Inflammatory complications in CNS tuberculosis

Kiranmai Bhatt, Guy Hagan, Nazim Nathani

City Hospital, Dudley Road, Birmingham
CNS TB

- Accounts for approximately 1% of all tuberculosis cases
- Clinically presents as meningitis, encephalopathy, tuberculomas, abscess
- Associated high mortality and morbidity.
- Prevalent in children and HIV infected individual
- Diagnosis is difficult
- Treatment regimes are not well established
Case 1 (Relapsed disease and drug penetration)

- 33 year old lady, newly diagnosed with pulmonary TB, was due to start her treatment but presented with:
 - Intermittent confusion
 - Bilateral lateral rectal palsies
 - Tongue deviated to the right
 - Finger past pointing and ataxic in gait.

- CT head was normal.

- MRI scan showed TB related demyelination.

- Treated with ATT for 12 months.

- Relapse within few months post treatment

- She was started on RIFATER, MOXIFLOXACIN and PROTIONAMIDE and Dexamethasone.

She has made full recovery, with residual headaches.
Case 2 (Immunomodulation of inflammatory component)

- 24 year old gentleman diagnosed with tuberculous meningio-encephalitis in 2010 in London and had a ventriculo-peritoneal shunt. Continued to have seizures post discharge.

- Bilateral visual loss a year after completing TB treatment

- MRI scan showed extensive lobular enhancing mass in the suprasellar cistern, extending to prepontine cistern- Typical of meningitis. Extensive signal change in the hypothalamus and medial aspect of both temporal lobes- Tuberculoma.

- Persistent pyrexia and raised inflammatory markers

- Suffered from Hypopituitarism due to tuberculoma

- Restarted on TB treatment-changed to RIFATER, THALIDOMIDE and DEXAMETHASONE.

- Repeat MRI scan 6 months after treatment showed reduced basal meningeal thickening and reduced parenchymal oedema.

His symptoms and inflammatory component completely settled.
Case 3 (IRIS)

- 38 year old lady diagnosed with HIV and TB meningitis in Jan 2013.

- Started on TRUVADA, RALTEGRAVIR, SEPTRIN, RIFINAH and dexamethasone.

- Presented in April, May and July 2013 with headache, diplopia, left ptosis and pyrexia.

- With a rising CRP response and lumbar puncture negative for cryptococcal antigen, it was presumed to be TB-IRIS (Immune reconstitution inflammatory syndrome).

Definition: A paradoxical inflammatory reaction against a foreign antigen (alive or dead) in patients who have started antiretroviral therapy and who have undergone a reconstitution of their immune responses against this antigen.

Her symptoms improved with steroids and she continued on her HIV and TB treatment.
SUMMARY of 3 cases

Case 1- Relapsed disease most likely due to poor CSF penetration. Use of second line treatment, protonamide and moxifloxacin was important in treating this lady.

Case 2- Poor control of inflammatory responses led to disabilities. Important to start antiinflammatory and immunomodulatory therapy.

Case 3- TB-IRIS is a consequence of treatment for HIV and TB. It is important to continue with TB and HIV drug therapy and start corticosteroid treatment and this should continue until the symptoms resolve.
Drugs used in treating CNS TB

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Est ratio of CSF to plasma Conc</th>
<th>CSF penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISONIAZID</td>
<td>300mg</td>
<td>80-90%</td>
<td>Good</td>
</tr>
<tr>
<td>RIFAMPICIN</td>
<td>450-600mg</td>
<td>10-20%</td>
<td>Poor penetration, maybe high doses will help</td>
</tr>
<tr>
<td>ETHAMBUTOL</td>
<td>15mg/kg</td>
<td>20-30%</td>
<td>Poor penetration once meningeal inflammation settles</td>
</tr>
<tr>
<td>PYRIZANAMIDE</td>
<td>1.5-2.0 g</td>
<td>90-100%</td>
<td>Excellent CSF penetration</td>
</tr>
<tr>
<td>AMIKACIN</td>
<td>15-20 mg/kg</td>
<td>10-20%</td>
<td>Poor CSF penetration</td>
</tr>
<tr>
<td>MOXIFLOXACIN</td>
<td>400mg</td>
<td>70-80%</td>
<td>Good CSF penetration</td>
</tr>
<tr>
<td>LEVOFLOXACIN</td>
<td>1000mg</td>
<td>70-80%</td>
<td>Good CSF Penetration</td>
</tr>
<tr>
<td>ETHA/PROTIONAMIDE</td>
<td>15-20mg/kg (max 1g)</td>
<td>80-90%</td>
<td>Good CSF penetration</td>
</tr>
<tr>
<td>LINZEZOLID</td>
<td>1200mg</td>
<td>40-70%</td>
<td>Variable</td>
</tr>
<tr>
<td>CYCLOSERINE</td>
<td>10-15 mg/kg</td>
<td>80-90%</td>
<td>Good CSF penetration</td>
</tr>
</tbody>
</table>

Adapted from Thwaites et al (2013) Lancet Neurology 12: 999-1010
Indonesian investigators have tested the hypothesis that treatment intensification, through use of high-dose intravenous rifampicin and the addition of Moxifloxacin would enhance bacterial killing

IV Rifampicin at 600 mg which is about 13mg/kg was used

Three times increase in plasma and CSF concentration

65% drop in Mortality as compared to 35%

Thalidomide

- Used in the treatment of erythema nodosum leprosum
- Some use in treatment of relapsed CNS TB

Mechanisms of action

- Reduces level of TNFα in alveolar macrophages
- Reduction in the size of granulomatous lesions in murine models
- Shown to be a co-stimulator of T cells, increasing IL 2-mediated T cell proliferation and interferon γ production.
Limitations of Thalidomide treatment

- No consensus on the dose or duration of treatment.

- Careful monitoring is required to assess for side effects such as:
 - Peripheral neuropathy
 - Skin rash
 - Hepatitis
 - Neutropenia
 - Thrombocytopenia
 - Teratogenic effects
Protionamide

➢ Bactericidal

➢ Activated form of the drug inhibits the inhA gene product – enoyl ACP reductase.

➢ Usually used as second line therapy, along with another agent as rapid resistance can develop.

➢ Active agonist *M. tuberculosis, M. bovis, M. smegmatis* and *M. leprae*.
Use of anti-inflammatory therapy in CNS TB

<table>
<thead>
<tr>
<th>Drug</th>
<th>Daily dose</th>
<th>Route of admin</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisolone</td>
<td>2.5 mg/Kg</td>
<td>Intravenous initially, switch to oral when safe</td>
<td>4 weeks, then reduce to stop over 4 weeks</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>0.4 mg/kg</td>
<td>Intravenous initially, switch to oral when safe</td>
<td>Reducing each week to stop over 6-8 weeks</td>
</tr>
</tbody>
</table>

Adjunctive corticosteroids reduce death and disability by about 30%

Adapted from Thwaites et al (2013) Lancet Neurology 12: 999-1010
Conclusions

Relapse can occur in spite of completing the recommended treatment regime.

When treating CNS TB to consider a combination of drugs with good CNS penetration.

A possibility of using higher IV doses of Rifampicin.

Early use of steroids and immuno-modulators to minimise the inflammatory complications in CNS TB.