Abstract
Urban sanitation in growing cities of the Global South presents particular challenges. This led to the Bill & Melinda Gates Foundation’s Reinvent The Toilet Challenge, which sparked the development of various non-sewered sanitation technologies like the Nano Membrane Toilet. Complex disruptive technologies like this entail an extensive product development process, including various types of prototype tests. While there is an abundance of literature discussing how to build prototypes, and the optimal number of tests, there has been little focus on how to plan and conduct tests, especially in a development endeavour of this complexity. Four approaches to testing are reviewed, and their strengths and weaknesses compared. A visualised testing strategy is proposed that encompasses the entire product development process and can be used to plan and communicate prototype tests for the Nano Membrane Toilet to ultimately achieve compliance with international standards.

Keywords
prototyping, reinvent the toilet, testing, waterless sanitation

This article is included in the Water, Sanitation & Hygiene gateway.
Introduction

Sanitation, the containment, transport, and treatment of human excrements, is a topic of high significance for human development (Jahan, 2016; UNICEF, 2017) stress the importance of safe sanitation for children’s health and that improving (access to) sanitation could reduce child mortality. Lack of sanitation has been linked to reduced cognitive development in children (Sclar et al., 2017) as well as stunting, caused by environmental enteric dysfunction (Budge et al., 2019), and to a risk of assault, particularly for women and girls practicing open defecation (Jadhav et al., 2016; Miiro et al., 2018).

Urban sanitation poses particular difficulties, due to the lack of piped water and prohibitively high cost of sewer systems (Cobbinah & Poku-Boansi, 2018; Parnell et al., 2007). The most commonly promoted sanitation systems in cities of the Global South involve toilets that use little to no water, i.e. dry toilets, and store the faecal material onsite. Examples of this are pit latrines, pour-flush toilets, urine-diversion dry toilets (UDDT), and septic tanks (Semiyaga et al., 2015). When full, these toilets are emptied, and the faecal sludge is transported and either treated and reclaimed or discharged, or discharged without treatment. However, there are problems with these sewer-less sanitation services, such as high fees for emptying services, collection and transport trucks not being able to access the houses, high transport costs to treatment facilities or the altogether lack of such facilities (Strande, 2014). Another obstacle for the success of these technologies is public acceptance: Users can consider the pedestals of dry toilets uncomfortable, dirty, or malodorous, and they may worry their children could fall into the pit (Roma et al., 2013; Mkhize et al., 2017).

To find a solution to these problems, the Bill & Melinda Gates Foundation (BMGF) initiated the Reinvent The Toilet Challenge (RTTC) to “create a toilet that:

- Removes germs from human waste and recovers valuable resources such as energy, clean water, and nutrients,
- Operates “off the grid” without connections to water, sewer, or electrical lines,
- Costs less than US$0.05 per user per day,
- Promotes sustainable and financially profitable sanitation services and businesses that operate in poor, urban settings, [and]
- Is a truly aspirational next-generation product that everyone will want to use – in developed as well as developing nations.”

As result, research institutions and companies worldwide are now developing waterless, non-sewered sanitation technologies (Bill & Melinda Gates Foundation, 2013) which have been praised as a form of disruptive innovation in the field of environmental research (Sedlak, 2018). The reinvention of the toilet requires unconventional thinking. Niemeier et al. (2014) discuss the challenges of building technologies for the development context: “If we are to resolve global inequities in access to innovations that improve health, we must adopt new approaches to engineering design that reflect the unique needs and constraints of low-resource settings”. They further mention how “efforts like the [RTTC] reflect the kind of integrative thinking that must occur at the beginning of a design initiative […]”. One example of a reinvented toilet is the Nano Membrane Toilet (NMT), conceived by researchers at Cranfield University (Parker, 2014). It uses combustion and membrane processes to treat the mechanically separated solid and liquid waste streams (Figure 1). With
all its components, the NMT would not just replace the currently existing dry toilet technologies, but also the associated faecal sludge management services, thus offering a form of safely managed sanitation (WHO & UNICEF, 2017). It is not simply a human waste receptor, but rather a miniature faecal sludge treatment facility.

Naturally, there are numerous considerations to be made during the development of such a technology. The NMT combines entirely novel technologies with already existing ones. However, even for the well-established technologies, their application for this specific purpose is novel, and requires further research in order to miniaturise, integrate and optimise for off-grid functionality. At the same time, from a user’s perspective, not much should change when transitioning from using another dry toilet or a porcelain flush toilet to the NMT. To fulfil the RTTC’s demand for an aspirational design (Bill & Melinda Gates Foundation, 2018), it should be comfortable, appealing, and simple to use. It should take into account the preferences and customs of users from a diverse range of cultural backgrounds. Fejerskov (2017) emphasises the importance of considering the users of a newly developed technology: “[…] a technology developed in isolation from those who are supposed to benefit from it cannot be expected to yield predictable outcomes.” There is research on the preferences of toilet users in various contexts, from industrial nations like the Republic of Korea (Lee, 2019) and Canada (Morales et al., 2017), to a focus on elderly users (Dekker et al., 2011) to low- and middle income countries (Nelson et al., 2014; Austin-Breneman & Yang, 2017). Hence, developing the NMT entails developing a user-friendly user interface—in software development projects this would be called “front end” (Reza & Grant, 2007)—and a “back end” comprising several sub-technologies, and integrating them into the overall system.

