
Jürgen Schwaninger

ABAP™ Development for Materials
Management in SAP®: User Exits and BAdIs

Bonn � Boston

373 Book.indb 3 11/2/10 2:41:46 PM

http://www.sap-press.com

Contents at a Glance

1 Introduction .. 13

2 General Information on User Exits and BAdIs 17

3 User Exits and BAdIs in Purchasing .. 37

4 User Exits and BAdIs in External Services Management 83

5 User Exits and BAdIs in Inventory Management 93

6 User Exits and BAdIs in the Valuation and Account
Assignment Area ... 139

7 User Exits and BAdIs in Logistics Invoice Verification 145

8 Validation and Substitution of Accounting Documents 171

A User Exits and BAdIs in SAP Materials Management 193

B The Author ... 257

373 Book.indb 5 11/2/10 2:41:46 PM

www.sap-press.com

7

Contents

Preface ... 11

1 Introduction .. 13

1.1 Objectives .. 13
1.2 Structure and Content ... 13
1.3 Target Audience .. 14
1.4 Prerequisites ... 14

2 General Information on User Exits and BAdIs 17

2.1 Using User Exits .. 17
2.1.1 Finding and Viewing Enhancements 18
2.1.2 Creating a Project and Assigning Enhancements 18
2.1.3 Using Components of the Project 19
2.1.4 Activating and Deactivating Projects 21

2.2 Use of Classic BAdIs .. 22
2.2.1 Finding and Viewing Enhancements 22
2.2.2 Creating a BAdI Implementation 24
2.2.3 Working with Methods .. 25
2.2.4 Activating and Deactivating BAdIs 27
2.2.5 Enhanced Editing Options .. 28

2.3 Use of New BAdIs (Enhancement Spots) 29
2.3.1 SAP Enhancement Framework .. 29
2.3.2 Finding and Viewing Enhancement Spots 30
2.3.3 Creating Enhancement Implementations 31
2.3.4 Working with Methods .. 33
2.3.5 Activating and Deactivating BAdIs 34

3 User Exits and BAdIs in Purchasing ... 37

3.1 Customized Fields in Purchase Orders ... 37
3.1.1 Overview of the Implementation 38
3.1.2 Implementation of Custom Purchase Order Data

and Function Group ... 42

373 Book.indb 7 11/2/10 2:41:46 PM

www.sap-press.com

8

Contents

3.1.3 Integration of Custom Fields into the BAdIs 54
3.1.4 Integration of Customer Fields into the Business Logic ... 61
3.1.5 Initializing, Reading, and Updating Data 68
3.1.6 Display of Error Messages ... 69

3.2 Customizing the Document Overview in Purchase
Requisitions or Purchase Orders .. 72
3.2.1 Removal of a Standard Selection Variant 72
3.2.2 Inserting Custom Selection Variants 75

4 User Exits and BAdIs in External Services Management 83

4.1 Prepopulating Account Assignment for Service Lines 83
4.2 Input Check of the Service Lines ... 86

4.2.1 Prepopulating Fields in EXIT_SAPLMLSP_030 87
4.2.2 Input Check in EXIT_SAPLMLSP_031 88

4.3 Prepopulation of the Header Data in the Data Entry Sheet 89

5 User Exits and BAdIs in Inventory Management 93

5.1 Custom Fields in Transaction MIGO .. 93
5.1.1 Custom Fields: An Overview .. 94
5.1.2 Preparations in the ABAP Dictionary 97
5.1.3 Preparation of the Function Group 98
5.1.4 Preparation and Status Management in

MB_MIGO_BADI ... 104
5.1.5 Activation of Custom Header Data 109
5.1.6 Activation of Custom Item Data 112
5.1.7 Updating the Data .. 117

5.2 Other Functions of the BAdI MB_MIGO_BADI 118
5.2.1 Noting Custom Data .. 119
5.2.2 Input Checks in Transaction MIGO 123

5.3 Checking and Prepopulating Standard Fields 125
5.3.1 Prepopulation of Storage Location and Text 125
5.3.2 Checking the Standard Fields ... 126

5.4 Check of the Earliest Delivery Date ... 127
5.5 Tolerance Limits for Scheduling Agreements 129

5.5.1 Overwriting Overdelivery Quantity 129
5.5.2 Overwriting Default Quantity ... 132

373 Book.indb 8 11/2/10 2:41:46 PM

www.sap-press.com

9

Contents

5.6 Enhancement of Reservations ... 134
5.6.1 Prepopulating Fields ... 135
5.6.2 Checking Entries ... 137

6 User Exits and BAdIs in the Valuation and Account
 Assignment Area ... 139

6.1 GR/IR Clearing Account .. 139
6.2 Overriding the Account Determination in the User Exit 141

7 User Exits and BAdIs in Logistics Invoice Verification 145

7.1 Custom Fields in Transaction MIRO .. 145
7.1.1 Overview of the Solution via BAdI 146
7.1.2 BAdI in Detail — Customizations in the

ABAP Dictionary .. 148
7.1.3 Creating a Custom Dynpro with Table Control 151
7.1.4 Preparation of the Data in the BAdI 154
7.1.5 Back to the Dynpro .. 158

7.2 Overriding Tolerance Checks .. 164
7.2.1 Tolerance Limits in Customizing 165
7.2.2 Use of the Enhancement .. 166

8 Validation and Substitution of Accounting Documents 171

8.1 Validation of Accounting Documents .. 172
8.1.1 Callup Points ... 172
8.1.2 Steps .. 173
8.1.3 Example without Exit Routine .. 174
8.1.4 Example with Exit Routine ... 177

8.2 Substitution of Accounting Documents 182
8.2.1 Substitution without Exit Routine 183
8.2.2 Substitution with Exit Routine .. 185
8.2.3 Read Access to Data of the Source Document 188

373 Book.indb 9 11/2/10 2:41:46 PM

www.sap-press.com

10

Contents

Appendices ... 193

A User Exits and BAdIs in SAP Materials Management 193
A.1 Purchasing .. 194

A.1.1 Purchase Order Requisitions in General 194
A.1.2 Purchase Orders in General .. 199
A.1.3 Outline Agreements (Scheduling Agreements/

Contracts) .. 205
A.1.4 Pricing .. 208
A.1.5 Commitment Functions .. 210
A.1.6 Cross-Document .. 211
A.1.7 Vendor Evaluation .. 215
A.1.8 IDoc Processing .. 216
A.1.9 Logistics Information Systems ... 218
A.1.10 Archiving .. 218

A.2 External Services Management .. 221
A.3 Inventory Management ... 227

A.3.1 Material Documents in General 227
A.3.2 Goods Receipt .. 233
A.3.3 Reservations ... 235
A.3.4 Archiving .. 236

A.4 Valuation and Account Assignment ... 238
A.5 Logistics Invoice Verification ... 240

A.5.1 General .. 240
A.5.2 Archiving .. 254
A.5.3 Conventional Invoice Verification 254

B The Author ... 257

Index ... 259

373 Book.indb 10 11/2/10 2:41:46 PM

www.sap-press.com

93

User Exits and BAdIs in 5
Inventory Management

The concept of Inventory Management in SAP Materials Management (MM) basi-
cally involves summarizing the management of all warehouse stocks with regard
to value and quantity as well as the associated goods movements. Because the
conceivable processes in this core area are very comprehensive, there are also
many setting options in the system. This is also reflected in the number of pos-
sible program-related enhancements. In this chapter, you will learn about the most
important enhancements for Inventory Management.

5.1 Custom Fields in Transaction MIGO

With the implementation of the central Transaction MIGO for all goods movements,
a powerful BAdI is provided: MB_MIGO_BADI. With this BAdI, you can integrate and
post custom fields as custom tabstrips at the header and item level. You can also
carry out input checks in your custom fields or populate many standard fields with
default values.

Display of Custom Data

If you execute the following example, you may find that the subsequent display of the
data of a posted material document at item level doesn’t work. This is the case when
SAP Note 1029951 has been manually imported into your system or support packages
have been imported.

As a result of the changes from this note, the method LINE_MODIFY, which is actually
provided for reading the item data from the database, will no longer run when material
documents are displayed. Unfortunately, it isn’t possible to use another method for this
because the associated standard item data (structure GOITEM) isn’t provided in all other
relevant methods, and you therefore cannot assign your data to a specific document
line.

With SAP Note 1477221, the method LINE_MODIFY will run again. If this note hasn’t
yet been released for customers when you read these lines, you can modify the program
location relevant for the call of the method, as described in SAP Note 1136344. The
example given here will be fully functional in both cases.

373 Book.indb 93 11/2/10 2:42:16 PM

www.sap-press.com

94

User Exits and BAdIs in Inventory Management5

Custom Fields: An Overview5.1.1

The capability of the BAdI MB_MIGO_BADI results in a certain amount of complex-
ity. There are 17 methods that are called at many different times. Nevertheless, to
make the next example as clear as possible, you’ll only view the implementation
of custom fi elds at the header and item level (see Figure 5.1). This reduces the
BAdI to 11 methods with which the minimum requirements can be fulfi lled. In a
second step, you’ll then learn about the function of the remaining methods in a
brief overview.

Custom Fields in Transaction MIGOFigure 5.1

Function Group for the Management of Dynpros

Just as with the custom fi elds in the purchase order (see Section 3.1, Custom Fields
in Purchase Orders, in Chapter 3), you fi rst need a function group to include the
dynpros and some function modules for the exchange of data and for updating
custom fi elds. However, this function group can be implemented for the BAdI
MB_MIGO_BADI much more easily and must assume fewer tasks.

You have to work with two BAdIs in the purchase order to activate the custom
fi elds. The function group therefore not only has to assume the communication
with the dynpros but also must map the communication between the BAdIs. You
can, however, execute all the necessary steps directly in the BAdI MB_MIGO_BADI for

373 Book.indb 94 11/2/10 2:42:17 PM

www.sap-press.com

95

Custom Fields in Transaction MIGO 5.1

Transaction MIGO, so additional communication with another BAdI isn’t needed.
You can create a dynpro in the function group for the header and item data and
create two function modules for each dynpro to store and retrieve the data in the
dynpro. You also need an update module to save your custom data. To post your
custom data, you need to define custom tables in the ABAP Dictionary.

Usage of the BAdI MB_MIGO_BADI

As soon as you’ve created the function group, you can begin with the implementa-
tion of the BAdI. You keep the data on the custom fields for runtime in the attributes
of the BAdI. First, these areas need to be defined.

MB_MIGO_BADI can be implemented many times. However, there are only five
custom tabstrips for the header and item levels. For this reason, precisely five
active implementations are allowed. The method INIT is activated when Transac-
tion MIGO is started, and it’s used to register an implementation and populate a
tabstrip.

With the initialization of a document (new document or display of an existing
document), the methods will run from Table 5.1. The methods MODE_SET and STA-
TUS_AND_HEADER are also triggered when the document status changes.

Method Description

RESET This method is used to initialize all custom data in the
attributes of the BAdI implementation.

MODE_SET In this method, you obtain information on the action
(goods receipt, goods issue, etc.) and the chosen
reference (purchase order, reservation, etc.) chosen by
the user; these are the fields that are always available in
Transaction MIGO in the top-left side. You can evaluate
this information, and store it in the attributes of the
implementation for subsequent use.

STATUS_AND_HEADER This method is mainly used to fill the custom header data
when an existing document is read.

Initialization of a Document and Status ChangeTable 5.1

The methods are also executed with each dialog step for header data from Table
5.2 and with each dialog step on item data from Table 5.3. The method LINE_MOD-
IFY is also executed when a line is added either when the user makes an entry or
when an existing material document is read from the database.

373 Book.indb 95 11/2/10 2:42:17 PM

www.sap-press.com

96

User Exits and BAdIs in Inventory Management5

Method Description

PBO_HEADER This method is called before the header data are displayed.
You must transfer the data to be displayed to the function
group and specify the dynpro to be displayed. The tabstrip
header is also specified here.

PAI_HEADER This method runs as soon as the user has entered the data.
You need to retrieve the possibly changed data from the
function group.

Methods in the Dialog Step on Header DataTable 5.2

Method Description

PBO_DETAIL This method is called before the item data is displayed. In
the parameter I_LINE_ID, you obtain the current item and
must transfer the associated data in the function group.
You also need to specify the dynpro to be displayed as well
as the header of the tabstrip here.

PAI_DETAIL You retrieve the data from the dynpro after the user has
entered it. First, check whether data has changed, and
if applicable, set the parameter E_FORCE_CHANGE. The
method LINE_MODIFY is activated when the parameter has
been set.

LINE_MODIFY This method is activated when a line has been changed
(see PAI_DETAIL) or when a new line has been inserted.
When adding new lines, you must initialize your custom
fields, or if the document is being read in the display
mode, you must read the data from the database.

If required, you have the option here of writing standard
fields that you’ve also possibly integrated in your dynpro
back to the standard items.

LINE_DELETE This method runs when the user has deleted a line of the
material document. In this case, you also need to delete
the associated custom data.

Methods in the Dialog Step for Item DataTable 5.3

Finally, you must use the method POST_DOCUMENT to format your custom data and
call the update module from your function group. The final line number for each
document line is set only in this method, as contained in Table MSEG — that is, in

373 Book.indb 96 11/2/10 2:42:17 PM

www.sap-press.com

97

Custom Fields in Transaction MIGO 5.1

the table in which the standard item data is stored. You should convert your cus-
tom data accordingly so that you can assign it more easily later on.

Preparations in the ABAP Dictionary5.1.2

At this point, it makes sense to refer again to the general data definitions in the
ABAP Dictionary. Both header and item data are implemented in this example,
and two suitable database tables are required to store the data. The following
example again only uses a simple variant for this, and only one text field is used
as a custom field.

Switch to the ABAP Dictionary (Transaction SE11), and create the table for the 1.
header data. Besides the actual text field ZK_FELD1, you also need the key fields;
that is, the material document number and posting year. The table name ZMB_
MIGOHEAD has been used in the example. You can view the associated fields in
Table 5.4.

Field Name Key Field Data Element

MANDT Yes MANDT

MBLNR Yes MBLNR

MJAHR Yes MJAHR

ZK_FELD1 CHAR32

Fields of the Table ZMB_MIGOHEADTable 5.4

Create the table for the item data. A line number is necessary besides the previ-2.
ously used key fields. The custom field is called ZP_FELD1 here. The table name
ZMB_MIGOITEM is used. The associated fields can be viewed in Table 5.5.

