have been already set up via orchestration
procedures. Along with the corresponding output link, the RMST will also be provided
with other management information necessary (remote memory size, offset, etc.).
The RMST is a fully associative structure, whose entries identify large and
contiguous portions of memory space, so we expect that a few tens of entries will be
able to address very large amounts of disaggregated memory space.

segment 7 start segment 7 end

memory

address

write data

to packet

/ circuit

switches

orchestration

 tools

configurable translator

segment 0 start segment 0 end remote offset 0

remote offset 7

...... ...

? ?...

...

+

-
from packet

/ circuit

switches

...

data read

local memory

address

remote memory

address

segment id

data read

write data

load memory

address

Figure 5 - The Remote Memory Segment Table (RMST) performs address translation for accessing remote

memory and store receiving data. The remote offset field is used to translate the local address to the

disaggregated (remote) memory module space. The RMST provides additional information such as the

output link to send each request.

Figure 5 shows how the RMST translates local virtual memory addresses to remote
physical addresses and vice versa. At boot time of a dCOMPUBRICK and among
other tasks, the orchestration tools: (a) divide the nodeôs visible memory space to
local segments, each one associated with a running VM, (b) allocate a set of
corresponding remote physical memory segments, adjusted with a fixed offset, and
(c) configure the local TGL block (via the MHP0 port) by writing to it for each local
segment its start address, end address and remote offset. When the local
dCOMPUBRICK issues a store to a memory address that falls within the remote
region, then the local address is adjusted by the TGL translation unit with the
corresponding offset, then encapsulated with the data plus required network
information, and transmitted to the network. On the reverse path, incoming data
consist of the requested payload, the segment id, and the remote memory address.
Based on the segment ID, the translator subtracts the required offset and forwards

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 27

the locally translated address with the payload to the Processing System of the local
dCOMPUBRICK.
Table 3 - Input / output port of the HLS-based RMST implementation.

Port name Direction Description

memTransactionAddr egress VM address to be translated

segmentId ingress
The segment number that a remote
memory transaction belongs to

remoteMemTransactionAddr ingress
The remote memory address that
needs to be translated back to the local
VM visible region

translatedAddr egress The VM translated address

netId egress
The network interface id that a local
memory transaction should be
forwarded to

remoteAddressTranslated ingress
The remote address translated back to
the local VM visible region

In order have a first indication of the required resources and achievable performance
of the RMST, we implemented it in hardware using the Xilinx Vivado HLS 2016.2
tool, and mapped it on the Xilinx ZU9EG device, based on the Zynq Ultrascale+
architecture. The current implementation supports up to 8 segments; each segment
entry includes its start / end address, a preset offset by the orchestration tools, and
the output network interface id that the memory transaction should be forwarded to.

Table 3 provides the glue logic ingress and egress ports from the VM perspective.
More specifically, regarding egress-related ports, ñmemTransactionAddrò is a 64-bit
physical address that needs to be adjusted (translated) by the required offset to point
to the correct remote memory location, ñtranslatedAddrò is the 64-bit adjusted
address, and ñnetIdò the network interface id that this memory transaction should be
forwarded to.

Regarding ingress-related ports, ñsegmentIdò is the segment that an incoming
memory transaction (e.g. the response of a remote memory read) belongs to,
ñremoteMemTransactionAddrò is the corresponding 64-bit remote memory address,
and finally ñremoteAddressTranslatedò is the brick local address within the range of
the physical address space of the compute brick.

Table 4 - Estimated resources utilization on the ZU9EG Zynq Ultrascale+ device

Resource type Number of elements % occupancy

Flip flops 151 / 548160 ~0%

Look-up tables (LUTs) 1191 / 274080 ~0%

Estimated, clock period: 4.47nsec (233 MHz), 1 cc latency, 1cc intermediate interval

In terms of performance, Table 4 shows the estimated resource utilization of the
RMST module instance, provided by the Xilinx HLS estimator, when mapped on the
ZU9EG device. As seen, resource utilization is extremely low. Moreover, the
estimated clock frequency is at 4.47 nsec with a 1-cycle latency, and intermediate
interval 1 cycle, meaning that it can perform 1 translation / cc at 223MHz. In other

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 28

words the current implementation can achieve an estimated 64bit * 233 MHz =
14.9Gbps throughput per network interface. This fact agrees with the memory
system KPI reported in the revised version of D2.1 (Section 3.2) for system level
reconfigurability (a few msecs) and fine grained memory allocation (few hundreds of
Mbytes). This is the software defined configuration depth intended in obj3.3 of the
dReDBox DoW. Moreover, intercepting requests at the AXI cache coherent
interconnect and directly sending data over the dReDBox network totally decouples
dynamic memory storage technologies and provides the ability to implement a
transparent access scheme (obj3.1 of the dReDBox DoW). This is the first step
towards serving the obj1.1 of the dReDBox project DoW towards realizing a vertical
software defined infrastructure. Obj3.2 will be addressed in the next version of this
deliverable.

2.2.2 Memory Brick Architecture 'dMEMBRICK(

glue

logic

dMEMBRICK

AXI

I/C

PL
FPGA chip

local

NI / SW

...

GTHGTH

Legend: CBN = circuit-based network, PBN = packet-based network
PBNCBN

DDR

memoryDDR ctrl

HMC

memory

HMC ctrl

...

...

Figure 6 - dMEMBRICK architecture featuring the Xilinx Zynq Ultrascale+ MPSoC (EG version); the local

switch forwards system / application data to the memory brick glue logic, which interfaces different memory

module technologies.