The RTTC has thus led to an unusual case of product development (PD) at this scale: It asks for a product that connects existing notions of a toilet’s function and design with never-before-seen technologies. A viable solution to the problems associated with dry sanitation must simultaneously satisfy users’ ideas of aesthetics and comfort, and adhere to high standards of safety and reliability. To achieve this goal, fundamental research and creative design techniques have to be performed in combination, and testing of physical prototypes is a crucial part of this process (Tahera et al., 2015). For example, Larsen et al. (2016) acknowledge that, for technologies addressing the “water challenges of an urbanizing world”, “technologies should be tested in a broad variety of experimental settings to ensure robustness, cost-effectiveness, social acceptance, and the wide applicability of alternative solutions.”

Ulrich & Eppinger, 2016 define a prototype very broadly as “an approximation of the product along one or more dimensions”. They furthermore identified four purposes of prototypes: learning, communication, integration, and milestones. In the context of prototype testing, the main purpose considered is learning. For example, Tronvoll et al. (2017) write about the use of prototypes: “A prototype experiment often targets generating knowledge about different attributes of a proposed design which is not identified by simple reflection.” These tests, like most activities in PD processes, can be seen as risk-reduction tasks (Keizer & Halman, 2009; Unger & Eppinger, 2011). Prototypes can also be categorised by how closely they resemble the final product, i.e. their fidelity (Mccurdy et al., 2006). Another important distinction of different categories of prototypes is between virtual and physical prototypes, and while the use of virtual prototypes, or simulations, has increasingly gained importance in the past decades (Tahera et al., 2014), this paper is focused on the testing of physical prototypes, as opposed to “the solution of analytical models and numerical approximations” (Boës et al., 2017).

There is ample literature advising on how to design and build prototypes according to testing needs (e.g. Camburn et al., 2015; Menold et al., 2017), and testing strategies that aim to optimise the time and number of prototype tests (e.g. Al Kindi & Abbas, 2010; Qian et al., 2010; Thomke & Bell, 2001). However, the question of how to test prototypes is seldom answered (Tahera et al., 2015). Batliner et al. (2018), for instance, complain about the under-representation of general testing methodology in engineering literature impeding its integration into an engineering design curriculum. The planning of prototype testing, and communicating these plans, can therefore be difficult in the multi-disciplinary groups working on a PD project like for the NMT. While types of testing like user-centred design (UCD) (Unger Unruh & Canciglieri Junior, 2018), design of experiments (DOE) (Ilzarbe et al., 2008), Reliability Testing (Bhimare et al., 2007; Zhang et al., 2014) and testing for international standard compliance (Shin et al., 2015; Tyas, 2009) are well understood in their respective fields, a synthesis of these approaches could be used to develop a unified testing strategy for the NMT. This would require a holistic understanding of what each approach aims to learn from its tests, how each approach conducts and designs tests, and how the different approaches can be consolidated to amplify their strengths and reduce their weaknesses.

Keller et al. (2006) discuss the difficulties faced by people developing large and complex products keeping an overview over the entire project and communicating their work to colleagues. They propose an improved way to visualise design processes to overcome this problem. Similarly, a visualised strategy that achieves synergy of testing approaches could be useful in planning and communicating testing efforts for the development of a complex disruptive technology like the NMT. The result could be more effective tests yielding more valid and useful data, as well as an increase in efficiency throughout the PD process.

This paper aims to review four testing approaches to then propose a visualised testing strategy, as a tool to facilitate planning and communication of prototype testing for the development of the NMT.

Methods

Using our own publications and those of our colleagues on the project, the development history of the NMT was established and outlined in the section below. Subsequently, the Scopus and Google Scholar databases were used for an exploratory
search of peer reviewed literature, with a focus on literature reviews covering a range of publications, to advance the understanding of the broad field of prototype testing in PD. Search terms included review, prototyping, prototype testing, product development, technology development, testing, disruptive technology, and others. Using these terms in various combinations, promising publications were identified and studied individually. The sections ‘Testing of Prototypes’ and ‘Phases of the product development process’ were composed using the information from this initial search. In the search, four repeatedly occurring approaches to testing were identified and then further investigated in a more targeted search on the same databases. Again, the focus was on reviews of the existing literature rather than original work, as the aim was to obtain a wide understanding of multiple fields of study, rather than an in-depth analysis of a single one. Similar search terms were used, with the addition of the terms ‘user centred design’ OR ‘UCD’, ‘Reliability’, ‘technical standard’ OR ‘international standard’, and ‘design of experiments’ OR ‘DOE’, with the term ‘OR’ being a Boolean operator. The identified literature on the four approaches to testing was then analysed to extract the information relevant to prototype testing activities, particularly for the development of disruptive technologies. This analysis ultimately resulted in the condensed information collected in Table 2. Furthermore, during both stages of literature search, the topics of iteration, distinction into back end and front end, and visualisations of PD processes were identified as recurring themes and summarised in the respective sections.

A visualisation of the prototype testing processes for the PD of the NMT was then conceived, with the aim to consolidate the collected information. A simple linear PD process model was chosen, divided into three phases, with parallel strands of testing for the front end and back end, and possible iteration loops between different stages of the process. The four approaches to testing were matched to the stages, depending on their identified strengths and weaknesses.

The NMT: a case of complex product development
The NMT is a household-level, onsite sanitation system that looks similar to a porcelain water flush toilet (Figure 1 and Figure 2). It is a highly complex technology, which is, in fact, a combination of subsystems that have to be developed individually and then integrated into the overall system.

