Z? PRESS

Jirgen Schwaninger

ABAP™ Development for Materials
Management in SAP": User Exits and BAdIs

SAP Essentials

ABAP" Development for
Materials Management in
SAP: User Exits and BAdIs

} Offers custom enhancement exercises for the SAP standard
} Reviews examples for purchasing, inventory management, invoice verification,
and much more

} Provides an overview of more than 140 user exits, BAdls, and enhancements
for Materials Management (MM}

Jurgen Schwaninger . s o
GalileoPress

.= ©®
_ D
Galileo Press

WWW.Sap-press.com

Bonn « Boston

http://www.sap-press.com

Contents at a Glance

1

Introduction ... 13
General Information on User Exits and BAdIs 17
User Exits and BAdIs in Purchasingccccoinn 37
User Exits and BAdIs in External Services Management 83
User Exits and BAdIs in Inventory Management 93

User Exits and BAdIs in the Valuation and Account

Assignment Area ... 139
User Exits and BAdlIs in Logistics Invoice Verification 145
Validation and Substitution of Accounting Documents 171
User Exits and BAdIs in SAP Materials Management 193
The Author ... 257

www.sap-press.com

Contents

PrETACE e 11

1 Introduction

1 ODJECLIVES oo 13
1.2 Structure and Content ... 13
1.3 Target AUdIENCe ..o 14
1.4 Prerequisites ... 14

General Information on User Exits and BAdIs

21 Using User EXits ... 17
211 Finding and Viewing Enhancements ... 18
21.2 Creating a Project and Assigning Enhancements 18
21.3 Using Components of the Projectccccceviiiniiinnn. 19
21.4 Activating and Deactivating Projectscccccccviiriinnnenn. 21
2.2 Use of Classic BAAIScoooiiiiiiiiii e 22
2.21 Finding and Viewing Enhancements 22
2.2.2 Creating a BAdI Implementationcccccceviiiiniieninnn. 24
2.2.3 Working with Methodscoocoiiiiiiin 25
2.2.4 Activating and Deactivating BAdIsccoooiiiiiiinnnn. 27
2.2.5 Enhanced Editing Optionsccccocoiiiiiiiiiiiii 28
2.3 Use of New BAdIs (Enhancement Spots)cccccovoiiiiiieniinennn. 29
2.31 SAP Enhancement Framework ..., 29
2.3.2 Finding and Viewing Enhancement Spotscc....... 30
2.3.3 Creating Enhancement Implementationsc........ 31
2.3.4 Working with Methods ... 33
2.3.5 Activating and Deactivating BAdIs ..o 34

User Exits and BAdIs in Purchasing

31 Customized Fields in Purchase Orderscccocoiiiiiiiiininnnnn. 37
311 Overview of the Implementationccccooceiiiiiiiiinens 38

31.2 Implementation of Custom Purchase Order Data
and Function Groupccccciiiiiiiiiiiiii e 42

WWW.sap-press.com 7

Contents

31.3 Integration of Custom Fields into the BAdIs 54
31.4 Integration of Customer Fields into the Business Logic ... 61
31.5 Initializing, Reading, and Updating Data 68
31.6 Display of Error Messagescccccooveiviiiiiiiiiiiiciieaens 69
3.2 Customizing the Document Overview in Purchase
Requisitions or Purchase Ordersccoovvviiiiiiiiieiiiiiiieiii 72
3.21 Removal of a Standard Selection Variant 72
3.2.2 Inserting Custom Selection Variantsccccccoienn 75

User Exits and BAdIs in External Services Management

41 Prepopulating Account Assignment for Service Lines 83
4.2 Input Check of the Service LIN€Sccccovviiiiiiiiiiiiiieiie e 86
4.21 Prepopulating Fields in EXIT_SAPLMLSP_030 87
4.2.2 Input Check in EXIT_SAPLMLSP_031 ..ccceiiiiiiiiieiiiiieeene 88
4.3 Prepopulation of the Header Data in the Data Entry Sheet 89

User Exits and BAdIs in Inventory Management

51 Custom Fields in Transaction MIGOccocoiiiiiiiiiiiiice, 93
511 Custom Fields: An OVEIVIEWccccooovviiiiiiiiiiiiiiiieeeenie 94
51.2 Preparations in the ABAP Dictionarycccccceeienn. 97
51.3 Preparation of the Function Groupc..ccccceeviiiennnnennn. 98

51.4 Preparation and Status Management in
MB_MIGO_BADI ..o 104
51.5 Activation of Custom Header Dataccccocceeiiienn 109
51.6 Activation of Custom Item Datacoceevciiniicninnnn, 112
51.7 Updating the Datacccoeiiiiiiiiiiii e 117
5.2 Other Functions of the BAdI MB_MIGO_BADIcocvvviiiiaaeeennn.. 118
5.21 Noting Custom Data ... 119
5.2.2 Input Checks in Transaction MIGOccccvveeiiiiineeennnnn. 123
5.3 Checking and Prepopulating Standard Fieldsc.ccccooieinnn. 125
5.31 Prepopulation of Storage Location and Text 125
5.3.2 Checking the Standard Fieldscccccciniiiiiiniiiennn, 126
5.4 Check of the Earliest Delivery Datecccccoooiiiiiiiiiiiciiic. 127
5.5 Tolerance Limits for Scheduling Agreements ... 129
5.51 Overwriting Overdelivery Quantitycccccvviiiinnnennn. 129
5.5.2 Overwriting Default Quantityccccooiiiiiniiiiiieen, 132

8 wWww.sap-press.com

Contents

5.6 Enhancement of Reservations...........cccccooiiiiiiiiiiiiiiiiciee, 134
5.61 Prepopulating Fieldscccoooiiiiiiniii 135
5.6.2 Checking Entries ..o 137

User Exits and BAdIs in the Valuation and Account

Assignment Area

6.1 GR/IR Clearing Accountccccooiiiiiiiiiiiiii e 139
6.2 Overriding the Account Determination in the User Exit 141

User Exits and BAdlIs in Logistics Invoice Verification

71 Custom Fields in Transaction MIROccccoooiiiiiiiiiiicice, 145
744 Overview of the Solution via BAdIc.cccccoeiiniiennen. 146

71.2 BAdI in Detail — Customizations in the
ABAP Dictionaryccoooooiiiiiiiiii 148
71.3 Creating a Custom Dynpro with Table Control 151
71.4 Preparation of the Data in the BAdlcccceeeiiiiie 154
710.5 Back to the DYnproccccccvviiiiiiiiiiiiiiicce e 158
7.2 Overriding Tolerance Checkscccooviiiiiiiiiiiiicciice e 164
7.21 Tolerance Limits in Customizingccccooeviiiiiinnnn. 165
7.2.2 Use of the Enhancementcccccciiiiiiiiiiiiiiiieeeee 166

Validation and Substitution of Accounting Documents

8.1 Validation of Accounting Documentscccceviiiiiiiiecninnennnnen. 172
811 Callup PoiNts ..oooiiiiiiiiiiiiic e 172
812 SEEPS i 173
8.1.3 Example without Exit Routinecccccoiiiiiiiiiinn, 174
8.1.4 Example with Exit Routine ... 177
8.2 Substitution of Accounting Documentsccccoecveiiiiiiiiennnnn. 182
8.21 Substitution without Exit Routine ... 183
8.2.2 Substitution with Exit Routinecccccccvviiiiiiiiiinnann. 185
8.2.3 Read Access to Data of the Source Document 188

WwWw.sap-press.com 9

Contents

Appendices

A User Exits and BAdIs in SAP Materials Managementcccoccveeennnn. 193
AT PUIChASING ot 194
A1 Purchase Order Requisitions in General 194
A2 Purchase Orders in Generalccccoiiiiiiiiiiiiiiiii, 199

A3 Outline Agreements (Scheduling Agreements/
CoNtracts)ccooviiiiiii 205
AN PriCiNG oo 208
A15 Commitment Functions ... 210
A1.6 Cross-Document ... 211
A7 Vendor Evaluation ... 215
A1.8 IDOC ProCessingouuiiiiiiimiiiiiiiiiiie e 216
A9 Logistics Information Systemscccciiiiiiiii 218
A0 Archiving ..o 218
A.2 External Services Managementccccoociiiiiiiiiiiiiic, 221
A.3 Inventory Management ... 227
A.31 Material Documents in Generalcccccooiiiiiiiininns 227
A.3.2 Goods RECEIPt ..o 233
A.3.3 RESEIVAtiONSoiiiiiiiiiiiiii e 235
A34 ArChiVING i 236
A.4 Valuation and Account Assignmentccccceeviiiiiieniiiiiieniie, 238
A.5 Logistics Invoice Verificationccccoiiieiiiiiiiiieiee e 240
A5 GENEIAl e 240
AB5.2 Archiving ..o 254
A.5.3 Conventional Invoice Verificationcccceiiiin 254
B The AULNOr ..o 257
I EX e 259

10 WWW.sap-press.com

5 User Exits and BAdIs in
Inventory Management

The concept of Inventory Management in SAP Materials Management (MM) basi-
cally involves summarizing the management of all warehouse stocks with regard
to value and quantity as well as the associated goods movements. Because the
conceivable processes in this core area are very comprehensive, there are also
many setting options in the system. This is also reflected in the number of pos-
sible program-related enhancements. In this chapter, you will learn about the most
important enhancements for Inventory Management.

54 Custom Fields in Transaction MIGO

With the implementation of the central Transaction MIGO for all goods movements,
a powerful BAdI is provided: MB_MIGO_BADI. With this BAdI, you can integrate and
post custom fields as custom tabstrips at the header and item level. You can also
carry out input checks in your custom fields or populate many standard fields with
default values.

If you execute the following example, you may find that the subsequent display of the
data of a posted material document at item level doesn't work. This is the case when
SAP Note 1029951 has been manually imported into your system or support packages
have been imported.

As a result of the changes from this note, the method LINE_MODIFY, which is actually
provided for reading the item data from the database, will no longer run when material
documents are displayed. Unfortunately, it isn't possible to use another method for this
because the associated standard item data (structure GOITEM) isn't provided in all other
relevant methods, and you therefore cannot assign your data to a specific document
line.

With SAP Note 1477221, the method LINE_MODIFY will run again. If this note hasn't
yet been released for customers when you read these lines, you can modify the program
location relevant for the call of the method, as described in SAP Note 1136344. The
example given here will be fully functional in both cases.

www.sap-press.com o3

5 | User Exits and BAdIs in Inventory Management

544 Custom Fields: An Overview

The capability of the BAdI MB_MIGO_BADI results in a certain amount of complex-
ity. There are 17 methods that are called at many different times. Nevertheless, to
make the next example as clear as possible, you'll only view the implementation
of custom fields at the header and item level (see Figure 5.1). This reduces the
BAdI to 11 methods with which the minimum requirements can be fulfilled. In a
second step, you'll then learn about the function of the remaining methods in a
brief overview.

@z Goods Receipt Inbound Delivery - Jurgen Schwaninger

[P o] | 0| [o]][0

%Iﬁ || Goods Receipt B/ Inbound Delivery B || [¥ia Handl Units GR goods receipt 101
My Docurments

7 Purchase Orders General | Wendor iZiF Own Data
Blank

7 (Bl
Blank

~ Resenations
Blank

= Material Document
Blank

=~ Held Data Line |Mat. Short Text Ok |Gty in UnE E |SLoc Batch Valuation T (M Dﬂﬂ
Blank D
[2]
[
M0 1™
D:I EI:H Delete ” Contents | g !E
EI Matarial Quantity YWhere Own Data

[— D)

Figure 51 Custom Fields in Transaction MIGO

Function Group for the Management of Dynpros

Just as with the custom fields in the purchase order (see Section 3.1, Custom Fields
in Purchase Orders, in Chapter 3), you first need a function group to include the
dynpros and some function modules for the exchange of data and for updating
custom fields. However, this function group can be implemented for the BAdI
MB_MIGO_BADI much more easily and must assume fewer tasks.

You have to work with two BAdIs in the purchase order to activate the custom
fields. The function group therefore not only has to assume the communication
with the dynpros but also must map the communication between the BAdIs. You
can, however, execute all the necessary steps directly in the BAdI MB_MIGO_BADI for

94 www.sap-press.com

Custom Fields in Transaction MIGO

Transaction MIGO, so additional communication with another BAdI isn't needed.
You can create a dynpro in the function group for the header and item data and
create two function modules for each dynpro to store and retrieve the data in the
dynpro. You also need an update module to save your custom data. To post your
custom data, you need to define custom tables in the ABAP Dictionary.

Usage of the BAdl MB_MIGO_BADI

As soon as you've created the function group, you can begin with the implementa-
tion of the BAdI. You keep the data on the custom fields for runtime in the attributes
of the BAdI. First, these areas need to be defined.

MB_MIGO_BADI can be implemented many times. However, there are only five
custom tabstrips for the header and item levels. For this reason, precisely five
active implementations are allowed. The method INIT is activated when Transac-
tion MIGO is started, and it's used to register an implementation and populate a
tabstrip.

With the initialization of a document (new document or display of an existing
document), the methods will run from Table 5.1. The methods MODE_SET and STA-
TUS_AND_HEADER are also triggered when the document status changes.

RESET This method is used to initialize all custom data in the
attributes of the BAdI implementation.