Figure 6 shows the memory brick (dMEMBRICK) architecture, which is a key
disaggregation feature of dReDBox. It will be used to provide a large and flexible pool
of memory resources which can be partitioned and (re)distributed among all
processing nodes (and corresponding VMs) in the system. dMEMBRICKs can support
multiple links. These links can be used to provide more aggregate bandwidth, or can
be partitioned by the orchestrator and assigned to different dCOMPUBRICKs,
depending on the resource allocation policy used. This functionality can be used in
two ways. First, the nodes can share the memory space of the dMEMBRICK,
implementing essentially a shared memory block (albeit shared among a limited
number of nodes). Second, the orchestrator can also partition the memory of the
dMEMBRICK, creating private ñpartitionsò for each client. This functionality allows for
finer-grained memory allocation. It also requires some translation and protection
support in the glue logic (transaction glue logic block) of the dMEMBRICK.

The glue logic which does memory translation interfaces with the requesting
dCOMPUBRICKs, both of which are coordinated by the orchestrator software.
Besides network encapsulation, the memory translator under the control of the
orchestrator controls the possible sharing of the memory space among multiple
dCOMPUBRICKs, enabling support for both sharing among and protection between
dCOMPUBRICKs. The control registers allow the local mapping of external requests
to local addresses to allow more flexible mapping and allocation of memory.

A dMEMBRICK can be dimensioned in terms of memory size as well as on the
number of memory controllers it supports, so as to adapt to the size and bandwidth

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 29

needs at the tray and system levels. In the scope of the project and due to constraints
posed by the logic available on the cutting-edge FPGA module that is to be used for
prototyping the dMEMBRICK (Xilinx Zynq Ultrascale+ MPSoC), we plan to implement
up to 2 (two) memory controllers on the dMEMBRICK. Also, in reference to Figure 6,
we note that the dMEMBRICK architecture is not limited to a specific memory
technology, as long as this is supported by the transaction glue logic implementation.
For example, the dMEMBRICK architecture can seamlessly support both DDR and
HMC memory technologies; the glue logic is connected to an AXI interconnect, hence
directly interfacing both Xilinx DDR and HMC controller IPs. When a new memory
request arrives (write or read), the AXI interconnect checks the memory address, and
forwards it to the corresponding controller. However, in the scope of the project,
prototyping and evaluation is planned using only DDR4 memory modules.

2.2.3 Acceleration Brick Architecture 'dACCELBRICK(

MHP0

MC

accelerator

brick glue logic

Zynq US+
PL

..
.

dACCELBRICK

PCAP

APU

PL DDR

AXI

DDR

ctrl

APU DDR

G
T

H
G

T
H

local

NI / SW

CBN

PBN

Legend: CBN = circuit-based network,

PBN = packet-based network

regs

accelerator slot

GTH GTH

...

AXI

I/C

Figure 7 - dACCELBRICK architecture integrating local memory. The brick is implemented using the Xilinx

Zynq Ultrascale+ MPSoC (EG version)

dACCELBRICK hosts the accelerator modules that can be used to enhance
application execution based on the near-data processing scheme [3]; instead of
transmitting data to a remote dCOMPUBRICK, certain calculations can be performed
by local accelerators, thus improving performance and at the same time reduce
network utilization. In fact, the project leader IBM, recently presented the ConTutto
reconfigurable platform for near-memory acceleration, used in the memory subsystem
of the OpenPOWER processing platform [1] [2].

Figure 7 depicts the dACCELBRICK architecture. The dACCELBRICK consists of the
dynamic and the static infrastructure. The dynamic infrastructure consists of a
predefined, reconfigurable slot within the PL that hosts hardware accelerators. As
depicted in Figure 7, the accelerator wrapper template integrates a set of registers
that can be accessed by the glue logic to monitor and control (e.g. debug) the
hardware accelerator status. Moreover, the wrapper provides a set of high-speed
transceivers (e.g. GTHs) for direct communication of the accelerator and other
external resources. Finally, an AXI-compatible port interfaces directly an AXI DDR
controller, allowing the hardware accelerator to utilize the local PL DDR memory
during data processing.

The static infrastructure hosts all required modules for: (a) supporting dynamic
hardware reconfiguration, (b) interfacing with the hardware accelerator, and (c)

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 30

establishing communication with remote dCOMPUBRICKs. To support hardware
reconfiguration, in the current implementation, the local APU executes a ñthinò
middleware responsible for: (i) receiving bitstreams from remote dCOMPUBRICKs
(through the accelerator brick glue logic), (ii) storing bitstreams in the APU DDR
memory, and (iii) reconfiguring the PL with the required hardware IP via the PCAP
port. To monitor/control the hardware accelerator, the glue logic can read/write the
wrapper registers. In addition, the glue logic interfaces the local NI/switch for data
transfers between the dACCELBRICK and remote dCOMPUBRICKs that are stored in
the PL DDR.

In the scope of the project, we aim at showcasing acceleration capability made
possible by the SoC to be used for materializing the dACCELBRICK; as with the
dMEMBRICK, the local NI module is responsible for transmitting / receiving packet-
based data to / from remote nodes, while circuit-based data are forwarded to the local
interconnection module. For dACCELBRICKs with local memory, the accelerator
translator logic again provides memory translation and protection. Finally, the
compute node will be able to: (a) configure all available accelerators by writing to a
predefined set of memory mapped registers, and (b) monitor their status by reading
another set of memory mapped registers.

dACCELBRICK

ñbootstrapingò

bitstream

configuration

accelerator input data

to dACCELBRICK

data processing

by accelerator IP

IP already

configured?