Field Name Key Field Data Element

MANDT Yes MANDT

MBLNR Yes MBLNR

MJAHR Yes MJAHR

ZEILE Yes MBLPO

ZP_FELD1 CHAR32

Fields of the Table ZMB_MIGOITEMTable 5.5

373 Book.indb 97 11/2/10 2:42:18 PM

www.sap-press.com

98

User Exits and BAdIs in Inventory Management5

Preparation of the Function Group5.1.3

You next need to deal with the function group and the dynpro. In this example,
both the header and the item data are implemented. A dynpro is also required
here. Moreover, two function modules for the data communication and one
update module are necessary in each case. Another module informs the function
group on the current status of Transaction MIGO. If this isn’t in the display mode,
the fields in the dynpros aren’t ready for input.

Switch to Transaction SE801. . Select the Function Group option in the Reposi-
tory Browser, and specify ZMB_MIGO as the name. Press [Enter]. Confirm in the
dialog that this function group should now be generated.

Dynpro Variations

In this example, a dynpro is defined for the header and item data in each case. You
certainly have the option, however, of preparing different situations as well as differ-
ent dynpros. Your requirement can, for example, be different in goods receipt than
in goods issue. You decide which dynpro is actually displayed at runtime via your
programming.

In the method MODE_SET of the BAdI MB_MIGO_BADI, you learn which action (dis-
plays, goods receipt, goods issue, etc.) has just been selected. You can keep this in-
formation in an attribute of the class and then dynamically set the dynpro in method
PBO_HEADER or PBO_DETAIL based on this information.

Create the dynpro for the header data. Now right-click 2. ZMB_MIGO in the object
browser, and select Create • Dynpro from the context menu. The dynpro num-
ber should be 0100. In the properties, you must set Subscreen as the Dynpro
Type because other types cannot be integrated with tabstrips, and you would
get a short dump upon implementation.

Click the 3. Layout button to switch to the Screen Painter. Here you choose Dic-
tionary/Program Fields in the GoTo • Secondary Window menu, or press
[F6]. In the window displayed, specify ZMB_MIGOHEAD as the table name and
press [Enter]. Mark the field ZK_FELD1, and press [Enter] again (see Figure 5.2).
Using the mouse, now position the field in the top-left corner of the dynpro.
Save and activate the dynpro, and then exit the Screen Painter.

Create the dynpro 0200 for the item data. Choose the field 4. ZP_FELD1 from Table
ZMB_MIGOITEM, and then proceed as in the previous step.

373 Book.indb 98 11/2/10 2:42:18 PM

www.sap-press.com

99

Custom Fields in Transaction MIGO 5.1

Dict/Program Fields WindowFigure 5.2

So that you are able to subsequently fi ll the fi elds in these dynpros with data, 5.
fi elds with an identical name must be available in the global data. Create these
with the keyword TABLES. Furthermore, the fi elds are then ready for input only
if the document isn’t in a display mode . The mode is to be subsequently set via
a function module. You can create it now, however, as a fl ag (gv_outputonly,
data type C) in the global data.

You switch to the global data via the Object Browser by navigating to the include
LZMB_MIGOTOP in the Includes section. An example is given in Listing 5.1.

FUNCTION-POOL ZMB_MIGO. “MESSAGE-ID ..
* Work structures for dynpros
TABLES: zmb_migohead,
 zmb_migoitem.

* Display mode?
DATA gv_outputonly TYPE c.

Global Data in LZMB_MIGOTOPListing 5.1

If the fl ag 6. gv_outputonly is set, then the fi elds in the dynpro aren’t ready for
input. Therefore, change to the fl ow logic of dynpro 0100. Remove the com-
ments in the PROCESS BEFORE OUTPUT time from the STATUS_0100 module. Dou-
ble-click the module name. To generate the module, use the suggested include
name.

Set the value of SCREEN-INPUT based on the fi eld gv_outputonly with a LOOP AT
SCREEN . An example is given in Listing 5.2.

373 Book.indb 99 11/2/10 2:42:19 PM

www.sap-press.com

100

User Exits and BAdIs in Inventory Management5

--
***INCLUDE LZMB_MIGOO01 .
--
MODULE status_0100 OUTPUT.
 LOOP AT SCREEN.
 IF gv_outputonly IS INITIAL.
 screen-input = 1.
 ELSE.
 screen-input = 0.
 ENDIF.

 MODIFY SCREEN.
 ENDLOOP.
ENDMODULE. “ STATUS_0100 OUTPUT

Flow Logic on Dynpro 0100Listing 5.2

Dynpro 0200 is also not ready for input in the display mode7. . Switch to dynpro
0200, and proceed as in the previous step.

Next you can begin with the function modules:

An overview of the required modules is given in Table 5.6. Begin with the mod-1.
ule ZMB_MIGO_SETSTATUS. You only need a flag as an input parameter; from this,
you overwrite the global field gv_outputonly (see Listing 5.3).

Function Module Description

ZMB_MIGO_SETSTATUS Sets the flag gv_outputonly

ZMB_MIGO_HEAD_SET Sets data for dynpro 100

ZMB_MIGO_HEAD_GET Returns data from dynpro 100

ZMB_MIGO_ITEM_SET Sets data for dynpro 200

ZMB_MIGO_ITEM_GET Returns data from dynpro 200

ZMB_MIGO_POST Updates header and item data

Function Modules for Data ExchangeTable 5.6

FUNCTION ZMB_MIGO_SETSTATUS.
*“--
““Local interface:
*“ IMPORTING
*“ REFERENCE(I_OUTPUTONLY) TYPE C

373 Book.indb 100 11/2/10 2:42:19 PM

www.sap-press.com

101

Custom Fields in Transaction MIGO 5.1

*“--
* Set input status
 gv_outputonly = i_outputonly.

ENDFUNCTION.

Coding on ZMB_MIGO_SETSTATUSListing 5.3

Create the modules 2. ZMB_MIGO_HEAD_SET and ZMB_MIGO_HEAD_GET. You need a
structure with Table ZMB_MIGOHEAD as a data type to use it as an import or export
parameter. Simply copy the data in the respective direction between the param-
eters and the work structure previously defined with TABLES (see Listing 5.4
and Listing 5.5).

FUNCTION ZMB_MIGO_HEAD_SET.
*”--
””Local interface:
*” IMPORTING
*” REFERENCE(I_HEAD) TYPE ZMB_MIGOHEAD
*”--
* Prepare data for dynpro
 zmb_migohead = i_head.

ENDFUNCTION.

Coding on ZMB_MIGO_HEAD_SETListing 5.4

FUNCTION zmb_migo_head_get.
*”--
””Local interface:
*” EXPORTING
*” REFERENCE(E_HEAD) TYPE ZMB_MIGOHEAD
*”--
* Return data from dynpro
 e_head = zmb_migohead.

ENDFUNCTION.

Coding on ZMB_MIGO_HEAD_GETListing 5.5

For the function modules 3. ZMB_MIGO_ITEM_SET and ZMB_MIGO_ITEM_GET, proceed
exactly as before. Only use ZMB_MIGOITEM as a reference (see Listing 5.6 and
Listing 5.7).

373 Book.indb 101 11/2/10 2:42:19 PM

www.sap-press.com

102

User Exits and BAdIs in Inventory Management5

FUNCTION zmb_migo_item_set.
*”--
””Local interface:
*” IMPORTING
*” REFERENCE(I_ITEM) TYPE ZMB_MIGOITEM
*”--
* Prepare data for dynpro
 zmb_migoitem = i_item.

ENDFUNCTION.

Coding on ZMB_MIGO_ITEM_SETListing 5.6

FUNCTION ZMB_MIGO_ITEM_GET.
*”--
””Local interface:
*” EXPORTING
*” REFERENCE(E_ITEM) TYPE ZMB_MIGOITEM
*”--
* Return data from dynpro
 e_item = zmb_migoitem.

ENDFUNCTION.

Coding on ZMB_MIGO_ITEM_GETListing 5.7

Create the function module 4. ZMB_MIGO_POST. The module must be marked in
the Processing Type section as an Update Module (Start immed.) (see Figure
5.3).

Create an import parameter (suggestion I_HEAD) as a structure for Table ZMB_
MIGOHEAD. Activate the Pass Value option for this parameter because no refer-
ence parameters are allowed in update modules. Then define a table parameter
(suggestion T_ITEMS) with reference to Table ZMB_MIGOITEM.

With regard to update modules, you should always integrate several logical 5.
tests to prevent erroneous updates as much as possible. You need to check
whether all key fields of the header and item data are filled. Otherwise, an
exception will be triggered. To do this, create the DATA_ERROR exception in the
Exceptions tabstrip.

If the writing of the data fails, however, an exception will also be triggered. You
create this exception as INSERT_ERROR. Triggering an exception results in an

373 Book.indb 102 11/2/10 2:42:19 PM

www.sap-press.com

103

Custom Fields in Transaction MIGO 5.1

update termination , and if there’s an error, the complete material document is
not posted.

Properties of the Update ModuleFigure 5.3

Switch to the 6. Source Text, and begin with the programming. Check whether
the key fi elds of the header data are fi lled (parameter I_HEAD, fi elds MBLNR and
MJAHR). Proceed exactly as before in a loop via the item data (Table T_ITEMS).
Check also the line number (fi eld ZEILE). If an error occurs, trigger the excep-
tion DATA_ERROR by using the command RAISE.

If no error occurs, update the data using the command 7. INSERT. If an error occurs
here (SY-SUBRC <> 0), trigger the exception INSERT_ERROR (see Listing 5.8).

FUNCTION zmb_migo_post.
*”--
””Update module:
*”
””Local interface:
*” IMPORTING
*” VALUE(I_HEAD) TYPE ZMB_MIGOHEAD
*” TABLES

373 Book.indb 103 11/2/10 2:42:20 PM

www.sap-press.com

104

User Exits and BAdIs in Inventory Management5

*” T_ITEMS STRUCTURE ZMB_MIGOITEM
*” EXCEPTIONS
*” INSERT_ERROR
*” DATA_ERROR
*”--

* Check transferred data
 IF i_head-mblnr IS INITIAL OR
 i_head-mjahr IS INITIAL.
 RAISE data_error.
 ENDIF.

 LOOP AT t_items.
 IF t_items-mblnr IS INITIAL OR
 t_items-mjahr IS INITIAL OR
 t_items-zeile IS INITIAL.
 RAISE data_error.
 ENDIF.
 ENDLOOP.

* Write header data
 INSERT zmb_migohead FROM i_head.
 IF sy-subrc <> 0.
 RAISE insert_error.
 ENDIF.

* Write item data
 INSERT zmb_migoitem FROM TABLE t_items.
 IF sy-subrc <> 0.
 RAISE insert_error.
 ENDIF.
ENDFUNCTION.

Coding on ZMB_MIGO_POSTListing 5.8

Save all changes, and check whether all components of the function group have 8.
been activated.

Preparation and Status Management in MB_MIGO_BADI5.1.4

From now on, you can completely focus on the BAdI. All preparations have been
made. As described earlier, all necessary data are kept in the attributes of the class.
These are therefore created first.

373 Book.indb 104 11/2/10 2:42:20 PM

www.sap-press.com

105

Custom Fields in Transaction MIGO 5.1

Switch to Transaction SE19, and create a new implementation for the BAdI 1.
MB_MIGO_BADI. Double-click the name of the implementing class ZCL_IM_MB_
MIGO_BADI, and then switch to the Attributes tabstrip.

Create the attributes according to Table 5.7. Consider the following notes:2.

GC_CLASSEE
Each implementation of the BAdI MB_MIGO_BADI must clearly be identified
toward Transaction MIGO. This happens via a constant of the type MIGO_
CLASS_ID, which you must define in the attributes because you use these in
several areas. In the example given, the constant has been specified with the
initial value ‘MIGO_OWN’. Note that the single quotation marks are necessary
here.

GV_LINEIDEE
In this line number, always note the item transferred last in the dynpro.

GV_ACTIONEE
This attribute contains the currently chosen action (see Table 5.8).

GV_REFDOCEE
This attribute contains the currently chosen reference document type (see
Table 5.9).

GS_HEADEREE
This structure contains the current header data on your tabstrip.

GT_ITEMEE
This internal table contains all items on the current document. You can only
define internal tables in the attributes when you refer to a table type defined
in the ABAP Dictionary or you create a local type. In the following example,
a local type (TT_MIGOITEM) has been used that is still currently unknown.

Attribute Type Visibility Reference Type

GC_CLASS Constant Private MIGO_CLASS_ID

GV_LINEID Instance Attribute Private GOITEM-GLOBAL_COUNTER

GV_ACTION Instance Attribute Private GOACTION

GV_REFDOC Instance Attribute Private REFDOC

GS_HEADER Instance Attribute Private ZMB_MIGOHEAD

GT_ITEM Instance Attribute Private TT_MIGOITEM

Attributes of the Implementing ClassTable 5.7

373 Book.indb 105 11/2/10 2:42:21 PM

www.sap-press.com

106

User Exits and BAdIs in Inventory Management5

Action/Operation Description

A01 Goods receipt

A02 Return delivery

A03 Cancellation

A04 Display

A05 Release Goods receipt (GR) blocked
stock

A06 Subsequent delivery

A07 Goods issue

A08 Transfer posting

A09 Remove from storage

A10 Place in storage

A11 Subsequent adjustment

List of ActionsTable 5.8 in Transaction MIGO

Reference Document Description

R01 Purchase order

R02 Material document

R03 Delivery note

R04 Inbound delivery

R05 Outbound delivery

R06 Transport

R07 Transport ID code

R08 Order

R09 Reservation

R10 Other

List of the Possible Reference DocumentsTable 5.9 in Transaction MIGO

Switch to the 3. Types tabstrip to create the data type TT_MIGOITEM. To define a
table, you need the direct type input (see Figure 5.4).

373 Book.indb 106 11/2/10 2:42:21 PM

www.sap-press.com

107

Custom Fields in Transaction MIGO 5.1

Enhanced Type Defi nition in ClassesFigure 5.4

Enter the name of the data type: 4. TT_MIGOITEM.

Choose the 5. Private entry in the Visibility column because this type is only used
within the class.

Click the yellow arrow icon on the right next to the reference type (direct type 6.
input). You’re now in the ABAP Editor and can defi ne the type as required.

Besides the actual data from table 7. ZMB_MIGOITEM, the internal table requires
another fi eld LINE_ID that displays the internal number during the entry. Create
a type that is made up of the fi eld LINE_ID (type MB_LINE_ID) and ZMB_MIGOITEM.
Name this type TS_MIGOITEM.

