
Bonn � Boston

Horst Keller, Sascha Krüger

ABAP® Objects
ABAP Programming in SAP NetWeaver™

Contents at a Glance

1 Introduction .. 23

2 A Practical Introduction to ABAP 53

3 Basic Principles of ABAP 141

4 Classes and Objects 177

5 Basic ABAP Language Elements 225

6 Advanced Concepts in ABAP Objects 341

7 Classic ABAP—Events and Procedures 449

8 Error Handling .. 479

9 GUI Programming with ABAP 513

10 Working with Persistent Data 705

11 Dynamic Programming 795

12 External Interfaces .. 841

13 Testing and Analysis Tools 939

7

Contents

Foreword .. 19

1 Introduction ... 23

1.1 What Is ABAP? ... 23
1.1.1 The Evolution of ABAP 23
1.1.2 Scope of ABAP ... 25
1.1.3 ABAP Development Environment 26
1.1.4 ABAP Programming Model 26
1.1.5 ABAP and SAP NetWeaver 29
1.1.6 ABAP or Java? .. 30
1.1.7 ABAP and Java! .. 31

1.2 The Objective of This Book ... 40
1.2.1 Target Audience ... 40
1.2.2 Structure of this Book 41
1.2.3 Observing Programming Guidelines 46
1.2.4 Syntax Conventions .. 47

1.3 How Can I Use This Book on a Practical Level? 48
1.3.1 Creating the Examples 48
1.3.2 Goal of the Examples 49
1.3.3 Using the Examples .. 49
1.3.4 Releases Described ... 50
1.3.5 Database Tables Used 50

2 A Practical Introduction to ABAP 53

2.1 Functionality of the Sample Application 54
2.2 Getting Started with the ABAP Workbench 54

2.2.1 Entry through SAP Easy Access 55
2.2.2 The Object Navigator 57

2.3 Packages ... 60
2.3.1 Package for Local Development Objects 61
2.3.2 Packages for Transportable Develop-

ment Objects ... 62
2.3.3 Creating a Package ... 63
2.3.4 Calling the Transport Organizer 67

2.4 Database Tables .. 68
2.4.1 Creating a Customer Table 68
2.4.2 Creating a Data Element 72

Contents

8

2.4.3 Creating a Domain .. 75
2.4.4 Completing the Customer Table 76
2.4.5 Creating a Search Help 78
2.4.6 Creating the Rental Car Table 78
2.4.7 Creating the Reservations Table 81

2.5 Creating an ABAP Program .. 82
2.5.1 Creating an Auxiliary Program 82
2.5.2 ABAP Syntax ... 84
2.5.3 General Program Structure 86
2.5.4 Two “Hello World” Programs 88
2.5.5 Copying Programs ... 91

2.6 Implementing the Auxiliary Program 91
2.6.1 Source Code for the Auxiliary Program 92
2.6.2 Chained Statements 94
2.6.3 Data Declarations .. 94
2.6.4 Assigning Values to Data Objects 95
2.6.5 Database Accesses ... 95
2.6.6 Exception Handling 96
2.6.7 Testing the Auxiliary Program using

the ABAP Debugger 96
2.6.8 Result of the Auxiliary Program in the

Data Browser .. 98
2.7 User Dialog .. 99

2.7.1 Using a Function Group 100
2.7.2 Top Include of the Function Group 101
2.7.3 Creating Function Modules 105
2.7.4 Testing Function Modules 108

2.8 Application Logic ... 110
2.8.1 Exception Classes .. 111
2.8.2 Creating a Class for Reservations 112
2.8.3 Creating a Class for Customer Objects 120
2.8.4 Application Program 126
2.8.5 Creating a Transaction Code 129
2.8.6 Executing the Transaction 131
2.8.7 Reporting .. 133

2.9 Summary ... 135
2.10 Using the Keyword Documentation 136

3 Basic Principles of ABAP .. 141

3.1 ABAP and SAP NetWeaver ... 141
3.1.1 SAP NetWeaver ... 141

Contents

9

3.1.2 The Application Server 142
3.1.3 The Application Server ABAP 143
3.1.4 The ABAP Runtime Environment 150
3.1.5 The Text Environment 151

3.2 ABAP Program Organization and Properties 152
3.2.1 ABAP Program Design 152
3.2.2 ABAP Program Execution 155
3.2.3 ABAP Program Calls 156
3.2.4 ABAP Program Types 159
3.2.5 Other Program Attributes 162
3.2.6 Processing Blocks ... 164

3.3 Source Code Organization .. 167
3.3.1 Include Programs ... 167
3.3.2 Macros ... 170

3.4 Software and Memory Organization of AS ABAP 171
3.4.1 AS ABAP as a System 171
3.4.2 Application Server .. 171
3.4.3 User Session ... 174
3.4.4 Main Session .. 174
3.4.5 Internal Session .. 175

4 Classes and Objects ... 177

4.1 Object Orientation ... 177
4.2 Object-Oriented Programming in ABAP 180
4.3 Classes .. 182

4.3.1 Global and Local Classes 182
4.3.2 Creating Classes ... 183

4.4 Attributes and Methods .. 191
4.4.1 Instance Components and

Static Components ... 191
4.4.2 Attributes .. 192
4.4.3 Methods .. 194
4.4.4 Using Static Components 197
4.4.5 Editor Mode of the Class Builder 199

4.5 Data Types as Components of Classes 200
4.6 Objects and Object References 202

4.6.1 Creating and Referencing Objects 202
4.6.2 The Self-Reference “me” 205
4.6.3 Assigning References 205
4.6.4 Multiple Instantiation 207

Contents

10

4.6.5 Object Creation in a Factory Method 209
4.6.6 Garbage Collection .. 212

4.7 Constructors .. 213
4.7.1 Instance Constructor 214
4.7.2 Static Constructor .. 216
4.7.3 Destructors ... 219

4.8 Local Declarations of a Class Pool 219
4.8.1 Local Types in Class Pools 220
4.8.2 Local Classes in Class Pools 220

4.9 Using ABAP Objects on the AS ABAP 221
4.10 Summary and Perspective .. 224

5 Basic ABAP Language Elements 225

5.1 Data Types and Data Objects 225
5.1.1 Data Objects ... 225
5.1.2 Data Types .. 229
5.1.3 Elementary Data Types and Data Objects 236
5.1.4 Structured Data Types and Data Objects 244
5.1.5 Table Types and Internal Tables 248
5.1.6 Reference Types and Reference Variables 249
5.1.7 Data Types in the ABAP Dictionary 250
5.1.8 Flat and Deep Data Types 261
5.1.9 Generic Data Types 263
5.1.10 Further Details in Data Objects 265

5.2 Operations and Expressions 273
5.2.1 Assignments .. 273
5.2.2 Type Conversions .. 274
5.2.3 Special Assignments 282
5.2.4 Calculations ... 286
5.2.5 Logical Expressions .. 292

5.3 Control Structures .. 298
5.3.1 Conditional Branches 298
5.3.2 Loops .. 301

5.4 Processing Character and Byte Strings 303
5.4.1 Operations with Character Strings 305
5.4.2 Find and Replace ... 306
5.4.3 Subfield Access .. 313
5.4.4 Functions for Character String Processing 315
5.4.5 Relational Operators for Character

String Processing ... 316

Contents

11

5.5 Internal Tables .. 318
5.5.1 Attributes of Internal Tables 319
5.5.2 Working with Internal Tables 326

6 Advanced Concepts in ABAP Objects 341

6.1 Method Interfaces and Method Calls 345
6.1.1 Parameter Interfaces of Methods 345
6.1.2 Method Calls ... 355

6.2 Inheritance ... 359
6.2.1 Basic Principles .. 359
6.2.2 Creating Subclasses .. 362
6.2.3 Visibility Sections and Namespaces in

Inheritance ... 364
6.2.4 Method Redefinition 366
6.2.5 Abstract Classes and Methods 370
6.2.6 Final Classes and Methods 372
6.2.7 Static Attributes in Inheritance 373
6.2.8 Constructors in Inheritance 374
6.2.9 Instantiation in Inheritance 380

6.3 Standalone Interfaces ... 381
6.3.1 Basic Principles .. 382
6.3.2 Creating Interfaces ... 384
6.3.3 Implementing Interfaces in Classes 386
6.3.4 Access to Interfaces of Objects 389
6.3.5 Access to Static Interface Components 394
6.3.6 Composing Interfaces 394
6.3.7 Alias Names for Interface Components 397
6.3.8 Interfaces and Inheritance 400

6.4 Object References and Polymorphism 402
6.4.1 Static and Dynamic Type 402
6.4.2 Assignments Between Reference Variables 405
6.4.3 Polymorphism .. 413

6.5 Events and Event Handling ... 422
6.5.1 Declaring Events .. 424
6.5.2 Triggering Events ... 426
6.5.3 Event Handlers ... 428
6.5.4 Registering Event Handlers 431

6.6 Shared Objects ... 433
6.6.1 Basics—Areas and Co. 435
6.6.2 Accessing Shared Objects 436
6.6.3 Creating an Area .. 437

Contents

12

6.6.4 Locking ... 440
6.6.5 Working with Shared Objects 441
6.6.6 Managing Shared Objects 447

7 Classic ABAP—Events and Procedures 449

7.1 Event-Oriented Program Execution 451
7.1.1 Executable Programs 451
7.1.2 Dialog Transactions 457
7.1.3 Comparison Between Different Types

of Classic Program Execution 459
7.2 Procedural Modularization ... 460

7.2.1 Function Modules ... 461
7.2.2 Subroutines ... 474

8 Error Handling .. 479

8.1 Robust Programs .. 479
8.1.1 Defensive Programming 479
8.1.2 Exception Situations 480

8.2 Exception Handling .. 481
8.2.1 Class-Based Exception Handling 481
8.2.2 Classic Exception Handling 500
8.2.3 Messages in Exception Handling 503
8.2.4 Combining Class-Based Exception

Handling and Earlier Concepts 505
8.2.5 Runtime Errors .. 508

8.3 Assertions .. 508
8.3.1 Advantages of Assertions 509
8.3.2 Using Assertions .. 509

9 GUI Programming with ABAP 513

9.1 General Dynpros .. 515
9.1.1 Screen ... 515
9.1.2 Dynpro Flow Logic .. 517
9.1.3 Dynpros and ABAP programs 518
9.1.4 Dynpro Sequences and Dynpro Calls 519
9.1.5 Creating Dynpros .. 524
9.1.6 Dynpro Fields .. 530
9.1.7 Function Codes and Functions 534
9.1.8 Context Menus .. 539

Contents

13

9.1.9 Dialog Modules ... 541
9.1.10 Data Transport ... 543
9.1.11 Conditional Module Calls 544
9.1.12 Input Check ... 545
9.1.13 Field Help .. 548
9.1.14 Input Help ... 549
9.1.15 Dynpros and Classes 555
9.1.16 Dynpro Controls ... 573
9.1.17 GUI Controls .. 587

9.2 Selection Screens .. 615
9.2.1 Creating Selection Screens 617
9.2.2 Parameters ... 618
9.2.3 Selection Criteria .. 622
9.2.4 Additional Elements on Selection Screens 627
9.2.5 Calling Selection Screens 630
9.2.6 Selection Screen Processing 631
9.2.7 Functions of Selection Screens 634
9.2.8 Standard Selection Screens 638
9.2.9 Selection Screens as Program Interfaces 640

9.3 Classical Lists .. 645
9.3.1 List Creation ... 645
9.3.2 Screen List ... 646
9.3.3 Lists in Executable Programs 647
9.3.4 Lists and Transactions 648
9.3.5 Functions on Lists .. 651
9.3.6 Print Lists ... 654
9.3.7 Lists in ABAP Objects 658

9.4 Messages .. 666
9.4.1 Creating Messages ... 666
9.4.2 Sending messages .. 667
9.4.3 Message Type .. 668
9.4.4 Use of Messages .. 670

9.5 Web Dynpro ABAP ... 671
9.5.1 First Steps with Web Dynpro ABAP 673
9.5.2 Query with Web Dynpro ABAP 681
9.5.3 Summary .. 702

10 Working with Persistent Data 705

10.1 Database Accesses .. 706
10.1.1 Definition of Database Tables in the

ABAP Dictionary .. 707

Contents

14

10.1.2 Open SQL ... 710
10.1.3 Consistent Data Storage 741
10.1.4 Special Sections Relating to

Database Accesses ... 751
10.2 Database Access with Object Services 757

10.2.1 Creating Persistent Classes 757
10.2.2 Managing Persistent Objects 760
10.2.3 GUID Object Identity 770
10.2.4 Transaction Service .. 771

10.3 File Interfaces .. 775
10.3.1 Files of the Application Server 776
10.3.2 Files of the Presentation Server 781

10.4 Data Clusters ... 784
10.4.1 Storing Data Clusters 785
10.4.2 Reading Data Clusters 786
10.4.3 Deleting Data Clusters 787
10.4.4 Example for Data Clusters 787

10.5 Authorization Checks ... 789
10.5.1 Authorization Objects and Authorizations 790
10.5.2 Authorization Check 791

11 Dynamic Programming ... 795

11.1 Field Symbols and Data References 796
11.1.1 Field Symbols .. 797
11.1.2 Data References .. 809

11.2 Run Time Type Services (RTTS) 819
11.2.1 Run Time Type Information (RTTI) 820
11.2.2 Run Time Type Creation (RTTC) 824

11.3 Dynamic Token Specifications 829
11.3.1 Dynamic Specifications of Operands 830
11.3.2 Dynamic Specifications of Clauses 830
11.3.3 Special Dynamic Specifications of Clauses 831

11.4 Dynamic Procedure Call ... 832
11.4.1 Dynamic Method Call 832
11.4.2 Dynamic Function Module Call 835

11.5 Program Generation ... 836
11.5.1 Transient Program Generation 837
11.5.2 Persistent Program Generation 840

Contents

15

12 External Interfaces ... 841

12.1 Synchronous and Asynchronous Communication 842
12.1.1 Synchronous Communication 843
12.1.2 Asynchronous Communication 843

12.2 Remote Function Call (RFC) .. 845
12.2.1 RFC Variants .. 845
12.2.2 RFC Communication Scenarios 849
12.2.3 RFC Programming on AS ABAP 853
12.2.4 RFC Programming of an

External RFC Interface 862
12.2.5 RFC Programming with JCo 869

12.3 Internet Communication Framework (ICF) 877
12.3.1 ICF in AS ABAP .. 878
12.3.2 ICF Server Programming 879
12.3.3 ICF Client Programming 886

12.4 ABAP Web Services .. 890
12.4.1 What Is a Web Service? 891
12.4.2 Web Services and Enterprise SOA 892
12.4.3 Standards for Web Services 893
12.4.4 Web Services for AS ABAP 894
12.4.5 Role of the Exchange Infrastructure 895
12.4.6 Web Service Framework 897
12.4.7 Creating a Web Service 898
12.4.8 Releasing a Web Service 900
12.4.9 Testing a Web Service 902
12.4.10 Publishing a Web Service 904
12.4.11 Creating a Client for Web Services 905

12.5 ABAP and XML ... 908
12.5.1 What Is XML? .. 909
12.5.2 The iXML Library ... 913
12.5.3 Using XSLT ... 918
12.5.4 Use of Simple Transformations 926
12.5.5 Summary .. 937

13 Testing and Analysis Tools 939

13.1 Static Testing Procedures .. 941
13.1.1 Syntax Check .. 941
13.1.2 Extended Program Check 942
13.1.3 Code Inspector ... 945

Contents

16

13.2 Program Analysis with the ABAP Debugger 950
13.2.1 The New ABAP Debugger with

Two-Process Architecture 951
13.2.2 User Interface of the ABAP Debugger 952
13.2.3 Using the Debugger 955

13.3 Module Tests with ABAP Unit 961
13.3.1 What Is a Module Test? 962
13.3.2 Organization of ABAP Unit 963
13.3.3 Sample Use of ABAP Unit 964
13.3.4 Execution and Analysis of a Test Run 969
13.3.5 ABAP Unit in Code Inspector 970

13.4 ABAP Memory Inspector .. 971
13.4.1 Dynamic Memory Objects 972
13.4.2 Creating Memory Snapshots 975
13.4.3 Working with the Memory Inspector 977

13.5 ABAP Runtime Analysis .. 980
13.5.1 Calling the Runtime Analysis 981
13.5.2 Evaluating the Performance Data Files 982
13.5.3 Tips & Tricks .. 984

13.6 Additional Testing Tools .. 984
13.6.1 Coverage Analyzer ... 984
13.6.2 Extended Computer-Aided Test Tool

(eCATT) ... 986

A Appendix .. 989

A.1 Overview of all ABAP Statements 989
A.1.1 Statements Introducing a Program 989
A.1.2 Modularization Statements 989
A.1.3 Declarative Statements 990
A.1.4 Object Creation ... 991
A.1.5 Calling and Exiting Program Units 991
A.1.6 Program Flow Control 992
A.1.7 Assignments .. 993
A.1.8 Processing Internal Data 993
A.1.9 User Dialogs .. 995
A.1.10 Processing External Data 997
A.1.11 Program Parameters 998
A.1.12 Program Processing 999
A.1.13 ABAP Data and Communication

Interfaces .. 1000
A.1.14 Enhancements ... 1000

Contents

17

A.2 ABAP System Fields ... 1001
A.3 ABAP Program Types ... 1006
A.4 ABAP Naming Conventions 1007
A.5 Selectors .. 1008
A.6 Auxiliary Class for Simple Text Outputs 1009
A.7 References on the Web .. 1012
A.8 Installing and Using the SAP NetWeaver

2004s ABAP Trial Version .. 1012

Authors ... 1015

Index ... 1019

19

Foreword

This book is the sequel to ABAP Objects: An Introduction to Program-
ming SAP Applications from the SAP PRESS series. Instead of produc-
ing a reworked second edition of the Introduction, we have written
a new book that is based, in part, on the manuscript for the previous
book.

The earlier book was the first ABAP book in the SAP PRESS series
and was intended to serve both as an introduction to ABAP Objects
as well as a general overview of the ABAP language and SAP Basis.
Since then, however, SAP PRESS has published dedicated introduc-
tion and practice books, as well as a comprehensive ABAP reference
book, which is complemented by an ABAP quick reference guide to
provide a quick overview. This has allowed us to take a new direc-
tion in the current book. This book is much less of a reference guide
than its predecessor. Instead, it is intended to function as the pro-
gramming handbook in the series of ABAP books that have previ-
ously appeared at SAP PRESS, grouped between introductory practi-
cal books and ABAP reference guides.

In this book, we are therefore offering our readers a compendium of
modern ABAP programming and of the key possibilities of the ABAP
Application Server in SAP NetWeaver. Modern ABAP programming
means programming with ABAP Objects. Contrary to the previous
book, ABAP Objects are no longer treated as an addition to classical
ABAP, but rather as the underlying programming model. Consistent
with all books on object-oriented programming languages, the pres-
entation of the ABAP language in Chapter 4 begins this time with
“Classes and Objects.” From the start, we have integrated the
description of the Class Builder into the description of classes and
objects. All remaining language elements and tools have been pre-
sented in the same way that they are used in ABAP Objects to imple-
ment classes. The classical concepts of ABAP are mentioned where
they are still used. We no longer discuss obsolete concepts; and if we
do, we only touch on them very briefly.

20

Foreword

Whereas in the previous book, we dealt mainly with elementary
ABAP language topics, in this book we have also included—in addi-
tion to the many new developments that the ABAP language has seen
in the meantime—additional topics that are essential for the pro-
gramming of the ABAP Application Server in SAP NetWeaver. In
fact, we devote an entire chapter to the error handling reaching from
exception classes to assertions, offer an introduction to Web Dynpro
for ABAP, provide a separate chapter on dynamic programming
including Run Time Type Creation, and a chapter on the external
communication and data interfaces from RFC over ICF to XML, and
also provide an overview of all possible tools to use for testing qual-
ity assurance.

Because of the large number of new topics, the scope of this book has
now passed the magical 1000-page milestone. Therefore, we will at
least try to keep the foreword brief, albeit without neglecting to
extend our thanks to all of the people who have helped, directly or
indirectly, to produce this book.

First we must mention our colleagues in the department “SAP
NetWeaver Foundation ABAP.” While this organizational unit had a
different name in all of the other books that have appeared to date, it
is essentially still the “ABAP Language” group, which develops the
ABAP language and the ABAP tools, and which now also encom-
passes the groups “ABAP Workbench” and “ABAP Connectivity.”
This group’s work is the foundation of everything that is described in
this book, and we do not exaggerate when we say that the output of
this group is the basis of any ABAP developments internationally. In
appreciation of all of this team’s members, we would here again like
to thank the Vice President Andreas Blumenthal, who has supported
this book from the very beginning and provided the necessary
resources to make it become a reality.

We would specifically like to thank the following colleagues who
have made special contributions to producing this book: Kai Baum-
garten (information and corrections on Shared Objects), Thomas
Becker (information on qRFC), Joachim Bender and Michael Schmitt
(proofreading of the section on Web Services), Dirk Feeken and
Manfred Lutz (publication of the AS ABAP Trial Version on DVD),
Eva Pflug (help in setting up the AS ABAP trial version as a transla-
tion system, to ensure that the examples also work when users log

21

Foreword

on in English), Susanne Rothaug and Volker Wichers (support with
testing the ABAP Web Services on another J2EE Server), Klaus-Dieter
Scherer (help and information on ALV print lists), Stefan Seemann
(hooked the MaxDB that failed when we tried to install a parallel
J2EE Server backup to the AS ABAP trial version), Markus Tolksdorf
(information and corrections on JCo), and Doris Vielsack (informa-
tion and corrections on dynpros).

As a further new feature, this issue of the ABAP Objects book is also
based on texts from authors who are responsible for one particular
contribution: Stefan Bresch (object services), Rupert Hieble (XML),
Anne Lanfermann (Web Services), Frank Müller (RFC and ICF), and
Stefanie Rohland (Web Dynpro). We would like to thank these
authors for their readiness to assist with this project, in addition to
their normal responsibilities. The authors’ bios are provided at the
end of this book.

We would like to thank the publishers at Galileo Press for their col-
laboration, which was, as always, excellent. Alexandra Müller and
Florian Zimniak did an outstanding job correcting and editing the
manuscript, even going so far as to find formal errors in the code.
For the production, we would like to thank Iris Warkus (Galileo
Press) and Dirk Hemke (SatzPro), most especially for the fact that
right from the first typesetting for this book, we found nothing of
note to grumble about. For the English edition, the authors want to
express their gratitude to Nancy Etscovitz from Wellesley Informa-
tion Services, who did a terrific job in editing the translation, and to
Snezhina Gileva from SAP Labs Sofia for proof reading the final man-
uscript.

Sascha Krüger would especially like to thank his wife Katja for so
many things too numerous to mention, both big and small, such as
keeping him free from any “distractions,” loads of understanding,
constant encouragement and motivation, lots of free space, more
than a little coffee, and so much more. In this way, she ultimately
played a large part in the production of his share of the manuscript.