The original design brief for the NMT was the RTTC, which included important user-centred objectives of aspirational design and affordability, as well as objectives aiming at sustainability and at solving the problems of urban non-sewered sanitation (Bill & Melinda Gates Foundation, 2013). From this, initial design ideas were conceived involving membrane treatment of liquids and water recovery through condensing beads, as well as the drying and coating of solids (Parker, 2014). Later design stages discarded the condensing beads and a combustion process was devised to replace the coating of solids. Considering that the user of the toilet would usually not interact with the treatment processes, these were not subjected to user testing. The pedestal, the toilet’s part with which the user interacts, mainly differs from a porcelain water flush toilet in its mechanical flush. It was developed as the result of studies among potential users in Ghana and subsequent agile innovation processes (Tierney, 2017). Several iterations of prototypes were produced to develop a mechanical flush, until it could be tested in real-use scenarios.

This mechanical flush – a rotating bowl and rubber swipe activated by moving the toilet lid – separates the user from a tank underneath the toilet pan (Tierney, 2014; Tierney, 2017). Solids are separated through settling and displacement, transported by an screw conveyor (Mercer et al., 2016) and subsequently dried and combusted (Fidalgo et al., 2019; Onabajo et al., 2016), while the liquid fraction is extracted through a weir and purified through membrane processes (Kamranvand et al., 2018; Wang et al., 2017), driven by the heat of the combustion, which is transferred via a heat exchanger (Hanak et al., 2016). The toilet pedestal, including the mechanical flush, the screw conveyor, and the liquid weir are considered the NMT’s front end. The dryer, combustor, and membrane components are considered its back end. The NMT is envisioned to be independent of water- or sewer connections and energy neutral, or even have a positive net power output (Kolios et al., 2018). However, the back-end components have not yet been integrated and combined with the front end to produce a fully functioning prototype of the NMT. Such tasks are envisioned to be conducted in the near future.

At the moment, all subsystems of the NMT are in an iterative phase of building and testing prototypes. The front end has been re-designed as result of field tests involving target users of the NMT (Hennigs et al., 2019). Prototypes of the dryer (Kentrotis et al., in preparation) and combustor (Jurado et al., 2018) have been tested in the lab in several iterations. In addition, the recovery of electrical energy by reverse electro-dialysis is under investigation (Hulme et al., in preparation).

This means that the individual components and subsystems of the NMT are developed enough to plan for integration of all subsystems to a complete system-prototype. Such a prototype would then be tested in laboratory tests, and once its safe operation was sufficiently proven, it could be deployed for user-centred field tests. The aim of such tests, and concurrent further subsystem improvements, would be to optimise the operational settings of the entire system. The recently published ISO 30500 standard (ISO, 2018) could provide the benchmark performance values the prototype has to achieve. Once the prototype meets these values, its design can be polished for usability and manufacture. Final reliability and user tests of this polished design would ensure the NMTs usability and reliable functionality throughout its lifetime, and when passed, allow this design to confidently be tested for ISO 30500 standard-compliance, making it a market-ready product.

Consequently, there are still numerous prototype tests which need to be planned and conducted. The development and testing of prototypes of the NMT’s various components to date have not been guided by a formalised testing strategy. Instead, prototypes of components were developed and tested by the teams.
Table 1. Technology readiness levels. Table adapted from NASA (2016).

<table>
<thead>
<tr>
<th>TRL 9</th>
<th>TRL 8</th>
<th>TRL 7</th>
<th>TRL 6</th>
<th>TRL 5</th>
<th>TRL 4</th>
<th>TRL 3</th>
<th>TRL 2</th>
<th>TRL 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual system “flight proven” through successful mission operations</td>
<td>Actual system completed and “flight qualified” through test and demonstration (ground or flight)</td>
<td>System prototype demonstration in a target/space environment</td>
<td>System/subsystem model or prototype demonstration in a relevant environment (ground or space)</td>
<td>Component and/or breadboard validation in relevant environment</td>
<td>Component and/or breadboard validation in laboratory environment</td>
<td>Analytical and experimental critical function and/or characteristic proof-of-concept</td>
<td>Technology concept and/or application formulated</td>
<td>Basic principles observed and reported</td>
</tr>
<tr>
<td>System/subsystem development</td>
<td>Technology development</td>
<td>Basic technology research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System test, launch, and operations | Technology demonstration | Research to prove feasibility |

Table 2. Summary of the four presented testing approaches applicable in product development (PD).

<table>
<thead>
<tr>
<th>Approach</th>
<th>Aims</th>
<th>Test procedure</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE</td>
<td>Design test protocols to maximise statistical validity of information obtained from a minimal amount of tests conducted.</td>
<td>Using the basic principles of DOE, and modern variations thereof, an experimental plan is developed and its results are analysed.</td>
<td>High statistical validity and efficiency, applicable across disciplines.</td>
<td>Focus on preparation and analysis of tests, rather than what is tested, and why. Statistical validity can give false credibility to methodology.</td>
</tr>
<tr>
<td>Reliability Testing</td>
<td>Determine a product’s time to/ likelihood for failure to give estimates/ guarantees of its functionality space with regard to load and time</td>
<td>Loads/ stresses are simulated on the product – or its components – often accelerated or with increased intensity, and often on several units. The failure points, -times and –frequencies are determined and a reliability metric is calculated.</td>
<td>Allows highly reliable guarantees for performance, can be used to identify weak points of the design, material, etc.</td>
<td>Does not consider the user experience. Complex failure modes may not be detected easily.</td>
</tr>
<tr>
<td>Standard compliance testing</td>
<td>Ensure safety and (inter-)national usability of a product. Ensure a minimum level of performance for a class of products.</td>
<td>Detailed descriptions are given of how to conduct the tests and sets requirements for the performance levels in the tests.</td>
<td>Highly specified procedures, Set out requirements for design-brief can be used as go/no-go criterion for decision between competing designs</td>
<td>Doesn’t necessarily account for statistical variation, May restrict innovative solutions to problems</td>
</tr>
<tr>
<td>Testing for UCD</td>
<td>Ensure the product is designed for the user, accounts for their preferences and practices, and appeals to their sense of aesthetics</td>
<td>The product’s prototypes of increasing fidelity are tested on users, throughout the development process, their responses are recorded and considered in the next iteration step.</td>
<td>Adaptable to the realities of the PD process, identifies developers’ misconceptions and blind spots; iterative nature of approach ensures continuous improvement of prototypes while allowing for changes of previous design choices</td>
<td>Rarely statistically relevant sample sizes, user preferences and technical possibilities may be incompatible</td>
</tr>
</tbody>
</table>