Defi ne the type 8. TT_MIGOITEM as an internal table for TS_MIGOITEM. The complete
section should appear as follows:

PRIVATE SECTION.
 TYPES BEGIN OF ts_migoitem.
 TYPES line_id TYPE mb_line_id.
 INCLUDE TYPE zmb_migoitem.
 TYPES END OF ts_migoitem.

 TYPES tt_migoitem TYPE TABLE OF ts_migoitem.

Save and activate your changes.9.

The fi rst methods can now be programmed. Start with the method INIT . As
described earlier, this method is used to announce the implementation in Trans-
action MIGO. A maximum of fi ve implementations may be active at the same
time.

373 Book.indb 107 11/2/10 2:42:22 PM

www.sap-press.com

108

User Exits and BAdIs in Inventory Management5

You can now prepare the methods RESET and MODE_SET (refer to Table 5.1). You’ll
focus on the method STATUS_AND_HEADER later.

Switch to the 1. Methods tabstrip of the class ZCL_IM_MB_MIGO_BADI, and then
navigate to method INIT. Here you must only transfer defined constants GC_
CLASS to the internal Table CT_INIT in the attributes. This table may already
contain other implementations. Therefore, don’t overwrite the table; instead,
attach your constant via APPEND. Because Table CT_INIT only consists of one
field, you can attach the constant directly. You don’t need a local structure (see
Listing 5.9).

METHOD if_ex_mb_migo_badi~init.
* Register implementation
 APPEND gc_class TO ct_init.
ENDMETHOD.

Coding on the Method INITListing 5.9

Edit the method 2. RESET. This method is called when a new document is entered
or loaded. Initialize the instance attributes of your class (see Listing 5.10).

METHOD if_ex_mb_migo_badi~reset.
* Initialize instance attributes
 CLEAR: gv_lineid,
 gv_action,
 gv_refdoc,
 gs_header.
 REFRESH gt_item.
ENDMETHOD.

Coding on the Method RESETListing 5.10

Switch to the method 3. MODE_SET. In this method, you obtain the chosen action
(parameter I_ACTION; refer to Table 5.8) and the chosen reference document
type (parameter I_REFDOC; refer to Table 5.9).

Your custom fields are only integrated when this allows the current action.
You’ve already prepared the function module ZMB_MIGO_SETSTATUS, which you
now call. Set the parameter I_OUTPUTONLY when the action A04 (Display) or
A03 (Cancellation) is selected. Also note the current action in the attribute GV_
ACTION and the reference document type in the attribute GV_REFDOC to be used
later (see Listing 5.11).

373 Book.indb 108 11/2/10 2:42:22 PM

www.sap-press.com

109

Custom Fields in Transaction MIGO 5.1

METHOD if_ex_mb_migo_badi~mode_set.
* Local data declarations
 DATA lv_outputonly TYPE c.

* No input for action A04 or A03
 IF i_action = ‘A04‘ “ Anzeige
 OR i_action = ‘A03‘. “Storno
 lv_outputonly = ‘X‘.
 ENDIF.

* Set current status
 CALL FUNCTION ‘ZMB_MIGO_SETSTATUS‘
 EXPORTING
 i_outputonly = lv_outputonly.

* Hold action
 gv_action = i_action.
* Hold reference document type
 gv_refdoc = i_refdoc.

ENDMETHOD.

Coding on the Method MODE_SETListing 5.11

Activation of Custom Header Data5.1.5

Now let’s move on to the relatively simple header data. At this point, your dyn-
pro is displayed as a tabstrip, and data is exchanged between the BAdI and your
dynpro. The reading of custom data is already implemented here when a posted
document is open. You post the header data later, together with the item data.

Switch to the method 1. PBO_HEADER. Start with a mandatory check: For tech-
nical reasons, the methods from all implementations are always called in an
undefined sequence when one BAdI method is called to a method with several
active implementations. At the same time, the method PBO_HEADER is called
once for each of the five possible tabstrips. All implemented methods are there-
fore started each time. For this reason, you’re informed of the class ID in the
input parameter I_CLASS_ID (you’ve registered this in the method INIT; see
Figure 5.5) that is associated with this call. You must make sure that you check
whether the content of I_CLASS_ID corresponds to the class ID used in this
implementation from constant GC_CLASS. Otherwise, unforeseeable side effects
may arise.

373 Book.indb 109 11/2/10 2:42:22 PM

www.sap-press.com

110

User Exits and BAdIs in Inventory Management5

The dynpro is registered next by transferring 2. E_CPROG to the parameters and E_
DYNNR to the program name and the dynpro number. In the parameter E_HEAD-
ING, specify the name of the tabstrip. In the example given, the dynpro 0100 is
used in the program SAPLZMB_MIGO.

As an example, the tabstrip is only displayed when the operation refers to a
purchase order document. You can check via the attribute GV_REFDOC whether
you have fi lled this in method MODE_SET. The reference key for purchase orders
is R01 (refer to Table 5.9).

Interface of the Method PBO_HEADERFigure 5.5

Finally, you still need to call the function module 3. ZMB_MIGO_HEAD_SET and trans-
fer the current content of the header data to the dynpro. The current status can
always be found in the attribute GS_HEADER (see Listing 5.12).

METHOD if_ex_mb_migo_badi~pbo_header.
* Does the call refer to this implmentation?
 CHECK i_class_id = gc_class.

* Register dynpro if reference to purchase order
 IF gv_refdoc = ‘R01’.
 e_cprog = ‘SAPLZMB_MIGO’.

373 Book.indb 110 11/2/10 2:42:23 PM

www.sap-press.com

111

Custom Fields in Transaction MIGO 5.1

 e_dynnr = ‘0100’.
 e_heading = ‘Eigene Daten’.

* Transfer current status of the header data to dynpro
 CALL FUNCTION ‘ZMB_MIGO_HEAD_SET‘
 EXPORTING
 i_head = gs_header.

 ENDIF.
ENDMETHOD.

Coding on the Method PBO_HEADERListing 5.12

Now process the method 4. PAI_HEADER. You only need to write the data from the
dynpro back to the attribute GS_HEADER at this point. You do this by calling the
function module ZMB_MIGO_HEAD_GET (see Listing 5.13).

METHOD if_ex_mb_migo_badi~pai_header.
* Retrieve data from the dynpro
 CALL FUNCTION ‘ZMB_MIGO_HEAD_GET’
 IMPORTING
 e_head = gs_header.

ENDMETHOD.

Coding on the Method PAI_HEADERListing 5.13

You must also read the custom data from the database if required, and transfer 5.
it to the attribute GS_HEADER. You carry this out in method STATUS_AND_HEADER.
Rereading the data is only necessary when an already-posted document is dis-
played or canceled. Therefore, you can check the action (attribute GV_ACTION)
again here.

You read the data from the table ZMB_MIGOHEAD by using key fields MBLNR (mate-
rial document number) and MJAHR (posting year) that are available in the IS_
GOHEAD parameter (see Listing 5.14).

METHOD if_ex_mb_migo_badi~status_and_header.
* If an already posted document is to be displayed
* or canceled, read custom fields
* also from database.

 IF gv_action = ‘A04‘ “ Anzeige
 OR gv_action = ‘A03‘. “ Storno

373 Book.indb 111 11/2/10 2:42:23 PM

www.sap-press.com

112

User Exits and BAdIs in Inventory Management5

* Read data from database
 SELECT SINGLE *
 FROM ZMB_MIGOHEAD
 INTO gs_header
 WHERE mblnr = is_gohead-mblnr
 AND mjahr = is_gohead-mjahr.
 ENDIF.
ENDMETHOD.

Coding on the Method STATUS_AND_HEADERListing 5.14

Note Data

You can also set the parameter E_HOLD_DATA_DISABLE as an option in the method STA-
TUS_AND_HEADER to prohibit the function Hold. If you continue to allow the noting of
material documents, you should program the methods HOLD_DATA_SAVE, HOLD_DATA_
LOAD, and HOLD_DATA_DELETE so that your custom data can also be noted. You can
obtain further information on this in Section 5.2.1, Noting Custom Data.

Activation of Custom Item Data5.1.6

The actual activation of the item tabstrip works in a similar way to that of the
header tabstrip. The communication with the dynpro and the management of the
item data is slightly more time-consuming. Ultimately, there are several items in a
document that must always be correctly assigned.

Start with the method 1. PBO_DETAIL to register the item tabstrip and prepare the
data. It’s also important to check the class ID just as you did before with the
header data.

In the parameter 2. I_LINE_ID, you can find the line number that is being pro-
cessed. All subsequent actions are only carried out when the parameter has a
content unequal to zero.

You need to also note this line number in the attribute GV_LINEID so that you
can check later which line is actually being displayed in the dynpro.

There are also three parameters here, 3. E_CPROG, E_DYNNR, and E_HEADING, to spec-
ify the program name, the dynpro number, and the caption of the tabstrip. The
item tabstrip always appears in the example regardless of the reference docu-
ment type.

373 Book.indb 112 11/2/10 2:42:23 PM

www.sap-press.com

113

Custom Fields in Transaction MIGO 5.1

You must then read the current line according to parameter 4. I_LINE_ID from
your internal table defined in the attributes GT_ITEM and transfer it to your
function group by calling the function module ZMB_MIGO_ITEM_SET. Make sure
that you copy the data via MOVECORRESPONDING into a structure suitable for the
function module because your table with additional line ID has been defined in
the attributes (see Listing 5.15).

METHOD if_ex_mb_migo_badi~pbo_detail.
* Local declarations
 DATA ls_item TYPE ts_migoitem.
 DATA ls_dynpro TYPE zmb_migoitem.

* Does the call refer to this implementation?
 CHECK i_class_id = gc_class.

* Has a line been set?
 CHECK i_line_id <> 0.

* Hold line
 gv_lineid = i_line_id.

* Register dynpro
 e_cprog = ‘SAPLZMB_MIGO’.
 e_dynnr = ‘0200’.
 e_heading = ‘Eigene Daten’.

* Read line from internal table
 READ TABLE gt_item
 INTO ls_item
 WITH KEY line_id = i_line_id.

* Copy necessary fields
 MOVE-CORRESPONDING ls_item TO ls_dynpro.
* Prepare line in dynpro
 CALL FUNCTION ZMB_MIGO_ITEM_SET‘
 EXPORTING
 i_item = ls_dynpro.

ENDMETHOD.

Coding on the Method PBO_DETAILListing 5.15

373 Book.indb 113 11/2/10 2:42:23 PM

www.sap-press.com

114

User Exits and BAdIs in Inventory Management5

Switch to the method 5. PAI_DETAIL in which you retrieve your data from the dyn-
pro, and check whether the content has changed. If it has, set the flag E_FORCE_
CHANGE through which the method LINE_MODIFY is triggered. Then carry out the
actual handling of the data. The advantage to this is that the complete item man-
agement can be found in one central position (see Listing 5.16).

METHOD if_ex_mb_migo_badi~pai_detail.
* Local declarations
 DATA: ls_olddata TYPE zmb_migoitem,
 ls_newdata TYPE zmb_migoitem,
 ls_item TYPE ts_migoitem.

* Has a line been set?
 CHECK i_line_id <> 0.

* Retrieve old status from internal table
 READ TABLE gt_item
 INTO ls_item
 WITH KEY line_id = i_line_id.
 MOVE-CORRESPONDING ls_item TO ls_olddata.

* Retrieve new status from dynpro
 CALL FUNCTION ‘ZMB_MIGO_ITEM_GET’
 IMPORTING
 e_item = ls_newdata.

* Check whether the data has been changed
 IF ls_olddata <> ls_newdata.
* Trigger execution of LINE_MODIFY
 e_force_change = ‘X’.
 ENDIF.

ENDMETHOD.

Coding on the Method PAI_DETAILListing 5.16

Now it’s time for the method 6. LINE_MODIFY. As mentioned earlier, in this method,
you manage not only possible changes to existing lines but also the insertion of
new document lines in one central position.

373 Book.indb 114 11/2/10 2:42:23 PM

www.sap-press.com

115

Custom Fields in Transaction MIGO 5.1

As a parameter, you obtain the number of the current line in I_LINE_ID. With
this line number, you must first of all check which case is actually present. Read
the table GT_ITEM using this key. If the line already exists, possible changes
must be transferred. If this line is not yet contained in GT_ITEM, you need to
initialize the line and add the table. If the document is currently being read, at
this point also read your custom data from the database.

Take a look at the case of a change. To ensure that the line being handled in the
BAdI is also the line that is currently in the dynpro, compare the parameter I_
LINE_ID with the previously noted line in the attribute GV_LINEID. You carry out
the following steps only when the comparison is successful:

Retrieve the data from the dynpro by calling the function module 1. ZMB_MIGO_

ITEM_GET again. Copy the data received into a work structure that fits Table
GT_ITEM (data type TS_MIGOITEM), and enhance the line at the current LINE_ID.
Then write the changes back to Table GT_ITEM.

If the line doesn’t yet exist, you must first check whether it’s a line that has 2.
already been posted. In this case, the fields CS_GOITEM-MBLNR (material docu-
ment number), CS_GOITEM-MJAHR (posting year), and CS_GOITEM-ZEILE (docu-
ment item) are filled. Read your data from Table ZMB_MIGOITEM using these
fields as a key, and copy these again into a suitable work structure for Table
GT_ITEM.

If the line doesn’t yet exist in the database, leave the work structure empty,
apart from the line LINE_ID, which you still need to enhance in both cases.
Then write the new line in Table GT_ITEM (see Listing 5.17).

METHOD if_ex_mb_migo_badi~line_modify.
* Local declarations
 DATA lv_tabix TYPE sy-tabix.
 DATA ls_item TYPE ts_migoitem.
 DATA ls_newdata TYPE zmb_migoitem.

* Does the line already exist?
 READ TABLE gt_item INTO ls_item
 WITH KEY line_id = i_line_id.
 lv_tabix = sy-tabix.

 IF sy-subrc = 0.
* Line exists already, does change
* correspond to line in the BAdI of the dynpro line?
 CHECK i_line_id = gv_lineid.

373 Book.indb 115 11/2/10 2:42:23 PM

www.sap-press.com

116

User Exits and BAdIs in Inventory Management5

* Retrieve data from dynpro
 CALL FUNCTION ‘ZMB_MIGO_ITEM_GET‘
 IMPORTING
 e_item = ls_newdata.