Horst Keller would like to thank his wife Ute, as always, who again
supported the creation of this book with her considerable patience
and understanding. Despite the promises made after every previous
book—that next time things would be easier—this book, in particu-
lar, again proved that such promises cannot always be kept, and con-

22

Foreword

sequently much joint free time during the first half of 2006 had to be
sacrificed. The fact that Ute never once questioned this project, but
just looked forward with Horst to meeting the deadline, proved to be
invaluable.

Walldorf, February 2007
Horst Keller
Sascha Krüger

341

A physician, a civil engineer, and a computer scientist were
arguing about what was the oldest profession in the world.
The physician remarked, “Well, in the Bible, it says that God
created Eve from a rib taken out of Adam. This clearly
required surgery, and so I can rightly claim that mine is the
oldest profession in the world.” The civil engineer interrupted
and said, “But even earlier in the book of Genesis, it states
that God created the order of the heavens and the earth from
out of the chaos. This was the first and certainly the most
spectacular application of civil engineering. Therefore, fair
doctor, you are wrong; mine is the oldest profession in the
world.” The computer scientist leaned back in her chair,
smiled, and then said confidently, “Ah, but who do you think
created the chaos?”
—Grady Booch, Object-Oriented Analysis and Design with
Applications

6 Advanced Concepts in
ABAP Objects

The above quotation is from a book entitled Object-Oriented Analysis
and Design with Applications by Grady Booch (Addison-Wesley
1995), where it is used to introduce a chapter discussing “the inher-
ent complexity of software.” One advantage of the object-oriented
approach is its ability to handle complexity. In Chapter 4, you were
introduced to classes and objects as a basis for object orientation, and
to attributes and methods as underlying components of these classes
and objects. We can sum up what you have already learned as fol-
lows:

Basic principles� Objects constitute the key concept in object-oriented program-
ming. An object is a self-contained unit whose status is deter-
mined by the values of its attributes, whose behavior is deter-
mined by its methods, and whose identity is defined by its address
in the memory. An object is accessed by reference variables,

342

Advanced Concepts in ABAP Objects6

which refer to this address. An object in a program that performs
a certain task should reflect a real object of the task 1:1 as far as
possible. With objects, a clear distinction can be made between
the public interface and the private and protected components,
which are not externally visible. One object can interact with
another by accessing its attributes directly in a method, calling
methods, or triggering an event (see Section 6.5.2).

� Classes consist of source code containing the definition of possible
objects. An object is always an instance of a class, which is
addressed by at least one reference variable. All components and
properties of its objects are declared in a class. The basis for encap-
sulation in ABAP Objects is always the class, rather than the
object.1 Classes are either global for all programs or local in a sin-
gle program. They can be specialized by inheritance (see Section
6.2), and can incorporate standalone interfaces as a public inter-
face (see Section 6.3).

� Attributes describe the status of an object. Technically speaking,
attributes (instance attributes) are the local variables of an object,
which cannot normally be changed directly from the outside. A
class may also contain static attributes, which are jointly used by
all objects of the class. Static attributes may be variables or con-
stants.

� Methods allow objects to perform operations. A method (instance
method) always works in a specific object. In other words, it reads
and changes the status of this object, and interacts with other
objects by calling their methods or by triggering events. A method
has a parameter interface (see Section 6.1.1), and can pass on
exceptions (see Section 8.2). A class may also contain static meth-
ods, which only access static attributes, and can only trigger static
events.

You may have already realized how powerful these components of
ABAP Objects can be when used to program application programs;
however, there is more to ABAP Objects than just these basic ele-
ments. In this chapter, you’ll become familiar with additional con-
cepts that are essential for advanced object-oriented design.

1 The private components of an object of a class are visible to another object of the
same class.

343

Advanced Concepts in ABAP Objects 6

Advanced concepts� Method Interfaces and Method Calls
Chapter 4 introduced methods in their fundamental role as the
operational components of classes. Section 6.1.1 examines the
parameter interface of methods in more detail, and focuses in par-
ticular on the various options with method calls.

� Specialization by Inheritance
ABAP Objects supports simple inheritance, whereby a class can be
declared as the direct subclass of exactly one superclass. All classes
of ABAP Objects are part of an inheritance hierarchy tree originat-
ing in one common superclass. In addition to its own compo-
nents, a subclass also contains the components of its superclass.
The implementation of superclass methods can be overwritten in
subclasses. The concept of inheritance is discussed in Section 6.2.

� Standalone Interfaces
The public visibility section of a class is its external interface.
ABAP Objects allows you to create standalone interfaces, which
can be used by classes as part of their interface, or even as their
complete interface. Objects belonging to various classes that use
the same interface can be handled by outside users in the same
way. An standalone interface may also comprise several other
interfaces. The interface concept is described in Section 6.3.

� Object Reference Variables and Polymorphism
Objects in a program can only be accessed by object references in
object reference variables. The type of the object reference varia-
bles determines exactly what a program can do with an object.
There are both class reference variables and interface reference
variables. The latter enable exclusive access to the interface com-
ponents of a class. The concepts of inheritance and independent
interfaces allow you to assign object references between reference
variables of different types according to certain rules. This opens
up the possibilities of polymorphism, whereby the same reference
variable can be used to access objects belonging to different
classes with different behavior. This is discussed in Section 6.4.

� Events and Event Handling
A method of an object is normally executed after a direct call. In
this case, the calling object and the called object are closely cou-
pled. Events are used to decouple the caller from the called
method. In ABAP Objects, events, like attributes and methods, are
component type of classes. An object can trigger an event in a

344

Advanced Concepts in ABAP Objects6

method, and methods of other objects can handle this event. This
corresponds to an indirect method call because the calling method
does not need to know anything about the possible event han-
dlers. The event concept is described in Section 6.5.

� Shared Objects
Objects as instances of classes exist in the memory area of a pro-
gram, and are deleted at the latest when the program is exited. As
a result, cross-program access to objects is not generally possible.
However, ABAP Objects enables cross-program access with shared
objects, which are objects in the shared memory of an application
server. The concept of shared objects is discussed in Section 6.6.

The basic concepts of ABAP Objects, which were introduced in Chap-
ter 4 (i. e., classes with attributes and methods, objects, and object
references), are used in almost all object-oriented programming lan-
guages. The advanced concepts introduced in this chapter comprise,
on the one hand, a selection of tried and tested advanced techniques
adopted by ABAP Objects based on the standards of well-known
object-oriented programming languages like Java or C++, and, on the
other hand, specialized techniques that are unique to ABAP Objects.
When this language was designed, special care was taken to ensure
that the focus on business applications was not lost.

ASAP principle Certain concepts of object-oriented programming, such as multiple
inheritance, which is used in C++, for example, would have served
only to increase the complexity of the language, without offering any
additional benefits for SAP applications. In accordance with the
ASAP principle, of “As Simple As Possible,” ABAP Objects was made
as easy to understand as possible, and only well-established object-
oriented concepts were used. Following the example of Java, the
interface concept was introduced in place of multiple inheritance.
The correct application of inheritance and interfaces represents the
crowning achievement of object-oriented programming, and pro-
vides a range of options for managing complexity.2

The range of options for defining a parameter interface for methods
is, in contrast, specific to ABAP. Similarly, the concept of fully inte-

2 However, we do not wish to conceal the fact that the incorrect use of concepts like
inheritance may cause major problems. Meticulous object-oriented modeling is
essential, particularly when advanced concepts of object orientation are used to
manage complex applications.

345

Method Interfaces and Method Calls 6.1

grating events into the language scope of ABAP Objects as independ-
ent components of classes is not a feature of all object-oriented pro-
gramming languages.

6.1 Method Interfaces and Method Calls

We have defined and called methods on many occasions in the pre-
vious chapters. The next two sections discuss the finer points of
methods in ABAP Objects.

6.1.1 Parameter Interfaces of Methods

The parameter interface of a method is defined by the additions to
the METHODS and CLASS-METHODS statements when the method is
declared, or by the selection of Parameters in the Class Builder. No
further details of the parameter interface are required in the imple-
mentation section between METHOD and ENDMETHOD. However, you can
display the interface during implementation of global classes.

Formal parametersThe parameter interface of a method comprises formal parameters
and exceptions. The declaration of exceptions is discussed in Section
8.2. Formal parameters are keyword parameters, to which an actual
parameter can or must be assigned when the method is called.
Within a method, formal parameters can be used via their names in
operand positions. The possible usage kinds depend on the parame-
ter properties. The following properties can be defined for a formal
parameter:

� The parameter type

� Kind of parameter passing

� Parameter typing

� Supply type of the parameter

In principle, a parameter interface can contain any number of param-
eters; however, a small number is recommended. An ideal parameter
interface contains only a small number of input parameters or none
at all, and a return value.

No overloadingAt this point, we should point out that methods in ABAP Objects can-
not be overloaded. In other words, you cannot use the same method

346

Advanced Concepts in ABAP Objects6

names with different parameter interfaces, even when you redefine
methods in subclasses.

Parameter Type

You can define the following parameters:

� Input Parameters
Input parameters are specified after the IMPORTING addition to the
METHODS or CLASS-METHODS statement, or are declared by selecting
Importing in the Type column on the Parameters tab page in the
Class Builder. When a method is called, the value of the assigned
actual parameter is assigned to the input parameter. Input param-
eters for which pass by reference is defined cannot be overwritten
in the method. Input parameters for which pass by value is
defined are not passed to the actual parameter when the proce-
dure is exited.

� Output Parameters
Output parameters are specified after the EXPORTING addition to
the METHODS or CLASS-METHODS statement, or are declared by select-
ing Exporting in the Type column on the Parameters tab page in
the Class Builder. When a method is called, the value of the
assigned actual parameter is not assigned to an output parameter
for which pass by value is defined. Output parameters can be
overwritten in the method. If the procedure is exited without
errors using ENDMETHOD or RETURN, the output parameter is passed
to the actual parameter.

� Input/Output Parameters
Input/output parameters are specified after the CHANGING addition
to the METHODS or CLASS-METHODS statement, or are declared by
selecting Changing in the Type column on the Parameters tab
page in the Class Builder. When a method is called, the value of
the assigned actual parameter is assigned to the input/output
parameter, and, if the method is exited without errors using END-
METHOD or RETURN, the input/output parameter is passed to the
actual parameter. Input/output parameters can be overwritten in
the method.

Functional
method

� Return Value
A method can have only one return value, for which pass by value
must be declared. This return value can be declared after the

347

Method Interfaces and Method Calls 6.1

RETURNING addition to the METHODS or CLASS-METHODS statement, or
by selecting Returning in the Type column on the Parameters tab
page in the Class Builder. A return value is handled in the same
way that an output parameter is handled in the method; however,
a method with a return value is a functional method, which, in
addition to the return value, can have only input parameters. A
functional method can be used in operand positions. The return
value is then used in these positions.3

When you declare a parameter, you must always select the type that
matches the behavior of that parameter exactly. A parameter that is
received but not changed by the method is an input parameter. A
parameter that is output but is not received is an output parameter or
a return value. A parameter that is received, changed, and output is
an input/output parameter.

This may appear to be stating the obvious, but, as you will see,
parameters do not have to behave in accordance with their type.

Kind of Parameter Passing

You can define the way a formal parameter is passed either as pass by
reference or as pass by value for each individual parameter, with the
exception of the return value, for which pass by value is set by
default.

The syntax for pass by reference is shown below using the example
of an input parameter ipara:

REFERENCEMETHODS meth IMPORTING ipara ...

Equally, you can also use:

METHODS meth IMPORTING REFERENCE(ipara) ...

The syntax for pass by value is shown below using the example of
the return value return:

VALUEMETHODS meth RETURNING VALUE(return) ...

3 Functional methods (as opposed to function modules) are the natural extension of
integrated functions (see Section 5.2.4) by self-defined functions in the same way
as self-defined data types extend the built-in ABAP types.

348

Advanced Concepts in ABAP Objects6

In the Class Builder, you define the kind of parameter passing by
selecting the Pass by value check box on the Parameters tab page or
leaving this blank. Therefore, pass by reference is the standard trans-
fer type, which is used unless a different type is specified, both in the
syntax and in the Class Builder. What is the difference between these
transfer types?

� Pass by Reference
With pass by reference, a reference to the actual parameter is
passed to the method for each formal parameter for which an
actual parameter is specified when you call the method, regardless
of the parameter type. The method thus uses the actual parameter
itself, and changes to formal parameters have a direct effect on the
actual parameter.

� Pass by Value
With pass by value, a local data object is created as a copy of the
actual parameter for each formal parameter when the method is
called. In the case of input parameters and input/output parame-
ters, the value of the actual parameter is assigned to this data
object. The value of the formal parameter is only assigned to out-
put parameters, input/output parameters, and return values if the
method is exited without errors using ENDMETHOD or RETURN.

Parameter type
and kind of passing

The kind of parameter passing is a technical property, which defines
the behavior of a formal parameter. Only with pass by value does the
actual behavior always correspond to the behavior defined by the
parameter type. The following points apply to pass by reference:

� Output parameters are not necessarily initial at the start of the
method (output parameters behave like input/output parameters).

� Changes to output parameters and input/output parameters are
effective, even if the method terminates with an exception.

� Input parameters that are passed by reference cannot be explicitly
changed in the method. Their values may change, however, if they
are linked to global actual parameters and if these parameters are
changed during the method is executed.

Therefore, a method should always be programmed in such a way
that the behavior of its parameters corresponds to the semantics
defined by the parameter type:

349

Method Interfaces and Method Calls 6.1

� Do not execute read access to an output parameter that is passed
by reference because its initial value is not defined.

� If you add lines to an internal table or extend a string that is
defined as an output parameter that is passed by reference, you
must initialize the parameter before the first access.

� Give due consideration to the value you set for output parameters
or input/output parameters that are passed by reference before an
exception is triggered to ensure that a calling program can execute
adequate exception handling.

Pass by reference
and pass by value

A number of precautionary methods are thus required for pass by
reference, which do not apply to pass by value. So why is pass by ref-
erence even necessary? The answer is performance.

Performance as
against robustness

In ABAP, pass by reference always performs better than pass by
value, because no data object has to be created when a procedure is
called, and no data transport takes place. For performance reasons,
pass by reference is usually preferable to pass by value, unless
explicit or implicit write access to an input parameter is required, or
you want to ensure that an output parameter or an input/output
parameter is only returned if the procedure is completed without
any errors. If possible, these cases should be limited to the transfer of
parameters smaller than approximately 100 bytes.4

The example in Listing 6.1 is of a small and probably unexpected sit-
uation, which may occur if pass by reference is used without due
consideration.

Listing 6.1 Transfer Type of Formal Parameters

REPORT z_parameter_passing.

CLASS demo DEFINITION CREATE PRIVATE.
PUBLIC SECTION.

CLASS-METHODS main.
PRIVATE SECTION.

METHODS: meth1 IMPORTING value(idx) TYPE i,
meth2 IMPORTING reference(idx) TYPE i.

4 With strings and internal tables, the disadvantage in terms of performance of pass
by value compared with pass by reference can even be compensated for by the
integrated Copy-on-Write semantics (the concept of sharing, see Section 5.1.7).
This is the case for input parameters in particular, provided that they are not
changed.

350

Advanced Concepts in ABAP Objects6

DATA msg TYPE string.
ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.
DATA oref TYPE REF TO demo.
CREATE OBJECT oref.
DO 2 TIMES.

oref->meth1(sy-index).
oref->meth2(sy-index).

ENDDO.
ENDMETHOD.
METHOD meth1.
DO 3 TIMES.

msg = idx.
CONCATENATE `meth1: ` msg INTO msg.
MESSAGE msg TYPE 'I'.

ENDDO.
ENDMETHOD.
METHOD meth2.
DO 3 TIMES.

msg = idx.
CONCATENATE `meth2: ` msg INTO msg.
MESSAGE msg TYPE 'I'.

ENDDO.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.
demo=>main().

In the main method, two methods are called with an identical imple-
mentation in a DO loop. The first method, meth1, outputs the content
of sy-index , which is passed by value, three times as expected, in
other words, “1”, “1”, “1” during the first call, and “2”, “2”, “2” dur-
ing the second call. The second method, meth2, outputs “1”, “2”, “3”
during both calls. The DO loop in meth1 and meth2 sets the global sys-
tem field sy-index and thus also the formal parameter idx (passed by
reference) in meth2.

The method with pass by value is therefore more robust. However,
this example also shows that global parameters like system fields—
changes to which are not subject to the direct control of a method—
should not be simply passed to methods in this way from the calling

351

Method Interfaces and Method Calls 6.1

program. The expected result is also returned by meth2 if a local aux-
iliary variable is implemented in main, to which sy-index is assigned
and which is then passed to meth2.

Typing

You must type each formal parameter of a method. Typing simply
means that you assign a type to a formal parameter. As with data dec-
laration, the syntax used for this purpose is a TYPE or LIKE addition,
which you must specify after each formal parameter, for example:

METHODS meth EXPORTING opara TYPE dtype ...

With local classes, any visible type can be specified here. In the Class
Builder, fill the Typing (Type, Type Ref To or Like) and Reference
type columns accordingly on the Parameters tab page in order to
specify the type,. Since the type you specify must also be accessible
to all users of the method, you can only specify built-in ABAP types,
global types from the ABAP Dictionary, or types from the public vis-
ibility section of a global class for public methods. With protected
methods, additional types from the protected visibility section of the
class can also be used, while types from the private visibility section
and local types from the class pool can be used for private method
types only.

The main difference between typing and data declaration is that a
formal parameter is assigned its actual data type only when it is
linked to an actual parameter when a method is called. All technical
properties of the actual parameter are then passed to the formal
parameter.

Checking typingIn order for an actual parameter to be passed, its data type must
match the typing of the formal parameter. To be more precise, its
technical type properties must be compatible with the data type used
for the typing. The technical properties of an elementary type are the
built-in ABAP type (c, d, f, i, n, p, t, string, x, xstring), the length
(for c, n, p, x), and the number of decimal places (for p). The technical
property of a structured type is its structure, based on substructures
and elementary components (the component names are irrelevant).
The technical properties of an internal table are the table type
(STANDARD, HASHED, SORTED), line type, and table key.

352

Advanced Concepts in ABAP Objects6

Generic typing The typing of a formal parameter may be complete or generic. For
complete typing, use TYPE to refer to a complete data type, or LIKE to
refer to a data object. For generic typing, you can use the built-in
generic types (any, any table, c, clike, csequence, data, hashed
table, index table, n, numeric, object, simple, sorted table, stand-
ard table, table, x, xsequence—see Section 5.1.9). Internal table
types are also generic if the table key is not fully defined.

Formal parameters that have complete typing can always be
regarded as local data objects of this type, with all type properties
known inside the method. Generic types differ in terms of static and
dynamic access. The type properties used for typing are only used for
static access. With dynamic access,5 the type properties of the
assigned actual parameter are used. These properties may differ from
the typing in terms of the non-technical properties, such as compo-
nent names.

Operand position In addition to checking the data type of an assigned actual parameter,
the typing defines how the formal parameter can be used as an oper-
and of statements in the method. With one exception, formal param-
eters can be used in all operand positions that are not excluded by the
typing. For example, a generic formal parameter with the typing any
can be assigned to any formal parameter that has the same typing. In
that case, an exception occurs at runtime if types for which no conver-
sion rules exist (see Section 5.2.2) are assigned. Internal tables consti-
tute the exception to this rule. In this case, table accesses are only per-
mitted to formal parameters that have a corresponding typing.

The example provided in Listing 6.2 shows various typings and their
effects on how formal parameters are used in the methods.

Listing 6.2 Typing of Formal Parameters

REPORT z_parameter_typing.

CLASS demo DEFINITION.
PUBLIC SECTION.
METHODS: meth1 IMPORTING ipar TYPE any,

meth2 IMPORTING ipar TYPE any table,
meth3 IMPORTING ipar TYPE index table.

ENDCLASS.

5 With dynamic access to a component during an operation on an internal table, for
example.

353

Method Interfaces and Method Calls 6.1

CLASS demo IMPLEMENTATION.
METHOD meth1.

DATA num TYPE string.
num = ipar.
"READ TABLE ipar INDEX 1
" TRANSPORTING NO FIELDS.
"READ TABLE ipar WITH KEY table_line = '...'
" TRANSPORTING NO FIELDS.

ENDMETHOD.
METHOD meth2.

DATA num TYPE string.
"num = ipar.
"READ TABLE ipar INDEX 1
" TRANSPORTING NO FIELDS.
READ TABLE ipar WITH KEY table_line = '...'

TRANSPORTING NO FIELDS.
ENDMETHOD.
METHOD meth3.

DATA num TYPE string.
"num = ipar.
READ TABLE ipar WITH KEY table_line = '...'

TRANSPORTING NO FIELDS.
READ TABLE ipar INDEX 1

TRANSPORTING NO FIELDS.
ENDMETHOD.

ENDCLASS.

Three conceivable uses of the input parameter are specified in the
methods, while the statements that result in syntax errors for the
respective typing are commented out:

� The ipar input parameter of the meth1 method is typed as com-
pletely generic. It can be assigned to the num local variables; how-
ever, no read operations can be executed for internal tables. When
the method is called, any data objects can be passed to the formal
parameter. But, if an internal table is passed, an exception occurs
during the assignment to num.

� The ipar input parameter of the meth2 method is typed with an
internal table that is generic in terms of table type, line type, and
table key. It cannot be assigned to the num local variable. Only key
access can be executed for internal tables because only these
accesses are permitted for all table types. When the method is
called, any internal tables can be passed to the formal parameter.

354

Advanced Concepts in ABAP Objects6

� The ipar input parameter of the meth3 method is typed with an
index table that is generic in terms of line type and table key. It
cannot be assigned to the num local variable. However, all accesses
can be executed for internal tables because key and index accesses
are possible for index tables. When the method is called, only
index tables (and no hash tables) can be passed to the formal
parameter.

Formal parameters should be as appropriately typed as possible. The
typing must comply with both the implementation requirements and
the expectations of the calling program. If you want or need to use a
generic type, you should always be as specific as possible. Use
generic types like csequence, numeric, simple, and xsequence instead
of any. For example, csequence is usually an appropriate typing for
text processing. The typings standard table, sorted table, index
table, or hashed table are similarly preferable to any table.

Generic or
complete

The more generic the typing you use, the more careful you must be
when using the formal parameter in the implementation to avoid
exceptions. Accordingly, you should avoid assigning formal parame-
ters with a typing that is completely generic if you do not want to
first check the type at runtime (see Section 11.2) or handle possible
exceptions (see Section 8.2).

Unless generic typing is required, you should always use complete
typing. Only formal parameters with complete typing always behave
in the same way and can be tested locally. You must be particularly
careful to ensure that you don’t use generic typing by mistake when
you actually intend to use complete typing. This frequently occurs
with internal tables with a generic key.

Supply Type

For every formal parameter that awaits a value—input parameters
and input/output parameters—by standard, an actual parameter
must be specified when the method is called. The assignment of
actual parameters to output parameters and return values is always
optional.

For input parameters and input/output parameters, this rule can be
avoided by declaring the parameter as optional. The syntax is shown
below, using the example of an input/output parameter:

355

Method Interfaces and Method Calls 6.1

OPTIONALMETHODS meth CHANGING cpara TYPE dtype OPTIONAL ...

or

DEFAULTMETHODS meth CHANGING cpara TYPE dtype DEFAULT dobj ...