MODE_SET In this method, you obtain information on the action
(goods receipt, goods issue, etc.) and the chosen
reference (purchase order, reservation, etc.) chosen by
the user; these are the fields that are always available in
Transaction MIGO in the top-left side. You can evaluate
this information, and store it in the attributes of the
implementation for subsequent use.

STATUS_AND_HEADER This method is mainly used to fill the custom header data
when an existing document is read.

Table 51 Initialization of a Document and Status Change

The methods are also executed with each dialog step for header data from Table
5.2 and with each dialog step on item data from Table 5.3. The method LINE_MOD-
IFY is also executed when a line is added either when the user makes an entry or
when an existing material document is read from the database.

www.sap-press.com 95

5 User Exits and BAdIs in Inventory Management

PBO_HEADER This method is called before the header data are displayed.
You must transfer the data to be displayed to the function
group and specify the dynpro to be displayed. The tabstrip
header is also specified here.

PAI_HEADER This method runs as soon as the user has entered the data.
You need to retrieve the possibly changed data from the
function group.

Table 5.2 Methods in the Dialog Step on Header Data

PBO_DETAIL This method is called before the item data is displayed. In
the parameter I_LINE_ID, you obtain the current item and
must transfer the associated data in the function group.
You also need to specify the dynpro to be displayed as well
as the header of the tabstrip here.

PAI_DETAIL You retrieve the data from the dynpro after the user has
entered it. First, check whether data has changed, and
if applicable, set the parameter E_FORCE_CHANGE. The
method LINE_MODIFY is activated when the parameter has
been set.

LINE_MODIFY This method is activated when a line has been changed
(see PAI_DETAIL) or when a new line has been inserted.
When adding new lines, you must initialize your custom
fields, or if the document is being read in the display
mode, you must read the data from the database.
If required, you have the option here of writing standard
fields that you've also possibly integrated in your dynpro
back to the standard items.

LINE_DELETE This method runs when the user has deleted a line of the
material document. In this case, you also need to delete
the associated custom data.

Table 5.3 Methods in the Dialog Step for Item Data
Finally, you must use the method POST_DOCUMENT to format your custom data and

call the update module from your function group. The final line number for each
document line is set only in this method, as contained in Table MSEG — that is, in

96 WWW.sap-press.com

Custom Fields in Transaction MIGO 51

the table in which the standard item data is stored. You should convert your cus-
tom data accordingly so that you can assign it more easily later on.

51.2 Preparations in the ABAP Dictionary

At this point, it makes sense to refer again to the general data definitions in the
ABAP Dictionary. Both header and item data are implemented in this example,
and two suitable database tables are required to store the data. The following
example again only uses a simple variant for this, and only one text field is used
as a custom field.

1. Switch to the ABAP Dictionary (Transaction SE11), and create the table for the
header data. Besides the actual text field ZK_FELD1, you also need the key fields;
that is, the material document number and posting year. The table name 7MB_
MIGOHEAD has been used in the example. You can view the associated fields in
Table 5.4.

MANDT Yes MANDT
MBLNR Yes MBLNR
MJAHR Yes MJAHR
ZK_FELD1 CHAR32

Table 5.4 Fields of the Table ZMB_MIGOHEAD

2. Create the table for the item data. A line number is necessary besides the previ-
ously used key fields. The custom field is called zP_FELD1 here. The table name
ZMB_MIGOITEM is used. The associated fields can be viewed in Table 5.5.

Field Name Key Field Data Element

MANDT Yes MANDT
MBLNR Yes MBLNR
MJAHR Yes MJAHR
LEILE Yes MBLPO
/P_FELD1 CHAR32

Table 5.5 Fields of the Table ZMB_MIGOITEM

Www.sap-press.com 97

5 | User Exits and BAdIs in Inventory Management

51.3 Preparation of the Function Group

You next need to deal with the function group and the dynpro. In this example,
both the header and the item data are implemented. A dynpro is also required

he

re. Moreover, two function modules for the data communication and one

update module are necessary in each case. Another module informs the function
group on the current status of Transaction MIGO. If this isn't in the display mode,
the fields in the dynpros aren't ready for input.

1.

98

Switch to Transaction SE80. Select the FUNCTION GROUP option in the Reposi-
tory Browser, and specify ZMB_MIGO as the name. Press [Enter]. Confirm in the
dialog that this function group should now be generated.

In this example, a dynpro is defined for the header and item data in each case. You
certainly have the option, however, of preparing different situations as well as differ-
ent dynpros. Your requirement can, for example, be different in goods receipt than
in goods issue. You decide which dynpro is actually displayed at runtime via your
programming.

In the method MODE_SET of the BAdI MB_MIGO_BADI, you learn which action (dis-
plays, goods receipt, goods issue, etc.) has just been selected. You can keep this in-
formation in an attribute of the class and then dynamically set the dynpro in method
PBO_HEADER or PBO_DETAIL based on this information.

. Create the dynpro for the header data. Now right-click 7MB_MIGO in the object

browser, and select CREATE * DYNPRO from the context menu. The dynpro num-
ber should be 0100. In the properties, you must set SUBSCREEN as the DYNPRO
TYPE because other types cannot be integrated with tabstrips, and you would
get a short dump upon implementation.

. Click the Lavout button to switch to the Screen Painter. Here you choose Dic-

TIONARY/PROGRAM FIELDS in the GOTO * SECONDARY WINDOW menu, Or press
[F6]. In the window displayed, specify ZzMB_MIGOHEAD as the table name and
press [Enter]. Mark the field ZK_FELD1, and press again (see Figure 5.2).
Using the mouse, now position the field in the top-left corner of the dynpro.
Save and activate the dynpro, and then exit the Screen Painter.

. Create the dynpro 0200 for the item data. Choose the field zP_FELD1 from Table

ZMB_MIGOITEM, and then proceed as in the previous step.

www.sap-press.com

Custom Fields in Transaction MIGO 51

Screen Painter: Dict./Program Fields (=N x|
Table/Field M ame IZMB_MIGDHEAD| | Get from Dictionary l Get from Program |
Switch I Reaction |0 =| RFC Destination I

Table/Field Name D escription 140 Field Text Copy as
Table Mame Field Mame NUneI Short I Mediuml Long I Header Texll CthI Fadk
ZME_MIGOHES, | MANDT [2] CLNT 3O O @15 G20 O 3| Client ® O O |4
ZMB_MIGOHEA | MELMR [] CHAR 10O 10 @15 320 010 | Materal Doc. ® O O
ZMB_MIGOHEA | MJAHR [l NUMC 4 O3 10 @15 (20 (O 5 |Mat Doc Year ® O O
ZMB_MIGOHES ZK_FIELD1 c e @

Figure 5.2 Dict/Program Fields Window

5. So that you are able to subsequently fill the fields in these dynpros with data,
fields with an identical name must be available in the global data. Create these
with the keyword TABLES. Furthermore, the fields are then ready for input only
if the document isn't in a display mode. The mode is to be subsequently set via
a function module. You can create it now, however, as a flag (gv_outputonly,
data type C) in the global data.

You switch to the global data via the Object Browser by navigating to the include
LZMB_MIGOTOP in the INCLUDES section. An example is given in Listing 5.1.

FUNCTION-POOL ZMB_MIGO. “MESSAGE-ID ..
* Work structures for dynpros
TABLES: zmb_migohead,

zmb_migoitem.

* Display mode?
DATA gv_outputonly TYPE c.

Listing 54 Global Data in LZMB_MIGOTOP

6. If the flag gv_outputonly is set, then the fields in the dynpro aren't ready for
input. Therefore, change to the flow logic of dynpro 0100. Remove the com-
ments in the PROCESS BEFORE OUTPUT time from the STATUS_0100 module. Dou-
ble-click the module name. To generate the module, use the suggested include
name.

Set the value of SCREEN-INPUT based on the field gv_outputonly with a LOOP AT
SCREEN. An example is given in Listing 5.2.

Www.sap-press.com 99

User Exits and BAdIs in Inventory Management

i *
***INCLUDE LZMB_MIGOOO01
e *

MODULE status_0100 OUTPUT.
LOOP AT SCREEN.
IF gv_outputonly IS INITIAL.
screen-input = 1.
ELSE.
screen-input = 0.
ENDIF.

MODIFY SCREEN.
ENDLOOP.
ENDMODULE. “ STATUS_0100 OUTPUT

Listing 5.2 Flow Logic on Dynpro 0100

7. Dynpro 0200 is also not ready for input in the display mode. Switch to dynpro
0200, and proceed as in the previous step.

Next you can begin with the function modules:

1. An overview of the required modules is given in Table 5.6. Begin with the mod-
ule ZMB_MIGO_SETSTATUS. You only need a flag as an input parameter; from this,
you overwrite the global field gv_outputonly (see Listing 5.3).

/MB_MIGO_SETSTATUS Sets the ﬁag gv_outputonly

ZMB_MIGO_HEAD_SET Sets data for dynpro 100
ZMB_MIGO_HEAD_GET Returns data from dynpro 100
ZMB_MIGO_ITEM_SET Sets data for dynpro 200
ZMB_MIGO_ITEM_GET Returns data from dynpro 200
ZMB_MIGO_POST Updates header and item data

Table 5.6 Function Modules for Data Exchange

FUNCTION ZMB_MIGO_SETSTATUS.
***“Local interface:

*“ IMPORTING
* REFERENCE(I_OUTPUTONLY) TYPE C

100 wWww.sap-press.com

Custom Fields in Transaction MIGO 51

* Set input status
gv_outputonly = i_outputonly.

ENDFUNCTION.
Listing 5.3 Coding on ZMB_MIGO_SETSTATUS

. Create the modules 7MB_MIGO_HEAD_SET and ZMB_MIGO_HEAD_GET. You need a
structure with Table ZMB_MIGOHEAD as a data type to use it as an import or export
parameter. Simply copy the data in the respective direction between the param-
eters and the work structure previously defined with TABLES (see Listing 5.4
and Listing 5.5).

FUNCTION ZMB_MIGO_HEAD_SET.
...

””|ocal interface:
*” IMPORTING
*” REFERENCE(I_HEAD) TYPE ZMB_MIGOHEAD

* Prepare data for dynpro
zmb_migohead = i_head.

ENDFUNCTION.
Listing 5.4 Coding on ZMB_MIGO_HEAD_SET

FUNCTION zmb_migo_head_get.

””|ocal interface:
*” EXPORTING
*” REFERENCE(E_HEAD) TYPE ZMB_MIGOHEAD

* Return data from dynpro
e_head = zmb_migohead.

ENDFUNCTION.
Listing 5.5 Coding on ZMB_MIGO_HEAD_GET

. For the function modules zMB_MIGO_ITEM_SET and ZMB_MIGO_ITEM_GET, proceed

exactly as before. Only use ZMB_MIGOITEM as a reference (see Listing 5.6 and
Listing 5.7).

WWW.sap-press.com 101

User Exits and BAdIs in Inventory Management

FUNCTION zmb_migo_item_set.

””|ocal interface:
*” IMPORTING
7 REFERENCE(I_ITEM) TYPE ZMB_MIGOITEM

K

* Prepare data for dynpro
zmb_migoitem = i_item.

ENDFUNCTION.
Listing 5.6 Coding on ZMB_MIGO_ITEM_SET

FUNCTION ZMB_MIGO_ITEM_GET.

K e m o o

*7%”|ocal interface:
*” EXPORTING
* REFERENCE(CE_ITEM) TYPE ZMB_MIGOITEM

* Return data from dynpro
e_item = zmb_migoitem.

ENDFUNCTION.
Listing 5.7 Coding on ZMB_MIGO_ITEM_GET

4. Create the function module zZMB_MIGO_POST. The module must be marked in
the PROCESSING TYPE section as an UPDATE MODULE (START IMMED.) (see Figure
5.3).

Create an import parameter (suggestion I_HEAD) as a structure for Table ZMB_
MIGOHEAD. Activate the PASs VALUE option for this parameter because no refer-
ence parameters are allowed in update modules. Then define a table parameter
(suggestion T_ITEMS) with reference to Table ZMB_MIGOITEM.

5. With regard to update modules, you should always integrate several logical
tests to prevent erroneous updates as much as possible. You need to check
whether all key fields of the header and item data are filled. Otherwise, an
exception will be triggered. To do this, create the DATA_ERROR exception in the
EXCEPTIONS tabstrip.

If the writing of the data fails, however, an exception will also be triggered. You
create this exception as INSERT_ERROR. Triggering an exception results in an

102 WWww.sap-press.com

Custom Fields in Transaction MIGO

update termination, and if there's an error, the complete material document is
not posted.

54

Function Builder: Display ZMB_MIGO_POST

| | |I| | IE | | Pattern || Fretty Printer || Function Module Docurmentation

Function module ZMB_MIGO_POST Active

m Import Export Changing Tables Exceptions Source code

Classification
Function Group ZMB_MIGO Migo own data
Shart Text Fost own data
Frocessing Type General Data
Mormal Function Module Ferson Responsible C5033899
Remote-Enabled Module Last Changed By CHO33899
Update Module Changed on paio2/ze1n
Startimmed. Package $THP
Immediate Start, Ko Restart Frograrm Mame SAPLZME_MIGD
Start Delayed INCLUDE Mame LZMB_MIGOUG1
Coll.run Original Language EN
Mot released
[Edit Lack
[Glabal

Figure 5.3 Properties of the Update Module

6. Switch to the SOURCE TEexT, and begin with the programming. Check whether
the key fields of the header data are filled (parameter I_HEAD, fields MBLNR and
MJAHR). Proceed exactly as before in a loop via the item data (Table T_ITEMS).
Check also the line number (field ZEILE). If an error occurs, trigger the excep-
tion DATA_ERROR by using the command RAISE.

