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Abstract. In this contribution, we present the implementation of the coupling between the
Finite Element Method (FEM) and the Boundary Element Method (BEM) in the time domain,
for the analysis of the Soil-Structure Interaction (SSI) in the three dimensional space. The
Boundary Element Method is based on the transient fundamental solutions for the half-space.
The coupling between the BEM and the FEM is obtained using the soil’s stiffness matrix and
the soil reaction forces, which result from a convolution integral. The coupling is implemented
linking the software MATLAB with the software ANSYS. The system of equations is solved in
ANSYS and within the solution step MATLAB is activated to calculate the soil’s stiffness matrix
and the interaction forces at the interface between soil and structures at the current time step.
Verification examples for static and dynamic cases are presented. A case study for a seismic
excitation is presented to show the applicability of the proposed method.
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1 INTRODUCTION

The dynamic interplay between the buildings and the underlying soil is referred to as Soil-

Structure Interaction (SSI). The soil acts both as a compliant support with a frequency-dependent

flexibility and as a energy absorber, due to its infinite size. For certain combinations of buildings

and soil, the SSI may lead to an amplification of the dynamic response w.r.t. the static response

of the whole system, to a shift of the natural frequencies of the buildings and to a change in

damping properties. Therefore, it is important to account for the dynamic behavior of the soil

and its effect on the dynamic behaviour of the structures placed on it.. The main difficulty of

simulating the SSI is related to the infinite size of the soil, for which the Sommerfeld radiation

condition must be fulfilled.

Different methods exist to account for the SSI in seismic analysis of buildings, the most

popular of which are the Finite Element Method (FEM), the Finite Difference Method (FDM)

and the Boundary Element Method (BEM). A detailed state of the art can be found in [1].

For FEM the whole domain is discretised whereas in the BEM only the boundaries are di-

vided into elements. Consequently, the dimension of the problem is reduced by one when

using BEM. This leads to less necessary storage space. Moreover, the BEM can achieve higher

accuracy for the results, since it uses fundamental solutions as weighting functions. These

fundamental solutions fulfill exactly the boundary conditions.

Although research has been conducted on boundary elements since the 1960s, BEM is not as

established as the FEM, mainly due to the fully populated system of equations generated by the

BEM and the requirement of the existence of suitable fundamental solutions for the investigate

soil systems (such as an homogeneous half space, a layered half space, etc...). Additionally,

several commercial tools made the FEM user-friendly and versatile, while the BEM is rarely

available as a ready-to-use black box. An extensive overview of the development of BEM can

be found in [2].

The BEM for SSI can be used both in the Time Domain (TD) and in the Frequency Domain

(FD), depending on the available fundamental solutions (also called Green’s functions). The

TD-BEM can be used for nonlinear problems and can lead to less computational effort for tran-

sient loads with a narrow frequencies spectrum. As a matter of fact, the transient fundamental

solutions have a bounded support, while the FD fundamental solutions never vanish.

From general descriptions of the coupling of BEM and FEM for elastodynamics [3][4][5],

the application to SSI problems was straightforward [6].

Further improvements of the BEM for SSI were achieved by using fundamental solutions

for the half-space instead of the full space [7]. Depending on the given problem, the suitable

fundamental solution can be chosen among the available ones [8] to optimize the computation.

Several studies have been conducted on the topic of BEM for 2D- and 3D-structures in the time

domain dealing with different issues, such as the choice of the suitable fundamental solutions

(e.g. [9] and [10]) or the coupling of incompatible interfaces of BEM and FEM for 2D boundary

elements ([11]).

Recently, Vasilev et al. [12] developed a hybrid computational tool, based on the FEM/BEM

coupling. The hybrid numerical scheme is realized via the sub-structure approach, integrating

the seismically active far-field geological media as a macro-finite element in the commercial

program ANSYS. Here, they assume a plane strain state.

Galvin and Romero [13] developed a numerical tool SSIFiBo in MATLAB to study dynamic

soil-structure interaction problems. The model is based on a three dimensional TD-BEM. This

model allows computing structural forced-vibrations, as well as seismic responses.
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Figure 1: Notation of nodes for SOLID185, according to [18, p. 960]

Schepers [14] improved an existing customization of ANSYS [15] [16] [17] which allows

FEM-BEM coupling of structures at the surface of an arbitrarily layered half-space, both in time

and frequency domain.

