Alfred Barzewski, Carsten Bonnen, Bertram Ganz,
Wolf Hengevoss, Karl Kessler, Markus Kiifer,

Anne Lanfermann, Miroslav Petrov, Susanne Rothaug,
Oliver Stiefbold, Volker Stiehl

Java Programming with SAP NetWeaver®

JiSaiwiamassa
L0 asnAvaARIaIN AYS

Java Programming
with SAP NetWeaver

- Y

GalileoPress

° .= ®

Galileo Press

Bonn « Boston

Contents at a Glance

1 SAP NetWeaver ...
2 Overview of the SAP NetWeaver Developer Studio

3 SAP NetWeaver Developer Studio —
Step-by-Step to a Sample Application

4 Java PersiStence ...

5 Web Services and Enterprise Services in the
SAP NetWeaver Composition Environment

6 Developing Business Applications with Web Dynpro

7 Running Web Dynpro Applications in
SAP NetWeaver Portal ...,

8 SAP NetWeaver Visual Composerccccceovciiieennnn,
9 Developing Composite Applicationscccccee

10 SAP NetWeaver Development Infrastructure and the
Component Model — Conceptsccccceevveeiiiiiiiiiiinnnnnn.

11 SAP NetWeaver Development Infrastructure —
Configuration and Administration

12 SAP NetWeaver Development Infrastructure —
Developing an Example Application Step-by-Step

13 SAP NetWeaver Application Server Java —
Architecture ...

14 Supportability of the SAP NetWeaver Composition
Environment ...

Contents

Preface to the Second EAitionccooeiiiiiiiiiieiiie e 17
Preface to the First EAitionoooouvviiiiiiiiiee e 21

1 SAP NetWeaver

1.1

1.2

1.3

1.4

1.5

Platform for Enterprise Service-Oriented Architecture 26
1.1.1 Enterprise SOA: A Definitioncccoevivieennnn. 26
1.1.2 Advantages of a Service-Oriented

Architecture ... 27
1.1.3 Enterprise SOA by Designcccccoeveiniieninennnn. 28
Platform for SAP ERP and SAP Business Suite 29
1.2.1 Enhancement Packagescccccoooiiiiiininicnnnn. 32
1.2.2 Switch and Enhancement Framework 33
1.2.3 Web Dynpro ABAPcoooiiiiiiiiiie e 35
Platform for Integration and Compositionc.cc..... 35
1.3.1 Integration Within a Systemcccccoiiiiennn. 35
1.3.2 Integration Using Standardsccccoeeeen 37
1.3.3 Invoice Verification Integration Scenario 37
1.3.4 SAP NetWeaver Process Integration 39
1.3.5 SAP NetWeaver Composition Environment 42
Technology Mapcoccueviiiiiiiieii e 45
1.4.1 User Productivityccoooiiiiiiiii 46
1.4.2 Information Managementc..ccooenin 48
1.4.3 Lifecycle Managementcccoeiviiiiiiiininennn, 51
1.4.4 Security and Identity Management 51
OULIOOK ..o 52

2 Overview of the SAP NetWeaver Developer Studio 53

2.1
2.2
23

USEr INTEITACE ..o 54
Workspace, Projects, and Development Objects 56
Open Source Initiativeccccoooo 59
2.3.1 Eclipse Software Development Kit 60
2.3.2 Integration of the Web Tools Platform 62
2.3.3 SAP-Specific Extensions (Tools and

INFrastructure)ooooveveiiiiiee e, 63

Contents

2.3.4 Extensibility by Third-Party Providers 67
2.4 Integration Platform ... 67
2.41 Integrating the SAP NetWeaver Development
Infrastructure ... 68
2.4.2 Integrating the SAP NetWeaver Application
ServerJavac.ccoocccviiiiiiiii 73
2.5 Tools and Perspectivescccocieriiiiiiiiniic e 81
2.5.1 Development Infrastructure Perspective 81
2.5.2 Dictionary Perspectiveccoooiiiiiiiiiiin. 84
2.5.3 J2EE Perspectiveoooo 87
2.5.4 Perspective for Composite Applications 91
255 Web Dynpro Perspectivecccoceeniiiiiicnnicens 95
2.5.6 Administration Perspectiveccccocviiinineenns 98
2.5.7 DTR Perspectiveooooeiiiii 100
2.6 |Installation and Update — Outlookc.cccceeevniiiiennnnnne. 101
2.6.1 Installation and Update Framework 102
2.6.2 Installing and Updating Features 106
2.6.3 Deinstalling Inactive Feature Versions and
Plug-In VErsionscccccovviiieiniiiieeniieee e 107
2.6.4 Installation Scenarioscccccooiiiiiiiiiiiiicnine 108

SAP NetWeaver Developer Studio —

Step-by-Step to a Sample Application

3.1 Employee Tutorial Applicationcccccccoiiiiniiiiiicnninens 114
3.2 First Steps ... 117
3.3 Defining the Data Modelcccceeviiiiiiiiiiiiiiicieeie 119
3.3.1 Creating a Dictionary Projectccccceeenn 119
3.3.2 Defining an Employee Tablecccccocvirnnnn. 121
3.4 Implementing Access to Table Datacccccooveevuieiinienns 125
3.4.1 EJB-Creating a Module Projectccccuvveennnn. 126
3.4.2 Defining an Employee Entityccccocceiiin 127

3.4.3 Configuring the Application for Database
ACCESSES ..o 134
3.5 Defining the Business LOZICcccovueeruieiiieiniiiciiieciiens 138
3.5.1 Creating a Session Beanccccccevvviiiiiiinnnnnns 138
3.5.2 Implementing the Session Bean Class 140

3.5.3 Adding Business Methods to the Business
Interfaceccoooiiiiiiii 146

4

3.6

3.7

Creating a JSP-Based Web Applicationccccccoveiiiens 147
3.6.1 Creating a Web Module Projectc..... 147
3.6.2 Implementing the User Interface with JSP 148
3.6.3 Descriptions in the Deployment Descriptor

web.Xml o 152
Defining and Deploying the Java EE Overall
ApPlication ..o 154
3.7.1 Creating the Enterprise Application Project 154
3.7.2 Creating the Data Source Aliasccccccevcneenne 155
3.7.3 Deployment of the Employee Application 157
3.7.4 Starting the Employee Application 160

Java Persistence

4.1
4.2

43
44

4.5

4.6

Open JDBC for Javaccccoeiiiiiiiiiiiceec e 161
Persistence Infrastructure of the SAP NetWeaver
Composition Environment at Runtimecccccccvvvnnnes 162
421 VendorJDBC ... 163
4.2.2 Native JDBC ..o 164
4.2.3 Statement Pooling ..o 164
4.2.4 SQL MONITOr .ooooiiiiiiiiiii 165
425 Table Bufferingc.ccccooviiniiniiiiii 166
4.2.6 Administration of Data Sourcesccocceevnnn. 166
Java Dictionary ... 168
Development of an Example Application 170
4.4.1 Project Management Scenarioccccoooe. 171
4.4.2 Implementing the Example Scenario

in EJB3.0and JPA ... 173
Programming with Enterprise JavaBeans 3.0/
Java Persistence APl ... 177
451 Basic Conceptscccoiiiiiiiiii 177
4.5.2 Preparing the EJB 3.0 Projectc.ccccocvvvernnnnn. 178
4.5.3 Implementing the Entitiesccccoviiiinnnn 182
4.5.4 Programming the Application Logic 193
4.5.5 Influence of Open SQL on the JPA Query

Language ..o 204
4.5.6 Influence of the Database on the JPA Query

Languageoeviiiiiiiiiiiiiiiiiiie s 207
OULIOOK ..o 210

Contents

Contents

5 Web Services and Enterprise Services in the

SAP NetWeaver Composition Environment

5.1 Enterprise Services Paradigmcccccovviiiiiiiiiiciniiineee 213
5.2 Services Registry ... 214
5.2.1 UDDI Server and Classification Service 215
5.2.2 Structuring of Servicesccccoeiiiiiiiiniiiniine, 216
5.2.3 Searching for Service Definitionsccccoeene. 219
5.2.4 Classifying SErvicesccocviviiiieiriieiiieanieenn 222
53 Consuming a Serviceccccccceiiiiiiiiiiiicicii 223
5.3.1 Does the Required Service Already Exist? 224
5.3.2 Creating a Web Dynpro Projectc.ccocovvvvnene. 225
5.3.3 Connection to the Services Registry 230
5.3.4 Definition of Data Flow and Creation of
Web Dynpro Ul ..o 232
5.3.5 Initialization of the Web Service Model 234

5.3.6 Development of Web Dynpro User Interfaces 236
5.3.7 Maintenance of the Web Service Destinations

in the SAP NetWeaver Administrator 238
5.3.8 Testing the Enterprise Service Consumer
Applicationccociiiiii 240
5.4 Outlook: Provision of a Service with the Enterprise
Services Repository ... 241

Developing Business Applications with Web

6.1 Principles and CONCEPLSoeevruiieeiiiiiieeiiiiiee e 246
6.1.1 Fundamental Features of Web Dynpro Ul
Technologycoccoveiiiiiiiiii e 247
6.1.2 Anatomy of Web Dynpro Components 252
6.1.3 Interfaces of a Web Dynpro Component 255
6.2 Web Dynpro Calls a Web Serviceccccocvviiiiininnnnn. 258
6.2.1 Preparation ... 261
6.2.2 View of the Pre-Prepared Local Web Dynpro
Development Componentsccccceeerennenn 265
6.2.3 Importing the Adaptive Web Service Model 269
6.2.4 Defining the Context-to-Model Binding in
Component Controllerccccoeiiiiiiiniie 277

10

Contents

6.2.5 Defining the Context Mappingcc.cccoceenne 282
6.2.6 View Layout and Data Binding 286
6.2.7 Controller Implementationcccccooiveininnnen. 297
6.2.8 Building, Deploying and Starting an

Application ... 305

6.3 Integrating Web Dynpro Components for Searching for

Ticker Symbols ... 306
6.3.1 Defining the Usage Relationship Between

Web Dynpro Development Components 312
6.3.2 Including the Symbol Search Component in the

Stock Quotes Componentcccccecveiieiiennene 316
6.3.3 Adding a Pushbutton to Search for Ticker

SYMDOIS oo 321
6.3.4 Using the Interface Controller of the Symbol

Search Component in the View Controller 323
6.3.5 Calling the Symbol Search Component in the

View Controller ..o, 325
6.3.6 Building, Deploying, and Starting the Enhanced

Tutorial Applicationccoocviiiiiiii 329

7 Running Web Dynpro Applications in

SAP NetWeaver Portal

7.1 Creating Web Dynpro iViews in the Portal 333
7.2 Creating a Web Dynpro Pageccccovuvvnoiiiniicnciennnn. 336
7.3 Adding Web Dynpro iViews to the Portal Page 338
7.3.1 Creating a Role and Worksetsc.ccccocverenns 339

7.3.2 Developing Web Dynpro Applications for the
Portal ... 340
7.3.3 Creating Personalizable Propertiesc.......... 340

7.3.4 Enabling Multiple iViews from a Web Dynpro
Application ... 342

8 SAP NetWeaver Visual Composer

8.1 Model-Based Developmentcccccoiiiiiiiiiiiiicie 347

8.2 Visual Composer in the SAP NetWeaver Composition
Environment ... 350
8.2.1 What's NEW?ocoiiiiiiiiiiiec e 350

"

Contents

8.2.2 Prerequisitesccocceiiiiiiiiiii 351
8.2.3 Architecture ... 352
8.2.4 Creating Applicationsccccociiiiiieniiiniine, 355
8.3 Example SCeNAriocccciiiiiiiiiiiie e 356
8.3.1 Creating the Start Pagecooeeiviiiinniice, 356
8.3.2 Updating Employee Addressesccccocoeeenee. 360
8.3.3 Updating the Personal Data of an Employee 370
8.3.4 Editing the Telephone Numbers of an
EMPloyeeccooviiii 371
8.3.5 Editing the Family Members of an Employee 371
8.3.6 Final Stepsccooiiiiii 372
8.3.7 Creating Employeesc.ccccooiiiiiiiiiiniiie 373
8.3.8 Deleting Employeesccccocviviiiincicniiieinee, 375
8.3.9 SUMMAIY ...ooiiiiiiiiii 376

9 Developing Composite Applications

9.1 Philosophy and Benefitsccoceviiiiiniiiiiii 380
9.2 Basic AsSUMPLIONScoooiiiiiiiiiiiiiicc e 381
9.3 Basic Architecture ... 383
9.3.1 Business Objects and Service Layer 384
9.3.2 User Interface Layerc.cccooviiviiiiniiiciniienncen, 386
9.3.3 Process Layer ... 387
9.4 Example Scenario: Project Management 390
9.4.1 Modeling Business Objects with Composite
Application Frameworkccccccevviiiinninnnns 392
9.4.2 Modeling User Interfaces with SAP NetWeaver
Visual COMPOSErccocvvieiiiiiieiiiiiee e 413
9.4.3 Modeling Processes with Guided Procedures 421
9.4.4 Testing Composite Applicationsc............ 442
9.5 Installing and Configuring the Reference Application 448

10 SAP NetWeaver Development Infrastructure and

the Component Model — Concepts

10.1 Special Characteristics of Large-Scale Software
Projects ... 453
10.1.1 Example of a Typical Development Process
Without a Central Infrastructurecccccoeeennn. 455

12

Contents

10.1.2 Software Logistics in Java Development 457
10.2 Elements of SAP NetWeaver Development
INFrastructurecccooiiiiii 459
10.2.1 Component Modelccccooviiiiiiiiiiiiiie, 460
10.2.2 Design Time Repositoryccccccevvviiiiiiiiiiiiiinns 480
10.2.3 Component Build Serviceccccocoiiiiiininennn. 494
10.2.4 Change Management Serviceccccceeienn. 503
10.2.5 Overview of the Development Process 513
10.3 New Features in SAP NetWeaver Development
INFrastructureooviiiiii e 515
10.3.1 Configuring the DI Usage Type After
Installationcccoooeiiiiii 515
10.3.2 New Features in Design Time Repository 516
10.3.3 New Features of Component Build Service 518
10.3.4 New Features of Change Management
ServiCe ... 518
10.3.5 Improvements in NWDI Loggingccccee. 521
10.3.6 New Features on the Interfacesccccoceenne. 523
10.4 SAP NetWeaver Development Infrastructure and
Component Model in Composition Environment 523
10.4.1 Scenarios for Component-Based Software
Development in Composition Environment 523

10.4.2 Component-Based Development with a Local
Development Configuration and Optional
External Infrastructure ..., 526

11 SAP NetWeaver Development Infrastructure —

Configuration and Administration

11.1 Configuring SAP NetWeaver Development

INFrastructure ..ot 536
11.1.1 Java Development Landscapeccccccceeeennn 537
11.1.2 Setting Up an SAP NetWeaver Development
Infrastructureccoooiiiiiiic e 541
11.2 Administration of SAP NetWeaver Development
INFrastructureococooiiiiiiii 566
11.2.1 Product Definition in System Landscape
Directory ..o, 566
11.2.2 Namespace PrefiXcccooviiiiiiiiiiiiieciiceee 567

13

Contents

11.2.3 Preparing a Trackccccoviiiiiiiiiiiie e
11.2.4 Development Stepsccccocoiiiiiiiiiiiiec e
11.2.5 Consolidation Phasecccccooviriiiiiiiiniinnnn.
11.2.6 Assembling the Software and Quality

ASSUFANCE ..o
11.2.7 Shipment to Customersccccocoeiiiiiiiiinnnn.

