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Preface to the Second Edition

Two years have passed since the first edition of Java Programming with
the SAP Web Application Server was published. While the first edition
described SAP NetWeaver 2004 and SAP NetWeaver 7.0 (equivalent to
SAP NetWeaver 2004s) a complete revision became necessary due to the
market introduction of SAP NetWeaver Composition Environment 7.1:

» On the one hand, many programming techniques such as Web Dyn-
pro Java or the SAP NetWeaver Developer Studio have undergone
major changes. SAP NetWeaver 7.1 was the first enterprise platform
to support the Java EE 5 standard that demonstrates the high speed of
innovation of SAP NetWeaver. All aspects are covered thoroughly in
this new edition.

» On the other hand, the positioning of SAP NetWeaver as a technology
platform has evolved based on its strong market adoption. You can de-
rive this from how SAP NetWeaver is used today: as a foundation for
SAP's solutions such as SAP ERP and the SAP Business Suite on one
side, on the other side as integration und composition platform for
the Enterprise Service-Oriented Architecture (enterprise SOA) of SAP.

Because of this, new chapters have been added that introduce the com-
position technologies. Of great importance in this context is the inter-
operability between the different releases of SAP NetWeaver (7.0 und
7.1), including their varying speeds in terms of innovation. We still
involved experienced authors of the different topic areas for the second
edition as well.

The presentation starts in Chapter 1, SAP NetWeaver, with the position-
ing of SAP NetWeaver as platform for enterprise SOA as well as an intro-
duction of the major SAP NetWeaver capabilities.

In Chapter 2, Overview of the SAP NetWeaver Developer Studio, the focus
is on Developer Studio. The Java EE 5 programming model, the devel-
opment, and the deployment of a sample application is shown in Chap-
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Preface to the Second Edition

ter 3, SAP NetWeaver Developer Studio — Step-by-Step to a Sample Appli-
cation. The focus here is not so much on a complete discussion of the
Java EE 5 programming model (there are plenty of publications out
there), but how the Java EE 5 model is supported by the many perspec-
tives of the Developer Studio.

In Chapter 4, Java Persistence, the different approaches to Java persis-
tence supported by SAP that are based on Enterprise JavaBeans 3.0 and
the Java Persistence API are introduced. Chapter 5, Web Services and
Enterprise Services in the SAP NetWeaver Composition Environment, leads
into the world of enterprise SOA, based on standard Web service tech-
nology, and describes how to develop applications that consume Enter-
prise Services.

Chapter 6, Developing Business Applications with Web Dynpro, is dedi-
cated to Web Dynpro because of the importance of the user interface.
The Portal integration of Web Dynpro applications is described in Chap-
ter 7, Running Web Dynpro Applications in SAP NetWeaver Portal. The
Visual Composer as a tool for model-driven UI development is pre-
sented in Chapter 8, SAP NetWeaver Visual Composer. Further techniques
for the creation of Composite Applications are discussed in Chapter 9,
Developing Composite Applications.

The Java development process and the development infrastructure
offered by SAP comprise three chapters. In Chapter 10, SAP NetWeaver
Development Infrastructure and the Component Model — Concepts, the
fundamental component model and the basic elements of the infrastruc-
ture are presented. Chapter 11, SAP NetWeaver Development Infrastruc-
ture — Configuration and Administration, explains the setup and admin-
istration of the Java Development Infrastructure. The Java EE 5 sample
from Chapter 3 is revisited in Chapter 12, SAP NetWeaver Development
Infrastructure — Developing an Example Application Step-by-Step, in order
to demonstrate the development infrastructure.

In Chapter 13, SAP NetWeaver Application Server Java — Architecture, the
architecture, scalability, and robustness of SAP NetWeaver Application
Server 7.1, based on SAP's Java Virtual Machine, are discussed. The pre-
sentation concludes with Chapter 14, Supportability of the SAP NetWeaver
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Preface to the Second Edition

Composition Environment, which presents supportability aspects that are
critical for the successful operation of applications.

On the trial DVD, you will find a test and evaluation version of SAP  DVD content
NetWeaver Composition Environment 7.1, including SAP NetWeaver

Developer Studio. The samples that are discussed in the various chapters

are stored on the DVD as well. You will find details about installation

and configuration on the start page of the DVD that is displayed auto-

matically when you insert the DVD into the drive.

At this point, I would like to thank the authors. Without their passion Acknowledgments
the second edition would not have been possible: Alfred Barzewski for
introduction of SAP NetWeaver Developer Studio (Chapter 2) and the
basic Java EE 5 sample application (Chapter 3); Markus Kifer for the
presentation of Java Persistence (Chapter 4); Susanne Rothaug und Anne
Lanfermann for introduction and consumption of Enterprise Services
(Chapter 5); Bertram Ganz for presentation of Web Dynpro Java (Chap-
ter 6); Oliver Stiefbold for the creation of the DVD trial version of SAP
NetWeaver Composition Environment as well as for the chapter on Por-
tal integration (Chapter 7); Carsten Bonnen for his contribution on
Visual Composer (Chapter 8); Volker Stiehl for the introduction to the
development of Composite Applications (Chapter 9); Wolf Hengevoss
for the presentation of SAP NetWeaver Development Infrastructure
(Chapters 10, 11, and 12); and finally Miroslav Petrov for the overview
of supportability (Chapter 14). You will find the bios of the authors at
the end of the book. The chapters on the positioning of SAP NetWeaver
(Chapter 1) and the presentation of the server architecture (Chapter 13)
fall under my responsibility. Special thanks go to the translation team at
SAP AG who created the English version: Paul Smith, Neil Matheson,
Susan Want, Michéle Coghlan, and Abigail Haley. Last but not least, I
would like to thank Stefan Proksch from SAP PRESS for his ongoing sup-
port and advice during the project.

Karl Kessler
Vice President, Product Management SAP NetWeaver
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Using a concrete example, this chapter will introduce you to the
practical side of working with the SAP NetWeaver Developer
Studio. On this guided tour, you will set up — step-by-step —

a simple employee application using the Java EE 5 standard.
The ultimate aim is to then deploy and execute the application
on the SAP NetWeaver Application Server. You will have the
opportunity of getting to know the close interaction between
different tools of the development environment.

3 SAP NetWeaver Developer Studio —
Step-by-Step to a Sample Applica-
tion

You will get optimum use out of this chapter if you are very familiar
with the Java programming language and, in addition, already have
experience with using the Java EE 5 programming model. To be able to
reconstruct the steps in a practical way, you need the SAP NetWeaver
Developer Studio and access to the SAP NetWeaver Application Server
Java. The SAP NetWeaver Composition Environment 7.1, on the DVD of
this book, is suitable for this purpose. It is best if you install this version
before you start with the hands-on exercises.

The tutorial application, which you will develop step-by-step, is focused
more on didactic aspects than on any endeavor to implement a realistic
application scenario. Therefore, you need neither a bank application nor
a complex warehouse scenario. Rather, it is our intention to introduce to
you, with the help of a straightforward example, the options that the
Developer Studio provides as a development environment for enter-
prise applications on the basis of established Java standards. In the fore-
ground, therefore, you have the interaction between different toolsets,
and the linking up of services that efficiently support the development
process and the daily work of the developer.
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3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Local development
process

You can view this chapter as an introduction to working with the Devel-
oper Studio. After processing all the steps of this chapter, you will be
able to organize the basic processes and development steps (UI and EJB
development, layout of the data model, etc.) within the framework of
the Java EE standard development using suitable tools. You will also be
able to map the tasks to the appropriate project types and corresponding
development objects.

All the steps are described solely from the viewpoint of a local develop-
ment process. The project resources are created and managed exclu-
sively on the local hard drive. The SAP component model is not used in
the tutorial application. The projects concerned are not development
components, unlike the scenario based on the use of the SAP NetWeaver
Development Infrastructure. However, in Chapter 9, Developing Compos-
ite Applications, you will learn how to migrate this tutorial application in
the NWDI context onto the SAP component model and also migrate it
using the corresponding services.

3.1 Employee Tutorial Application

The tutorial application uses a simplified employee data model and
should enable the user to create new employee data records and to print
data on existing employees. In the application architecture, we make a
distinction between clearly defined layers — for example, the presenta-
tion layer, the business logic layer, the data retrieval layer, and the per-
sistence layer. Actually, this would not be as absolutely necessary for
such a simple case as the one here. Nonetheless, you should familiarize
yourself from the beginning with the typical architecture of business
applications. In particular, you will get a first impression of how this
architecture is mirrored in the development process and how the devel-
oper is supported with the organization of his projects through the
Developer Studio.

Architecture of the Tutorial Application

While developing the user interface, you access the Ul technology called
JavaServer Pages (JSP), which has established itself within the standard

14



Employee Tutorial Application | 341

Web applications. With the help of a simple example, you will see how
you can set up a simple interface and also access the server components
underneath it.

The business logic is based on Enterprise JavaBeans 3.0 and is limited to
one single, stateless session bean. With the session bean, we can for-
mally distinguish between the business interface and session bean
implementation. All the business methods of the session bean are linked
to a corresponding business interface so that JavaServer Pages can access
the session bean with the help of this interface. In addition, the session
bean encapsulates the respective accesses to the persistence layer API.