No actual parameters have to be specified when the method is called
for a formal parameter that is declared as optional. An optional for-
mal parameter for which no actual parameter is specified is initial-
ized in accordance with its type. With the addition DEFAULT, the
value and type of an appropriately specified replacement parameter
dobj are copied.

In the Class Builder, you can make a formal parameter optional by
selecting the Optional column, or by entering a value in the Default
value column.

We recommend that you make all formal parameters optional, with
the exception of those for which a different entry is actually required
each time the method is called. Otherwise, you force your callers to
specify unnecessary actual parameters, for which type-specific auxil-
iary variables often have to be created.

Ensure that the predefined initialization of optional parameters is
sufficient or, if you must initialize such a parameter explicitly, for
example, in dependence of other parameters. With the special pred-
icate

... IS SUPPLIED ...

you can even use a logical expression to react differently in the
method, depending on whether an actual parameter is assigned to an
optional parameter.

6.1.2 Method Calls

This section discusses the options for calling methods statically. A
dynamic method call is also possible (see Section 11.4). When a
method is called, actual parameters must be passed to all non-
optional formal parameters (in other words, all input parameters and
input/output parameters that are not defined as optional). Actual
parameters can be connected to optional formal parameters. The
actual parameters must match the typing of the formal parameters.

356

Advanced Concepts in ABAP Objects6

The following sections describe static method with increasing com-
plexity of the method interface.

Static Method Calls

The simplest method has no interface parameters. Accordingly, the
method call is also simple. The statement is as follows:

No parameters meth().

With meth, you specify the method as it can be addressed as a com-
ponent of a class or an object in the current location, that is, directly
with its name meth in a method of the same class, or with oref->meth
or class=>meth everywhere the method is visible.

If the method has one non-optional input parameter, the statement is
as follows:

One input
parameter

meth(dobj).

The dobj data object is passed to the input parameter as an actual
parameter. If the method has several non-optional input parameters,
the statement is as follows:

Several input
parameters

meth(i1 = dobj1 i2 = dobj2 ...).

A data object is explicitly assigned to each input parameter. If actual
parameters are to be assigned to any formal parameters, the syntax is
as follows:

Any parameter meth(EXPORTING i1 = dobj1 i2 = dobj2 ...
IMPORTING o1 = dobj1 o2 = dobj2 ...
CHANGING c1 = dobj1 c2 = dobj2 ...).

With EXPORTING, you supply the input parameters defined with
IMPORTING. With IMPORTING, you receive values from output parame-
ters defined with EXPORTING. With CHANGING, you assign the actual
parameters to the input/output parameters defined with CHANGING.
The equal sign is not an assignment operator in this case. Instead, its
function is to bind actual parameters to formal parameters. This syn-
tax includes the previous short forms and can be used instead.

Finally, you can add a CALL METHOD to all of the previous syntax
forms, for example:

CALL METHOD CALL METHOD meth(i1 = dobj1 i2 = dobj2 ...).

357

Method Interfaces and Method Calls 6.1

However, this specification is merely unnecessary syntactical noise
and can be omitted (as of Release 6.10).6

Functional Method Call

You may notice that we haven’t mentioned the RETURNING parameter
of a functional method7 in our discussion of method calls. This is
because functional methods are intended to be used in operand posi-
tions. Nevertheless, there is also a separate statement for calling a
functional method:

RETURNING
parameter

meth(EXPORTING i1 = dobj1 i2 = dobj2 ...
RECEIVING r = dobj).

Here, RECEIVING receives the return value in dobj; however, this
statement is seldom if ever used in practice. The functional equiva-
lent for the above call is as follows:

dobj = meth(i1 = dobj1 i2 = dobj2 ...).

The call of the functional method can be specified in an operand
position, which, in this case, is the source field of an assignment,
without specifying RECEIVING. When the statement is executed, the
method is called and the return value is used as an operand. In the
example shown above, it is assigned to dobj. The actual parameters
are assigned to input parameters using the three syntax forms
described above for no input parameters, one input parameter, or
several input parameters.

... meth() ...

... meth(dobj) ...

... meth(i1 = dobj1 i2 = dobj2 ...) ...

Functional methods can be used in the same places as built-in func-
tions (see Section 5.2.4). A functional method called with meth(a)
hides an built-in function with the same name:

� As the source field of an assignment

� As an operand in an arithmetic expression

� As an operand in a logical expression

6 The CALL METHOD language element is only required for the dynamic method calls
still.

7 Remember that a function method can have any number of input parameters and
only one return value that is passed by value.

358

Advanced Concepts in ABAP Objects6

� As an operand in the CASE statement

� As an operand in the WHEN statement

� As an operand in the WHERE condition for internal tables

If a functional method called in an operand position sends a class-
based exception, this can be handled within a TRY control structure.8

As of the next release of SAP NetWeaver, you will be able to use
functional methods as well as built-in functions and complete arith-
metic expressions in almost all operand positions where it is useful
to do so. You will be able to use them, in particular, as actual param-
eters for input parameters of methods, which will allow you to nest
method calls.

In Listing 6.3, we have implemented two functional methods get_
area and get_volume, to calculate the circular area and volume of a
cylinder in a class called cylinder.

Listing 6.3 Functional Methods

REPORT z_functional_method.

SELECTION-SCREEN BEGIN OF SCREEN 100.
PARAMETERS: p_radius TYPE i,

p_height TYPE i.
SELECTION-SCREEN END OF SCREEN 100.

CLASS demo DEFINITION.
PUBLIC SECTION.
CLASS-METHODS main.

ENDCLASS.

CLASS cylinder DEFINITION.
PUBLIC SECTION.
METHODS: constructor IMPORTING i_radius TYPE numeric

i_height TYPE numeric,
get_area RETURNING value(r_area) TYPE f,
get_volume RETURNING value(r_volume) TYPE f.

PRIVATE SECTION.
CONSTANTS pi TYPE f VALUE '3.14159265'.
DATA: radius TYPE f,

height TYPE f.
ENDCLASS.

CLASS cylinder IMPLEMENTATION.
METHOD constructor.

8 Classical exceptions cannot be handled in this case.

359

Inheritance 6.2

me->radius = i_radius.
me->height = i_height.

ENDMETHOD.
METHOD get_area.

r_area = pi * me->radius ** 2.
ENDMETHOD.
METHOD get_volume.

r_volume = me->get_area() * me->height.
ENDMETHOD.

ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.

DATA: oref TYPE REF TO cylinder,
volume TYPE string.

CALL SELECTION-SCREEN 100 STARTING AT 10 10.
IF sy-subrc = 0.
CREATE OBJECT oref EXPORTING i_radius = p_radius

i_height = p_height.
volume = oref->get_volume().
CONCATENATE `Volume: ` volume INTO volume.
MESSAGE volume TYPE 'I'.

ENDIF.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.
demo=>main().

The main method of the demo class uses a function call to get_volume
on the right side of an assignment, and assigns the result to the vol-
ume string. The get_volume method calls get_area in an arithmetic
expression. The calculation type of this expression is f.

6.2 Inheritance

In object orientation, inheritance refers to the specialization of
classes by deriving subclasses from superclasses.

6.2.1 Basic Principles

Classes provide a construction plan for objects. Suppose you create
two classes called “Car” and “Truck”. You want to implement meth-
ods for both classes, which control the objects or return information

360

Advanced Concepts in ABAP Objects6

about their location and speed. Even at this stage, you can foresee
that some parts of the classes will have to be written twice. The
inheritance mechanism of an object-oriented programming language
provides options that help you to reuse the same or similar parts of a
class, and to create a hierarchy of classes.

Superclasses and
subclasses

If we examine the two classes (i. e., “Car” and “Truck”) in more
detail, it becomes clear that both classes comprise types of vehicles.
If you want to create a third class called “Dump truck” it will com-
prise a specific type of truck. To create a hierarchy relationship
between these classes, classes can be derived from each other using
inheritance. In our example, “Car” and “Truck” are derived from the
“Vehicle” class, while “Dump truck” are derived from the “Truck”
class. Derived or more specific classes are referred to as subclasses,
while more general classes are called superclasses.

Simple inheritance The concept of simple inheritance is implemented in ABAP Objects.
According to this concept, each class can have several subclasses but
only one superclass.9 In simple inheritance, inheritance relationships
are represented by an inheritance tree. Every class in an object-ori-
ented programming language in which simple inheritance is imple-
mented has a unique position as a node in an inheritance tree. This
also applies to all the classes we have dealt with up to now, although
we have not yet spoken of them in terms of inheritance. For each
class, a unique path can be traced back through their superclasses in
the inheritance tree until you reach exactly one root node. This root
node is the superclass of all classes in the inheritance tree.

Root class Figure 6.1 illustrates this relationship. The root node of the inherit-
ance tree in ABAP Objects is the predefined, empty, and abstract
class object.

Derivation Inheritance simply means that a subclass inherits all components
(attributes, methods, events, etc.) of its superclass and can use them
like its own components. In each subclass, new elements can be
added or methods can be redefined in order to specialize, without
this having any impact on the superclass. Elements can only be
added in subclasses. It would go against the inheritance concept to
remove elements in a subclass.

9 Other programming languages, such as C++, allow a class to be derived from sev-
eral classes. This mechanism, which is referred to as multiple inheritance, is not
implemented in ABAP Objects.

361

Inheritance 6.2

Implicit subclassesIn accordance with this concept, the direct subclasses of the empty
object root class do not inherit any components from its superclass.
Instead, they can add new components. This situation applies to all
our sample classes up to now. All classes in ABAP Objects that do not
explicitly inherit from another class are implicit direct subclasses of
object.

Specialization/
generalization

When subclasses of explicitly defined classes are created, these
inherit the components of their superclasses and can add new com-
ponents. Classes become increasingly specialized the further away
you move from the root in the inheritance tree. As you move
towards the root node, on the other hand, the classes become more
generalized.

CompositionIf you look at a class that is located near the bottom of the inheritance
tree, you will notice that the inherited components of the class orig-
inate in all classes along the path between this class and the root
class, which is the superclass of all classes. In other words, the defi-
nition of a subclass is composed of the definitions of all of its super-
classes right up to object. The relationship between a subclass and
its superclasses should always be expressed as “is a”; for example, “a
cargo plane is a plane is a means of transportation is an object.” If
this is fulfilled, subclasses can always be handled the same way as
superclasses (see polymorphism in Section 6.4).

Figure 6.1 Inheritance Tree in ABAP Objects

CLASS c1 DEFINITION
[INHERITING FROM object].

CLASS c2 DEFINITION
[INHERITING FROM object].

CLASS c11 DEFINITION
INHERITING FROM c1 .

CLASS c12 DEFINITION
INHERITING FROM c1 .

object

362

Advanced Concepts in ABAP Objects6

6.2.2 Creating Subclasses

A superclass has no knowledge of any subclasses it may have. Only a
subclass is aware that it is the heir of another class. Therefore, an
inheritance relationship can only be defined when a subclass is
declared. The syntax for deriving a subclass (subclass) from a super-
class (superclass) is as follows:

INHERITING
FROM

CLASS subclass DEFINITION INHERITING FROM superclass.
...

ENDCLASS.

It therefore involves a simple addition to the CLASS DEFINITION state-
ment. Any non-final class that is visible at this point can be specified
for superclass. To create a subclass in the Class Builder, select
Superclass on the Properties tab page. Then enter any non-final, glo-
bal class as a superclass in the Inherits from field. The Undo inherit-
ance and Change inheritance options allow you to change the inher-
itance relationship (see Figure 6.2).

To display the components in a subclass that were inherited from the
superclass, select the menu option Utilities � Settings, and select the
Display Inherited Components Also option.

For each class that does not have an explicit INHERITING FROM addi-
tion, the system implicitly adds the INHERITING FROM object addi-
tion, which means that any class without an INHERITING addition is
automatically a direct subclass of the object root class.

Listing 6.4 shows the implementation of our example based on vehi-
cles. In this implementation, two classes (car and truck) are derived
from the vehicle class.

Listing 6.4 Simple Example of Inheritance

REPORT z_inheritance.

CLASS demo DEFINITION.
PUBLIC SECTION.

Figure 6.2 Inheritance in the Class Builder

363

Inheritance 6.2

CLASS-METHODS main.
ENDCLASS.

CLASS vehicle DEFINITION.
PUBLIC SECTION.

METHODS: accelerate IMPORTING delta TYPE i,
show_speed.

PROTECTED SECTION.
DATA speed TYPE i.

ENDCLASS.

CLASS car DEFINITION INHERITING FROM vehicle.
ENDCLASS.

CLASS truck DEFINITION INHERITING FROM vehicle.
PUBLIC SECTION.

METHODS: load IMPORTING freight TYPE string,
unload.

PROTECTED SECTION.
DATA freight TYPE string.

ENDCLASS.

CLASS vehicle IMPLEMENTATION.
METHOD accelerate.

me->speed = me->speed + delta.
ENDMETHOD.
METHOD show_speed.

DATA output TYPE string.
output = me->speed.
MESSAGE output TYPE 'I'.

ENDMETHOD.
ENDCLASS.

CLASS truck IMPLEMENTATION.
METHOD load.

me->freight = freight.
ENDMETHOD.
METHOD unload.

CLEAR me->freight.
ENDMETHOD.

ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.

DATA: car_ref TYPE REF TO car,
truck_ref TYPE REF TO truck.

CREATE OBJECT: car_ref,
truck_ref.

car_ref->accelerate(130).
car_ref->show_speed().

364

Advanced Concepts in ABAP Objects6

truck_ref->load(`Beer`).
truck_ref->accelerate(110).
truck_ref->show_speed().
truck_ref->unload().

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
demo=>main().

The vehicle class contains a protected attribute (speed) and two pub-
lic methods (accelerate and show_speed). Note that we have explic-
itly specified that vehicle inherits from object. Normally, we do not
specify the INHERITING addition for such classes. The car and truck
classes are both derived from vehicle. Therefore, they inherit the
attribute and methods of the vehicle class. Since speed is declared in
the PROTECTED SECTION, it is also visible in the subclasses. The truck
class is specialized with an additional attribute for freight and addi-
tional methods for loading and unloading (load and unload). In this
example, the car class receives no additional components. This
means that its objects are the same as those of the vehicle class.
Since no methods have been added, car does not require an imple-
mentation part.

In the main method of the demo class, we use the reference variables
car_ref und truck_ref to generate one object each for the two sub-
classes and call their methods. The accelerate and show_speed meth-
ods can be used in both subclasses; however, the load and unload
methods can be used only in truck.

6.2.3 Visibility Sections and Namespaces in Inheritance

There are three different visibility sections in a class, in which the
components of the class are declared (see Section 4.3.2). A subclass
inherits all components of its superclasses without changing their vis-
ibility. For that reason, only the public and protected components of
its superclasses are visible in a subclass. In contrast, the private com-
ponents are contained in the subclass but are invisible.10 The visibility
sections of a subclass therefore contain the following components:

10 Note, however, that the methods inherited from the superclass use the private
attributes of the superclass, unless these inherited methods are redefined in the
subclass.

365

Inheritance 6.2

� PUBLIC
The public visibility section of a subclass contains all public com-
ponents of all superclasses, plus its own additional public compo-
nents. These components can be accessed externally using compo-
nent selectors.

� PROTECTED
The protected visibility section of a subclass contains all protected
components of all superclasses, plus its own additional protected
components. These components cannot be accessed externally
using component selectors. From an external point of view, “pro-
tected” is the same as “private.”

� PRIVATE
The private visibility section of a subclass contains only the sub-
class’s own private components. These components can only be
accessed in the method implementations of the subclass.

NamespaceSince all visible components in a class must have unique names, all
public and protected components of all classes along an inheritance
path in the inheritance tree belong to the same namespace and have
unique names. Private components, which are only visible within a
class and cannot be used in subclasses, must only have unique names
within their own class.

The implications of this are as follows: A superclass is not aware of
any subclasses it may have. If you create a non-final class in a class
library and release it for use, you can never know, as a developer,
which subclasses your class will eventually have other than those
you define yourself. If you then subsequently add new components
to the public or protected section of your class, and any of its sub-
classes happen to have a component of its own with the same name,
this becomes syntactically incorrect. Therefore, it is only secure to
add private components. In global classes, not only the external
interface but also the interface with any possible subclasses must
remain stable.

Therefore, to limit the subclasses of a class to at least the same pack-
age, non-final classes should preferably be organized in packages for
which the Package Check as Server property is activated (see Section
2.3.3).

366

Advanced Concepts in ABAP Objects6

6.2.4 Method Redefinition

A subclass inherits all public and protected methods additionally to
its own components.11 When a method is called in the subclass, it is
executed in the same way it was implemented in the superclass, and
even uses the private components of the superclass. However, since
the main purpose of inheritance is to specialize classes, the behavior
of the method of a superclass may be too general for the more spe-
cific purpose of the subclass. In some cases, the implementation of
superclass must be enhanced in the subclass, while in other
instances, the implementation must be completely changed. How-
ever, the semantics of the method must remain stable for the exter-
nal user, because all this user ever sees is the constant interface
(including the documentation) and not the implementation itself.

New implemen-
tation

Instance methods can be redefined in subclasses to specialize the
behavior of subclass objects. Static methods cannot be redefined.
Redefining a method means creating a new implementation of the
method in a subclass without changing the interface.12 The method is
still declared in the superclass. Previous implementations of the
method in preceding superclasses remain unchanged. When a
method is redefined in a subclass, an additional implementation is
created, which hides the previous implementation when the subclass
and further subclasses are used.

Access Every reference that refers to an object of the subclass uses the rede-
fined method. This is always the case, regardless of the type of the
reference variables (for more details, see Section 6.4). This applies in
particular to the self reference me. Therefore, if a superclass method
(meth1) contains the call of a method (meth2) belonging to the same
class, which is redefined in a subclass, the call of the meth1 method in
an instance of the superclass results in the execution of the original
method (meth2), while the call of the meth1 method in an instance of
the subclass results in the execution of the redefined method (meth2).

11 The private methods are also inherited in principle, but are not visible in the sub-
class.

12 Some other object-oriented programming languages permit the overloading of
functions or methods. This means that a separate, changed parameter interface
can be defined for an overwritten or redefined method. ABAP Objects does not
currently support this mechanism.

367

Inheritance 6.2

Like the methods belonging to the subclass, a redefined method
accesses the private attributes of the subclass.

REDEFINITIONThe syntax for redefining an instance method in a subclass is as fol-
lows:

METHODS meth REDEFINITION.

This statement must be specified in the declaration part of the sub-
class in the same visibility section as the actual declaration of the
method in the superclass. The definition of the interface is not
repeated.

In the Class Builder, you redefine an inherited method by displaying
it on the Methods tab. To do so, you must use the Settings function
of the Class Builder to select the Display Inherited Components Also
entry. Then, you must highlight the method and select the Redefine
function (see Figure 6.3).

ImplementationA new implementation must be created for each redefined method
in the redefining subclass. In global classes, the Class Builder does
this as part of the Redefine process, and you can navigate to the
implementation in the same way as with normal methods. In local
classes, you must enter the implementation yourself in the imple-
mentation part as for normal methods.

Pseudo referenceIn the implementation of a redefined method, you can use the
pseudo reference super-> to access the original method of the direct
superclass. This overrides the hiding of the redefined method. You
must always use this pseudo reference if you want to first copy the
functionality of the superclass and then enhance it.

We can now apply method redefinition to our example from Listing
6.4. Listing 6.5 shows how this differs from Listing 6.4.

Figure 6.3 Redefinition of an Inherited Method

368

Advanced Concepts in ABAP Objects6

Listing 6.5 Method Redefinition

REPORT z_method_redefinition.

...

CLASS car DEFINITION INHERITING FROM vehicle.
PUBLIC SECTION.
METHODS show_speed REDEFINITION.

ENDCLASS.

CLASS truck DEFINITION INHERITING FROM vehicle.
PUBLIC SECTION.
METHODS: accelerate REDEFINITION,

show_speed REDEFINITION,
load IMPORTING freight TYPE string,
unload.

PROTECTED SECTION.
DATA freight TYPE string.

PRIVATE SECTION.
CONSTANTS max_speed TYPE i VALUE '80'.

ENDCLASS.

...

CLASS car IMPLEMENTATION.
METHOD show_speed.
DATA output TYPE string.
output = me->speed.
CONCATENATE `Car, speed: ` output INTO output.
MESSAGE output TYPE 'I'.

ENDMETHOD.
ENDCLASS.

CLASS truck IMPLEMENTATION.
METHOD accelerate.
super->accelerate(delta).
IF me->speed > truck=>max_speed.

me->speed = truck=>max_speed.
ENDIF.

ENDMETHOD.
METHOD show_speed.
DATA output TYPE string.
output = me->speed.
CONCATENATE `Truck with `

me->freight
`, speed: `
output

INTO output.

369

Inheritance 6.2

MESSAGE output TYPE 'I'.
ENDMETHOD.
...

ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.

DATA: car_ref TYPE REF TO car,
truck_ref TYPE REF TO truck.

CREATE OBJECT: car_ref,
truck_ref.

car_ref->accelerate(130).
car_ref->show_speed().
truck_ref->load(`Beer`).
truck_ref->accelerate(110).
truck_ref->show_speed().
truck_ref->unload().

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
demo=>main().

We specialize the accelerate method in the truck class and the
show_speed method in both subclasses:

� In the truck class, we introduced a maximum speed max_speed
that cannot be exceeded in accelerate. In the new implementa-
tion, the speed is therefore set by calling super->accelerate via
the previous implementation, and then checked and adapted, if
necessary.

� The show_speed method is extended by specific outputs in both
subclasses. The previous implementation is not used for this pur-
pose.

All redefined methods keep their original semantics in spite of the
new implementation. You will notice that this requires some pro-
gramming discipline because we can also implement the methods in
a completely different way (for more information, see Section 6.4.3).
A test tool that might help you check the stability of applications is
ABAP Unit (see Section 13.3).

370

Advanced Concepts in ABAP Objects6

6.2.5 Abstract Classes and Methods

If you want to use a class just as a template for subclasses and don’t
need any objects of this class, you can define the class as an abstract
class. The syntax for defining an abstract class is:

ABSTRACT CLASS class DEFINITION ABSTRACT.
...

ENDCLASS.

To create an abstract class in the Class Builder, select Abstract in the
Instantiation input field on the Properties tab (see Figure 6.4).

Objects cannot be created from an abstract class using CREATE OBJECT.
Instead, abstract classes are used as a template for subclasses. From
an abstract class, actual subclasses can be derived from which objects
can then be created.

Single instance methods can be identified as abstract as well. The
syntax is:

METHODS meth ABSTRACT.

In the Class Builder, you can identify a method as Abstract in its
Detail view (see Figure 6.5).

Implementation An abstract method cannot be implemented in its own class, but only
in a concrete subclass. Therefore, abstract methods can only be cre-
ated in abstract classes. Otherwise, it would be possible to create an
object with an addressable method but without its implementation.
To implement an abstract method in a subclass, you use the method
definition mechanism discussed in Section 6.2.4. The only difference
to a real redefinition is that you cannot use the super-> pseudo ref-
erence in the method.