In this work, we present the Ssibefe tool, a FEM-BEM coupling where the FEM subsystem

(the building) is modeled using ANSYS and the BEM subsystem (the soil) is treated using

MATLAB. The loading can be applied to the FEM elements and nodes and/or can be defined

as a propagating transient plane wave in the soil with an arbitrary angle of incidence w.r.t the

surface. Pre- and postprocessing is performed in ANSYS. The TD fundamental solutions for the

homogenous half-space are taken from [8] and the procedure for the implementation is similar

to the one described by [15], [16] and [17].

2 METHODS

2.1 MODELLING THE STRUCTURE WITH THE FINITE ELEMENT METHOD

The equation of motion for the structure reads:

Mü(t) +Cu̇(t) +Ku(t) = P(t) +Q(t), (1)

where M is the mass matrix, C the damping matrix, K the stiffness matrix, u(t) the displace-

ments and P(t) the external loading. All the aforementioned vectors and matrices can be de-

termined as usual by means of classical FEM formulations. The key vector in this formulation

is the vector Q(t), which contains the soil reactions at the interaction nodes. This is unknown

and represents the influence of the soil as nodal forces, which result from the contact pressure

at the soil–structure interface. This can be computed with the BEM formulation, described in

section 2.2.

The analysis of the finite system is done with the commercial software Ansys Mechanical
APDL 2019 R2. The structure is modelled by 3D solid elements, specifically the SOLID185-

elements, which consist of 8 nodes [18]. The arrangement of the nodes is depicted in fig. 1.

2.2 MODELLING THE SOIL WITH THE BOUNDARY ELEMENT METHOD

2.2.1 Theoratical Background

At the heart of the TD-BEM used here lies the transient fundamental solutions for the 3D

the half space subjected to a vertical or horizontal unit point load on the surface, that changes
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in time as a Heaviside function (s. annex A). These satisfy the traction-free condition at the

surfaces of the soil and the Sommerfeld radiation condition.

We start from the discretized form of the boundary integral formulation of the Lamé-Navier

equation [19], in absence of body forces. At first the time dependency is not considered and

will be treated separately in section 2.3. The displacements wi at point i on the soil surface can

be written as:

ciwi(xi) =
E∑

e=1

N∑
n=1

qe
n

∫
Se

Nng(x,x
i)dS −

E∑
e=1

N∑
n=1

we
n

∫
Se

Nnt(x,x
i)dS (2)

with
g(x,xi): fundamental solution for the displacements evaluated at point xi for loads at x
t(x,xi): fundamental solution for the tractions evaluated at point xi for loads at x
qe
n: nodal forces at point xi

we
n: nodal displacements at point xi

Nn: shape functions of nodes at point xi

ci: geometrical coefficient, which is related to the the position of the load

and contains unitary values at the soil surface for a smooth boundary

N , E, Se: number of nodes per element, number of elements

and area of each element respectively.
We assume constant tractions on each boundary element. Therefore, each boundary element

has only one node at the centre of the bottom surface of the coupled finite element. The elements

are pictured in fig. 2a. Here, the red circled nodes define the contributing coupling nodes.

(a) Coupling nodes for constant shape functions.

BEM

FEM

(b) Coupling surface.

Figure 2: Coupling between soil and structure.

We consider Heaviside-time-varying unit forces for each nodal component of displacements

and tractions. If the load position is located inside the domain, the stresses t(x,xi) on the

surface are equal to zero and only the first part of the right side of eq. (2) will be considered in

further derivations, leading to the following expression for the the displacements:

ciwi(xi) =
E∑

e=1

N∑
n=1

qe
nΔGe

n (3)

where

ΔGe
n =

∫ 1

−1

∫ 1

−1

Nn(ξ, η)g(x,x
i(ξ, η))J(ξ, η)dξdη (4)
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Here, J(ξ, η) denotes the determinant of the Jacobian for the transformation of coordinates from

the original Cartesian to a local element reference coordinate system.