DOE, design of experiments; UCD, user-centred design.

working on these components. In the case of the front end, a prototype was developed by one team and then tested by another (Hennigs et al., 2019). It could therefore be argued that the prototype tests to date could have been conducted more effectively had they been planned in a more coordinated manner. Similarly, the communication within and between the various teams working on the NMT could benefit from a more consolidated terminology and shared understanding of the development process and the associated testing activities. A visualised testing strategy could thus facilitate and improve the planning and communication of testing activities in the future.
Testing of prototypes

Boës et al. (2017) define testing in the context of PD as “exposing a physical system to a condition or situation in order to observe the system’s response.” They then clarify the physical system as a representation of the product or one of its components, the condition or situation as a “use case as a whole or its effect on a subsystem,” and the system’s response as “the performance of a desired function [or] an undesired failure mode.” Using this definition, they propose four categories of testing activities according to the type of knowledge that is generated. First, trial and error tests can be used to gain a basic understanding of the development project and to explore the design space. Secondly, experiment tests resemble experimental work in fundamental scientific research in their structured approach in order to identify influencing factors and develop “necessary system knowledge”. Thirdly, verification tests are usually pass/fail tests to determine if the system- or component prototype fulfills the requirements set at the beginning of the PD process. Lastly, validation tests determine whether the product addresses the underlying user needs, rather than the requirements set by the product developer. They are commonly conducted with a fully functional prototype.

This implies that there are different types of tests being conducted throughout the PD process that differ in their level of formality, in their approach, and in the knowledge they are designed to produce. A similar observation can be made about the prototyping tests for the NMT. Just for one generation of a front-end prototype, Hennigs et al. (2019) conducted user surveys and interviews (which would fall into the category of validation tests), photography and image analysis (experiment tests), and field tests on the material choice of a rubber swipe (trial and error tests).

As the product maturity increases, the types of tests conducted on its prototypes will change according to the knowledge that is sought. The testing of physical prototypes throughout the PD process can therefore also be modelled along technology readiness levels (TRL). These are based on a scale to measure a technology’s maturity, developed and first externally published by NASA as a seven-point scale (Sadin et al., 1989), and still used in current NASA (2016) documents (Table 1). The TRL-scale has found general acceptance in PD efforts (Olechowski et al., 2015).

Phases of the product development process

In the case of User Testing, Rubin & Chisnell (2008) distinguish between exploratory/formative tests, assessment/summarative tests, and validation/verification tests along the PD process as the vague initial design develops towards the final product. Exploratory tests are conducted in the early stages of PD to test its basic design, i.e. whether users find it intuitively appealing. Assessment tests, conducted about halfway through the development process, expand the knowledge on the product’s usability, i.e. whether users can perform the intended tasks on the product. The validation/verification tests at the end of the cycle tend not to inform further iteration, but rather confirm that all previously identified problems have been resolved, and that the entire product can be used as intended. In these phases, the basic design, early to well-developed prototypes and the final product are tested on potential users to identify their likes and problems. Similarly, such phases can be imagined for all types of tests as the product’s TRL increases. The exploration phase would encompass TRL’s one and two, the assessment phase TRL’s three through seven, and the validation/verification phase the remaining two phases, eight and nine.

Four approaches to testing of physical prototypes

While the route to technological maturity as exemplified by the TRL’s may seem straightforward, each step can involve extensive preparations and cooperation among multiple teams. In the example of the NMT, prototype integration (TRL 6) not only requires a sufficient level of maturity of all components, but also operational process control to adjust the components’ outputs to their connected components’ input requirements. As the input of a subsystem affects its output, which, in turn, can be another subsystem’s input, the process of adjusting all parameters is highly complex and requires extensive knowledge of all subsystems’ operational conditions. This knowledge may be acquired in tests that Boës et al. (2017) would classify as experiment tests, using statistical DOE (Ilzarbe et al., 2008).

Reliability estimation methods are needed to ensure the system’s reliability throughout its lifecycle (Bhamare et al., 2007), and often national or international standards exist to ensure the technology is safe to use (Feo-Arenis et al., 2016). Additionally, as mentioned in the introduction, prototype and system tests need to be centered on the target users of the technology. If they do not want to use a novel toilet, it will fail to have a positive impact on the sanitation crisis. Methods of UCD can be used to avoid such failures (Unger Unruh & Canciglieri Junior, 2018). Therefore, analogous to the taxonomy of Boës et al. (2017), it appears...
sensible to consider the testing approaches DOE, reliability testing, testing for standard compliance, and testing for UCD in the PD process for the NMT. In this section, the principles of these four approaches to testing a new technology, or prototypes thereof, are presented.