Figure 6.4 Abstract Global Class

371

Inheritance 6.2

In an abstract class, both concrete and abstract methods can be
declared. Concrete methods are declared and implemented as usual.
With the exception of instance constructers, concrete methods can
even call abstract methods, because names and interfaces are com-
pletely known. The behavior of the abstract method, however, is
defined during the implementation in a subclass and can therefore
vary in different subclasses.

In our example in Listing 6.5, the vehicle superclass is rather rudi-
mentary and is not used for creating any objects. To prevent this also
syntactically, the class can be defined as abstract, as shown in Listing
6.6. Listing 6.6 only demonstrates the differences in comparison
with Listing 6.5.

Listing 6.6 Abstract Class and Method

REPORT z_abstract_class.

...

CLASS vehicle DEFINITION ABSTRACT.
PUBLIC SECTION.

METHODS: accelerate IMPORTING delta TYPE i,
show_speed ABSTRACT.

PROTECTED SECTION.

Figure 6.5 Abstract Method

372

Advanced Concepts in ABAP Objects6

DATA speed TYPE i.
ENDCLASS.

...

CLASS vehicle IMPLEMENTATION.
METHOD accelerate.
me->speed = me->speed + delta.

ENDMETHOD.
ENDCLASS.

...

The vehicle class only determines the common elements of the sub-
classes. Because the two subclasses in Listing 6.5 redefine the show_
speed method anyway, we declared it in Listing 6.6 as abstract as
well. It is therefore no longer implemented in the vehicle class.

Design The use of abstract classes and methods can be an important means
of object-oriented design. Abstract classes provide a common inter-
face and a partially implemented functionality to their subclasses,
but cannot perform any relevant operations on their attributes them-
selves. In a payroll system, for example, you can imagine a class that
already implements many tasks like bank transfers, but only includes
the actual payroll function in an abstract manner. It is then the task
of various subclasses to perform the correct payroll calculation for
different work contracts.

Interfaces Because ABAP Objects does not support multiple inheritance, the
usage of abstraction via abstract classes is always restricted to the
subclasses of a specific node of the inheritance tree. Interfaces are
another means of solving similar tasks, irrespective of the position in
the inheritance hierarchy. They are discussed in Section 6.3.

6.2.6 Final Classes and Methods

Just as abstract classes and methods require a definition of subclasses
in order to work with the classes, there can be adverse situations
where you want to protect a whole class or a single method from
uncontrolled specialization. For this purpose, you can declare a class
or an instance method as final. This can make sense particularly if
you want to make changes to a class at a later stage without causing
any subclasses to become syntactically or semantically incorrect (see
the namespace of components in inheritance in Section 6.2.3). If you
follow the defensive procedure for programming the AS ABAP using

373

Inheritance 6.2

ABAP Objects, which was introduced in Section 4.9, the declaration
of final classes is always recommended.

The syntax for defining a final class is:

FINALCLASS class DEFINITION FINAL.
...

ENDCLASS.

In the Class Builder, you create a final class by selecting the Final
checkbox on the Properties tab (see Figure 6.4). You cannot derive
any more subclasses from a final class. A final class therefore termi-
nates a path of the inheritance hierarchy. All instance methods of a
final class are automatically final.

In a non-final class, individual instance methods can be declared as
final. The syntax is:

METHODS meth FINAL.

In the Class Builder, you can identify an instance method as Final in
its Detail view (see Figure 6.5). A final method cannot be redefined
in subclasses. A final method cannot be abstract at the same time. A
class can be final and abstract at the same time, but only its static
components are usable in this case. Although you can declare
instance components in such a class, it is not recommended.

6.2.7 Static Attributes in Inheritance

To use a static component of a class, instances of the class are not
required. If instances exist, they share the static components. How
does inheritance affect static components, and static attributes in
particular?

Inheritance treeLike all components, a static attribute exists exactly once within a
path of the inheritance tree. A subclass can access the contents of the
public and protected static attributes of all superclasses. Alterna-
tively, a superclass shares its public and protected static attributes
with all subclasses. In inheritance, a static attribute is therefore not
assigned to a single class, but to a path of the inheritance tree. It can
be accessed from outside via the class component selector (=>) using
all class names involved, or from inside in all affected classes where
a static attribute is visible. Changes to the value are visible in all rel-
evant classes. Listing 6.7 shows a simple example.

374

Advanced Concepts in ABAP Objects6

Listing 6.7 Static Attributes in Inheritance

REPORT z_static_attributes.

CLASS demo DEFINITION.
PUBLIC SECTION.
CLASS-METHODS main.

ENDCLASS.

CLASS c1 DEFINITION.
PUBLIC SECTION.
CLASS-DATA a1 TYPE string.

ENDCLASS.

CLASS c2 DEFINITION INHERITING FROM c1.
...

ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.
c2=>a1 = 'ABAP Objects'.
MESSAGE c1=>a1 TYPE 'I'.

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
demo=>main().

Static constructor When addressing a static attribute belonging to a path of an inherit-
ance tree, you always address the class in which the attribute is
declared, irrespective of the class name used in the class component
selector. This is important for calling the static constructor (see Sec-
tion 6.2.8). A static constructor is executed when a class is addressed
for the first time. If a static attribute is addressed via the class name
of a subclass but declared in a superclass, only the static constructor
of the superclass is executed.

Static methods Static methods cannot be redefined in ABAP Objects, because static
components should occur exactly once (i. e., not more or less) in a
path so that they can be shared by all subclasses.

6.2.8 Constructors in Inheritance

Constructors are used for initializing the attributes of a class (see Sec-
tion 4.7). While instance constructors can set the instance attributes
of every single object during the instancing process, the static con-
structors are responsible for the static attributes of the class before
the class is first accessed. Because a subclass inherits all attributes of

375

Inheritance 6.2

its superclasses in inheritance, this automatically begs the question
“How can the constructors ensure that the inherited attributes are
initialized as well when the subclass is used?”

Instance Constructors

Every class has a predefined instance constructor named construc-
tor. Instance constructors thus deviate from the rule that there are
only unique component names along a path of the inheritance tree.
Consequently, the instance constructors of the individual classes of
an inheritance tree must be completely independent of one another.
To avoid naming conflicts, the following rules apply:

� Instance constructors of superclasses cannot be redefined in sub-
classes.

� Instance constructors cannot be explicitly called via the construc-
tor() statement.

super->constructorAfter an object has been created with the CREATE OBJECT command,
the instance constructor is automatically invoked. Because a subclass
contains all superclass attributes that are visible to it, the contents of
which can be set by instance constructors of these classes, the
instance constructor of a subclass must ensure that the instance con-
structors of all superclasses are executed as well.13 For this purpose,
the instance constructor of every subclass must contain a call

super->constructor(...).

of the instance constructor of the direct superclass, even if the con-
structor is not explicitly declared. The only exceptions to this rule are
the direct subclasses of the root node, object. The super->construc-
tor(...) statement is the only exception from the rule that con-
structors cannot be explicitly called.

In superclasses in which the instance constructor is not explicitly
declared and implemented, the implicitly existing implementation of
the instance constructor is run. It automatically ensures that the
instance constructor of the next higher superclass is called.

Input parametersBefore an instance constructor is run, you must supply its non-
optional input parameters. These are searched for as follows:

13 In particular, the private attributes of superclasses can only be initialized in the
superclasses’ own constructors.

376

Advanced Concepts in ABAP Objects6

� Provision in CREATE OBJECT
Starting with the class of the created object, the first explicitly
defined instance constructor is searched for in the corresponding
path of the inheritance tree. This is the instance constructor of the
class itself, or the first explicitly defined instance constructor of a
superclass.

� Provision in super->constructor(...)
Starting with the direct superclass, the first explicitly defined
instance constructor is searched for in the corresponding path of
the inheritance tree.

In CREATE OBJECT or in super->constructor(...), respectively, the
interface of the first explicitly defined instance constructor is pro-
vided with values like a normal method:

� If there are no input parameters, no parameters are transferred.

� Optional input parameters can be provided with values.

� Non-optional input parameters must be provided with values.

If there is no explicitly defined instance constructor in the path of the
inheritance tree up to the object root class, no parameters will be
transferred.

Inheritance tree For both CREATE OBJECT and super->constructor(...), the first
explicit instance constructor must therefore be regarded and, if one
exists, its interface must be provided with a value. When working
with subclasses, you therefore need to know the entire path very
well because when creating a subclass object that resides at the lower
end of the inheritance tree, a situation can occur whereby parame-
ters must be transferred to the constructor of a superclass positioned
much closer to the root node.

The instance constructor of a subclass is split into two parts by the
super->constructor(...) call required by the syntax. In the state-
ments before the call, the constructor behaves like a static method.
Before the call, it does not have access to the instance attributes of its
class, that is, instance attributes cannot be addressed until after the
call.

3-phase model The execution of a subclass instance constructor can therefore be
divided into three phases that are presented in the comment lines of
Listing 6.8.

377

Inheritance 6.2

Listing 6.8 Three-Phase Model of an Instance Constructor

METHOD constructor.
" Phase 1: Access to static attributes only
...
" Phase 2: Execution of super class constructor(s)
CALL METHOD super->constructor EXPORTING ...
" Phase 3: Access to instance attributes only
...

ENDMETHOD.

In the individual phases, the instance constructor can execute the fol-
lowing tasks:

� Phase 1
Here you can prepare the call of the superclass instance construc-
tor, for example, you can determine the actual parameters for its
interface.

� Phase 2
In this phase, the instance constructor of the superclass is exe-
cuted, which is again divided into three phases, if implemented.

� Phase 3
The attributes of all superclasses are now correctly initialized.
Using these values, the necessary initializations for the own
instance attributes can be performed.

Therefore, during the instantiation of a subclass, a nested call of the
instance constructors from the subclass to the superclasses takes
place, where the instance attributes of the highest superclass can be
addressed only as of the deepest nesting level. When returning to the
constructors of the subclasses underneath, their instance attributes
can also be addressed successively.

Self-referenceThe methods of subclasses are not visible in constructors. If an
instance constructor calls an instance method of the same class via
the implicit self-reference me, the method is called in the way in
which it is implemented in the class of the instance constructor, and
not the possibly redefined method of the subclass to be instantiated.
This is an exception to the rule that whenever instance methods are
called, the implementation is called in the class of the instance to
which the reference is pointing.

Listing 6.9 shows the behavior of instance constructors in inherit-
ance using a simple example.

378

Advanced Concepts in ABAP Objects6

Listing 6.9 Instance Constructors in Inheritance

REPORT z_constructor_inheritance.

CLASS demo DEFINITION.
PUBLIC SECTION.
CLASS-METHODS main.

ENDCLASS.

CLASS vessel DEFINITION.
PUBLIC SECTION.
METHODS constructor IMPORTING i_name TYPE string.

PROTECTED SECTION.
DATA name TYPE string.

ENDCLASS.

CLASS ship DEFINITION INHERITING FROM vessel.
...

ENDCLASS.

CLASS motorship DEFINITION INHERITING FROM ship.
PUBLIC SECTION.
METHODS constructor IMPORTING i_name TYPE string

i_fuelamount TYPE i.
PRIVATE SECTION.
DATA fuelamount TYPE i.

ENDCLASS.

CLASS vessel IMPLEMENTATION.
METHOD constructor.
name = i_name.

ENDMETHOD.
ENDCLASS.

CLASS motorship IMPLEMENTATION.
METHOD constructor.
super->constructor(i_name).
fuelamount = i_fuelamount.

ENDMETHOD.
ENDCLASS.

CLASS demo IMPLEMENTATION.
METHOD main.
DATA: o_vessel TYPE REF TO vessel,

o_ship TYPE REF TO ship,
o_motorship TYPE REF TO motorship.

CREATE OBJECT:
o_vessel EXPORTING i_name = 'Vincent',
o_ship EXPORTING i_name = 'Mia',
o_motorship EXPORTING i_name = 'Jules'

i_fuelamount = 12000.

379

Inheritance 6.2

ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
demo=>main().

This example shows three consecutive classes of the inheritance hier-
archy. The vessel class has an instance constructor with an input
parameter. From vessel, we derive the ship class that does not
explicitly declare and implement the instance constructor. From
ship, we derive motorship. This class again has an explicit instance
constructor with two input parameters. We create an object from
every class and provide the parameter interface of the constructors
with actual parameters. The constructors are called as follows:

� The object created using o_vessel is initialized at CREATE OBJECT in
the explicit instance constructor of vessel, where an attribute is
set using the passed actual parameter.

� The object created using o_ship is also initialized at CREATE OBJECT
via the instance constructor of vessel, because it is called by the
implicit instance constructor of ship. Its parameter interface
needs to be provided with actual parameters.

� The object created using o_motorship is initialized in the explicit
instance constructor of motorship. In this constructor, the
instance constructor of the direct superclass must be called via
super->constructor. The implicit instance constructor of ship
calls the explicit instance constructor of vessel. Its parameter
interface needs to be provided with actual parameters.

You can best understand the behavior of the program if you run it
line by line in the ABAP Debugger.

Static Constructors

Every class has a static constructor named class_constructor. With
regard to the namespace along an inheritance tree, the same rules
that apply to the instance constructor also apply to the static con-
structor.

CallWhen a subclass is addressed for the first time in a program, its static
constructor is run. Before that, however, the preceding static con-
structors of the entire inheritance tree must have been run. Because

380

Advanced Concepts in ABAP Objects6

a static constructor should be called only once during the execution
of a program, when a subclass is addressed for the first time, the next
higher superclass is searched whose static constructor has not yet
run. Then this static constructor is executed first, followed by the
constructors of all subclasses up to and including the addressed sub-
class. In contrast to instance constructors, a static constructor does
not have to explicitly call the static constructor of its superclass.
Instead, the runtime environment automatically ensures that the
static constructors are called in the correct order. In a subclass, you
can always assume that the static attributes of the superclasses have
been correctly initialized.

6.2.9 Instantiation in Inheritance

A subclass includes the object descriptions of all superclasses. The
instantiation of a subclass therefore means the instantiation of all
superclasses in a single object, where the initialization of the super-
class attributes is ensured by calling the superclass constructors, as
described in Section 4.3.2.

The additions CREATE PUBLIC|PROTECTED|PRIVATE of the CLASS state-
ment or the corresponding Class Builder settings, respectively, con-
trol for each class who can create an instance of the class or call its
instance constructor (see Section 4.3.2). In inheritance, this results in
three scenarios whose behavior is defined in ABAP Objects as fol-
lows:

� Superclass with Public Instantiation
The instance constructor of the superclass is publicly visible. If the
instantiatiability of a subclass is not explicitly specified, it inherits
the public instantiation of the superclass. The instantiatiability of a
subclass can be explicitly specified in one of the three ways. A sub-
class can control the visibility of its own instance constructor inde-
pendently of the superclass.

� Superclass with Protected Instantiation
The instance constructor of the superclass is visible in subclasses.
If the instantiatiability of a subclass is not explicitly specified it
inherits the protected instantiation of the superclass. The instan-
tiatiability of a subclass can be explicitly specified in one of the
three ways. A subclass can control the visibility of its own instance
constructor independently of the superclass and can thus also

381

Standalone Interfaces 6.3

publish the protected instance constructor of the superclass in the
specified section.

� Superclass with Private Instantiation
The instance constructor of the superclass is visible only in the
superclass. There are two different scenarios here:

� The subclass is not a friend of the superclass.
Because only the superclass itself can call its instance construc-
tor, the subclass cannot be instantiated. Therefore, the sub-
class has an implicit addition, CREATE NONE. The instantiatiabil-
ity of the subclass cannot be explicitly specified because this
would mean a publication of the superclass constructor in the
specified section.

� The subclass is a friend of the superclass.
If the instantiatiability of the subclass has not been explicitly
specified, it inherits the private instantiation of the superclass.
The instantiatiability of a subclass can be explicitly specified in
one of the three ways. As a friend, a subclass can publish the
private constructor of the superclass in the specified section.

Private superclassIf a superclass with private instantiation has been defined in a path of
the inheritance tree, no subclass can be instantiated by external
users, and a subclass cannot even instantiate itself because it does not
have access to the instance constructor of the superclass! The obvious
thing to do would be to make a class defined for private instantiation
a final class in order to prevent subclasses from being derived.

Exceptions from this rule only exist if a privately instantiatable
superclass offers its friendship to its subclasses. This is not often the
case, though, because a superclass usually does not know its sub-
classes. However, a superclass can offer its friendship to an interface
as well, which can then be implemented by its subclasses (see Sec-
tion 6.3.3). As always, when offering friendship, you should proceed
very carefully in this case as well, for example, by restricting the
usage of the friendly interface to the current package.

6.3 Standalone Interfaces

In ABAP Objects, interfaces of classes can be defined independently
from a class as standalone interfaces.

382

Advanced Concepts in ABAP Objects6

6.3.1 Basic Principles

Point of contact The only part of a class that is relevant to an external user is its public
interface that is made up of the components of its public visibility
section. All other components are irrelevant to the user. This aspect
becomes clear particularly when using abstract methods in abstract
classes (see Section 6.2.5). Basically, such classes are used to define
nothing but interfaces that can only be used with objects of sub-
classes.

No multiple
inheritance

Because ABAP Objects does not support multiple inheritance, the
usage of abstract classes for defining interfaces is restricted to their
subclasses. However, it is also desirable to be able to define generally
valid interfaces that can equally be used in several classes.

Decoupling Such generally valid interfaces can be provided via standalone inter-
faces. Standalone interfaces are independently definable interfaces
without implementation that can be integrated and implemented in
classes. Standalone interfaces are used to achieve a looser coupling
between a class and a user, because they provide an additional access
layer (protocol). Two scenarios are possible:

� A class entirely or partially provides its public interface to the user
via one or several standalone interfaces and thus decouples the
user from the actual class definition. Every standalone interface
describes an independent aspect of the class and only provides
this aspect and nothing else to a user. This can positively affect the
maintainability of a class.

� A user has an exact idea of how an object should be used and
defines an standalone interface containing all wanted compo-
nents. Every class that is to fulfill this task integrates this interface
and provides the functionality.

BAdI A very nice application example of this decoupling is given by the
enhancebility of delivered ABAP application programs in customer
systems using Business Add-Ins (BAdIs). BAdIs are based on stan-
dalone interfaces that are declared in the original system. The actual
functionality of a BAdI is provided only in follow-up systems by
implementing the standalone interface in classes.14

14 The comprehensive topic of enhancing and modifying ABAP applications of AS
ABAP will not yet be discussed in this edition.

383

Standalone Interfaces 6.3

Interface reference
variables

Because standalone interfaces are just interfaces without implemen-
tation, you cannot create any objects from them—similar to abstract
classes. Instead, they are integrated and implemented in classes. If a
class implements a standalone interface, it can be addressed via this
interface. There are specific interface reference variables for this pur-
pose. These can point to objects of all classes that contain the respec-
tive standalone interface. Because any classes can integrate the same
interface, their objects can be addressed via the same interface refer-
ence variable.

Figure 6.6 illustrates the role of interfaces in a graphical way. In our
representation of objects with a core that is separated from the exter-
nal user by a shell, standalone interfaces can be imagined as empty
shells that can be used by classes instead of their own shells or as
parts of their own shells.15 For example, if a class wants to provide
services like outputting its attributes in a list or serialization, it can
implement the corresponding standalone interfaces. Users who are
only interested in these different aspects of objects access these via
interface reference variables. In the following sections, we will dis-
cuss the language elements shown in Figure 6.6 in detail.

Figure 6.6 Interfaces

15 Compared to Figure 6.1, you can clearly see that the integration of standalone
interfaces in classes can also be regarded as a multiple inheritance of interfaces
to classes. Because standalone interfaces don’t have their own method imple-
mentations, there are no conceptual problems like those that occur in multiple
inheritance of classes.

CLASS cl_... .
INTERFACES: if_serializable ,

if_writeable ...
...

ENDINTERFACE.

INTERFACE if_serializable .
METHODS serialize ...

...
ENDINTERFACE.

INTERFACE if_writeable .
METHODS write_list ...

...
ENDINTERFACE.

DATA:
iref1 TYPE REF TO if_serializable ,
iref2 TYPE REF TO if_writeable .

iref1

iref2

METHOD
if_serializable ~ serialize .
...

METHOD
if_writeable ~ write_list .
...

384

Advanced Concepts in ABAP Objects6

6.3.2 Creating Interfaces

With regard to their declaration, interfaces in ABAP Objects play the
same role as classes. Just like classes, interfaces are object types that
reside in the namespace of all types. While a class describes all
aspects of a class, an interface only describes a partial aspect. As men-
tioned above, standalone interfaces can be regarded as special
abstract classes without implementation that can be used in multiple
classes.

Accordingly, the declaration of a standalone interface hardly varies
from the declaration of a class. As with classes, we distinguish global
and local interfaces in the same way that we do global and local
classes. Therefore, the same rules apply regarding their usability.
Global interfaces can be used in any program if the package assign-
ment of the program permits it. Local interfaces can only be used in
the same program.

INTERFACE—
ENDINTERFACE

The syntax for declaring a local interface is:

INTERFACE intf.
DATA ...
CLASS-DATA ...
METHODS ...
CLASS-METHODS ...
...

ENDINTERFACE.

Basically, the declaration of an interface corresponds to the declara-
tion part of a class, where instead of CLASS—ENDCLASS, you simply use
INTERFACE—ENDINTERFACE. Interfaces can contain exactly the same
components as classes. Unlike classes, however, interfaces don’t
need to be divided into different visibility sections because interface
components are always integrated in the public visibility section of
classes.

To create a global interface, use the Class Builder just as you would
for global classes. In the Object Navigator, select Create � Class
Library � Interface. In Transaction SE24, after selecting Create, select
the Interface object type instead of Class.16

16 If you observe the naming convention IF_... bzw. ZIF_..., an interface is created
automatically.

385

Standalone Interfaces 6.3

Class BuilderFigure 6.7 shows the Class Builder for a global interface ZIF_DRIVE_
OBJECT. You see the familiar user interface that you know from
working with classes. When creating components, you need to spec-
ify the same input as you do for classes, except for the assignment to
a visibility section. In the shown example, we created the same
methods ACCELERATE and SHOW_SPEED as in ZCL_VEHICLE pre-
sented in Figure 4.7 in Chapter 4. The shown interface can therefore
serve as an interface to objects that can be driven.

The Class Builder generates the corresponding ABAP statements in a
program of the interface pool type, the source code of which can also
be edited directly via Goto � Interface Section (see Figure 6.8). As in
class pools, the addition PUBLIC identifies the interface as a global
interface that can be used in all programs. Apart from the declaration
of the global interface, an interface pool cannot contain any local
type declarations except for the publication of type groups.17

AbstractionThe essential difference between interfaces and classes is that there is
no implementation part for an interface. Therefore, it is not neces-
sary to add DEFINITION to INTERFACE. The methods of an interface are
all abstract. They are fully declared, including their parameter inter-
face, but not implemented in the interface. Like the subclasses that

Figure 6.7 Global Interface

17 In interface pools, declarations like these would not be of any use. They are pos-
sible in class pools, but can only be used in the private section of the global class.
This section does not exist for interfaces.