To obtain the flexibility matrix of the soil, the integral in eq. (3) is evaluated (E ·N)2 times.

The integral is performed for all the interaction nodes as an observation point and with the

loading position being located on every interaction node (collocation point method). This leads

to a matrix Gji, where the rows j indicate the loading position information whereas the columns

i indicate the observation position information. Once the unitary coefficients ci are included in

the system matrix, eq. (3) can be written in matrix form as:

w = Gq (5)

The fundamental solution g(x,xi) is a antisymmetrical second order tensor, originally de-

fined in cylindrical coordinates, as described in annex A:

gcyl =

⎡⎣ grr 0 grz
0 gφφ 0
gzr 0 gzz

⎤⎦ (6)

with gzr = −grz. The transformation from cylindrical to Cartesian coordinates is performed

according to [15] (s. annex B).

Following the suggestions in [20], if the loading point x coincides with the observation

point xi, a 1/r-singularity occurs. This integration is solved using a transformation to polar

coordinates according to [21] (s. annex C).

Summarizing, eq. (5) says that the interaction of the soil with any other elastic body at

its surface can be represented by integrals over the contact surface and a force-displacement

relationship can be established to built the stiffness or flexibility matrix of the soil.

The fundamental solutions depend on the dimensionless time τ which in turn depends on on

the time t. The time dependency will be treated in the next section.

2.3 Time discretization

According to [15], for the application of the proposed method in the time domain, the dis-

placement at the current time depends on the current contact pressures and on its history and

is obtained with a convolution integral. For a Heaviside loading function, the second Duhamel

integral is performed:

w(t) = G(t)⊗ q(t)

w(t) = q(0)G(t) +

∫ t

0

G(t− τ)dq(τ)
dτ

dτ =

∫ t

0

G(t− τ)dq(τ)
dτ

dτ.
(7)

The transient fundamental solutions are captured in the matrix G(t)

G(t) =

⎡⎣ Gxx(t) Gxy(t) Gxz(t)
Gyx(t) Gyy(t) Gyz(t)
Gzx(t) Gzy(t) Gzz(t)

⎤⎦ . (8)

The integral is split into intervals of the length Δt. By calculating the mean of the upper and

lower value, the soil displacements for the time step i+ 1 can be deduced

wi+1 =
Gi+1 −Gi

2 �
��
0

q0 +
Gi+1 −Gi−1

2
q1 + ...+

G1 −�
��

0

G0

2
qi+1 (9)
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Subsequently, the flexibility of the soil is obtained after inserting the following abbreviations

valid for constant time step duration for the whole simulation

Fi =
1

2

(
Gi+1 −Gi−1

)
Fcur =

1

2
G1 =

1

2
G(Δt)

(10)

and considering the initial condition q0 = 0 and the relation G0 = 0, which results from

causality, the deformations of the soil yield

wi+1 = Fiq1 + ...+ F1qi︸ ︷︷ ︸
whist

+Fcurqi+1 (11)

If, additionally, a seismic excitation s occurs, one has to substitute the absolute displacements

at the interaction nodes wi+1 with the relative displacements (wi+1 − si+1) to get

wi+1 = whist + Fcurqi+1 + si+1 (12)

3 Implementation of the coupling

First, interaction nodes are defined, which are located at shared surfaces of the structure and

the soil.

Fig. 2b shows the coupling surface between BEM and FEM for a square foundation. Since

the numbering of the nodes is different for the BEM and the FEM subsytem, different letters

identify different quantities:

• uI : displacements of the structure according to the nodal ordering of FEM at the interac-

tion surface

• v: displacements of the structure for nodal ordering of BEM at the interaction surface

• w: displacements of the soil for nodal ordering of BEM at the interaction surface

The transformation matrices Tu and Tq help to couple the displacements of the two subsys-

tems at the interface. These matrices are described in annex D.