YES

NO

results back to

dCOMPUBRICK

application code

execution

Figure 8 - Data offloading procedure from a dCOMPUBRICK to a dACCELBRICK; the dCOMPUBRICK

transfers all required bitstreams to the dACCELBRICK (bootstrap). Prior to offloading operations on an
accelerator, the dCOMPUBRICK instructs the dACCELBRICK to configure the required accelerator, and then

transmits all input data for processing. Upon completion of execution on the dACCELBRICK, results are

transmitted back to the dCOMPUBRICK. Processing resumes on the dCOMPUBRICK until the next set of

data needs to be offloaded to the dACCELBRICK for execution. If the dACCELBRICK is already configured

with the required accelerator, the configuration step is omitted.

Figure 8 depicts the procedure for configuring a dACCELBRICK and offloading data
for execution. At first, the dCOMPUBRICK transmits all required hardware accelerator
bitstreams to the dACCELBRICK (bootstrap). The dCOMPUBRICK then
starts/resumes application execution. Before data offloading, if required, the
dCOMPUBRICK instructs the dACCELBRICK to configure the needed hardware
accelerator, and then transmits input data, which are stored to the dACCELBRICK PL
DDR memory. Upon data processing completion, results are transmitted back to the
dCOMPUBRICK, which resumes application execution, until the next set of data need
to be offloaded for execution.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 31

2.3 Tray Architecture 'dTRAY(
dTRAYs may be composed of arbitrary combinations of the three different types of
dBRICKs detailed above. A dTRAY will have standard 2U size and may contain up to
16 bricks. It is expected that the number of dMEMBRICKs will be larger than the
number of dCOMPUBRICKs and dACCELBRICKs, since a dCOMPUBRICK is
expected to access multiple dMEMBRICKs. The different dBRICKs are
interconnected among each other within the dTRAY and also with other dBRICKs
from different dTRAYs. Figure 9 illustrates the dTRAY architecture.

Four different networks, one low-latency high speed electrical network, one Ethernet
network, one low-latency high speed optical network, and one PCIe network will
provide connectivity between the different bricks.

Accessing remote memory will use both optical and electrical low-latency high-speed
networks. Accesses to remote memory placed in a dMEMBRICK within a dTRAY will
be implemented via an electrical circuit crossbar switch (dBESM in Figure 9 is labelled
as High Speed Electrical Switch) and will interconnect directly to the GTH interface
ports available on the programmable logic of the bricks. The dBESM switch will have
160 ports. This is the largest dBESM switch available on the market today supporting
our speed requirements. The latency will be as low as 0.5ns and the bandwidth per
port will be 12Gbps. This network will be used for intra-tray memory traffic between
different bricks inside the tray. dBESM will not be used for inter-tray memory traffic
due the limitations of the electrical communication in larger distances (latency). In
addition, using electrical network for intra-tray communication instead of an optical
network would not require signal conversion from electrical to optical and vice versa
and thus it will be lower latency and lower power consumption.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 32

BMC

dCOMPUBRICKs

dMEMBRICKs

dACCELBRICKs

Q

2

1

...

Q

2

1

...

8

2

1

...

8

2

1

...

8

2

1

...

8

2

1

...

PCIe

ETH

PCIe Switch

dTRAY

High speed
electrical switch

Ethernet packet
switch

Board man.
computer

Memory
controler

Accelerator

FPGAElectrical high-speed
network ports

Ethernet
interface

PCIe PCIe ports

DDR4 Memory
NoC

Network
on chip

MBO
Middle
board optics

SoC with FPGASoCSoC

PCIe link ETH link EHSN link Optical link

MEM

EHSN

ETH ACC

FPGA

BMC

MC

MBO
ETH

MEM
DDR4
MEM
DDR4

MCMC

GTHPCIe

FPGA

GTHPCIe

FPGA
MBO

ETH

MEM
DDR4

MC

GTHPCIe

FPGA
MBO

ETH

MEM
DDR4

MC

GTHPCIe

FPGA

MBOMBO

CPUCPU

CPUCPU

CPU

CPU

MBO

CPU

CPU

MBOMBO

CPUCPU

CPUCPU

CPU

CPU

MBO

CPU

CPU
MEM
DDR4

MBO
MBO

MBO
MBO

SoC ZYNQ

ETH

PCIe

N
o
C

DDRC

CPUCPUCPUCPU
GTH

PCIe

FP
G

A

CPUCPUCPUCPU

ETH

PCIe

N
o
C

DDRC

CPUCPU
GTH

PCIe

FP
G

A

CPUCPU MEM
DDR4

MBO
MBO

SoC ZYNQ

ETH

PCIe

N
o
C

DDRC

CPUCPU
GTH

PCIe

FP
G

A

CPUCPU

MBO

CPU

CPU

MBO

CPU

CPU
MEM
DDR4

MBO
MBO

SoC ZYNQ

ETH

PCIe

N
o
C

DDRC

CPUCPU
GTH

PCIe

FP
G

A

CPUCPU

MBO

ACCACC

GTHPCIe GTHPCIe

FPGA

GTHPCIe

FPGA
MBO

ACC

GTHPCIe

FPGA

ETH
MBO

ACC

GTHPCIe

FPGA

ETH
MBO

ACC

GTHPCIe

FPGA

ETH

BMC

dCOMPUBRICKs

dMEMBRICKs

dACCELBRICKs

Q

2

1

...

8

2

1

...

8

2

1

...