386

Advanced Concepts in ABAP Objects6

implement the abstract methods of their abstract superclasses, all
classes that want to use an interface must implement its methods.18

6.3.3 Implementing Interfaces in Classes

Every class can implement one or more interfaces. The essential
requirement for implementing an interface is that the interface is
known to the implementing class. Therefore, it must be declared glo-
bally in the class library or locally in the same program. Additionally,
the usage of the interface must be permitted by the package assign-
ment.

INTERFACES The syntax for implementing interfaces is:

CLASS class DEFINITION.
PUBLIC SECTION.
INTERFACES: intf1, intf2 ...
...

...
ENDCLASS.

Interfaces are therefore integrated using the INTERFACES statement in
the public visibility section of a class. Only global interfaces can be
integrated in the public visibility section of a global class. You can do
this on the Interfaces tab of Class Builder.

Figure 6.8 Source Code of an Interface Pool

18 Strictly speaking, however, this similarity applies only to instance methods. In
interfaces, you can also define static methods without implementation. This is
not possible in abstract classes because static methods cannot be redefined.

387

Standalone Interfaces 6.3

In Figure 6.9, we copied the ZCL_VEHICLE class shown in Figure 4.7
to a new class ZCL_VEHICLE_WITH_INTF, deleted its method, and
specified the interface ZIF_DRIVE_OBJECT shown in Figure 6.7. In
the Abstract and Final columns, you can specify that all methods of
the interface should be either abstract or final in the class. In the
INTERFACES statement, this is expressed by the optional addition ALL
METHODS ABSTRACT|FINAL.

intf~compImplementing an interface extends the public interface of the class
by the interface components. Every comp component of an imple-
mented intf interface becomes a full component of the class and is
identified within the class via the name

... intf~comp ...

Interface components are inherited to subclasses like class-specific
public components. A class can have its own component of the same
name like an interface component, or various implemented inter-
faces can contain components of the same name. All reside in one
namespace and are distinguished in the class by different intf~ pre-
fixes. The tilde sign (~) is the interface component selector.

Figure 6.10 shows how the methods of the interface ZIF_DRIVE_
OBJECT are presented in ZCL_VEHICLE_WITH_INTF. In the detailed
view (see Figure 6.5), you can specify for every single method if it is
to be abstract or final. The INTERFACES statement has the optional
additions for this purpose, ABSTRACT METHODS and FINAL METHODS.

Figure 6.9 Integrating the Interface

388

Advanced Concepts in ABAP Objects6

Otherwise, however, an interface method can no longer be changed
in a class. The same applies to interface attributes. The only property
that can be changed when integrating it in a class is the initial value
(addition DATA VALUES to INTERFACES).

A class must implement all concrete (non-abstract) methods of all
integrated interfaces in its implementation part. In the Class Builder,
this is achieved via the usual procedure, by selecting Code for every
interface method. In the ZCL_VEHICLE_WITH_INTF class, we basi-
cally used the method implementations of ZCL_VEHICLE (see Listing
6.10).

Listing 6.10 Implementation of Interface Methods

CLASS zcl_vehicle_with_intf IMPLEMENTATION.
METHOD zif_drive_object~accelerate.
speed = speed + delta.

ENDMETHOD.
METHOD zif_drive_object~show_speed.
DATA output TYPE string.
output = speed.
CONCATENATE `Vehicle speed: ` output INTO output.
MESSAGE output TYPE 'I'.

ENDMETHOD.
ENDCLASS.

If a class does not declare its own components in its public visibility
section, but only integrates standalone interfaces, the entire public

Figure 6.10 Interface Methods

389

Standalone Interfaces 6.3

interface of the class is defined via standalone interfaces; and stan-
dalone interfaces and its public interface are indeed the same for this
class. This applies to our sample class ZCL_VEHICLE_WITH_INTF.
The interface to the outside world that had so far been built of the
class’s own components is now completely outsourced to the ZIF_
DRIVE_OBJECT interface.

Listing 6.11 summarizes what we have just described using the
example of a local interface. The public interface of the vehicle class
from Listing 4.5 is outsourced to a local standalone interface; how-
ever, the local vehicle class could just as easily implement the global
interface ZIF_DRIVE_OBJECT instead of a local interface drive_
object.

Listing 6.11 Declaration and Implementation of a Local Interface

REPORT z_vehicle_with_intf.

INTERFACE drive_object.
METHODS: accelerate IMPORTING delta TYPE i,

show_speed.
ENDINTERFACE.

CLASS vehicle DEFINITION.
PUBLIC SECTION.

INTERFACES drive_object.
PRIVATE SECTION.

DATA speed TYPE i.
ENDCLASS.

CLASS vehicle IMPLEMENTATION.
METHOD drive_object~accelerate.

speed = speed + delta.
ENDMETHOD.
METHOD drive_object~show_speed.

DATA output TYPE string.
CONCATENATE `Vehicle speed: ` output INTO output.
output = speed.
MESSAGE output TYPE 'I'.

ENDMETHOD.
ENDCLASS.

6.3.4 Access to Interfaces of Objects

Objects are always accessed via object reference variables. Until
now, we worked with object reference variables that were declared
with a reference to a class:

390

Advanced Concepts in ABAP Objects6

Class reference
variable

DATA cref TYPE REF TO class.

By using these reference variables, you can address all those compo-
nents of an object’s class class that are visible at the current posi-
tion. This kind of object reference variable is therefore referred to as
a class reference variable.

As you saw in the previous section, the interface components of an
interface implemented in a class are handled as full components. You
might therefore be tempted to address the interface components of
an object as follows:

... cref->intf~comp ...

In point of fact, this works. You can try this with our ZCL_VEHICLE_
WITH_INTF class; however, this kind of access is not recommended.
The external user of a class should be able to access its components
without having to worry about the technical composition of the
interface. Standalone interfaces and the class-specific components
both define different sets of components. They should be used
directly, but not in mixed forms as shown above. In short, the inter-
face component selector should only be used within classes (and
interfaces, see Section 6.3.6).

To access the interface components of objects, ABAP Objects
includes interface reference variables. These are object reference var-
iables that are declared with a reference to an interface:

Interface reference
variables

DATA ref TYPE REF TO intf.

An interface reference variable can point to the objects of all classes
implementing the intf interface. Using such a reference variable, all
components of the interface of an object can be addressed directly via

... iref->comp ...

In contrast to cref->intf~comp, the interface reference variable
iref->comp expresses that components of a class are accessed that are
hierarchically on the same level but reside in a different part of the
interface. An interface reference variable enables you to address
those components of an object that were added to the object’s class
via the implementation of the intf interface that was used to declare
the class. Other components—class-specific components or compo-
nents of other interfaces—cannot be addressed via an interface refer-
ence variable (not even dynamically, see Sections 11.1.1 and 11.4.1).

391

Standalone Interfaces 6.3

Figure 6.11 shows how class and interface reference variables point
to the same object, where the interface reference variable only
knows its own interface components, and the class reference varia-
ble should only be used to address the non-interface components of
the class.

Up CastThe code in Figure 6.11 already shows how interface reference vari-
ables can point to objects. You can simply assign a class reference
variable pointing to an object to an interface reference variable. Usu-
ally, this is an up cast (see Section 6.4.2 for more information).

This can be accomplished even more comfortably if you’re only
interested in the interface components of a class. For example, you
are naturally only interested in the interface components of a class if
the entire public interface of a class is defined via an standalone
interface. In these situations, creating the objects of the class via an
interface reference variable will suffice:

CREATE OBJECTCREATE OBJECT iref TYPE class EXPORTING ...

Via the TYPE addition, you specify the class of the object to be created
and provide the instance constructor with EXPORTING, if necessary.
However, you don’t need a class reference variable to create the
object. The only prerequisite is that the class class (or one of its
superclasses) contain the intf interface.

User viewA user of object reference variables usually works with objects with-
out having to deal with the details of their implementation. In con-

Figure 6.11 Interface Reference Variables

DATA:
cref TYPE REF TO class ,
iref TYPE REF TO intf .

CREATE OBJECT cref .

iref = cref .

cref

iref

intf~comp

comp

392

Advanced Concepts in ABAP Objects6

trast to the work with class reference variables, a user of an interface
reference variable normally doesn’t even need to know from which
class the object it is working with originates.

The example shown in Listing 6.12 demonstrates the usage of inter-
face reference variables. The methods main and output of the demo
class exclusively work with such object reference variables that were
all created with a reference to our sample interface ZIF_DRIVE_
OBJECT. For this purpose, an internal table type is declared in demo
the line type of which is such a reference type. In addition to our glo-
bal sample class CL_VEHICLE_WITH_INTF, we have also created a
local class electron that contains the standalone interface as well,
but specifically implements the methods by storing the speed in
units of the speed of light (c=300.000).

From each of the two classes, an object is created and accelerated,
and the object reference is appended to an internal table. Then this
table is transferred to the output method where the show_speed
interface method is executed line by line.

Listing 6.12 Standalone Interface Reference Variables

REPORT z_drive_many_objects.

CLASS demo DEFINITION.
PUBLIC SECTION.
CLASS-METHODS main.

PRIVATE SECTION.
TYPES iref_tab_type TYPE TABLE OF

REF TO zif_drive_object.
CLASS-METHODS output IMPORTING iref_tab

TYPE iref_tab_type.
ENDCLASS.

CLASS electron DEFINITION.
PUBLIC SECTION.
INTERFACES zif_drive_object.

PRIVATE SECTION.
CONSTANTS c TYPE i VALUE 300000.
DATA speed_over_c TYPE p DECIMALS 3.

ENDCLASS.

CLASS electron IMPLEMENTATION.
METHOD zif_drive_object~accelerate.
me->speed_over_c = me->speed_over_c + delta / c.

ENDMETHOD.
METHOD zif_drive_object~show_speed.

393

Standalone Interfaces 6.3

DATA output TYPE string.
output = me->speed_over_c.
CONCATENATE `Electron speed/c: ` output INTO output.
MESSAGE output TYPE 'I'.

ENDMETHOD.
ENDCLASS.

CLASS demo IMPLEMENTATION.

METHOD main.
DATA: iref_tab TYPE iref_tab_type,

iref LIKE LINE OF iref_tab.
CREATE OBJECT iref TYPE zcl_vehicle_with_intf.
iref->accelerate(100).
APPEND iref TO iref_tab.
CREATE OBJECT iref TYPE electron.
iref->accelerate(250000).
APPEND iref TO iref_tab.
demo=>output(iref_tab).

ENDMETHOD.

METHOD output.
DATA iref LIKE LINE OF iref_tab.
LOOP AT iref_tab INTO iref.
iref->show_speed().

ENDLOOP.
ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.
demo=>main().

Although the example is similar to the one shown in Listing 4.8, it
has a completely new quality. As before, the internal table is a collec-
tion of pointers to objects. Because these pointers are interface refer-
ence objects, however, the classes and thus the behavior of the
objects managed by an internal table can vary.

You should pay special attention to the output method. This method
is an example of the user mentioned above who works with objects
without knowing their classes. The output method receives a table
with reference variables and knows that it can call a show_speed
method there. The actual implementation is irrelevant to it. This
matches the concept of polymorphism that is illustrated in Figure
6.14 exactly and will be further discussed in the corresponding sec-
tion. For the moment, it will suffice just to note that syntactically
identical method calls in a loop lead to different output.

394

Advanced Concepts in ABAP Objects6

6.3.5 Access to Static Interface Components

Because interfaces can contain the same components as classes, static
components are possible as well. You cannot access the static compo-
nents of an interface using the name of the interface and the class
component selector. The only exceptions are constants declared via
CONSTANTS:

... intf=>const ...

The static components belong to the static components of every
implementing class. This means that static attributes have different
values depending on the class and that static methods can be differ-
ently implemented in every class. To access the static components of
interfaces, independently of the instance, you would have to use the
name of an implementing class and the interface component selec-
tor:

... class=>intf~comp ...

Alias names However, this should be the exception for the reasons mentioned in
Section 6.3.4. Instead, implementing classes should declare aliases
(see Section 6.3.7) for the static components of interfaces and there-
fore make them addressable via the class name like their own static
components. Naturally, you can always use interface reference varia-
bles for accessing static components after you created objects from
the implementing classes.

6.3.6 Composing Interfaces

In Figure 6.9, it is apparent that the Class Builder provides the Inter-
faces tab as well for an interface as it does for a class. Accordingly,
the INTERFACES statement cannot only be used in classes but also in
the declaration of an interface:

INTERFACE intf1.
INTERFACES: intf2, intf3, ...
...

ENDINTERFACE.

Component
interface

This mechanism allows you to compose several interfaces into one
interface. The composition of interfaces can be useful when mode-
ling complex applications.

395

Standalone Interfaces 6.3

The set of components of an interface intf1 that integrates addi-
tional interfaces (i. e., intf2, intf3, ...) are composed of its own com-
ponents and the components of the integrated interfaces. The com-
ponents all reside on the same level. An interface containing at least
one other interface is called composite or nested interface. An inter-
face integrated in another interface is called a component interface.
A component interface can be composed itself. Let’s now look at the
nesting of interfaces shown in Listing 6.13.

Listing 6.13 Composite Interfaces

INTERFACE intf1.
...

ENDINTERFACE.

INTERFACE intf2.
INTERFACES: intf1 ...
...

ENDINTERFACE.

INTERFACE intf3.
INTERFACES: intf1, intf2 ...
...

ENDINTERFACE.

The composite interface intf3 has a component intf2 that is com-
posed itself. Although it seems like the nesting of several interfaces
caused a component hierarchy, this is not the case. All component
interfaces of a composite interface are on the same level. A nesting of
names like intf3~intf2~intf1 is not possible.

In the example above, the component interface intf1 of the compos-
ite interface intf2 becomes a component interface of intf3. A com-
posite interface contains each component interface exactly once.
Although intf1 is integrated in intf3 both directly as a component
interface of intf3 and indirectly via intf2, it only occurs once. In
intf3, it can only be addressed under the name intf1, even if it was
not integrated directly.

ImplementationIf a composite interface is implemented in a class, all interface com-
ponents of the interface behave as if their interface had been imple-
mented only once. The interface components of the individual com-
ponent interfaces extend the public interface of the class by its
original name. Because every interface is included exactly once in a
composite interface, naming conflicts cannot occur. The way an

396

Advanced Concepts in ABAP Objects6

implemented interface is composed is irrelevant when it is imple-
mented in a class. Next, let’s look at the example shown in Listing
6.14:

Listing 6.14 Implementation of Composite Interfaces

INTERFACE intf1.
METHODS meth.

ENDINTERFACE.

INTERFACE intf2.
INTERFACES intf1.
METHODS meth.

ENDINTERFACE.

INTERFACE intf3.
INTERFACES intf1.
METHODS meth.

ENDINTERFACE.

INTERFACE intf4.
INTERFACES: intf2, intf3.

ENDINTERFACE.

CLASS class DEFINITION.
PUBLIC SECTION.
INTERFACES intf4.

ENDCLASS.

CLASS class IMPLEMENTATION.
METHOD intf1~meth. ... ENDMETHOD.
METHOD intf2~meth. ... ENDMETHOD.
METHOD intf3~meth. ... ENDMETHOD.

ENDCLASS.

A method meth of the same name is declared in three individual inter-
faces and thus implemented in three different ways using the inter-
face component selector. The composition of the interfaces does not
play any role. The intf1~meth method is implemented only once,
although it occurs in two interfaces, intf2 and intf3. The name
intf4 does not show up in the implementation part of the class at all.

If you list one or more of the other interfaces—intf1, intf2, or
intf3—in addition to intf4 in the declaration part of the class men-
tioned above, the components and the implementation part of the
class do not change at all, because the compiler always ensures for a
class as well as in composite interfaces that every component exists
only once.

397

Standalone Interfaces 6.3

AccessIf the class of an object implements a composite interface, the object
is accessed in the same way as if the class implemented every inter-
face individually. This means that interface components should be
accessed using interface reference variables of the type of the appro-
priate component interface. This can always be achieved using the
corresponding assignments to interface reference variables (up casts,
see Section 6.4.2). The interface component selector should not be
used for this purpose; however, it can be used in a composite inter-
face to make the components of component interfaces as accessible
as native components via aliasing.

6.3.7 Alias Names for Interface Components

The complete name of a component that is added via an interface to
a class or another interface is intf~comp. For this name, you can
define an alias name at the level at which the interface is integrated
using the INTERFACES statement:

ALIASESALIASES name FOR intf~comp.

Alias names can be assigned when interfaces are implemented in the
declaration part of a class or when interfaces are composed in the dec-
laration of an interface. In the Class Builder, you can enter alias names
for classes and for interfaces in the Aliases tab (see Figure 6.12).

Alias Names in Classes

In classes, alias names belong to the namespace of the components of
a class and must be assigned to a visibility section just like the other

Figure 6.12 Alias Names

398

Advanced Concepts in ABAP Objects6

components. The visibility of an alias name from outside the class
depends on its visibility section and not on the visibility section of
the assigned interface component.

In Listing 6.15, we modify the example of Listing 6.12 by using alias
names. For this purpose, in the local class electron, we declare an alias
name accelerate for the zif_drive_object~accelerate interface
method as we did for ZCL_VEHICLE_WITH_INTF (see Figure 6.12).
Listing 6.15 shows only the differences between it and Listing 6.12.

Listing 6.15 Alias Names in Classes

REPORT z_drive_via_aliases.

...

CLASS electron DEFINITION.
PUBLIC SECTION.
INTERFACES zif_drive_object.
ALIASES accelerate FOR zif_drive_object~accelerate.

PRIVATE SECTION.
...

ENDCLASS.

CLASS electron IMPLEMENTATION.
METHOD accelerate.
me->speed_over_c = me->speed_over_c + delta / c.

ENDMETHOD.
...

ENDCLASS.

CLASS demo IMPLEMENTATION.

METHOD main.
DATA: vehicle TYPE REF TO zcl_vehicle_with_intf,

electron TYPE REF TO electron,
iref_tab TYPE iref_tab_type.

CREATE OBJECT vehicle.
vehicle->accelerate(100).
APPEND vehicle TO iref_tab.
CREATE OBJECT electron.
electron->accelerate(250000).
APPEND electron TO iref_tab.
demo=>output(iref_tab).

ENDMETHOD.

...

ENDCLASS.

START-OF-SELECTION.
demo=>main().

399

Standalone Interfaces 6.3

The interface method can now be implemented in the class via its
alias name and called by a user like a direct method of the class. Here,
we change the main method in which the classes for the object crea-
tion must be known, anyway so that the objects are created via class
reference variables. Because of the alias name, the class reference
variables can be used to call the interface method accelerate with-
out using the interface component selector. Nothing is changed in
the output method, which does not need to know the classes.

Using alias names, a class can publish its interface components as
class-specific components, so to speak. In particular, alias names can
be used in classes to further on address class-specific components
that are outsourced to standalone interfaces in the course of a devel-
opment cycle using their old name. Then, the users of the class don’t
need to be adapted to the new names.

In our sample class ZCL_VEHICLE_WITH_INTF, we converted the
methods from ZCL_VEHICLE to interface methods. Just imagine if we
had made this change directly in ZCL_VEHICLE! All users would have
become syntactically incorrect. By introducing alias names simultane-
ously, however, the class would have remained addressable.

Alias Names in Composite Interfaces

Because names cannot be concatenated in composite interfaces, alias
names provide the only means of addressing those components that
would otherwise not be available in the composite interface. Let’s
look at the example shown in Listing 6.16.

Listing 6.16 Alias Names in Interfaces

INTERFACE intf1.
METHODS meth1.

ENDINTERFACE.

INTERFACE intf2.
INTERFACES intf1.
ALIASES meth1 FOR intf1~meth1.

ENDINTERFACE.

INTERFACE intf3.
INTERFACES intf2.
ALIASES meth1 FOR intf2~meth1.

ENDINTERFACE.

400

Advanced Concepts in ABAP Objects6

The intf3 interface can use the alias name meth1 in intf2 to address
the meth1 component of the intf1 interface in its own ALIASES state-
ment. Without alias names in intf2, this would not be possible
because the name intf2~intf1~m1 is not permitted. Now the user of
intf3 can access the component meth1 in intf1 without having to
know anything about the composition of the interface:

DATA i_ref TYPE REF TO intf3.
...
i_ref->meth1(...).

Without alias names in intf3, the access would look as follows:

i_ref->intf1~meth1(...).

The user would have to know that intf3 is composed of intf2,
which is composed of intf1. For global interfaces, in particular, the
user should not have to look at the composition of an interface in the
Class Builder before he can use a method of the interface. Of course,
it is not necessary that the alias names always match the original
names.

6.3.8 Interfaces and Inheritance

To conclude the description of interfaces, we will discuss the rela-
tionship of standalone interfaces to inheritance and compare both
concepts in a summary.

The concepts of standalone interfaces and inheritance are independ-
ent of each other and totally compatible. Any number of interfaces
can be implemented in the classes of an inheritance tree, but every
interface can be implemented only once per inheritance tree path.
Thus, every interface component has a unique name intf~comp
throughout the inheritance tree and is contained in all subclasses of
the class implementing the interface. After their implementation,
interface methods are full components of a class and can be rede-
fined in subclasses. Although interface methods cannot be identified
as abstract or final in the interface declaration, every class can specify
these settings when implementing the interface.

Coupling The usage of inheritance always makes sense when different classes
have a generalization/specialization relationship. For example, if we

401

Standalone Interfaces 6.3

regard two classes “cargo plane” and “passenger plane”, both classes
contain components that can be declared in a common “plane”
superclass. The big advantage of inheritance is that the subclasses
take on and reuse all properties already programmed in the super-
class. At the same time, this causes a very tight coupling between
superclasses and subclasses. A subclass strongly depends on its
superclass, because it often largely consists of the superclass compo-
nents. A subclass must know its superclass exactly. This became par-
ticularly clear, for example, in the discussion of instance constructors
in inheritance (see Section 6.2.8). Every change to non-private com-
ponents of a superclass changes all of its subclasses. Conversely, sub-
classes can also affect the design of superclasses due to specific
requests. If you use inheritance for defining classes, you should ide-
ally have access to all classes involved because only all of the classes
in a path of the inheritance tree make a reasonable whole. On the
other hand, it is dangerous to just link to some superclass by defining
a subclass if the superclass does not belong to the same package, or
was explicitly shared as a superclass in the package interface.19

DecouplingThe implementation of interfaces is always recommended when
interfaces or protocols are to be described without having to use a
specific type of implementation. An additional layer is introduced
between user and class that decouples the user from an explicit class
and therefore makes it much more independent. Interfaces allow the
user to handle the most different classes, which don’t need to be
related to each other. In object-oriented modeling, interfaces pro-
vide an abstraction that is independent of classes. Irrespective of the
actual implementation, the services required by a user can be
described. Additionally, interfaces also implement an aspect of mul-
tiple inheritance, because several interfaces can be implemented in a
class. If a programming language permits a real multiple inheritance,
this multiple inheritance is usually used in the sense of interfaces as
well. This means that only abstract classes with exclusively abstract
methods are suitable as different superclasses of a single subclass.
Otherwise, the question would arise regarding which method imple-
mentation is actually used in a subclass if it is already implemented

19 A complete package concept that allows you to predefine and check such speci-
fications in the package interface will only be implemented in the next SAP
NetWeaver release.