From eq. (12), the soil’s contact pressure can be computed as

qi+1 = [Fcur]−1(wi+1 −whist − si+1) (13)

To satisfy compatibility at the interaction surface the structural displacements must equal the

soil’s displacement

wi+1 = vi+1 = Tuu
i+1
I (14)

The soil reaction forces at the FEM nodes result from the combination of eq. (14) with

eq. (15) as

Qi+1
I = Tqq

i+1 = Tq[F
cur]−1Tu︸ ︷︷ ︸
Kcur

soil

ui+1
I −Tq[F

cur]−1whist︸ ︷︷ ︸
Qhist

I

−Tq[F
cur]−1si+1︸ ︷︷ ︸
Qseism

I

,
(15)

where Kcur
soil is the soil’s stiffness matrix.
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Therefore, the equation of motion of the coupled problem becomes[
MRR MRI

MIR MII

](
üi+1
R

üi+1
I

)
+

[
CRR CRI

CIR CII

](
u̇i+1
R

u̇i+1
I

)
+

[
KRR KRI

KIR KII +Kcur
soil

](
ui+1
R

ui+1
I

)
=

(
Pi+1

R

Pi+1
I

)
+

(
0

Qhist
I +Qseism

I

)
(16)

where I indicated the degrees of freedom (DOFs) at the interaction nodes, whereas the remain-

ing DOFs are marked with R.

The flexibility matrix of the soil Fi in eq. (10) has to be calculated for every time step to

deduce the quantity whist.

The structural displacements ui
I at the interaction nodes are computed by ANSYS at every

time step and used to compute the soil reaction forces at i+ 1. The soil stiffness is added to the

structure’s stiffness through a user-defined super-element in ANSYS (element type MATRIX50)

and the soil reactions are applied as external loads at the interaction nodes. The master DOFs of

the soil super-element are the DOFs of the coupling nodes of the FEM-structure at the soil sur-

face. With this configuration the system can be solved with usual solution routines in ANSYS.

An overall calculation sequence for the proposed scheme is given in annex E.

It is to highlight, that, if the soil properties, the discretization of the elements at the inter-

action surface and the time step remain unchanged, a new analysis with different parameters

and seismic and/or external loading can be carried out reusing the same flexibility matrix. This

leads to a relevant reduction of computational time.

An interactive connection between MATLAB and ANSYS is created through the toolbox aaS
(ANSYS as a Server) and the Mechanical APDL preprocessor and solver are accessed directly

through MATLAB.

4 VERIFICATION

For the verification, we present the dynamic analysis of a rigid square foundation loaded with

a Heaviside point load at its center. After the oscillation has decayed, the static displacement

can be observed, so that also the static flexibility of the system can be compared to literature

values. The results are compared to the ones found in [16], although we assume a Poisson’s

ratio ν = 0.25 for the soil, while the reference results are computed with ν = 0.33. As an

additional reference, the static flexibility in different directions is compared to the reference

values given in [22, p. 43].

As the results are normalized w.r.t. the quadratic foundation geometry and to the soil prop-

erties, the foundation side length a, the foundation thickness h, the shear modulus of the soil

μs and the soil density ρs can be chosen arbitrarily. The Poisson’s ratio is given (νs = 0.25).

The other problem parameters are given in tab. 1. In order to simplify the invetsigation, the

Poisson’s ratio of the foundation is set equal to 0, but could take any arbitrary value.

The vertical displacement uz due to a vertical load Pz, the horizontal displacement ux due to

a horizontal load Px, the rotation φy due to a moment around the y-axisMy, the rotation φz due

to a torsional moment Mz and finally the rotation φy due to a horizontal load Px are examined.

The loading starts at τ = tcs
a
= 1. Two cases are investigated shown in fig. 4:

• massless foundation: the response follows the shape of the variation in time of the loading

until it reaches a state of rest at ≈ τ = 3.
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Table 1: Problem properties of the verification case.

Foundation density massless foundation: ρf = 0

massive foundation: ρf = ρs
h

√
a2

π

Young’s modulus of the foundation Ef ≈ μs ∗ 1011
Poisson’s ratio of the foundation νf = 0
Poisson’s ratio of the soil νs = 0.25

• massive foundation: the foundation oscillated around the static response and, eventually,

approaches the static solution at different times τ for the different directions of loading.

a

x

y

z

Pz(t)

ρs, μs, νs

ρf , Ef , νf

τ = tcs
a

1

Figure 3: Verification case, shown for a vertical load.