DOE

Laboratory-based experiments commonly involve the observation of a (sub-) system’s condition and/or outputs in relation to its inputs. As mentioned above, a comprehensive understanding of the systems’ outputs respective to their inputs and process variables is required. Often, there are several inputs and/or outputs for one component, and inputs can interact with each other to create second- or higher-order effects on the outputs (Montgomery, 2009). For example, potential factors that can affect the processes in a combustion chamber are the amount of fuel, its flux, its moisture content and calorific value, the process temperature as well as the flux, pressure, temperature, humidity, and oxygen content of the inflowing air (Jurado et al., 2018).

To test every effect of each input, and each interaction of inputs, across every input’s potential range, is either very difficult or impossible. It would take hundreds of tests to assess every factor’s influence on the combustion process. Some factors cannot be controlled; some cannot be changed without affecting another.

Based on the work of statistician R.A. Fisher (Fisher Box, 1980; Yates, 1964), the DOE uses statistical approaches to address such problems, to minimise the time and effort required for a set of experiments while maximising the validity, reliability, and replicability of information gathered from them. The basic principles of DOE, initially developed for agricultural research, are (Cortes et al., 2018; Fisher, 1935):

- **Factorisation**: the variation of several experimental factors at once in order to reduce the number of experiments to run.

- **Replication**: the repetition of an experiment with the same settings for experimental factors (treatments) in order to estimate the experimental error.

- **Randomisation**: the random application of treatments and order in which experiments are run, to validate the assumption that the observations and errors are independently distributed variables.

- **Local control of error, or blocking**: the subdivision of experimental runs into homogenous blocks in the attempt to lessen the impact of errors introduced by controllable nuisance factors, e.g. male and female patients in medical drug trials.

It may occur that these principles have to be compromised to some extent for practical reasons, or that complex processes are to be investigated. Within the DOE-toolbox are methods such as split-plot design (Kulahci & Tyssedal, 2017; Lee Ho et al., 2016), fractional factorial design, response surface methodology, and random effects models (Montgomery, 2009) for such cases. It is thusly possible to achieve a high level of understanding from comparably few experimental runs. For example, Izarbe et al. (2008) found in their bibliographical review of 77 DOE applications in the field of engineering, that with an average of 5.06 factors to be investigated, 77% of the studies achieved this goal with 30 or fewer experiments, and 50% with 20 or fewer.

DOE finds application in PD efforts of various kinds: Pineau et al. (2019) used a fractional factorial design to assess which design factors of coffee vending machines impacted the sensory experience of the product the most. Gumma & Durgam (2019) improved the structural performance of a car’s body using a multi-model DOE sensitivity study, including simulations and experimental model testing. Sano et al. (2019) studied Bayesian optimisation techniques to reduce the number of experiments necessary to obtain the information with which they could improve production parameters for orally disintegrating tablets.

Thus, DOE encompasses a wide range of statistical tools for planning how to conduct tests, and how to analyse the results later on, to maximise the statistical validity of the lessons learnt. It does, however, not give any advice on what to test, or why. Other problems with DOE can be that statistical models developed through its use do not accurately reflect the observed processes (Deaconu & Coleman, 2002), or that it gives false credibility to results that stem from badly conducted experiments or the incorrect application of DOE principles. For example, modern technical processes and systems can and must be tested differently to fields of crops (Collins et al., 2011).

Reliability testing

Reliability estimation, a part of reliability engineering, comprises reliability tests and the analysis of the data gathered in those tests. Kapur & Pecht (2014) define reliability as “the ability of a product to function properly within specified performance limits for a specified period of time, under the life-cycle application conditions”. This means that the tests are carried out to assess the likelihood of the product—or its components—failing over time. They can be conducted on prototypes, on randomly selected products fresh off the assembly line, or even products that have been in use for a certain time. Similar to DOE, statistical approaches are used to calculate a level of confidence with which a failure will occur in a given time (Kapur & Pecht, 2014).

Challenges lie in accelerating the product’s lifetime: It is not feasible to test a statistically significant number of product units over a number of years in order to assess their reliability for this timespan. Therefore, a reliability engineer attempts the realistic emulation of real use scenarios and environmental conditions in a shortened period of time by applying potential stresses, like shock, vibration, or climatic conditions in rapid succession, periodically, or simultaneously (Cheon et al., 2015; Donovan & Murphy, 2005; Zanoff & Ekwaro-Osire, 2010;). For this aim, accelerated life testing (ALT) is used to determine a product’s time until failure by compressing its lifetime in a short period, usually weeks or months. Highly Accelerated Life
Testing (HALT), in contrast, is a technique to determine the most likely failure points of a product but compressing its lifetime into a very short period, usually hours or days (Silverman, 2006).

Reliability testing is conducted with a broad spectrum of technical products, ranging from computer keyboards (Duan et al., 2017) over household appliances (Borgia et al., 2013) to heat exchangers (Pulido, 2017).

Difficulties with these approaches lie in the complexity of combined stresses and failure modes, particularly on complex physical products. It is difficult or impossible to “model multiple (or competing) failure mechanism[s] to support reliability testing methods” (Bhamare et al., 2007). Furthermore, reliability engineering does not consider the user’s experience, but rather focuses solely on the product’s reliability. Thus, reliability tests may miss important inputs, as (mis-)use is an important factor in the lifetime of a product, and important outputs, as the user experience may be a more important factor in design changes than increased reliability. For example, a sturdy handheld device may be more reliable, but too heavy or impractical to use.