You model the business data using a single entity that is used both in the
business logic and the presentation layer. Because entities are regular
Java objects, they can also be used for the data transport to the presen-
tation layer. Corresponding data transfer objects are thus not required.
In this connection, the entity is detached from the current transaction
context. This is clearly shown in Figure 3.1 by the dotted border.

R

+
(' Entty \O JavaServer Pages Presentation Layer
Business Interface Business Logic and

. . Business Data
Entity Session Bean

J

¢
JPA

SAPJPA1.0

A
/“_Al_\
fe— 3

Database

~N

Persistence Layer

Figure 3.1 Typical Architecture of a Java EE 5 Business Application

Business applications generally cannot do without keeping data persis-
tent in a database. With Java EE 5, a new object-relational persistent
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framework — the Java Persistence API JPA) — has been introduced as
part of the Java EE standard. This type of framework has, essentially, the
following tasks: ensuring mapping of Java objects onto the relational
database; translating various queries as well as changes to Java objects
into suitable SQL statements; and, finally, taking care of the entire com-
munication with the database.

As shown in Figure 3.1, the current SAP NetWeaver Application Server
contains the actual JPA implementation with the name SAP JPA 1.0. The
JPA, however, does not supply the required database tables or table def-
initions onto which the respective entities are mapped. Instead, it
assumes that these tables already exist. You will provide the required
tables with the help of the Java Dictionary. Using Open JDBC, you can
create the actual database objects in the assigned database schema using
the table definitions.

Project View of Tutorial Application

You will begin the development of the tutorial application by first creat-
ing the basic data model. In this process, you create a database-indepen-
dent table definition using the Java Dictionary. Starting from a Dictio-
nary project, you create an SDA archive (Software Delivery Archive) and
deploy it on the application server. After this step, the table is physically
available on the database.

For access to data records, use JPA entities. The implementation of the
business logic for the application (creating new employees, displaying
employee data) is taken over by an EJB 3.0 Stateless Session Bean. In this
case, the EJB module project in the Developer Studio serves as a con-
tainer for all enterprise JavaBeans, including the entity, as well as for all
further resources, such as the corresponding configuration files and
deployment descriptors.

For the implementation of the Web client, a simple interface is provided
with the help of JavaServer pages. This should also be able to pass the
data to the session bean. All Web resources are managed in a separate
project — the Web module project — together with the appropriate con-
figuration files.
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In an enterprise application project, you then bring all the resources
together to a type of Java EE 5 overall application. You need to deploy
the resulting archive (EAR) first before you can call the employee appli-
cation for the first time. Figure 3.2 groups the basic activities together
and depicts the organization of the most important development
projects in the respective project types of the Developer Studio.

/Web Module Project SAP NetWeaver Developer Studio

[ JavaServer Pages
web.xml
Enterprise Application Project

A\ Deployment
Descriptors

EJB Module Project

[ Entity
persistence.xml

[ SessionBean ]

Dictionary Project \
Deploy

[ Dictionary Table ]

SDA

Deploy

SAP NetWeaver Application Server Java

Figure 3.2 Organization of the Development Objects of the Employee Application
in the Developer Studio

3.2 First Steps

To start the Developer Studio, the activated platform runtime requires, Start parameters
in addition to access to a Java Virtual Machine (VM), a path specification

for storing all the metadata for project information and user-specific set-

tings. A standard Java VM is normally assigned during installation of the

Developer Studios and entered as the start parameter.
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When you start! the Developer Studio for the first time after installation
has been completed, you must generally specify the default workspace.
The start process will then be interrupted and the system displays a dia-
log box for selecting the workspace directory. You will then either
accept the default value or choose a different directory for the default
workspace in order to continue the startup process. When you start the
Developer Studio again, the assigned workspace will be used. The start
process will then be performed without interruption.

When called up for the first time, the development environment dis-
plays a greeting page that looks similar to the one in Figure 3.3. You can
consider this page as the starting point for your development activities
that will supply you with tutorials, example and reference applications,
and selected links to documentation and other information material.

%2 12EE - EmployeeServicesBean.java - SAP NetWeaver Developer Studio I [=] 5]
File Edit Source Refactor Mavigate Search Project Run Editor  Window Help

T e

I SAP NetWeaver Developer Studio w;
@ &F E E >
Overview Tutorials Samples What Next? ‘Workbhench

Welcome to the SAP MNetWeaver Developer Studio, BAP's Eclipse-based environment for developing Java Enterprise
applications and far cormposing services with SAP Composite Application Framework (CAF). Use this homepage as
a starting point for your development activities and utilize the complete Develeoper's Guide, including guidence into
development and modeling capabilities of SAP NYW Composition Environment (CE)

Model-driven Development

Modeling Composite Views Designing Process Logic with [
with Visual Composer %‘? Guided Procedures

“Wisual Composer (WC) provides a Guided Procedures (GP) enables you

Wieb-hased environment for modeling to model applications just by

userinterfaces without coding. Get assembling enterprise services and

familiar with the madeling workflow business objects with the support of

and how to uge VC tool functions. workflow patterns and role-hased

collaborative processes. Learnin
detail how you integrate existing
applications and semvices into the GF
frarnewark, and how you irplement
wour own functions to use in GP-
modeled processes

< Composing Services with y; Developing User Interfaces
@ CAF with Web Dynpro
CAF is 3 service-oriented architecture Access content providing the x|

Figure 3.3 SAP NetWeaver Developer Studio After First Call — Greeting Page

1 In general, you start the Developer Studio using the desktop shortcut or from the
Microsoft® Windows® Start menu. One alternative and very flexible option is if you
use batch files. Even several batch files can be used as configuration files to start the
Developer Studio, depending on requirements, using different parameters.
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At this point we recommend that you familiarize yourself with the stan-  Settings under
dard settings of the Developer Studio and that you add more entries, Windows
where required. You can reach the preferences page through the menu Preferences
path Windows - Preferences. When you are working through the steps

in this chapter, you will need the link to the Java application server.

Therefore, you should have a corresponding entry set under SAP AS

Java. We will look at other settings that you require for being able to use

the Java development infrastructure in Chapter 11, SAP NetWeaver

Development Infrastructure — Configuration and Administration.

3.3 Defining the Data Model

Before you develop the employee application, you must first define a
suitable data model that will serve as the basis for this application. For
didactic reasons, however, no great emphasis is placed on a sophisti-
cated data model with a large number of complex tables and relation-
ships to one another. Instead, the data model should be kept relatively
simple so that you can manage with a single table that takes on the man-
agement of persistent employee data.

In this first practical step, you will create a new table in the Java Dictio-
nary and add the required columns in the corresponding editor. After-
ward, you will create an appropriate archive for this table definition.
From the Developer Studio, you are then in the position to deploy this
archive on the application server. This way you ensure that the table def-
inition, which is initially available only on a local basis, is converted into
physical representation on the database instance.

3.3.1  Creating a Dictionary Project

To create tables, you first need a suitable project in the Developer Stu-
dio. Dictionary projects are intended precisely for this purpose. These
are projects that serve, at design time, as containers both for Dictionary
data types and structures as well as for tables or views in tables. You can
create an initial project framework for the new Dictionary project using
a wizard.
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New project wizard 1. You start the creation wizard through the menu path File « New -
Project. In the Wizard window you now see, select the category Dic-
tionary and then the entry Dictionary Project (Figure 3.4). To get to
the next dialog step, choose Next.

T

Select a wizard &

Wizards:

Itype filker text

'Eb General

B oS

- Development Infrastructure
E-(= Dictionary

{3 Dictionary Project
- (= Eclipse Modeling Framework.
CREg ]

-G J2EE

(= Java

L

Ol L

(7) = Bach I MNext > I Firshr | Cancel |

Figure 3.4 Selection of Dictionary Project in New Project Wizard

2. In the displayed wizard window, you will be prompted to assign gen-
eral project properties. For this purpose, enter the name “Employ-
eeDic" for the Dictionary project in the corresponding input field, but
leave the standard settings for Project contents and Project language
unchanged (Figure 3.5).

%2 New Dictionary Project Wizard - [ x|

Dictionary Project

Create a new Dictionary project

Project name: | EmployeeDicl

Project conkents:
¥ Use default

[Ditechary: |C:\C‘IZ\CID_BetalwnrkspacalEmplnyeech Browse. |

Project languads [4merican English -

Figure 3.5 General Specifications for Dictionary Project

3. Now you only need to choose Finish and leave the rest of the work to
the creation wizard. This generates a standard structure for the new
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Dictionary project and creates the project folder with the name
EmployeeDic in the assigned workspace directory. If you now open the
Dictionary perspective, a project node with the same name can be
seen in the Dictionary Explorer.

In the same manner, it is possible to create, in the Developer Studio,
other project types such as Web Dynpro projects, for example, or the
different Java EE project types using a suitable wizard.

3.3.2 Defining an Employee Table

In the next step, you create a table for the employee table as part of the
project you have just created and then enter the required table fields as
columns.

1. To create a table, it is best if you display the project EmployeeDic in
the Dictionary Explorer. There you can expand the project structure
and open the context menu for the node Database Tables.