* Format changes
 MOVE-CORRESPONDING ls_newdata TO ls_item.
 ls_item-line_id = i_line_id.

* Write back in table gt_item
 MODIFY gt_item FROM ls_item INDEX lv_tabix.
 ELSE.
* Line doesn‘t yet exist, insert
 IF cs_goitem-mblnr IS NOT INITIAL AND
 cs_goitem-mjahr IS NOT INITIAL AND
 cs_goitem-zeile IS NOT INITIAL.
* Line refers to an existing
* material document, retrieve data from database
 SELECT SINGLE * FROM zmb_migoitem
 INTO ls_newdata
 WHERE mblnr = cs_goitem-mblnr AND
 mjahr = cs_goitem-mjahr AND
 zeile = cs_goitem-zeile.
 IF sy-subrc = 0.
* Copy data
 MOVE-CORRESPONDING ls_newdata TO ls_item.
 ENDIF.
 ENDIF.
* Build line with line ID and copy
* to internal table
 ls_item-line_id = i_line_id.
 APPEND ls_item TO gt_item.
 ENDIF.

ENDMETHOD.

Coding on the Method LINE_MODIFYListing 5.17

Now you need to program the method 3. LINE_DELETE. The method is called when
a document item is deleted. In this case, you must also delete the associated
custom data from Table GT_ITEM. Parameter I_LINE_ID is provided for you to
identify the suitable line (see Listing 5.18).

373 Book.indb 116 11/2/10 2:42:23 PM

www.sap-press.com

117

Custom Fields in Transaction MIGO 5.1

METHOD if_ex_mb_migo_badi~line_delete.
* Delete line
 DELETE gt_item WHERE line_id = i_line_id.
ENDMETHOD.

Coding on the Method LINE_DELETEListing 5.18

Updating5.1.7 the Data

Now that you’ve fully programmed the internal handling of the data, you must
ensure that your data is also posted when the material document is updated. To
accomplish this, the method POST_DOCUMENT runs while the data is being posted.

Switch to the method 1. POST_DOCUMENT. Before you can call your update modules,
you must prepare the data. The structure GS_HEADER, which has been defined
in the attributes, must still be enhanced in the document number. You obtain
this structure via the parameter IS_MKPF. You can copy the values via a simple
MOVE-CORRESPONDING.

Regarding item data, so far you have managed the data via the 2. LINE_ID, that
is, the internal line number. As you know, only the items for which the user
has selected the OK field in Transaction MIGO are updated while being posted.
Therefore, the table to be updated, MSEG, which is transferred to you as the
parameter IT_MSEG, can have a different line numbering. The item number here
is specified via the field ZEILE, and you must now convert your data to this line
number. However, because Table IT_MSEG also contains the original LINE_ID
besides the line number, this isn’t a problem.

Simply process all your custom item data from the internal Table GT_ITEM in a
loop, and read the associated line from Table IT_MSEG using the field LINE_ID.
You can then fill a structure for Table ZMB_MIGOITEM from both data structures.
From the structure for Table IT_MSEG, copy the key fields, and from the struc-
ture on GT_ITEM, copy the custom fields. Add the result of a local internal table
that also uses the type ZMB_MIGOITEM.

You now only need to call the function module 3. ZMB_MIGO_POST and transfer the
formatted header data and item data. Don’t forget the addition IN UPDATE TASK,
so that the function module in the updating is called (see Listing 5.19).

METHOD if_ex_mb_migo_badi~post_document.
* Local data declarations
 DATA: ls_item TYPE ts_migoitem,

373 Book.indb 117 11/2/10 2:42:23 PM

www.sap-press.com

118

User Exits and BAdIs in Inventory Management5

 ls_mseg TYPE mseg,
 ls_migoitem TYPE zmb_migoitem,
 lt_migoitem TYPE TABLE OF zmb_migoitem.

* Prepare header data
* The key fields (material document number, posting year)
* are copied from the standard data (IS_MKPF)
 MOVE-CORRESPONDING is_mkpf TO gs_header.

* Prepare item data
 LOOP AT gt_item INTO ls_item.
* Determine corresponding line in IT_MSEG.
* Conversion between LINE_ID and ZEILE
* LINE_ID: internal line ID during entry
* ZEILE: Line number in table MSEG
 READ TABLE it_mseg
 INTO ls_mseg
 WITH KEY line_id = ls_item-line_id.
 IF sy-subrc = 0.
 MOVE-CORRESPONDING ls_item TO ls_migoitem.
 MOVE-CORRESPONDING ls_mseg TO ls_migoitem.
 APPEND ls_migoitem TO lt_migoitem.
 ENDIF.
 ENDLOOP.

* Updating of the data
 CALL FUNCTION ‘ZMB_MIGO_POST’
 IN UPDATE TASK
 EXPORTING
 i_head = gs_header
 TABLES
 t_items = lt_migoitem.

ENDMETHOD.

Coding on the Method POST_DOCUMENTListing 5.19

Other Functions of the BAdI MB_MIGO_BAD5.2 I

After you’ve implemented custom fields via the BAdI MB_MIGO_BADI in the pre-
vious chapter, you already know all the fundamentals on this BAdI. Using other

373 Book.indb 118 11/2/10 2:42:23 PM

www.sap-press.com

119

Other Functions of the BAdI MB_MIGO_BADI 5.2

methods, you can still implement additional functions, particularly to further
extend the functionality behind your custom fields.

Noting Custom Data5.2.1

If you haven’t prohibited the function Note in the method STATUS_AND_HEADER (see
Section 5.1.5, Activation of Custom Header Data), you should ensure that your
custom fields are also noted. Because a noted document isn’t actually posted yet,
it still doesn’t have any material document number under which it can be stored.
The data are instead clearly identified by a 22-digit GUID (Global Unique Identi-
fier). Standard data are stored under this key in Table MMIM_PRED.

Three methods are available for storing your custom data: HOLD_DATA_SAVE, HOLD_
DATA_LOAD, and HOLD_DATA_DELETE. The GUID, which has also been used for the
standard fields, will transfer each of these methods as input parameters. Whether
you now store your data, that is, the header data that are in the structure GS_
HEADER and the item data in internal Table GT_ITEM, is up to you.

You have several options for storing the data:

You can copy Tables EE ZMB_MIGOHEAD and ZMB_MIGOITEM and provide them with a
GUID field as the key field. This makes saving somewhat more time-consuming,
however, and when you add another custom field later to the original tables,
you must also implement such enhancements in the Hold function.

One alternative allows the comfortable, dynamic storage of both objects without EE

any additional customization effort. You have the option in ABAP to serialize
complex variables such as structures or internal tables; that is, to convert them
into a character string. This string must have a very special data type. Use the
type XSTRINGin ABAP and type RAWSTRING in the ABAP Dictionary. You then
convert the data via the command EXPORT ... TO DATA BUFFER. You can store
the result of the conversion in a field of a database line, regardless of whether
or not this object has displayed an internal table with many lines beforehand.
If the data is subsequently retrieved, using the command IMPORT ... FROM DATA
BUFFER performs a reconversion in the actual object.

Based on the example of custom fields in Section 5.1, Custom Fields in Transac-
tion MIGO, the following example shows you how simply you can temporarily
store your data:

373 Book.indb 119 11/2/10 2:42:24 PM

www.sap-press.com

120

User Exits and BAdIs in Inventory Management5

Your header and item data must be stored in a custom table. The data is saved 1.
under a GUID, which you obtain in the methods. You also need a field of the
type RAWSTRING for the header data and the item data.

Navigate to the ABAP Dictionary (Transaction SE11), and create a new table.
Name this table ZMB_MIGOHOLD, for example.

Maintain the fields according to Table 5.10. The data element 2. ZMB_RAW doesn’t
yet exist. You can create this by double-clicking. Don’t use any domains to
generate the data element, but choose the Integrated Type option in the DatA
Type tabstrip, and enter RAWSTRING here. Activate your data element, and then
navigate back to the table.

Field Name Key Field Data Element

MANDT Yes MANDT

GUID Yes GUID

HHEAD ZMB_RAW

(Definition: Integrated type RAWSTRING)

HITEMS ZMB_RAW

Structure of the Table ZMB_MIGOHOLDTable 5.10

Maintain the technical settings of the table, and then activate the table.3.

Switch to your BAdI implementation, and navigate to the method 4. HOLD_DATA_

SAVE. Create a local structure for Table ZMB_MIGOHOLD, and fill the GUID field
from the input parameter I_GUID.

Fill the fields 5. HHEAD and HITEMS from your attributes S_HEADER and GT_ITEM via
the command EXPORT, which has the following structure:

EXPORT <id> FROM <variable> TO DATA BUFFER
 <ziel> COMPRESSION ON.

<id> is any ID, <variable> is the source object that is to be converted, and
<target> is the target variable of the type RAWSTRING. The addition, COMPRES-
SION ON, is optional and compresses the data. This saves space in the database.
The subsequent IMPORT automatically recognizes whether the data has been
compressed, and extracts the data accordingly.

Finally, save your local structure via 6. INSERT in the database (see Listing 5.20).

373 Book.indb 120 11/2/10 2:42:24 PM

www.sap-press.com

121

Other Functions of the BAdI MB_MIGO_BADI 5.2

METHOD if_ex_mb_migo_badi~hold_data_save.
* Local work structure for ZMB_MIGOHOLD
 DATA ls_migohold TYPE zmb_migohold.

* Copy GUID
 ls_migohold-guid = i_guid.

* Convert header data in RAWSTRING/XSTRING
 EXPORT header FROM gs_header TO DATA BUFFER
 ls_migohold-hhead COMPRESSION ON.

* Convert item data in RAWSTRING/XSTRING
 EXPORT item FROM gt_item TO DATA BUFFER
 ls_migohold-hitems COMPRESSION ON.

* Store data in database
 INSERT into zmb_migohold values ls_migohold.

ENDMETHOD.

Coding on the Method HOLD_DATA_SAVEListing 5.20

Now focus on the method HOLD_DATA_LOAD, which is called when a held document
is loaded back.

Here you must load back the data from Table 1. ZMB_MIGOHOLD using the retrans-
ferred GUID, and fill the attributes GS_HEADER and GT_ITEM from this.

Create a new local work structure for Table 2. ZB_MIGOHOLD, and read the data via
SELECT using the key in parameter I_GUID from your table.

You perform the reconversion from the fields 3. HHEAD and HITEMS via the IMPORT
function with the following structure:

IMPORT <id> TO <variable> FROM DATA BUFFER <quelle>.

<id> stands for the ID that you’ve used with regard to the EXPORT; <variable>
is the target variable in which the result is to be written, that is, GS_HEADER or
GT_ITEM; and <source> is the RAWSTRING field from your work structure for
ZMB_MIGOHOLD. You can find an example on this method in Listing 5.21.

METHOD if_ex_mb_migo_badi~hold_data_load.
* Local work structure for ZMB_MIGOHOLD
 DATA ls_migohold TYPE zmb_migohold.

* Read held data using I_GUID

373 Book.indb 121 11/2/10 2:42:24 PM

www.sap-press.com

122

User Exits and BAdIs in Inventory Management5

 SELECT SINGLE * FROM zmb_migohold
 INTO ls_migohold
 WHERE guid = i_guid.

 IF sy-subrc = 0.
* Convert header data in original object
 IMPORT header TO gs_header FROM DATA BUFFER
 ls_migohold-hhead.

* Convert item data in original object
 IMPORT item TO gt_item FROM DATA BUFFER
 ls_migohold-hitems.
 ENDIF.
ENDMETHOD.

Coding on the Method HOLD_DATA_LOADListing 5.21

If you delete the marked data, you must also remove your noted data. To do 4.
this, the method HOLD_DATA_DELETE is used. You also get the GUID as an input
parameter again. Simply delete the associated record in Table ZMB_MIGOHOLD (see
Listing 5.22).

METHOD if_ex_mb_migo_badi~hold_data_delete.
* Delete held data
 DELETE FROM zmb_migohold WHERE guid = i_guid.
ENDMETHOD.

Coding on the Method HOLD_DATA_DELETEListing 5.22

Changes to the Data Structure

As you’ve seen, you can easily convert ABAP structures in a RAWSTRING using the com-
mands EXPORT and IMPORT, and copy these back to a structure. However, what happens
when you change such a packed structure later on?

For example, if you add another field to Table ZMB_MIGOHEAD for the header data, data
could still exist in the HHEAD field of the ZMB_MIGOHOLD table, which does not contain
this new field. However, this generally doesn’t constitute any problem. The command
IMPORT copies the suitable part back to the work structure while reading the noted data,
and the new field simply remains empty.

Vice versa is a bit more difficult. If you delete the second field again at a later stage and
still contain noted data in the RAWSTRING HHEAD of this, you obtain a short dump when
you IMPORT. You can avoid this dump by using the ACCEPTING TRUNCATION addition:

IMPORT <id> TO <variable> FROM DATA BUFFER <source> ACCEPTING TRUNCATION.

373 Book.indb 122 11/2/10 2:42:24 PM

www.sap-press.com

123

Other Functions of the BAdI MB_MIGO_BADI 5.2

 For major structure changes, you should delete the content of Table ZMB_MIGOHOLD as
soon as you transport your changes to the production system.

Input Checks in Transaction MIGO5.2.2

Two more methods are provided for checking your custom data: CHECK_HEADER and
CHECK_ITEM . These methods are only carried out when the user chooses the Check
or Post function. Follow the example below to activate the checks.

You need to carry out the checks on the attributes of your class in both cases. To
do this, you obtain the input parameter I_LINE_ID for the items. If a warning or
error message is displayed, this isn’t allowed to happen directly via the MESSAGE
command. Instead, you need to fi ll a return-table . You might know about this from
using the BAPI function modules. The name of this return-table is in both meth-
ods: ET_BAPIRET2. Your messages are therefore displayed in the standard error log
(see Figure 5.6) of Transaction MIGO, and the item number for item-related mes-
sages, to which the message refers, is displayed by default.

Custom Messages in the Error LogFigure 5.6

373 Book.indb 123 11/2/10 2:42:25 PM

www.sap-press.com

124

User Exits and BAdIs in Inventory Management5

Switch to the method 1. CHECK_HEADER. For the return of messages, you must first
define a work structure for the return-table by using the type BAPIRET2. This
type is the line type that has been used to define internal Table ET_BAPIRET2.
This type therefore contains the fields required for a message (see Table 5.11).

Now check whether the 2. ZK_FELD1 field is filled from the attribute GS_HEADER. If
this isn’t the case, an error message appears.