11.3 Software Change Management with SAP NetWeaver

Development Infrastructurecccococeeiviieiiniieeennnen.
11.3.1 Managing Software Projects for Different Target

Platform Releasesccccccovviiiiieniiiiiiecnicen,
11.3.2 Track Design and Further Development of

Productscoeveiiiiiiiic
11.3.3 Modification Concept of SAP NetWeaver

Development Infrastructurecccooceeviiiinnnenn
11.3.4 Non-ABAP-Based Transports in a Mixed

System Landscapecccccoiiiiiiiiiiiic e
11.3.5 SAP NetWeaver Development Infrastructure in

a Global System Landscapecccceveveeninnennnn.

12 SAP NetWeaver Development Infrastructure —

14

Developing an Example Application Step-by-Step

12.1 Employee Example Application ..o
12.2 Working with SAP NetWeaver Development
Infrastructure — Initial Stepsccovvviieiiieee,
12.3 Development Cycle Using the Employee Application
12.3.1 Prerequisites for a Track Using
SAP NetWeaver Composition Environment as
the Target Platform ..o
12.3.2 Creating a Product and a Software Component
in System Landscape Directoryccccceeevnnnnn.
12.3.3 Updating Change Management Service
12.3.4 Creating, Configuring, and Preparing the
Example Trackccccooviiiiiiiiiiiiciee
12.3.5 Starting the Development Phase
12.3.6 Implementing Access to Table Data and
Business LOGICcooovviiiiiiiiiiiii
12.3.7 Steps in CMS After Development

Contents

13 SAP NetWeaver Application Server Java —

Architecture

13.1 Cluster Architecture of SAP NetWeaver Application

Serverava ... 650
13.1.1 Java Instanceccccooiiiiiiiiiiiiiii 651
13.1.2 Internet Communication Manager 651
13.1.3 Central Services Instancecccccoeviveiniinnennns 653
13.1.4 SAP Java Virtual Machinecccccoeiiieiniinenns 654
13.2 Runtime Architecure of SAP NetWeaver Application
SEIVEIN JAVA ittt 655
13.2.1 Cluster Communicationccccoeveeniiieniieniieen 656
13.2.2 Cache Managementcccccoviiiiiiniiiieiiiinnens 656
13.2.3 Session Management ..., 657
13.2.4 Thread Managementccccoooiiiiiiiiiiciine 657

14 Supportability of the SAP NetWeaver Composition

Environment

141 MONITONNG oo 661
14.1.1 JMX Infrastructureccooeeeeeeeeeeeeeceeeeceeceeeeee e 662
14.1.2 MONITOIS .oeeiiii s 663

14.1.3 Adding New Content in the Monitoring
Frameworkeeeeeeeeeeeeeiieeieeeeeeeieeeeeeseeeeeeenannns 665
14.1.4 Java System Reportscccooiiiiiiiiiiiii. 666
14.2 Administrationcccoooiiiiii i 668
14.2.1 SAP NetWeaver Administratorcccceeeennnn. 669
14.2.2 Other Administrative ToolScccoeeeviiiiieiieinnnn. 670
14.3 Troubleshootingccccceriiiiiiiiniiiic 673
14.3.1 Logging and Tracingcccccovviveeiiiiieciiiniieesne, 673
14.3.2 Troubleshooting Scenariosccccocoiinnene. 676
The AULNOTS ..o 679
INAEX e 683

15

Preface to the Second Edition

Two years have passed since the first edition of Java Programming with
the SAP Web Application Server was published. While the first edition
described SAP NetWeaver 2004 and SAP NetWeaver 7.0 (equivalent to
SAP NetWeaver 2004s) a complete revision became necessary due to the
market introduction of SAP NetWeaver Composition Environment 7.1:

» On the one hand, many programming techniques such as Web Dyn-
pro Java or the SAP NetWeaver Developer Studio have undergone
major changes. SAP NetWeaver 7.1 was the first enterprise platform
to support the Java EE 5 standard that demonstrates the high speed of
innovation of SAP NetWeaver. All aspects are covered thoroughly in
this new edition.

» On the other hand, the positioning of SAP NetWeaver as a technology
platform has evolved based on its strong market adoption. You can de-
rive this from how SAP NetWeaver is used today: as a foundation for
SAP's solutions such as SAP ERP and the SAP Business Suite on one
side, on the other side as integration und composition platform for
the Enterprise Service-Oriented Architecture (enterprise SOA) of SAP.

Because of this, new chapters have been added that introduce the com-
position technologies. Of great importance in this context is the inter-
operability between the different releases of SAP NetWeaver (7.0 und
7.1), including their varying speeds in terms of innovation. We still
involved experienced authors of the different topic areas for the second
edition as well.

The presentation starts in Chapter 1, SAP NetWeaver, with the position-
ing of SAP NetWeaver as platform for enterprise SOA as well as an intro-
duction of the major SAP NetWeaver capabilities.

In Chapter 2, Overview of the SAP NetWeaver Developer Studio, the focus
is on Developer Studio. The Java EE 5 programming model, the devel-
opment, and the deployment of a sample application is shown in Chap-

17

Content

Structure

Preface to the Second Edition

ter 3, SAP NetWeaver Developer Studio — Step-by-Step to a Sample Appli-
cation. The focus here is not so much on a complete discussion of the
Java EE 5 programming model (there are plenty of publications out
there), but how the Java EE 5 model is supported by the many perspec-
tives of the Developer Studio.

In Chapter 4, Java Persistence, the different approaches to Java persis-
tence supported by SAP that are based on Enterprise JavaBeans 3.0 and
the Java Persistence API are introduced. Chapter 5, Web Services and
Enterprise Services in the SAP NetWeaver Composition Environment, leads
into the world of enterprise SOA, based on standard Web service tech-
nology, and describes how to develop applications that consume Enter-
prise Services.

Chapter 6, Developing Business Applications with Web Dynpro, is dedi-
cated to Web Dynpro because of the importance of the user interface.
The Portal integration of Web Dynpro applications is described in Chap-
ter 7, Running Web Dynpro Applications in SAP NetWeaver Portal. The
Visual Composer as a tool for model-driven UI development is pre-
sented in Chapter 8, SAP NetWeaver Visual Composer. Further techniques
for the creation of Composite Applications are discussed in Chapter 9,
Developing Composite Applications.

The Java development process and the development infrastructure
offered by SAP comprise three chapters. In Chapter 10, SAP NetWeaver
Development Infrastructure and the Component Model — Concepts, the
fundamental component model and the basic elements of the infrastruc-
ture are presented. Chapter 11, SAP NetWeaver Development Infrastruc-
ture — Configuration and Administration, explains the setup and admin-
istration of the Java Development Infrastructure. The Java EE 5 sample
from Chapter 3 is revisited in Chapter 12, SAP NetWeaver Development
Infrastructure — Developing an Example Application Step-by-Step, in order
to demonstrate the development infrastructure.

In Chapter 13, SAP NetWeaver Application Server Java — Architecture, the
architecture, scalability, and robustness of SAP NetWeaver Application
Server 7.1, based on SAP's Java Virtual Machine, are discussed. The pre-
sentation concludes with Chapter 14, Supportability of the SAP NetWeaver

18

Preface to the Second Edition

Composition Environment, which presents supportability aspects that are
critical for the successful operation of applications.

On the trial DVD, you will find a test and evaluation version of SAP DVD content
NetWeaver Composition Environment 7.1, including SAP NetWeaver

Developer Studio. The samples that are discussed in the various chapters

are stored on the DVD as well. You will find details about installation

and configuration on the start page of the DVD that is displayed auto-

matically when you insert the DVD into the drive.

At this point, I would like to thank the authors. Without their passion Acknowledgments
the second edition would not have been possible: Alfred Barzewski for
introduction of SAP NetWeaver Developer Studio (Chapter 2) and the
basic Java EE 5 sample application (Chapter 3); Markus Kifer for the
presentation of Java Persistence (Chapter 4); Susanne Rothaug und Anne
Lanfermann for introduction and consumption of Enterprise Services
(Chapter 5); Bertram Ganz for presentation of Web Dynpro Java (Chap-
ter 6); Oliver Stiefbold for the creation of the DVD trial version of SAP
NetWeaver Composition Environment as well as for the chapter on Por-
tal integration (Chapter 7); Carsten Bonnen for his contribution on
Visual Composer (Chapter 8); Volker Stiehl for the introduction to the
development of Composite Applications (Chapter 9); Wolf Hengevoss
for the presentation of SAP NetWeaver Development Infrastructure
(Chapters 10, 11, and 12); and finally Miroslav Petrov for the overview
of supportability (Chapter 14). You will find the bios of the authors at
the end of the book. The chapters on the positioning of SAP NetWeaver
(Chapter 1) and the presentation of the server architecture (Chapter 13)
fall under my responsibility. Special thanks go to the translation team at
SAP AG who created the English version: Paul Smith, Neil Matheson,
Susan Want, Michéle Coghlan, and Abigail Haley. Last but not least, I
would like to thank Stefan Proksch from SAP PRESS for his ongoing sup-
port and advice during the project.

Karl Kessler
Vice President, Product Management SAP NetWeaver

19

Using a concrete example, this chapter will introduce you to the
practical side of working with the SAP NetWeaver Developer
Studio. On this guided tour, you will set up — step-by-step —

a simple employee application using the Java EE 5 standard.
The ultimate aim is to then deploy and execute the application
on the SAP NetWeaver Application Server. You will have the
opportunity of getting to know the close interaction between
different tools of the development environment.

3 SAP NetWeaver Developer Studio —
Step-by-Step to a Sample Applica-
tion

You will get optimum use out of this chapter if you are very familiar
with the Java programming language and, in addition, already have
experience with using the Java EE 5 programming model. To be able to
reconstruct the steps in a practical way, you need the SAP NetWeaver
Developer Studio and access to the SAP NetWeaver Application Server
Java. The SAP NetWeaver Composition Environment 7.1, on the DVD of
this book, is suitable for this purpose. It is best if you install this version
before you start with the hands-on exercises.

The tutorial application, which you will develop step-by-step, is focused
more on didactic aspects than on any endeavor to implement a realistic
application scenario. Therefore, you need neither a bank application nor
a complex warehouse scenario. Rather, it is our intention to introduce to
you, with the help of a straightforward example, the options that the
Developer Studio provides as a development environment for enter-
prise applications on the basis of established Java standards. In the fore-
ground, therefore, you have the interaction between different toolsets,
and the linking up of services that efficiently support the development
process and the daily work of the developer.

13

Prerequisites

Goals

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Local development
process

You can view this chapter as an introduction to working with the Devel-
oper Studio. After processing all the steps of this chapter, you will be
able to organize the basic processes and development steps (UI and EJB
development, layout of the data model, etc.) within the framework of
the Java EE standard development using suitable tools. You will also be
able to map the tasks to the appropriate project types and corresponding
development objects.

All the steps are described solely from the viewpoint of a local develop-
ment process. The project resources are created and managed exclu-
sively on the local hard drive. The SAP component model is not used in
the tutorial application. The projects concerned are not development
components, unlike the scenario based on the use of the SAP NetWeaver
Development Infrastructure. However, in Chapter 9, Developing Compos-
ite Applications, you will learn how to migrate this tutorial application in
the NWDI context onto the SAP component model and also migrate it
using the corresponding services.

3.1 Employee Tutorial Application

The tutorial application uses a simplified employee data model and
should enable the user to create new employee data records and to print
data on existing employees. In the application architecture, we make a
distinction between clearly defined layers — for example, the presenta-
tion layer, the business logic layer, the data retrieval layer, and the per-
sistence layer. Actually, this would not be as absolutely necessary for
such a simple case as the one here. Nonetheless, you should familiarize
yourself from the beginning with the typical architecture of business
applications. In particular, you will get a first impression of how this
architecture is mirrored in the development process and how the devel-
oper is supported with the organization of his projects through the
Developer Studio.

Architecture of the Tutorial Application

While developing the user interface, you access the Ul technology called
JavaServer Pages (JSP), which has established itself within the standard

14

Employee Tutorial Application | 341

Web applications. With the help of a simple example, you will see how
you can set up a simple interface and also access the server components
underneath it.

The business logic is based on Enterprise JavaBeans 3.0 and is limited to
one single, stateless session bean. With the session bean, we can for-
mally distinguish between the business interface and session bean
implementation. All the business methods of the session bean are linked
to a corresponding business interface so that JavaServer Pages can access
the session bean with the help of this interface. In addition, the session
bean encapsulates the respective accesses to the persistence layer API.

You model the business data using a single entity that is used both in the
business logic and the presentation layer. Because entities are regular
Java objects, they can also be used for the data transport to the presen-
tation layer. Corresponding data transfer objects are thus not required.
In this connection, the entity is detached from the current transaction
context. This is clearly shown in Figure 3.1 by the dotted border.

R

+
(' Entty \O JavaServer Pages Presentation Layer
Business Interface Business Logic and

. . Business Data
Entity Session Bean

J

¢
JPA

SAPJPA1.0

A
/“_Al_\
fe— 3

Database

~N

Persistence Layer

Figure 3.1 Typical Architecture of a Java EE 5 Business Application

Business applications generally cannot do without keeping data persis-
tent in a database. With Java EE 5, a new object-relational persistent

15

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

framework — the Java Persistence API JPA) — has been introduced as
part of the Java EE standard. This type of framework has, essentially, the
following tasks: ensuring mapping of Java objects onto the relational
database; translating various queries as well as changes to Java objects
into suitable SQL statements; and, finally, taking care of the entire com-
munication with the database.

As shown in Figure 3.1, the current SAP NetWeaver Application Server
contains the actual JPA implementation with the name SAP JPA 1.0. The
JPA, however, does not supply the required database tables or table def-
initions onto which the respective entities are mapped. Instead, it
assumes that these tables already exist. You will provide the required
tables with the help of the Java Dictionary. Using Open JDBC, you can
create the actual database objects in the assigned database schema using
the table definitions.