PCIe

ETH

PCIe Switch

dTRAY

High speed
electrical switch

Ethernet packet
switch

Board man.
computer

Memory
controler

Accelerator

FPGAElectrical high-speed
network ports

Ethernet
interface

PCIe PCIe ports

DDR4 Memory
NoC

Network
on chip

MBO
Middle
board optics

SoC with FPGASoC

PCIe link ETH link EHSN link Optical link

MEM

EHSN

ETH ACC

FPGA

BMC

MC

MBO
ETH

MEM
DDR4

MC

GTHPCIe

FPGA

MBO

CPU

CPU

MBO

CPU

CPU
MEM
DDR4

MBO
MBO

SoC ZYNQ

ETH

PCIe

N
o
C

DDRC

CPUCPU
GTH

PCIe

FP
G

A

CPUCPU

MBO

ACC

GTHPCIe

FPGA

ETH

Figure 9 ï Sample tray architecture with multiple bricks interconnected through optical and electrical

interconnection networks. All brick types are based on the Xilinx Zynq Ultrascale+ MPSoC.

The optical network is aimed to provide inter-tray connectivity for exchange of
memory data and I/O communication. The optical network on the dTRAY will be
implemented with multiple optical switch modules (dBOSM in dReDBox terminology)
that will be provided by Polatis. Each dBOSM switch will have 24 optical ports. The
latency of the dBOSM optical switch would be around 5ns and the bandwidth would
be in the range of 384Gbps. dBRICKs will connect to the dBOSM via GTH interface
ports available on the programmable logic of the SoC. The GTH bandwidth is
16Gbps. A total of 24 GTH ports will be available in the SoC, 8 of them will be used to
connect the SoC to the dBOSM. On a fully populated tray hosting 16 bricks, a
maximum of 256 optical ports may be used to fully interconnect the bricks of each
tray. The Mid-Board Optics (MBO) device mounted on each dBRICK will be used to
convert the electrical signals coming from the GTH ports and aggregate them into a
single fibre ribbon; the other end of the ribbon will be attached to local dBOXôs

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 33

dBOSM optical switch. Each MBO supports up to eight ports.

The dBRICKs will use the up to 10 GTH ports to connect to dBOSM. The number of
GTHôs per SoC connecting to the dBOSM is limited by the size of the dBOSM. A 160-
port dBOSM could support at maximum 10 GTH per dBRICK, given a maximum of 16
dBRICKs on a tray.

An Ethernet (ETH) network will be used for regular network communication and board
management communication (BMC). The bandwidth will be 1Gbps and it will have a
hierarchical topology.

Inside the tray and across trays within a dRACK, the dBRICKs will also interconnect
via PCIe interface. Such interconnection will be provided via a PCIe switch, which will
exit the tray with one or more PCIe cable connectors. The PCIe interface will be used
for signalling and interrupts, as well as for attachment to remote peripherals. This
network can also be used to (re)configure the FPGAs in each SoC.

2.3.1 Power Consumption

The upper bound power consumption for a 2U dTRAY is expected to be in the order
of 750W, The expected power consumption of a dBRICK is expected to be in the
order of 20W. These power numbers are conservative (budgeted) values and provide
for an early estimation. Operating estimations related to power consumption are given
in section 7.2.

2.4 Rack Architecture 'dRACK(
Figure 3 has already introduced the high-level dRACK architecture of the dReDBox
project. Multiple dTRAYs of different configurations can be placed in the same
dRACK. These dTRAYs can feature a different balance between Compute, Memory
and Accelerators. dRACKs would be sub-divided into dCLUST. The decision of sub-
dividing a dRACK into dCLUSTs is mainly motivated by a constraint that the largest
dROSM will not be able to interconnect all the optical links from the dTRAYs. Besides
this constraint, sub-rack based organization would also facilitate and simplify the
locality management.

3 dReDBox Modular Network Architecture

Figure 10 zooms on the dReDBox architecture from a connectivity perspective. It
shows dRACKs housing multiple interconnected dBOXes. Each dBOX hosts
pluggable arbitrary combinations of compute/memory/accelerator bricks, an electronic
cross-point circuit switch for intra dBOX connectivity and a set of optical switches for
intra and inter dBOX networking. Each rack mounted dBOX will support up to 16
bricks. All bricks are interconnected to all other bricks in the same dBOX by means of
the electronic L1 crosspoint circuit switch (dBESM) and the optical circuit switch
(dBOSM). Communication between dBRICKs in different dBOXes is strictly via optical

circuit switching. Independently on their nau̡re (compute, memory, or accelerator),

each brick uses a reconfigurable System on Chip to perform networking functions
beyond only the basic interfacing that traditional network interface cards typically
support. The brick will embed and support forwarding, switching, and aggregation at
either packet or circuit level. It will potentially deliver protocol independent
programmable ports to support protocols and functions that can best suit the required
type of communication (i.e. compute-to-memory, compute-to-end user, etc).

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 34

Figure 10 ï dReDBox rack-scale architecture interconnected with hybrid optical and electrical switching.

3.1 System-level operation

In this section, we present an overview of the operating principle and network
features of the proposed architecture. The architecture supports hybrid switching and

multiplexing techniques, which include: optical circuit switching (distributed over a
number of optical circuit switching elements ï namely the dBOSM, dROSM and
dDOSM), electrical packet switching (EPS) and electrical circuit switching (dBESM).
These hybrid techniques allow for reconfigurable topologies and dynamic functions
for different traffic requests. Figure 11 presents an overview of the proposed
architecture with some examples of reconfigurable topologies and functions using
OCS and ECS.

Figure 11. Function and Topology Reconfigurable Network.