The foundation and the soil surface are discretised with 8 × 8 elements with the side length

l = a/8. The time step size is chosen as Δt = 0.75l/cs, where cs =
√

μs

ρs
is the shear wave

velocity of the soil.

The static flexibility is deduced from the displacements at rest. These are then compared in

tab. 2 to the results from [16, pp. 107-111] and from the static stiffness values in [22, p. 43].

μsa
Pz
uz

μsa
Px
ux

μsa3

My
φy

μsa3

Mz
φz

μsa2

Px
φy

Ssibefe 0.326 0.398 1.551 1.050 0.067

Bode [16] 0.2951 0.379 1.419 0.940 0.064

discrepancy [%] 1.11 1.05 1.09 1.12 1.05

Wolf [22] 0.319 0.380 1.5 0.964 -

Table 2: Static flexibility of a rigid, massless foundation on a homogeneous half-space.

As can be observed in tab. 2, the results are in good agreement. Nevertheless, small dis-

crepancies especially between [16] and the results from Ssibefe occur for all modes, because

of the different Poisson’s ratios used. This is also confirmed in fig. 4a and fig. 4b, which show

the transient displacements for the vertical and horizontal case respectively. Considering the

different Poisson ratios, the different methods show a satisfying agreement.
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μ
s
a
u
z

P
z

τ = tcs
a

(a) Vertical displacement.

μ
s
a
u
x

P
x

Ssibefe

Ssibefe

τ = tcs
a

(b) Horizontal displacement.

Figure 4: Normalized displacements for a rigid square foundation subjected to a transient point load at the center

in different directions.

5 SEISMIC APPLICATION OF THE Ssibefe

For the demonstration of the application of the Ssibefe for seismic problems, we present the

dynamic analysis of an elastic cube of side length a resting on an elastic half space subjected

to a seismic excitation resulting from an incident plane wave that propagates through the soil.

Fig. 5 shows the investigated scenario.

Depending on the angle of incidence the wave, the direction of propagation and the time

function, the seismic excitation at the interaction points xI can be estimated according to

eq. (17). The time function s(t) of the plane wave can be chosen arbitrarily, from synthetic

accelerogram to recorded data to analytical expressions. In this application, we assume a Ricker

wavelet for the function s(t), described by eq. (18) and plotted in fig. 6 for the specific loading

parameters given in tab. 3.

s = s

(
t− (xI − x0)

Tn

cind

)
s0 (17)

s(t) =
(
1− π2f 20 t2

)
e(−π2f2

0 t
2) (18)

The spectrum of the input is shown together with the output in fig. 9. In this application, the

seismic wave propagates in the positive x-direction and the soil particles move along the x-axis,

simulating a P-wave. The coordinates of the corner A of the building are x = [40 m, 5 m, 0 m]T

and the faces of the cubic building are oriented as the coordinate system.

The soil and structural properties are listed in tab. 5. The natural frequencies of the fixed-

base cube are also given in tab. 4 for a better result interpretation. The element size is l = 2.5 m

and the time step size is chosen equal to 0.025 s.
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a

x

y

z

s(t)

ρs, μs, νs

ρf , Ef , νf

Seismic

plane

wave

A

B

C

D
E

Figure 5: Building resting on an elastic half space subjected to a seismic excitation resulting from an incident

plane wave that propagates through the soil.

0 0.2 0.4 0.6 0.8 1

t [s]

-2

0

2

4

6

8

10

S
ei

sm
ic

In
p
u
t
s(
t)

[m
]

10−3

Figure 6: Time function of the seismic wave.

Table 3: Seismic load parameters.

Source position at t = 0 x0 = [0 0 0]T [m]

Orientation of the wave n = [1 0 0]T [-]

Amplitude of the wave s0 = [0.01 0 0]T [m]

Incident wave velocity cind = cp =
√

2μs(1−νs)

1−2νs
[m/s]

Central frequency of the Ricker wavelet f0 = 3 [Hz]
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Table 4: Soil and Structural properties.