2. To start the creation wizard, simply choose the menu path Create
Table from the context menu (Figure 3.6). In the displayed dialog box,
you will be prompted to assign a name for the table.

|i& Dictionary Explarer X Nav’lgatnr| =

= (= EmployeeDic
B3P Dictionaries
B Local Dickionary
@ Daka Types
Database Tables
@ Database View ICGEAREAG

Paste Gt

Compare Meba aka

Java Persistence 3
Test infrastructure 3
Development Component »

Figure 3.6 Creating a Table in the Dictionary Project

Keep in mind that, as a rule, a standard prefix is already provided for Name conventions
the table name in the input field. As you can see, this prefix is derived ~for database
from the default setting that is entered for the Dictionary objects objects

under Windows « Preferences « Dictionary - Name Server Prefix. This

name prefix is based on the naming convention for database tables

121



3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Table fields

and enables you to uniquely separate development objects that are
created at customer sites, partner sites, and at SAP — with the aim of
avoiding name conflicts.? The two namespaces TMP_* and TEST_* are
of special importance here. These can be used for test objects and pro-
totypes.

3. In this current example, therefore, it will suffice if you use the name
prefix “TMP". For the suffix itself, enter the name “EMPLOYEES" and
choose Finish.

4. As a result, there is a corresponding entry for the new table in the
project structure under the node Database Tables. By double-clicking
the table name, you start the table editor and can now add the indi-
vidual table fields.

5. The first field should have the name “ID". Enter it under Column
Name in the first line of the table matrix. Because this table field is the
primary key of the table, check the field Key. Under Built-In Type,
choose the data type 1ong and enter a short description “Employees
ID" under Description. In the standard version, the property Not Null
is set for each new field and you use the option of defining initial val-
ues for each field of the database table.

6. The second table field contains the name “LAST_NAME". In addition,
a String of length 30 is assigned as data type3 to this field as well as the
short text "Employees last name".

7. Additional table fields include FIRST_NAME and DEPARTMENT and VER-
SION. You can see how these are defined in Figure 3.7. Finally, save
the current status of the table definition using the appropriate icon in
the toolbar.

Now the basic properties of the employee table are set. However, we
would like to point out an important general aspect here: You will learn
how to set up an index for a table column and how you can activate the
table buffering in the table editor. It is a good idea to follow the basic
principle: Make as many decisions as possible already at design time!

2 Under http://service.sap.com/namespaces, customers and partners of SAP can reserve a
name prefix for database objects.

3 From the specifications for the Built-in Type and Length, you get the assignment to
the JDBC Type. This is automatically converted by the wizard.
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(3 Dictiorar... &2 Na\rlgat0r| =8| B 1P EMPLOYEES X =0
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Figure 3.7 Definition of Columns for Table TMP_EMPLOYEES in the Table Editor

Generally speaking, there is a distinction between the primary index Secondary index
and the secondary index for tables — and you will use a secondary

index. The primary index is sorted by the key fields of the table and

automatically created together with the physical table on the database.

Normally, data records are sorted by the value in the primary key. How-

ever, if you expect to have frequent access in the application to another

field in data records, we recommend that you set up a secondary index

for this field.

1. To create, for example, an index to the field LASTNAME, simply click the
tab Indexes in the table editor and then choose the plus character icon
on the left in the toolbar.

2. In the displayed wizard, enter "EMPLOYEES_I1" as a suffix for the
index name* and complete this step with Finish. Afterward, expand
the tree structure you have just created for the new index and choose
the option Add/Edit Index Fields from the context menu of the Fields
node.

3. You now get a list of the table fields and you can choose the field you
require (Figure 3.8).

4 Similar to the table name, the standard prefix flows into the index name. Just like table
names, index names are limited to 18 characters.
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Technical settings
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Figure 3.8 Definition of an Index in the Table Editor

4. To activate a table buffer, too, you only require a couple of mouse
clicks. Simply choose the tab Technical Settings in the table editor,
select the respective checkbox, and assign the buffer granularity,® as

displayed in Figure 3.9.

(3 Dictionary Explarse £3 Navigatur| i
o =
BEllsth o

B = EmployeeDic
= %! Dictionaries
E- Local Dictionary
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B8 1P EMPLOYVEES X

Edit Technical Settings

~ Table Buffering

Define buffering parameters of table

nable Buffering  Tabls BuFfering ID (Fully Buffered) =

~ Advanced Settings

Define databases onwhich the table will not be created

[ Do not create table on selected databases

| I Database | Delete if existing |
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Dhe
Cbe
Sapdb
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o o
1 e )

Columns | Indexes | Technical Settings]

Figure 3.9 Activating the Table Buffer in the Table Editor

5. In the course of the previous procedure, certain table definition data
was generated for this project. To save the entire result of your efforts
so far, choose the appropriate icon in the toolbar.

5 With the granularity function, you can define whether the table is to be loaded with

all data records (fully buffered) or only partially loaded into the buffer as soon as the
first data record is accessed.
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In this way, the table is completely defined and exists as a local project
resource in the form of an XML file. A further result is that the table is
now part of the Java Dictionary and has a database-independent defini-
tion.

3.4 Implementing Access to Table Data

At this point, you need to decide how you wish to perform access to Java persistence
table data records in a Java application. Generally speaking, there are AP

several options for data persistence within the framework of Java devel-

opment and all have their special aspects and strengths. Because the SAP

NetWeaver Application Server Java already supports the newer version

Java EE 5-Standard, you will use the Java persistence API (JPA) in the

current tutorial application. A discussion of the various persistence

records in the AS Java context is provided in Chapter 4, Java Persistence.

This chapter is concerned solely with the topic of persistence.

The JPA is the new object-relational persistence API for Java EE 5 and
implemented as an integral part of the Java EE standard. With this tech-
nical solution that is extremely easy for the programmer to use, the
“lightweight" Java objects, also called entities, are mapped onto rela-
tional database tables. Entities are based on regular Java objects, often
called POJOs (Plain Old Java Object), and do not have to implement spe-
cial interfaces or enhance special classes. In addition to the typical class
implementation, however, you will also have to provide mapping to
suitable database tables as well as mapping of persistent attributes to the
respective table fields.® For specifying this type of metadata, the JPA
provides the comfortable use of annotations that can be added — either
manually or using OR mapping tools — to the source code of the entity
class.

6 Within the framework of the pending delivery of the SAP NetWeaver Composition
Environment, you can find very easy-to-use solutions based on close integration
between the individual tools and frameworks. Accordingly, it should be possible,
using the table definitions from the Dictionary project, to generate entities for the EJB
module, and vice versa.
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3.4.1 EJB-Creating a Module Project

To create entities, you first need a new EJB module project.

1. For this purpose, once again start the New Project Wizard through the
menu path File - New « Project. As seen in Figure 3.10, select the cat-
egory EJB « EJB 3.0 and then EJB Project 3.0 in the displayed wizard
window.

[32 New Project i X
Select a wizard
Create an EJB 3.0 project [

Wizards:

I type filker bext

B EXB ]
© L&Y EJB Project
[Z EJB 3.0

B E 15 Proj

(= J2EE

E& Java

(£ Plug-in Development

H-G web =

@) < Bach I ek > I Finishy | Cancel |

Figure 3.10 Selection of EJB Module Project in the New Project Wizard

2. By clicking Next, you proceed to the next wizard window. There you
enter "EmployeeEjb" as the name for the new project. In addition,
you accept the default settings and complete this procedure with Fin-
ish.

3. The creation wizard generates an initial project framework for the
new EJB project and creates a project folder in the directory.

4. Now start the J2EE perspective, if you have not done so already, and
display the project structure in the Project Explorer. This view will
now serve as your central starting point for all future activities con-
cerning the EJB 3.0 development.

In the next step, add an entity named Employee to this project.
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3.4.2 Defining an Employee Entity

As already mentioned, the data model should be kept as simple as pos-
sible in this introductory example. Therefore, you should define only
one single entity named Employee, to correspond with the already exist-
ing table called TMP_EMPLOYEES.

General Properties of the Entity Class

In the next step you create a new, serializable Java class. This will be a
class that, for the most part, declares the appropriate attributes and pro-
vides the corresponding set and get methods.

1. To create such a class for the EJB module project, open the context New class wizard
menu for the project node and choose the option New - Class.

2. Enter “Employee” as the name for the new class and assign the pack-
age com.sap.demo.entity. In addition, activate the option Construc-
tors from Superclass and add the interface Serializable to your selec-
tion.

3. Then accept the standard default settings and create the class by press-
ing Finish.

4. When you have completed the creation procedure, start the Java edi-
tor and add some field definitions to the actual class body”:
private long employeeld;
private String TastName;
private String firstName;
private String department;
private int version;
In this way, you equip the entity class with the exact fields that you
created in the corresponding employee table as table fields.