Project View of Tutorial Application

You will begin the development of the tutorial application by first creat-
ing the basic data model. In this process, you create a database-indepen-
dent table definition using the Java Dictionary. Starting from a Dictio-
nary project, you create an SDA archive (Software Delivery Archive) and
deploy it on the application server. After this step, the table is physically
available on the database.

For access to data records, use JPA entities. The implementation of the
business logic for the application (creating new employees, displaying
employee data) is taken over by an EJB 3.0 Stateless Session Bean. In this
case, the EJB module project in the Developer Studio serves as a con-
tainer for all enterprise JavaBeans, including the entity, as well as for all
further resources, such as the corresponding configuration files and
deployment descriptors.

For the implementation of the Web client, a simple interface is provided
with the help of JavaServer pages. This should also be able to pass the
data to the session bean. All Web resources are managed in a separate
project — the Web module project — together with the appropriate con-
figuration files.

116

First Steps | 3.2

In an enterprise application project, you then bring all the resources
together to a type of Java EE 5 overall application. You need to deploy
the resulting archive (EAR) first before you can call the employee appli-
cation for the first time. Figure 3.2 groups the basic activities together
and depicts the organization of the most important development
projects in the respective project types of the Developer Studio.

/Web Module Project SAP NetWeaver Developer Studio

[JavaServer Pages
web.xml
Enterprise Application Project

A\ Deployment
Descriptors

EJB Module Project

[Entity
persistence.xml

[SessionBean]

Dictionary Project \
Deploy

[Dictionary Table]

SDA

Deploy

SAP NetWeaver Application Server Java

Figure 3.2 Organization of the Development Objects of the Employee Application
in the Developer Studio

3.2 First Steps

To start the Developer Studio, the activated platform runtime requires, Start parameters
in addition to access to a Java Virtual Machine (VM), a path specification

for storing all the metadata for project information and user-specific set-

tings. A standard Java VM is normally assigned during installation of the

Developer Studios and entered as the start parameter.

17

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

When you start! the Developer Studio for the first time after installation
has been completed, you must generally specify the default workspace.
The start process will then be interrupted and the system displays a dia-
log box for selecting the workspace directory. You will then either
accept the default value or choose a different directory for the default
workspace in order to continue the startup process. When you start the
Developer Studio again, the assigned workspace will be used. The start
process will then be performed without interruption.

When called up for the first time, the development environment dis-
plays a greeting page that looks similar to the one in Figure 3.3. You can
consider this page as the starting point for your development activities
that will supply you with tutorials, example and reference applications,
and selected links to documentation and other information material.

%2 12EE - EmployeeServicesBean.java - SAP NetWeaver Developer Studio I [=] 5]
File Edit Source Refactor Mavigate Search Project Run Editor Window Help

T e

I SAP NetWeaver Developer Studio w;
@ &F E E >
Overview Tutorials Samples What Next? ‘Workbhench

Welcome to the SAP MNetWeaver Developer Studio, BAP's Eclipse-based environment for developing Java Enterprise
applications and far cormposing services with SAP Composite Application Framework (CAF). Use this homepage as
a starting point for your development activities and utilize the complete Develeoper's Guide, including guidence into
development and modeling capabilities of SAP NYW Composition Environment (CE)

Model-driven Development

Modeling Composite Views Designing Process Logic with [
with Visual Composer %‘? Guided Procedures

“Wisual Composer (WC) provides a Guided Procedures (GP) enables you

Wieb-hased environment for modeling to model applications just by

userinterfaces without coding. Get assembling enterprise services and

familiar with the madeling workflow business objects with the support of

and how to uge VC tool functions. workflow patterns and role-hased

collaborative processes. Learnin
detail how you integrate existing
applications and semvices into the GF
frarnewark, and how you irplement
wour own functions to use in GP-
modeled processes

< Composing Services with y; Developing User Interfaces
@ CAF with Web Dynpro
CAF is 3 service-oriented architecture Access content providing the x|

Figure 3.3 SAP NetWeaver Developer Studio After First Call — Greeting Page

1 In general, you start the Developer Studio using the desktop shortcut or from the
Microsoft® Windows® Start menu. One alternative and very flexible option is if you
use batch files. Even several batch files can be used as configuration files to start the
Developer Studio, depending on requirements, using different parameters.

118

Defining the Data Model | 3.3

At this point we recommend that you familiarize yourself with the stan- Settings under
dard settings of the Developer Studio and that you add more entries, Windows
where required. You can reach the preferences page through the menu Preferences
path Windows - Preferences. When you are working through the steps

in this chapter, you will need the link to the Java application server.

Therefore, you should have a corresponding entry set under SAP AS

Java. We will look at other settings that you require for being able to use

the Java development infrastructure in Chapter 11, SAP NetWeaver

Development Infrastructure — Configuration and Administration.

3.3 Defining the Data Model

Before you develop the employee application, you must first define a
suitable data model that will serve as the basis for this application. For
didactic reasons, however, no great emphasis is placed on a sophisti-
cated data model with a large number of complex tables and relation-
ships to one another. Instead, the data model should be kept relatively
simple so that you can manage with a single table that takes on the man-
agement of persistent employee data.

In this first practical step, you will create a new table in the Java Dictio-
nary and add the required columns in the corresponding editor. After-
ward, you will create an appropriate archive for this table definition.
From the Developer Studio, you are then in the position to deploy this
archive on the application server. This way you ensure that the table def-
inition, which is initially available only on a local basis, is converted into
physical representation on the database instance.

3.3.1 Creating a Dictionary Project

To create tables, you first need a suitable project in the Developer Stu-
dio. Dictionary projects are intended precisely for this purpose. These
are projects that serve, at design time, as containers both for Dictionary
data types and structures as well as for tables or views in tables. You can
create an initial project framework for the new Dictionary project using
a wizard.

19

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

New project wizard 1. You start the creation wizard through the menu path File « New -
Project. In the Wizard window you now see, select the category Dic-
tionary and then the entry Dictionary Project (Figure 3.4). To get to
the next dialog step, choose Next.

T

Select a wizard &

Wizards:

Itype filker text

'Eb General

B oS

- Development Infrastructure
E-(= Dictionary

{3 Dictionary Project
- (= Eclipse Modeling Framework.
CREg]

-G J2EE

(= Java

L

Ol L

(7) = Bach I MNext > I Firshr | Cancel |

Figure 3.4 Selection of Dictionary Project in New Project Wizard

2. In the displayed wizard window, you will be prompted to assign gen-
eral project properties. For this purpose, enter the name “Employ-
eeDic" for the Dictionary project in the corresponding input field, but
leave the standard settings for Project contents and Project language
unchanged (Figure 3.5).

%2 New Dictionary Project Wizard - [x|

Dictionary Project

Create a new Dictionary project

Project name: | EmployeeDicl

Project conkents:
¥ Use default

[Ditechary: |C:\C‘IZ\CID_BetalwnrkspacalEmplnyeech Browse. |

Project languads [4merican English -

Figure 3.5 General Specifications for Dictionary Project

3. Now you only need to choose Finish and leave the rest of the work to
the creation wizard. This generates a standard structure for the new

120

Defining the Data Model | 3.3

Dictionary project and creates the project folder with the name
EmployeeDic in the assigned workspace directory. If you now open the
Dictionary perspective, a project node with the same name can be
seen in the Dictionary Explorer.

In the same manner, it is possible to create, in the Developer Studio,
other project types such as Web Dynpro projects, for example, or the
different Java EE project types using a suitable wizard.

3.3.2 Defining an Employee Table

In the next step, you create a table for the employee table as part of the
project you have just created and then enter the required table fields as
columns.

1. To create a table, it is best if you display the project EmployeeDic in
the Dictionary Explorer. There you can expand the project structure
and open the context menu for the node Database Tables.

2. To start the creation wizard, simply choose the menu path Create
Table from the context menu (Figure 3.6). In the displayed dialog box,
you will be prompted to assign a name for the table.

|i& Dictionary Explarer X Nav’lgatnr| =

= (= EmployeeDic
B3P Dictionaries
B Local Dickionary
@ Daka Types
Database Tables
@ Database View ICGEAREAG

Paste Gt

Compare Meba aka

Java Persistence 3
Test infrastructure 3
Development Component »

Figure 3.6 Creating a Table in the Dictionary Project

Keep in mind that, as a rule, a standard prefix is already provided for Name conventions
the table name in the input field. As you can see, this prefix is derived ~for database
from the default setting that is entered for the Dictionary objects objects

under Windows « Preferences « Dictionary - Name Server Prefix. This

name prefix is based on the naming convention for database tables

121

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Table fields

and enables you to uniquely separate development objects that are
created at customer sites, partner sites, and at SAP — with the aim of
avoiding name conflicts.? The two namespaces TMP_* and TEST_* are
of special importance here. These can be used for test objects and pro-
totypes.

3. In this current example, therefore, it will suffice if you use the name
prefix “TMP". For the suffix itself, enter the name “EMPLOYEES" and
choose Finish.

4. As a result, there is a corresponding entry for the new table in the
project structure under the node Database Tables. By double-clicking
the table name, you start the table editor and can now add the indi-
vidual table fields.

5. The first field should have the name “ID". Enter it under Column
Name in the first line of the table matrix. Because this table field is the
primary key of the table, check the field Key. Under Built-In Type,
choose the data type 1ong and enter a short description “Employees
ID" under Description. In the standard version, the property Not Null
is set for each new field and you use the option of defining initial val-
ues for each field of the database table.

6. The second table field contains the name “LAST_NAME". In addition,
a String of length 30 is assigned as data type3 to this field as well as the
short text "Employees last name".

7. Additional table fields include FIRST_NAME and DEPARTMENT and VER-
SION. You can see how these are defined in Figure 3.7. Finally, save
the current status of the table definition using the appropriate icon in
the toolbar.

Now the basic properties of the employee table are set. However, we
would like to point out an important general aspect here: You will learn
how to set up an index for a table column and how you can activate the
table buffering in the table editor. It is a good idea to follow the basic
principle: Make as many decisions as possible already at design time!

2 Under http://service.sap.com/namespaces, customers and partners of SAP can reserve a
name prefix for database objects.

3 From the specifications for the Built-in Type and Length, you get the assignment to
the JDBC Type. This is automatically converted by the wizard.

122

Defining the Data Model | 3.3

(3 Dictiorar... &2 Na\rlgat0r| =8| B 1P EMPLOYEES X =0
B 5| & . e .
HE & -2 Edit Table Columns
El = EmployesDic
EI@ Dictionaries
=3 Local Dictionary ~ Table Header
@ Data Types Define general properties of database kable
BV Database Tablos Mame: [TMP_EMPLOYEES |
[Tp_EVPLOYEES Description; | TMP_EMPLOYEES |
“{[§ Database Yiews SRR =
 Columns
Defing table columns
GEIPEBRRDR EE
I Column Mame | Ke | | Built-1... | [0 | D| ok | D‘.l Description
(] [} long) 0 Emplovees ID
LAST_MNAME 1 string 30 1 Employees last name
FIRST_MAME (] string 30] Employees firsk name
DEPARTMEMT O string 50] Employees departme
VERSION] integer 0 Mersion
4 | i
Colurns | Indexes | Technical Settings |
| Ry

Figure 3.7 Definition of Columns for Table TMP_EMPLOYEES in the Table Editor

Generally speaking, there is a distinction between the primary index Secondary index
and the secondary index for tables — and you will use a secondary

index. The primary index is sorted by the key fields of the table and

automatically created together with the physical table on the database.

Normally, data records are sorted by the value in the primary key. How-

ever, if you expect to have frequent access in the application to another

field in data records, we recommend that you set up a secondary index

for this field.

1. To create, for example, an index to the field LASTNAME, simply click the
tab Indexes in the table editor and then choose the plus character icon
on the left in the toolbar.

2. In the displayed wizard, enter "EMPLOYEES_I1" as a suffix for the
index name* and complete this step with Finish. Afterward, expand
the tree structure you have just created for the new index and choose
the option Add/Edit Index Fields from the context menu of the Fields
node.

3. You now get a list of the table fields and you can choose the field you
require (Figure 3.8).

4 Similar to the table name, the standard prefix flows into the index name. Just like table
names, index names are limited to 18 characters.

123

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Technical settings

(3 Dictionary Explarsr &3 Nawgatar|
B s

-

Edit Indexes

B = EmployeeDic
E@ Dictionaries
Eﬁ Local Dictionary
@ Data Types
B £ Database Tables
- = e _empLovEES

fB) Database Views

[T TMP_EMPLOYEES_T1

- | BEEEGE S %@k EE
= [TP_EMPLOYEES 11
= ﬁ% Fields
|: LAST_MAME [Emplovees last name]
Eﬁ% Properties
\5% Included Databases
rﬁ% Excluded Databases
20 | Unique

Calumns {Indexes I Technical Settings |

Figure 3.8 Definition of an Index in the Table Editor

4. To activate a table buffer, too, you only require a couple of mouse
clicks. Simply choose the tab Technical Settings in the table editor,
select the respective checkbox, and assign the buffer granularity,® as

displayed in Figure 3.9.

(3 Dictionary Explarse £3 Navigatur| i
o =
BEllsth o

B = EmployeeDic
= %! Dictionaries
E- Local Dictionary
+ @ Data Types
£ Database Tables
E1-f[7 TMP_EMPLOYEES
: [TMP_EMPLOYEES_I1
[l Database Views

B8 1P EMPLOYVEES X

Edit Technical Settings

~ Table Buffering

Define buffering parameters of table

nable Buffering Tabls BuFfering ID (Fully Buffered) =

~ Advanced Settings

Define databases onwhich the table will not be created

[Do not create table on selected databases

| I Database | Delete if existing |
Oracle
Cbz
Dhe
Cbe
Sapdb
Mssql

o o
1 e)

Columns | Indexes | Technical Settings]

Figure 3.9 Activating the Table Buffer in the Table Editor

5. In the course of the previous procedure, certain table definition data
was generated for this project. To save the entire result of your efforts
so far, choose the appropriate icon in the toolbar.

5 With the granularity function, you can define whether the table is to be loaded with

all data records (fully buffered) or only partially loaded into the buffer as soon as the
first data record is accessed.

124

Implementing Access to Table Data | 3.4

In this way, the table is completely defined and exists as a local project
resource in the form of an XML file. A further result is that the table is
now part of the Java Dictionary and has a database-independent defini-
tion.