7. If no error occurs, update the data using the command INSERT. If an error occurs
here (SY-SUBRC <> 0), trigger the exception INSERT_ERROR (see Listing 5.8).

FUNCTION zmb_migo_post.

””Update module:

o

””|ocal interface:

*” IMPORTING

x” VALUE(I_HEAD) TYPE ZMB_MIGOHEAD
*” TABLES

www.sap-press.com 103

5

User Exits and BAdIs in Inventory Management

o
%
%
%

*

EN

T_ITEMS STRUCTURE ZMB_MIGOITEM
EXCEPTIONS

INSERT_ERROR

DATA_ERROR

Check transferred data

IF i_head-mblinr IS INITIAL OR
i_head-mjahr IS INITIAL.
RAISE data_error.

ENDIF.

LOOP AT t_items.

IF t_items-mblinr IS INITIAL OR
t_items-mjahr IS INITIAL OR
t_items-zeile IS INITIAL.

RAISE data_error.

ENDIF.

ENDLOOP.

Write header data
INSERT zmb_migohead FROM i_head.
IF sy-subrc <> 0.
RAISE insert_error.
ENDIF.

Write item data
INSERT zmb_migoitem FROM TABLE t_items.
IF sy-subrc <> 0.
RAISE insert_error.
ENDIF.
DFUNCTION.

Listing 5.8 Coding on ZMB_MIGO_POST

8. Save all changes, and check whether all components of the function group have
been activated.

51.4

Preparation and Status Management in MB_MIGO_BADI

From now on, you can completely focus on the BAdI. All preparations have been
made. As described earlier, all necessary data are kept in the attributes of the class.
These are therefore created first.

104

www.sap-press.com

Custom Fields in Transaction MIGO

1. Switch to Transaction SE19, and create a new implementation for the BAdI
MB_MIGO_BADI. Double-click the name of the implementing class 7CL_IM_MB_
MIGO_BADI, and then switch to the ATTRIBUTES tabstrip.

2. Create the attributes according to Table 5.7. Consider the following notes:

>

GC_CLASS

Each implementation of the BAdI MB_MIGO_BADI must clearly be identified
toward Transaction MIGO. This happens via a constant of the type MIGO_
CLASS_ID, which you must define in the attributes because you use these in
several areas. In the example given, the constant has been specified with the
initial value ‘MIGO_OWN'. Note that the single quotation marks are necessary
here.

GV_LINEID
In this line number, always note the item transferred last in the dynpro.

GV_ACTION
This attribute contains the currently chosen action (see Table 5.8).

GV_REFDOC
This attribute contains the currently chosen reference document type (see
Table 5.9).

GS_HEADER
This structure contains the current header data on your tabstrip.

GT_ITEM

This internal table contains all items on the current document. You can only
define internal tables in the attributes when you refer to a table type defined
in the ABAP Dictionary or you create a local type. In the following example,
a local type (TT_MIGOITEM) has been used that is still currently unknown.

GC_CLASS Constant Private MIGO_CLASS_ID
GV_LINEID Instance Attribute Private GOITEM-GLOBAL_COUNTER
GV_ACTION Instance Attribute Private GOACTION

GV_REFDOC Instance Attribute Private REFDOC

GS_HEADER Instance Attribute Private ZMB_MIGOHEAD

GT_ITEM Instance Attribute Private TT_MIGOITEM

Table 5.7 Attributes of the Implementing Class

WWW.sap-press.com 105

5 | User Exits and BAdIs in Inventory Management

A01 Goods receipt

A02 Return delivery

AO3 Cancellation

A04 Display

A05 Release Goods receipt (GR) blocked
stock

A06 Subsequent delivery

A07 Goods issue

A08 Transfer posting

A09 Remove from storage

A10 Place in storage

A11 Subsequent adjustment

Table 5.8 List of Actions in Transaction MIGO

RO1 Purchase order
RO2 Material document
RO3 Delivery note

RO4 Inbound delivery
RO5 Outbound delivery
RO6 Transport

RO7 Transport ID code
RO8 Order

RO9 Reservation

R10 Other

Table 5.9 List of the Possible Reference Documents in Transaction MIGO

3. Switch to the TYPEs tabstrip to create the data type TT_MIGOITEM. To define a
table, you need the direct type input (see Figure 5.4).

106 www.sap-press.com

Custom Fields in Transaction MIGO

Class Builder: Change Class ZCL_IM_MB_MIGO_BADI
| | |I|| | E Local Types || D Constructar || D Class constructor

Class Interface ZCL_IM_MB_MIGO_BEADI Implemented I Inactive
Froperies Interfaces Friends Aftributes Methods Events Aliases
iz [CIFilter
Type Visibilitd Typing |Associated Description
T5_MIGOITERM Frivate i}
TT_MIGOITER Frivate =
Type =
Type =
Tuen i

Figure 5.4 Enhanced Type Definition in Classes

4. Enter the name of the data type: TT_MIGOITEM.

5. Choose the PRIVATE entry in the VISIBILITY column because this type is only used
within the class.

6. Click the yellow arrow icon on the right next to the reference type (direct type
input). You're now in the ABAP Editor and can define the type as required.

7. Besides the actual data from table 7MB_MIGOITEM, the internal table requires
another field LINE_ID that displays the internal number during the entry. Create
a type that is made up of the field LINE_ID (type MB_LINE_ID) and ZMB_MIGOITEM.
Name this type TS_MIGOITEM.

8. Define the type TT_MIGOITEM as an internal table for TS_MIGOITEM. The complete
section should appear as follows:

PRIVATE SECTION.
TYPES BEGIN OF ts_migoitem.
TYPES Tine_id TYPE mb_Tline_id.
INCLUDE TYPE zmb_migoitem.
TYPES END OF ts_migoitem.

TYPES tt_migoitem TYPE TABLE OF ts_migoitem.
9. Save and activate your changes.

The first methods can now be programmed. Start with the method INIT. As
described earlier, this method is used to announce the implementation in Trans-
action MIGO. A maximum of five implementations may be active at the same
time.

WWW.sap-press.com 107

54

5

User Exits and BAdIs in Inventory Management

You can now prepare the methods RESET and MODE_SET (refer to Table 5.1). You'll
focus on the method STATUS_AND_HEADER later.

1. Switch to the METHODS tabstrip of the class zZCL_IM_MB_MIGO_BADI, and then
navigate to method INIT. Here you must only transfer defined constants GC_
CLASS to the internal Table CT_INIT in the attributes. This table may already
contain other implementations. Therefore, don't overwrite the table; instead,
attach your constant via APPEND. Because Table CT_INIT only consists of one
field, you can attach the constant directly. You don't need a local structure (see
Listing 5.9).

METHOD if_ex_mb_migo_badi~init.
* Register implementation

APPEND gc_class TO ct_init.
ENDMETHOD.

Listing 5.9 Coding on the Method INIT

2. Edit the method RESET. This method is called when a new document is entered
or loaded. Initialize the instance attributes of your class (see Listing 5.10).

METHOD if_ex_mb_migo_badi~reset.
* Initialize instance attributes
CLEAR: gv_lineid,
gv_action,
gv_refdoc,
gs_header.
REFRESH gt_item.
ENDMETHOD.

Listing 510 Coding on the Method RESET

3. Switch to the method MODE_SET. In this method, you obtain the chosen action
(parameter I_ACTION; refer to Table 5.8) and the chosen reference document
type (parameter I_REFDOC; refer to Table 5.9).

Your custom fields are only integrated when this allows the current action.
You've already prepared the function module ZMB_MIGO_SETSTATUS, which you
now call. Set the parameter I_OUTPUTONLY when the action AO4 (Display) or
A03 (Cancellation) is selected. Also note the current action in the attribute GV_
ACTION and the reference document type in the attribute GV_REFDOC to be used
later (see Listing 5.11).

108 WWW.sap-press.com

Custom Fields in Transaction MIGO 51

METHOD if_ex_mb_migo_badi~mode_set.
* Local data declarations
DATA Tv_outputonly TYPE c.

* No input for action A04 or AO03
IF i_action = ‘A04° “ Anzeige
OR i_action = “A03°. “Storno
lv_outputonly = “X*.
ENDIF.

* Set current status
CALL FUNCTION “ZMB_MIGO_SETSTATUS®
EXPORTING
i_outputonly = Tv_outputonly.

* Hold action
gv_action = i_action.

* Hold reference document type
gv_refdoc = i_refdoc.

ENDMETHOD.
Listing 511 Coding on the Method MODE_SET

54.5 Activation of Custom Header Data

Now let's move on to the relatively simple header data. At this point, your dyn-
pro is displayed as a tabstrip, and data is exchanged between the BAdI and your
dynpro. The reading of custom data is already implemented here when a posted
document is open. You post the header data later, together with the item data.

1. Switch to the method PBO_HEADER. Start with a mandatory check: For tech-
nical reasons, the methods from all implementations are always called in an
undefined sequence when one BAdI method is called to a method with several
active implementations. At the same time, the method PBO_HEADER is called
once for each of the five possible tabstrips. All implemented methods are there-
fore started each time. For this reason, you're informed of the class ID in the
input parameter I_CLASS_ID (you've registered this in the method INIT; see
Figure 5.5) that is associated with this call. You must make sure that you check
whether the content of I_CLASS_ID corresponds to the class ID used in this
implementation from constant GC_CLASS. Otherwise, unforeseeable side effects
may arise.

www.sap-press.com 109

5 | User Exits and BAdIs in Inventory Management

2. The dynpro is registered next by transferring £_CPROG to the parameters and E_
DYNNR to the program name and the dynpro number. In the parameter £_HEAD-
ING, specify the name of the tabstrip. In the example given, the dynpro 0100 is
used in the program SAPLZMB_MIGO.

As an example, the tabstrip is only displayed when the operation refers to a
purchase order document. You can check via the attribute GV_REFDOC whether
you have filled this in method MODE_SET. The reference key for purchase orders
is RO1 (refer to Table 5.9).

Class Builder: Class ZCL_IM_MB_MIGO_BADI Change

| | m I [| FPattern || Pretty Frinter | | | Signature | [E Fuhblic Section ||E Protecte
Ty. | Parameter Type spec. Description
po | LCLASS_ID TYPE MIGD_CLASS_ID Klassen-1D fir MIG0-Komponenten (externer Detail-Screen)
pop | E_CPROG TYPE SYCPROG ABAP-FProgramm, Aufrufer in externen Prozeduren
pop | E_DVYMNMNR TYPE SYDYHNR ABAP-Programm, Nummer des aktuellen Dynpros
por | E_LHEADING TYPE MIGO_BADI_HEADING Tabstrip Uberschrift
Method IF_EX_MB_MIGO_BADI~PEO_HEADER Inactive
1 EMETHCD if_ex_nb_migo_badi~pho_header.
2 # Bezieht sickh der Aufruf auf diese Implementierung?
3 CHECK i_eclass_id = gc_class.
4; # Dynpro registrieren, falls Referenz zu Bestellung
5B IF gv _refdoc = 'RO1'.
[e cprog = 'SAPLIHE HIGO! .
7 & dynnr = ‘01000,
& E:heading = 'Eigene Daten'.

Aktuellen Stand der Kopfdaten auf Dynpro Qbertragen
CALL FUNCTICON 'ZIME_MIGO _HEAD SET'
EXPORTING
i_head = gs_header.

ENDIF.
- ENDMETHOD . "TF EX ME MIG0 BADT~PEQ HFEADER

Figure 5.5 Interface of the Method PBO_HEADER

3. Finally, you still need to call the function module 7zMB_MIGO_HEAD_SET and trans-
fer the current content of the header data to the dynpro. The current status can
always be found in the attribute GS_HEADER (see Listing 5.12).

METHOD if_ex_mb_migo_badi~pbo_header.
* Does the call refer to this implmentation?
CHECK i_class_id = gc_class.

* Register dynpro if reference to purchase order

IF gv_refdoc = ‘R0O1’.
e_cprog = ‘SAPLZMB_MIGO’.

110 WWww.sap-press.com

Custom Fields in Transaction MIGO

e_dynnr = ‘0100".
e_heading = ‘Eigene Daten’.

* Transfer current status of the header data to dynpro
CALL FUNCTION ‘ZMB_MIGO_HEAD_SET®
EXPORTING
i_head = gs_header.

ENDIF.
ENDMETHOD.

Listing 512 Coding on the Method PBO_HEADER

. Now process the method PAI_HEADER. You only need to write the data from the
dynpro back to the attribute GS_HEADER at this point. You do this by calling the
function module ZMB_MIGO_HEAD_GET (see Listing 5.13).

METHOD if_ex_mb_migo_badi~pai_header.
* Retrieve data from the dynpro
CALL FUNCTION “ZMB_MIGO_HEAD_GET”
IMPORTING
e_head = gs_header.

ENDMETHOD.
Listing 543 Coding on the Method PAI_HEADER

. You must also read the custom data from the database if required, and transfer
it to the attribute GS_HEADER. You carry this out in method STATUS_AND_HEADER.
Rereading the data is only necessary when an already-posted document is dis-
played or canceled. Therefore, you can check the action (attribute GV_ACTION)
again here.