7 Inaccordance with the specification, we recommend creating a version field (version)
for the entity. This field is used by the JPA container at runtime in order to implement
optimum verification and thus ensure that no competing accesses are implemented for
one and the same data source. As soon as the container registers accesses of this type,
an exception is thrown for the transaction. The most recent data state is then retained
and a rollback is set for the current transaction. With these simple means, you help to
maintain data consistency.
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5. Then, in the editor, select all the rows with the fields you have just
created and choose Source « Generate Getters and Setters... from the
context menu. In the displayed window, click the key Select All. In
this way, the corresponding getter and setter methods are generated
for all fields, in accordance with Listing 3.1.

public class Employee implements Serializable {
private static final long serialVersionUID = 111L;
private Tong employeeld;
private String lTastName;
private String firstName;
private String department;
private int version;
// non-arg constructor
public Employee() ({
}
public String getDepartment() {
return department;
}
public void setDepartment(String department) ({
this.department = department;
}
public Tong getEmployeeld() {
return employeeld;
}
public void setEmployeeld(long employeeld) ({
this.employeeld = employeeld;
}
[...]
}

Listing 3.1 Implementation of a Regular Java Class Named Employee

6. Finally, save the current editor content using the appropriate icon in
the toolbar.

The implementation of the class Employee has thus far shown no anom-
alies. It defines five fields: employeeld, TastName, firstName, depart-
ment, and version, and places the getter and setter methods at your dis-
posal in accordance with the name convention for JavaBeans. It should
be mentioned, however, that the JPA demands a parameter-free con-
structor for an entity. But further constructors can be added.
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Because this is not an abstract class that also avails of a pub1ic construc-
tor, you have thus far been dealing with a POJO that can already be
instantiated. Moreover, the class implements the interface java.io.
Serializable so that entity objects can be serialized through remote
calls or in Web service calls, respectively.

In this connection, follow the general recommendation and explicitly
declare a version number® named serialVersionUID for the serializable
class. For this reason, a same-name field that is static, final, and of the
type Tong was added subsequently in the declaration part.

Object-Relational Mapping

Strictly speaking, we do not yet have an entity here, but only a simple
JavaBean object. What is missing is a type of meta information® that
describes the mapping of the Java object onto the relational database.
Using the JPA, this is easily achieved, simply by adding the annotations
to the source code of the Java class.

With the simple addition @Entity to the class definition, you identify
the class Employee as an EJB 3.0 Entity. With this step, you set the com-
mand that the entity is suitably mapped to a database table. In addition,
the persistence framework requires information as to how the entity is
mapped to the relational database table.

It should be remembered that the JPA provides the application devel-
oper with a very comfortable path to realize this kind of object-relational
mapping, based on a record of plausible default rules. If no explicit spec-
ifications are made — for example, for the name of the table or the indi-
vidual table fields — the JPA assumes certain plausible assumptions.

8 The version number serialVersionUID is required by the serialization runtime for
each serializable class for verification purposes. If a serializable class does not explicitly
declare a serialVersionUID, a default value is calculated by the runtime for this ver-
sion number. This default value can, however, depend on the compiler implementa-
tion. To guarantee a consistent version number for all compilers, we recommend that
you explicitly declare a serialVersionU1D for the class.

9 With the JPA, meta information can be stored for the entity class in the form of a sep-
arate XML file, as before, using deployment descriptors. The use of annotations, how-
ever, is to be preferred — in particular, because this is normal practice in the standard
Java SE 5.0.
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In this example, an entity with the name Employee would be mapped
onto a database table with the name EMPLOYEE in accordance with these
rules. However, because the names in this case are to be different, you
have the option of overwriting them using the annotation @Table. You
proceed in a similar fashion when mapping the persistent fields of the
entity to the corresponding table fields. If a persistent field deviates
from the name of the table field onto which it is to be mapped, the anno-
tation @Column is added with the specification of the corresponding field
name. This situation applies, for example, to the field Employeeld, which
is mapped onto the table field with the name 1D. The situation is differ-
ent, however, with the persistent field department, which is mapped
onto a table field with the same name.'® Here you do not have to make
any explicit specification. To identify the version field as such, it is nec-
essary for you to add the corresponding annotation @Version to the field
version.

1. Now add the required annotations to the Java source code of the class
Employee, as displayed in Listing 3.2.

@Entity
@Table(name="TMP_EMPLOYEES")
public class Employee implements Serializable {
@Column(name="1D")
private lTong employeeld;
@CoTumn(name="LAST_NAME")
private String TastName;
@Column(name="FIRST_NAME")
private String firstName;
private String department;
@Version
private int version;
[...]
}

Listing 3.2 Annotations in the Source Code of the Employee Class

10 The JPA specification supplies no guidelines on adherence to uppercase or lowercase
lettering for tables and field names. For the implementation of SAP JPA 1.0, the fol-
lowing rule therefore applies: If the name of the table or table field is listed explicitly
using the annotation, uppercase and lowercase lettering is taken into consideration. If,
on the other hand, the table name or table field is generated in accordance with the
default rule, uppercase lettering is used.
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2. If you have not already done so, finally create the missing imports for
the employee class. For this purpose, click on an arbitrary position in
the Java editor and choose Source » Organize Imports from the con-
text menu.

3. The missing import lines are then added, as shown in Listing 3.3.
Now, no more errors should be displayed in the source code of the
Bean class.

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Table;

import javax.persistence.Version;

Listing 3.3 Supplementing Certain Import Lines for the Class Employee

Generating the Primary Key

So that each instance of an entity can be uniquely identified, the entity
class must have an identifier that can simultaneously serve in the
assigned table as a primary key. For this reason, a field of the name
Employeeld is already created and you will use it as an identifier for the
employee entity. The specification of the identifier field is done easily
with the annotation @1d, which you place in front of the field. In this
case, this field with the primary key of the corresponding database field
is identified through the mapping onto the table field 1D.

Now you are faced with the question as to which generation method is
to be used to generate the primary key. Admittedly, there are many
solutions and strategies, but it would go beyond the scope of these
explanations. But this much should be said: Generally speaking, key
fields can be provided using the database or using the server container,
or even through the application itself. The JPA specification is again of
help to the developer and provides various strategies for automatic ID
generation. The developer does not need to implement any ID genera-
tion logic, but instead can initiate automatic primary key generation
using the annotation @GeneratedValue and can also use the various gen-
eration strategies.

In the following section, you will see how the table strategy is imple- Table for
mented. Here a special table for the generation of the ID value is used. D generation
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First, however, you must create a corresponding table because it is not
automatically provided by the framework as a type of system table. This
work step is very simple.

1. Again start the Dictionary perspective and add a further table defini-
tion named TMP_ID_GEN to the already existing project EmployeeDic.

2. The new table should be defined exactly as shown in Figure 3.11 and
contain the two fields GEN_KEY and GEN_VALUE.' The field GEN_KEY
defines the table key and will contain the fully qualified class name at
runtime. The field GEN_VALUE is provided for storing the last generated

ID value.
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B3 Local Dictionary = Table Header
EI@ Data Tvpes Diefine general properties of database kable
! -G Simple Types
*-EE Structures
Database Tables
-] TMP_EMPLOYEES ||| = Columns
[T TMP_ID_GEN
([ Database Views

Mame: |TMP_ID_GENM |
Description: | TMP_ID_GEN |

Define table colurns

EEEZEbsRDR|IBE

Column Mame | Ke | S..l Built-In Type | Length || Mok Null | D.I Description

GEN_KEY ] string 256 key for ID ge

GEN_VALUE O inkeger | 0 | walue For ID
4 | 3|

Columns ] Indexes | Technical Settings |

Figure 3.1 Creating Another Table Definition for ID Generation in the Dictionary
Project EmployeeDic

Annotation for the 3. As displayed in Listing 3.4, it is possible to generate a suitable ID gen-
ID generator erator with the help of this new table. In the source code of the
employee class, therefore, add the appropriate annotation @Tab1eGen-

erator by putting the class name in the front. The element table ref-

erences the table you have just created for ID generation while the ele-

ment name is used to identify the generator. The name of the

generator, in turn, is specified through the element generator using

11 The two table columns GEN_KEY and GEN_VALUE identify the standard names of the SAP
JPA implementation for tables for ID generation. Alternatively, you can define other
column names for the ID table, but in this case you must ensure corresponding map-
ping in the annotation for the table generator (@TableGenerator).
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the annotation @GeneratedValue. As shown in Listing 3.4, add this
annotation to the class attribute employeeld. Through the other ele-
ment strategy, you instruct the container to use the generation
method with the strategy of the type TABLE at runtime.

@TableGenerator(name="idGenerator", table="TMP_ID_GEN",

pkCoTumnName="GEN_KEY", valueColumnName="GEN_VALUE")

public class Employee implements Serializable {

@Id

@GeneratedValue (strategy=GenerationType.TABLE,
generator="idGenerator")

@Column(name="1D")

private long employeeld;

[...]

Listing 3.4 Definition of a Primary Key for the Employee Entity

Formulating the Query Using an EJB QL Statement

Search queries are often used during access to database data. The speci-
fication for EJB 3.0 provides multiple options on how you can imple-
ment queries. The named parameters are an important element here;
they are used both in static and dynamic queries.

You may remember how for the earlier EJB versions' static queries were
defined in the EJB deployment descriptor and then, in an additional
step, how the behavior of the finder methods were to be specified using
the EJB QL statements. EJB version 3.0 continues this approach and pro-
vides for this purpose a simplified execution method. It allows the pro-
grammer to add static queries using the annotation @NamedQuery within
the Java source code. This is a predefined query that is identified by its
name. As is standard with finder methods, the method behavior is not
specified using Java source code but through EJB QL statements. You
can use these to formulate suitable search queries.

This is precisely what you will do at this point by formulating the
required EJB QL statement for a query named Employee.findAll.

1. Create the annotation @NamedQuery in the Java Editor, before the def-
inition of the class Employee.
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2. The element name serves to identify the query using a string value. The
element query adopts the EJB QL statement SELECT e FROM Employee e
(Listing 3.5).