3.1.1 Optical circuit switching

The overall dReDBox optical switching architecture shown in Figure 11 shows a
multi-stage Clos fabric in which the first stage is implemented within and distributed
across the dBOXes (in the dBOSMs). The second and third stages are implemented
in the dROSM(s) and the dDOSM(s) respectively.

Architecturally, the optical fabric can be implemented in any number of ways
depending on the switching functionality of the various component switching modules
(whether they are any-to-any or symmetric N×N or asymmetric N×M switches), the
port density of these modules and the levels of blocking probability that would be
acceptable within a given dReDBox installation.

Another factor to take into consideration is that the end-to-end optical switching fabric
can be implemented as a number of parallel non-interconnected planes where this

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 35

number corresponds to the number of channels presented from the dBRICKs via the
MBOs. This is because any switching that may be necessary between these planes
can be done within the MPSoC on the dBRICK. This is important as it significantly
reduces the radix requirements of the switch modules making up the three stages of
the Clos fabric. This in turn means that the different stages of the Clos switching
fabric can be incrementally built up from conveniently (and practically) smaller
switching modules ï e.g. the first stage of the switching fabric in a dBOX need not be
implemented as a single high radix switch (a single dBOSM) but can instead be
implemented as a number of smaller switching modules which can then be grown as
a dBOX is filled with dBRICKs. This is clearly convenient from the perspective of (i)
supporting more of a pay-as-you-grow operational model for dReDBox and (ii) the
sizes/densities of state-of-the-art optical switching modules that are commercially
available.

The scalability aspects of the optical circuit switching function within dReDBox are
described in Section 4.4.

3.1.2 Electrical packet switching

Management-related communication will happen via an electronic packet switched
network. This electrical packet (1 gigabit Ethernet) switching between dBRICKs
extend throughout a dReDBox installation and will be implemented as COTS one or
two 1U gigabit Ethernet switches per dRACK with 1 or 10Gbps uplinks to one or
more COTS switches interconnecting all the dRACKs. As explained elsewhere, this
network is to support dBRICK management functions and tenant access.
Architecturally and as visualised in Figure 10, the programmable logic area of each
dBRICK could be used to realise a programmable electronic packet switch so they
can offer increased forwarding/aggregation/switching flexibility on data from/to
compute/memory/accelerator bricks.

3.1.3 Electrical circuit switching

Each of the dBOXes comprises a large radix COTS Electrical CrossPoint Switch.
This allows for low cost on-dBOX communication and is able to provide any-to-any
connectivity between all dBRICKs of a dBOX while having 8 channels per brick.

3.1.4 Operational hybrid network flow

Each dTRAY may contain dCOMPUBRICK, dMEMBRICK or dACCELBRICK bricks
and dBOSM or any combination thereof. The operational flow to interconnect
dBRICKs is depicted in Figure 12.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 36

Figure 12. System Level operational flow for the network.

Each of the requests by the orchestrator to establish connection amongst dBRICKs is
handled based on their availability and location. The appropriate flow will be selected
depending on the type of the path requested. The request from the orchestrator
(allocation for dCOMPUBRICK, dMEMBRICK or dACCELBRICK) could be served by
the same dTRAY or it might be possible that it could be served by different dTRAYs.
dReDBox orchestration layer configures the on chip network and port on each
dBRICK. It also sends command to the optical and electrical switches (dDOSM,
dROSM, dBOSM and dBESM) to configure their ports to establish the connection.

3.2 Practical considerations

3.2.1 Intra-tray connectivity 'within dTRAY(
The approach for dTRAY architectural design is presented in Figure 13. It presents a
heterogeneous tray architecture design composed of dCOMPUBRICK, dMEMBRICK
with optical switches (dBOSM), electrical switches (dBESM), PCIe switch and
Ethernet switch for hybrid optical and electrical network interconnect. This architecture
provides both port-to-port optical circuit switching (OCS) and electrical circuit
switching (ECS) network interconnect. This approach eliminates optical-electrical-
optical (OEOP) conversion and reduces the latency for dBRICK to dBRICK intra-
dTRAY communication. Note that each dBRICK only uses one FPGA or
optical/electrical mid board to connect to both the optical and electrical switch. Due to
the size and port dimension of currently available dBOSM, the dBOSM switch(es) are
planned be placed outside the tray and within the dBOX (we remind that dTRAY is
like motherboard placed in dBOX).

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 37

Figure 13. Heterogeneous dTRAY architectures with hybrid optical and electrical network interconnect

between bricks within a dTRAY.

Different Configurations of dTRAY architectures can be realized by varying; number of
dBRICKS in a dTRAY, port dimension configuration per dBRICK, number of dBOSMs
in a tray and port dimensions of dBOSMs in a dTRAY. One MBO per dBRICK is used
to reduce the cable complexity and PCB form factor by replacing and SFP+ per high
speed serial port with an MPO connector that can handle 8 ports.

3.2.2 Inter-tray connectivity 'between dBOXes(
Figure 3 presented our proposed dRACK scale architecture with heterogeneous
dTRAY architecture that includes hybrid optical and electrical interconnect. The
dRACK scale architecture comprises of different stacks of heterogeneous dTRAYS
connected to the optical switch(es) (middle of rack) placed at the middle of the stack
of dTRAYs in the dRACK. The optical switches are in the middle of dRACK because
this approach reduces length of fibre required to connect the dTRAYS to optical
switch for inter-dTRAY communications. This leads to a reduction in latency and fibre
length when compared to the traditional server-centric datacenter architectures with
Top of Rack (ToR) switches. In addition, functional modules such as packet switches
can easily be connected to the dROSM to provide dynamic functionality for
processing traffic requests for inter tray and inter rack communication. A top of cluster
(dDOSM) optical switch is placed at the top of all dRACKS to provide inter-dRACK
communications (dBRICK in one dRACK to dBRICK in another dRACK).