You read the data from the table ZMB_MIGOHEAD by using key fields MBLNR (mate-
rial document number) and MJAHR (posting year) that are available in the 1S_
GOHEAD parameter (see Listing 5.14).

METHOD if_ex_mb_migo_badi~status_and_header.

* If an already posted document is to be displayed
* or canceled, read custom fields

* also from database.

IF gv_action = ‘A04° * Anzeige
OR gv_action ‘A03°. “ Storno

WWW.sap-press.com 1M

54

User Exits and BAdIs in Inventory Management

* Read data from database
SELECT SINGLE *
FROM ZMB_MIGOHEAD
INTO gs_header
WHERE mbTnr = is_gohead-mblnr
AND mjahr = is_gohead-mjahr.
ENDIF.
ENDMETHOD.

Listing 514 Coding on the Method STATUS_AND_HEADER

You can also set the parameter E_HOLD_DATA_DISABLE as an option in the method STA-
TUS_AND_HEADER to prohibit the function HoLD. If you continue to allow the noting of
material documents, you should program the methods HOLD_DATA_SAVE, HOLD_DATA_
LOAD, and HOLD_DATA_DELETE so that your custom data can also be noted. You can
obtain further information on this in Section 5.2.1, Noting Custom Data.

54.6 Activation of Custom Item Data

The actual activation of the item tabstrip works in a similar way to that of the
header tabstrip. The communication with the dynpro and the management of the
item data is slightly more time-consuming. Ultimately, there are several items in a
document that must always be correctly assigned.

1. Start with the method PBO_DETAIL to register the item tabstrip and prepare the
data. It's also important to check the class ID just as you did before with the
header data.

2. In the parameter I_LINE_ID, you can find the line number that is being pro-
cessed. All subsequent actions are only carried out when the parameter has a
content unequal to zero.

You need to also note this line number in the attribute GV_LINEID so that you
can check later which line is actually being displayed in the dynpro.

3. There are also three parameters here, E_CPROG, E_DYNNR, and E_HEADING, to spec-
ify the program name, the dynpro number, and the caption of the tabstrip. The
item tabstrip always appears in the example regardless of the reference docu-
ment type.

112 WWww.sap-press.com

Custom Fields in Transaction MIGO | 51

4. You must then read the current line according to parameter I_LINE_ID from
your internal table defined in the attributes GT_ITEM and transfer it to your
function group by calling the function module 7MB_MIGO_ITEM_SET. Make sure
that you copy the data via MOVECORRESPONDING into a structure suitable for the
function module because your table with additional line ID has been defined in
the attributes (see Listing 5.15).

METHOD if_ex_mb_migo_badi~pbo_detail.
* Local declarations

DATA Ts_item TYPE ts_migoitem.

DATA 1s_dynpro TYPE zmb_migoitem.

* Does the call refer to this implementation?
CHECK i_class_id = gc_class.

* Has a line been set?
CHECK i_Tline_id <> 0.

* Hold Tine
gv_lineid = i_Tine_id.

* Register dynpro

e_cprog = ‘SAPLZMB_MIGO’.
e_dynnr = ‘0200".
e_heading = ‘Eigene Daten’.

* Read line from internal table
READ TABLE gt_item
INTO Ts_item
WITH KEY Tine_id = i_Tline_id.

* Copy necessary fields
MOVE-CORRESPONDING T1s_item TO Ts_dynpro.
* Prepare line in dynpro
CALL FUNCTION ZMB_MIGO_ITEM_SET®
EXPORTING
i_item = Ts_dynpro.

ENDMETHOD.
Listing 515 Coding on the Method PBO_DETAIL

WWW.sap-press.com 113

User Exits and BAdIs in Inventory Management

5. Switch to the method PAI_DETAIL in which you retrieve your data from the dyn-
pro, and check whether the content has changed. If it has, set the flag E_FORCE_
CHANGE through which the method LINE_MODIFY is triggered. Then carry out the
actual handling of the data. The advantage to this is that the complete item man-
agement can be found in one central position (see Listing 5.16).

METHOD if_ex_mb_migo_badi~pai_detail.
* Local declarations
DATA: T1s_olddata TYPE zmb_migoitem,
1s_newdata TYPE zmb_migoitem,
Is_item TYPE ts_migoitem.

* Has a line been set?
CHECK i_Tine_id <> 0.

* Retrieve old status from internal table
READ TABLE gt_item
INTO Ts_item
WITH KEY Tine_id = i_line_id.
MOVE-CORRESPONDING T1s_item TO 1s_olddata.

* Retrieve new status from dynpro
CALL FUNCTION “ZMB_MIGO_ITEM_GET”’
IMPORTING
e_item = Is_newdata.

* Check whether the data has been changed
IF 1s_olddata <> Ts_newdata.
* Trigger execution of LINE_MODIFY
e_force_change = “X’.
ENDIF.

ENDMETHOD.
Listing 5146 Coding on the Method PAI_DETAIL

6. Now it's time for the method LINE_MODIFY. As mentioned earlier, in this method,

you manage not only possible changes to existing lines but also the insertion of
new document lines in one central position.

114 WWW.sap-press.com

Custom Fields in Transaction MIGO

As a parameter, you obtain the number of the current line in I_LINE_ID. With
this line number, you must first of all check which case is actually present. Read
the table GT_ITEM using this key. If the line already exists, possible changes
must be transferred. If this line is not yet contained in GT_ITEM, you need to
initialize the line and add the table. If the document is currently being read, at
this point also read your custom data from the database.

Take a look at the case of a change. To ensure that the line being handled in the
BAdI is also the line that is currently in the dynpro, compare the parameter I_
LINE_ID with the previously noted line in the attribute GV_LINEID. You carry out
the following steps only when the comparison is successful:

1. Retrieve the data from the dynpro by calling the function module zZMB_MIGO_
ITEM_GET again. Copy the data received into a work structure that fits Table
GT_ITEM (data type TS_MIGOITEM), and enhance the line at the current LINE_ID.
Then write the changes back to Table GT_ITEM.

2. If the line doesn't yet exist, you must first check whether it's a line that has
already been posted. In this case, the fields CS_GOITEM-MBLNR (material docu-
ment number), CS_GOITEM-MJAHR (posting year), and CS_GOITEM-ZEILE (docu-
ment item) are filled. Read your data from Table zMB_MIGOITEM using these
fields as a key, and copy these again into a suitable work structure for Table
GT_ITEM.

If the line doesn't yet exist in the database, leave the work structure empty,
apart from the line LINE_ID, which you still need to enhance in both cases.
Then write the new line in Table GT_ITEM (see Listing 5.17).

METHOD if_ex_mb_migo_badi~Tine_modify.
* Local declarations

DATA Tv_tabix TYPE sy-tabix.

DATA 1s_item TYPE ts_migoitem.

DATA 1s_newdata TYPE zmb_migoitem.

* Does the Tine already exist?
READ TABLE gt_item INTO Ts_item
WITH KEY Tine_id = i_line_id.
Tv_tabix = sy-tabix.

IF sy-subrc = 0.
Line exists already, does change
* correspond to Tine in the BAdI of the dynpro Tine?
CHECK i_Tine_id = gv_lineid.

WWW.sap-press.com 115

5 User Exits and BAdIs in Inventory Management

* Retrieve data from dynpro
CALL FUNCTION *ZMB_MIGO_ITEM_GET*®
IMPORTING
e_item = Ts_newdata.

* Format changes
MOVE-CORRESPONDING 1s_newdata TO Ts_item.
Is_item-Tine_id = i_line_id.

* Write back in table gt_item
MODIFY gt_item FROM Ts_item INDEX Tv_tabix.
ELSE.
4 Line doesn‘t yet exist, insert
IF cs_goitem-mbInr IS NOT INITIAL AND
cs_goitem-mjahr IS NOT INITIAL AND
cs_goitem-zeile IS NOT INITIAL.
* Line refers to an existing
* material document, retrieve data from database
SELECT SINGLE * FROM zmb_migoitem
INTO Ts_newdata
WHERE mbinr = cs_goitem-mbInr AND
mjahr = cs_goitem-mjahr AND
zeile = cs_goitem-zeile.

IF sy-subrc = 0.
* Copy data
MOVE-CORRESPONDING Ts_newdata TO Ts_item.
ENDIF.
ENDIF.
* Build Tine with Tine ID and copy
* to internal table
Is_item-Tine_id = i_line_id.
APPEND 1s_item TO gt_item.
ENDIF.

ENDMETHOD.
Listing 547 Coding on the Method LINE_MODIFY

3. Now you need to program the method LINE_DELETE. The method is called when
a document item is deleted. In this case, you must also delete the associated
custom data from Table GT_ITEM. Parameter I_LINE_ID is provided for you to
identify the suitable line (see Listing 5.18).

116 WWW.sap-press.com

Custom Fields in Transaction MIGO

METHOD if_ex_mb_migo_badi~Tine_delete.
* Delete Tine

DELETE gt_item WHERE Tine_id = i_line_id.
ENDMETHOD.

Listing 5148 Coding on the Method LINE_DELETE

54.7 Updating the Data

Now that you've fully programmed the internal handling of the data, you must
ensure that your data is also posted when the material document is updated. To
accomplish this, the method POST_DOCUMENT runs while the data is being posted.

1. Switch to the method POST_DOCUMENT. Before you can call your update modules,
you must prepare the data. The structure GS_HEADER, which has been defined
in the attributes, must still be enhanced in the document number. You obtain
this structure via the parameter IS_MKPF. You can copy the values via a simple
MOVE-CORRESPONDING.

2. Regarding item data, so far you have managed the data via the LINE_ID, that
is, the internal line number. As you know, only the items for which the user
has selected the OK field in Transaction MIGO are updated while being posted.
Therefore, the table to be updated, MSEG, which is transferred to you as the
parameter IT_MSEG, can have a different line numbering. The item number here
is specified via the field ZEILE, and you must now convert your data to this line
number. However, because Table IT_MSEG also contains the original LINE_ID
besides the line number, this isn't a problem.

Simply process all your custom item data from the internal Table GT_ITEM in a
loop, and read the associated line from Table IT_MSEG using the field LINE_ID.
You can then fill a structure for Table ZMB_MIGOITEM from both data structures.
From the structure for Table 1T_MSEG, copy the key fields, and from the struc-
ture on GT_ITEM, copy the custom fields. Add the result of a local internal table
that also uses the type ZMB_MIGOITEM.

. You now only need to call the function module 7zMB_MIGO_POST and transfer the
formatted header data and item data. Don't forget the addition IN UPDATE TASK,
so that the function module in the updating is called (see Listing 5.19).

METHOD if_ex_mb_migo_badi~post_document.
* Local data declarations
DATA: Ts_item TYPE ts_migoitem,

www.sap-press.com "1y

54

5

User Exits and BAdIs in Inventory Management

1s_mseg TYPE mseg,
ls_migoitem TYPE zmb_migoitem,
1t_migoitem TYPE TABLE OF zmb_migoitem.

* Prepare header data

* The key fields (material document number, posting year)

* are copied from the standard data (IS_MKPF)
MOVE-CORRESPONDING is_mkpf TO gs_header.

* Prepare item data
LOOP AT gt_item INTO Ts_item.
Determine corresponding line in IT_MSEG.
Conversion between LINE_ID and ZEILE
LINE_ID: internal line ID during entry
ZETLE: Line number in table MSEG
READ TABLE it_mseg
INTO Ts_mseg
WITH KEY Tine_id = ls_item-Tine_id.
IF sy-subrc = 0.
MOVE-CORRESPONDING Ts_item TO Ts_migoitem.
MOVE-CORRESPONDING Ts_mseg TO Ts_migoitem.
APPEND Ts_migoitem TO Tt_migoitem.
ENDIF.
ENDLOOP.

* ok X ot

* Updating of the data
CALL FUNCTION <ZMB_MIGO_POST”’
IN UPDATE TASK

EXPORTING
i_head = gs_header
TABLES
t_items = Tt_migoitem.
ENDMETHOD.

Listing 519 Coding on the Method POST_DOCUMENT

5.2 Other Functions of the BAdl MB_MIGO_BADI

After you've implemented custom fields via the BAdI MB_MIGO_BADI in the pre-
vious chapter, you already know all the fundamentals on this BAdI. Using other

118 WWW.sap-press.com

Other Functions of the BAdl MB_MIGO_BADI | 5.2

methods, you can still implement additional functions, particularly to further
extend the functionality behind your custom fields.

5.21 Noting Custom Data

If you haven't prohibited the function Note in the method STATUS_AND_HEADER (see
Section 5.1.5, Activation of Custom Header Data), you should ensure that your
custom fields are also noted. Because a noted document isn't actually posted yet,
it still doesn't have any material document number under which it can be stored.
The data are instead clearly identified by a 22-digit GUID (Global Unique Identi-
fier). Standard data are stored under this key in Table MMIM_PRED.

Three methods are available for storing your custom data: HOLD_DATA_SAVE, HOLD_
DATA_LOAD, and HOLD_DATA_DELETE. The GUID, which has also been used for the
standard fields, will transfer each of these methods as input parameters. Whether
you now store your data, that is, the header data that are in the structure GS_
HEADER and the item data in internal Table GT_ITEM, is up to you.