3.4 Implementing Access to Table Data

At this point, you need to decide how you wish to perform access to Java persistence
table data records in a Java application. Generally speaking, there are AP

several options for data persistence within the framework of Java devel-

opment and all have their special aspects and strengths. Because the SAP

NetWeaver Application Server Java already supports the newer version

Java EE 5-Standard, you will use the Java persistence API (JPA) in the

current tutorial application. A discussion of the various persistence

records in the AS Java context is provided in Chapter 4, Java Persistence.

This chapter is concerned solely with the topic of persistence.

The JPA is the new object-relational persistence API for Java EE 5 and
implemented as an integral part of the Java EE standard. With this tech-
nical solution that is extremely easy for the programmer to use, the
“lightweight" Java objects, also called entities, are mapped onto rela-
tional database tables. Entities are based on regular Java objects, often
called POJOs (Plain Old Java Object), and do not have to implement spe-
cial interfaces or enhance special classes. In addition to the typical class
implementation, however, you will also have to provide mapping to
suitable database tables as well as mapping of persistent attributes to the
respective table fields.® For specifying this type of metadata, the JPA
provides the comfortable use of annotations that can be added — either
manually or using OR mapping tools — to the source code of the entity
class.

6 Within the framework of the pending delivery of the SAP NetWeaver Composition
Environment, you can find very easy-to-use solutions based on close integration
between the individual tools and frameworks. Accordingly, it should be possible,
using the table definitions from the Dictionary project, to generate entities for the EJB
module, and vice versa.

125

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

3.4.1 EJB-Creating a Module Project

To create entities, you first need a new EJB module project.

1. For this purpose, once again start the New Project Wizard through the
menu path File - New « Project. As seen in Figure 3.10, select the cat-
egory EJB « EJB 3.0 and then EJB Project 3.0 in the displayed wizard
window.

[32 New Project i X
Select a wizard
Create an EJB 3.0 project [

Wizards:

I type filker bext

B EXB]
© L&Y EJB Project
[Z EJB 3.0

B E 15 Proj

(= J2EE

E& Java

(£ Plug-in Development

H-G web =

@) < Bach I ek > I Finishy | Cancel |

Figure 3.10 Selection of EJB Module Project in the New Project Wizard

2. By clicking Next, you proceed to the next wizard window. There you
enter "EmployeeEjb" as the name for the new project. In addition,
you accept the default settings and complete this procedure with Fin-
ish.

3. The creation wizard generates an initial project framework for the
new EJB project and creates a project folder in the directory.

4. Now start the J2EE perspective, if you have not done so already, and
display the project structure in the Project Explorer. This view will
now serve as your central starting point for all future activities con-
cerning the EJB 3.0 development.

In the next step, add an entity named Employee to this project.

126

Implementing Access to Table Data | 3.4

3.4.2 Defining an Employee Entity

As already mentioned, the data model should be kept as simple as pos-
sible in this introductory example. Therefore, you should define only
one single entity named Employee, to correspond with the already exist-
ing table called TMP_EMPLOYEES.

General Properties of the Entity Class

In the next step you create a new, serializable Java class. This will be a
class that, for the most part, declares the appropriate attributes and pro-
vides the corresponding set and get methods.

1. To create such a class for the EJB module project, open the context New class wizard
menu for the project node and choose the option New - Class.

2. Enter “Employee” as the name for the new class and assign the pack-
age com.sap.demo.entity. In addition, activate the option Construc-
tors from Superclass and add the interface Serializable to your selec-
tion.

3. Then accept the standard default settings and create the class by press-
ing Finish.

4. When you have completed the creation procedure, start the Java edi-
tor and add some field definitions to the actual class body”:
private long employeeld;
private String TastName;
private String firstName;
private String department;
private int version;
In this way, you equip the entity class with the exact fields that you
created in the corresponding employee table as table fields.

7 Inaccordance with the specification, we recommend creating a version field (version)
for the entity. This field is used by the JPA container at runtime in order to implement
optimum verification and thus ensure that no competing accesses are implemented for
one and the same data source. As soon as the container registers accesses of this type,
an exception is thrown for the transaction. The most recent data state is then retained
and a rollback is set for the current transaction. With these simple means, you help to
maintain data consistency.

127

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

5. Then, in the editor, select all the rows with the fields you have just
created and choose Source « Generate Getters and Setters... from the
context menu. In the displayed window, click the key Select All. In
this way, the corresponding getter and setter methods are generated
for all fields, in accordance with Listing 3.1.

public class Employee implements Serializable {
private static final long serialVersionUID = 111L;
private Tong employeeld;
private String lTastName;
private String firstName;
private String department;
private int version;
// non-arg constructor
public Employee() ({
}
public String getDepartment() {
return department;
}
public void setDepartment(String department) ({
this.department = department;
}
public Tong getEmployeeld() {
return employeeld;
}
public void setEmployeeld(long employeeld) ({
this.employeeld = employeeld;
}
[...]
}

Listing 3.1 Implementation of a Regular Java Class Named Employee

6. Finally, save the current editor content using the appropriate icon in
the toolbar.

The implementation of the class Employee has thus far shown no anom-
alies. It defines five fields: employeeld, TastName, firstName, depart-
ment, and version, and places the getter and setter methods at your dis-
posal in accordance with the name convention for JavaBeans. It should
be mentioned, however, that the JPA demands a parameter-free con-
structor for an entity. But further constructors can be added.

128

Implementing Access to Table Data | 3.4

Because this is not an abstract class that also avails of a pub1ic construc-
tor, you have thus far been dealing with a POJO that can already be
instantiated. Moreover, the class implements the interface java.io.
Serializable so that entity objects can be serialized through remote
calls or in Web service calls, respectively.

In this connection, follow the general recommendation and explicitly
declare a version number® named serialVersionUID for the serializable
class. For this reason, a same-name field that is static, final, and of the
type Tong was added subsequently in the declaration part.

Object-Relational Mapping

Strictly speaking, we do not yet have an entity here, but only a simple
JavaBean object. What is missing is a type of meta information® that
describes the mapping of the Java object onto the relational database.
Using the JPA, this is easily achieved, simply by adding the annotations
to the source code of the Java class.

With the simple addition @Entity to the class definition, you identify
the class Employee as an EJB 3.0 Entity. With this step, you set the com-
mand that the entity is suitably mapped to a database table. In addition,
the persistence framework requires information as to how the entity is
mapped to the relational database table.

It should be remembered that the JPA provides the application devel-
oper with a very comfortable path to realize this kind of object-relational
mapping, based on a record of plausible default rules. If no explicit spec-
ifications are made — for example, for the name of the table or the indi-
vidual table fields — the JPA assumes certain plausible assumptions.

8 The version number serialVersionUID is required by the serialization runtime for
each serializable class for verification purposes. If a serializable class does not explicitly
declare a serialVersionUID, a default value is calculated by the runtime for this ver-
sion number. This default value can, however, depend on the compiler implementa-
tion. To guarantee a consistent version number for all compilers, we recommend that
you explicitly declare a serialVersionU1D for the class.

9 With the JPA, meta information can be stored for the entity class in the form of a sep-
arate XML file, as before, using deployment descriptors. The use of annotations, how-
ever, is to be preferred — in particular, because this is normal practice in the standard
Java SE 5.0.

129

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

In this example, an entity with the name Employee would be mapped
onto a database table with the name EMPLOYEE in accordance with these
rules. However, because the names in this case are to be different, you
have the option of overwriting them using the annotation @Table. You
proceed in a similar fashion when mapping the persistent fields of the
entity to the corresponding table fields. If a persistent field deviates
from the name of the table field onto which it is to be mapped, the anno-
tation @Column is added with the specification of the corresponding field
name. This situation applies, for example, to the field Employeeld, which
is mapped onto the table field with the name 1D. The situation is differ-
ent, however, with the persistent field department, which is mapped
onto a table field with the same name.'® Here you do not have to make
any explicit specification. To identify the version field as such, it is nec-
essary for you to add the corresponding annotation @Version to the field
version.

1. Now add the required annotations to the Java source code of the class
Employee, as displayed in Listing 3.2.

@Entity
@Table(name="TMP_EMPLOYEES")
public class Employee implements Serializable {
@Column(name="1D")
private lTong employeeld;
@CoTumn(name="LAST_NAME")
private String TastName;
@Column(name="FIRST_NAME")
private String firstName;
private String department;
@Version
private int version;
[...]
}

Listing 3.2 Annotations in the Source Code of the Employee Class

10 The JPA specification supplies no guidelines on adherence to uppercase or lowercase
lettering for tables and field names. For the implementation of SAP JPA 1.0, the fol-
lowing rule therefore applies: If the name of the table or table field is listed explicitly
using the annotation, uppercase and lowercase lettering is taken into consideration. If,
on the other hand, the table name or table field is generated in accordance with the
default rule, uppercase lettering is used.

130

Implementing Access to Table Data | 3.4

2. If you have not already done so, finally create the missing imports for
the employee class. For this purpose, click on an arbitrary position in
the Java editor and choose Source » Organize Imports from the con-
text menu.

3. The missing import lines are then added, as shown in Listing 3.3.
Now, no more errors should be displayed in the source code of the
Bean class.

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Table;

import javax.persistence.Version;

Listing 3.3 Supplementing Certain Import Lines for the Class Employee

Generating the Primary Key

So that each instance of an entity can be uniquely identified, the entity
class must have an identifier that can simultaneously serve in the
assigned table as a primary key. For this reason, a field of the name
Employeeld is already created and you will use it as an identifier for the
employee entity. The specification of the identifier field is done easily
with the annotation @1d, which you place in front of the field. In this
case, this field with the primary key of the corresponding database field
is identified through the mapping onto the table field 1D.

Now you are faced with the question as to which generation method is
to be used to generate the primary key. Admittedly, there are many
solutions and strategies, but it would go beyond the scope of these
explanations. But this much should be said: Generally speaking, key
fields can be provided using the database or using the server container,
or even through the application itself. The JPA specification is again of
help to the developer and provides various strategies for automatic ID
generation. The developer does not need to implement any ID genera-
tion logic, but instead can initiate automatic primary key generation
using the annotation @GeneratedValue and can also use the various gen-
eration strategies.

In the following section, you will see how the table strategy is imple- Table for
mented. Here a special table for the generation of the ID value is used. D generation

131

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

First, however, you must create a corresponding table because it is not
automatically provided by the framework as a type of system table. This
work step is very simple.

1. Again start the Dictionary perspective and add a further table defini-
tion named TMP_ID_GEN to the already existing project EmployeeDic.

2. The new table should be defined exactly as shown in Figure 3.11 and
contain the two fields GEN_KEY and GEN_VALUE.' The field GEN_KEY
defines the table key and will contain the fully qualified class name at
runtime. The field GEN_VALUE is provided for storing the last generated

ID value.
Es e " || Edit Table Columns

[1= Employeebic
B % Dictionaries
B3 Local Dictionary = Table Header
EI@ Data Tvpes Diefine general properties of database kable
! -G Simple Types
*-EE Structures
Database Tables
-] TMP_EMPLOYEES ||| = Columns
[T TMP_ID_GEN
([Database Views

Mame: |TMP_ID_GENM |
Description: | TMP_ID_GEN |

Define table colurns

EEEZEbsRDR|IBE

Column Mame | Ke | S..l Built-In Type | Length || Mok Null | D.I Description

GEN_KEY] string 256 key for ID ge

GEN_VALUE O inkeger | 0 | walue For ID
4 | 3|

Columns] Indexes | Technical Settings |

Figure 3.1 Creating Another Table Definition for ID Generation in the Dictionary
Project EmployeeDic

Annotation for the 3. As displayed in Listing 3.4, it is possible to generate a suitable ID gen-
ID generator erator with the help of this new table. In the source code of the
employee class, therefore, add the appropriate annotation @Tab1eGen-

erator by putting the class name in the front. The element table ref-

erences the table you have just created for ID generation while the ele-

ment name is used to identify the generator. The name of the

generator, in turn, is specified through the element generator using

11 The two table columns GEN_KEY and GEN_VALUE identify the standard names of the SAP
JPA implementation for tables for ID generation. Alternatively, you can define other
column names for the ID table, but in this case you must ensure corresponding map-
ping in the annotation for the table generator (@TableGenerator).

132

Implementing Access to Table Data | 3.4

the annotation @GeneratedValue. As shown in Listing 3.4, add this
annotation to the class attribute employeeld. Through the other ele-
ment strategy, you instruct the container to use the generation
method with the strategy of the type TABLE at runtime.

@TableGenerator(name="idGenerator", table="TMP_ID_GEN",

pkCoTumnName="GEN_KEY", valueColumnName="GEN_VALUE")

public class Employee implements Serializable {

@Id

@GeneratedValue (strategy=GenerationType.TABLE,
generator="idGenerator")

@Column(name="1D")

private long employeeld;

[...]

Listing 3.4 Definition of a Primary Key for the Employee Entity

Formulating the Query Using an EJB QL Statement

Search queries are often used during access to database data. The speci-
fication for EJB 3.0 provides multiple options on how you can imple-
ment queries. The named parameters are an important element here;
they are used both in static and dynamic queries.

You may remember how for the earlier EJB versions' static queries were
defined in the EJB deployment descriptor and then, in an additional
step, how the behavior of the finder methods were to be specified using
the EJB QL statements. EJB version 3.0 continues this approach and pro-
vides for this purpose a simplified execution method. It allows the pro-
grammer to add static queries using the annotation @NamedQuery within
the Java source code. This is a predefined query that is identified by its
name. As is standard with finder methods, the method behavior is not
specified using Java source code but through EJB QL statements. You
can use these to formulate suitable search queries.

This is precisely what you will do at this point by formulating the
required EJB QL statement for a query named Employee.findAll.

1. Create the annotation @NamedQuery in the Java Editor, before the def-
inition of the class Employee.

133

Search queries in
finder methods

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Persistence unit
combines entities

2. The element name serves to identify the query using a string value. The
element query adopts the EJB QL statement SELECT e FROM Employee e
(Listing 3.5).

@NamedQuery(name="Employee.findAl1",
query="SELECT e FROM Employee e")

@Entity

@Table(name="TMP_EMPLOYEES")

public class Employee implements Serializable {

[...]
Listing 3.5 Definition of a Query for Displaying All the Employee Objects

3.4.3 Configuring the Application for Database Accesses

So that the EJB container can handle the database accesses in the first
place, it must know certain global settings for persistence, such as the
name of the data source, which is required for the link to the database.
As a rule, configuration tasks are taken on by the server, but there are
some exceptions. Therefore, we will describe how these few configura-
tion tasks are to be executed once by the developer for the EJB project.
This manual configuration of the Java persistence takes place in a special
persistence descriptor with the name persistence.xml.