In addition, by varying the number of dBOSMs, port configuration of dBOSMs,
numbers of dROSMs and port connectivity ratio (inter dTRAY traffic to intra dTRAY
traffic) used in the dRACK scale architectures design, different configurations of
dRACK scale architectures are achieved.

3.2.3 Cabling Complexity

The optical network is aimed to provide inter-tray connectivity for exchange of
memory data and I/O communication. dBRICKs will connect to the dBOSM via 8 GTH
interface ports available on the programmable logic of the SoC. On a fully populated
dTRAY hosting 16 bricks, a maximum of 256 optical ports may be used to fully
interconnect the dBRICKs to the dBOSMs of each dTRAY. One MBO device mounted
on each dBRICK will combine 8 GTH channels into a single fibre ribbon (equivalent to

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 38

16 single mode optical patch cables); the other end of the ribbon will be attached to
the local dBOXôs dBOSMs optical switch ports.

4 Scalability Analysis and Considerations

This section analyses the main factors that govern the scalability in the number of
components of the system. Specifically, it will analyze the scalability of the number of
dBRICKs, dTRAYs, and dCLUSTs, and dRACKs.

4.1 dBRICK scalability

The scalability of the dBRICK in terms of number of computing processors is
dominated by the physical dimensions. Figure 14 shows the physical dimensions of
the dBRICK. As it is shown, a dBRICK has a length of 180mm and a height of 67
mm. The Xilinx Zynq UltraScale+ EG MPSoC ZU19EG has dimensions of around
35mm x 35mm and, one SODIMM memory module has dimensions of around 60mm
x 30mm. Therefore, only one Zynq UltraScale+ EG MPSoC could be placed on a
dBRICK.

6
7
 m

m

180 mm

15 mm
15 mm

2mm 2mm

to
p
 sid

e

b
o
tto

m
 sid

e

Figure 14 ï dBRICK dimensions

The number of GTH ports available in the Zynq UltraScale+ EG MPSoC are 16 or 24
depending on the model. The Zynq UltraScale+ EG MPSoC XCZU9EG-
2FFVB1156E has 24 GTH ports, whereas the Zynq UltraScale+ EG MPSoC
XCZU9EG-2FFVC900E has 16 GTH ports.

One or two MBO devices (Luxtera LUX62608) can be placed in a dBRICK. In the
case of placing two MBOs, then the dBRICK is bigger forcing to use a 3U dTRAYs
instead of the 2U housing standard as preferred.

Regarding the number of memory SO-DIMMs, two or four SO-DIMM memories could
be placed in a dBRICK. However, four SODIMMs need a bigger dBRICK that again
forces the use of the 3U dTRAYs. On the other hand, two SO-DIMMs could be used
in a 2U dTRAY.

4.2 dTRAY scalability

This section analyzes the scalability of the dTRAY in terms of the number of
dBRICKs that could be allocated in a dTRAY.

The dimensions of a standard 2U dTRAY are width 40cm, length 45 cm, and height
75mm. The maximum number of dBRICKs that can accommodate a dTRAY is
sixteen based on the physical dimensions of the dBRICKs and dTRAY. In the
unfortunate (but improbable) case during prototyping of running out of floorplan
budget on a dTRAY due to space needed by other components needed (such as the
power supply or forced use of switches of other dimensions), the number of dBRICK
slots per tray could be reduced down to twelve.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 39

4.3 dBOX scalability

As discussed in Section 3.1.1, the dBOX will support various number of internal
optical switches (dBOSM) to provide connectivity to other dBOXes in the rack or in
other racks

The selected dBOSM will be the one developed by Polatis for dReDBox building on
the technology and knowhow used for the Series 6000 single-sided 48xCC OSM that
provides 24 bidirectional ports. The dimensions of this COTS device are 41mm x
122mm x 266mm. This is the most compact optical switch module available from
Polatis and thus this was the reason to select this switch. Polatis is also developing
the next generation of OSM which will provide 96 ports in the same form factor as the
48xCC OSM. Due to space limitations in a dBOX, the maximum number of dBOSMs
that could be placed there would be six (see Figure 15 ï the components marked as
OSM are the dBOSM switches). Since six dBOSMs would have to be arranged as
two layers of three then this arrangement is subject to studies of the cooling air flow
through the dBOX.

With 6 dBOSMs, the total number of bidirectional ports in a dBOX would be 576 ports
in total. 288 ports will be facing the dBRICKs and 288 ports facing the second stage
of the Clos fabric (the dROSMs). This would allow 1:1 subscription (this is full intra
and inter tray connectivity) for all 16 bricks. This is shown as the leftmost blue
column in the chart shown in Figure 16.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 40

2
6
6
.0

0

OSMOSM

4
5
0
.0

0

400.00

CFP2
(2x)

Switches

bmc

OSM

122.00

366.00

8
0
0
.0

0

PSU

54.00

3
5
0
.0

0

fan

80.00

34.00

1
8
0
.0

0

fan fan fan

airflow

frontside

backside

Figure 15 ï dBOX maximum dimensions in millimeters

Figure 16 - dBOSM scaling for different subscription ratios

0

1

2

3

4

5

6

7

8

1:1 1.4:1 2:1 3:1 4:1

3 3

2 2 2

6

5

4 4 4

8

7

6 6

5

d
B

O
S

M
 N

u
m

b
e

r

Level 1 oversubscribed ratio=N:1

dBOSM Number per dBox (96 ports switch)

8 Bricks/dBox 16 Bricks/dBox 24 Bricks/dBox

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 41

4.4 dRACK scalability

Figure 17 shows the standard full size rack of 42U, with 1.8m height. A dRACK will
consist of the dROSM(s) and several dBOXes. The height of a dBOX will be 2U. 12
dBOXes will consume 24U allowing 16U for dROSMs and any other elements that
need to be accommodated in a dRACK (e.g. the ñtop of rackò gigabit Ethernet switch
providing the EPS functionality). Central to this discussion is the nature and port
density of the dROSM(s), which affects the number of rack units they consume.