You have several options for storing the data:

> You can copy Tables ZMB_MIGOHEAD and ZMB_MIGOITEM and provide them with a
GUID field as the key field. This makes saving somewhat more time-consuming,
however, and when you add another custom field later to the original tables,
you must also implement such enhancements in the Hold function.

> One alternative allows the comfortable, dynamic storage of both objects without
any additional customization effort. You have the option in ABAP to serialize
complex variables such as structures or internal tables; that is, to convert them
into a character string. This string must have a very special data type. Use the
type XSTRINGin ABAP and type RAWSTRING in the ABAP Dictionary. You then
convert the data via the command EXPORT ... TO DATA BUFFER. You can store
the result of the conversion in a field of a database line, regardless of whether
or not this object has displayed an internal table with many lines beforehand.
If the data is subsequently retrieved, using the command IMPORT ... FROM DATA
BUFFER performs a reconversion in the actual object.

Based on the example of custom fields in Section 5.1, Custom Fields in Transac-
tion MIGO, the following example shows you how simply you can temporarily
store your data:

WWW.sap-press.com 119

User Exits and BAdIs in Inventory Management

1. Your header and item data must be stored in a custom table. The data is saved
under a GUID, which you obtain in the methods. You also need a field of the
type RAWSTRING for the header data and the item data.

Navigate to the ABAP Dictionary (Transaction SE11), and create a new table.
Name this table ZMB_MIGOHOLD, for example.

2. Maintain the fields according to Table 5.10. The data element 7ZMB_RAW doesn't
yet exist. You can create this by double-clicking. Don't use any domains to
generate the data element, but choose the INTEGRATED TYPE option in the DATA
TYPE tabstrip, and enter RAWSTRING here. Activate your data element, and then
navigate back to the table.

MANDT Yes MANDT
GUID Yes GUID
HHEAD ZMB_RAW

(Definition: Integrated type RAWSTRING)
HITEMS ZMB_RAW

Table 5140 Structure of the Table ZMB_MIGOHOLD

3. Maintain the technical settings of the table, and then activate the table.

4. Switch to your BAdI implementation, and navigate to the method HOLD_DATA_
SAVE. Create a local structure for Table zMB_MIGOHOLD, and fill the GUID field
from the input parameter I_GUID.

5. Fill the fields HHEAD and HITEMS from your attributes S_HEADER and GT_ITEM via
the command EXPORT, which has the following structure:

EXPORT <id> FROM <variable> TO DATA BUFFER
<ziel> COMPRESSION ON.

<id> is any ID, <variable> is the source object that is to be converted, and
<target> is the target variable of the type RAWSTRING. The addition, COMPRES-
SION ON, is optional and compresses the data. This saves space in the database.
The subsequent IMPORT automatically recognizes whether the data has been
compressed, and extracts the data accordingly.

6. Finally, save your local structure via INSERT in the database (see Listing 5.20).

120 WWww.sap-press.com

Other Functions of the BAdI MB_MIGO_BADI

METHOD if_ex_mb_migo_badi~hold_data_save.
* Local work structure for ZMB_MIGOHOLD
DATA 1s_migohold TYPE zmb_migohold.

* Copy GUID
Ts_migohold-guid = i_guid.

* Convert header data in RAWSTRING/XSTRING
EXPORT header FROM gs_header TO DATA BUFFER
1s_migohold-hhead COMPRESSION ON.

* Convert item data in RAWSTRING/XSTRING
EXPORT item FROM gt_item TO DATA BUFFER
1s_migohold-hitems COMPRESSION ON.

* Store data in database
INSERT into zmb_migohold values 1s_migohold.

ENDMETHOD.
Listing 5.20 Coding on the Method HOLD_DATA_SAVE

Now focus on the method HOLD_DATA_LOAD, which is called when a held document
is loaded back.

1. Here you must load back the data from Table ZMB_MIGOHOLD using the retrans-
ferred GUID, and fill the attributes GS_HEADER and GT_ITEM from this.

2. Create a new local work structure for Table ZzB_MIGOHOLD, and read the data via
SELECT using the key in parameter I_GUID from your table.

3. You perform the reconversion from the fields HHEAD and HITEMS via the IMPORT
function with the following structure:

IMPORT <id> TO <variable> FROM DATA BUFFER <quelle>.

<id> stands for the ID that you've used with regard to the EXPORT; <variable>
is the target variable in which the result is to be written, that is, GS_HEADER or
GT_ITEM; and <source> is the RAWSTRING field from your work structure for
ZMB_MIGOHOLD. You can find an example on this method in Listing 5.21.

METHOD if_ex_mb_migo_badi~hold_data_load.
* Local work structure for ZMB_MIGOHOLD
DATA 1s_migohold TYPE zmb_migohold.

* Read held data using I_GUID

WWW.sap-press.com 121

5.2

User Exits and BAdIs in Inventory Management

SELECT SINGLE * FROM zmb_migohold
INTO Ts_migohold
WHERE guid = i_qguid.

IF sy-subrc = 0.
* Convert header data in original object
IMPORT header TO gs_header FROM DATA BUFFER
Ts_migohold-hhead.

* Convert item data in original object
IMPORT item TO gt_item FROM DATA BUFFER
Ts_migohold-hitems.
ENDIF.
ENDMETHOD.

Listing 5.21 Coding on the Method HOLD_DATA_LOAD

4. If you delete the marked data, you must also remove your noted data. To do
this, the method HOLD_DATA_DELETE is used. You also get the GUID as an input
parameter again. Simply delete the associated record in Table ZMB_MIGOHOLD (see
Listing 5.22).

METHOD if_ex_mb_migo_badi~hold_data_delete.
* Delete held data

DELETE FROM zmb_migohold WHERE guid = i_guid.
ENDMETHOD.

Listing 5.22 Coding on the Method HOLD_DATA_DELETE

As you've seen, you can easily convert ABAP structures in a RAWSTRING using the com-
mands EXPORT and IMPORT, and copy these back to a structure. However, what happens
when you change such a packed structure later on?

For example, if you add another field to Table ZMB_MIGOHEAD for the header data, data
could still exist in the HHEAD field of the ZMB_MIGOHOLD table, which does not contain
this new field. However, this generally doesn't constitute any problem. The command
IMPORT copies the suitable part back to the work structure while reading the noted data,
and the new field simply remains empty.

Vice versa is a bit more difficult. If you delete the second field again at a later stage and
still contain noted data in the RAWSTRING HHEAD of this, you obtain a short dump when
you IMPORT. You can avoid this dump by using the ACCEPTING TRUNCATION addition:

IMPORT <id> TO <variable> FROM DATA BUFFER <source> ACCEPTING TRUNCATION.

122 WWww.sap-press.com

Other Functions of the BAdl MB_MIGO_BADI 5.2
For major structure changes, you should delete the content of Table ZMB_MIGOHOLD as
soon as you transport your changes to the production system.
5.2.2 Input Checks in Transaction MIGO
Two more methods are provided for checking your custom data: CHECK_HEADER and
CHECK_ITEM. These methods are only carried out when the user chooses the CHECK
or PosT function. Follow the example below to activate the checks.
You need to carry out the checks on the attributes of your class in both cases. To
do this, you obtain the input parameter I_LINE_ID for the items. If a warning or
error message is displayed, this isn't allowed to happen directly via the MESSAGE
command. Instead, you need to fill a return-table. You might know about this from
using the BAPI function modules. The name of this return-table is in both meth-
ods: ET_BAPIRET2. Your messages are therefore displayed in the standard error log
(see Figure 5.6) of Transaction MIGO, and the item number for item-related mes-
sages, to which the message refers, is displayed by default.
2 Goods Receipt Purchase Order 4500017374 - Jurgen Schwaninger
|} \
% |a || Goods Receipt ©| Purchase Order @ Plant ™| GR goods receipt 101
My Documents
it Purz';%%%?_;ggf ’_m Yendor % | OwnData
= oradf= Disnlay logs
RS | ru| rten| nessage taxt
= Mat @ Please f'!ﬂ the customer spec'!f'!c header data
T 1|Please fill the customer specific item data o1 Corter [Bus_[Froft Genter G@
0eg 9500 1402 4[D
[s7! (@ el [14] [«] [1| [[[] [ooz | e save |] (B0 8] @ 0 | [1 [[1][o |]3¢ %
DT 1]
‘ﬁ Delete H Contents j !@!
Quantity Wherg Purchase Crder Data Partner Account Assignment Owin Data
Material Material
Wendor Material Mao.
Material Group o1
D Fltern 0K Line 1
| a4

Figure 5.6 Custom Messages in the Error Log

www.sap-press.com

123

User Exits and BAdIs in Inventory Management

1. Switch to the method CHECK_HEADER. For the return of messages, you must first
define a work structure for the return-table by using the type BAPIRET2. This
type is the line type that has been used to define internal Table ET_BAPIRETZ.
This type therefore contains the fields required for a message (see Table 5.11).

2. Now check whether the zK_FELD1 field is filled from the attribute GS_HEADER. If
this isn't the case, an error message appears.

3. To display the message, fill the fields of your work structure according to Table
5.11. Then copy the structure to internal Table ET_BAPIRET?2, which is defined
in the interface of the method (see Listing 5.23).

TYPE Type of message, for example, ‘E’ for error
messages or ‘W' for warning messages

D Message class
NUMBER Message number

MESSAGE_V1 — MESSAGE_V4 Optional message variables 1-4 that can be
included

Table 541 Fields of the Return-Table

METHOD if_ex_mb_migo_badi~check_header.
* Local declaration on the return table
DATA: ls_bapiret TYPE bapiret?.

* Header field must be filled!
IF gs_header-zk_feldl IS INITIAL.
* Configure error message

1s_bapiret-type = ‘B,
1s_bapiret-id = ‘/MB*.
1s_bapiret-number = ‘050°.
APPEND 1s_bapiret TO et_bapiret2.
ENDIF.
ENDMETHOD.

Listing 5.23 Coding on the Method CHECK_HEADER

4. Switch to the method CHECK_ITEM. You basically proceed here as you did with
checking the header data. However, you must also define a local work structure

124 WWww.sap-press.com

Checking and Prepopulating Standard Fields

for your items, and read the suitable item from Table GT_ITEM using the input
parameter I_LINE_ID.

5. You can then carry out your check again. The user should also fill the field zpP_
FELD1. However, only a warning message is displayed if the field is empty (see
Listing 5.24).

METHOD if_ex_mb_migo_badi~check_item.
* Local declarations
DATA: Ts_item TYPE ts_migoitem,
1s_bapiret TYPE bapiret2.

* Read item from GT_ITEM
READ TABLE gt_item INTO Ts_item
WITH KEY Tine_id = i_line_id.

IF 1s_item-zp_feldl IS INITIAL.
* Configure warning message

1s_bapiret-type = ‘W.
1s_bapiret-id = ‘/MB’.
1s_bapiret-number = ‘051".
APPEND Ts_bapiret TO et_bapiret2.
ENDIF.
ENDMETHOD.

Listing 5.24 Coding on the Method CHECK_ITEM

5.3 Checking and Prepopulating Standard Fields

Standard fields aren't provided in the check methods of the BAdI MB_MIGO_BADI.
However, you can use the BAdI MB_MIGO_ITEM_BADI to also check these fields.
Furthermore, in this BAdI, you can simply prepopulate the storage location or
the item text. If other fields are prepopulated, you can take another look at the
method LINE_MODIFY in the BAdI MB_MIGO_BADI, which provides more options in
this context.

5.31 Prepopulation of Storage Location and Text

The only method of the BAdI MB_MIGO_ITEM_BADI, ITEM_MODIFY is called when new
items are added or the user chooses the CHECK or PosT function. When you fill the

WWW.sap-press.com 125

5 | User Exits and BAdIs in Inventory Management

export parameter E_STGE_LOC (storage location) or E_ITEM_TEXT (item text) in the
method, these values are set for all new additional items.

5.3.2 Checking the Standard Fields

If the user chooses the CHECK or PosT functions, you can carry out custom checks
and prevent posting if applicable. For this, the header data in parameter IS_GOHEAD
and the item data table IS_GOITEM are provided.

If a message is displayed, you also need a work structure for a return-table with
the type BAPIRET?. Fill the work structure according to Table 5.11 in Section 5.2.2,
Input Checks in Transaction MIGO, and then append the message to internal Table
ET_RETURN, which is also defined in the interface. Because the method ITEM_MODIFY
could be called repeatedly, and Table ET_RETURN is already filled by the previous
call, you should first delete the content; otherwise, the same message could pos-
sibly appear twice in the message log (see Listing 5.25).

METHOD if_ex_mb_migo_item_badi~item_modify.
* Local work structure for the return- table
DATA: ls_bapiret TYPE bapiret?.

* For plant 1000 storage location 0001 is always
* to be suggested.
IF is_goitem-werks = “1000".
e_stge_loc = “0001".
ENDIF.

* Reset return table
REFRESH et_return.

* Header text must be populated
IF is_gohead-bktxt IS INITIAL.

* Configure message, warning
1s_bapiret-type = ‘W.
1s_bapiret-id = ‘/MB’.
1s_bapiret-number ‘060 .
APPEND 1s_bapiret TO et_return.

ENDIF.