μs 40·106 [N/m2]

ρs 2200 [Kg/m3]

νs 0.25 [-]

a 40 [m]

Ef 83·106 [N/m2]

ρf 1000 [Kg/m3]

νf 0.3 [-]

Table 5: Natural frequencies of the fixed-base building.

1. bending x, y 0.76750 [Hz]

1. torsion/bending 1.0436 [Hz]

1. axial 1.8322 [Hz]

2. bending x, y 2.0320 [Hz]

2. torsion/bending 2.5050 [Hz]

3. torsion/bending 3.0997 [Hz]

4. torsion/bending 3.1589 [Hz]

1. bending z 3.1680 [Hz]

2. axial/bending 3.5130 [Hz]

The results are compared to the ones obtained with the FEM/BEM coupling proposed by

Bode [23], which runs on a ANSYS/FORTRAN Framework. The authors had the possibility

to run the same identical example with both the existing framework [23] and the newly imple-

mented Ssibefe. The only difference is the material damping in the soil, which we assumed

equal to zero, while in Bode [23] it is small (0.1%) but not exactly zero. In the following dis-

cussion, only the horizontal displacements are shown, being those the largest. However, all the

components of displacements and stresses can be computed.

Fig. 7 shows the horizontal displacements at the building base, at A and C. The delay of

the wave arrival between the two points is correctly represented. Fig. 8 shows the horizontal

displacements at the building top, at B and D and E. The spectra in fig. 9 show that the response

at E is characterized by a natural frequency 0.6 Hz, which corresponds to the natural frequency

of the 1st bending mode of the fixed-base building (0.76750 Hz) considering the influence of

the soil. At the corners B and D also higher modes play an important role, as shown in fig. 9.

All the plots show good agreement between the reference results (Bode [23]) and the pro-

posed results based on the Ssibefe tool. In general, there is a very slight difference of damping

during the final oscillations, which leads to slightly different amplitudes and periods of oscilla-

tion. However, the difference can be neglected.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t [s]

-2

0

2

4

6

8

10

D
is

p
la

ce
m

en
ts
u
x

[m
]

10−3

Ssibefe @A

Bode @A

Ssibefe @C

Bode @C

Figure 7: Horizontal displacements at the building base, at A and C.
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Figure 8: Horizontal displacements at the building top, at B and D and E.
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Figure 9: Spectra of the horizontal displacements at D and E, compared to the spectrum of the time function of

the seismic wave.
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6 CONCLUSIONS

In this contribution, we presented a new implementation of the coupling between the BEM

and the FEM for soil-structure interaction problems, in the time domain. The developed com-

puter tool Ssibefe is based on an interactive connection between MATLAB and ANSYS. The

FEM part is generated through the ASNYS preprocessor, the soil reaction forces and the soil

dynamic stiffness are computed with MATLAB functions based on the BEM formulation . The

generated quantities are combined together into the coupled system of equations of the SSI sys-

tem and the resulting system is solved with usual ASNYS solver routines. We presented the

theoretical background of the methods and the time discretization approach. The tool can be

used for both external loads on the structure and seimsic excitation. For the verification, we pre-

sented the dynamic analysis of a rigid square foundation loaded with a Heaviside point load at

its center. The dynamic response as well as the static flexibility were compared to literature val-

ues, showing good agreement between the references and the results of the new implementation.

Finally, we demonstrated the applicability of the Ssibefe tool for seismic problems, showing the

dynamic analysis of an elastic cube of side length a resting on an elastic half space subjected

to a seismic excitation resulting from an incident plane wave that propagates through the soil.

The results match those from a reference software and show the potential of the proposed tool.

Further developments of the Ssibefe tool will enable the consideration of layered soils, using

fundamental solutions in the frequency domain, and additional forms of the seismic excitation.
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Appendices
A Green’s Functions

In this section the above mentioned fundamental solutions are shown [8, p.78-83].