Figure 18 shows the dimensioning of the dROSM(s) based on the assumption that
the Polatis Series 7000 384×384 port optical switch is used as the building block of
the second stage of the Clos fabric and that a dRACK will accommodate up to 12
dBOXes. Each of these switches occupies 4U in the dRACK. (Note that it is expected
that this density will approximately double over the next 3-4 years and so have two of
these units on a 4U slot.)

Another possibility for the realization of the dROSM is to use the same 96-port switch
module used in the dBOSM. This may provide a denser solution (in terms of rack
units occupied) and this option will be further studied in the dReDBox project.

Figure 17 ï Dimensions and components in a dRACK. a) dRACK with 4x4U dROSM switches and 12
dBOXes; b) dRACK with 2x4U dROSM switches and 16 dBRICKs. The dROSM switches are placed in

between the dBOXes to reduce the cabling.

2U

42U

dBOX4

dBOX5

dBOX6

dBOX7

dBOX8

dBOX9

dBOX10

dBOX11

dBOX12

dBOX13

dBOX14

dBOX15

dBOX16

dROSM1
dBOX1

dBOX2

dBOX3dBOX1

dBOX2

dBOX3

dBOX4

4U

dBOX5

dBOX6

dBOX7

dBOX8

dBOX9

dBOX10

dBOX11

dBOX12

dROSM2

dROSM3

dROSM4

4UdROSM1

dROSM2

2U

a) b)

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 42

Figure 18 - dROSM scaling for different oversubscription ratios.

The leftmost blue column in the chart in Figure 18 shows that four 384×384 port
switches will provide sufficient ports to allow a non-oversubscribed switching
between all the dBRICKs in a dRACK housing 16 dBOXes in which there are 16
dBRICKs per dTRAY/dBox with 8 bidirectional fibre links per dBRICK. As for the
dBOSMs, smaller numbers of dROSMs can be used if higher oversubscription levels
can be tolerated.

4.5 Datacenter scalability

This section analyses the maximum number of dRACKS in a datacenter. Figure 19
shows a possible solution for interconnecting the different dRACKS in a datacenter. It
consists of using a number of higher-level OSM (dDOSM) on top of the existing
dROSMs in order to implement the third stage of the Clos fabric and interconnect
every different dRACK in a datacenter. Every dRACK can connect to the dDOSMs
using one or more fibre pairs (n). Table 5 shows the resulting maximum number of
dRACKs and corresponding dBRICKs that can be supported by the same 384×384
Series 7000 switch from Polatis as proposed for the dROSM. It can be seen that the
largest datacenter could allocate up to 73,728 dBRICKs (16 dBRICKs x 12 dTRAYs x
384 dRACKs = 73,728 dBRICKs). Notice that in this case, it is assumed an over-
subscription network where only one dBRICK from each dRACK could communicate
to another dBRICK in another dRACK. This is an extreme case that provides
maximum system scalability. On the other hand, dReDBox does not limit the number
of fibres coming out from the dRACKs. There could be other possible system
configurations where the number of fibre pairs per dRACK could be higher. For
illustration purposes, Table 5 shows the case when there are 8 fibre pairs coming out
from each dRACK. In this case, the maximum number of dBRICKs will amount to
9,216 (16 dBRICKs x 12 dTRAYs x 48 dRACKs = 9,216 dBRICKs).

0

1

2

3

4

5

6

1:1 1.4:1 2:1 3:1 4:1

2 2

1 1 1

4

3

2 2

1

6

5

3

2 2

d
R

O
S

M
 N

u
m

b
e

r

Level 1 oversubscribed ratio=N:1

dROSM Number for single dRack (384*384
switch)

8 Bricks/dBox 16 Bricks 24 Bricks

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 43

Figure 19 ï dRACKs interconnection in a data center

Table 5 - Data center size-

Number of fibre
pairs per dRACK

(n)

dRACKs dBRICKs

1 384 73,728

(16 dBRICKs_per_tray x 12
dTRAYs_per_rack x 384 dRACKs)

8 48 9,216

(16 dBRICKs_per_tray x 12
dTRAYs_per_rack x 48 dRACKs)

Figure 20 illustrates the scalability of the Data Centre in terms of the number of
dDOSMs used for a range of subscription ratios at both levels of the network. For
example, to interconnect 8 dRacks each with 12 dBoxes and each dBox with 16
dBricks we need 8 dDOSMs to deliver an oversubscription ratio of 2 at both levels
(see green line). In such configuration, there will be 1536 dBricks.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 44

Figure 20 - dDOSM scaling for different subscription ratios.

5 Orchestration tools and System Software
Architecture

This section describes the System Software components that are employed to
manage and orchestrate the dReDBox hardware, and exploit the benefits of its
disaggregated architecture. Compared to D2.3, this deliverable has been updated
with additional details about the design and ongoing implemenation of these
components.