402

Advanced Concepts in ABAP Objects6

in several superclasses.20 As with superclasses in inheritance, you
should note that for interfaces as well later changes to an interface
might make all classes implementing the interface syntactically
incorrect.

6.4 Object References and Polymorphism

Object references are the linchpin when dealing with objects. They
are used for creating and addressing objects. As the contents of
object reference variables, they can be assigned to other variables or
passed to procedures.

Object reference variables are divided into class reference variables
and interface reference variables. When using interface reference
variables, we already observed that the type of a reference variable
does not have to match the type of the referenced object. In this sec-
tion, we will have a closer look at this fact and at the resulting poly-
morphic behavior of method calls.

6.4.1 Static and Dynamic Type

In this section, we define two important terms for reference varia-
bles, that is, their static type and dynamic type.

Static type The static type of a reference variable oref is the type that is specified
after

... oref TYPE REF TO class|intf ...

in the declaration. As with all data objects, the static type is fixed
during the entire runtime of a program. For object reference varia-
bles, the object types class for class reference variables and intf for
interface reference variables are possible as static types.21

20 This is the “diamond” problem of multiple inheritance. A method that is
declared in a superclass is redefined in two subclasses, which, in turn, make up
the superclass of another subclass. Which implementation is used in this sub-
class? For interfaces, this problem does not occur, because in the implementa-
tion of composite interfaces every interface method exists only once.

21 Accordingly, data types are possible as static types for data reference variables
that can point to data objects (see Section 11.1.2).

1019

Index

- (structure component selector) 245
#EC (extended program check) 945
$TMP package 61
& (literal operator) 269
(F1) help, dynpro 548
(F4) help, dynpro 549
* (Comment) 85
:: (statement chain) 94
< (relational operator) 293
<= (relational operator) 293
<> (relational operator) 293
= (assignment operator) 273
= (relational operator) 293
=> (class component selector) 129, 198
-> (object component selector) 129, 204,

250
> (relational operator) 293
->* (dereferencing operator) 250, 811
>= (relational operator) 293
?= (casting operator) 409, 817
~ (column selector) 722, 728
~ (interface component selector) 387
4GL

fourth-generation language 24, 25

A

A
message type 670

ABAP
Advanced Business Application

Programmning 23
classic 449
Generic Report Generation Processor 23
programming models 450
requirements 30

ABAP Debugger
classical 951
configuring 954
new 951
tool 950
use 959
user interface 952
using 97

ABAP Dictionary
dynpro field 531
storage 69
tool 69, 254

ABAP Editor
configuring 84
direct entry 57

ABAP glossary
ABAP keyword documentation 138

ABAP keyword documentation
opening 94
using 136

ABAP memory
data cluster 785
main mode 174

ABAP Objects
ABAP 24
object orientation 180
use 26, 221
Using 110

ABAP processor
AS ABAP 147

ABAP program
activating 88
call 156
copying 91
creation 82
design 152
execute 155
executing 89
load 155, 175
modularization 183
testing 939
type 159

ABAP runtime analysis
tool 980

ABAP Runtime environment
AS ABAP 150

ABAP runtime environment
AS ABAP 143
virtual machine 88

ABAP scripting
BSP 671

ABAP syntax
comments and statements 84

1020

Index

statement chain 94
ABAP type

built-in 236
generic 263

ABAP Unit
Code Inspector 970
organization 963
tool 961
use 964

ABAP word
ABAP statement 85

ABAP Workbench
AS ABAP 143
development environment 54
programming tools 56

ABAP/4
R/3 24

abs
numeric function 287

ABSTRACT
CLASS 370
METHODS 370

Abstract
interface 385

Abstraction
object orientation 179

Accessibility
product standard 658

acos
floating point function 287

Action
Web Dynpro ABAP 692

Activation
repository object 74

Actual parameter
event 426
function module 472
transfer 355

ADD
ABAP statement 286

Additional data element documentation
field help 549

Agent
class 190, 210

Aggregate function
SELECT clause 715, 732

Alias name
class 397
interface 399

interface component 397
ALIASES

ABAP statement 397
ALL

WHERE clause 732
ALL INSTANCES

SET HANDLER 431
Alternative column name

SELECT clause 715
Alternative table name

SELECT 728
ALV

example 609
print list 663
SAP List Viewer 134, 593

ALV grid control
CFW 593

ALV list
reporting 660

AND
Boolean operator 297
WHERE clause 721

AND RETURN
SUBMIT 157

Anonymous data object
creation 812
data type 813
dynamic memory object 972
usage 814

ANY
WHERE clause 732

any
generic type 264

ANY TABLE
generic table type 324

any table
generic type 264

APPEND
ABAP statement 329

APPENDING TABLE
INTO clause 716

Application component
package 64

Application control
CFW 591

Application event
GUI control 597

Application layer
AS ABAP 147

1021

Index

Application server
AS ABAP 171
usage type 142

Application Server ABAP
SAP NetWeaver 143

Application Server Java
SAP NetWeaver 143

Application toolbar
function 536
SAP GUI 516, 534
selection screen 636

Architecture
service-oriented 892

Archival parameters
spool request 655

ArchiveLink
print list 654

Area
creating 437
properties 437

Area class
Shared Objects 435

AREA HANDLE
CREATE OBJECT 442

Area handle
attaching 441
Shared Objects 435

Area instance version
Shared Objects 435

Area instances
Shared Objects 435

Area root class
shared objects 435

aRFC
asynchronous RFC 846
executing 855
use 846

Arithmetic expression
calculation expression 286

AS
Application Server 142

AS ABAP
Application Server ABAP 24, 143
availability 37
system 171
trial version 37, 48

AS Java
Application Server Java 143

AS WINDOW
SELECTION-SCREEN 630

ASAP
ABAP objects 344

ASCENDING
SORT 335

asin
floating point function 287

ASSERT
ABAP statement 509

Assertion
advantages 509
confirmation 508
using 509

ASSIGN
ABAP statement 800
dynamic 830

ASSIGN COMPONENT
ABAP statement 803

ASSIGN INCREMENT
ABAP statement 805

ASSIGNING
LOOP 331
READ TABLE 330

Assignment
data object 273
down cast 409
dynamically formatted 830
elementary data object 275
formatted 284
internal table 281
reference variable 282
structure 279
up cast 406

asXML
ABAP Serialization XML 921

Asynchronous communication
tRFC 860

AT END OF
ABAP statement 332

AT EXIT COMMAND
MODULE 546

AT NEW
ABAP statement 332

AT SELECTION-SCREEN
event 453
selection screen event 631

atan
floating point function 287

1022

Index

ATRA
transaction 981

Attribute
creation 192
declaring 116
object orientation 178, 342
XML 912

AUTHORITY_CHECK_TCODE
authorization check 792

AUTHORITY-CHECK
ABAP statement 792

Authorization
authorization check 790
checking 791

Authorization check
AS ABAP 789

Authorization group
authorization check 792

Authorization object
authorization check 790

Authorization profile
authorization check 791

Automation Controller
CFW 588

Automation queue
CFW 595

AVG
aggregate function 715

B

BACK
ABAP Statement 646

Background job
scheduling 451

Background process
tRFC 860

Background processing
executable program 451, 641
scheduling 644

BACKGROUND TASK
CALL FUNCTION 859

Background task
background request 641

BAdI
interface 382

Base list
classical list 647
displaying 648

BEGIN OF
TYPES/DATA 244

BEGIN OF BLOCK
SELECTION-SCREEN 628

BEGIN OF LINE
SELECTION-SCREEN 628

BEGIN OF TABBED BLOCK
SELECTION-SCREEN 628

BETWEEN
predicate 296
WHERE clause 722

bgRFC
Background RFC 862

Bit expression
calculation expression 286

Block
selection screen 628

Boolean operator
logical expression 297

Branch
conditional 298
control structure 298

BREAK-POINT
ABAP statement 957

Breakpoint
ABAP Debugger 956
Setting 96

Browser control
CFW 592
example 608

BSP
Business Server Pages 145, 515, 671

Built-in type
ABAP Dictionary 253
ABAP program 236

Bundling
SAP LUW 744

Business key
object identity 759

Business Server Page
AS ABAP 145

Button
screen element 527
Web Dynpro ABAP 691

BY
SORT 335

BYPASSING BUFFER
Open SQL 753

1023

Index

Byte code
ABAP program 88

Byte field
data object 237, 241

Byte string
data object 242
processing 303

BYTE-CA
relational operator 296

BYTE-CN
relational operator 296

BYTE-CO
relational operator 296

BYTE-CS
relational operator 296

Byte-like
data type 237

BYTE-NA
relational operator 296

BYTE-NS
relational operator 296

C

c
ABAP type 236, 239

CA
relational operator 296, 316

Calculation expression
ABAP syntax 286

Calculation type
calculation expression 288

CALL FUNCTION
ABAP statement 472
dynamic 835

Call hierarchy
exception handling 487

CALL METHOD
ABAP statement 356
dynamic 832

CALL SCREEN
ABAP statement 520, 522

CALL SELECTION-SCREEN
ABAP statement 630

Call sequence
main session 174

CALL SUBSCREEN
dynpro statement 581

CALL TRANSACTION
ABAP statement 521

CALL TRANSFORMATION
ABAP program 929
ABAP statement 920
iXML Library 914

CALL TRANSACTION
ABAP statement 158

Callback routine
aRFC 855
context menu 539

CASE
ABAP statement 299
control structure 299

Case distinction
control structure 299

CASTING
ASSIGN 807

Casting
field symbol 806

Casting operator
down cast 409

CATCH
ABAP statement 484

CATCH block
TRY control structure 485

CATCH SYSTEM-EXCEPTIONS
ABAP statement 500

Catchable runtime error
use 501

CATT
tool 986

ceil
numeric function 287

CFW
Control Framework 588

CHAIN
dynpro statement 544, 548

Change and Transport System
CTS 62

CHANGING
Actual parameter 356
FORM 474
METHOD 195
METHODS 346
PERFORM 475

Character string
find/replace 306

1024

Index

operation 305
processing 303

Character-like
data type 237

charlen
description function 287, 315

CHECK
ABAP statement 302

Check Indicator
authorization check 791

Check table
dynpro 546
foreign key 81
input help 550

Check variant
Code Inspector 946

CHECKBOX
PARAMETERS 619

Checkbox
screen element 527
selection screen 619

Checking typing 351
Checkpoint

ABAP program 957
Checkpoint group

assertion 510
breakpoint 957

CL_ABAP_CLASSDESCR
RTTI 823

CL_ABAP_MATCHER
regular expression 312

CL_ABAP_MEMORY_AREA
shared objects 441

CL_ABAP_REGEX
regular expression 312

CL_ABAP_STRUCTDESCR
RTTI 823

CL_ABAP_TYPEDESCR
RTTI 820

CL_AUNIT_ASSERT
ABAP Unit 968

CL_CTMENU
context menu 539

CL_GUI_ALV_GRID
CFW 593

CL_GUI_CFW
CFW 589

CL_GUI_CONTROL
CFW 589

CL_GUI_CUSTOM_CONTAINER
CFW 590

CL_GUI_DIALOGBOX_CONTAINER
CFW 590

CL_GUI_DOCKING_CONTAINER
CFW 590

CL_GUI_FRONTEND_SERVICES
system class 781

CL_GUI_HTML_VIEWER
CFW 592

CL_GUI_OBJECT
CFW 589

CL_GUI_PICTURE
CFW 591

CL_GUI_SIMPLE_TREE
CFW 592

CL_GUI_SPLITTER_CONTAINER
CFW 590

CL_GUI_TEXTEDIT
CFW 592

CL_GUI_TOOLBAR
CFW 591

CL_HTTP_UTILITY
ICF 890

CL_SALV_EVENTS_TABLE
ALV 660

CL_SALV_FUNCTIONS
ALV 660

CL_SALV_HIERSEQ_TABLE
ALV 599

CL_SALV_PRINT
ALV 664

CL_SALV_TABLE
ALV 599

CL_SALV_TREE
ALV 599

CL_SHM_AREA
shared objects 441

CLASS
ABAP statement 184

Class
ABAP Objects 180
abstract 370
concrete 370
creation 112, 183
final 373
global 182
local 182
object orientation 342

1025

Index

object type 182
property 189
testing 125

Class actor
Object Services 757

Class actors
create 759

Class Builder
tool 184
using 113

Class component selector
ABAP syntax 198
inheritance 373

Class constructor
creation 114

CLASS POOL
ABAP statement 159

Class pool
ABAP program 219
program type 159

Class reference variable
ABAP Objects 390

class_constructor
static constructor 217

CLASS-DATA
ABAP statement 192

CLASS-EVENTS
ABAP statement 424

Classic ABAP
use 460

Classical exception
function module 469

Classical list
creating 645
dynpro sequence 649
encapsulation 658
event 651
executable program 647
formatting 646
processing 649
transaction 648

CLASS-METHODS
ABAP statement 195

Clause
Open SQL 712

Clauses
specified dynamically 830

CLEANUP
ABAP statement 484

CLEANUP block
leaving 490
TRY control structure 485
use 489

CLEAR
ABAP statement 285

Client
AS ABAP 751
SAP system 72

Client column
database table 751

Client field
database table 72

Client handling
Open SQL 751

Client ID
SAP system 72

Client program
web service 906

Client proxy
web service 905

CLIENT SPECIFIED
Open SQL 752

Client-server architecture
AS ABAP 144

clike
generic type 264

CLOSE CURSOR
ABAP statement 736

CLOSE DATASET
ABAP statement 778

CN
relational operator 296, 316

CO
relational operator 296, 316

Code Inspector
framework 950
tool 945

COLLECT
ABAP statement 328

COMMENT
SELECTION-SCREEN 628

Comment 85
Comment line

ABAP program 85
Commit

database 742
COMMIT WORK

ABAP statement 746, 860

1026

Index

Persistence Service 770
Communication

asynchronous 843
synchronous 843

Communication scenarios
RFC 849

COMMUNICATION_FAILURE
RFC 855

Communications technology
AS ABAP 841

Comparison
byte-like 295
character-like 295
conversion 293
logical expression 293
numeric 294
WHERE clause 722

Compatibility mode
Transaction Service 774

Compatible
data object 273

Compilation unit
ABAP program 152

complete typing
Usage 354

Complex
data type 231

Component
structure 244

Component controller
web dynpro component 682

Component interface
interface 395

Component specification
dynamic 830

COMPUTE
ABAP statement 288

Computing time
analyze 980

CONCATENATE
ABAP statement 305

Concrete
subclass 370

CONDENSE
ABAP statement 305

Consolidation system
CTS 62

Constant
class 194

data object 266
CONSTANTS

ABAP statement 194, 266
Constructor

class 214
creation 114
inheritance 375

constructor
instance constructor 214

Container
class 190

Container control
CFW 590

Context binding
Web Dynpro ABAP 688

Context mapping
Web Dynpro ABAP 686

Context menu
defining 539
SAP GUI 539

CONTINUE
ABAP statement 302

Control event
example 610

Control Framework
CFW 588

Control level change
control structure 332

Control level processing 332
Control structure

processing block 298
Controller

MVC 672, 681
CONTROLS

ABAP statement 579, 583
Conversion

assignment 274
byte-like type 276
date and time 277
numeric type 276
text-type type 275

Conversion error
type conversion 278

Conversion routine
ABAP Dictionary 285

Conversion rule
comparison 294
elementary data type 275
internal table 281

1027

Index

structure 280
type conversion 275

CONVERT DATE
ABAP statement 292

CONVERT TEXT
ABAP statement 305

CONVERT TIME STAMP
ABAP statement 292

Convertible
data object 274

Cookie
access 886

Copy-on-write
dynamic data object 974
internal table 282

CORRESPONDING FIELDS
INTO clause 718

cos
floating point function 287

cosh
floating point function 287

COUNT
aggregate function 715

Coupling
inheritance 400

Coverage Analyzer
calling 985
tool 984

CP
relational operator 296, 316

CREATE DATA
ABAP statement 271, 812

CREATE OBJECT
ABAP statement 203, 391

CREATE PRIVATE
CLASS 189

CREATE PROTECTED
CLASS 189

CREATE PUBLIC
CLASS 189

CREATE_PERSISTENT
Persistence Service 765

Cross-transaction application buffer
data cluster 785

CS
relational operator 296, 316

csequence
generic type 264

CTS
SAP Change and Transport System 62

cursor
data type 735

Cursor variable
database cursor 735

Custom container
CFW 590

Custom controls
screen element 527

Customer system
namespace 63

CX_DYNAMIC_CHECK
exception category 492
exception class 482

CX_NO_CHECK
exception category 493
exception class 482

CX_ROOT
exception class 482

CX_STATIC_CHECK
exception category 492
exception class 482

CX_SY_NO_HANDLER
exception class 490

D

d
ABAP type 236, 240

DATA
ABAP statement 192, 226

Data
ABAP program 225
attribute 227
character-like 229
encapsulation 228
local 226
numerical 229
program-global 227

data
generic type 264

Data Browser
tool 98

DATA BUFFER
data cluster 785

Data cluster
AS ABAP 784
deleting 787

1028

Index

reading 786
storing 785

Data declaration
executing 94

Data element
activating 74
creation 72, 256
database table 71

Data element documentation
field help 548

Data element maintenance
ABAP Dictionary 73

Data elements
ABAP Dictionary 255

Data encapsulation
ABAP Objects 27

Data object
ABAP program 226
anonymous 271, 812
assigning 273
context 226
converting 274
declaring 226
dynamic 241
elementary 236
named 265
names 226
numeric 287
operations 273
predefined 271
static 237

Data processing
business 29

Data reference
assign 817
dynamic programming 796

Data reference variable
declare 809
declaring 250

Data root
Simple Transformation 930

Data storage
consistency 741
persistent 705

Data transmission
AS ABAP 842

Data type
ABAP Dictionary 233, 250
bound 232

class 200
class/interface 233
data object 229
defining 232
domain 75
elementary 236
generic 237
global 233, 251
independent 232
Local 116
program-local 234
type group 233
type hierarchy 229
use 234

Database
AS ABAP 148
commit 743
lock 748
LUW 742
rollback 744

Database cursor
opening 734

Database interface
AS ABAP 148, 706

Database logon
AS ABAP 172

Database table 723
ABAP Dictionary 707
activating 77
change contents 738
change row 739
create 68
data cluster 785
data type 252
delete row 741
insert or add row 740
insert rows 738
reading 712
relational 706
repository object 68
structure 708
technical settings 76

Database view
ABAP Dictionary 709
reading 727

Date field
calculating 290
comparing 294
data object 237, 240

1029

Index

validity 291
DCL

Data Control Language 707
DDL

Data Definition Language 707
Debuggee

ABAP Debugger 951
Debugger

ABAP Debugger 951
Debugger Breakpoint

ABAP Debugger 956
Debugger tools

ABAP Debugger 955
Debugging session

ABAP Debugger 955
ending 956
starting 955

DECIMALS
TYPES/DATA 243

DECLARATION
CLASS 185

Declaration part
ABAP program 87, 152
class 184
top include 168

Decoupling
interface 401
object orientation 382

Deep
data type 261
structure 262

Deep data object
memory requirements 262, 973

DEFAULT
METHODS 355
PARAMETERS 619

DEFERRED
CLASS DEFINITION 211

DEFINE
ABAP statement 170

DELETE DATASET
ABAP statement 778

DELETE dbtab
ABAP statement 741

DELETE FROM
data cluster 787

DELETE itab
ABAP statement 334

DELETE_PERSISTENT
Persistence Service 769

Delivery class
database table 70

DEQUEUE
lock function module 751

Dereferencing
data reference variable 811

Dereferencing operator
using 250

DESCENDING
SORT 335

DESCRIBE FIELD 820
DESCRIBE_BY_DATA

RTTI 823
DESCRIBE_BY_NAME

RTTI 823
Description function

function 287
Deserialization

ST 927
XML-ABAP 908
XSLT 921

Design by contract
assertion 511

DESTINATION
CALL FUNCTION 849, 854

DESTINATION IN GROUP
CALL FUNCTION 856

Destructor
ABAP Objects 219

Details list
classical list 647
creating 652

Developer
authorization 54

Developer key
SAPNet 55

Development class
package 62

Development environment
ABAP 26

Development object
ABAP Workbench 59

Development system
CTS 62

Dialog box container
CFW 590

1030

Index

Dialog interface
AS ABAP 146

Dialog module
creating 542
data 227
processing block 154, 165
use 542

Dialog programming
classical ABAP 457

Dialog status
GUI status 535

Dialog step
PAI/PBO 543

Dialog transaction
creating 520
execution 457
initial dynpro 520
selection screen 631
transaction code 157

Dialog transactions
use 460

Dialog window
modal 523

Dictionary type
creation 253

div
arithmetic operator 286

DIVIDE
ABAP statement 286

DML
Data Manipulation Language 707

DO
ABAP statement 301

Docking container
CFW 590
example 604

Documentation
data element 256

DOM
Document Object Model 913, 914

DOM object
iXML library 918

Domain
ABAP Dictionary 256
creation 256
data element 74

Domain management
ABAP Dictionary 76

Domains
creation 75

Double-click
classical list 651

Down Cast
data reference variable 817

Down cast
inheritance 410
interface 411
object reference variable 409

Downward compatibility
ABAP 36, 449
ABAP Objects 181

Dropdown
list box 553

DTD
document type definitions 913, 914

Dynamic Access
class components 801

Dynamic data object
dynamic memory object 972

Dynamic documents
CFW 599

Dynamic type
object reference variable 403
polymorphism 413
reference variable 282

dynamic type
data reference variable 809

Dynpro
ABAP Objects 555
ABAP program 518
AS ABAP 146
control 573
creating 524
dialog transaction 457
dynamic program 515
dynpro sequence 519
example 557
exiting 523
field 530
function group 556
input check 545
number 524
process 458
properties 525
type 525
usage 146

1031

Index

Dynpro data transport
automatic 543
controlling 544

Dynpro field
data transport 531
data type 251, 531

Dynpro flow logic
implementing 529
statements 530
table control 578

Dynpro number
selection screen 617

Dynpro processing
message 668

Dynpro screens
data transport 519

Dynpro sequence
dialog transaction 524
dynpro process 458
nesting 523
terminating 522

Dynpros
layout 526

E

E
message type 669

eCATT
Extended Computer Aided Test Tool 986

Editor mode
Class Builder 199

Element
XML 910

Elementary
data type 231

Elementary ABAP type
asXML 922
JCO 875
RFC API 866

Elementary data object
assigning 275
comparing 294
initial value 285

Elementary type
declaring 242

ELSE
ABAP statement 298

ELSEIF
ABAP statement 298

Encapsulation
class 187
classic ABAP 461
object orientation 179
procedure 188
use 223

END OF
TYPES/DATA 244

ENDING AT
CALL SCREEN 523
CALL SELECTION-SCREEN 630

END-OF-PAGE
List event 646

END-OF-SELECTION
event 453

Enhancement category
database table 76

ENQUEUE
lock function module 749

Enterprise service
client proxy 905

Enterprise Services Repository
Exchange Infrastructure 893

Enterprise SOA
XML 908

EQ
relational operator 293

Error
exception situation 480

Error message
dynpro 559
message type 669

error_message
classical exception 670

Errors
avoiding 479

Event
ABAP Objects 27, 422
ABAP runtime environment 452
class 423
declaring 424
inheritance 428
management 431
Object orientation 343
triggering 426
Web Dynpro ABAP 691