Defining the Persistence Unit

In a typical EJB application, the data model consists mostly of several
entities that reference each other and are to be mapped onto one and the
same database schema. You must now ensure that all entity classes that
belong together also build a logical unit for the EJB container at run-
time, are managed by the entity manager as such, and fall back on one
and the same data source. This kind of logical unit is described as a per-
sistence unit.

The persistence unit is comprised of entities of an application that are
addressed at runtime through the Entity Manager. Remember that a per-
sistence unit must be set explicitly — even when, as in this case, only a
single entity is involved.

134

Implementing Access to Table Data | 3.4

All entities that belong together and form a persistence unit can be listed
explicitly in the configuration file. This, however, is not absolutely nec-
essary because the persistence framework otherwise searches through
the application for entities and automatically finds them. In this tutorial
application, only the name and a short description should be specified
for the persistence unit. The basic principle is to perform configuration
only in an exceptional case. In addition, two further specifications are
required — one for the JTA data source and one for the version genera-
tor.

Because this kind of configuration file is not yet contained in the current Configuration in
EJB project, create the file persistence.xml using the appropriate XML Persistence.xml
schema.

1. To do this, select the EJB project in the Project Explorer and navigate
to the folder META-INF.

2. From the context menu for this folder, choose the menu path New «
Other - XML - XML and navigate with Next to the next step.

3. On the displayed wizard page, select the option Create XML file from
an XML schema file and again press the Next button.

4. On the following wizard page, enter “persistence.xml” as the file
name and choose Next.

5. As shown in Figure 3.12, now decide on the option Select XML Catalog
entry and then persistence_1_0.xsd from the displayed XML catalog.

x
Select XML Schema File
Select the schema file bo create the SML file, \
1x]

" Select file From workbench
% Select ¥ML Catalog entry

¥ML Catalog

ke ﬂ
[S] arm_1_0.xsd

[Epersistence_1_0.xsd E_SR1/eclipss
ﬁnersistent.xsd FiIe:J’C:J’Ili)E CE SRIJ’EC"D'S el

Figure 3.12 Selection of XML Schemas when Creating
persistence.xml for the EJB Project

135

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

6. On the next wizard page, confirm your selection by pressing Finish.

7. To complete the content for the persistence descriptor, use the design
view (Figure 3.13) and, using the context menu for the last entry, cre-
ate a few additional tags. You will find the required configuration

specifications in Table 3.1.

=
‘.m EmployeeServicess. ., | m EmployvesServicesL,.,

=7l

[&] persistence:persistence
Remove

Add Before
Add After

Add DTD Infarmation. .
Edit Mamespaces. .,

Add Child 3

% encoding="LlTF-8"
{narcickenie-unitt)

WErsion:

3
7=? Add Processing Instruction

Design | Source |

Figure 3.13 Creating More Tags in the Design View of persistence.xml

XML Tag Assigned Value

persistence-unit | name
persistence: description
persistence: jta-data-source
persistence: properties

property | name

property | value

EmployeePU
Sample Application Persistence Unit

TMP_EMPLOYEES_DATA

com.sap.engine.services.orpersis-
tence.generator.versiontablename

TMP_ID_GEN

Table 3.1 Specifications for Persistence Unit in persistence.xml

8. The name of the persistence unit is generally optional and is added to
the XML source within the element <persistence-unit>. We will
refer to the persistence unit again when the instance of the unit is to
be accessed in the session bean using the Entity Manager.

9. Within the element <persistence-unit>, use the tag <jta-data-
source> to enter the data source alias. We will also deal with this in

more detail at a later point.

136

Implementing Access to Table Data | 3.4

10. Finally, enter a <property> to enable versioning of the data source.
This specification is necessary for the following reason:

So that versioning of the data source is at all useful, the JPA specifi-
cation requires that the data source uses the isolation level
READ_COMMITTED. However, to cater to the difference between this re-
quirement and the actual isolation level READ_UNCOMMITTED, you will
need a suitable version generator. You address this kind of generator
in the persistence.xml through a certain property of the persistence
unit. You specify this property using the name element from Table
3.1.

In addition, a version generator requires a suitable database table.
Any arbitrary generator table that has the field names GEN_KEY and
GEN_VALUE is suitable for this. By all means, the table TMP_ID_GEN pre-
viously created is suitable for this purpose. Therefore, assign it as the
property value.

11. The generated XML source then corresponds to the lines in Listing
3.6:

<?xml version="1.0" encoding="UTF-8"?>
<{persistence xmlns=
"http://java.sun.com/xml/ns/persistence” [...]1>
<{persistence-unit name="EmployeePU">
{description>
Sample Application Persistence Unit
</description>
{jta-data-source>TMP_EMPLOYEES_DATA</jta-data-source>
<{properties>
{property name = "com.sap.engine.services.
orpersistence.generator.
versiontablename"
value= "TMP_ID_GEN">
</property>
<{/properties>
</persistence-unit>
<{/persistence>

Listing 3.6 Resulting XML Source of persistence.xml

137

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Stateless
session bean

3.5 Defining the Business Logic

After you have completed the data accesses in Section 3.4, Implementing
Access to Table Data, using a JPA entity, now turn to the business logic.
Because you are using EJBs, session beans'2 are usually the best way of
encapsulating the business logic.

For this purpose, you will now create a stateless session bean named
EmployeeServices, and then add and implement the required business
methods. Using the business methods, arbitrary clients should be in a
position to adopt the employee registration data entered by the user and
finally pass them for storage to the entity Employee. Also, it should be
possible for all existing data records on all existing employees to be
passed to clients for display purposes.

3.5.1 Creating a Session Bean

To create a session bean named Employee Services, start the appropriate
creation wizard.

1. Start the context menu on the project node EmployeeEjb in the
Project Explorer, and choose the menu option New « EJB « EJB 3.0 «
EJB Session Bean 3.0.

2. In the displayed dialog box, assign certain elementary properties in
accordance with the list in Table 3.2.

3. Because no further options are required for the session bean you want
to create, choose Finish. By doing this, you start the generation pro-
cedure.

12 In distributed applications, session beans implement the application-relevant pro-
cesses and tasks, take care of the transaction management, and arrange access to low-
level components, such as entities or other data access components as well as auxiliary
classes. This use of session beans matches the session facade design pattern and serves
to define a clear separation between the different levels (data accesses and business
logic) with the aim of increasing performance at runtime.

138

Defining the Business Logic | 3.5

Field Name Assigned Value

EJB Class Name EmployeeServices

EJB Project EmployeeEjh

Default EJB Package com.sap.demo.session
Session Type Stateless

Transaction Type Container

Create Business Interface Checkbox Local activated

Table 3.2 General Properties when Creating the Session Bean EmployeeServices

4. As shown in Figure 3.14, the wizard creates a bean class EmployeeSer-
vicesBean and the respective business interface EmployeeServices-

Local.

== EmplayesDic
E"g EmployeeEib
- - Deployment Descriptor: EmployesEjb
El # gjbModule
=8} com.sap,dema.entity
: L [Emplovee java
E-H com.sap.demo.session
] 1 1 java
[3] EmploveeservicesLocal, java
(= META-INF
B\ RE System Library [jre1 5.0_09]
Bl SAP Java EE S Libraries
B[build

Figure 3.14 Session Bean EmployeeServices in the Project Explorer

When you created the session bean, you assigned the type Stateless.
Therefore, this meta information is stored in the generated bean class by
placing the respective annotation @Stateless in front of the class name.
In contrast to stateful session beans, this session bean is not able to store
its state in its instance variable. The application does not provide for
storing user-specific information. As a result, the methods of the session
bean will behave as stateless.

The declaration of the business interface as a local interface in turn
means that the annotation @Local is generated for the interface name. As
already mentioned, business methods of the session bean are exposed at

139

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Business methods

Entity Manager
as interface to
database

this business interface so that a client can access the session bean with
the help of this precise interface. In the case of a local interface, one can
assume that the EJB and the client are on the same server.

3.5.2 Implementing the Session Bean Class

So far, the procedure has been mostly declarative in nature. Now the
implementation of the specific service functions for the tutorial applica-
tion will follow. Using the business methods, you will implement the
functions that are also available to the client application. In the case of
business methods, you are dealing with special methods of the session
bean that implement their specific service functions that are available on
an external basis.

Generally speaking, business methods are declared as regular Java meth-
ods in local, remote, or, if necessary, in both business interfaces, and are
implemented in the respective session bean class. Depending on the
business interface that provides the appropriate business method, this
method is available either for local or remote clients, or for both.

In the following explanations, you will see that you only need to supply
local clients with data and implement certain business methods that
already show, in the examples, how some of the basic operations on per-
sistent objects are to be performed. In this way, you will learn — with
the help of the method createEmployee() — how a new data record is
created and how it is stored permanently in the database. You will also
learn how to implement the search for a data record with the primary
key using the method getEmployeeById(). A further read access is con-
nected with a query execution and defines the third business method
getAlTEmployees() for the tutorial application.

Keeping the Instance of the Entity Manager

Business methods should be able to create new data records, manipulate
existing ones, and finally synchronize the changes with the database.
For this reason, you require a kind of local interface for interaction with
the database. The JPA provides the application developer with such an
interface to the Entity Manager. The purpose of the Entity Manger is to

140

Defining the Business Logic | 3.5

control the lifecycle of entity objects and to change their status. Using
the Entity Manger, you can perform all database operations on entities
and thus create, change, read, search for, or even delete objects on the
database. Listing 3.7 shows you how you access the persistence unit,
starting from the session bean, and how you define the Entity Manager
for the persistence unit.

@Stateless
public class EmployeeServicesBean implements
EmployeeServiceslLocal {
@PersistenceContext (unitName = "EmployeePU")
private EntityManager eManager;
[...]
}

Listing 3.7 Access to the Entity Manager Within the Session Bean

As you can see from Listing 3.7, the session bean declares a variable of
the type EntityManager, without having a certain value assigned to it.
Two aspects are of interest here: First, the source code is part of the ses-
sion bean and is executed on the application server. On the other hand,
the variable is provided with the annotation @PersistenceContext. In
addition, this annotation contains the element unitName. Using this
parameter, you enter the name of the persistence unit on which the
Entity Manager operates. You will surely remember that the entered
value corresponds exactly to the name you have already entered in the
configuration file persistence.xml.

This is of interest here because the session bean uses a technique called
resource injection. Due to the annotation, it is left up to the server to
supply the variable (here: eManager) with an EntityManager instance. In
this way, you ensure that this variable is always correctly initialized
when a business method is called for the first time.

Creating a New Employee Data Record on the Database

After you have seen how you can access the Entity Manager in the bean
class, you will now see — on the basis of the business method create-
Employee() — how easily a new data record can be created on the data-
base. First, an instance of the entity Employee is created using a construc-

141

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

tor. The data required for specifying an employee is passed in the form
of a method parameter. Access to the persistent fields is performed
using the setter methods. The fully specified object employee is finally
passed using the method persist() to the Entity Manager that triggers
permanent storage on the database. As a result, the business method
returns an ID of the type Tong.

The complete implementation of this method can be seen in Listing 3.8.

public Tong createkmployee(String lastName, String
firstName, String department) {
long result = 0;
Employee employee = new Employee();
employee.setFirstName(firstName);
employee.setlLastName(TastName);
employee.setDepartment(department);
eManager.persist(employee);
result = employee.getEmployeeld();
return result;

}
Listing 3.8 Source Code for the Business Method createEmployee()

Searching for a Data Record Using an ID

Frequently, an application must be in the position to first identify a cer-
tain data record on the database before it can perform a new operation
on this data. The search for a certain employee data record using the ID
(that is, the primary key) is shown as an example in Listing 3.9.

public Employee getEmployeeById(long empld) {
Employee employee =
eManager.find(Employee.class, Long.valueOf(empld));
return employee;

}

Listing 3.9 Source Code for the Business Method getEmployeeByld()

In this case, the call takes place using the find() method of the Entity
Manager. This method contains two arguments: The first argument is
the entity class of the object to be searched for, while the second argu-
ment is the object representation of the entity identifier, that is, the key

142

Defining the Business Logic | 3.5

field. The find() method returns the found entity instance or nu11 if no
such entity was found in the database. Because the find() method was
implemented generically, a casting of the resulting value is not required
in this case. In other words, the find() method is parameterized in such
a way that the type of the returned result matches the type of the first
argument of the method call. Whatever the case, an instance of the type

Employee is returned.

Executing a Query

Another business method getAT1Employees () will now solely be used to
demonstrate how a query can be used to read a resulting set. You will
remember how you formulated a named query in Section 3.4.2, Defin-
ing an Employee Entity, using a select clause. In that case, a search query
was stored with the symbolic name Employee.findA1l in the source
code of the Employee entity. Now you should use these queries to read
the database records. It should be possible to return a list of all existing
employees for a particular client.'3

As you can see from the implementation of this finder method in Listing
3.10, query objects can be created through the Entity Manager. This is
done by calling the method createNamedQuery(). As a parameter, a
place holder that contains only the name of the defining query is passed.
The execution of the query in the database and the reading of the result-
ing set is performed using the query method getResultList().

@SuppressWarnings("unchecked")
public List<Employee> getAllEmployees() f{
Query query =
eManager.createNamedQuery("Employee.findA11");
List<Employee> result =
(List<Employee>) query.getResultlList();
return result;
}

Listing 3.10 Source Code of the Business Method getAllEmployees()

13 The clients can be Java Server Faces, JSPs, servlets, Java classes, a different EJB, or a
Web service client. Clients, particularly in large applications, have the advantage that
they themselves do not have to define any search queries. Changes and adjustments
to the query form can be done centrally, without any effect on the client.

143

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Transaction
attributes

To minimize the number of warnings at compiler time, add the appro-
priate annotation to the source code. @uppressWarnings is used solely
to suppress certain compiler warnings in connection with this method.

Defining the Transaction Behavior of the Business Methods

So far you have not made specifications at any time regarding the trans-
action behavior of the business methods. Only when you created the
session bean did you determine the transaction type with the attribute
Container. This means that, in such a case, the EJB container takes over
control of the transaction. In relation to the Entity Manager, you have
already seen that the EJB container takes over important standard tasks
from the programmer.

With this transaction type, you do not have to set the commit or rollback
methods. You can leave this task entirely up to the EJB container. As a
rule, there is the option with EJBs of implementing the transaction logic
on a program-controlled basis in the bean class itself. However, the deci-
sion in favor of transaction behavior based on the container-supported
approach when a session bean is created has already been made.

You determine the desired transaction behavior for the individual busi-
ness methods of the application using transaction attributes. As a result,
all operations that go beyond read access to data records must take place
within a transaction. Because transaction attributes are metadata, we
use, as usual, predefined annotations. The required additions in the
source code are shown in Listing 3.11.