Testing for technical standard compliance

International “technical standards are established norms or requirements applied to technical systems. They are a crucial aspect of almost all industries […].” (Shin et al., 2015). They play an important role in technology development (Östebø et al., 2018), by providing “a benchmark for quality and acceptability in the market place” and guidance on the “safety, reliability, efficiency and interchangeability” of products (Tyas, 2009). The testing procedures and performance requirements outlined in technology standards form the basis for the process of ensuring a product is compliant with the standard before being released to market. This does, however, not mean that the first time the standard should be consulted is at the end of the PD process. Instead, the performance, safety and other requirements provide the benchmark to which even early prototypes can be compared, and the testing procedures and-protocols can be adapted or used directly to test prototypes of sufficient technological maturity.

Examples of standards being used as benchmarks during product testing are for a wireless fire alarm (Feo-Arenis et al., 2016), packaging of products (Nolan, 2004), or sensor interface circuits for the automotive industry (Ohletz & Schulze, 2009).

Another example is the ‘syngina test’, the standardised test for tampon absorbency. The standard was developed by the American Society for Testing and Materials, when a link between tampon size and toxic shock syndrome was discovered, but customers could not reliably buy tampons of similar absorbency from different brands (Vostral, 2017).

While international standards provide this much-needed guidance, it is important to remember that they are not infallible and may overlook important aspects especially of innovative technologies. For example, Mjör (2002) noted that, for dentistry equipment, “parameters measured in the standards are often not predictors of clinical performance”, and often lacked clinical backing. For the case of the ‘syngina test’, Vostral (2017) discusses the issue that the test is merely a very coarse approximation of a menstruating human body. Narayanan & Chen (2012) discuss the fact that in the early stages of competing, similar technologies, the setting of a standard can result in a “winner-take-all outcome”, as seen in the competition between Betamax and VHS video systems. Moreover, Hu (2010) lists potential threats that international standards could pose to innovation, such as exclusion of innovative start-ups from the market and lack of incentive for leading companies to innovate beyond a minimum-standard level of quality, but also mentions that the benefits of standards toward innovation outweigh the limitations.

The ISO 30500 Standard

The attempt to assist innovation through standards can be applied to the development of sanitation technologies as well: the ‘International Organization for Standardization’ (ISO) recently published the standard ISO 30500:2018 Non-sewered sanitation systems. It “specifies general safety and performance requirements for design and testing as well as sustainability considerations for non-sewered sanitation systems”, and thus aims “to support the development of stand-alone sanitation systems […] and promote economic, social, and environmental sustainability […]” (ISO, 2018). In the document, requirements for performance, materials, safety, maintenance, and sustainability are listed and testing procedures are described in great detail. The ‘Annex A – Test methods and additional testing requirements’ comprises 33 pages, and the main document 34. The range of tests covers a comprehensive list of aspects concerning the safety, quality, and usability of non-sewered sanitation systems, but does not necessarily account for the statistical variation in measurements, as would be considered in DOE. For example, only one unit of a new sanitation system is to be tested for the ISO 30500 standard. Similarly, the standard does not fully support a UCD approach. While the ease and safety of use are described as requirements, and consideration is given for variations in cultural requirements like the distinction between users preferring the squatting or seating positions, the standard cannot account for the broad variety of user preferences according to their physical, cultural, and social needs. Such considerations are given in UCD.

Testing for UCD

The term ‘User Centred Design’ (UCD), first coined and publicised by Norman & Draper (1986) in the context of software design, encompasses a collection of processes and methodologies that follow the basic principles of a human-centred approach, which are now described in the international standard ISO 9241-210:2010 (ISO, 2010):

- The design is based upon an explicit understanding of users, tasks and environments.
 ➔ Identify all relevant stakeholders, their needs, and the context of use, i.e. the characteristics of users, tasks, and environment.
- Users are involved throughout design and development.

 ➔ Users are an important source of information about context of use. The participants should reflect the target users’ (range of) characteristics. The type and magnitude of participation will likely change throughout the development process.

- The design is driven and refined by user-centred evaluation.

 ➔ Gather user feedback on designs, e.g. prototypes, to detect unknown challenges or requirements. The final product can similarly be tested to ensure the UCD was a success. Long-term issues can be uncovered through user feedback after market-release.

- The process is iterative.

 ➔ As described above, repeating certain steps of the design process while building on the learnings of the previous repetition is widely accepted as a successful method of progressively improving the design (Wynn & Eckert, 2017).

- The design addresses the whole user experience.

 ➔ The user experience is influenced by the technology’s functionality, performance, and user interface, as well as the user’s individual characteristics, skills, and previous knowledge. To improve it, all these factors need to be considered, and the user-technology interaction should be adjusted accordingly.

- The design team includes multidisciplinary skills and perspectives.

 ➔ While the interdisciplinary, and often international, nature of teams collaborating on PD projects can be the cause of conflict initially (Yim et al., 2014), it is widely accepted that the combined knowledge and skillset of multidisciplinary teams are beneficial to their success (Edmondson & Nembhard, 2009).

Usability evaluation is only one, albeit essential, part of the entire UCD process (Bastien, 2010), and comprises in itself a range of possible tests: from complex experimental designs as produced with DOE methods and involving large numbers of participants to rather informal tests with a single potential user as participant. Considering the aim of such testing is often to obtain qualitative information for the design process, rather than obtaining statistically relevant design parameter values, less formalised, qualitative methods are the focus of Rubin & Chisnell’s (2008) ‘Handbook of Usability Testing’. While there are cases of user tests designed using DOE principles (e.g. Jensen et al., 2018), these remain the exception, as the more common approach for user tests seems to be a qualitative one (Bastien, 2010).