To display the message, fill the fields of your work structure according to Table 3.
5.11. Then copy the structure to internal Table ET_BAPIRET2, which is defined
in the interface of the method (see Listing 5.23).

Field Description

TYPE Type of message, for example, ‘E’ for error
messages or ‘W’ for warning messages

ID Message class

NUMBER Message number

MESSAGE_V1 – MESSAGE_V4 Optional message variables 1-4 that can be
included

Fields of the Return-TableTable 5.11

METHOD if_ex_mb_migo_badi~check_header.
* Local declaration on the return table
 DATA: ls_bapiret TYPE bapiret2.

* Header field must be filled!
 IF gs_header-zk_feld1 IS INITIAL.
* Configure error message
 ls_bapiret-type = ‘E‘.
 ls_bapiret-id = ‘ZMB‘.
 ls_bapiret-number = ‘050‘.
 APPEND ls_bapiret TO et_bapiret2.
 ENDIF.

ENDMETHOD.

Coding on the Method CHECK_HEADERListing 5.23

Switch to the method 4. CHECK_ITEM. You basically proceed here as you did with
checking the header data. However, you must also define a local work structure

373 Book.indb 124 11/2/10 2:42:25 PM

www.sap-press.com

125

Checking and Prepopulating Standard Fields 5.3

for your items, and read the suitable item from Table GT_ITEM using the input
parameter I_LINE_ID.

You can then carry out your check again. The user should also fill the field 5. ZP_

FELD1. However, only a warning message is displayed if the field is empty (see
Listing 5.24).

METHOD if_ex_mb_migo_badi~check_item.
* Local declarations
 DATA: ls_item TYPE ts_migoitem,
 ls_bapiret TYPE bapiret2.

* Read item from GT_ITEM
 READ TABLE gt_item INTO ls_item
 WITH KEY line_id = i_line_id.

 IF ls_item-zp_feld1 IS INITIAL.
* Configure warning message
 ls_bapiret-type = ‘W’.
 ls_bapiret-id = ‘ZMB’.
 ls_bapiret-number = ‘051’.
 APPEND ls_bapiret TO et_bapiret2.
 ENDIF.
ENDMETHOD.

Coding on the Method CHECK_ITEMListing 5.24

Checking and Prepopulating Standard Fields5.3

Standard fields aren’t provided in the check methods of the BAdI MB_MIGO_BADI.
However, you can use the BAdI MB_MIGO_ITEM_BADI to also check these fields.
Furthermore, in this BAdI, you can simply prepopulate the storage location or
the item text. If other fields are prepopulated, you can take another look at the
method LINE_MODIFY in the BAdI MB_MIGO_BADI, which provides more options in
this context.

Prepopulation of Storage Location5.3.1 and Text

The only method of the BAdI MB_MIGO_ITEM_BADI, ITEM_MODIFY is called when new
items are added or the user chooses the Check or Post function. When you fill the

373 Book.indb 125 11/2/10 2:42:25 PM

www.sap-press.com

126

User Exits and BAdIs in Inventory Management5

export parameter E_STGE_LOC (storage location) or E_ITEM_TEXT (item text) in the
method, these values are set for all new additional items.

Checking the Standard Fields5.3.2

If the user chooses the Check or Post functions, you can carry out custom checks
and prevent posting if applicable. For this, the header data in parameter IS_GOHEAD
and the item data table IS_GOITEM are provided.

If a message is displayed, you also need a work structure for a return-table with
the type BAPIRET2. Fill the work structure according to Table 5.11 in Section 5.2.2,
Input Checks in Transaction MIGO, and then append the message to internal Table
ET_RETURN, which is also defined in the interface. Because the method ITEM_MODIFY
could be called repeatedly, and Table ET_RETURN is already filled by the previous
call, you should first delete the content; otherwise, the same message could pos-
sibly appear twice in the message log (see Listing 5.25).

METHOD if_ex_mb_migo_item_badi~item_modify.
* Local work structure for the return- table
 DATA: ls_bapiret TYPE bapiret2.

* For plant 1000 storage location 0001 is always
* to be suggested.
 IF is_goitem-werks = ‘1000’.
 e_stge_loc = ‘0001’.
 ENDIF.

* Reset return table
 REFRESH et_return.
* Header text must be populated
 IF is_gohead-bktxt IS INITIAL.
* Configure message, warning
 ls_bapiret-type = ‘W’.
 ls_bapiret-id = ‘ZMB’.
 ls_bapiret-number = ‘060’.
 APPEND ls_bapiret TO et_return.
 ENDIF.

* Item text must be filled
 IF is_goitem-sgtxt IS INITIAL.
* Configure message, error

373 Book.indb 126 11/2/10 2:42:25 PM

www.sap-press.com

127

Check of the Earliest Delivery Date 5.4

 ls_bapiret-type = ‘E’.
 ls_bapiret-id = ‘ZMB’.
 ls_bapiret-number = ‘061’.
 APPEND ls_bapiret TO et_return.
 ENDIF.
ENDMETHOD.

Coding on the Method ITEM_MODIFYListing 5.25

Check of the Earliest Delivery Date5.4

You have the option in the purchase order to specify a delivery date . However,
vendors often don’t keep to the delivery date and deliver goods too early. When
this is better controlled, you can set the message M7 254 (“Earliest Possible Deliv-
ery Date is &” as shown in Figure 5.7) as an error message in Customizing. To do
this, choose the Materials Management • Inventory Management and Physical
Inventory • DEFINE Attributes Of System Messages • Settings for System Mes-
sages setting in Transaction SPRO, and defi ne the message M7 254 as type ‘E’.

Error Message M7 254Figure 5.7

As a result, all goods receipts that are supposed to be posted at an earlier date are
rejected with the error message. However, you can post the goods receipt in the
GR blocked stock (transaction type 103).

In certain circumstances, the settings for such an error message are too strict.
With the enhancement MEFLD004 (EXIT_SAPLEINR_004), you can specify the earliest
delivery date. Let’s assume you have activated the error message. Vendor 1002 is
allowed to deliver before the delivery date specifi ed in the purchase order, but not
before the purchase order date. The following applies to all other vendors: For all
items with material group 00, a delivery of up to seven days prior to the delivery

373 Book.indb 127 11/2/10 2:42:25 PM

www.sap-press.com

128

User Exits and BAdIs in Inventory Management5

date is possible. For other goods deliveries, a delivery of up to three days prior to
the delivery date is permitted.

Create a new project in Transaction CMOD, and include the enhancement 1.
MEFLD004.

Switch to the user exit 2. EXIT_SAPLEINR_004, and create the include ZXM06U54.

In the interface of the exit, the purchase order header (3. EKKO) and the purchase
order item to be checked (EKPO) are transferred. Based on this data, you can
overwrite the earliest delivery date (parameter FRLFD). The field FRLFD already
contains the delivery date from the purchase order. You can therefore leave the
content unchanged, if no special rule applies.

Check whether the vendor (EKKO-LIFNR) has the number 1002 (look out for
leading zeros); if yes, the purchase order date (EKKO-BEDAT) will apply as the
earliest delivery date.

Check whether the purchase order item has the material group 003; if yes, a 4.
goods receipt of up to seven days prior to the delivery date is expected to be
possible. Because the field FRLFD already contains the delivery date from the
purchase order, you can simply deduct seven days.

For all other items, the goods receipt can take place three days earlier. Also
carry out the respective calculation (see Listing 5.26). Don’t forget to activate
the project so that your user exit will run.

&---
*& Include ZXM06U54
&---
““Local interface:
*“ IMPORTING
*“ VALUE(EKKO) TYPE EKKO
*“ VALUE(EKPO) TYPE EKPO
*“ CHANGING
*“ VALUE(FRLFD) LIKE EBEFU-FRLFD
*“--
* Determine earliest delivery date dynamically

IF ekko-lifnr = ‘0000001002‘.
* Vendor 1002 is allowed to deliver earlier indefinitely,
* however, not before the purchase order date
 frlfd = ekko-bedat.

373 Book.indb 128 11/2/10 2:42:26 PM

www.sap-press.com

129

Tolerance Limits for Scheduling Agreements 5.5

ELSE.
* Item for material group 003?
 IF ekpo-matkl = ‘003‘.
* Goods receipt can take place seven days earlier
 frlfd = frlfd – 7.
 ELSE.
* Goods receipt can take place three days earlier
 frlfd = frlfd – 3.
 ENDIF.
ENDIF.

Coding on User-Exit EXIT_SAPLEINR_004Listing 5.26

Tolerance Limits 5.5 for Scheduling Agreements

Using the current date, the default quantity and tolerance check quantity are deter-
mined from the schedule lines when goods receipts are posted according to sched-
uling agreements. If no tolerances are permitted in the scheduling agreement, and
the vendor occasionally delivers a few days too early, you receive an error message
in the goods receipt (see Figure 5.8).

Exceeding the Tolerance LevelsFigure 5.8

If your vendor is allowed to deliver the goods, for example, up to three days ear-
lier, you may use the user exit EXIT_SAPLEINR_001 of the enhancement MEVME001
to determine the default quantity and tolerance levels dynamically.

Overwriting Overdelivery Quantity5.5.1

Let’s fi rst take a look at the scheduling agreement schedule in Figure 5.9. Items 1
and 2 have each a scheduled quantity of 10 pieces. A goods receipt of more than
12 pieces has already been posted. Item 1 is therefore complete; for item 2, there
is still an open quantity of 8 pieces.

373 Book.indb 129 11/2/10 2:42:26 PM

www.sap-press.com

130

User Exits and BAdIs in Inventory Management5

Scheduling Agreement ScheduleFigure 5.9

On July 6, 2010, another goods receipt of more than 43 pieces is now supposed
to be posted. The open quantity consists of the 5 pieces scheduled for delivery on
July 5, 2010, and also of the 8 pieces still open from the previous items. A total of
13 pieces are open. The goods receipt is therefore rejected due to an overbooking
of 30 pieces (43 pc – 13 pc). The vendor has already added the 30 pieces, which
are expected on July 8, 2010 — that is, in the future. Because this is within the 3
days for which you allow an earlier delivery, the goods receipt is expected to go
through.

To resolve this situation, you must program the aforementioned user exit 1. EXIT_

SAPLEINR_001. Create a project in Transaction CMOD, and add the enhance-
ment MEVME001.

Switch to the user exit 2. EXIT_SAPLEINR_001, and create the include ZXM06U28.

You get two parameters in the interface: The parameter 3. POT contains the item
data from the scheduling agreement; the internal table CETT contains all sched-
ule lines. Based on this data, you can perform your own calculations and fi ll
the parameters according to Table 5.12. Keep in mind that these parameters
in the documentation on the enhancement MEVME001 are not completely and
uniquely defi ned. The parameters F3 and F4 have only been added with SAP
Note 737495; the documentation has not been customized, however.

373 Book.indb 130 11/2/10 2:42:26 PM

www.sap-press.com

131

Tolerance Limits for Scheduling Agreements 5.5

Parameter Description

F1 WE default quantity

F2 Open quantity on key date

F3 Underdelivery quantity

F4 Overdelivery quantity

Output Parameter EXIT_SAPLEINR_001Table 5.12

Because the overdelivery quantity is customized, you need to determine a new 4.
value for parameter F4. The calculation for this works very simply. The param-
eter contains the complete scheduled quantity, starting from the first item of
the scheduling to the last scheduling prior to the key data in total. The system
automatically deducts goods receipts already carried out, so you don’t need to
take this into consideration.

Calculate in a loop via Table CETT the total of all schedule quantities with one
vendor smaller than the date “today + 3 days”. You write the result of the calcu-
lation in the field F4 (see Listing 5.27).

&---
*& Include ZXM06U28
&---
““Local interface:
*“ IMPORTING
*“ VALUE(POT)
*“ TABLES
*“ CETT STRUCTURE EKET
*“ CHANGING
*“ VALUE(F1)
*“ VALUE(F2)
*“ VALUE(F3) OPTIONAL
*“ VALUE(F4) OPTIONAL
*“--
* Local declarations
DATA lv_menge TYPE eket-menge.
DATA lv_checkdate TYPE eket-eindt.

* Consider schedules until today + 3 days
lv_checkdate = sy-datlo + 3.

* Total all schedule quantities

373 Book.indb 131 11/2/10 2:42:26 PM

www.sap-press.com

132

User Exits and BAdIs in Inventory Management5

LOOP AT cett WHERE eindt <= lv_checkdate.
 lv_menge = lv_menge + cett-menge.
ENDLOOP.

* Transfer of the calculated value as maximum limit
f4 = lv_menge.

Coding for EXIT_SAPLEINR_001Listing 5.27

Overwriting Default Quantity5.5.2

After the goods receipt that includes 43 pieces has been posted, the new situation
in the scheduling agreement is shown in Figure 5.10. As you can see, if there is no
longer any quantity open until and including July 8, 2010, the next goods receipt
is not expected again until July 11, 2010.

Scheduling Agreement Schedule following Goods ReceiptFigure 5.10

If you now receive a new delivery of more than 15 pieces on July 11, 2010, and
these are supposed to be posted as goods receipt, you receive the message “Docu-
ment contains no selectable item” if the user hasn’t activated the Propose All
Items option. You can react using the user exit: If an open scheduling exists within
the next three days, the fi rst open quantity found is suggested. In the example
given, this quantity refers to the 15 pieces from July 11, 2010.

Navigate again to the user exit 1. EXIT_SAPLEINR_001, and enhance the coding for
the current case. The fi eld F2 contains the quantity of all schedulings up to and

373 Book.indb 132 11/2/10 2:42:27 PM

www.sap-press.com

133

Tolerance Limits for Scheduling Agreements 5.5

including today, minus the goods receipts already carried out. If this value is
zero, the line is not suggested. Check the value F2. If no quantity is suggested
here, you must calculate a new value.

Because the system has already checked all schedulings up to and including 2.
the current date, you must check Table CETT again in a loop only from the day
“today + 1” until “today + 3”. The schedule quantity, as before in the field MENGE,
was carried out in the goods receipts in field WEMNG. Calculate the open quantity
from this. As soon as you find an open quantity, you can leave the loop.

You don’t need to assign the result of the calculation to the field 3. F2. In fact,
the field F1 again contains the complete schedule quantity from the first day of
the scheduling agreement until today. The system deducts the goods receipts
already carried out only later from this figure. Simply add the result of your
calculation to the field F1. The line with your determined quantity is therefore
suggested (see Listing 5.28).