This chapter is organized as following. Section 5.1 explains how the concept of
Software Defined Memory (SDM) is reflected in dReDBox system software, and
Section 5.2 extends this description by exemplifying the main ideas behind the
software-defined memory allocation and deallocation. Finally, Section 5.3 provides a
more detailed architectural-level description of the main System Software
components, while Section 5.4 concludes the discussion by describing a software-
based mechanism to implement shared memory on top of the dReDBox architecture.

5.1 Rack-scale software defined memory system architecture

dReDBox is a vertical disaggregated architecture that requires hardware and
software synergy to implement resource pooling. In the spirit of the Software Defined
Infrastructure (SDI) vision, dReDBox aims at an architecture that will allow authorized
tenants to describe in software and reserve system resources, at a fine-grained level,
to execute their applications. Accordingly, the dReDBox system adopts the virtual
machine as the execution container and type-I Virtual Machine Monitor (VMM)
architecture to support a software defined deployment. Therefore, the challenges that
need to be addressed in the context of the dReDBox orchestration and system
software architecture are the following:

a) Design and development of a fine-grained resource reservation support and
appropriate interconnect configuration subsystem.

b) Global Memory address space management and allocation/freeing
mechanisms at all involved layers.

1	

10	

100	

8
	B

ri
ck

s/
d
B
o
x	

16
	B

ri
ck

s/
d
B
o
x	

24
	B

ri
ck

s/
d
B
o
x	

8
	B

ri
ck

s/
d
B
o
x	

16
	B

ri
ck

s/
d
B
o
x	

24
	B

ri
ck

s/
d
B
o
x	

8
	B

ri
ck

s/
d
B
o
x	

16
	B

ri
ck

s/
d
B
o
x	

24
	B

ri
ck

s/
d
B
o
x	

2	dRacks	 4	dRacks	 8	dRacks	

d
D

O
SM

	N
u
m

b
e
r	

	

Level	1	oversubscribed	ra o=N:1				Level	2	oversubscribed	ra o=N':1	

Overall	dDOSM	Number	(384*384	switch)	

1:1:1	 1.96:1.4:1	 4:2:1	 9:3:1	 16:4:1	

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 45

c) Virtual Machine Monitor (VMM) memory subsystem enhancements to
facilitate memory hot plugging as well as to integrate remote memory in the
NUMA hierarchy and possible page relocation policies to improve execution
performance

d) VMM-based memory access control for prohibiting accesses to physical
memory regions that are not currently/yet interfaced to a physical memory
resource.

e) Architectural changes and enhancements that are related to the ability to
dynamically change, at runtime, the physical hardware platform configuration.
VM migrations will be also addressed in this context.

5.2 Memory allocation and deallocation processes

From the point of view of a dReDBox User, Virtual Machines (VMs) are the principal
unit of resource allocation; users request VMs with a selected number of virtual
CPUs (vCPUs) and amount of main memory, and the System Software will
transparently set-up the underlying hardware infrastructure and allocate the
resources needed to satisfy user requirements from memory bricks to compute
bricks, and finally start the user VMs.

There are two distinct but similar processes through which memory is allocated to
VMs and, consequently, to compute bricks:

a) at VM initialization and deployment, and
b) at VM runtime to respond to dynamically changing memory requirements.

The dReDBox orchestration component receives VM allocation and deallocation
requests from users. This request will contain at least three required parameters (see
also D2.6):

1. Number of vCPUs to allocate to the VM
2. Amount of guaranteed memory to allocate to the VM
3. Maximum amount of memory for the VM

While the meaning of the number of vCPUs is quite obvious, the differentiation
between guaranteed and maximum memory is less straightforward. Guaranteed
memory is the minimum amount of memory that the VM will be assigned at any point
in time, independently on its actual memory consumption. At the same time, a VM is
allowed to expand and shrink its currently allocated memory beyond the guaranteed
limit, based on dynamic usage; the maximum memory value controls the amount of
memory that a VM is allowed to request, subject to global availability.

At VM initialization and deployment time the orchestration subsystem determines the
compute brick on which the VM should run, reserves the requested guaranteed
memory, and sets the rack interconnect up so that the selected compute brick can
access that memory, before letting the system software running on the compute brick
deploy and start the VM.

At runtime, the VM can expand its memory up to the maximum memory threshold by
using memory ballooning, a software technique that is transparently able to resize
the amount of physical memory assigned to a VM. The memory balloning driver and
device used in QEMU have been extended to benefit from disaggregated memory.
Additional memory resources can be obtained by VMs in two ways. First, the guest
will try to reclaim pages owned by the memory balloon driver and further, in case the
balloon does not provide any pages, it will ask the hypervisor to allocate additional
memory from the disaggregated pool and perform a guest memory hot-plug
operation. Symmetrically, it is planned to enable memory release functionality in
order to provide dynamic runtime VM memory management means.

D2.4 System Architecture specification (b)

H2020 ICT-04-2015 dRedBox 46

Finally, when a VM is stopped the memory is also returned to the global memory
pool, although the association with the compute brick might or might not be canceled
immediately, depending on optimization policies. The process described in this
section is at the core of the dReDBox elastic resource management functionalities
and will be implemented by a set of distributed software components.

5.3 Orchestration tools high-level architecture

Figure 21 - Orchestration tools high-level architecture

In this section, an overview of these components, emphasizing the main design
decisions in respect of their role and the interplay among each other provide, is
presented. Figure 21 shows a coarse grain architectural overview of the dReDBox
system software stack, and more detailed descriptions of individual software modules
are provided in the following subsections.