@NamedQuery(name="Employee.findAl1",
query="SELECT e FROM Employee e")

@Entity

@Table(name="TMP_EMPLOYEES")

public class Employee implements Serializable {

[...]
Listing 3.5 Definition of a Query for Displaying All the Employee Objects

3.4.3 Configuring the Application for Database Accesses

So that the EJB container can handle the database accesses in the first
place, it must know certain global settings for persistence, such as the
name of the data source, which is required for the link to the database.
As a rule, configuration tasks are taken on by the server, but there are
some exceptions. Therefore, we will describe how these few configura-
tion tasks are to be executed once by the developer for the EJB project.
This manual configuration of the Java persistence takes place in a special
persistence descriptor with the name persistence.xml.

Defining the Persistence Unit

In a typical EJB application, the data model consists mostly of several
entities that reference each other and are to be mapped onto one and the
same database schema. You must now ensure that all entity classes that
belong together also build a logical unit for the EJB container at run-
time, are managed by the entity manager as such, and fall back on one
and the same data source. This kind of logical unit is described as a per-
sistence unit.

The persistence unit is comprised of entities of an application that are
addressed at runtime through the Entity Manager. Remember that a per-
sistence unit must be set explicitly — even when, as in this case, only a
single entity is involved.
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All entities that belong together and form a persistence unit can be listed
explicitly in the configuration file. This, however, is not absolutely nec-
essary because the persistence framework otherwise searches through
the application for entities and automatically finds them. In this tutorial
application, only the name and a short description should be specified
for the persistence unit. The basic principle is to perform configuration
only in an exceptional case. In addition, two further specifications are
required — one for the JTA data source and one for the version genera-
tor.

Because this kind of configuration file is not yet contained in the current Configuration in
EJB project, create the file persistence.xml using the appropriate XML Persistence.xml
schema.

1. To do this, select the EJB project in the Project Explorer and navigate
to the folder META-INF.

2. From the context menu for this folder, choose the menu path New «
Other - XML - XML and navigate with Next to the next step.

3. On the displayed wizard page, select the option Create XML file from
an XML schema file and again press the Next button.

4. On the following wizard page, enter “persistence.xml” as the file
name and choose Next.

5. As shown in Figure 3.12, now decide on the option Select XML Catalog
entry and then persistence_1_0.xsd from the displayed XML catalog.

x
Select XML Schema File
Select the schema file bo create the SML file, \
1x]

" Select file From workbench
% Select ¥ML Catalog entry

¥ML Catalog

ke ﬂ
[S] arm_1_0.xsd

[Epersistence_1_0.xsd E_SR1/eclipss
ﬁnersistent.xsd FiIe:J’C:J’Ili)E CE SRIJ’EC"D'S el

Figure 3.12 Selection of XML Schemas when Creating
persistence.xml for the EJB Project
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6. On the next wizard page, confirm your selection by pressing Finish.

7. To complete the content for the persistence descriptor, use the design
view (Figure 3.13) and, using the context menu for the last entry, cre-
ate a few additional tags. You will find the required configuration

specifications in Table 3.1.

=
‘.m EmployeeServicess. ., | m EmployvesServicesL,.,

=7l

[&] persistence:persistence
Remove

Add Before
Add After

Add DTD Infarmation. .
Edit Mamespaces. .,

Add Child 3

% encoding="LlTF-8"
{narcickenie-unitt)

WErsion:

3
7=? Add Processing Instruction

Design | Source |

Figure 3.13 Creating More Tags in the Design View of persistence.xml

XML Tag Assigned Value

persistence-unit | name
persistence: description
persistence: jta-data-source
persistence: properties

property | name

property | value

EmployeePU
Sample Application Persistence Unit

TMP_EMPLOYEES_DATA

com.sap.engine.services.orpersis-
tence.generator.versiontablename

TMP_ID_GEN

Table 3.1 Specifications for Persistence Unit in persistence.xml

8. The name of the persistence unit is generally optional and is added to
the XML source within the element <persistence-unit>. We will
refer to the persistence unit again when the instance of the unit is to
be accessed in the session bean using the Entity Manager.

9. Within the element <persistence-unit>, use the tag <jta-data-
source> to enter the data source alias. We will also deal with this in

more detail at a later point.

136



Implementing Access to Table Data | 3.4

10. Finally, enter a <property> to enable versioning of the data source.
This specification is necessary for the following reason:

So that versioning of the data source is at all useful, the JPA specifi-
cation requires that the data source uses the isolation level
READ_COMMITTED. However, to cater to the difference between this re-
quirement and the actual isolation level READ_UNCOMMITTED, you will
need a suitable version generator. You address this kind of generator
in the persistence.xml through a certain property of the persistence
unit. You specify this property using the name element from Table
3.1.

In addition, a version generator requires a suitable database table.
Any arbitrary generator table that has the field names GEN_KEY and
GEN_VALUE is suitable for this. By all means, the table TMP_ID_GEN pre-
viously created is suitable for this purpose. Therefore, assign it as the
property value.

11. The generated XML source then corresponds to the lines in Listing
3.6:

<?xml version="1.0" encoding="UTF-8"?>
<{persistence xmlns=
"http://java.sun.com/xml/ns/persistence” [...]1>
<{persistence-unit name="EmployeePU">
{description>
Sample Application Persistence Unit
</description>
{jta-data-source>TMP_EMPLOYEES_DATA</jta-data-source>
<{properties>
{property name = "com.sap.engine.services.
orpersistence.generator.
versiontablename"
value= "TMP_ID_GEN">
</property>
<{/properties>
</persistence-unit>
<{/persistence>

Listing 3.6 Resulting XML Source of persistence.xml
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3.5 Defining the Business Logic

After you have completed the data accesses in Section 3.4, Implementing
Access to Table Data, using a JPA entity, now turn to the business logic.
Because you are using EJBs, session beans'2 are usually the best way of
encapsulating the business logic.

For this purpose, you will now create a stateless session bean named
EmployeeServices, and then add and implement the required business
methods. Using the business methods, arbitrary clients should be in a
position to adopt the employee registration data entered by the user and
finally pass them for storage to the entity Employee. Also, it should be
possible for all existing data records on all existing employees to be
passed to clients for display purposes.

3.5.1 Creating a Session Bean

To create a session bean named Employee Services, start the appropriate
creation wizard.

1. Start the context menu on the project node EmployeeEjb in the
Project Explorer, and choose the menu option New « EJB « EJB 3.0 «
EJB Session Bean 3.0.

2. In the displayed dialog box, assign certain elementary properties in
accordance with the list in Table 3.2.

3. Because no further options are required for the session bean you want
to create, choose Finish. By doing this, you start the generation pro-
cedure.

12 In distributed applications, session beans implement the application-relevant pro-
cesses and tasks, take care of the transaction management, and arrange access to low-
level components, such as entities or other data access components as well as auxiliary
classes. This use of session beans matches the session facade design pattern and serves
to define a clear separation between the different levels (data accesses and business
logic) with the aim of increasing performance at runtime.
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Field Name Assigned Value

EJB Class Name EmployeeServices

EJB Project EmployeeEjh

Default EJB Package com.sap.demo.session
Session Type Stateless

Transaction Type Container

Create Business Interface Checkbox Local activated

Table 3.2 General Properties when Creating the Session Bean EmployeeServices

4. As shown in Figure 3.14, the wizard creates a bean class EmployeeSer-
vicesBean and the respective business interface EmployeeServices-

Local.

== EmplayesDic
E"g EmployeeEib
- - Deployment Descriptor: EmployesEjb
El # gjbModule
=8} com.sap,dema.entity
: L [ Emplovee java
E-H com.sap.demo.session
] 1 1 java
[3] EmploveeservicesLocal, java
(= META-INF
B\ RE System Library [jre1 5.0_09]
Bl SAP Java EE S Libraries
B[ build

Figure 3.14 Session Bean EmployeeServices in the Project Explorer

When you created the session bean, you assigned the type Stateless.
Therefore, this meta information is stored in the generated bean class by
placing the respective annotation @Stateless in front of the class name.
In contrast to stateful session beans, this session bean is not able to store
its state in its instance variable. The application does not provide for
storing user-specific information. As a result, the methods of the session
bean will behave as stateless.

The declaration of the business interface as a local interface in turn
means that the annotation @Local is generated for the interface name. As
already mentioned, business methods of the session bean are exposed at
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this business interface so that a client can access the session bean with
the help of this precise interface. In the case of a local interface, one can
assume that the EJB and the client are on the same server.

3.5.2 Implementing the Session Bean Class

So far, the procedure has been mostly declarative in nature. Now the
implementation of the specific service functions for the tutorial applica-
tion will follow. Using the business methods, you will implement the
functions that are also available to the client application. In the case of
business methods, you are dealing with special methods of the session
bean that implement their specific service functions that are available on
an external basis.

Generally speaking, business methods are declared as regular Java meth-
ods in local, remote, or, if necessary, in both business interfaces, and are
implemented in the respective session bean class. Depending on the
business interface that provides the appropriate business method, this
method is available either for local or remote clients, or for both.

In the following explanations, you will see that you only need to supply
local clients with data and implement certain business methods that
already show, in the examples, how some of the basic operations on per-
sistent objects are to be performed. In this way, you will learn — with
the help of the method createEmployee() — how a new data record is
created and how it is stored permanently in the database. You will also
learn how to implement the search for a data record with the primary
key using the method getEmployeeById(). A further read access is con-
nected with a query execution and defines the third business method
getAlTEmployees() for the tutorial application.