...
* Additional determination of the default quantity
* Further data declarations
DATA lv_morgen TYPE eket-eindt.

IF F2 = 0.
* No default quantity available, check whether an open
* schedule exists in the period today + 1 until today + 3
 lv_morgen = sy-datlo + 1.
 clear lv_menge.

 LOOP AT cett WHERE eindt <= lv_checkdate AND
 eindt >= lv_morgen.
 lv_menge = cett-menge – cett-wemng.
 IF lv_menge > 0.
* Open schedule available, exit loop
 EXIT.
 ENDIF.
 ENDLOOP.

* Increase expected quantity for found value
 F1 = F1 + lv_menge.

ENDIF.

Further Coding for EXIT_SAPLEINR_001Listing 5.28

373 Book.indb 133 11/2/10 2:42:27 PM

www.sap-press.com

134

User Exits and BAdIs in Inventory Management5

Based on the situation from Figure 5.10, if you post a goods receipt on July 10, 4.
2010, an item with a quantity of 15 pieces is suggested to you, which is the
value of the schedule of July 11, 2010.

Enhancement of Reservations5.6

For reservations, you can’t use Transaction MIGO. As previously stated, reserva-
tions are created or changed in Transactions MB21 and MB22 . Therefore, you
can’t use any enhancements for reservations, for example, the BAdI MB_MIGO_BADI,
to prepopulate fi elds or to carry out input checks. Even here there is some assis-
tance — the BAdI MB_RESERVATION_BADI.

This BAdI is essentially suitable for two situations. First, there is the method DATA_
MODIFY , which is called when an item is entered before the detail screen view (see
Figure 5.11) is displayed. You can use this method to prepopulate individual fi elds
with values. The method DATA_CHECK is then called. Here you have the option to
carry out custom checks and display, if applicable, a warning or error message.

Detailed Entry in the ReservationFigure 5.11

373 Book.indb 134 11/2/10 2:42:28 PM

www.sap-press.com

135

Enhancement of Reservations 5.6

For both cases, a small example will help you implement these enhancements.

Prepopulating Fields5.6.1

The prepopulation of fields via the method DATA_MODIFY works relatively simply.
However, you can’t overwrite all of the fields of the document. All fields of Table
5.13 can basically be overwritten. However, this list is further restricted by the
current field status. Fields that haven’t been integrated may also not be overwrit-
ten by the BAdI method. Therefore, internal Table IT_CHANGEABLE is transferred as
a parameter that contains all changeable fields. All changes you make in the BAdI
to fields not contained there are subsequently not copied.

Field Description

RESB-MATNR Material number

RESB-WERKS Plant

RESB-LGORT Storage location

RESB-CHARG Batch

RESB-SAKNR GL account number

RESB-ERFMG Quantity in unit of entry

RESB-ERFMG Unit of entry

RESB-BDMNG Requirement quantity

RESB-FMENG Characteristic: Fixed quantity

RESB-KZEAR Characteristic: Final issue of the reservation

RESB-XLOEK Item deleted

RESB-WEMPF Ship-to party

RESB-ABLAD Unloading point

RESB-SGTXT Item text

RESB-BDMNG Requirement date of the components

RESB-XWAOK Characteristic: Goods movement to the reservation
permitted

Fields of the Reservation that Can Be OverwrittenTable 5.13

Furthermore, the parameter I_NEW_ITEM exists, which means that this item will
run the first time in the method. If your prepopulation is only supposed to be a

373 Book.indb 135 11/2/10 2:42:28 PM

www.sap-press.com

136

User Exits and BAdIs in Inventory Management5

suggestion that can be overwritten by the user at any time via other values, then it
makes sense to check this parameter and to overwrite the field content only when
it is run for the first time.

You can find the complete parameter interface of the method DATA_MODIFY in Table
5.14.

Parameter Description

IT_CHANGEABLE Table of the changeable fields.

I_NEW_ITEM Current item is new and is handled the first time in the
method.

CS_RKPF Header data of the reservation. The fields of this structure
cannot be changed.

CS_RESB Structure on an item of the reservation; the fields
contained may be overwritten if the field is contained in
Table IT_CHANGEABLE.

Parameters of the Method DATA_MODIFYTable 5.14

In a small example, the field GL account (RESB-SAKNR) is populated for all reserva-
tions in plant 1000 with the GL account number 400000.

Create an implementation for the BAdI 1. MB_RESERVATION_BADI in Transaction
SE19. You can choose, for example, ZMB_RESERVATION_BADI as the name of the
implementation.

Now navigate to the method 2. DATA_MODIFY. The GL account is only a default
value that can be overwritten by the user at any time. For this reason, the meth-
od is executed for an item only on the first run (i.e., before the detail screen for
an item may have been displayed the first time). Therefore, check the content
of I_NEW_ITEM, and exit the method if necessary.

Next, you must check whether the field may at all be changed. For this, check 3.
whether the field is available in Table IT_CHANGEABLE.

This internal table is defined via a table type TDTAB_C132 in the ABAP Dictionary;
however, this is done without using a structure but instead via an integrated
data type. For this reason, the only field of this internal table doesn’t have any
defined name. However, you can always access the internal table via the field
name TABLE_LINE .

373 Book.indb 136 11/2/10 2:42:28 PM

www.sap-press.com

137

Enhancement of Reservations 5.6

When the checks are successful, you can overwrite the field value in the struc-4.
ture CS_RESB. A suitable example is given in Listing 5.29.

METHOD if_ex_mb_reservation_badi~data_modify .
* Prepopulate GL account
* Prepopulation is only to be a default value, therefore
* only execute item on first run
 CHECK i_new_item IS NOT INITIAL.

* Check whether GL account is changeable
 READ TABLE it_changeable WITH KEY table_line = ‘RESB-SAKNR’
 TRANSPORTING NO FIELDS.

* Suggest GL account for plant 1000
 IF sy-subrc = 0 AND
 cs_resb-werks = ‘1000’.
 cs_resb-saknr = ‘400000’.
 ENDIF.
ENDMETHOD.

Coding on the Method DATA_MODIFYListing 5.29

Checking Entries5.6.2

Custom input checks are also simple to implement. To implement your checks,
the header and item data are provided. To trigger a warning or error message, you
can work perfectly normally with the MESSAGE command, but you must trigger the
exception EXTERNAL_MESSAGE.

You can find the parameter interface of the method DATA_CHECK in Table 5.15.

Parameter Description

IT_CHANGEABLE This internal table again contains the list of current
changeable fields. This doesn’t usually play any major role
for this method.

IS_RKPF The header data of the reservation.

IS_RESB Structure on an item of the reservation.

I_NEW_ITEM Current item is new and is handled the first time in the
method.

Parameters of the Method DATA_CHECKTable 5.15

373 Book.indb 137 11/2/10 2:42:28 PM

www.sap-press.com

138

User Exits and BAdIs in Inventory Management5

As an example, the fields are supposed to be checked for the ship-to party (RESB-
WEMPF) and the unloading point (RESB-ABLAD). The specification of a ship-to party
is mandatory. If this specification is missing, it must be confirmed by an error
message. If there is no entry in the unloading point field, this is indicated by a
warning message.

Navigate to the implementation of the BAdIs that you created in the previous 1.
example on method DATA_MODIFY. Then, switch to the method DATA_CHECK.

The method is only called for an item when the item is new or has been changed. 2.
Therefore, the evaluation of the parameter I_NEW_ITEM isn’t absolutely neces-
sary. Check whether the ship-to party is filled, and display an error message. To
trigger the exception, you need the addition RAISING EXTERNAL_MESSAGE.

So that the message only appears for the unloading point, which is just a warn-3.
ing when the item is entered, but not in the case of each subsequent change,
you can at this point also check the parameter I_NEW_ITEM. If the parameter is
set, and the unloading point hasn’t been completed, a warning message is dis-
played. You must also use the addition RAISING EXTERNAL_MESSAGE with regard
to warning messages.

By displaying the warning message, you can always navigate to the detail screen
in which the unloading point can be entered. This is usually only shown when
an important piece of information is missing. You can find the relevant example
in Listing 5.30.

METHOD if_ex_mb_reservation_badi~data_check .
* The ship-to party must be filled.
 IF is_resb-wempf is initial.
* Message: “Please specify a ship-to party“
 MESSAGE e100(ZMM) RAISING external_message.
 ENDIF.

* The unloading point should be filled
* Check only on initial run of item
 IF i_new_item is not initial AND
 is_resb-ablad IS INITIAL.
* Message: “Unloading point was not entered!“
 MESSAGE w101(ZMM) RAISING external_message.
 ENDIF.
ENDMETHOD.

Coding on the Method DATA_CHECKListing 5.30

373 Book.indb 138 11/2/10 2:42:28 PM

www.sap-press.com

259

A

ABAP Dictionary, 45, 97, 148
ABAP list, 78
AC03, 222
Acceptance, 90
Account

assignment, 139, 238
assignment data, 71
assignment field, 146
determination, 140
modification constant, 139, 240
type, 149
Chart of accounts, 140
GR/IR account, 139

Accounting document, 171
Action, 95
Append structure, 150
Archiving, 218, 236, 254
Archiving object

MM_INVBEL, 237
MM_MATBEL, 237

ARC_MM_EBAN_CHECK, 219
ARC_MM_EBAN_PRECHECK, 218
ARC_MM_EBAN_WRITE, 219
ARC_MM_EINA_CHECK, 219
ARC_MM_EINA_WRITE, 220
ARC_MM_EKKO_WRITE, 220
ARC_MM_INVBEL_CHECK, 237
ARC_MM_INVBEL_WRITE, 237
ARC_MM_MATBEL_CHECK, 236
ARC_MM_MATBEL_WRITE, 237
ARC_MM_REBEL_CHECK, 254
ARC_MM_REBEL_WRITE, 254
Assignment operator, 63
Attribute, 28, 55, 63, 104

B

Background check, 151
BAdI, 22, 93

Activate, 27, 34
ARC_MM_EBAN_CHECK, 219
ARC_MM_EBAN_PRECHECK, 218
ARC_MM_EBAN_WRITE, 219
ARC_MM_EINA_CHECK, 219
ARC_MM_EINA_WRITE, 220
ARC_MM_EKKO_CHECK, 220
ARC_MM_EKKO_WRITE, 220
ARC_MM_INVBEL_CHECK, 237
ARC_MM_INVBEL_WRITE, 237
ARC_MM_MATBEL_CHECK, 236
ARC_MM_MATBEL_WRITE, 237
ARC_MM_REBEL_CHECK, 254
ARC_MM_REBEL_WRITE, 254
Classic, 22, 29
Deactivate, 27, 34
Definition, 23
Documentation, 24, 31
Filter-dependent, 24
Implementation, 23, 24
MB_ACCOUNTING_DISTRIBUTE, 233
MB_CHECK_LINE_BADI, 229
MB_DOCUMENT_BADI, 227
MB_GOODSMOVEMENT_DCI, 233
MB_INSMK_WIP_CHANGE, 229
MB_MIGO_BADI, 28, 118, 228
MB_MIGO_ITEM_BADI, 228
MB_RESERVATION_BADI, 235
ME_BAPI_PO_CUST, 199
ME_BAPI_PR_CUST, 195
ME_CHDOC_ACTIVE, 212
ME_CHECK_ALL_ITEMS, 200
ME_CIP_ALLOW_CHANGE, 212
ME_COMMITMENT_PLAN, 210
ME_COMMITMENT_RETURN, 211
ME_DEFINE_CALCTYPE, 208
ME_GUI_PO_CUST, 28, 37, 201
ME_HOLD_PO, 22, 200
MEOUT_BAPI_CUST, 205
ME_POHIST_DISP_CUST, 30, 200
ME_PO_PRICING_CUST, 209
ME_PROCESS_OUT_CUST, 205

Index

373 Book.indb 259 11/2/10 2:42:49 PM

www.sap-press.com

260

Index

ME_PROCESS_PO_CUST, 37, 194, 202
ME_PROCESS_REQ_CUST, 38
ME_PURCHDOC_POSTED, 201
ME_RELEASE_CREATE, 206
ME_REQ_HEADER_TEXT, 196
ME_REQ_OI_EXT, 211
ME_REQ_POSTED, 196
ME_TAX_FROM_ADDRESS, 203
MM_EDI_DESADV_IN, 216
MMSRV_SM_BAPI_CUST, 221
MMSRV_SM_MAIN, 221
MMSRV_SM_NOTIFY, 222
MRM_BLOCKREASON_DELETE_CUST, 249
MRM_DOWNPAYMENT, 248
MRM_ERS_HDAT_MODIFY, 241
MRM_ERS_IDAT_MODIFY, 241
MRM_HEADER_CHECK, 242
MRM_HEADER_DEFAULT, 242
MRM_INVOICE_UPDATE, 247
MRM_ITEM_CUSTFIELDS, 145, 241
MRM_MRIS_HDAT_MODIFY, 243
MRM_MRIS_IDAT_MODIFY, 243
MRM_MRKO_HDAT_MODIFY, 243
MRM_PARTNER_CHECK, 247
MRM_PAYMENT_TERMS, 244
MRM_RELEASE_CHECK, 244
MRM_RETENTIONS, 248
MRM_TOLERANCE_GROUP, 244
MRM_TRANSACT_DEFAULT, 245
MRM_UDC_DISTRIBUTE, 245
MRM_VARIANCE_TYPE, 246
MRM_WT_SPLIT_UPDATE, 245
New, 29
SMOD_MRFLB001, 207
Usable multiple times, 23
WRF_MRM_ASSIGN_TEST, 246
WRF_PREPAY_INVOICE, 246

Balance sheet valuation, 238
BAPI

BAPI_CONTRACT_CHANGE, 205, 206
BAPI_CONTRACT_CREATE, 205, 206
BAPI_PO_CHANGE, 199, 202
BAPI_PO_CREATE1, 199, 202
BAPI_PR_CHANGE, 195
BAPI_PR_CREATE, 195
BAPI_PR_GETDETAIL, 195

BAPI_REQUISITION_CREATE, 198
BAPI_SAG_CHANGE, 205
BAPI_SAG_CREATE, 205
BAPI_SERVICE_CHANGE, 221
BAPI_SERVICE_CREATE, 221
BAPI_USER_GET_DETAIL, 84

BAPIRET2, 124, 126
Basic list, 78
BASO0001, 222
Batch master, 231
BEXCLUDE, 182
BKPF, 172
BLAREL, 217
Boolean class, 173, 183
B_RESULT, 179
BSEG, 172
Business Add-In -> see BAdI, 22, 93
Business logic, 61
Business partner, 247