1032

Index

Event block
data 227
function group 465
processing block 154, 165

Event handler
declaring 428
method 423

EVENTS
ABAP statement 424

Example library
ABAP keyword documentation 139

Exception
catch 484
category 492
declaring 114, 490
function module 469
handle 484
handler 484
non-class-based 500
Parameter interface 345
propagating 487
raising 483
RFC API 867
untreatable 481

Exception category
use 493

Exception class
advantages 482
attributes 494
class-based exception 481
creation 111, 493
exception text 495
local 494
methods 494

Exception group
catchable runtime error 501
exception class 507

Exception handler
class-based exception 485

Exception handling
ABAP 481
class-based 481
class-based/classic 505
classic 500
cleanup tasks 489
executing 96
function module 472
messages 503

Exception object
class-based exception 481
generating 483

Exception text
creation 496
message 496, 505, 670
OTR 496
use 496

EXCEPTIONS
CALL FUNCTION 502
CALL METHOD 502
METHODS 502

EXCEPTION-TABLE
CALL FUNCTION 835
CALL METHOD 833

EXCLUDING
SET PF-STATUS 538

EXEC SQL
ABAP statement 754

Executable program
ABAP runtime enviroment 452
call 156
execute 451
program type 160
use 460

EXISTS
WHERE clause 731

EXIT
ABAP statement 302

Exit message
message type 670

exp
floating point function 287

EXPORT
ABAP statement 785

EXPORTING
Actual parameter 356
EVENTS 424
METHOD 195
METHODS 346
RAISE EVENT 426

Extension information system
Object Navigator 59

F

f
ABAP type 236, 238
calculation type 289

1033

Index

Factory method
class 209

false
logical expression 292

Favorites
SAP Easy Access 57

Favorites menu
SAP Easy Access 56

FETCH NEXT CURSOR
ABAP statement 736

FIELD
Dynpro statement 544, 547

Field
database table 71

Field help
defining 549
dynpro 548
selection screen 633
Web Dynpro ABAP 690

Field label
data element 74, 256

Field symbol
dynamic programming 796
type 799
usage 796

FIELD-SYMBOLS
ABAP statement 798

File
application server 776
closing 778
deleting 778
opening 776
presentation server 781
reading 777
writing 777

File interface
AS ABAP 775

File name
logical 775

Filter condition
Query Service 760

FINAL
CLASS 373
METHODS 373

FIND
ABAP statement 306

Fixed value
domain 80
input help 550

Fixed-Point Arithmetic
program attribute 163

Fixture
ABAP Unit 968

Flat
data type 261
structure 262

Flat structure
assigning 280

Flight data model
dynpro 561
SAP 50

Floating point function
function 287

Floating point number
data object 236, 238

floor
numeric function 287

Flow logic
dynpro 517

FOR ALL ENTRIES
SELECT 729

FOR EVENT
METHODS 428

Foreign key
database table 81

Foreign key dependency
database table 706

FORM
ABAP statement 474

Form field
URL 886

Formal parameter
operand position 352
optional 354
parameter interface 345
typing 351
usage 348

FORMAT
ABAP Statement 646

Forward navigation
ABAP Workbench 59, 73

frac
numeric function 287

Frame
classical list 646
screen element 527

Framework
ABAP Objects 222

1034

Index

Friend
class 190

FRIENDS
CLASS 190

Friendship
class 190

FROM clause
SELECT 713

Full-text search
ABAP keyword documentation 139

FUNCTION
ABAP statement 470

Function
built-in 287

Function Builder
tool 105, 462, 467

Function code
classical list 651
evaluating 538
exit command 546
Menu Painter 535
SAP GUI 534
selection screen 634
use 534

Function code assignment
Menu Painter 535

Function group
ABAP program 462
create 463
creation 101
global data 463
introducing 101
naming convention 465
program type 160
use 462

FUNCTION KEY
SELECTION-SCREEN 636

Function key assignments
GUI status 519

Function module
create 467
creation 105
dynamic 835
implementing 105
procedure 164, 462
release 471
source code 469
test 471
testing 108

Function pool
program type 160

Functional method
call 357
define 347
operand position 357

FUNCTION-POOL
ABAP statement 160, 466

G

Garbage Collector
ABAP runtime environment 212

GE
relational operator 293

Generalization
inheritance 361

GENERATE SUBROUTINE POOL
ABAP statement 837

Generic
data type 263

Generic data type
ABAP type hierarchy 229

generic typing
usage 354

GET
event 453

GET DATASET
ABAP statement 778

GET REFERENCE
ABAP statement 810

GET RUN TIME
ABAP statement 726

GET TIME STAMP
ABAP statement 292

GET/SET methods
persistent class 758

GET_PERSISTENT
Persistence Service 765

GET_PERSISTENT_BY_QUERY
Query Service 760

GET_PRINT_PARAMETERS
print parameters 655

Golden rule
checking 405
data reference variable 809
object reference variable 404

GROUP BY clause
SELECT 732

1035

Index

GT
relational operator 293

GUI
Graphical User Interface 513

GUI Control
SAP GUI 587

GUI control
dynpro 587
event 595
example 601
lifetime 597
methods 594
processing 594
wrapping 598

GUI status
ABAP program 519
checking 537
classical list 651
compare templates 537
example 563
functions 535
selection screen 634
setting 537

GUI title
creating 538

GUI_DOWNLOAD
writing a file 781

GUI_UPLOAD
reading a file 781

GUID
object identity 770

H

HANDLE
ASSIGN 808
CREATE DATA 813

HASHED TABLE
TYPES/DATA 248, 320

Hashed table
generic type 264
table category 320
use 322

HAVING clause
SELECT 732

Header
deep data object 973

Hello world
ABAP program 88

Hiding
data object 228

Host variable
Native SQL 754

HTML
interface 671

HTML GUI
SAP GUI 516

HTTP body
access 882

HTTP client
ICF 888

HTTP communications
AS ABAP 877

HTTP header
access 882

HTTP request
sending 890

HTTP request handler
creating 880
ICF 879
implementing 882
registering 880

HTTP server
ICF 880

HTTP service
creating 880
testing 880

HTTP(S)
protocol 877

I

I
message type 669

i
ABAP type 236, 238
calculation type 289

ICF
AS ABAP 878
Internet Communication Framework

877
methods 884
web service 897

ICF client
programming 886

ICF Server
programming 879

1036

Index

ICM
AS ABAP 878
Internet Communication Manager 149,

877
ID

XSLT program 921
IF

ABAP statement 298
control structure 298

IF_HTTP_CLIENT
ICF 886

IF_HTTP_ENTITY
ICF 882

IF_HTTP_EXTENSION
ICF 879

IF_HTTP_HEADER_FIELDS
ICF 882

IF_HTTP_HEADER_FIELDS_SAP
ICF 882

IF_HTTP_RESPONSE
ICF 882, 890

IF_OS_TRANSACTION
Transaction Service 771

IF_SERIALIZABLE_OBJECT
interface 412
tag interface 925

IF_T100_MESSAGE
message interface 496, 498, 667

IMPLEMENTATION
CLASS 185

Implementation
method 195

Implementation part
ABAP program 87, 153
class 184

IMPORT
ABAP statement 786

IMPORTING
Actual parameter 356
METHOD 195
METHODS 346

IN BYTE MODE
byte string processing 304

IN CHARACTER MODE
character string processing 304

IN PROGRAM
PERFORM 476

IN seltab
logical expression 627

predicate 296
WHERE clause 722

Inbound plug
Web Dynpro ABAP 696

INCLUDE
ABAP statement 167

Include program
ABAP program 167
usage 168

INCLUDE STRUCTURE
ABAP statement 246

INCLUDE TYPE
ABAP statement 246

Indentation
pretty printer 86

Independent interface reference variable
ABAP Objects 383, 390

INDEX
INSERT 327
READ TABLE 329

Index access
internal table 321

Index search
ABAP keyword documentation 138

INDEX TABLE
generic table type 324

index table
generic type 264

INDX-like
database table 786

Informational message
message type 669

Inheritance
ABAP Objects 27, 359
independent interface 400
object orientation 179
polymorphism 414

Inheritance tree
ABAP Objects 360

INHERITING FROM
CLASS 362

Initial dynpro
dynpro sequence 520

INITIAL SIZE
TYPES/DATA 325

Initial value
data object 285

INITIALIZATION
event 452

1037

Index

Initialization
object 213

INNER JOIN
SELECT 729

INPUT
MODULE 542

Input and output parameter
function module 468

Input check
automatic 545
defining 547
selection screen 633

Input dialog
Web Dynpro ABAP 689

Input format
dynpro 545

Input help
automatic 550
defining 552
dynpro 549
hierarchy 551
selection screen 633
Web Dynpro ABAP 689

Input parameter
formal parameter 346
function module 468
instance constructor 215, 375

Input stream object
iXML library 918

Input verification
message 669

Input/output field
screen element 527

Input/output parameter
Formal parameter 346

INSERT dbtab
ABAP statement 738

INSERT itab
ABAP statement 327

INSERT REPORT
ABAP statement 840

Inspection
Code Inspector 948

Instance
ABAP Objects 180
data object 230

Instance attribute
creation 121, 192

Instance component 191

Instance constructor
3-phase model 376
class 214
exception 122
implementing 118, 122
inheritance 375
interface 121

Instance method
creation 194

Instantiation
ABAP Objects 27
ABAP program 461
inheritance 380

Integer
data object 236, 238

Integration broker
web service 896

INTERFACE
ABAP statement 384

Interface
ABAP Objects 27, 381
class 187, 382
composing 394
creating 384
implementing 386, 395
independent, usage 382
inheritance 400, 404
object orientation 343
polymorphism 414
user view 391
using 397

Interface component
interface 384
static 394

Interface component selector
interface 387

Interface method
implementing 388

Interface parameter
creation 114
parameter interface 345
parameter type 346
transfer type 347

Interface pool
program type 159

Interface reference variable
ABAP Objects 383

Interface view
web dynpro window 677

1038

Index

Interface working area
ABAP/dynpro 532

INTERFACE-POOL
ABAP statement 159

INTERFACES
ABAP statement 386, 394

Internal mode
stack 175

Internal session
memory limit 176

Internal table
ABAP Dictionary 258
access 326
appending 329
assigning 281, 336
asXML 924
attributes 319
comparing 296, 336
control level processing 332
data object 95
declaring 248
deleting 334
generic 324
initial value 285
inserting 327
inserting aggregated rows 328
JCo 875
loop 331
modifying 333
reading 329
RFC API 867
runtime measurement 322
short form 324
sorting 335
transferring 336
using 318

Internet
AS ABAP 149
connection 878

Internet Communication Framework
ICF 877

Internet Communication Manager
AS ABAP 149
ICM 877

INTO
LOOP 331
READ TABLE 330

INTO clause
SELECT 715

IPO
principle 454

IS ASSIGNED
logical expression 806
predicate 297

IS BOUND
logical expression 816
predicate 297

IS INITIAL
predicate 296

IS NULL
WHERE clause 721

IS SUPPLIED
predicate 297, 355

iXML Library
library 913
parsing 915

J

J2EE
AS Java 143
technology 30

J2EE Connector
SAP JRA 852

Java
AS Java 143
programming language 30

Java GUI
SAP GUI 516

JavaScript Engine
AS ABAP 147

JCO
JCo class 870

JCo
connection pool 871
direct connection 870
downloading 869
passing parameters 875
SAP Java Connector 869

JCO.addClientPool
JCo 872

JCO.Attributes
JCo class 870

JCO.Client
JCo class 870

JCO.connect
JCo 871

1039

Index

JCO.createClient
JCo 871

JCO.disconnect
JCo 871

JCO.Function
JCo 874

JCO.getClient
JCo 873

JCO.ParameterList
JCo 875

JCO.Pool
JCo class 872

JCO.PoolManager
JCo class 872

JCO.releaseClient
JCo 873

JCO.Repository
JCo 874

JCO.Server
JCo 876

JCO.Structure
JCo 875

JCO.Table
JCo 875

Job
background request 641

Job overview
background processing 643

JOB_CLOSE
background processing 641

JOB_OPEN
background processing 641

JOIN
SELECT 727

Join
FROM clause 727
linking 728

K

Kernel
AS ABAP 147

Key access
internal table 321

Key attribute
persistent class 759

Keyword
ABAP statement 85

Knowledge Warehouse
using 138

L

LDB_PROCESS
function module 455

LE
relational operator 293

LEAVE SCREEN
ABAP statement 523

LEAVE TO LIST-PROCESSING
ABAP statement 648

LEAVE TO SCREEN
ABAP statement 523

LEAVE TO TRANSACTION
ABAP statement 521

LEAVE TO TRANSACTION
ABAP statement 158

LEFT OUTER JOIN
SELECT 729

LENGTH
TYPES 232
TYPES/DATA 242

Library
Java 35

LIKE
TYPES/DATA 232
WHERE clause 722

Line
classical list 646
selection screen 628

LINE OFF
TYPES/DATA 328

lines
description function 287

LINES OF
APPEND 329
INSERT itab 328

Linked list
example 815

List
ABAP Objects 658
ALV list 659
classical 645
executable program 453

List buffer
classical list 646

1040

Index

List cursors
classical list 646

List dynpro
classical list 646

List event
event block 167
handling 652

List level
classical list 647

List output
creation 89

List processor
calling 648
classical list 646

Literal
data object 268

Literal XML element
Simple Transformation 929

LOAD-OF-PROGRAM
ABAP statement 166
event 452, 458

Local class
class pool 220
creation 126
definition 128
function group 465
implementation 128

LOCAL FRIENDS
CLASS 220

Local object
repository browser 61

Local type
class pool 220

Locale
text environment 151

lock
shared objects 440

Lock concept
AS ABAP 748

Lock object
SAP lock 748

Lock table
SAP lock 748

Log
assertion 510

log
floating point function 287

log10
floating point function 287

Logical database
program attribute 163
selection screen 616

Logical Database Builder
tool 454

Logical databases
use 454

Logical expression
ABAP syntax 292
IF/ELSEIF 299
WHERE 332
WHERE clause 721

Logical port
client proxy 906

Long text
message 666

LOOP
ABAP statement 331

Loop
conditional 301
control structure 301
internal table 331
unconditional 301

LOOP AT SCREEN
ABAP statement 528

LOOP WITH CONTROL
dynpro statement 578, 581

Loops
executing 129

LOWER CASE
PARAMETERS 619

LT
relational operator 293

LUW
database 742
Logical Unit of Work 742

M

Main program
function group 106, 463

Main session
user session 174

Mapping
object-relational 757

Markup element
XML 910

Mathematical function
function 287

1041

Index

MAX
aggregate function 715

me
data object 271
self-reference 125, 205

Memory analysis
ABAP Debugger 975

Memory area
AS ABAP 173

Memory Inspector
calling 977
tool 971

Memory leak
causes 971
example 979
object 213

Memory object
dynamic 972

Memory snapshot
comparing 978
create 975
opening 977
ranked list 978

Menu bar
SAP GUI 516, 534

Menu Painter
tool 535

MESSAGE
ABAP statement 667

Message
dialog processing 668
exception handling 503
SAP GUI 666
sending 667
use 670

Message class
message 666

Message number
message 666

Message output
creation 90

Message server
AS ABAP 172

Message type
message 668

Messages
creating 666
tool 666

Metadata
XML 909

meth()
Method call 356

METHOD
ABAP statement 195

Method
abstract 370
call 355
calling 129
concrete 371
creation 194
declaring 113
final 373
functional 347
implementing 117
object orientation 178, 342
parameter interface 345
polymorphism 414
procedure 164
redefine 366
source code 117
subclass 366

Method call
dynamic 832
functional 357
static 356

METHODS
ABAP statement 194

MIME Repository
Object Navigator 606

MIN
aggregate function 715

mod
arithmetic operator 286

Model
MVC 672, 681

Modeling
object orientation 222

MODIFY dbtab
ABAP statement 740

MODIFY itab
ABAP statement 333

MODIFY SCREEN
ABAP statement 528

Modularization
internal 477
procedural 460

1042

Index

MODULE
ABAP statement 542
Dynpro statement 542

Module pool
dialog programming 457
program type 161

Module pools
use 460

Module test
ABAP Unit 961
analysis 969
definition 962

Mouse
double-click 536

MOVE
ABAP statement 273

MOVE ?TO
ABAP statement 409, 817

MOVE-CORRESPONDING
ABAP statement 283

MS Windows
SAP GUI 516

Multiple inheritance
ABAP Objects 382
object orientation 344

Multiple instantiation
class 207

Multiple selection
selection criterion 626

MULTIPLY
ABAP statement 286

MVC
Model View Controller 145, 515, 672

mySAP Business Suite
product family 141

N

n
ABAP type 236, 239

NA
relational operator 296, 316

Namespace
asXML 922
class 191
data object 228
data type 234
inheritance 365
Simple Transformation 929

XML 912
Naming conventions

class 185
customer system 63

Native SQL
AS ABAP 753

Native SQL interface
AS ABAP 149

Navigation link
Web Dynpro ABAP 697

NE
relational operator 293

NEW-PAGE PRINT ON
ABAP statement 655

Next dynpro
calling 521
dynpro property 526
dynpro sequence 519

NO INTERVALS
SELECT-OPTIONS 624

NO-EXTENSION
SELECT-OPTIONS 624

Non-class-based exception
define 502

NOT
Boolean operator 297
WHERE clause 721

NP
relational operator 296, 316

NS
relational operator 296, 316

Numeric
data type 237

numeric
generic type 264

Numeric function
function 287

Numeric literal
data object 268

Numeric text field
data object 236, 239

O

O/R mapping
object-relational mapping 757

OASIS
Organization for the Advancement of

Structured Information Systems 893

1043

Index

Object
ABAP Objects 180
asXML 925
Creating 128
dynamic memory object 972
generic type 408
object orientation 341
real world 177
root class 360
software 178

Object component selector
ABAP syntax 204
using 250

Object ID
Object Services 757

Object list
Repository Browser 60

Object list type
Repository Browser 60

Object Navigator
ABAP Workbench 57

Object orientation
programming 177

Object reference
ABAP Objects 402
internal table 208
memory address 202
persistent 770

Object reference variable
declaring 250
golden rule 404
user view 403

Object reference variables
creation 202

Object Services
database access 757

Object set
Code Inspector 948

Object type
ABAP type hierarchy 230

Object-oriented transaction mode
Transaction Service 774

OBLIGATORY
PARAMETERS 619

Obsolete language element
ABAP 35

Offset/length specification
subfield access 313

OK field
dynpro field 533
use 538

ON
JOIN 728

ON BLOCK
AT SELECTION-SCREEN 632

ON CHAIN-INPUT
MODULE 545

ON CHAIN-REQUEST
MODULE 545

ON COMMIT
PERFORM 747

ON END OF
AT SELECTION-SCREEN 632

ON EXIT-COMMAND
AT SELECTION-SCREEN 632

ON HELP-REQUEST
AT SELECTION-SCREEN 632

ON INPUT
MODULE 544

ON para|selcrit
AT SELECTION-SCREEN 632

ON RADIOBUTTON GROUP
AT SELECTION-SCREEN 632

ON REQUEST
MODULE 544

ON ROLLBACK
PERFORM 747

ON VALUE-REQUEST
AT SELECTION-SCREEN 632

OO transaction
creation 130
dynpro 560
transaction code 158

OOA
object-oriented analysis 180

OOD
object-oriented design 180

OPEN CURSOR
ABAP statement 735

OPEN DATASET
ABAP statement 776

Open SQL
ABAP statements 710
dynamic 830
performance 711
using 95

1044

Index

Open SQL interface
AS ABAP 149

Operand
ABAP statement 85
arithmetic expression 287
logical expression 293
specified dynamically 830

Operand position
ABAP statement 226

Operator
ABAP statement 85
arithmetic expression 286

OPTIONAL
METHODS 354

OR
Boolean operator 297
WHERE clause 721

ORDER BY clause
SELECT 734

OTR
Online Text Repository 496

Outbound plug
Web Dynpro ABAP 696

OUTPUT
AT SELECTION-SCREEN 631
MODULE 542

Output field
selection screen 628

Output parameter
event 425
Formal parameter 346
function module 468

OVERLAY
ABAP statement 305

P

p
ABAP type 236, 238
calculation type 289

Package
ABAP Workbench 60

Package Builder
tool 66

Package check
package 67

Package interface
package 67
verification 62

Package property
package 64

PACKAGE SIZE
INTO clause 718

Package type
package 64

Packed number
data object 236, 238

PAI
dynpro event 458
Event 538
PROCESS AFTER INPUT 517
selection screen 631

PAI module
function group 465

Parallel processing
aRFC 856

Parameter
selection screen 618

Parameter interface
event 425
exception 490
executable program 640
function module 467
method 195, 196
subroutine 474

Parameter transaction
dialog transaction 457

Parameter transfer
performance 349

PARAMETERS
ABAP statement 618

PARAMETER-TABLE
CALL FUNCTION 835
CALL METHOD 833

Parentheses
calculation expression 286
logical expressions 297

Pass by value
formal parameter 348

Patterns
object orientation 180

PBO
dynpro event 458
PROCESS BEFORE OUTPUT 517
selection screen 631

PBO module
function group 465

1045

Index

PERFORM
ABAP statement 475

Performance data file
runtime analysis 982

Persistence layer
AS ABAP 148

Persistence mapping
tool 758

Persistence Service
Object Services 757

persistent class
create 757
Object Services 757

Persistent object
change 769
SAP LUW 770

persistent object
create 765
delete 769

Picture control
CFW 591
encapsulation 601, 611
example 605

Plug
Web Dynpro ABAP 695

POH
PROCESS ON HELP REQUEST 517

Polymorphism
ABAP Objects 413
benefits 417, 422
example 417
object orientation 179
semantic rules 416
usage 416

Popup level
container control 594

POSITION
ABAP statement 646

POSIX standard
regular expression 308

POV
PROCESS ON VALUE REQUEST 517

Predefined type
data element 74

Predicate
logical expression 296
WHERE clause 722

Presentation layer
AS ABAP 145

Presentation logic
encapsulation 100

Presentation server
SAP GUI 516

Pretty printer
ABAP Editor 86

Primary index
database table 723

PRIMARY KEY
ORDER BY clause 734

Primary key
database table 706

Print list
ALV 663
classical list 654

Print list level
print list 655

Print parameters
background processing 641
spool request 655

Private
visibility area 186

private
Inheritance 365

Private instantiation
superclass 381

PRIVATE SECTION
visibility area 187

Procedure
classical 461
processing block 153, 164

Procedure call
dynamic 832

Process
ABAP runtime environment 150
runtime environment 451

PROCESS AFTER INPUT
dynpro event 458, 517
event block 530

PROCESS BEFORE OUTPUT
dynpro event 458, 517
event block 530

PROCESS ON HELP REQUEST
dynpro event 517

PROCESS ON HELP-REQUEST
dynpro event block 549

PROCESS ON VALUE REQUEST
dynpro event 517
dynpro event block 552

1046

Index

Processing block
ABAP program 87
dynpro flow logic 517
implementation 153
terminate 156