Keeping the Instance of the Entity Manager

Business methods should be able to create new data records, manipulate
existing ones, and finally synchronize the changes with the database.
For this reason, you require a kind of local interface for interaction with
the database. The JPA provides the application developer with such an
interface to the Entity Manager. The purpose of the Entity Manger is to

140



Defining the Business Logic | 3.5

control the lifecycle of entity objects and to change their status. Using
the Entity Manger, you can perform all database operations on entities
and thus create, change, read, search for, or even delete objects on the
database. Listing 3.7 shows you how you access the persistence unit,
starting from the session bean, and how you define the Entity Manager
for the persistence unit.

@Stateless
public class EmployeeServicesBean implements
EmployeeServiceslLocal {
@PersistenceContext (unitName = "EmployeePU")
private EntityManager eManager;
[...]
}

Listing 3.7 Access to the Entity Manager Within the Session Bean

As you can see from Listing 3.7, the session bean declares a variable of
the type EntityManager, without having a certain value assigned to it.
Two aspects are of interest here: First, the source code is part of the ses-
sion bean and is executed on the application server. On the other hand,
the variable is provided with the annotation @PersistenceContext. In
addition, this annotation contains the element unitName. Using this
parameter, you enter the name of the persistence unit on which the
Entity Manager operates. You will surely remember that the entered
value corresponds exactly to the name you have already entered in the
configuration file persistence.xml.

This is of interest here because the session bean uses a technique called
resource injection. Due to the annotation, it is left up to the server to
supply the variable (here: eManager) with an EntityManager instance. In
this way, you ensure that this variable is always correctly initialized
when a business method is called for the first time.

Creating a New Employee Data Record on the Database

After you have seen how you can access the Entity Manager in the bean
class, you will now see — on the basis of the business method create-
Employee() — how easily a new data record can be created on the data-
base. First, an instance of the entity Employee is created using a construc-
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tor. The data required for specifying an employee is passed in the form
of a method parameter. Access to the persistent fields is performed
using the setter methods. The fully specified object employee is finally
passed using the method persist() to the Entity Manager that triggers
permanent storage on the database. As a result, the business method
returns an ID of the type Tong.

The complete implementation of this method can be seen in Listing 3.8.

public Tong createkmployee(String lastName, String
firstName, String department) {
long result = 0;
Employee employee = new Employee();
employee.setFirstName(firstName);
employee.setlLastName(TastName);
employee.setDepartment(department);
eManager.persist(employee);
result = employee.getEmployeeld();
return result;

}
Listing 3.8 Source Code for the Business Method createEmployee()

Searching for a Data Record Using an ID

Frequently, an application must be in the position to first identify a cer-
tain data record on the database before it can perform a new operation
on this data. The search for a certain employee data record using the ID
(that is, the primary key) is shown as an example in Listing 3.9.

public Employee getEmployeeById(long empld) {
Employee employee =
eManager.find(Employee.class, Long.valueOf(empld));
return employee;

}

Listing 3.9 Source Code for the Business Method getEmployeeByld()

In this case, the call takes place using the find() method of the Entity
Manager. This method contains two arguments: The first argument is
the entity class of the object to be searched for, while the second argu-
ment is the object representation of the entity identifier, that is, the key
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field. The find() method returns the found entity instance or nu11 if no
such entity was found in the database. Because the find() method was
implemented generically, a casting of the resulting value is not required
in this case. In other words, the find() method is parameterized in such
a way that the type of the returned result matches the type of the first
argument of the method call. Whatever the case, an instance of the type

Employee is returned.

Executing a Query

Another business method getAT1Employees () will now solely be used to
demonstrate how a query can be used to read a resulting set. You will
remember how you formulated a named query in Section 3.4.2, Defin-
ing an Employee Entity, using a select clause. In that case, a search query
was stored with the symbolic name Employee.findA1l in the source
code of the Employee entity. Now you should use these queries to read
the database records. It should be possible to return a list of all existing
employees for a particular client.'3

As you can see from the implementation of this finder method in Listing
3.10, query objects can be created through the Entity Manager. This is
done by calling the method createNamedQuery(). As a parameter, a
place holder that contains only the name of the defining query is passed.
The execution of the query in the database and the reading of the result-
ing set is performed using the query method getResultList().

@SuppressWarnings("unchecked")
public List<Employee> getAllEmployees() f{
Query query =
eManager.createNamedQuery("Employee.findA11");
List<Employee> result =
(List<Employee>) query.getResultlList();
return result;
}

Listing 3.10 Source Code of the Business Method getAllEmployees()

13 The clients can be Java Server Faces, JSPs, servlets, Java classes, a different EJB, or a
Web service client. Clients, particularly in large applications, have the advantage that
they themselves do not have to define any search queries. Changes and adjustments
to the query form can be done centrally, without any effect on the client.
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To minimize the number of warnings at compiler time, add the appro-
priate annotation to the source code. @uppressWarnings is used solely
to suppress certain compiler warnings in connection with this method.

Defining the Transaction Behavior of the Business Methods

So far you have not made specifications at any time regarding the trans-
action behavior of the business methods. Only when you created the
session bean did you determine the transaction type with the attribute
Container. This means that, in such a case, the EJB container takes over
control of the transaction. In relation to the Entity Manager, you have
already seen that the EJB container takes over important standard tasks
from the programmer.

With this transaction type, you do not have to set the commit or rollback
methods. You can leave this task entirely up to the EJB container. As a
rule, there is the option with EJBs of implementing the transaction logic
on a program-controlled basis in the bean class itself. However, the deci-
sion in favor of transaction behavior based on the container-supported
approach when a session bean is created has already been made.

You determine the desired transaction behavior for the individual busi-
ness methods of the application using transaction attributes. As a result,
all operations that go beyond read access to data records must take place
within a transaction. Because transaction attributes are metadata, we
use, as usual, predefined annotations. The required additions in the
source code are shown in Listing 3.11.

@Stateless
@TransactionManagement
(value=TransactionManagementType.CONTAINER)
public class EmployeeServicesBean
implements EmployeeServiceslocal {
[...]
public Tong createEmployee(String lTastName, String
firstName, String department) {
[...]
}
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public Employee getEmployeeById(long empld) {
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[...]
}
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public List<Employee> getAllEmployees() {
[...]
}

[...]

}

Listing 3.11 Transaction Attributes of the Business Methods of the Session Bean
EmployeeServices

First, the annotation @TransactionManagement defines that transaction
control for the entire session bean is delegated to the container. Another
annotation, @Transaction Attribute, enables you to adapt the transac-
tion context individually to each single method. Remember that no
annotation was added to the method createEmployee(). The reason for
this is solely that the default behavior is to be applied to the basic oper-
ation. The corresponding transaction attribute is called REQUIRED and
requires that a new transaction is always started whenever this is neces-
sary. If, for example, at the time of the method call no transaction is
active, the application server automatically starts a new transaction, exe-
cutes the business method, and sets a transaction commit immediately
thereafter. On the other hand, if a transaction is already available, this
one is used. This way you can see that creating a new employee data
record definitely requires a transaction, albeit one that is not necessarily
exclusive. For this purpose, the transaction attribute REQUIRED is ideal.

The methods getEmployeeBylId() and getAllEmployees() are quite dif-
ferent. Both methods implement solely reading accesses. Because no
changes to data records result, a transaction is actually not required. If,
however, a transaction is active at the time of the method call, this one is
used. A new transaction, on the other hand, is not started. On the basis of
this tolerance toward the transactions, the default behavior can be over-
written with the transaction attribute SUPPORTS. In this way, the source
code of the bean class is complete. If you have not done so already, add
the missing imports to the bean class. Then click on an arbitrary position
in the Java editor and select Source » Organize Imports from the context
menu. The missing import lines are then added. Now no further errors
should be displayed in the source code of the bean class. Finally, adapt
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the formatting of the new lines by choosing Source « Format from the
editor context menu and then save the editor content using the corre-

sponding icon in the toolbar.

3.5.3 Adding Business Methods to the Business Interface

Because the business methods already defined in the bean class are not
automatically added to the appropriate business interface, you must per-

form this step manually.

1. To propagate individual business methods from the bean class to the
business interface, select the bean class in the project explorer by dou-
ble-clicking it. If no outline view is displayed in the current view,

open this one first.

2. As shown in Figure 3.15, select all the business methods within the
outline view, open the context menu, and then choose the option EJB
Methods » Add to Local Interfaces.
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Figure 3.15 Propagating the Business Methods to the Business
Interface, Starting from the Outline View

3. Listing 3.12 shows the resulting source code of the business interface.

import javax.ejb.local;
import java.util.List;
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import com.sap.demo.entity.Employee;

@Local
public interface EmployeeServiceslLocal {
public List<Employee> getAllEmployees ();
public Employee getEmployeeById (long empld);
public Tong createEmployee (String TastName, String
firstName, String department);

}

Listing 3.12 Business Methods in the Business Interface EmployeeServicesLocal

3.6 Creating a JSP-Based Web Application

The Developer Studio provides a special project structure for managing
Web resources such as JavaServer pages, JavaServer faces, servlets, static
HTML pages, and custom-tag libraries, as well as screen and graphic
files. To prepare the initial project frame, you will create a correspond-
ing project — that is, a Web module project — at the very outset.