UCD approaches appear to be particularly important for products that have a high degree of complexity but are used by a broad spectrum of users, with varying degrees of expertise, for example a tubeless insulin pump (Pillalamarri et al., 2018). Another application would be for products specialised for a certain user group, like a motorcycle tool for one-handed users (Sudin, 2013). However, a large portion of usability tests is still conducted in software development, for example for a drill rig control system (Koli et al., 2014).

Summary

Table 2 summarises the basic aspects of the four presented approaches. A comprehensive testing strategy for the development of a novel sanitation system should comprise elements of all approaches to combine their strengths and offset their shortcomings. We believe that a combination of established approaches – not only in testing – is a common occurrence in PD. An example is Lean Six Sigma, a now established concept itself, which combines the two management methodologies ‘Lean’ – a methodology to “remove non-value activities from the PD process” and ‘Six Sigma’ – a methodology to reduce variability and thus defects and errors in the process of concern (Alexander et al., 2019). Furthermore, since the dawn of computer-assisted engineering, a combination of virtual and physical testing has been (Van Der Auweraer & Leuridan, 2005) and continues to be promoted by experts (Tahera et al., 2014). Likewise, the testing practice in private enterprises is likely to be more experience-based and will often combine various approaches to varying degrees. However, a visualised combination of different approaches appears to be a novel conclusion.

To incorporate all four approaches, testing of prototypes in PD should thus:

- Follow UCD-principles
- Use standard compliance tests and standard requirements as benchmark for performance and safety
- Use ALT and HALT methodology to identify weak points and estimate the product’s reliability
- Use DOE-principles where possible to ensure statistical validity and efficient use of time and resources

Distinction between front end and back end – lessons from software development

For the case of the NMT, a distinction between the toilet seat, bowl, and flush, i.e. the “user interface” or front end, and the treatment system, or back end, can be made. This is analogous to software products like web sites (Chen & Iyengar, 2003). The front end and back end of a system require different testing in the PD process. (Bertolino, 2007; Sánchez Guinea et al., 2016; Sneed, 2004) For example, while the front end is the part of the product with which the users will interact, the back end is usually only of indirect concern for them, as long as everything operates as expected. Hence, the front end should undergo
user testing early on (Chuang et al., 2011), while the back end might only require limited user testing at later stages, to ensure maintainability by trained personnel. On the other hand, the back end of the NMT will likely require more extensive laboratory testing than the front end, as the treatment processes are more complex than the user interface.

It might therefore be sensible to consider testing for the front end and back end independently, and in a separate step actualise integration testing of the individual components.

Iteration

Iteration occurs throughout the PD process and can have different causes and outcomes (Wynn, 2007). With its earliest forms dating back to the 1930s (Larman & Basili, 2003), the cyclical repetition of testing and (re-)designing can be welcomed as a driver of positive design change, or as a wasteful, costly delay in a PD project (Ballard, 2000; Le et al., 2010; Wynn & Eckert, 2017), but it is undeniable that iteration occurs in nearly every PD process, particularly for complex products (Wynn & Eckert, 2017).

It is common to develop software user interfaces iteratively (Nielsen, 1993). For complex physical products, however, every iteration-step of building and testing a prototype can be associated with high costs (Tahera et al., 2019). It is therefore important to consider when and how many iteration-steps should be undertaken. There is a multitude of publications discussing iteration in PD, and (Wynn & Eckert, 2017) offer a comprehensive overview and unified terminology of this field of research.

For the development of an NMT testing strategy it is mainly important to know that iterative loops can occur within a stage of the PD process as well as between stages (Wynn & Eckert, 2017), and to consider which test results should trigger or prevent an iterative loop. With the main goal of the PD process being a marketable product, any proof that a prototype does not represent such a marketable product should be a trigger of iteration. Failed tests, like the shortfall against benchmark values, can be seen as such a proof. International or internal standards can provide such benchmark values.

Visualisations of PD processes

As mentioned in the introduction, visualisations can be beneficial for product developers to plan and communicate their work (Kellett et al., 2006; Wynn & Clarkson, 2018) give a very comprehensive overview of a large body of work on process models in PD, including visualisations thereof. They categorise models focusing “on the large-scale organisation and management of design and development” as macro-level models. Examples of these are well-known models such as the Stage-Gate model (Cooper, 1990), the V-model (Forsberg et al., 2005), the Waterfall model (Royce, 1970), and the Spiral model (Boehm, 1988). While all these models differ in their philosophy, reflected in the shape of their visualisations, they have some common characteristics: They all describe a continuously progressing process towards the final product, and while they all mention testing at some point in this process, they do not consider testing throughout its entirety. Generally, testing does not play a significant role in the various models reviewed by Wynn & Clarkson (2018). This further emphasizes the importance of developing a visualisation of testing activities in PD, not just for the NMT.

As the NMT project does not follow a specific PD process model, a visual description of the testing activities could conceivably be shaped in a number of ways. However, for the sake of simplicity, it seems sensible to base it on the progression of the project to date. Recently, two teams worked on designing and testing the NMT’s front end, and two teams were allocated to researching, developing, and testing the back end membrane and combustion processes respectively. As described in the previous section, a separation into parallel testing activities for front end and back end seems sensible. Furthermore, the entire process has progressed steadily, and even though iteration occurred, a linear model describes the overall development most aptly.