A.1 Vertical load

r =
√
x2 + y2 distance between loading and source point (A.1)

a2 =

(
cs
cp

)2

=
1− 2ν

2(1− ν) ratio of s- and p-wave velocity (A.2)

τ =
tcs
r

dimensionless time (A.3)

H(t− t0) =

⎧⎨⎩
1 t > t0
1
2
t = t0

0 t < t0

⎫⎬⎭Heaviside step function (A.4)

K(k) =

∫ π/2

0

dθ√
1− k2 sin(θ)2

complete first elliptic integral (A.5)

Π(n, k) =

∫ π/2

0

dθ

(1 + n sin(θ)2)
√
1− k2 sin(θ)2

complete third elliptic integral (A.6)

R(ξ2) = (1− 2ξ2)2 + 4
√
ξ2 − 1

√
ξ2 − a2 = 0 Rayleigh function (A.7)

with ξ = cs/c a dimensionless wave slowness including the wave velocity c.

The Rayleigh function is further multiplied by (1− 2ξ2)2 +4
√
ξ2 − 1

√
ξ2 − a2 to obtain the

bicubic equation

1− 8ξ2 + 8ξ4(3− 2a2)− 16ξ6(1− a2) = 0 (A.8)

For this equation the three roots [ξ21 , ξ
2
2 , ξ

2
3 ] are being calculated. The first two are non-physical

values whereas ξ3 = cs/cr equals the ratio of shear and Rayleigh wave velocity. Due to con-

siderations of real and complex roots of equation (A.8) the solutions of the half-space uzz and

urz are split into two domains (ν < 0.2631 and ν > 0.2631). Additionally, the numerical calcu-

lation of the first and third kind of the elliptic integral has to be implemented. This is done by

adapting some parts but still applying the MATLAB code according to [8, pp. 250f.]. Further

parameters are derived as follows

Ai =
(1− 2ξ2i )

2
√

‖a2 − ξ2i ‖
4(ξ2i − ξ2j )(ξ2i .− ξ2k)

ξi 	= ξj 	= ξk (A.9)
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Bi =
(1− 2ξ2i )(1− ξ2i )
(ξ2i − ξ2j )(ξ2i − ξ2k)

ξi 	= ξj 	= ξk (A.10)

k2 =
τ 2 − a2
1− a2 (A.11)

ni =
1− a2
a2 − ξ2i

(A.12)

C =
(2ξ23 − 1)3

1− 4ξ23 + 8(1− a2)ξ63
(A.13)

Q1(τ) = 1 + 2z +
√
z2 + z (A.14)

z =
a2 − ξ21
τ 2 − a2 (A.15)

Important to notice is the fact that Q1 should be replaced with 1/Q1 if |Q1| > 1. With these

definitions the displacements uzz and urz can finally be obtained by

Case 1: ν < 0.2631

uzz =
P (1− ν)
2πμr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 τ < a

1
2

[
1−∑3

i=1
Ai√

‖τ2−ξ2i |

]
a < τ < 1

1− A3√
ξ23−τ2

H(ξ3 − τ) τ > 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.16)

urz =
Pτ

8π2μr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 τ < a

1
(1−a2)3/2

[
2K(k)−∑3

i=1BiΠ(k
2ni, k)

]
a < τ < 1

k−1

(1−a2)3/2

[
2K(k−1)−∑3

i=1BiΠ(ni, k
−1)

]
+ 2πC√

τ2−ξ23
H(τ − ξ3) τ > 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(A.17)

Case 2: ν > 0.2631
urz not available

uzz =
P (1− ν)
16πμr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 τ < a

8Re
[
(1−2ξ21)

2(a2−ξ21)

(ξ21−ξ22)(ξ
2
1−ξ23)

1

Q1−Q−1
1 )

]
+ A3√

ξ23−τ2
− 4 a < τ < 1

2A3√
ξ23−τ2

H(ξ3 − τ)− 8 τ > 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (A.18)

A.2 Horizontal load

For a horizontal load the quantities urx and uθx are only known in case of the Poisson’s ratio

ν = 0.25. Again some parameters have to be defined.