@Stateless
@TransactionManagement
(value=TransactionManagementType.CONTAINER)
public class EmployeeServicesBean
implements EmployeeServiceslocal {
[...]
public Tong createEmployee(String lTastName, String
firstName, String department) {
[...]
}
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public Employee getEmployeeById(long empld) {

144

Defining the Business Logic | 3.5

[...]
}
@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public List<Employee> getAllEmployees() {
[...]
}

[...]

}

Listing 3.11 Transaction Attributes of the Business Methods of the Session Bean
EmployeeServices

First, the annotation @TransactionManagement defines that transaction
control for the entire session bean is delegated to the container. Another
annotation, @Transaction Attribute, enables you to adapt the transac-
tion context individually to each single method. Remember that no
annotation was added to the method createEmployee(). The reason for
this is solely that the default behavior is to be applied to the basic oper-
ation. The corresponding transaction attribute is called REQUIRED and
requires that a new transaction is always started whenever this is neces-
sary. If, for example, at the time of the method call no transaction is
active, the application server automatically starts a new transaction, exe-
cutes the business method, and sets a transaction commit immediately
thereafter. On the other hand, if a transaction is already available, this
one is used. This way you can see that creating a new employee data
record definitely requires a transaction, albeit one that is not necessarily
exclusive. For this purpose, the transaction attribute REQUIRED is ideal.

The methods getEmployeeBylId() and getAllEmployees() are quite dif-
ferent. Both methods implement solely reading accesses. Because no
changes to data records result, a transaction is actually not required. If,
however, a transaction is active at the time of the method call, this one is
used. A new transaction, on the other hand, is not started. On the basis of
this tolerance toward the transactions, the default behavior can be over-
written with the transaction attribute SUPPORTS. In this way, the source
code of the bean class is complete. If you have not done so already, add
the missing imports to the bean class. Then click on an arbitrary position
in the Java editor and select Source » Organize Imports from the context
menu. The missing import lines are then added. Now no further errors
should be displayed in the source code of the bean class. Finally, adapt

145

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

the formatting of the new lines by choosing Source « Format from the
editor context menu and then save the editor content using the corre-

sponding icon in the toolbar.

3.5.3 Adding Business Methods to the Business Interface

Because the business methods already defined in the bean class are not
automatically added to the appropriate business interface, you must per-

form this step manually.

1. To propagate individual business methods from the bean class to the
business interface, select the bean class in the project explorer by dou-
ble-clicking it. If no outline view is displayed in the current view,

open this one first.

2. As shown in Figure 3.15, select all the business methods within the
outline view, open the context menu, and then choose the option EJB
Methods » Add to Local Interfaces.

3 cuie x N

BZwaw e wY O

com,sap.demo, session

= import declarations
EmployeeServicesBean
-

eoe

E'g Copy Qualified Name
[Ef Paste
¥ Delete

Chrl+
Chrl+C

Chrl+

Delete

Source
Refactor

Toggle Method Breakpoint
Run &s

Debug As

Profile As

Compare YWith

Replace With

Feestore from Local Histar, .

EJB methods
Java EE Annotations

Add From Bean Classes

ntetfaces

Figure 3.15 Propagating the Business Methods to the Business
Interface, Starting from the Outline View

3. Listing 3.12 shows the resulting source code of the business interface.

import javax.ejb.local;
import java.util.List;

146

Creating a JSP-Based Web Application | 3.6

import com.sap.demo.entity.Employee;

@Local
public interface EmployeeServiceslLocal {
public List<Employee> getAllEmployees ();
public Employee getEmployeeById (long empld);
public Tong createEmployee (String TastName, String
firstName, String department);

}

Listing 3.12 Business Methods in the Business Interface EmployeeServicesLocal

3.6 Creating a JSP-Based Web Application

The Developer Studio provides a special project structure for managing
Web resources such as JavaServer pages, JavaServer faces, servlets, static
HTML pages, and custom-tag libraries, as well as screen and graphic
files. To prepare the initial project frame, you will create a correspond-
ing project — that is, a Web module project — at the very outset.

To keep the Web application as simple as possible, add a JSP to the
project as the only resource and implement with it the user interface of
the Web client. In addition to the actual presentation editing, the
accesses to the business methods of the session bean EmployeeServices
should be implemented. As an example, use some information on the
configuration of the Web application in the corresponding deployment
descriptor.

3.6.1 Creating a Web Module Project

To create a Web module project, perform the following steps: Container for

Web resources
1. Start the New Project Wizard through the menu option File « New

Project.

2. In the displayed wizard window, select the category Web « Web 2.5
and then Dynamic Web Project 2.5.

3. With Next, you proceed to the next wizard window. There you enter
“EmployeeWeb" as the project name. Otherwise, take the default set-
tings and close the procedure by pressing Finish.

147

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

4. The best way of looking at the project frame is in the Project Explorer.
In the JSP, you want to access resources from the Ejb module project.
Therefore, you must also take this project dependency into account.
For this purpose, click the project name EmployeeWeb and select the
menu option Properties from the context menu.

. In accordance with the specifications in Figure 3.16, select the prop-
erty Java Build Path, click the tab Projects, and assign the desired
project.

'—‘_‘-: J2EE - SAP NetWeaver Developer Studio il

File Edit Mavigate Search Projeck Run Window Help

x|

Ifi-E o [B@ | rE ([H-0-%- |[FE |G 4| ¢ e
Jﬁ]ﬁj J@QjJLd'JQJ_' o e v (3 Dictionary [Resource

EEENE =8

% EmploveeEib
=28 Employvesteb

il -

E-"3 Deployment [%2 Properties for EmployeeWeb -1ol x|
source k

-2, JRE System Itype Filter text Java Build Path i i

-, 54P Java EE
& buid
E-(= webContenl

Info s
- BeanInfo Path
- Bullders

Euild Path

[Source 1= Projects | B Libraries I L Order and Export |
Required projects on the build path:

va Code Style 1= EmployesEib Add...
[#- Java Campiler
- Javadoc Location Edlits s |
- Lin
- Profile Compliance ar -+ Hemove
T -
@ Cancel |

J Ev g EmplayEETen T PP SEryer T

Figure 3.16 Assigning Java Build Path to the Project EmployeeWeb

3.6.2

Implementing the User Interface with JSP

Now you can begin with the implementation of the user interface in the

JSP editor.

1. To add a JSP to the new project, click on the entry WebContent in the
Project Explorer and choose the menu option New « JSP....

2. You now see a wizard in which you can enter the name “index.jsp".

3. Further specifications are not required. Close the procedure by press-

ing Finish.

148

Creating a JSP-Based Web Application | 3.6

Generally speaking, there are two sections in the source code of the JSP:

» A HTML basic structure that, for the most part, defines a static input
form for the Web application

» A dynamic Java-based section with which you can implement
accesses to the business logic

HTML Basic Structure

The form for registering new employees could hardly be easier. It con-
tains, in addition to the two input fields for the names, a selection list
with the corresponding departments and a pushbutton with which the
user can trigger registration. All these interface elements are listed
within a HTML table. The complete structure is displayed in Listing 3.13.

<%@ page language="java" [...] %>
<I!DOCTYPE html PUBLIC [...]1 >

<htm1>

[...]

<I-- Import statements -

<l-- Reference to Session Bean -->

<body style= "font-family:Arial;" bgcolor="D2D8E1">
<he>

Register New Employee

</he>

<form method="GET">
<{table border=0 align=center>

<trd>

<td width="150" >First name: <td>

<input type="text" name="firstname" value = "" size="20">
<tr>

<td width="150" >Last name: <td>

<input type="text" name="lastname" value = "" size="20">
<tr>

<td width="150" >Department: <td>
<select name="department" >
<option value="DEVELOPMENT">Development</option>
<option value="TRAINING"> Training</option>
<option value="MANAGEMENT"> Management</option>
<option value="ARCHITECTURE"> Architecture</option>

149

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

</select>
<tr>
<td><td>

<input type="submit" value="Create" name="create">
</table>

</form>
<!- Invoke business method -->
</body>
</html>

Listing 3.13 HTML Basic Structure for the JSP

Access to the Session Bean

In accordance with Listing 3.14, first supplement the JSP source code
with some page directives whose import attributes contain the required
package for JNDI Lookup as well as the business interface.

So that the reference to the session beam is retained, a JNDI Lookup is
performed on the context variable context. Remember that with
EmployeeRegister in Listing 3.14 you use a symbolic name for the ses-
sion bean. This name must also be specified as the reference name in the
deployment descriptor of the Web application. The result of the lookup
is assigned to the local employee object employeeService after the busi-
ness method casting is completed.

<%

<l-- Import statements -

<%@ page import="javax.naming.*" %>

<%@ page import=
"com.sap.demo.session.EmployeeServiceslLocal" %>

<l-- Reference to Session Bean -->
<%!
private EmployeeServiceslLocal employeeService;
private void Tookup() {
try |
InitialContext context = new InitialContext();
employeeService = (EmployeeServiceslocal)
context.lookup("java:comp/env/EmployeeRegister");
} catch (Exception ex) ({

150

Creating a JSP-Based Web Application | 3.6

System.out.printin("Couldn't find bean"+
ex.getMessage());

public void jspDestroy() f
employeeService = null;

}

%>

Listing 3.14 Dynamic Section of the JSP — Access to the Session Bean

Calling the Business Method

In the following section, not all business methods will be called within
this simple Web application. We merely wish to show an example of
how, starting from a JSP, the business method createEmployee() can be
called in order to create a new data record on the database. This, too, is
an intended simplification because, normally, a JSP-based Web applica-
tion consists of a combination of JSPs and servlets, and possibly also fur-
ther JavaBeans as auxiliary classes in order to achieve strict separation
between the actual presentation layer and the controller layer. While
JSPs are preferred for presentation editing and thus also preferred as a
view component, servlets or JavaBeans usually act as a controller and
implement the application logic.

To save some of the typing work, the call for the method createEm-
ployee() is embedded in the JSP source. However, it could be trans-
ferred easily to a servlet or to a JavaBean in the role of a controller. As
you can see from Listing 3.15, a JNDI lookup precedes the actual call of
the session bean method. This lookup was previously encapsulated in a
separate method 1lookup(). Therefore, the local session bean object
employeeService calls the business method createEmployee(). The local
variables 1Name, fName and eDepartment are passed as parameters. They
were defined in the first lines of the source code excerpt and adopt the
currently entered user values. Whenever the business method is suc-
cessfully executed in the EJB container, it returns a valid EmployeelD.
Otherwise an exception is thrown and a corresponding text is displayed
on the user interface.

151

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

Reference to
session bean

<%
Tookup();
if(this.employeeService == null) {
throw new IllegalStateException("Bean not available!");
}

String fName = request.getParameter("firstname");
String 1Name = request.getParameter("lastname");

String eDepartment = request.getParameter("department");
if(1Name == null || fName == null
|| TName.length() == 0 || fName.length() == 0) return;
long empID = employeeService.createtEmployee(1Name, fName,
eDepartment);

if(empID == 0)

out.printin("<H3> Failed! </H3>");

else

out.printin("<H3> Success! </H3>");

%>

Listing 3.15 Dynamic Section of the JSP — Business Method Call

3.6.3 Descriptions in the Deployment Descriptor web.xml

You can get information on the configuration of the Web application
from the deployment descriptor web.xml. The entries contained there
are evaluated at deployment time by the Web container. On one hand,
the Web container receives all information as to how the individual
resources of the project fit with each other. On the other hand, the
assignment of security roles is contained in web.xml. These are the secu-
rity roles through which the access authorization for the Web applica-
tion can be controlled at runtime.

However, only certain mapping information is stored in the descriptor.
In the following step, you will define, as an example, a reference to the
required session bean using a symbolic name, but you will not make any
further specifications on the configuration of the Web application.

Symbolic Name for the Session Bean

For access to the session bean, we have used a symbolic name, not the
real bean name, in the JSP source code (see Listing 3.14). So that the

152

Creating a JSP-Based Web Application | 3.6

Web container can assign such a name at runtime as well, a correspond-
ing mapping regulation must be stored in the deployment descriptor.

1. To define a symbolic name for a reference to the session bean, open
the deployment descriptor web.xml. Click on the tab Design and add a
further tag for the EJB reference.

2. Similar to the specifications in Figure 3.17, set the EJB name “Employ-
eeRegister” so that it matches the entry in the JNDI lookup in the JSP
source code from Listing 3.14.

= .
version="1,0" encading="UTF-&"
= [e] web-app {{idescription™®, display-name®, icon®)) | distributable |
@ id WebApp_ID
(@ wersion 2.5
#mins http:ffiava. sun.comfxmlfns/javaee
@ xmins:xsi bkt enes w3, orgf 2001 fXMLSChema-instance
xsiischemalocation httpeffiava. sun. comi=mifns/javaee http:ffiava,sun.con
[8] display-name Employesweb
[8] welcome-file-list {welcome-file+)
I e B F {description™®, ejb-ref-name, ejb-ref-type?, local-home?
[€] ejb-ref-name EmployeeReqgister
[€] ejb-ref-tvpe Sessi
[&] lacal com, #4%,dema, session, EmployeeServicesLocal
Design] Source |

Figure 3.17 Setting the EJB Reference to the Session Bean in web.xml

3. The new entries are automatically added to the XML source at a suit-
able position. You can ensure this is the case by clicking on the tab
Source and then navigating in the displayed XML source to the ele-
ment <ejb-local-ref> (Listing 3.16).

<?xml version="1.0" encoding="UTF-8"7>
<web-app id="WebApp_ID" version="2.5" [...1">
<display-name> EmployeeWeb</display-name>
<welcome-file-list>
[...]
</welcome-file-Tist>
<ejb-Tocal-ref>
<ejb-ref-name>EmployeeRegister</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local>
com.sap.demo.session.EmployeeServiceslocal
</local>

153

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

</ejb-local-ref>
</web-app>

Listing 3.16 Generated XML Source for the Reference to the Session Bean

4. With this entry, you have now defined a mapping between a freely
selectable reference name (symbolic name) and the real bean name.
Thus, the reference name assigned in the source code of the JSP for
the session bean can be used, and it remains unchanged there, even if
the bean name changes.

3.7 Defining and Deploying the Java EE Overall
Application

While the business functions are provided with the EJB module, the
suitable Web components have now been added with the Web module.
At this point, only the components for a Java EE overall application need
to be combined. The Developer Studio provides a special project type
for this purpose. It is referred to as an enterprise application project.

To create the employee overall application, first create an enterprise
application project named "EmployeeEar". Here you also set up a config-
uration file for the data source alias before you generate the appropriate
EAR for the overall application and finally deploy this on the Java appli-
cation server.