C

CALL FUNCTION ... IN UPDATE TASK, 118
C_EXIT_PARAM_CLASS, 179
C_EXIT_PARAM_FIELD, 179, 185
C_EXIT_PARAM_NONE, 179
CHAIN, 164
Change

Message class, 174
Change document, 17, 204
CHANGING Parameters, 50
Check, 40, 71, 173
CHECK_HEADER, 123, 124
CHECK_ITEM, 123, 124
CI_DRSEG_CUST, 147
Class, 155

Boolean, 173, 183
CL_EXITHANDLER, 158
Implementing, 33, 55, 57
interface, 24

Classic BAdI, 22, 29
CL_EXITHANDLER, 158
CLOSE, 41
CMOD, 18, 21
COBL_MRM, 150

373 Book.indb 260 11/2/10 2:42:49 PM

www.sap-press.com

261

Index

Commitment, 199
Function, 210
Plan, 210

COMMIT WORK, 52
Communication, 145
Company code, 168
Component, 18, 19
Composite enhancement implementation, 31
Configuration data, 212
Consignment settlement, 243
Consignment stock processing, 252
Constant

C_EXIT_PARAM_CLASS, 179
C_EXIT_PARAM_FIELD, 179, 185
C_EXIT_PARAM_NONE, 179

Constant value
Substitution, 184

Contract, 205
release order, 207

Conventional Invoice Verification, 254
CS_GOITEM, 115
CUSTOM_DATA_GET, 147, 158
CUSTOMDATA_MODIFY, 147, 156
CUSTOM_DATA_TRANSFER, 158
Customer namespace, 148, 167
Custom field, 93

D

Data
communication, 158
entry sheet, 89
exchange, 148
Global, 43, 167
type, 167

Database, 50, 147
table, 46, 50

DATA_CHECK, 134
Data field

 OK-CODE, 44
DATA_MODIFY, 134, 135
Default quantity, 129, 132
Default value, 93
Definition, 23, 42
Degree of activation, 176, 185
Deletion Indicator, 79

DELFOR, 217
DELINS, 217
Delivery address, 215
Delivery costs, 241, 245
Delivery date, 127
DELVRY01, 216
DESADV, 216, 217
Direct type input, 107
Display mode, 99, 100, 161
Display transaction, 54
Distribution indicator, 86
Document item, 46
Document number, 52
Down payment, 248
DRSEG, 147
DRSEG_CI, 147, 149
Dynamic selection, 75
Dynpro, 39, 54, 94, 146

E

Enhancement, 18, 37
BASO0001, 222
IQSM0007, 232
LIFO0040, 238
LMEKO001, 209
LMEKO002, 210
LMELA002, 233
LMELA010, 217, 233
LMEQR001, 213
LMEXF001, 210
LMR1M001, 250
LMR1M002, 240
LMR1M003, 250
LMR1M004, 250
LMR1M005, 251
LMR1M006, 251
LWBON001, 218
LWSUS001, 213
M06B0001, 196
M06B0002, 197
M06B0003, 197
M06B0004, 198
M06B0005, 197
M06E0004, 203
M06E0005, 203

373 Book.indb 261 11/2/10 2:42:50 PM

www.sap-press.com

262

Index

MB_CF001, 230
MBCF0002, 230
MBCF0005, 230
MBCF0006, 234
MBCF0007, 236
MBCF0009, 231
MBCFC003, 231
MBCFC004, 231
ME590001, 204
MEETA001, 208
MEFLD004, 234
MEQUERY1, 212
MEREQ001, 38, 198
MEVME001, 235
MM06E001, 217
MM06E003, 213
MM06E004, 204
MM06E005, 37, 214
MM06E007, 17, 204
MM06E008, 207
MM06E009, 214
MM06E010, 215
MM06E011, 199
MM06L001, 216
MM08R001, 255
MM08R002, 249, 255
MMDA0001, 215
MMFAB001, 207
MRFLB001, 208
MRMH0001, 252
MRMH0002, 252
MRMH0003, 253
MRMN0001, 253
NIWE0000, 238
NIWE0001, 239
NIWE0002, 239
NIWE0003, 240
RMVKON00, 252
SRVDET, 222
SRVEDIT, 223
SRVESI, 223
SRVESKN, 223
SRVESLL, 224
SRVESSR, 224
SRVEUSCR, 224
SRVKNTTP, 225
SRVLIMIT, 225

SRVMAIL1, 226
SRVMSTLV, 226
SRVREL, 226
SRVSEL, 227
XMBF0001, 232

Enhancement category, 149
Enhancement implementation, 31
Enhancement spot, 29, 30

ES_BADI_INVOICE_UPDATE, 247
ES_BADI_ME_BAPI, 195, 199, 205
ES_BADI_ME_POHIST, 30, 200
ES_BADI_MRM_DOWNPAYMENT, 248
ES_BADI_MRM_PARTNER, 247
ES_BADI_MRM_RETENTION, 248
ES_COMMITMENT_PLAN, 210
MB_GOODSMOVEMENT, 229, 233
ME_PROCESS_OUT, 205
MRM_BLOCKREASON_DELETE, 249

Enjoy purchase order, 37
Error message, 69
ERS procedure, 241
EXECUTE, 40
Exit

Substitution, 184
Exit routine

Substitution, 185
Validation, 177

Expert mode, 175
Explicit enhancement spot, 29
EXPORT ... COMPRESSION ON, 120
Export parameter, 157
EXPORT ... TO DATA BUFFER, 119
External Services Management, 83, 221

F

Field
BEXCLUDE, 182
Custom, 93
Property, 45
SGTXT, 228, 230, 250
Status, 59
Symbol, 190

Field-field assignment
Substitution, 184

FIELDSELECTION_*, 41

373 Book.indb 262 11/2/10 2:42:50 PM

www.sap-press.com

263

Index

Flow logic, 45, 99, 148, 157, 163
Flow module, 154
Form

get_exit_titles, 178, 185
Forward declaration, 57
Function group, 38, 94
Function module, 46, 49, 94

BAPI_USER_GET_DETAIL, 84

G

GB01, 182
get_exit_titles, 178, 185
GET_INSTANCE_FOR_SUBSCREENS, 158
GL account, 135, 136
GL account tab, 145
Global data, 43, 167
Goods issue, 95
Goods movement, 93
Goods receipt, 95, 127, 130, 233
Goods receipt/issue slip, 230
GR block stock, 127
GR/IR-account, 139
GR/IR account determination, 240
GUID, 119

H

Header data, 43
HOLD_DATA_DELETE, 119, 122
HOLD_DATA_LOAD, 119, 121
HOLD_DATA_SAVE, 119, 120

I

I_CLASS_ID, 109
IDoc

Basic DELVRY01, 216
IDOC_INPUT_SRVMAS, 222
processing, 216

IF_PURCHASE_ORDER_ITEM_MM, 62
IF_PURCHASE_ORDER_MM, 62, 67
Implementation, 23, 24, 95, 155
Implementing class, 33, 55, 57

Implicit enhancement spot, 29
IMPORT ... ACCEPTING TRUNCATION, 123
Import data, 204
IMPORT ... FROM DATA BUFFER, 119
Import parameter, 49, 52
Inbound delivery, 216
Include, 20

LMEVIEWSF01, 44
Incoming invoice, 141
InfoSet, 76
INIT, 95, 107
INITIALIZE, 40
Input check, 93, 123
INSERT, 120
Instance, 158
Instance attribute, 108
Interface, 31, 62, 155, 159

IF_PURCHASE_ORDER_ITEM_MM, 62
IF_PURCHASE_ORDER_MM, 62, 67

Interface tab, 24
Internal table, 48
IN UPDATE TASK, 52
INVALIDATE, 70
Inventory document, 237
Inventory Management, 227
Invoice, 165
INVOICE_DATA_GET, 157, 159
INVOICE_DATA_TRANSFER, 147, 156
Invoice document, 145, 146, 147

Item, 156
Header, 156

Invoice Verification, 240
Conventional, 254

Invoicing plan settlement, 243
IQSM0007, 232
Item data, 42
ITEM_MODIFY, 125
Item number, 162
Item text, 125, 135, 174, 214, 228, 230, 250

L

LIFO
0040, 238
Valuation, 238

Limit check, 225

373 Book.indb 263 11/2/10 2:42:50 PM

www.sap-press.com

264

Index

LINE_DELETE, 96
LINE_MODIFY, 96, 114
LMEKO001, 209
LMEKO002, 210
LMELA002, 233
LMELA010, 217, 233
LMEQR001, 213
LMEVIEWSF01, 44
LMEXF001, 210
LMR1M001, 250
LMR1M002, 240
LMR1M003, 250
LMR1M004, 250
LMR1M005, 251
LMR1M006, 251
Logistics Information Systems (LIS), 218
Logistics Invoice Verification, 145, 164, 175,
240
LOOP AT SCREEN, 99
Lowest value comparison, 238
LWBON001, 218
LWSUS001, 213

M

M06B0001, 196
M06B0002, 197
M06B0003, 197
M06B0004, 198
M06B0005, 197
M06E0004, 203
M06E0005, 203
MAP_DYNPRO_FIELDS, 39, 57
Market price analysis, 239
Material document, 95, 227

number, 97
Material group, 166
Materials Management (MM), 37
MB21, 134
MB22, 134
MB_ACCOUNTING_DISTRIBUTE, 233
MB_CF001, 230
MBCF0002, 230
MBCF0005, 230
MBCF0006, 234
MBCF0007, 236

MBCF0009, 231
MBCFC003, 231
MBCFC004, 231
MB_CHECK_LINE_BADI, 229
MB_DOCUMENT_BADI, 227
MB_GOODSMOVEMENT, 229, 233
MB_GOODSMOVEMENT_DCI, 233
MB_INSMK_WIP_CHANGE, 229
MB_MIGO_BADI, 28, 118, 228
MB_MIGO_ITEM_BADI, 228
MB_RESERVATION_BADI, 235
ME23N, 54
ME31K, 210
ME31L, 210
ME59, 204
ME84, 207
ME590001, 204
ME_BAPI_PO_CUST, 199
ME_BAPI_PR_CUST, 195
ME_CHDOC_ACTIVE, 212
ME_CHECK_ALL_ITEMS, 200
ME_CIP_ALLOW_CHANGE, 212
ME_COMMITMENT_PLAN, 210
ME_COMMITMENT_RETURN, 211
ME_DEFINE_CALCTYPE, 208
MEETA001, 208
MEFLD004, 234
ME_GUI_PO_CUST, 28, 37, 201

MAP_DYNPRO_FIELDS, 54
TRANSPORT_FROM_DYNP, 62
TRANSPORT_FROM_MODEL, 61
TRANSPORT_TO_DYNP, 61
TRANSPORT_TO_MODEL, 62

ME_HOLD_PO, 22, 200
MEOUT_BAPI_CUST, 205
ME_POHIST_DISP_CUST, 30, 200
ME_PO_PRICING_CUST, 209
ME_PROCESS_OUT, 205
ME_PROCESS_OUT_CUST, 205
ME_PROCESS_PO_CUST, 37, 202

CLOSE, 68
FIELDSELECTION_HEADER, 54
FIELDSELECTION_ITEM, 54
INITIALIZE, 68
OPEN, 68
POST, 68

ME_PROCESS_REQ_CUST, 38, 194

373 Book.indb 264 11/2/10 2:42:50 PM

www.sap-press.com

265

Index

ME_PURCHDOC_POSTED, 201
MEQUERY1, 212
ME_RELEASE_CREATE, 206
MEREQ001, 38, 198
ME_REQ_HEADER_TEXT, 196
ME_REQ_OI_EXT, 211
ME_REQ_POSTED, 196
Message, 137, 173

BLAREL, 217
DELFOR, 217
DELINS, 217
DESADV, 217
ORDCHG, 217
ORDERS, 217
ORDRSP, 217
REQOTE, 217

Message class
Change, 174

Message log, 126
Metafield, 54, 57
ME_TAX_FROM_ADDRESS, 203
Method, 24, 25

CHECK_HEADER, 123, 124
CHECK_ITEM, 123, 124
CUSTOM_DATA_GET, 158
CUSTOMDATA_MODIFY, 156
CUSTOM_DATA_TRANSFER, 158
DATA_CHECK, 134
DATA_MODIFY, 134, 135
GET_INSTANCE_FOR_SUBSCREENS, 158
HOLD_DATA_DELETE, 119, 122
HOLD_DATA_LOAD, 119
HOLD_DATA_SAVE, 119, 120
INIT, 95, 107
INVOICE_DATA_GET, 157
INVOICE_DATA_TRANSFER, 156
LINE_DELETE, 96
LINE_MODIFY, 96, 114
MODE_SET, 95, 108
PAI_DETAIL, 96, 114
PAI_HEADER, 96
PBO_DETAIL, 96, 112
PBO_HEADER, 96
POST_DOCUMENT, 96, 117
RESET, 95, 108
STATUS_AND_HEADER, 95, 119
TABPAGE_LABEL_SET, 147, 158

MEVME001, 235
MIGO, 93, 95, 228

Action, 106
check, 123
Note, 112, 119
post, 123
Reference document, 106

MIGO_CLASS_ID, 105
MIR4, 151
MIR6, 151
MIR7, 175
MIRA, 151
MIRO, 145, 147, 175
ML81N, 89
ML86, 223, 226
ML87, 223, 226
MLS5, 226
MM06E001, 217
MM06E003, 213
MM06E004, 204
MM06E005, 37, 214
MM06E007, 17, 204
MM06E008, 207
MM06E009, 214
MM06E010, 215
MM06E011, 199
MM06L001, 216
MM08R001, 255
MM08R002, 249, 255
MMDA0001, 215
MM_EDI_DESADV_IN, 216
MMFAB001, 207
MM_INVBEL, 237
MM_MATBEL, 237
MM_MESSAGES_MAC, 70
MMMFD, 57
MMPUR_DYNAMIC_CAST, 62
MMPUR_MESSAGE_FORCED, 70
MMPUR_METAFIELD, 57, 70
MMSRV_SM_BAPI_CUST, 221
MMSRV_SM_MAIN, 221
MMSRV_SM_NOTIFY, 222
MODE_SET, 95, 108
Modification, 29
MODULE, 159
MODULE ... ON CHAIN-REQUEST, 164
Module pool, 151