* Item text must be filled
IF is_goitem-sgtxt IS INITIAL.
* Configure message, error

126 WWW.sap-press.com

Check of the Earliest Delivery Date

1s_bapiret-type = ‘B,
1s_bapiret-id = ‘/MB’.
1s_bapiret-number = ‘061".
APPEND 1s_bapiret TO et_return.
ENDIF.
ENDMETHOD.

Listing 5.25 Coding on the Method ITEM_MODIFY

5.4 Check of the Earliest Delivery Date

You have the option in the purchase order to specify a delivery date. However,
vendors often don't keep to the delivery date and deliver goods too early. When
this is better controlled, you can set the message M7 254 (“Earliest Possible Deliv-
ery Date is &" as shown in Figure 5.7) as an error message in Customizing. To do
this, choose the MATERIALS MANAGEMENT * INVENTORY MANAGEMENT AND PHYSICAL
INVENTORY * DEFINE ATTRIBUTES OF SYSTEM MESSAGES * SETTINGS FOR SYSTEM MES-
SAGES setting in Transaction SPRO, and define the message M7 254 as type ‘E’.

[Display logs
Typ|Item| Hessage text L 1]
@ 1|Earliest possible delivery date is QD8/OG/2010 @

(7][@ el [14]] [] 1B B] [=7] [[Chosse || save |23 0] B8 [@ 0]33 1][4 0 |[0 0 |[E0][¢]

Figure 5.7 Error Message M7 254

As a result, all goods receipts that are supposed to be posted at an earlier date are
rejected with the error message. However, you can post the goods receipt in the
GR blocked stock (transaction type 103).

In certain circumstances, the settings for such an error message are too strict.
With the enhancement MEFLD004 (EXIT_SAPLEINR_004), you can specify the earliest
delivery date. Let's assume you have activated the error message. Vendor 1002 is
allowed to deliver before the delivery date specified in the purchase order, but not
before the purchase order date. The following applies to all other vendors: For all
items with material group 00, a delivery of up to seven days prior to the delivery

WWW.sap-press.com 127

5.4

5 | User Exits and BAdIs in Inventory Management

date is possible. For other goods deliveries, a delivery of up to three days prior to
the delivery date is permitted.

1. Create a new project in Transaction CMOD, and include the enhancement
MEFLD004.

2. Switch to the user exit EXIT_SAPLEINR_004, and create the include ZXM06U54.

3. In the interface of the exit, the purchase order header (Ekk0) and the purchase
order item to be checked (EkPO) are transferred. Based on this data, you can
overwrite the earliest delivery date (parameter FRLFD). The field FRLFD already
contains the delivery date from the purchase order. You can therefore leave the
content unchanged, if no special rule applies.

Check whether the vendor (EKKO-LIFNR) has the number 1002 (look out for
leading zeros); if yes, the purchase order date (EKKO-BEDAT) will apply as the
earliest delivery date.

4. Check whether the purchase order item has the material group 003; if yes, a
goods receipt of up to seven days prior to the delivery date is expected to be
possible. Because the field FRLFD already contains the delivery date from the
purchase order, you can simply deduct seven days.

For all other items, the goods receipt can take place three days earlier. Also

carry out the respective calculation (see Listing 5.26). Don't forget to activate
the project so that your user exit will run.

*& ___ *
*& Include /XM06U54
*& ___ *

***“local interface:
*“ IMPORTING

* VALUE(EKKO) TYPE EKKO

* VALUE(EKPO) TYPE EKPO

*“ CHANGING

* VALUE(FRLFD) LIKE EBEFU-FRLFD

* Determine earliest delivery date dynamically

IF ekko-Tifnr = “0000001002°.
* Vendor 1002 is allowed to deliver earlier indefinitely,
* however, not before the purchase order date

frifd = ekko-bedat.

128 WWW.sap-press.com

Tolerance Limits for Scheduling Agreements 5.5

ELSE.
* Item for material group 0037
IF ekpo-matkl = “003°.
* Goods receipt can take place seven days earlier
frifd = frifd - 7.
ELSE.
* Goods receipt can take place three days earlier
frifd = frifd - 3.
ENDIF.
ENDIF.

Listing 5.26 Coding on User-Exit EXIT_SAPLEINR_004

5.5 Tolerance Limits for Scheduling Agreements

Using the current date, the default quantity and tolerance check quantity are deter-
mined from the schedule lines when goods receipts are posted according to sched-
uling agreements. If no tolerances are permitted in the scheduling agreement, and
the vendor occasionally delivers a few days too early, you receive an error message
in the goods receipt (see Figure 5.8).

[Display logs
Typ|Item|Message text L5
@ 1{PU Ordered guantity exceeded by 22 PC . 100-100 1000 QO@1 @

1@ e W[[>][][T8 | [[[choose || save | B3| 0] B[@ 0] (33 1 |2 0][o | [3¢]

Figure 5.8 Exceeding the Tolerance Levels

If your vendor is allowed to deliver the goods, for example, up to three days ear-
lier, you may use the user exit EXIT_SAPLEINR_001 of the enhancement MEVME001
to determine the default quantity and tolerance levels dynamically.

5.514 Overwriting Overdelivery Quantity

Let's first take a look at the scheduling agreement schedule in Figure 5.9. Items 1
and 2 have each a scheduled quantity of 10 pieces. A goods receipt of more than
12 pieces has already been posted. Item 1 is therefore complete; for item 2, there
is still an open quantity of 8 pieces.

wWww.sap-press.com 129

5 | User Exits and BAdIs in Inventory Management

[@[= Maintain Sch. Agmt Schedule : Delivery Schedule for Item 00010
D&

Agreement RROOOEE1 39 Guantity 98| PC

Material 106-180 Case

Last Transm. 000800 Mext Transmission Number 1

Cum. Rec. Qfy 12 Old Gty [t}

ClDelivery Date|Scheduled Quantity |Time |F|C|St.0elDate |Cum. Sch, Gty GR Oty |Open Quan Purchase
D7 soli2o10 10 R@F /0142010 12 10

ba7ioz/2e10 10 RE7 /0242010 20 2 g

D7 sasi 2010 5 Ro7 /o5 2016 25 5

Do sagi2o1e il Ro7 o8 2a16 a5 30
Dari11s2e10 i RIET 1142010 7o ill5

a7 i1e/ 2010 20 RO7 /1542010 a0 20

Figure 5.9 Scheduling Agreement Schedule

On July 6, 2010, another goods receipt of more than 43 pieces is now supposed
to be posted. The open quantity consists of the 5 pieces scheduled for delivery on
July 5, 2010, and also of the 8 pieces still open from the previous items. A total of
13 pieces are open. The goods receipt is therefore rejected due to an overbooking
of 30 pieces (43 pc — 13 pc). The vendor has already added the 30 pieces, which
are expected on July 8, 2010 — that is, in the future. Because this is within the 3
days for which you allow an earlier delivery, the goods receipt is expected to go
through.

1. To resolve this situation, you must program the aforementioned user exit EXIT_
SAPLEINR_001. Create a project in Transaction CMOD, and add the enhance-
ment MEVMEQOT.

2. Switch to the user exit EXIT_SAPLEINR_001, and create the include ZxM06U28.

3. You get two parameters in the interface: The parameter POT contains the item
data from the scheduling agreement; the internal table CETT contains all sched-
ule lines. Based on this data, you can perform your own calculations and fill
the parameters according to Table 5.12. Keep in mind that these parameters
in the documentation on the enhancement MEVME0O1 are not completely and
uniquely defined. The parameters F3 and F4 have only been added with SAP
Note 737495; the documentation has not been customized, however.

130 WWww.sap-press.com

Tolerance Limits for Scheduling Agreements | 5.5

Fl WE default quantity

F2 Open quantity on key date
F3 Underdelivery quantity

F4 Overdelivery quantity

Table 5142 Output Parameter EXIT_SAPLEINR_001

. Because the overdelivery quantity is customized, you need to determine a new
value for parameter F4. The calculation for this works very simply. The param-
eter contains the complete scheduled quantity, starting from the first item of
the scheduling to the last scheduling prior to the key data in total. The system
automatically deducts goods receipts already carried out, so you don't need to
take this into consideration.

Calculate in a loop via Table CETT the total of all schedule quantities with one
vendor smaller than the date “today + 3 days". You write the result of the calcu-
lation in the field F4 (see Listing 5.27).

K o *
*& Include ZXM06UZ28
E *

““local interface:
*“ IMPORTING

* VALUE(POT)

*“ TABLES

* CETT STRUCTURE EKET

*“ CHANGING

* VALUE(F1)

* VALUE(F2)

* VALUECF3) OPTIONAL

* VALUE(F4) OPTIONAL
o

* Local declarations
DATA Tv_menge TYPE eket-menge.
DATA 1v_checkdate TYPE eket-eindt.

* Consider schedules until today + 3 days
lv_checkdate = sy-datlo + 3.

* Total all schedule quantities

WWww.sap-press.com 131

5

User Exits and BAdIs in Inventory Management

LOOP AT cett WHERE eindt <= Tv_checkdate.
lv_menge = lv_menge + cett-menge.
ENDLOOP.

* Transfer of the calculated value as maximum Timit
f4 = lv_menge.
Listing 5.27 Coding for EXIT_SAPLEINR_001

5.5.2 Overwriting Default Quantity

After the goods receipt that includes 43 pieces has been posted, the new situation
in the scheduling agreement is shown in Figure 5.10. As you can see, if there is no
longer any quantity open until and including July 8, 2010, the next goods receipt
is not expected again until July 11, 2010.

[@|z Maintain Sch. Agmt Schedule : Delivery Schedule for Item 00010
[]

Agreement BEOEOEET 39 Guantity @ PC

Material 108-180 Case

Last Transm. oo:oe:en Mext Transmission Mumber 1

Cum. Rec. Qfy 55 Old Gty [t}

ClDelivery Date|Scheduled Quantity |Time |F|C|StDelDate |Cum. Sch. Oty |GR City Open Quantity |ltem Purc
D7 iolizole 10 R@F /01420160 a5 10

D7 foz/2010 10 R@F/02/2010 a5 10

DO a5/ 2010 5 R@F /0542010 55 5

Do fag/ 2016 il R@F/08/2010 a5 30

ba7s11/2e10 15 RE7 12010 70 ili5

Da7 152010 20 ROF /1542010 a0 20

Figure 510 Scheduling Agreement Schedule following Goods Receipt

If you now receive a new delivery of more than 15 pieces on July 11, 2010, and
these are supposed to be posted as goods receipt, you receive the message “Docu-
ment contains no selectable item” if the user hasn't activated the PROPOSE ALL
ITEMS option. You can react using the user exit: If an open scheduling exists within
the next three days, the first open quantity found is suggested. In the example
given, this quantity refers to the 15 pieces from July 11, 2010.

1. Navigate again to the user exit EXIT_SAPLEINR_001, and enhance the coding for
the current case. The field F2 contains the quantity of all schedulings up to and

132 WWww.sap-press.com

Tolerance Limits for Scheduling Agreements | 5.5

including today, minus the goods receipts already carried out. If this value is
zero, the line is not suggested. Check the value F2. If no quantity is suggested
here, you must calculate a new value.

. Because the system has already checked all schedulings up to and including
the current date, you must check Table CETT again in a loop only from the day
“today + 1" until “today + 3". The schedule quantity, as before in the field MENGE,
was carried out in the goods receipts in field WEMNG. Calculate the open quantity
from this. As soon as you find an open quantity, you can leave the loop.

. You don't need to assign the result of the calculation to the field F2. In fact,
the field F1 again contains the complete schedule quantity from the first day of
the scheduling agreement until today. The system deducts the goods receipts
already carried out only later from this figure. Simply add the result of your
calculation to the field F1. The line with your determined quantity is therefore
suggested (see Listing 5.28).

* Additional determination of the default quantity
* Further data declarations
DATA 1v_morgen TYPE eket-eindt.

IF F2 = 0.

* No default quantity available, check whether an open

* schedule exists in the period today + 1 until today + 3
lv_morgen = sy-datlo + 1.
clear lv_menge.

LOOP AT cett WHERE eindt <= lv_checkdate AND
eindt >= Tv_morgen.
lv_menge = cett-menge - cett-wemng.
IF Tv_menge > 0.
* Open schedule available, exit Toop
EXIT.
ENDIF.
ENDLOOP.

* Increase expected quantity for found value
F1 = F1 + Tv_menge.

ENDIF.
Listing 5.28 Further Coding for EXIT_SAPLEINR_001

www.sap-press.com 133

5

User Exits and BAdIs in Inventory Management

4. Based on the situation from Figure 5.10, if you post a goods receipt on July 10,
2010, an item with a quantity of 15 pieces is suggested to you, which is the
value of the schedule of July 11, 2010.

5.6 Enhancement of Reservations

For reservations, you can't use Transaction MIGO. As previously stated, reserva-
tions are created or changed in Transactions MB21 and MB22. Therefore, you
can't use any enhancements for reservations, for example, the BAdI MB_MIGO_BADI,
to prepopulate fields or to carry out input checks. Even here there is some assis-
tance — the BAdI MB_RESERVATION_BADI.

This BAdI is essentially suitable for two situations. First, there is the method DATA_
MODIFY, which is called when an item is entered before the detail screen view (see
Figure 5.11) is displayed. You can use this method to prepopulate individual fields
with values. The method DATA_CHECK is then called. Here you have the option to
carry out custom checks and display, if applicable, a warning or error message.