The end point of many models is the launch, or deployment, of the product, although some consider also the operation and maintenance of the product (Wynn & Clarkson, 2018). For the case of the NMT, the envisioned final test of a prototype, one which is practically identical to the final product, is envisioned to be the testing for compliance with the ISO 30500 standard, conducted by a licensed laboratory. Therefore, this test would signify the endpoint of a visualisation of the NMT testing strategy.

Visual synthesis of testing approaches

Derived from the considerations described above, a unified testing strategy for the NMT could look as shown in Figure 3. The flowchart incorporates the four presented testing approaches and its result is a product that can be tested to achieve standard compliance.

Starting from the problem description, and potentially using input from already existing international standards, a design brief is the first step of the PD process. This will prompt first concept ideas, thus beginning the Exploration Phase. Designers will then develop potential solutions to the problem, which will be realised in the first prototypes, both for the front end and back end. The front-end prototypes will often have low functionality and are mainly used to communicate the designers’ vision. They can then be tested with potential users, to assess whether the designers are ‘on the right track’, and their proposed solutions could be accepted by users. The back-end prototypes will likely be first ‘breadboard’ prototypes of single components, to prove the viability of the concept ideas. Several competing designs might be tested simultaneously, and iteratively, to refine the initial designs.

In the following Assessment Phase, further developed prototypes can be constructed. These might be prototypes of components or the whole system, and they are likely to already have a certain degree of functionality. It is on these prototypes, and increasingly developed iterations thereof, that a variety of tests will be
Figure 3. Unified testing strategy flow chart.
conducted to learn about the technical, functional, and aesthetic aspects of the NMT. Using DOE and UCD methods, and tests from international standards as benchmarks, components and (sub)systems are tested in laboratories and field tests towards functionality and usability. HALT methods can be used to identify and mitigate likely failure points. While first tests will still be conducted on separate prototypes for the front and back end, user tests and functionality tests can be conducted simultaneously at later stages of (sub-) system maturity, when an integrated prototype is constructed. Several iterations are likely until satisfactory component and system maturity is reached, and competing designs can be developed and tested simultaneously. It can be a difficult decision to define a cut-off point for further iterations. The developer has to have confidence that the entire system will safely function as intended. The minimum performance values of an international standard can provide helpful guidance to ensure this confidence.

In the final phase of validation and verification, a finalised design, maybe already produced on the product’s assembly line, is tested for reliability using ALT methods. DOE methods can be applied to improve statistical validity of tests. Final user tests ensure all user-related problems have been mitigated. If no serious problems arise, the product can be sent to be tested towards compliance with an international standard.

There is always a possibility that tests reveal problems which necessitate a return to much earlier stages of the PD process. However, this should be avoided by completing an appropriate number of test iterations during the assessment phase.

Discussion

The testing strategy flow chart presented in Figure 3 gives an overview of the testing efforts and approaches that can be employed during the development process of the NMT. It combines the more creative tests involved in UCD processes as well as rigorous reliability tests and DOE-based statistically relevant test designs and uses international standards as benchmarks. At the same time, the combination of approaches compensates for their individual weaknesses: The lack of statistical validity of UCD approaches and some standard-based tests is countered by using DOE methods, while the focus on the user allows for important additional input to reliability tests. The lack of information on what tests should be conducted and which values should be tested, a deficiency common in DOE approaches, is filled by using international standards as benchmark.

Tahera et al., 2015, stress the importance of testing in the PD process, and there is abundant research on the ideal number and timing of tests within PD (for example Al Kindi & Abbas, 2010; Thomke & Bell, 2001). Therefore, factors such as cost and timing are not considered in the presented strategy. However, there is a lack of publications focusing on how to approach and plan testing throughout the PD process, which is attempted here.

The strategy aims to combine several testing approaches that, in their own field, are well-developed concepts with numerous publications and ongoing research on refining and advancing methods. It would be far beyond the scope of this paper to attempt to outline detailed methods from all approaches, and we therefore refer to the referenced literature for such information.

The testing strategy flow chart can be applied to visualise and plan testing efforts for the NMT components and the overall system. It can also be used to communicate these testing efforts among and between teams and people new to the project. Combining approaches to develop tests may result in more statistically valid or more useful data. Also, using the flow chart to visually communicate the various testing efforts amongst teams could aid in coordinating testing to further enhance the value of obtained results.

At this stage, the proposed strategy flow chart has not been applied to plan or communicate testing efforts. Future work will aim to test its application in the development of the NMT, which will serve as case study for advancing the strategy. Additionally, the generalisation of the flow chart into a framework, to be used in a number of PD projects, could be attempted. Much like testing prototypes of physical products, the strategy flow chart itself will likely undergo several iterations of various types of tests to further improve its utility.

Conclusion

In this paper, the sanitation crisis was described as the need for developing new non-sewered sanitation technologies, which led to the Reinvent The Toilet Challenge, and in turn to the development of the NMT and other technologies of this type. Through a review of various aspects of prototype testing in general and four testing approaches in particular, a visualised prototype testing strategy for the development of the NMT is presented and proposed to be used for future development efforts in the project. Prospective work towards generalisation could result in a more widely applicable tool.

Data availability

All data underlying the results are available as part of the article and no additional source data are required.

Grant information

This publication is based on research funded by the Bill & Melinda Gates Foundation (grant number OPP1149204). The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References

Page 14 of 16
Published Full Text
Reference Source
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
P Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
Published Abstract | Publisher Full Text
Reference Source
Reference Source
Published Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
Published Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Full Text
Reference Source
Reference Source
Published Full Text
Published Full Text
Published Full Text
Published Abstract | Publisher Full Text | Free Full Text
Published Abstract | Publisher Full Text
Published Full Text
Page 15 of 16