373 Book.indb 265 11/2/10 2:42:50 PM

www.sap-press.com

266

Index

MOVE-CORRESPONDING, 113
MRBP, 151
MRBR, 244
MRFLB001, 208
MRIS, 243
MRKO, 243
MRM_BLOCKREASON_DELETE, 249
MRM_BLOCKREASON_DELETE_CUST, 249
MRM_DOWNPAYMENT, 248
MRM_ERS_HDAT_MODIFY, 241
MRM_ERS_IDAT_MODIFY, 241
MRMH0001, 252
MRMH0002, 252
MRMH0003, 253
MRM_HEADER_CHECK, 242
MRM_HEADER_DEFAULT, 242
MRM_INVOICE_UPDATE, 247
MRM_ITEM_CUSTFIELDS, 145, 241
MRM_MRIS_HDAT_MODIFY, 243
MRM_MRIS_IDAT_MODIFY, 243
MRM_MRKO_HDAT_MODIFY, 243
MRMN0001, 253
MRM_PARTNER_CHECK, 247
MRM_PAYMENT_TERMS, 244
MRM_RELEASE_CHECK, 244
MRM_RETENTIONS, 248
MRM_TOLERANCE_GROUP, 244
MRM_TRANSACT_DEFAULT, 245
MRM_UDC_DISTRIBUTE, 245
MRM_VARIANCE_TYPE, 246
MRM_WT_SPLIT_UPDATE, 245
MSEG, 96
MSEG-ZEILE, 117
Multiple account assignment, 86

N

NIWE0000, 238
NIWE0001, 239
NIWE0002, 239
NIWE0003, 240
Number range, 197, 213, 250

O

OB28, 172, 174
OBBH, 182
Object, 62
OBYC, 140
OK-CODE, 44
OPEN, 40
ORDCHG, 217
Order, 22

Hold, 22
Order confirmation, 217
ORDERS, 217
ORDRSP, 217
Outline agreement, 205
Overdelivery quantity, 129, 131
OXK3, 146

P

PAI_DETAIL, 96, 114
PAI_HEADER, 96
Parameter

Interface, 26
Parameters

CHANGING, 50
Interface, 31

Parameter type
C_EXIT_PARAM_CLASS, 179
C_EXIT_PARAM_FIELD, 179, 185
C_EXIT_PARAM_NONE, 179

Parked document, 175
Partner role, 247
Pass by value, 50
Pass By Value, 102
PBO_DETAIL, 96, 112
PBO_HEADER, 96, 109
Pipeline

Processing, 252
Settlement, 243

POST, 41
POST_DOCUMENT, 96, 117
Posting transaction

WRX, 140
Prerequisite, 173, 181
Price variance, 164

373 Book.indb 266 11/2/10 2:42:50 PM

www.sap-press.com

267

Index

Pricing, 200, 208
PROCESS_ACCOUNT, 40, 71
PROCESS AFTER INPUT, 148
PROCESS BEFORE OUTPUT, 148
PROCESS_HEADER, 40, 71
Processing

IDoc, 216
Processing type, 102
PROCESS_ITEM, 40, 71
PROCESS_SCHEDULE, 40, 71
Program

RGGBR000, 177
RGGBS000, 185
RM06BD70, 219
RM06BV70, 218
RM06BW70, 219
RM06ED47, 220
RM06EFLB, 208
RM06EW47, 220
RM06ID47, 220
RM06IW47, 219, 220
RM07IARCS, 237, 238
RM07IDELS, 238
RM07MADES, 237
RM07MARCS, 236, 237
SAPLMR1M, 189

Program table, 154
Project, 18, 21
Purchase order, 37, 199

Document overview, 212
Input check, 40, 69
Message collector, 69
Purchase order date, 128
Purchase order history, 34, 200
Purchase order number, 47
Selection variant, 72

Purchase order requisition, 194
Purchase requisition, 38

Selection variant, 72
Purchasing, 37
Purchasing information record, 219

Q

Quantity variance, 164
Query, 76
Query Painter, 76

R

RAWSTRING, 119, 120, 122
RBDRSEG, 150
RBMA, 150
Reference, 62, 95
Reference key, 183
Release procedure, 196
Release strategy, 203
Report

RGUGBR00, 174, 183
RGUGBR28, 174
RM06EFAB, 207
RMMR1MRB, 253

Repository Browser, 98, 152
REQOTE, 217
Request for quotation (RFQ), 37
Reservation, 134, 235
RESET, 95, 108
Retention amount, 248
Return item, 211
Return-table, 123
RGGBR000, 177
RGGBS000, 185
RGUGBR00, 174, 183
RGUGBR28, 174
RM06BD47, 219
RM06BV70, 218
RM06BW47, 219
RM06BW70, 219
RM06ED47, 220
RM06EFAB, 207
RM06EFLB, 208
RM06EW47, 220
RM06ID47, 220
RM06IW47, 219, 220
RM07IARCS, 237, 238
RM07IDELS, 238
RM07MADES, 237
RM07MARCS, 236, 237
RMMR1MRB, 253
RMVKON00, 243, 252
RSEG, 150
Runtime behavior, 34

373 Book.indb 267 11/2/10 2:42:50 PM

www.sap-press.com

268

Index

S

SAP Enhancement Framework, 29
SAPLMR1M, 189
SAP Query, 75
Schedule, 129
Scheduling agreement, 129, 205
Scheduling agreement schedule, 129
Scheduling data, 71
SCREEN-NAME, 163
Screen Painter, 98, 152
SE11, 42, 120
SE18, 22, 30
SE19, 23, 24, 31, 155
SE24, 59
SE80, 43, 98
Selection

dynamic, 75
list, 82
variant, 75

Serial number, 232
Service catalog, 226
Service entry, 222

entry sheet, 223
Service line, 83, 87
Service master, 221
Service specification, 223
SGTXT, 228, 230, 250
Shipping notification, 217
Ship-to party, 135, 138
Signature, 26
SMOD, 18
SMOD_MRFLB001, 207
Source, 213
Source document

Substitution, 188
SQ01, 76
SQ02, 76
SRVDET, 222
SRVEDIT, 223
SRVESI, 223
SRVESKN, 223
SRVESLL, 224
SRVESSR, 224
SRVEUSCR, 224

SRVKNTTP, 225
SRVLIMIT, 225
SRVMAIL1, 226
SRVMSTLV, 226
SRVREL, 226
SRVSEL, 227
STATUS_AND_HEADER, 95, 119
Step, 173
Stock determination, 232
Storage location, 125, 231
Structure, 101

CI_DRSEG_CUST, 147
DRSEG, 147
DRSEG_CI, 147, 149

Subcontracting, 212, 234
Subcontracting component, 234
Subscreen, 98, 145, 152, 155
SUBSCRIBE, 39
Substitution, 171, 182

Constant value, 184
Exit, 184
Exit routine, 185
Field-field assignment, 184
Source document, 188

T

T80D, 177, 185
Table

BKPF, 172
BSEG, 172
GB01, 182
MSEG, 96
Parameter, 50
T80D, 177, 185
Work area, 154
YDRSEG, 190

Table control, 147, 152, 160
Table Control Wizard, 152
TABLE_LINE, 136
TABPAGE_LABEL_SET, 147, 158
Tabstrip, 39
Text field, 97
Text symbol, 158

373 Book.indb 268 11/2/10 2:42:51 PM

www.sap-press.com

269

Index

Tolerance check, 145, 164, 249
Tolerance key, 165, 166
Tolerance limit, 129, 164
Transaction

AC03, 222
CMOD, 18, 21
MB21, 134
MB22, 134
ME23N, 54
ME31K, 210
ME31L, 210
ME59, 204
ME84, 207
MIGO, 93, 106, 112, 119, 228
MIR4, 151
MIR6, 151
MIR7, 175
MIRA, 151
MIRO, 145, 147, 175
ML81N, 89
ML86, 223, 226
ML87, 223, 226
MRBP, 151
OB28, 172, 174
OBBH, 182
OBYC, 140
OXK3, 146
SE11, 42, 120
SE18, 22, 30
SE19, 23, 24, 31, 155
SE24, 59
SE80, 98
SMOD, 18
SQ01, 76
SQ02, 76

TRANSPORT_FROM_DYNPRO, 40
TRANSPORT_FROM_MODEL, 39
TRANSPORT_TO_DYNPRO, 39
TRANSPORT_TO_MODEL, 40
Type, 28, 106

DESADV, 216
Type group, 57
Type input

Direct, 107

U

Underdelivery quantity, 131
Unlimited variance, 169
Unloading point, 135, 138
Upcast, 62
Update module, 50, 95, 102
Update termination, 103
Updating, 50, 117
User exit, 17

Activate, 21
Deactivate, 21
EXIT_RM06EFAB_001, 208
EXIT_RM06EFLB_001, 208
EXIT_RM06LBAT_001, 216
EXIT_RM06LBEW_001, 216
EXIT_RMMR1MRB_*, 253
EXIT_RMVKON00_*, 252
EXIT_SAPLBASO_*, 222
EXIT_SAPLEBND_*, 197, 203, 226
EXIT_SAPLEBNE_001, 198
EXIT_SAPLEBNF_*, 196, 203
EXIT_SAPLEINL_001, 208
EXIT_SAPLEINM_*, 217
EXIT_SAPLEINR_*, 127, 129, 234, 235
EXIT_SAPLIE01_007, 232
EXIT_SAPLKONT_011, 141, 240
EXIT_SAPLLIFS_*, 238
EXIT_SAPLMBMB_001, 230
EXIT_SAPLMDBF_*, 232
EXIT_SAPLME59_001, 204
EXIT_SAPLMEKO_*, 209, 210
EXIT_SAPLMEL0_001, 216
EXIT_SAPLMEQR_001, 213
EXIT_SAPLMEQUERY_*, 75, 80, 213
EXIT_SAPLMEREQ_*, 198
EXIT_SAPLMEXF_001, 210
EXIT_SAPLMIGO_001, 234
EXIT_SAPLMLSK_001, 83, 84, 224
EXIT_SAPLMLSL_001, 225
EXIT_SAPLMLSP_*, 87, 88, 223, 224, 227
EXIT_SAPLMLSR_*, 89, 223, 224, 225
EXIT_SAPLMLST_001, 226
EXIT_SAPLMLSX_*, 223, 225, 226
EXIT_SAPLMMDA_001, 215
EXIT_SAPLMR1M_*, 167, 249, 250

373 Book.indb 269 11/2/10 2:42:51 PM

www.sap-press.com

270

Index

Sergey Korolev

ABAP Development for Financial
Accounting: Custom Enhancements

With this book, you can learn how to create custom enhancements to
standard ABAP code in SAP ERP Financials (release 6.0) in order to
address all corporate and/or country-specific business rules. It explains
how to customize data flow between subsystems (such as Financial
Accounting, Logistics, Cost Controlling, etc.), as well as between external
systems (such as those of banks, vendors, customers, etc.). Taking a
systematic approach to the topic, you will be introduced to general
information about the subject of enhancements, and then benefit from
specific coding tutorials consisting of step-by-step instructions and
screenshots.

approx. 240 pp., 69,95 Euro / US$ 84.95

ISBN 978-1-59229-370-4, Jan 2011

Provides tutorials for the immediate
improvement of your SAP system

Covers validations and substitutions,
user exits, BTEs, BAdIs, and implicit
enhancements

Includes the enhancement of reports,
accounting document processing,
workflows, and more

 www.sap-press.com

EXIT_SAPLMRM_BAPI_001, 251
EXIT_SAPLMRMC_*, 167, 250, 251
EXIT_SAPLMRME_003, 250
EXIT_SAPLMRMH_*, 252, 253
EXIT_SAPLMRMN_*, 253, 254
EXIT_SAPLMRMP_*, 167, 250, 251
EXIT_SAPLNIW0_*, 239
EXIT_SAPLNIW1_*, 239
EXIT_SAPLNIW3_*, 240
EXIT_SAPLNIWE_*, 239
EXIT_SAPLWN08_001, 218
EXIT_SAPLWN12_001, 218
EXIT_SAPLWN35_001, 218
EXIT_SAPLWSUS_001, 213
EXIT_SAPM07DR_*, 231
EXIT_SAPMM06B_001, 197
EXIT_SAPMM06E_*, 20, 199, 204, 205,
207, 214, 215
EXIT_SAPMM06L_001, 216
EXIT_SAPMM07M_*, 230, 231, 232, 234
EXIT_SAPMM07R_001, 236

User group, 76
User master, 84

V

Validation, 171, 172
Change of message class, 174
Exit routine, 177

Valuation, 139, 238

Value contract, 207
Variable

B_RESULT, 179
Variance, 167

Unlimited, 169
Vendor, 127

address, 215
evaluation, 215

Visibility, 107

W

Work area, 75, 76, 177, 185
WRF_MRM_ASSIGN_TEST, 246
WRF_PREPAY_INVOICE, 246
WRX, 140

X

XMBF0001, 232
XML invoice, 251
XSTRING, 119

Y

YDRSEG, 190

373 Book.indb 270 11/2/10 2:42:52 PM

www.sap-press.com

	SAP PRESS – reading sample
	ABAP Development for Materials Management in SAP: User Exits and BAdIs
	Jürgen Schwaninger

	Contents at a Glance
	Contents

	chapter 5: User Exits and BAdIs in Inventory Management
	5.1 Custom Fields in Transaction MIGO
	5.1.1 Custom Fields: An Overview
	5.1.2 Preparations in the ABAP Dictionary
	5.1.3 Preparation of the Function Group
	5.1.4 Preparation and Status Management in MB_MIGO_BADI
	5.1.5 Activation of Custom Header Data
	5.1.6 Activation of Custom Item Data
	5.1.7 Updating the Data

	5.2 Other Functions of the BAdI MB_MIGO_BADI
	5.2.1 Noting Custom Data
	5.2.2 Input Checks in Transaction MIGO

	5.3 Checking and Prepopulating Standard Fields
	5.3.1 Prepopulation of Storage Location and Text
	5.3.2 Checking the Standard Fields

	5.4 Check of the Earliest Delivery Date
	5.5 Tolerance Limits f or Scheduling Agreements
	5.5.1 Overwriting Overdelivery Quantity
	5.5.2 Overwriting Default Quantity

	5.6 Enhancement of Reservations
	5.6.1 Prepopulating Fields
	5.6.2 Checking Entries

	Index

	www.sap-press.com
	(c) Galileo Press GmbH 2011

	www:
	sap-press:
	com: www.sap-press.com