Processor
ABAP runtime environment 150

Production system
CTS 62

Productive part
ABAP program 966

PROGRAM
ABAP statement 160, 161

Program call
dynamic 830

Program check
extended 942

Program constructor
event block 166

Program generation
persistent 840
transient 837
usage 836

Program group
internal mode 476

Program introduction
ABAP program 86, 87

Program properties
definition 83

Program type
ABAP program 159
recommendation 162

Programming
defensive 223, 479
robust 479

Programming guidelines
ABAP 46

Programming languages
AS ABAP 147

Programming model
object-oriented 26
procedural 26

Protected
inheritance 365
visibility area 186

Protected area
TRY block 484

Protected instantiation
superclass 380

PROTECTED SECTION
visibility area 187

Protocol 845
Proxy

web service 896
Proxy object

CFW 589
Pseudo comment

extended program check 945
Public

inheritance 365
visibility area 186

Public instantiation
superclass 380

PUBLIC SECTION
ABAP statement 186

Publish-and-Subscribe
event 423

PUSHBUTTON
SELECTION-SCREEN 628

Pushbutton
selection screen 628

Q

qRFC
API 861
executing 861
queued RFC 847
RFC API 868
scenarios 848

qRFC manager
qRFC 861

Quality management
Code Inspector 950

Query Manager
Object Services 760

Query Service
Object Services 760

R

R/2
system 23

R/3
product family 141
system 24, 141

Radio button
screen element 527

1047

Index

selection screen 619
RADIOBUTTON GROUP

PARAMETERS 619
RAISE EVENT

ABAP statement 426
RAISE exc

ABAP statement 502
RAISE EXCEPTION

ABAP statement 483
RAISING

FORM 474
MESSAGE 503
METHOD 195
METHODS 490

RANGE
ASSIGN 805

RANGE OF
DATA 627

READ DATASET
ABAP statement 777

Read lock
shared objects 440

READ REPORT
ABAP statement 838

READ TABLE
ABAP statement 329

READ-ONLY
DATA 192, 243

RECEIVE RESULTS
ABAP statement 855

RECEIVING
Actual parameter 357

REDEFINITION
METHODS 367

REF TO
DATA 202
TYPES/DATA 249, 402, 809

REFERENCE
METHODS 347

Reference
data type 231
XML 926

REFERENCE INTO
LOOP 331
READ TABLE 330

Reference semantics
assignment 261
data reference 796
dynamic memory object 974

Reference transfer
formal parameter 348

Reference type
ABAP Dictionary 257
declaring 249

Reference variable
assigning 205, 282, 405
comparing 295
declaring 249
initial value 285
using 117, 250

REGEX
FIND 310
REPLACE 311

Registering event handlers 431
Registration

event 423
Regular expression

class 312
find/replace 308
special character 309

Relational operator
logical expression 293

Remote Function Call
AS ABAP 149
RFC 845

Remote-enabled function module
RFC 853
RFM 853

Rental car application
example 54

REPLACE
ABAP statement 306

REPORT
ABAP statement 160

Report
creation 134

Report transaction
executable program 631

Reporting
classic ABAP 451
interactive 652
process 454
programming 133

Reporting event
event block 166

Repository
development objects 59

1048

Index

Repository browser
Object Navigator 59

Repository information system
Object Navigator 59

Repository object
ABAP Workbench 59

Required field
dynpro 545
selection screen 619

RETURN
ABAP statement 156, 303

Return value
formal parameter 346

RETURNING
METHOD 195
METHODS 347

RFC 849
API 862
asynchronous 846
communication scenarios 849
debugging 855
object-oriented control 862
programming 853
queued 847
Remote Function Call 845
synchronous 845
transactional 847

RFC API
C routines 862

RFC client
JCo 870
non-SAP system 863

RFC destination
administering 850
HTTP connection 889
non-SAP system 866
specifying 850, 854

RFC interface
AS ABAP 845
external 850

RFC library
RFC API 862

RFC SDK
downloading 863
Software Development Kit 850

RFC server
JCO 876
non-SAP system 865
passing parameters 866

RfcAccept
RFC API 865

RfcCall
RFC API 864

RfcClose
RFC API 864

RfcCreateTransID
RFC API 868

RfcDispatch
RFC API 865

RfcGetData
RFC API 865

RfcGetName
RFC API 865

RfcIndirectCallEx
RFC API 868

RfcInstallFunction
RFC API 865

RfcInstallTransactionControl
RFC API 868

RfcLibrary
external RFC interface 862

RfcOpen
RFC API 864

RfcReceive
RFC API 864

RfcSendData
RFC API 865

RFM
JCo call 876

Roll area
internal session 175

Rollback
database 742

ROLLBACK WORK
ABAP statement 746
Persistence Service 770

Root class
inheritance tree 360

Root object
shared objects 442

Row type
internal table 248, 319

RTTC
Run Time Type Creation 819

RTTI
Run Time Type Information 819

RTTS
ASSIGN 808

1049

Index

CREATE DATA 813
Run Time Type Creation (RTTC) 824
Run Time Type Information (RTTI) 820
Run Time Type Services (RTTS) 819
Runtime analysis

call 981
Runtime error

exception 483
non-catchable 508

Runtime errors
catchable 500

S

S
message type 669

S_MEMORY_INSPECTOR
transaction 977

SAAB
transaction 510, 957

SAP Basis
R/3 141

SAP buffering
database table 752

SAP Change and Transport System
package property 62

SAP Easy Access
startup program 55

SAP gateway
JCo 876
RFC server 865

SAP GUI
AS ABAP 146
SAP Graphical User Interface 516

SAP Help Portal
using 138

SAP JCo
Java Connector 851

SAP JRA
Java Resource Adapter 852

SAP List Viewer
ALV 593
using 134

SAP lock
SAP LUW 748

SAP LUW
AS ABAP 744
tRFC 859

SAP memory
user session 174

SAP menu
SAP Easy Access 55

SAP NetWeaver
technology platform 24, 30, 141

SAP NetWeaver 2004s sneak preview
tutorial 53

SAP NetWeaver Exchange Infrastructure
XML 908

SAP spool system
ABAP Objects 663
print list 654

sapitab.h
RFC API 862

saprfc.h
RFC API 862

SCI
transaction 945

SCOV
transaction 985

Screen
check 530
dynpro 515
SAP GUI 516
test 530

Screen element
dynpro field 530
function code 534
Layout Editor 527
modifying 528
properties 528
SAP GUI 516
selection screen 616

Screen list
classical list 646

Screen Painter
element list 528, 533
Layout Editor 526
source code editor 517
tool 524

Scroll bar
SAP GUI 516

SE30
transaction 981

SE38
transaction 56

SE80
transaction 58

1050

Index

Search help
ABAP Dictionary 550
creating 550
creation 78
using 108

Search help maintenance
ABAP Dictionary 78

Secondary index
database table 723

SELECT
ABAP statement 712
assignment rules 720
loop 717

SELECT clause
SELECT 713

SELECT loop
nested 725
using 118

Selection criterion
selection screen 622

Selection screen
calling 630
creating 617
creation 103
Data Browser 98
dynpro 615
event 631
GUI status 634
processing 104, 631
processor 631
quitting 635
use 617

Selection screen event
event block 166

Selection screen processing
silent 641

Selection table
selection criterion 623
WHERE clause 724

Selection text
Creating 104
Selection screen 619

SELECTION-SCREEN BEGIN OF SCREEN
ABAP statement 617

SELECT-OPTIONS
ABAP statement 622

Self-reference
instance constructor 377

sender
event parameter 425, 429

Separation of concerns
classical list 650, 658
concept 514
dynpro 557
selection screen 617
web service 885

Serialization
ABAP-XML 908
ST 927
XSLT 921

Service
web-based 878

Service Definition Wizard
web service 898

Service Wizard
ICF 880

Services
use 30

Session breakpoint
ABAP Debugger 956

SET DATASET
ABAP statement 778

SET EXTENDED CHECK
ABAP statement 945

SET HANDLER
ABAP statement 431

SET method
class 187

SET PF-STATUS
ABAP statement 537

SET SCREEN
ABAP statement 522

SET TITLEBAR
ABAP statement 538

Shared memory
application server 173, 433

SHARED MEMORY ENABLED
CLASS 435

Shared Memory-enabled
class 435

Shared Objects
AS ABAP 433
Object orientation 344

Shared objects
access 436
creating 442
object reference 436

1051

Index

usage 440, 443
Shared Objects Memory

management 435
Shared Memory 434

Sharing
dynamic data object 973
internal table 282

SHIFT
ABAP statement 305

Short dump
runtime error 483, 508

Short reference
ABAP keyword documentation 137

Short text
message 666

SICF
transaction 880

sign
numeric function 287

simple
generic type 264

Simple inheritance
inheritance 360
object orientation 343

Simple Transformation
AS ABAP 928
calling 929
performance 928
ST 927
symmetrical/asymmetrical 935
symmetry 927
use 884

sin
floating point function 287

SINGLE
SELECT clause 713

Single step
ABAP Debugger 98

Singleton
pattern 192
using 117

Singleton principle 217
sinh

floating point function 287
SKIP

ABAP statement 646
SELECTION-SCREEN 628

SLIN
transaction 942

SM59
transaction 850

SOAP
Simple Object Access Protocol 893

SOAP Runtime
Web Service Framework 897

Software component
package 64

Software logistics
ABAP 38
AS ABAP 60
CTS 67

SOME
WHERE clause 732

SORT
ABAP statement 335

SORTED TABLE
TYPES/DATA 248, 320

Sorted table
table category 320
use 322

sorted table
generic type 264

Source code
organization 167

SPA/GPA parameter
SAP memory 174

Space
closing 270

space
data object 271

Specialization
inheritance 360

SPLIT
ABAP statement 305

Splitter container
CFW 590
example 605

Spool request
background processing 643
generating 655

SQL
Structured Query Language 706

SQL Trace
tool 713

sqrt
floating point function 287

sRFC
executing 854

1052

Index

synchronous RFC 845
ST

Simple Transformation 927
ST processor

AS ABAP 147
ST program

structure 931
ST statement

Simple Transformation 929
ST22

transaction 508
Standard key

internal table 323
Standard processing block

ABAP program 90
Standard selection screen

creating 638
executable program 452, 616
printing 655

STANDARD TABLE
TYPES/DATA 248, 320

Standard table
table category 320
use 321

standard table
generic type 264

Standard toolbar
icon 536
SAP GUI 516, 534

STARTING AT
CALL SCREEN 523
CALL SELECTION-SCREEN 630

STARTING NEW TASK
CALL FUNCTION 855

Starting value
selection screen 619

START-OF-SELECTION
event 453
standard event 455
use 455

Stateful
internet communication 886

Stateless
internet communication 886

Statement
ABAP program 85
obsolete 449

Statement block
control structure 298

Statement chain
ABAP syntax 94

Static attribute
creation 192
inheritance 373
shared objects 437

Static component
class 191
using 197

Static constructor
class 216
implementing 117
inheritance 379

Static method
creation 195
redefinition 374

Static type
inheritance tree 404
interface reference variable 405
object reference variable 402
polymorphism 413
reference variable 282

static type
data reference variable 809

Status bar
SAP GUI 516

Status message
message type 669

Steploop
technique 578

Storage media
persistent 705

string
ABAP type 241

String literal
data object 269

strlen
description function 287, 315

Structure
ABAP Dictionary 257
assigning 279
asXML 923
comparing 295
data object 95
declaring 244
initial value 285
JCo 875
RFC API 866
RTTC 824

1053

Index

Structure component
assigning 283
integrating 246
using 245

Structure component selector
ABAP syntax 245

Subclass
component 361
create 362
implicit 361
inheritance 360

Subfield
access 313

Subfield addressing
field symbol 800

SUBMIT
ABAP statement 157, 451
standard selection screen 639

Subquery
SELECT 731

Subroutine
function group 465
procedure 164
use 476

Subroutine call
dynamic 836

Subroutine pool
creation 126
program type 160, 476

Subroutines
procedure 474

SUBSCREEN
SELECTION-SCREEN 628

Subscreen
dynpro 581
screen element 527

Subscreen dynpros
tabstrip page 582

Subscreen-dynpro
selection screen 628

SUBSTRING
FIND/REPLACE 307

Substring
find/replace 307

Substructure
structure 244

SUBTRACT
ABAP statement 286

Subtransaction
Transaction Service 773

SUM
aggregate function 715

super->
pseudo reference 367

super->constructor
inheritance 375

Superclass
inheritance 360
private 381

SUPPRESS DIALOG
ABAP statement 649

sy
structure 272

sy-dbcnt
system field 713

sy-dynnr
system field 521

Symbolic name
field symbol 797

Syntax
checking 941

Syntax check
ABAP program 88

Syntax cleansing
ABAP Objects 28, 181

Syntax convention
use 47

Syntax diagram
ABAP keyword documentation 137

Syntax error
ABAP program 88
syntax check 942

Syntax warning
syntax check 942

SYST
structure 272

System codepage
text environment 151

System data container
eCATT 987

System event
GUI control 596

System field
data object 271

System library
ABAP 25

1054

Index

SYSTEM_FAILURE
RFC 855

sy-subrc
system field 272

sy-tabix
system field 327, 332

sy-ucomm
system field 533

T

t
ABAP type 236, 240

T100
database table 666

Tab
dynpro 581

Tab strips
screen element 527

TABLE
INSERT 327

table
generic type 264

Table category
internal table 248, 320

Table control
creating 574
dynpro 574
paging 580
wizard 576

Table controls
screen element 527

Table definition
ABAP Dictionary 70

Table index
internal table 321

TABLE KEY
READ TABLE 329

Table key
database table 71
defining 323
internal table 249, 321

Table maintenance
ABAP Dictionary 70

TABLE OF
TYPES/DATA 248

Table parameter
function module 468
subroutine 475

Table type
ABAP Dictionary 258
ABAP program 248
generic 264

table_line
pseudo component 323

TABLES
ABAP statement 532
FORM 475

TABLEVIEW
CONTROLS 579

TABSTRIP
CONTROLS 583

Tabstrip control
dynpro 581
selection screen 628
wizard 583

Tag
XML 910

Tag Browser
Object Navigator 929

tan
floating point function 287

tanh
floating point function 287

Target system
CTS 62

Task
transport request 67

TCP/IP
protocol 845

Termination message
message type 670

Test class
ABAP Unit 963
creation 967

Test configuration
eCATT 987

Test data container
eCATT 987

Test hierarchy
ABAP Unit 963

Test method
ABAP Unit 963

Test methods
creation 967

Test part
ABAP program 966

1055

Index

Test property
ABAP Unit 967

Test run
ABAP Unit 969

Test script
eCATT 987

Test systems
CTS 62

Test task
ABAP Unit 963

Testing
tools 939

Testing procedure
static 941

Text element
translating 268
using 103

Text element maintenance
tool 103, 267

Text environment
ABAP runtime environment 151
AS ABAP 26

Text field
data object 236, 239
screen element 527

Text field literal
data object 269

Text pool
text environment 151

Text string
data object 241

Text symbol
creation 103
data object 267
text element 267
using 103

Textedit control
CFW 592
use 659

Time field
calculating 290
comparing 294
data object 237, 240
validity 291

Time stamp
date and time 292

TIMES
DO 301

Tips & Tricks
runtime analysis 984

Title bar
SAP GUI 516, 534

TO SAP-SPOOL
SUBMIT 641, 655

Token
ABAP statement 85
specified dynamically 829

Tool area
Object Navigator 59

Toolbar control
CFW 591

TOP include
function group 101

Top include
function group 465
include program 168

TOP-OF-PAGE
List event 646

Transaction
execute 131, 158
nesting 773
program execution 130
SAP LUW 747

Transaction code
development object 157
dialog transaction 457, 521
rTFC 859
SAP Easy Access 56
transaction 130

Transaction manager
Transaction Service 771

Transaction mode
Transaction Service 774

Transaction Service
Object Services 771
use 771

TRANSFER
ABAP statement 777

Transformation Editor
tool 920, 928

transient attribute
persistent class 769

TRANSLATE
ABAP statement 305

Transport
repository object 62

1056

Index

Transport layer
CTS 63
package 64

Transport Organizer
CTS 63, 67

Transport request
CTS 65

TRDIR
system table 840

Tree control
CFW 592
example 606

tRFC
executing 859
RFC API 868
status 861
transactional RFC 847
use 847

TRFC_SET_QUEUE_NAME
qRFC 861

true
logical expression 292

trunc
numeric function 287

TRY
ABAP statement 484
control structure 484

TRY block
TRY control structure 484

tt:cond 936
tt:include 932
tt:loop 934
tt:parameter 932
tt:ref 932
tt:root 931
tt:switch 936
tt:template 931
tt:transform 931
tt:type 932
tt:value 933
tt:variable 932
TYPE

CREATE OBJECT 403
DATA 229, 232
METHODS 351
TYPES 232

Type class
RTTS 819

Type conversion
assignment 274
operand position 274

Type group
ABAP Dictionary 259
program type 161

Type hierarchy
ABAP 229

Type name
absolute 823

Type object
create 825
RTTC 825
RTTS 819

Type of instantiation
class 188

Type specification
dynamic 830

TYPE TABLE OF
TYPES/DATA 324

TYPE-POOL
ABAP statement 161, 260

TYPES
ABAP statement 200, 232

Typing
complete 352
define 351
function module parameters 468
generic 263, 352
subroutine parameters 474

U

UDDI
server 905
Universal Description, Discovery and

Integration 893
UDDI registry

web service 905
ULINE

ABAP statement 646
SELECTION-SCREEN 628

UN/CEFACT
United Nations Center for Trade

Facilitation and Electronic Business
894

UNASSIGN
ABAP statement 806

1057

Index

Unicode
SAP system 24

Unicode checks active
program attribute 163

Unicode fragment view
structure 280

Unicode program
ABAP program 163

Unicode programs
byte and character string processing 304

Unicode system
AS ABAP 151

UNIQUE KEY
TABLE 323

Up cast
data reference variable 817
inheritance 406
interface 407
interface reference variable 391
object reference variable 406

UPDATE dbtab
ABAP statement 739

Update function module
updating 745

Update lock
shared objects 440

UPDATE TASK
CALL FUNCTION 745

Update work process
AS ABAP 746

Updating
SAP LUW 745

URI
Uniform Resource Identifier 913

URL
access 882

Usage type
SAP NetWeaver 142

User breakpoint
ABAP Debugger 957

User dialog
creation 99
decoupling 100

User interface
ABAP 513
AS ABAP 145

User menu
SAP Easy Access 55

User session
application server 174

USER-COMMAND
SELECTION-SCREEN 635

USING
FORM 474
PERFORM 475

UTC
coordinated universal time 292

V

VALUE
CONSTANTS 194, 266
DATA 243
METHODS 347

VALUE CHECK
PARAMETERS 619

Value list
dropdown list box 554

Value range
domain 75, 80
dynpro 545

Value semantics
assignment 261
dynamic data object 973
field symbol 796

Variable
data object 266

Variant
runtime analysis 982

Variant transaction
dialog transaction 457

VIA JOB
SUBMIT 451, 641

VIA SELECTION-SCREEN
SUBMIT 630

View
creation 709
database view 709
MVC 672, 681
Web Dynpro ABAP 675

View context
web dynpro view 685

View Designer
Web Dynpro ABAP 676

View layout
web dynpro view 676, 687

1058

Index

View navigation
Web Dynpro ABAP 695

Visibility area
class 186
inheritance 364

W

W
message type 669

W3C
World Wide Web Consortium 893

WAIT UNTIL
ABAP statement 857

Warning
message type 669

Watchpoint
ABAP Debugger 957

Web Dynpro
ABAP 671
AS ABAP 145
Java 672
wizard 683

Web Dynpro ABAP
example application 702
use 671

Web Dynpro application
executing 679
Web Dynpro ABAP 679, 693

Web Dynpro component
Web Dynpro ABAP 673, 682

Web Dynpro context
web dynpro controller 683

Web Dynpro Explorer
tool 674

Web Dynpro view
navigation 697

Web Dynpro window
Web Dynpro ABAP 677

Web reports
example 882

Web service
ABAP 891
AS ABAP 894
creating 898
Enterprise SOA 892
publishing 904
releasing 900
service provider 895

service requester 895
standardization 893
testing 902
UDDI registry 895
using 891

Web service client
creating 905

Web Service Framework
AS ABAP 894, 897
J2EE server 902

Web service home page
Web Service Framework 902

WHEN
ABAP statement 299

WHERE
DELETE itab 334
LOOP 332
MODIFY itab 333

WHERE clause
SELECT 721
usage 723

WHILE
ABAP statement 301

Window Editor
Web Dynpro Explorer 677

Windows
SAP GUI 516

WITH
SUBMIT 641

WITH KEY
READ TABLE 330

Wizard
dynpro control 574
web dynpro 683
web service 898

Work process
application server 172
database logon 172
database LUW 743

WRITE
ABAP statement 645
executable program 647

Write lock
shared objects 440

WRITE TO
ABAP statement 284

WSADMIN
transaction 902

1059

Index

WSCONFIG
transaction 900

WSDL
Web Services Description Language 893

WSDL document
displaying 904
URL 905

WS-I
Web Service Interoperability

Organization 894

X

X
message type 670

x
ABAP type 236, 241

XI
SAP NetWeaver Exchange Infrastructure

895
XML 908

AS ABAP 908
CALL TRANSFORMATION 920
document 911
Extensible Markup Language 909

XML document
tree representation 914

well-formed 914
XML parser

iXML Library 913
XML renderer

iXML Library 913
xmlns

XML namespace 913
xsequence

generic type 264
XSLT

DOM 920
Extensible Stylesheet Language

Transformations 918
XSLT processor

AS ABAP 147, 919
XSLT program

calling 920
creating 920
program generation 919
repository object 919

xstring
ABAP type 242

Z

Z_ABAP_BOOK
package 63

	SAP PRESS—Extract
	ABAP Objects
	Horst Keller, Sascha Krüger
	--
	Contents at a Glance
	Contents
	--
	Foreword
	Chapter 6: Advanced Concepts in ABAP Objects
	6.1 Method Interfaces and Method Calls
	6.1.1 Parameter Interfaces of Methods
	6.1.2 Method Calls

	6.2 Inheritance
	6.2.1 Basic Principles
	6.2.3 Visibility Sections and Namespaces in Inheritance
	6.2.4 Method Redefinition
	6.2.5 Abstract Classes and Methods
	6.2.6 Final Classes and Methods
	6.2.7 Static Attributes in Inheritance
	6.2.8 Constructors in Inheritance
	6.2.9 Instantiation in Inheritance

	6.3 Standalone Interfaces
	6.3.1 Basic Principles
	6.3.2 Creating Interfaces
	6.3.3 Implementing Interfaces in Classes
	6.3.4 Access to Interfaces of Objects
	6.3.6 Composing Interfaces
	6.3.7 Alias Names for Interface Components
	6.3.8 Interfaces and Inheritance

	[...]

	--
	Index
	--
	www.sap-press.de
	(c) Galileo Press GmbH 2007