To keep the Web application as simple as possible, add a JSP to the
project as the only resource and implement with it the user interface of
the Web client. In addition to the actual presentation editing, the
accesses to the business methods of the session bean EmployeeServices
should be implemented. As an example, use some information on the
configuration of the Web application in the corresponding deployment
descriptor.

3.6.1  Creating a Web Module Project

To create a Web module project, perform the following steps: Container for

Web resources
1. Start the New Project Wizard through the menu option File « New

Project.

2. In the displayed wizard window, select the category Web « Web 2.5
and then Dynamic Web Project 2.5.

3. With Next, you proceed to the next wizard window. There you enter
“EmployeeWeb" as the project name. Otherwise, take the default set-
tings and close the procedure by pressing Finish.
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4. The best way of looking at the project frame is in the Project Explorer.
In the JSP, you want to access resources from the Ejb module project.
Therefore, you must also take this project dependency into account.
For this purpose, click the project name EmployeeWeb and select the
menu option Properties from the context menu.

. In accordance with the specifications in Figure 3.16, select the prop-
erty Java Build Path, click the tab Projects, and assign the desired
project.
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Figure 3.16 Assigning Java Build Path to the Project EmployeeWeb

3.6.2

Implementing the User Interface with JSP

Now you can begin with the implementation of the user interface in the

JSP editor.

1. To add a JSP to the new project, click on the entry WebContent in the
Project Explorer and choose the menu option New « JSP....

2. You now see a wizard in which you can enter the name “index.jsp".

3. Further specifications are not required. Close the procedure by press-

ing Finish.
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Generally speaking, there are two sections in the source code of the JSP:

» A HTML basic structure that, for the most part, defines a static input
form for the Web application

» A dynamic Java-based section with which you can implement
accesses to the business logic

HTML Basic Structure

The form for registering new employees could hardly be easier. It con-
tains, in addition to the two input fields for the names, a selection list
with the corresponding departments and a pushbutton with which the
user can trigger registration. All these interface elements are listed
within a HTML table. The complete structure is displayed in Listing 3.13.

<%@ page language="java" [...] %>
<I!DOCTYPE html PUBLIC [...]1 >

<htm1>

[...]

<I-- Import statements -

<l-- Reference to Session Bean -->

<body style= "font-family:Arial;" bgcolor="D2D8E1">
<he>

Register New Employee

</he>

<form method="GET">
<{table border=0 align=center>

<trd>

<td width="150" >First name: <td>

<input type="text" name="firstname" value = "" size="20">
<tr>

<td width="150" >Last name: <td>

<input type="text" name="lastname" value = "" size="20">
<tr>

<td width="150" >Department: <td>
<select name="department" >
<option value="DEVELOPMENT">Development</option>
<option value="TRAINING"> Training</option>
<option value="MANAGEMENT"> Management</option>
<option value="ARCHITECTURE"> Architecture</option>
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</select>
<tr>
<td><td><br>
<input type="submit" value="Create" name="create">
</table>
<br>
</form>
<!- Invoke business method -->
</body>
</html>

Listing 3.13 HTML Basic Structure for the JSP

Access to the Session Bean

In accordance with Listing 3.14, first supplement the JSP source code
with some page directives whose import attributes contain the required
package for JNDI Lookup as well as the business interface.

So that the reference to the session beam is retained, a JNDI Lookup is
performed on the context variable context. Remember that with
EmployeeRegister in Listing 3.14 you use a symbolic name for the ses-
sion bean. This name must also be specified as the reference name in the
deployment descriptor of the Web application. The result of the lookup
is assigned to the local employee object employeeService after the busi-
ness method casting is completed.

<%

<l-- Import statements -

<%@ page import="javax.naming.*" %>

<%@ page import=
"com.sap.demo.session.EmployeeServiceslLocal" %>

<l-- Reference to Session Bean -->
<%!
private EmployeeServiceslLocal employeeService;
private void Tookup() {
try |
InitialContext context = new InitialContext();
employeeService = (EmployeeServiceslocal)
context.lookup("java:comp/env/EmployeeRegister");
} catch (Exception ex) ({
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System.out.printin("Couldn't find bean"+
ex.getMessage());

public void jspDestroy() f
employeeService = null;

}

%>

Listing 3.14 Dynamic Section of the JSP — Access to the Session Bean

Calling the Business Method

In the following section, not all business methods will be called within
this simple Web application. We merely wish to show an example of
how, starting from a JSP, the business method createEmployee() can be
called in order to create a new data record on the database. This, too, is
an intended simplification because, normally, a JSP-based Web applica-
tion consists of a combination of JSPs and servlets, and possibly also fur-
ther JavaBeans as auxiliary classes in order to achieve strict separation
between the actual presentation layer and the controller layer. While
JSPs are preferred for presentation editing and thus also preferred as a
view component, servlets or JavaBeans usually act as a controller and
implement the application logic.

To save some of the typing work, the call for the method createEm-
ployee() is embedded in the JSP source. However, it could be trans-
ferred easily to a servlet or to a JavaBean in the role of a controller. As
you can see from Listing 3.15, a JNDI lookup precedes the actual call of
the session bean method. This lookup was previously encapsulated in a
separate method 1lookup(). Therefore, the local session bean object
employeeService calls the business method createEmployee(). The local
variables 1Name, fName and eDepartment are passed as parameters. They
were defined in the first lines of the source code excerpt and adopt the
currently entered user values. Whenever the business method is suc-
cessfully executed in the EJB container, it returns a valid EmployeelD.
Otherwise an exception is thrown and a corresponding text is displayed
on the user interface.
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Reference to
session bean

<%
Tookup();
if(this.employeeService == null) {
throw new IllegalStateException("Bean not available!");
}

String fName = request.getParameter("firstname");
String 1Name = request.getParameter("lastname");

String eDepartment = request.getParameter("department");
if(1Name == null || fName == null
|| TName.length() == 0 || fName.length() == 0) return;
long empID = employeeService.createtEmployee(1Name, fName,
eDepartment);

if(empID == 0)

out.printin("<H3> Failed! </H3>");

else

out.printin("<H3> Success! </H3>");

%>

Listing 3.15 Dynamic Section of the JSP — Business Method Call

3.6.3 Descriptions in the Deployment Descriptor web.xml

You can get information on the configuration of the Web application
from the deployment descriptor web.xml. The entries contained there
are evaluated at deployment time by the Web container. On one hand,
the Web container receives all information as to how the individual
resources of the project fit with each other. On the other hand, the
assignment of security roles is contained in web.xml. These are the secu-
rity roles through which the access authorization for the Web applica-
tion can be controlled at runtime.

However, only certain mapping information is stored in the descriptor.
In the following step, you will define, as an example, a reference to the
required session bean using a symbolic name, but you will not make any
further specifications on the configuration of the Web application.

Symbolic Name for the Session Bean

For access to the session bean, we have used a symbolic name, not the
real bean name, in the JSP source code (see Listing 3.14). So that the
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Web container can assign such a name at runtime as well, a correspond-
ing mapping regulation must be stored in the deployment descriptor.

1. To define a symbolic name for a reference to the session bean, open
the deployment descriptor web.xml. Click on the tab Design and add a
further tag for the EJB reference.

2. Similar to the specifications in Figure 3.17, set the EJB name “Employ-
eeRegister” so that it matches the entry in the JNDI lookup in the JSP
source code from Listing 3.14.

= .
version="1,0" encading="UTF-&"
= [e] web-app {{idescription™®, display-name®, icon®)) | distributable |
@ id WebApp_ID
(@ wersion 2.5
#mins http:ffiava. sun.comfxmlfns/javaee
@ xmins:xsi bkt enes w3, orgf 2001 fXMLSChema-instance
xsiischemalocation httpeffiava. sun. comi=mifns/javaee http:ffiava,sun.con
[8] display-name Employesweb
[8] welcome-file-list {welcome-file+)
I e B F {description™®, ejb-ref-name, ejb-ref-type?, local-home?
[€] ejb-ref-name EmployeeReqgister
[€] ejb-ref-tvpe Sessi
[&] lacal com, #4%,dema, session, EmployeeServicesLocal
Design] Source |

Figure 3.17 Setting the EJB Reference to the Session Bean in web.xml

3. The new entries are automatically added to the XML source at a suit-
able position. You can ensure this is the case by clicking on the tab
Source and then navigating in the displayed XML source to the ele-
ment <ejb-local-ref> (Listing 3.16).

<?xml version="1.0" encoding="UTF-8"7>
<web-app id="WebApp_ID" version="2.5" [...1">
<display-name> EmployeeWeb</display-name>
<welcome-file-list>
[...]
</welcome-file-Tist>
<ejb-Tocal-ref>
<ejb-ref-name>EmployeeRegister</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>
com.sap.demo.session.EmployeeServiceslocal
</local>

153



3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

</ejb-local-ref>
</web-app>

Listing 3.16 Generated XML Source for the Reference to the Session Bean

4. With this entry, you have now defined a mapping between a freely
selectable reference name (symbolic name) and the real bean name.
Thus, the reference name assigned in the source code of the JSP for
the session bean can be used, and it remains unchanged there, even if
the bean name changes.

3.7 Defining and Deploying the Java EE Overall
Application

While the business functions are provided with the EJB module, the
suitable Web components have now been added with the Web module.
At this point, only the components for a Java EE overall application need
to be combined. The Developer Studio provides a special project type
for this purpose. It is referred to as an enterprise application project.