=g B E
Reservation Edit Goto Emvironment Systern Help

& 2 AHIGCea CSHE DDon| 8
Create Reservation: Details 0001 / 0001
[dDe]

Mowvernent Type 20 Gl for cost center
Flant el ‘Werk Hamburg
haterial 1oa-108 Casings

Stor. Location

Cuantity in

Lnit of Entry 2 L [Gty is Fixed
Stockkeepg Unit 2 PG

Further Infarmation

Reqgmt Date og/oz2/201e

[] hvt Allowed
Business Area 9900

Cost Center el Corporate Services

GiL Account jet=Tefelele] Business Area 300
Recipient | unl. Paint

Text

| 17

Figure 511 Detailed Entry in the Reservation

134 WWW.sap-press.com

Enhancement of Reservations 5.6

For both cases, a small example will help you implement these enhancements.

5.61 Prepopulating Fields

The prepopulation of fields via the method DATA_MODIFY works relatively simply.
However, you can't overwrite all of the fields of the document. All fields of Table
5.13 can basically be overwritten. However, this list is further restricted by the
current field status. Fields that haven't been integrated may also not be overwrit-
ten by the BAdI method. Therefore, internal Table IT_CHANGEABLE is transferred as
a parameter that contains all changeable fields. All changes you make in the BAdI
to fields not contained there are subsequently not copied.

RESB-MATNR Material number

RESB-WERKS Plant

RESB-LGORT Storage location

RESB-CHARG Batch

RESB-SAKNR GL account number

RESB-ERFMG Quantity in unit of entry

RESB-ERFMG Unit of entry

RESB-BDMNG Requirement quantity

RESB-FMENG Characteristic: Fixed quantity

RESB-KZEAR Characteristic: Final issue of the reservation

RESB-XLOEK Item deleted

RESB-WEMPF Ship-to party

RESB-ABLAD Unloading point

RESB-SGTXT Item text

RESB-BDMNG Requirement date of the components

RESB-XWAOK Characteristic: Goods movement to the reservation
permitted

Table 543 Fields of the Reservation that Can Be Overwritten

Furthermore, the parameter I_NEW_ITEM exists, which means that this item will
run the first time in the method. If your prepopulation is only supposed to be a

www.sap-press.com 135

5 | User Exits and BAdIs in Inventory Management

suggestion that can be overwritten by the user at any time via other values, then it
makes sense to check this parameter and to overwrite the field content only when
it is run for the first time.

You can find the complete parameter interface of the method DATA_MODIFY in Table

5.14.
IT_CHANGEABLE Table of the changeable fields.
I_NEW_ITEM Current item is new and is handled the first time in the
method.
CS_RKPF Header data of the reservation. The fields of this structure
cannot be changed.
CS_RESB Structure on an item of the reservation; the fields

contained may be overwritten if the field is contained in
Table IT_CHANGEABLE.

Table 544 Parameters of the Method DATA_MODIFY

In a small example, the field GL account (RESB-SAKNR) is populated for all reserva-
tions in plant 1000 with the GL account number 400000.

1.

Create an implementation for the BAdI MB_RESERVATION_BADI in Transaction
SE19. You can choose, for example, ZMB_RESERVATION_BADI as the name of the
implementation.

. Now navigate to the method DATA_MODIFY. The GL account is only a default

value that can be overwritten by the user at any time. For this reason, the meth-
od is executed for an item only on the first run (i.e., before the detail screen for
an item may have been displayed the first time). Therefore, check the content
of I_NEW_ITEM, and exit the method if necessary.

. Next, you must check whether the field may at all be changed. For this, check

whether the field is available in Table IT_CHANGEABLE.

This internal table is defined via a table type TDTAB_C132 in the ABAP Dictionary;
however, this is done without using a structure but instead via an integrated
data type. For this reason, the only field of this internal table doesn't have any
defined name. However, you can always access the internal table via the field
name TABLE_LINE .

136 WWww.sap-press.com

Enhancement of Reservations 5.6

4. When the checks are successful, you can overwrite the field value in the struc-
ture CS_RESB. A suitable example is given in Listing 5.29.

METHOD if_ex_mb_reservation_badi~data_modify .
* Prepopulate GL account
* Prepopulation is only to be a default value, therefore
* only execute item on first run
CHECK i_new_item IS NOT INITIAL.

* Check whether GL account is changeable
READ TABLE it_changeable WITH KEY table_line = ‘RESB-SAKNR’
TRANSPORTING NO FIELDS.

* Suggest GL account for plant 1000
IF sy-subrc = 0 AND

cs_resb-werks = “1000".
cs_resb-saknr = 400000 .
ENDIF.
ENDMETHOD.

Listing 5.29 Coding on the Method DATA_MODIFY

5.6.2 Checking Entries

Custom input checks are also simple to implement. To implement your checks,
the header and item data are provided. To trigger a warning or error message, you
can work perfectly normally with the MESSAGE command, but you must trigger the
exception EXTERNAL_MESSAGE.

You can find the parameter interface of the method DATA_CHECK in Table 5.15.

IT_CHANGEABLE This internal table again contains the list of current
changeable fields. This doesn't usually play any major role
for this method.

IS_RKPF The header data of the reservation.

IS_RESB Structure on an item of the reservation.

I_NEW_ITEM Current item is new and is handled the first time in the
method.

Table 545 Parameters of the Method DATA_CHECK

WWww.sap-press.com 137

5

User Exits and BAdIs in Inventory Management

As an example, the fields are supposed to be checked for the ship-to party (RESB-
WEMPF) and the unloading point (RESB-ABLAD). The specification of a ship-to party
is mandatory. If this specification is missing, it must be confirmed by an error
message. If there is no entry in the unloading point field, this is indicated by a
warning message.

1. Navigate to the implementation of the BAdIs that you created in the previous
example on method DATA_MODIFY. Then, switch to the method DATA_CHECK.

2. The method is only called for an item when the item is new or has been changed.
Therefore, the evaluation of the parameter I_NEW_ITEM isn't absolutely neces-
sary. Check whether the ship-to party is filled, and display an error message. To
trigger the exception, you need the addition RAISING EXTERNAL_MESSAGE.

3. So that the message only appears for the unloading point, which is just a warn-
ing when the item is entered, but not in the case of each subsequent change,
you can at this point also check the parameter I_NEW_ITEM. If the parameter is
set, and the unloading point hasn't been completed, a warning message is dis-
played. You must also use the addition RAISING EXTERNAL_MESSAGE with regard
to warning messages.

By displaying the warning message, you can always navigate to the detail screen
in which the unloading point can be entered. This is usually only shown when
an important piece of information is missing. You can find the relevant example
in Listing 5.30.

METHOD if_ex_mb_reservation_badi~data_check .
* The ship-to party must be filled.
IF is_resb-wempf is initial.
* Message: “Please specify a ship-to party*®
MESSAGE e100(ZMM) RAISING external_message.
ENDIF.

*

The unloading point should be filled

Check only on initial run of item

IF i_new_item is not initial AND
is_resb-ablad IS INITIAL.

* Message: “Unloading point was not entered!*”

MESSAGE wl101(ZMM) RAISING external_message.

ENDIF.

ENDMETHOD.

Listing 5.30 Coding on the Method DATA_CHECK

*

138 WWww.sap-press.com

Index

A

ABAP Dictionary, 45, 97, 148
ABAP list, 78
ACO03, 222
Acceptance, 90
Account
assignment, 139, 238
assignment data, 71
assignment field, 146
determination, 140
modification constant, 139, 240
type, 149
Chart of accounts, 140
GR/IR account, 139
Accounting document, 171
Action, 95
Append structure, 150
Archiving, 218, 236, 254
Archiving object
MM_INVBEL, 237
MM_MATBEL, 237
ARC_MM_EBAN_CHECK, 219
ARC_MM_EBAN_PRECHECK, 218
ARC_MM_EBAN_WRITE, 219
ARC_MM_EINA_CHECK, 219
ARC_MM_EINA_WRITE, 220
ARC_MM_EKKO_WRITE, 220
ARC_MM_INVBEL_CHECK, 237
ARC_MM_INVBEL_WRITE, 237
ARC_MM_MATBEL_CHECK, 236
ARC_MM_MATBEL_WRITE, 237
ARC_MM_REBEL_CHECK, 254
ARC_MM_REBEL_WRITE, 254
Assignment operator, 63
Attribute, 28, 55, 63, 104

Background check, 151
BAdI, 22, 93

Activate, 27, 34
ARC_MM_EBAN_CHECK, 219
ARC_MM_EBAN_PRECHECK, 218
ARC_MM_EBAN_WRITE, 219
ARC_MM_EINA_CHECK, 219
ARC_MM_EINA_WRITE, 220
ARC_MM_EKKO_CHECK, 220
ARC_MM_EKKO_WRITE, 220
ARC_MM_INVBEL_CHECK, 237
ARC_MM_INVBEL_WRITE, 237
ARC_MM_MATBEL_CHECK, 236
ARC_MM_MATBEL_WRITE, 237
ARC_MM_REBEL_CHECK, 254
ARC_MM_REBEL_WRITE, 254
Classic, 22, 29

Deactivate, 27, 34

Definition, 23

Documentation, 24, 31
Filter-dependent, 24
Implementation, 23, 24
MB_ACCOUNTING_DISTRIBUTE, 233
MB_CHECK_LINE_BADI, 229
MB_DOCUMENT _BADI, 227
MB_GOODSMOVEMENT_DCI, 233
MB_INSMK_WIP_CHANGE, 229
MB_MIGO_BADI, 28, 118, 228
MB_MIGO_ITEM_BADI, 228
MB_RESERVATION_BADI, 235
ME_BAPI_PO_CUST, 199
ME_BAPI_PR_CUST, 195
ME_CHDOC_ACTIVE, 212
ME_CHECK_ALL_ITEMS, 200
ME_CIP_ALLOW_CHANGE, 212
ME_COMMITMENT_PLAN, 210
ME_COMMITMENT _RETURN, 211
ME_DEFINE_CALCTYPE, 208
ME_GUI_PO_CUST, 28, 37, 201
ME_HOLD_PO, 22, 200
MEOQOUT_BAPI_CUST, 205
ME_POHIST_DISP_CUST, 30, 200
ME_PO_PRICING_CUST, 209
ME_PROCESS_OUT_CUST, 205

www.sap-press.com

259

Index

ME_PROCESS_PO_CUST, 37, 194, 202 BAPI_REQUISITION_CREATE, 198
ME_PROCESS_REQ_CUST, 38 BAPI_SAG_CHANGE, 205
ME_PURCHDOC_POSTED, 201 BAPI_SAG_CREATE, 205
ME_RELEASE_CREATE, 206 BAPI_SERVICE_CHANGE, 221
ME_REQ_HEADER_TEXT, 196 BAPI_SERVICE _CREATE, 221
ME_REQ_OI_EXT, 211 BAPI_USER_GET_DETAIL, 84
ME_REQ_POSTED, 196 BAPIRET2, 124, 126
ME_TAX_FROM_ADDRESS, 203 Basic list, 78
MM_EDI_DESADV_IN, 216 BASOO0001, 222
MMSRV_SM_BAPI_CUST, 221 Batch master, 231
MMSRV_SM_MAIN, 221 BEXCLUDE, 182
MMSRV_SM_NOTIFY, 222 BKPF, 172
MRM_BLOCKREASON_DELETE_CUST, 249 BLAREL, 217
MRM_DOWNPAYMENT, 248 Boolean class, 173, 183
MRM_ERS_HDAT_MODIFY, 241 B_RESULT, 179
MRM_ERS_IDAT_MODIFY, 241 BSEG, 172
MRM_HEADER_CHECK, 242 Business Add-In -> see BAdI, 22, 93
MRM_HEADER_DEFAULT, 242 Business logic, 61
MRM_INVOICE_UPDATE, 247 Business partner, 247

MRM_ITEM_CUSTFIELDS, 145, 241
MRM_MRIS_HDAT_MODIFY, 243

MRM_MRIS_IDAT _MODIFY, 243 C
MRM_MRKO_HDAT_MODIFY, 243
MRM_PARTNER_CHECK, 247 CALL FUNCTION ... IN UPDATE TASK, 118
MRM_PAYMENT_TERMS, 244 C_EXIT_PARAM_CLASS, 179
MRM_RELEASE_CHECK, 244 C_EXIT_PARAM_FIELD, 179, 185
MRM_RETENTIONS, 248 C_EXIT_PARAM_NONE, 179
MRM_TOLERANCE_GROUP, 244 CHAIN, 164
MRM_TRANSACT _DEFAULT, 245 Change
MRM_UDC_DISTRIBUTE, 245 Message class, 174
MRM_VARIANCE_TYPE, 246 Change document, 17, 204
MRM_WT _SPLIT_UPDATE, 245 CHANGING Parameters, 50
New, 29 Check, 40, 71,173
SMOD_MRFLB001, 207 CHECK_HEADER, 123, 124
Usable multiple times, 23 CHECK_ITEM, 123, 124
WRF_MRM_ASSIGN_TEST, 246 CI_DRSEG_CUST, 147
WRF_PREPAY_INVOICE, 246 Class, 155

