Making an Impact: Universities and the Regional Economy

The Overall Impact of Scottish HEIs on the Economy of Scotland

Peter McGregor

4th November 2009
London

The presentation draws on joint research with K. Hermannsonn, K. Lisenkova and K. Swales

Fraser of Allander Institute and Department of Economics
University of Strathclyde

http://www.impact-hei.ac.uk
Outline of the presentation

• Identifying the gaps in our knowledge of the overall impact of HEIs on their own regions

• Bridging the gap 1: Demand side
 – extending HEI-disaggregated input-output (IO) analyses
 – Building HEI-disaggregated computable general equilibrium (CGE) models and applying them to study the demand side impact

• Bridging the gap 2: Supply side
 – building HEI-disaggregate computable general equilibrium (CGE) models and applying them to study the supply side impact

• Future research in the project
Bridging the gap 1: Demand side HEI-disaggregated IO analysis

• Overall HEI Impacts on Demand: Under alternative assumptions about financing
 – Aggregate impact of £100 million spent on HEIs (in general): output, GDP, employment
 • Without offsetting reduction in government expenditure
 • With offsetting reduction

• The “demographic challenge” for HEIs (demand side effects):
 – Aggregate impact of declining number of students and associated decline in HEI income
Demand-side approaches

- Have been many studies - the best have used input-output (IO) analyses:
 - Clear methodology, useful description of linkages
 - Build on existing official Scottish IO tables
 - Extremely useful databases created-and results transparent
 - We extend existing literature in to the area of CGE analysis

- But, as the best practitioners (many of whom are on our team!) recognise, these studies:
 - Embody a restrictive view of host region’s economy (excess capacity, significant unemployment) – passive supply side
 - Focused on the demand-side effects and “one-shot” in nature

- The approach cannot capture:
 - Any of the potential supply-side impacts of HEIs
Impacts disaggregated by sector

GDP impact £m

-80 -60 -40 -20 0 20 40 60 80 100 120 140

- Total impact
- Other services
- HEIs
- Public sector
- Business services
- House letting and real estate services
- Banking and financial services
- Transport, post and communications
- Hotels, catering, pubs, etc.
- Distribution and retail
- Construction
- Manufacturing
- Primary and utilities

- Funding from Scottish Government
- Increased exports
The “demographic challenge” for HEIs

• Demographic changes in the UK are projected to result in a fall in the number of students

• Recent *Universities UK* report makes projections of likely numbers of students

• We provide a CGE analysis of likely impacts on Scottish economy of Universities UK scenarios

• Scenarios based on the reaction of Universities to the demographic changes
Scotland demographic challenge

Population aged 18-20
Scotland
2006-based principal GAD/ONS projection

-11.0%
-16.9%

thousands of persons
Projected total number of students (FTE*): UUK baseline

-11.4%

-6.9%
GDP impact of the loss of income by HEIs
Bridging the gap 2: Supply-side HEI-disaggregated CGE analysis

• Need to develop databases and evidence on key behavioural relationships:
 – Input-output and SAM databases with HEI sector separately identified for Scotland (also, Wales, NI, England)
 – Quantitative representations of the supply-side transmission mechanisms from HEIs to regional economies
 – Sources: existing literature and new analyses of microeconomic databases

• Proceed through development of a suite of regional *computable general equilibrium models* (CGEs) disaggregated to include HEI sector
 – Include supply-side – so allow for supply-side heterogeneity among host regions
 – In principle can accommodate impacts of e.g. technology transfer and any other supply-side impacts
 – though evidence required to specify and parameterise key relationships
The supply side impacts of HEIs

• Increased productivity of the labour force
 – Here focus only on this impact
 – Underlying assumption is that higher education increases productivity of workers and this is reflected in higher wages (new micro-econometric analysis)

• Knowledge spill-over impact
 – HEIs produce “knowledge” and facilitate its exchange, which benefits wider economy (new micro-econometric analysis)

• Wider positive impact of the HEIs
 – Improvement in health and life style
 – Decreasing crime rates
Measuring productivity

• In the absence of direct measures of individual productivity we base our analysis on the assumption that earnings are positively correlated with productivity.

• We compare earnings of graduates vs. non-graduates and calculate the so-called “graduate wage premium”.

• We assume that it reflects higher productivity of the former group.
Graduate wage premium

• There are a number of estimates of the graduate wage premium for different countries

• We are using our own estimates for Scotland based on the LFS for the past three years (2005-2007) as a baseline – 58%

• Sensitivity analysis around this value provides further evidence
Productivity vs. sorting

• There are two different schools of thought on relationship between education and earnings:
 – The theory of human capital (Shultz, 1961; Mincer, 1974; Becker, 1975) maintains that education directly augments individual productivity
 – The theory of sorting/signalling/screening (Spence, 1973; Arrow, 1973; Stiglitz, 1975) advocates that education merely provides a tool to differentiate between more and less productive individuals in the presence of asymmetric information
 • Strong signalling – education does not effect individual productivity and thus social returns to education are negative
 • Weak signalling – education has positive impact on productivity but private returns to education exceed social returns
• Most studies fail to confirm strong signalling hypothesis
• Lange & Topel (forthcoming) estimate that sorting represents only 10% of private returns to education
• We also provide sensitivity analysis around this value
Scenario 1: All future cohorts will reach the same share of graduates as the highest age-specific share in 2005-07 (37%)
Long run increase in GDP due to changing skill mix of the population in Scotland: Scenario 1

<table>
<thead>
<tr>
<th>Wage premium</th>
<th>Signalling</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>0%</td>
</tr>
<tr>
<td>5.4%</td>
<td>5.0%</td>
</tr>
<tr>
<td>58%</td>
<td>6.2%</td>
</tr>
<tr>
<td>70%</td>
<td>7.3%</td>
</tr>
</tbody>
</table>
Future research

• Explore demand impacts in more detail
• Extend the supply-side impact analysis:
 – composition of graduates by subject and related productivity effects differentiation
 – use sectoral distribution of graduates to inform distribution of productivity shocks
 – generate new micro-econometric evidence on knowledge transfer impacts
• Application to other countries of the UK
• Then extend to close other gaps in our knowledge
 – interregional impacts
 – wider effects of HEIs