3.7.1 Creating the Enterprise Application Project

To create the project, proceed as follows:

1. Start the New Project Wizard through the menu option File - New
Project.

2. In the displayed wizard window, select the category J2EE - Java EE
and finally Enterprise Application Project 5.

3. By pressing Next, you proceed to the next wizard window. There you
enter "EmployeeEar” as the project name. Accept the default settings
and proceed to the next wizard window by pressing Next.

154

Defining and Deploying the Java EE Overall Application | 3.7

4. In accordance with the specifications in Figure 3.18, assign the EJB
module EmployeeEjb.jar and the Web module EmployeeWeb.war to the
EAR project before you complete the procedure by pressing Finish.

r:_: New Enterprise Application Project 5 1 ll
Java EE Modules to Add to the EAR 7
Select, Deselect, or Add 12EE modules to the new EAR. | I‘A_.
O EmploveeDic. jar
EmployesEih, jar
EmplovesWeb. war
() < Back | [dExh = | Finish I Cancel |

Figure 3.18 Creating the Modules Ejb and Web for the EAR Project

3.7.2 Creating the Data Source Alias

You will remember that you entered a name for the data source alias in
the deployment descriptor persistence.xml. Such a data source alias has
not been created anywhere so far. You will now perform this step. How-
ever, before continuing further, we would like to illustrate briefly the
importance of the data source alias.

Excursion into Database Accesses and the Data Source Alias Data source alias
as link between
The data source alias is required in order to enable communication to the application and

database for table accesses from the application. A data source alias is a logi- database
cal name for server-side access to a database resource (in this case, the table).

The connection pool on the application server has knowledge of the path to

the database table — that is, the actual data source that must already exist on

the server.

The default data source (also called system data source) plays a special role
here. This data source is automatically created during the installation of the
AS Java and is not associated with a specific application. The default data
source is intended as a default connection pool for use by several applications.

If you now create the data source alias in the Enterprise Application Project,
you will associate it with the default data source. The use of an alias at this
point has several advantages:

> The developer does not have to specify the physical path name for the
database resource. Only the database system requires this information for
managing its own resources.

155

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

» In addition, the alias is assigned in the Developer Studio and assigned to a
specific project. Thus, the administrative task that the developer would be
required to take on in a separate administration tool is dispensed with.

> Last, the use of a data source alias enables you to keep the entire applica-
tion portable.

Because a corresponding configuration file for the data source alias is
not yet contained in the current project, you will now create this first —
starting from the appropriate XML schema.

1. In the Project Explorer, select the project and navigate to the folder
META-INF.

2. From the context menu of this folder, select the menu path New «
Other « XML « XML and press the button Next. On the displayed wiz-
ard page, choose the option Create XML file from an XML schema file
and press Next.

3. On the following wizard page, enter “data-source-aliases.xml” as the
file name and again choose Next.

4. As you can see in Figure 3.19, you decide on the option Select XML
Catalog entry and then select data-source-aliases.xsd from the dis-
played XML catalog.

x
Select XML Schema File
Select the schema file to create the 2ML File, N
(X

€ Select file: from workbench

¥ Seleck XML Catalog entry

¥ML Catalog

Figure 3.19 Creating a Data Source Alias for the EAR Project

5. On the following wizard page, select data-source-aliases for the Root
element and confirm this by pressing Finish. With this step, the XML
file named data-source-aliases.xml is created. It is then visible in the
project structure.

156

Defining and Deploying the Java EE Overall Application | 3.7

6. Now open the XML editor and enter the system data source
“${com.sap.datasource.default}" and the name “TMP_EMPLOYEES_
DATA" for the alias.

The alias name is assigned to the system data source at deployment. You
can easily follow this by looking at the generated XML source. It
matches the lines shown in Listing 3.17.

<?xml version="1.0" encoding="UTF-8"7>
{data-source-aliases [...]1>
<aliases>
{data-source-name>
${com.sap.datasource.default}
</data-source-name>
<alias>TMP_EMPLOYEES_DATA</alias>
</aliases>
<{/data-source-aliases>

Listing 3.17 com.sap.datasource.default as Representation
of the System Data Source on the AS Java

3.7.3 Deployment of the Employee Application

Before the deployment of the application starts, you should check that Preparations for
the server process was started and that the database is online. The pre- deployment
requisite for this, however, is that the AS Java has been registered in the

Developer Studio.

As shown in Figure 3.20, two different options are provided on the Pref-
erences page. Depending on whether the assigned AS Java was installed
on the local host or under an arbitrary address in the LAN, you must dis-
tinguish between the option for the remote installation and the option
for local installation. The required entries are contained in the system
information, which you will find on the server welcome page.

Deploying the Dictionary Table Definitions

To be able to transfer the table definitions from the Dictionary project to
a database instance, you need an archive file. This kind of Dictionary
archive represents a transportable unit of the Dictionary project and
combines all the Dictionary definitions of the project from the gener-

157

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

ated metadata. Only when the created archive is deployed on the appli-
cation server is the physical representation of the corresponding table
generated on the database instance on the assigned database using CRE-

ATE TABLE.

[z Preferences

I type filker bext

[General
[Ant
- Backend Services
- CAF Preferences
- Data
Development Infrastr
+1- Dickionary
elp
- InstallfUpdate
- Internet
- J2EE ¥ML Templates
-Java
+- Plug-in Development

- Services
- Team
- Trace Configuration

- alidation _ILI
| »

4

-
-

SAP AS Java =

=

Please select an engine installation to be used For development.
¥ 5AP AS Java is installed on remote host.

Recent configurations: | j
Message Server Hosk: IpwdF12345
Message Server Port: ISSUD
7 585 A5 Java s installed on local biost,
System Mame: I
Java EE Instance: I
SiC5 Instance: I
Restore Defaults | Apphy

Figure 3.20 Registering the Application Server Java Under Preferences

1. To create the archive, choose the project node in the Dictionary
Explorer, open the context menu, and select the option Create

Archive.

2. Afterward, choose Deploy from the context menu of the project node

(Figure 3.21).

Navigat0r| =08
BRI
EE= a
=] @ Dictionaries Mew L4
E-{3F Local Dictionar i i
EH@ Dt Type Build Project
& smple Rebuid Project
B Struct Reload
B Datahase
EI|:| TMP E Creategrchive
T Faste CGEE
[eI Check Project Archive Versions
“-{[@ Database | 3§ Delete Delete

Figure 3.21 Deploying the Table from the Dictionary Project

158

Defining and Deploying the Java EE Overall Application | 3.7

3. From the Deploy View Console (Figure 3.22), you immediately get a
report as to whether or not the deployment activity was successful.
From this view, you can also look at the corresponding log file.

- Dieploy View Copsole X 8 Tasks|PrUb\ems| 57, = EH
! I Time | Message | ;l

1 13:30:40 Undeploy item 'sap.comfEm.. .

1 13:30

i 130 Deploy finished successFully,

i3
1 1330

i 133 I Dan't shew this dislag again

i 13

i 133

1133 Ok
i 13

i 13:3029 [#1]: Undeploy ftem name..,

i 13:30:20 [#1]: Undeploy item name...

i

-
12020090 T#1 7 Colecbod Theor be e _I

Figure 3.22 Displaying the Deploy Output View After Successful Deployment

4. If you are implementing the MaxDB as a database system and have sQL Studio

installed the SQL studio, you can now easily check that both tables
have been correctly created on the database instance. For this pur-
pose, you need only to log on to the database server through the SQL
Studio and to search for TMP_EMPLOYEES and TMP_ID_GEN in the list of
all currently deployed tables on the server. If you have knowledge of
SQL, you can also create some data records for the new employee
table in the SQL Studio.

Creating and Deploying the Enterprise Application Archives

The Enterprise Application Archive groups the JAR and WAR archives
into one single archive with information from the corresponding
deployment descriptors. The EAR contains, in addition to the business
logic components, the presentation components. It can be easily created
and deployed in one step from the Developer Studio using the Servers
view.

1. Open the Servers view. The entry SAP Server should already be dis-
played here.

2. From the context menu, choose the option Add and Remove Projects.
As shown in Figure 3.23, select the EAR project and confirm with Fin-

159

3 | SAP NetWeaver Developer Studio — Step-by-Step to a Sample Application

ish. Thus, in one single step you have added the deployable projects
to the Servers view, generated the respective archives WAR, JAR, and
EAR (and added them to the project view in the Project Explorer), and
immediately triggered the deployment.

152 Add and Remove Projects |
Add and Remove Projects
Modify the projects that are configured on the server

Mowe projects to the right to configure them on the server

Available projects: Configured projects:

fdd = |
< Remove |

‘L@ EmploveeEib
i (g Employeeiieb

(7 < Back | THERE > | Firish I Cancel |

Figure 3.23 EAR Deployment Using the Servers View

3. If your deployment activity has been successful, you will receive the
message "Deployment finished successfully”.

3.7.4 Starting the Employee Application

Provided the server is called localhost and can be reached under the
port 50100, you can start the employee application with the URL http://
localhost:50100/EmployeeWeb/index.jsp (Figure 3.24).

Addrassl http:fflocalhost:50100/Employesteb/indes. jsp j Go

Register New Employee

First name: John

Last name Doe
Department: Development =
Create

|

Figure 3.24 Starting the Employee Application in the Browser

160

Index

@Column 130 application
@Entity 129 call in the browser 642
@GeneratedValue 131, 186 deployment 641
@Id 184 application context 569
@JoinColumn 191 application service 92
@JoinTable 191 assembly 591
@ManyToMany 192 software 591
@NamedQuery 133, 197 assignment table 189
@OneToMany 191 authorization 546
@OneToOne 193 administrator 547
@PersistenceContext 195 CMS user 548
@Table 130 project leader 547
@TableGenerator 132, 186
@Temporal 184 B
@Version 130, 187
B2B 36
A integration 36
backward mapping 173
ABAP 30 bean class
ABAP Dictionary 30 implementing 140
Access Control Entity 492 BSP 30
Access Control List 471, 492, 545 build
class diagram 493 ANT-based process 474
Action Editor 365 CBS process 498
actions binding 246 process 72,477,497
activation view 83 scripts 497
activity 486 variant 500
characteristic 629 build time dependency
create 627 use dependency 469
open and closed 486 buildspace 496, 577
adaptive RFC model 96, 228 business logic
adaptive Web service model 228, 259 implementation 634
class 273 business method
import 269 calling 151
logical destination 271 business object 91, 219, 385
object 273 assign data type 397
administration perspective 98 attribute 397
administrator plug-in cardinality of attributes 398
DTR 560 CRUD method 400
alias 204 exposing methods as Web services 405
annotation 130, 133 Sfinder method 401

implementation 405

683

business object (cont.)
lifecycle method 395, 400
permission 402
persistency 403
persistency attribute 403
relation between business objects 399
remote persistency 404
search method 400, 401
test 409
Business Process Engine 42
Business Process Management 39
Business Server Pages — BSP
Business to Business — B2B

C

cache management 656
CAF 392
build 407
compilation 408
create business object 395
create project 393
creating deployable archives 408
deployment 408
development project 394
dictionary project 394
EJB project 394
generating a composite application 407
meta data project 394
permissions project 394
predefined data type 398
SAP NetWeaver Developer Studio 392
Service Browser 410
categorization 216
CBS 68, 457, 494, 536, 537, 538, 643
architecture 495
build process 497
JEE Version 5.0 611
parameter 564
server 538, 562
central services instance 650, 653
central user administration 540, 544
Change and Transport System
software change management 599
Change Management Service — CMS

684

check-in
change 642
check-in conflict 489
check-in/check-out mechanisms 483
class
serializable 129
classification service 215
client
abstraction 247, 249
independence 245
cluster
communication 656
configuration 76
CMS 68, 503, 536, 537, 538, 616
architecture 503
build option 620
content update 616
development step 646
domain 564, 565
user 547
collaboration 48
com.sap.jdk.home_path_key 620
command line tool
component-based development 533
Common Model Interface 251
compartment
buildspace 496
component
architecture 251
browser 82, 625
loose coupling 251
Modeler 95
property 83
Component Build Service — CBS
component controller context 235
component hierarchy 460
component instance 318
component interface 251
definition 256
external 256
local 256
view 256
component model 64, 247, 460, 464,
494, 607
Component Modeler 95, 246, 257

component usage lifecycle
createOnDemand 320
manual 320
component-based software development
scenario 601
composite application 27, 350
architecture 383
business object 384
business object layer 384
customizability 381
definition 381
development 379
example scenario 390, 391
layer model 384
lifecycle 382
model-driven development 383
philosophy and benefits 380
process layer 387
process modeling step 388
property 382
requirements 380
service layer 384
testing 442
user interface layer 386
Composite Application Explorer 394
Composite Application Framework
design time 63, 91
composite view 356
Config Tool
call 563
Configuration Wizard
automatic configuration 536
NWDI installation 515
runtime system 518
conflict
version control in DTR 489
Connector Framework 355
consolidation phase 590
container 58
Context Editor 96
context mapping 246
context-to-model binding 246
controller 246
cyclic dependency
Sforbidden 471

D

Dali 173
data binding 246
data model 625
Data Modeler 55, 95, 246
data redundancy
avoidance 549
Data Transfer Objects — DTO
database table
relational 129
deadlocks 676
debugging 75
debug mode 75
debug node 77
process 79
tool support 78
dependency
software component 567, 615
type 638
wizard 638
deploy controller 518
deploy time dependency
use dependency 469
Deploy View Console 159
deployment
preparation 634
process 80
unit 218
Design Board 358
design time
database connection 179
Design Time Repository — DTR
detached entity 202
detailed navigation 332
detailed navigation panel 331
Developer Studio — SAP NetWeaver
Developer Studio
development
local 70
model-based 347
development component 356, 463
create 625
interface 467
nesting 466
parameters 627

685

Index

Index

development component (cont.)
project 472, 583
property 630
technical basis 475
type 472
use dependency 468
development configuration 512, 609
export 531
import 581, 623
local 527,531
perspective 81
development infrastructure
perspective 83
requirement 454, 455, 456
development object 58
Java 465
make available centrally 642
development object type 569
development process 72
developer view 513
example 455
JDI 513
role 609
team 70
development server 354
search & browse 354
VC Builder 354
VC Server 354
dictionary
archive 634
DC project 625
local 96
perspective 84, 86
project 85,120, 625
Dictionary Explorer 85
domain 503
DTO 171
DTR 68, 349, 457, 480, 490, 536-538
access authorization 560
administrator plug-in 491, 558
architecture 481
client 68,491, 559
command line client 491
initial access authorization 557
permission concept 492, 493
permissions view 560