To create the employee overall application, first create an enterprise
application project named "EmployeeEar". Here you also set up a config-
uration file for the data source alias before you generate the appropriate
EAR for the overall application and finally deploy this on the Java appli-
cation server.

3.7.1  Creating the Enterprise Application Project

To create the project, proceed as follows:

1. Start the New Project Wizard through the menu option File - New
Project.

2. In the displayed wizard window, select the category J2EE - Java EE
and finally Enterprise Application Project 5.

3. By pressing Next, you proceed to the next wizard window. There you
enter "EmployeeEar” as the project name. Accept the default settings
and proceed to the next wizard window by pressing Next.
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4. In accordance with the specifications in Figure 3.18, assign the EJB
module EmployeeEjb.jar and the Web module EmployeeWeb.war to the
EAR project before you complete the procedure by pressing Finish.

r:_: New Enterprise Application Project 5 1 ll
Java EE Modules to Add to the EAR 7
Select, Deselect, or Add 12EE modules to the new EAR. | I‘A_.
O EmploveeDic. jar
EmployesEih, jar
EmplovesWeb. war
() < Back | [dExh = | Finish I Cancel |

Figure 3.18 Creating the Modules Ejb and Web for the EAR Project

3.7.2 Creating the Data Source Alias

You will remember that you entered a name for the data source alias in
the deployment descriptor persistence.xml. Such a data source alias has
not been created anywhere so far. You will now perform this step. How-
ever, before continuing further, we would like to illustrate briefly the
importance of the data source alias.

Excursion into Database Accesses and the Data Source Alias Data source alias
as link between
The data source alias is required in order to enable communication to the application and

database for table accesses from the application. A data source alias is a logi- database
cal name for server-side access to a database resource (in this case, the table).

The connection pool on the application server has knowledge of the path to

the database table — that is, the actual data source that must already exist on

the server.

The default data source (also called system data source) plays a special role
here. This data source is automatically created during the installation of the
AS Java and is not associated with a specific application. The default data
source is intended as a default connection pool for use by several applications.

If you now create the data source alias in the Enterprise Application Project,
you will associate it with the default data source. The use of an alias at this
point has several advantages:

> The developer does not have to specify the physical path name for the
database resource. Only the database system requires this information for
managing its own resources.
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» In addition, the alias is assigned in the Developer Studio and assigned to a
specific project. Thus, the administrative task that the developer would be
required to take on in a separate administration tool is dispensed with.

> Last, the use of a data source alias enables you to keep the entire applica-
tion portable.

Because a corresponding configuration file for the data source alias is
not yet contained in the current project, you will now create this first —
starting from the appropriate XML schema.

1. In the Project Explorer, select the project and navigate to the folder
META-INF.

2. From the context menu of this folder, select the menu path New «
Other « XML « XML and press the button Next. On the displayed wiz-
ard page, choose the option Create XML file from an XML schema file
and press Next.

3. On the following wizard page, enter “data-source-aliases.xml” as the
file name and again choose Next.

4. As you can see in Figure 3.19, you decide on the option Select XML
Catalog entry and then select data-source-aliases.xsd from the dis-
played XML catalog.

x
Select XML Schema File
Select the schema file to create the 2ML File, N
(X

€ Select file: from workbench

¥ Seleck XML Catalog entry

¥ML Catalog

Figure 3.19 Creating a Data Source Alias for the EAR Project

5. On the following wizard page, select data-source-aliases for the Root
element and confirm this by pressing Finish. With this step, the XML
file named data-source-aliases.xml is created. It is then visible in the
project structure.
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6. Now open the XML editor and enter the system data source
“${com.sap.datasource.default}" and the name “TMP_EMPLOYEES_
DATA" for the alias.

The alias name is assigned to the system data source at deployment. You
can easily follow this by looking at the generated XML source. It
matches the lines shown in Listing 3.17.

<?xml version="1.0" encoding="UTF-8"7>
{data-source-aliases [...]1>
<aliases>
{data-source-name>
${com.sap.datasource.default}
</data-source-name>
<alias>TMP_EMPLOYEES_DATA</alias>
</aliases>
<{/data-source-aliases>

Listing 3.17 com.sap.datasource.default as Representation
of the System Data Source on the AS Java

3.7.3 Deployment of the Employee Application

Before the deployment of the application starts, you should check that  Preparations for
the server process was started and that the database is online. The pre- deployment
requisite for this, however, is that the AS Java has been registered in the

Developer Studio.

As shown in Figure 3.20, two different options are provided on the Pref-
erences page. Depending on whether the assigned AS Java was installed
on the local host or under an arbitrary address in the LAN, you must dis-
tinguish between the option for the remote installation and the option
for local installation. The required entries are contained in the system
information, which you will find on the server welcome page.

Deploying the Dictionary Table Definitions

To be able to transfer the table definitions from the Dictionary project to
a database instance, you need an archive file. This kind of Dictionary
archive represents a transportable unit of the Dictionary project and
combines all the Dictionary definitions of the project from the gener-
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ated metadata. Only when the created archive is deployed on the appli-
cation server is the physical representation of the corresponding table
generated on the database instance on the assigned database using CRE-

ATE TABLE.

[z Preferences

I type filker bext

[ General
[ Ant
- Backend Services
- CAF Preferences
- Data
Development Infrastr
+1- Dickionary
elp
- InstallfUpdate
- Internet
- J2EE ¥ML Templates
-Java
+- Plug-in Development

- Services
- Team
- Trace Configuration

- alidation _ILI
| »

4

-
-

SAP AS Java =

=

Please select an engine installation to be used For development.
¥ 5AP AS Java is installed on remote host.

Recent configurations: | j
Message Server Hosk: IpwdF12345
Message Server Port: ISSUD
7 585 A5 Java s installed on local biost,
System Mame: I
Java EE Instance: I
SiC5 Instance: I
Restore Defaults | Apphy

Figure 3.20 Registering the Application Server Java Under Preferences

1. To create the archive, choose the project node in the Dictionary
Explorer, open the context menu, and select the option Create

Archive.

2. Afterward, choose Deploy from the context menu of the project node

(Figure 3.21).

Navigat0r| =08
BRI
EE= a
=] @ Dictionaries Mew L4
E-{3F Local Dictionar i i
EH@ Dt Type Build Project
& smple Rebuid Project
B Struct Reload
B Datahase
EI|:| TMP E Creategrchive
T Faste CGEE
[ eI Check Project Archive Versions
“-{[@ Database | 3§ Delete Delete

Figure 3.21 Deploying the Table from the Dictionary Project
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3. From the Deploy View Console (Figure 3.22), you immediately get a
report as to whether or not the deployment activity was successful.
From this view, you can also look at the corresponding log file.

- Dieploy View Copsole X 8 Tasks|PrUb\ems| 57, = EH
! I Time | Message | ;l

1 13:30:40  Undeploy item 'sap.comfEm.. .

1 13:30

i 130 Deploy finished successFully,

i3
1 1330

i 133 I Dan't shew this dislag again

i 13

i 133

1133 Ok
i 13

i 13:3029  [#1]: Undeploy ftem name..,

i 13:30:20  [#1]: Undeploy item name...

i

-
12020090 T#1 7 Colecbod Theor be e _I

Figure 3.22 Displaying the Deploy Output View After Successful Deployment

4. If you are implementing the MaxDB as a database system and have sQL Studio

installed the SQL studio, you can now easily check that both tables
have been correctly created on the database instance. For this pur-
pose, you need only to log on to the database server through the SQL
Studio and to search for TMP_EMPLOYEES and TMP_ID_GEN in the list of
all currently deployed tables on the server. If you have knowledge of
SQL, you can also create some data records for the new employee
table in the SQL Studio.

Creating and Deploying the Enterprise Application Archives

The Enterprise Application Archive groups the JAR and WAR archives
into one single archive with information from the corresponding
deployment descriptors. The EAR contains, in addition to the business
logic components, the presentation components. It can be easily created
and deployed in one step from the Developer Studio using the Servers
view.

1. Open the Servers view. The entry SAP Server should already be dis-
played here.

2. From the context menu, choose the option Add and Remove Projects.
As shown in Figure 3.23, select the EAR project and confirm with Fin-
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ish. Thus, in one single step you have added the deployable projects
to the Servers view, generated the respective archives WAR, JAR, and
EAR (and added them to the project view in the Project Explorer), and
immediately triggered the deployment.

152 Add and Remove Projects |
Add and Remove Projects
Modify the projects that are configured on the server

Mowe projects to the right to configure them on the server

Available projects: Configured projects:

fdd = |
< Remove |

‘L@ EmploveeEib
i (g Employeeiieb

(7 < Back | THERE > | Firish I Cancel |

Figure 3.23 EAR Deployment Using the Servers View

3. If your deployment activity has been successful, you will receive the
message "Deployment finished successfully”.

3.7.4 Starting the Employee Application

Provided the server is called localhost and can be reached under the
port 50100, you can start the employee application with the URL http://
localhost:50100/EmployeeWeb/index.jsp (Figure 3.24).

Addrassl http:fflocalhost:50100/Employesteb/indes. jsp j Go

Register New Employee

First name: John

Last name Doe
Department: Development =
Create

|

Figure 3.24 Starting the Employee Application in the Browser
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