ah =
1

3

√
3, ξ21 =

1

4
, ξ22 =

1

4
(3−

√
3), ξ23 =

1

4
(3 +

√
3) (A.19)
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C1 =
3

4

√
3, C2 =

1

8

√
6
√
3 + 10, C3 =

1

8

√
6
√
3− 10 (A.20)

Subsequently, the displacements can be calculated

urx =
P

2πμr

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 τ < ah

τ 2
[

C1√
τ2−ξ21

− C2√
τ2−ξ22

− C3√
ξ23−τ2

]
ah < τ < 1

1− 2τ2C3√
xi23−τ2

[1−H(τ − ξ3)] τ > 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(A.21)

uθx =
−3P

8πμr

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 τ < ah[
1
2
− 4

3
(C1

√
τ 2 − ξ21 − C2

√
τ 2 − ξ22 + C3

√
ξ23 − τ 2)

]
ah < τ < 1

1− 8
3
C3

√
ξ23 − τ 2[1−H(τ − ξ3)] τ > 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.22)

The above derived relations for the displacements due to horizontal and vertical loads are plotted

while being scaled with the shear modulus μ and the distance r in the figures A.1 to A.4. For the

later description via the tensor g according to [15], the quantities are written in a new notation,

acconting for a changed coordinate system (the z-axis in the Ssibefe tool points downward while

it was defined upward in [8]).

gzz = uzz, grz = −urz, grr = urx, gφφ = −uθx, gzr = urz (A.23)

B Coordinate Transformation

The coordinate transformation

gcart = BT (φ)gcylB(φ) (B.24)

can be accomplished by the rotation matrix

B(φ) =

⎡⎣ cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

⎤⎦ (B.25)

This leads to tab. B.1.

gxx = grr cos
2(φ) + gφφ sin

2(φ) gxy = (grr − gφφ) cos(φ) sin(φ) gxz = grz cos(φ)

gyx = gxy gyy = grr sin
2(φ) + gφφ cos

2(φ) gyz = grz sin(φ)

gzx = gzr cos(φ) = −gxz gzy = gzr sin(φ) = −gyz gzz = gzz

Table B.1: Green’s functions in Cartesian coordinates.
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Figure A.1: Vertical displacement due to vertical

load, ν = 0.25.

Figure A.2: Radial displacement due to vertical

load, ν = 0.25.

Figure A.3: Radial displacement due to horizontal

load, ν = 0.25.

Figure A.4: Tangential displacement due to hori-

zontal load, ν = 0.25.
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x

ξ

η

φ

r

Figure C.1: Transformation to polar coordinates for constant boundary elements.

C Transformation to polar coordinates

To regularise the weak singularity of the integrand in eq. (4) a transformation to polar coor-

dinates according to [21] can be used.

ΔGe
n =

M∑
m=1

K∑
k=1

Nn(ξm, ηk)g(r(ξm, ηk), φ(ξm, ηk), t)J(ξm, ηk)WmWk (C.1)

The coordinate system for constant elements is located in the centre of the element because

the origin of the coordinate system should be at the loading node (see fig. C.1). The radius and

the angle are adapted as follows

r(ξ, η) =
√
ξ2 + η2 φ(ξ, η) = atan2

(
η

ξ

)
(C.2)

For the calculation of the Jacobian determinant changes of the partial derivatives occur

∂r

∂ξ
=

ξ√
ξ2 + η2

∂φ

∂ξ
=− η

ξ2 + η2

∂r

∂η
=

η√
ξ2 + η2

∂φ

∂η
=

ξ

ξ2 + η2

(C.3)

Except for these adaptations, formula (C.1) is valid for the constant elements as well. Since this

regularisation approach led to the best results, it is used for all further calculations in this thesis.

D Transformation matrices from BEM to FEM

Tu =

⎡⎣ [N] [0] [0]
[0] [N] [0]
[0] [0] [N]

⎤⎦ (D.1)

with e.g.

N =

⎡⎣ NM 0 0 0 ...
0 0 NP 0 ...
... ... ... ... ...

⎤⎦ (D.2)

Tq = TT
uA (D.3)

with the matrix A which contains the element area as a diagonal matrix.
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E Workflow of the Ssibefe tool

Figure E.1: Workflow of the Ssibefe tool.
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