686

DTR (cont.)
perspective 100, 101, 479, 558
principal 560
priority rule 556
server 554
source file management and version
creation 538
task 480
user interface 490
workspace 484
Dynamic Expression Editor 358, 359

E

EAR 88, 117
deploying 159
Eclipse 53
development object 56
platform 61, 105
product 102
SDK 60
workspace 56
WTP 62
editor 54
EJB 87,115
create module DC 634
DC project 634
EJB 3.0 115
module project 135, 136, 148
project 87
employee application 160, 607
employee entity
defining 127
employee table
definition 631
enterprise application
project 88
Enterprise Application Archive — EAR
Enterprise JavaBeans — EJB
Enterprise Service 211, 351
consuming 223
paradigm 213
protocol 355
Enterprise Services Repository 241
enterprise SOA 27, 211

entity 127
detached 202
manager 141,177, 194
example application
structure 607
example development landscape 540
existence condition 205
extension point 61

F

feature 102
installation 106
version 105

finder method 133

follow-up request 586

fusion
version creation 516

G

Generic Modeling Language — GML
Generic Portal Application Layer
— GPAL
global version history 490
GML 354
GML+ 354
GML+ DOM 354
GPAL 333
guided procedures
action 422
administrator 441
block 425
block type 426
callable object 423, 428
callable object type 429
context 387, 388
contextual navigation panel 422
design time 421
development object 422
gallery 421
instantiation 443
integrating a Web service 432
integrating Visual Composer 427
launching the framework 421
modeling processes 421

Index

guided procedures (cont.)
options for passing parameters 442
overseer 441
owner 441
parameter consolidation 389, 434,
435, 439
parameter consolidation plan 437
parameter mapping 435
process editor toolbar 424
process flow modeling 388, 425, 427
process role 388
renaming roles 440
role 388
role assignment 439
role consolidation 441
runtime environment 444
Runtime Work Center 444
screen flow 446
sequential block 426
WD4VC 429, 431
WD4VC application 429
WD4VC callable object 430
Web service 432
Web service callable object 433
work item 444

H

heap size
JVM 542

Hypertext Markup Language (HTML)
353

ICM 651
IDE
architecture 60
idleStart
CBS state 542
ignored resource 622
import
SCA file 621
InfoCube 50
information integration 46

687

Index

inheriting permissions

DTR 493
initial ACL 556
installation

offline 109

online 109
integration

conflict 100, 490

DTR workspace 488
Integration Directory 41
Internet Communication Manager

— ICM
isolation level

Read Committed 202

Read Uncommitted 202
iView 47

portal iView 350
IWDComponentUsage APT 320

J

J2EE 54,62, 89
Engine view 78, 81
entire application 640
perspective 87, 89
JAR 87
Java
instance 74
standard development 60
Java archive — JAR
Java Database Connectivity — JDBC
Java Development Infrastructure
configure 71
tool 68
Java development object 480
Java development process 458
Java Dictionary 84, 168
Java EE 54, 62, 89
Java instance 651
Java Management Extensions 662
Java Package Explorer view 479
Java Persistence APl — JPA

Java Persistence Query Language — JPQL

Java system reports 666, 668
Java Virtual Machine — JVM
JavaBean model 228

688

JavaServer Pages — JSP
JDBC 161, 543
connection pool size 543
native 164
vendor 163
JDK 1.5.0_xx
CBS 610
JDK_1.5.0_Home Parameter 620
JMX agent 662
JMX infrastructure 662, 663
JMX prganizational model 663
JNDI lookup 150
join operation 199
join table 189
JPA 116, 161
entity 177
JSR 220 specification 177
JPQL 196
JSP 147,148
JSR 220 177
JVM 542

K

Knowledge Management 47

L

LAN

scenario 75
Landscape Configurator 504, 506, 616
Landscape Directory 622
Layout Board 358
lifecycle

management 349

status 219
Local Area Network — LAN
Log Viewer 675
logging 673
logical destination

create 451
logical system 503

M

mapping 39

backward 173

object-relational 187
master component repository data 551
MaxDB 159
MBeans 662, 666

MBean server 662
merge 490

combining versions 518
messaging 39
model

abstraction 247

common language 348

import 269

object graph 276
model class

executable 274

relationship 274
Model View Controller — MVC
model-based development 347
modification

shipped software 596
MOLAP 50
monitoring framework 665
monitoring infrastructure 664, 667
monitoring tree 665
Multidimensional Online Analytical

Processing — MOLAP
MVC 245, 247, 248, 252

N

name reservation concept 554
name server 539, 554
named query 143
namespace concept 539
namespace prefix
name server entry 569
reservation 567
native JDBC 164
Navigation Modeler 96
navigator view 58
network response time
global development landscape 601

new project wizard 154
nightly build 72, 455
non-ABAP-transport
mixed system landscape 598
NWDI 312, 349, 351, 453, 457, 535
administration 566
development 581
element 459
NWDI.Administrators 609
NWDI.Developers 609
NWDI_CMSADM 565
perspective 623
setup 536, 541
NWDI installation
usage type DI 536

o

OASIS 214

object server 550

object-relational mapping 129, 187

Offline Configuration tool 672

open activity 83

Open JDBC 161

Open SQL 676

Organization for the Advancement of
Structured Information Standards —
OASIS

P

PCD 333, 340

people integration 46

persistence
descriptor 134

persistence unit 178

persistence.xml 135, 178

perspective 54, 479
component-based development 477
development configuration 623
DTR 479
SAP NetWeaver Developer Studio 81
Web Dynpro 479

Plain Old Java Object — POJO

plug-in technology 61

POJO 125

689

Index

Index

port 257
Portal Content Directory — PCD
portal iView 350
prerequisite software component 615
presentation layer 116
problem management 677
process component 218
process integration 39
product 461
programming model 245, 248
project explorer 89, 126
propagation list 488
providing data 666
public part 312, 469, 631
add entity 633
add to development component 632
definition 312
entity 633

Q

quality assurance 591
query search 133

R

reference application 414
import into NWDS 449
installation and configuration 448
installation description 450
launch 449

Relational Online Analytical Processing
— ROLAP

Remote Function Call - RFC

Repository Browser 100

reusability 348

RFC 94

robustness 655

ROLAP 50

role
create 339

routing 39

run mode 75

runtime dependency
use dependency 469

runtime system 539, 572

690

S

SAP component model 69
SAP Developer Network — SDN
SAP Java Virtual Machine 654
SAP Logging API 66
SAP Management Console 78, 98, 670,
676
SAP Master Component Repository 551
SAP NetWeaver
architecture 30
component view 46
tool 30
SAP NetWeaver Administrator 238,
664, 666, 669, 674
Configuration Wizard 536
work centers 670
SAP NetWeaver Application Server
cluster architecture 73, 650
Java 65
SAP NetWeaver Business Client 352
SAP NetWeaver Business Intelligence 48
SAP NetWeaver Composition
Environment 108
administration infrastructure 668
log configuration 674
monitoring framework 663
supportability 661
SAP NetWeaver Developer Studio 53,
113, 513
architecture 59, 60
configuration 622
development process 606
installation scenario 108
monitoring the central build 643
perspective 54, 81
platform 103
server integration 73,77
start 117, 622
tools and perspectives 81
update 104, 110
user interface 54
view 56
windows preferences 119
SAP NetWeaver Development Infrastruc-
ture - NWDI

SAP NetWeaver Master Data Manage-
ment 51
SAP NetWeaver Portal 352
custom layout 336
define portal page 334
portal page layout 337
SAP NetWeaver Portal Client 352
SAP NetWeaver Process Integration 40
SAP NetWeaver Scheduler for Java 65
SAP NetWeaver Visual Composer 413
action 359
adding Ul elements 415
architecture 352
basic control 358
button 363
compatibility 349
compiler 354
composite view 413
connector 357
consuming Web services 414
creating an end point 417
custom action 359
data definition _for an end point 418
data store connector 365
dependencies 349
deployment 419
end point 417, 420
event 417,420
form view 358, 415
Free Style Kit 353, 354
hyperlink 359
input field 361
integration with guided procedures 416
launch 413
layout board 416
mapping 418
modeling the data flow 416
navigate connector 359
packaging 349
plain text 358
popup connector 376
prerequisite 351
SAP NetWeaver 7.0 350
screen layout 416
start point 374, 418, 420
storyboard 353

SAP NetWeaver Visual Composer (cont.)
system action 368
table view 362, 415
tabstrip container 361
toolbar 363
transition 368
user data connector 357
versioning 349
view 358
visibility condition 365
SAP Security 65
SAP Service Marketplace 567
SCA download 609
saving a change
activity 627
SCA 591
file import 579
Scalable Vector Graphics — SVG
SDN 104
Secure Socket Layer
HTTP 539
security 65
Server Development Infrastructure
Client 355
server process 75
nodes 79
Servers view 81, 89, 159
service
external 92
NWDI 605
Service Browser 410, 411
service consumer 214
service definition
searching 219
service interface 219
service operation 219
service provider 214
Services Registry 214
structuring of services 216
session bean
creating 138
symbolic name 152
session management 657
shipment 592
single-server configuration 75

691

Index

Index

SLD 40, 536, 537, 538, 539, 549
data supplier 552
initial data import 551
product definition 566
server parameters 550
software catalog 566
update 610
SOAP 213
software catalog
SLD 612
Software Change Management 535
software component 460, 613
Sfinal test 647
release 647
required 614
Software Component Archive — SCA
software component version 219
software development
component-based 523
scenario 523
Software Landscape Directory 69
software logistics 457, 504
software unit 612
source file
activation 499
speed of development 349
SQL monitor 165
SQL tracing 676
SVG 353
sync 483
System Landscape Directory — SLD
system message 521

T

table

define 631
table editor 85
target platform 610
target release 538
technology independence 347
thread management 657
Tool Integration Framework 66
top-level navigation 332
TopLevelDC 462
tracing 673, 674

692

track 503, 505, 540, 571, 609
consolidation phase 590
import software components 577
project phase 571
release-specific 610

track data
CMS 616

transaction 194

transport 574

transport directory 564

transport release 589

transport route 571, 573
type 574

Transport Studio 504, 509
CMS 620

trigger build
activation 643

troubleshooting 673
scenarios 676

U

UDDI 213
server 215
UME 540, 545, 608
Universal Description Discovery Integra-
tion — UDDI
update
CMS 616
framework 102
manager 107
policy 105
process 102
SAP NetWeaver Developer Studio 101
site 102
use dependency 468, 607, 637
add development component 637
use type
assembly 468
compilation 468
user interface 29
JSP-based 636
paradigm 54
user management 608
User Management Engine — UME

Vv

validation

DC project 639
value set 217
vendor 612
vendor JDBC 163
version field for entities 127
version graph

Design Time Repository 491
versioned resources 481
versioning 187
view 56

Java Package Explorer 479
view controller context 235
View Designer 96
view layout 254

development of user interfaces 236
Visual Administrator 549

w

WAN
scenario 77

Web application
JSP-based 147

Web archive (WAR) 88

Web Dynpro 225, 240, 245, 351
action 291, 303
application 266
application in SAP NetWeaver Portal

331

application properties 340
binding chain 295
client independence 249
code generation 249
component 251, 306
component architecture 252
component controller 253
component interface 246, 256
component lifecycle 319
Component Modeler 246, 265
component usage 246,317, 318
componentization 307
Content Administrator 331
context 259

Index

Web Dynpro (cont.)
context mapping 248, 260, 282
context-to-model binding 251, 259,
277,278
controller 252, 254
controller implementation 261, 297
controller interface 254, 304
controller usage 303
creating a page 336
data binding 286
data link 283
Data Modeler 232, 246, 266, 269, 270
data transport 294
development component 262, 312
dynamic programming 248
Explorer 56, 58, 95, 265
Flex 351, 354
form template 286
generation framework 253, 273, 297
generic Ul service 250
HTML 351, 354
including components 311
interface element 247, 250
inverse search 321
iView 338
model 227,257
model abstraction 250
model binding 248, 260, 298
model instance 298
multiple iViews 342
navigation 267
Navigation Modeler 267
organize imports 301
parameter mapping 292
perspective 95, 479
project 226
server-side eventing 327
service controller 280
table wizard 292
tool 246,248
tutorial application 245, 258, 306
user interface 260
view container 343
View Designer 268, 294
view layout 260, 292
window plug 267

693

Index

Web Dynpro ABAP 30 Web module DC project 636
Web Dynpro component 246 Web module project 147
anatomy 252 Web service 94, 211, 258
component controller 253 model 234
component instance 320 test 411
component interface 308 Web Service Inspection Language 239
component interface controller 256, Web Service Navigator 411, 412, 432
318 Web Tools Platform — WTP
component interface view 255, 266, Wide Area Network — WAN
319 window 54
component usage 318 Window Controller 254
custom controller 254 window preferences 622
external context mapping 327 wizard 89
interface 255, 308 workset 47
loose coupling 308 create 339
message pool 252 workspace 57,577
programming entity 252 copying changes 488
reusability 251, 308 Design Time Repository 484
visual entity 252 Eclipse 486
window controller 252 folder 485
Web Dynpro component diagram WSDL 213
component interface controller 258 WTP 60
component interface view 258
Web Dynpro model X
design time 275
model object graph 276 Xgraph Language (XGL) 354

runtime 276

694

	SAP PRESS – reading sample

	Java Programming with SAP NetWeaver
	Barzewski, Bönnen, Ganz, Hengevoss, Kessler, Küfer, Lanfermann, Petrov, Rothaug, Siefbold, Stiehl

	Contents at a Glance
	Contents
	Preface to the Second Edition

	chapter 3: SAP NetWeaver Developer Studio —Step-by-Step to a Sample Application
	3.1 Employee Tutorial Application
	3.2 First Steps
	3.3 Defining the Data Model
	3.3.1 Creating a Dictionary Project
	3.3.2 Defining an Employee Table

	3.4 Implementing Access to Table Data
	3.4.1 EJB-Creating a Module Project
	3.4.2 Defining an Employee Entity
	3.4.3 Configuring the Application for Database Accesses

	3.5 Defining the Business Logic
	3.5.1 Creating a Session Bean
	3.5.2 Implementing the Session Bean Class
	3.5.3 Adding Business Methods to the Business Interface

	3.6 Creating a JSP-Based Web Application
	3.6.1 Creating a Web Module Project
	3.6.2 Implementing the User Interface with JSP
	3.6.3 Descriptions in the Deployment Descriptor web.xml

	3.7 Defining and Deploying the Java EE OverallApplication
	3.7.1 Creating the Enterprise Application Project
	3.7.2 Creating the Data Source Alias
	3.7.3 Deployment of the Employee Application
	3.7.4 Starting the Employee Application

	Index

	www.sap-press.de

	(c) Galileo Press GmbH 2008