Balance sheet valuation, 238 Boolean, 173, 183

BAPI CL_EXITHANDLER, 158
BAPI_CONTRACT_CHANGE, 205, 206 Implementing, 33, 55, 57
BAPI_CONTRACT_CREATE, 205, 206 interface, 24
BAPI_PO_CHANGE, 199, 202 Classic BAdI, 22, 29
BAPI_PO_CREATE1, 199, 202 CL_EXITHANDLER, 158
BAPI_PR_CHANGE, 195 CLOSE, 41
BAPI_PR_CREATE, 195 CMOD, 18, 21
BAPI_PR_GETDETAIL, 195 COBL_MRM, 150

260 WWW.sap-press.com

Commitment, 199

Function, 210

Plan, 210
COMMIT WORK, 52
Communication, 145
Company code, 168
Component, 18, 19
Composite enhancement implementation, 31
Configuration data, 212
Consignment settlement, 243
Consignment stock processing, 252
Constant

C_EXIT_PARAM_CLASS, 179

C_EXIT_PARAM_FIELD, 179, 185

C_EXIT_PARAM_NONE, 179
Constant value

Substitution, 184
Contract, 205

release order, 207
Conventional Invoice Verification, 254
CS_GOITEM, 115
CUSTOM_DATA_GET, 147, 158
CUSTOMDATA_MODIFY, 147, 156
CUSTOM_DATA_TRANSFER, 158
Customer namespace, 148, 167
Custom field, 93

D

Data

communication, 158

entry sheet, 89

exchange, 148

Global, 43, 167

type, 167
Database, 50, 147

table, 46, 50
DATA_CHECK, 134
Data field

OK-CODE, 44
DATA_MODIFY, 134, 135
Default quantity, 129, 132
Default value, 93
Definition, 23, 42
Degree of activation, 176, 185
Deletion Indicator, 79

DELFOR, 217

DELINS, 217

Delivery address, 215
Delivery costs, 241, 245
Delivery date, 127
DELVRYO01, 216
DESADV, 216, 217
Direct type input, 107
Display mode, 99, 100, 161
Display transaction, 54
Distribution indicator, 86
Document item, 46
Document number, 52
Down payment, 248
DRSEG, 147

DRSEG_CI, 147, 149
Dynamic selection, 75
Dynpro, 39, 54, 94, 146

E

Enhancement, 18, 37
BAS00001, 222
I1QSM0007, 232
LIFO0040, 238
LMEKOO001, 209
LMEKO002, 210
LMELAO002, 233
LMELAO10, 217, 233
LMEQRO0O0O1, 213
LMEXF001, 210
LMRIMO001, 250
LMRIMO002, 240
LMRIMO003, 250
LMRIMO004, 250
LMRIMO0O05, 251
LMRIMOO06, 251
LWBONO0O01, 218
LWSUS001, 213
MO6B0001, 196
MO06B0002, 197
MO06B0003, 197
MO06B0004, 198
MO0O6B0005, 197
MO6E0004, 203
MO6E0005, 203

www.sap-press.com

Index

261

Index

MB_CF001, 230
MBCF0002, 230
MBCF0005, 230
MBCF0006, 234
MBCF0007, 236
MBCF0009, 231
MBCFC003, 231
MBCFC004, 231
ME590001, 204
MEETA001, 208
MEFLDO004, 234
MEQUERY1, 212
MEREQO01, 38, 198
MEVMEOQ0O01, 235
MMO6E001, 217
MMO6E003, 213
MMO6E004, 204
MMO6E005, 37, 214
MMO6E007, 17, 204
MMOG6E00S, 207
MMO6E009, 214
MMO6E010, 215
MMO6E011, 199
MMO6L001, 216
MMO8RO01, 255

MMO8ER002, 249, 255

MMDAO0001, 215
MMFABO001, 207
MRFLBO001, 208
MRMHO0001, 252
MRMHO0002, 252
MRMHO0003, 253
MRMNO0001, 253
NIWEO0000, 238
NIWE0001, 239
NIWE0002, 239
NIWE0003, 240
RMVKONO00, 252
SRVDET, 222
SRVEDIT, 223
SRVESI, 223
SRVESKN, 223
SRVESLL, 224
SRVESSR, 224
SRVEUSCR, 224
SRVKNTTP, 225
SRVLIMIT, 225

262

SRVMAIL1, 226
SRVMSTLV, 226
SRVREL, 226
SRVSEL, 227
XMBF0001, 232
Enhancement category, 149
Enhancement implementation, 31
Enhancement spot, 29, 30
ES_BADI_INVOICE_UPDATE, 247
ES_BADI_ME_BAPI, 195, 199, 205
ES_BADI_ME_POHIST, 30, 200

ES_BADI_MRM_DOWNPAYMENT, 248

ES_BADI_MRM_PARTNER, 247
ES_BADI_MRM_RETENTION, 248
ES_COMMITMENT_PLAN, 210
MB_GOODSMOVEMENT, 229, 233
ME_PROCESS_OUT, 205
MRM_BLOCKREASON_DELETE, 249
Enjoy purchase order, 37
Error message, 69
ERS procedure, 241
EXECUTE, 40
Exit
Substitution, 184
Exit routine
Substitution, 185
Validation, 177
Expert mode, 175
Explicit enhancement spot, 29
EXPORT ... COMPRESSION ON, 120
Export parameter, 157
EXPORT ... TO DATA BUFFER, 119
External Services Management, 83, 221

F

Field
BEXCLUDE, 182
Custom, 93
Property, 45
SGTXT, 228, 230, 250
Status, 59
Symbol, 190
Field-field assignment
Substitution, 184
FIELDSELECTION_*, 41

www.sap-press.com

Flow logic, 45, 99, 148, 157, 163
Flow module, 154
Form
get_exit_titles, 178, 185
Forward declaration, 57
Function group, 38, 94
Function module, 46, 49, 94
BAPI_USER_GET_DETAIL, 84

G

GBO1, 182

get_exit_titles, 178, 185
GET_INSTANCE_FOR_SUBSCREENS, 158
GL account, 135, 136

GL account tab, 145

Global data, 43, 167

Goods issue, 95

Goods movement, 93

Goods receipt, 95, 127, 130, 233
Goods receipt/issue slip, 230

GR block stock, 127
GR/IR-account, 139

GR/IR account determination, 240
GUID, 119

H

Header data, 43
HOLD_DATA_DELETE, 119, 122
HOLD_DATA_LOAD, 119, 121
HOLD_DATA_SAVE, 119, 120

I_CLASS_ID, 109
IDoc
Basic DELVRY01, 216
IDOC_INPUT_SRVMAS, 222
processing, 216
IF_PURCHASE_ORDER_ITEM_MM,, 62
IF_PURCHASE_ORDER_MM,, 62, 67
Implementation, 23, 24, 95, 155
Implementing class, 33, 55, 57

Index

Implicit enhancement spot, 29
IMPORT ... ACCEPTING TRUNCATION, 123
Import data, 204
IMPORT ... FROM DATA BUFFER, 119
Import parameter, 49, 52
Inbound delivery, 216
Include, 20
LMEVIEWSFO01, 44
Incoming invoice, 141
InfoSet, 76
INIT, 95, 107
INITIALIZE, 40
Input check, 93, 123
INSERT, 120
Instance, 158
Instance attribute, 108
Interface, 31, 62, 155, 159
IF_PURCHASE_ORDER_ITEM_MM, 62
IF_PURCHASE_ORDER_MM, 62, 67
Interface tab, 24
Internal table, 48
IN UPDATE TASK, 52
INVALIDATE, 70
Inventory document, 237
Inventory Management, 227
Invoice, 165
INVOICE_DATA_GET, 157, 159
INVOICE_DATA_TRANSFER, 147, 156
Invoice document, 145, 146, 147
Item, 156
Header, 156
Invoice Verification, 240
Conventional, 254
Invoicing plan settlement, 243
IQSMO0007, 232
Item data, 42
ITEM_MODIFY, 125
Item number, 162
Item text, 125, 135, 174, 214, 228, 230, 250

L

LIFO
0040, 238
Valuation, 238
Limit check, 225

WWW.sap-press.com 263

Index

LINE_DELETE, 96
LINE_MODIFY, 96, 114
LMEKOO001, 209
LMEKOO002, 210
LMELAO002, 233
LMELAO010, 217, 233
LMEQRO01, 213
LMEVIEWSFO1, 44
LMEXF001, 210
LMR1MO001, 250
LMR1MO002, 240
LMR1MO003, 250
LMR1MO004, 250
LMR1MO005, 251
LMR1MO06, 251

Logistics Information Systems (LIS), 218
Logistics Invoice Verification, 145, 164, 175,

240

LOOP AT SCREEN, 99

Lowest value comparison, 238
LWBONOO01, 218

LWSUS001, 213

M

MO06B0001, 196
MO06B0002, 197
MO06B0003, 197
MO06B0004, 198
MO06B0005, 197
MO6E0004, 203
MO6E0005, 203
MAP_DYNPRO_FIELDS, 39, 57
Market price analysis, 239
Material document, 95, 227
number, 97
Material group, 166
Materials Management (MM), 37
MB21, 134
MB22, 134

MB_ACCOUNTING_DISTRIBUTE, 233

MB_CF001, 230
MBCF0002, 230
MBCF0005, 230
MBCF0006, 234
MBCF0007, 236

264

MBCF0009, 231
MBCFCO003, 231
MBCFC004, 231
MB_CHECK_LINE_BADI, 229
MB_DOCUMENT_BADI, 227
MB_GOODSMOVEMENT, 229, 233
MB_GOODSMOVEMENT_D(I, 233
MB_INSMK_WIP_CHANGE, 229
MB_MIGO_BADI, 28, 118, 228
MB_MIGO_ITEM_BADI, 228
MB_RESERVATION_BADI, 235
ME23N, 54
ME31K, 210
ME31L, 210
ME59, 204
MES84, 207
ME590001, 204
ME_BAPI_PO_CUST, 199
ME_BAPI_PR_CUST, 195
ME_CHDOC_ACTIVE, 212
ME_CHECK_ALL_ITEMS, 200
ME_CIP_ALLOW_CHANGE, 212
ME_COMMITMENT_PLAN, 210
ME_COMMITMENT_RETURN, 211
ME_DEFINE_CALCTYPE, 208
MEETA001, 208
MEFLDO004, 234
ME_GUI_PO_CUST, 28, 37, 201
MAP_DYNPRO_FIELDS, 54
TRANSPORT_FROM_DYNP, 62
TRANSPORT_FROM_MODEL, 61
TRANSPORT_TO_DYNP, 61
TRANSPORT_TO_MODEL, 62
ME_HOLD_PO, 22, 200
MEOUT_BAPI_CUST, 205
ME_POHIST_DISP_CUST, 30, 200
ME_PO_PRICING_CUST, 209
ME_PROCESS_OUT, 205
ME_PROCESS_OUT_CUST, 205
ME_PROCESS_PO_CUST, 37, 202
CLOSE, 68
FIELDSELECTION_HEADER, 54
FIELDSELECTION_ITEM, 54
INITIALIZE, 68
OPEN, 68
POST, 68
ME_PROCESS_REQ_CUST, 38, 194

www.sap-press.com

ME_PURCHDOC_POSTED, 201
MEQUERY1, 212
ME_RELEASE_CREATE, 206
MEREQO001, 38, 198
ME_REQ_HEADER_TEXT, 196
ME_REQ_OI_EXT, 211
ME_REQ_POSTED, 196
Message, 137, 173
BLAREL, 217
DELFOR, 217
DELINS, 217
DESADV, 217
ORDCHG, 217
ORDERS, 217
ORDRSP, 217
REQOTE, 217
Message class
Change, 174
Message log, 126
Metafield, 54, 57
ME_TAX_FROM_ADDRESS, 203
Method, 24, 25
CHECK_HEADER, 123, 124
CHECK_ITEM, 123, 124
CUSTOM_DATA_GET, 158
CUSTOMDATA_MODIFY, 156
CUSTOM_DATA_TRANSFER, 158
DATA_CHECK, 134
DATA_MODIFY, 134, 135
GET_INSTANCE_FOR_SUBSCREENS, 158
HOLD_DATA_DELETE, 119, 122
HOLD_DATA_LOAD, 119
HOLD_DATA_SAVE, 119, 120
INIT, 95, 107
INVOICE_DATA_GET, 157
INVOICE_DATA_TRANSFER, 156
LINE_DELETE, 96
LINE_MODIFY, 96, 114
MODE_SET, 95, 108
PAI_DETAIL, 96, 114
PAI_HEADER, 96
PBO_DETAIL, 96, 112
PBO_HEADER, 96
POST_DOCUMENT, 96, 117
RESET, 95, 108
STATUS_AND_HEADER, 95, 119
TABPAGE_LABEL_SET, 147, 158

MEVMEO001, 235
MIGO, 93, 95, 228

Action, 106

check, 123

Note, 112, 119

post, 123

Reference document, 106
MIGO_CLASS_ID, 105
MIR4, 151
MIR6, 151
MIR7, 175
MIRA, 151
MIRO, 145, 147,175
MLS81N, 89
MLS86, 223, 226
ML87, 223, 226
MLS5, 226
MMO6EO001, 217
MMO6EO003, 213
MMO6E004, 204
MMO6EO005, 37, 214
MMO6E007, 17, 204
MMO6EO008, 207
MMO6E009, 214
MMO6EO010, 215
MMO6EO011, 199
MMO6L001, 216
MMO8RO001, 255
MMO8R002, 249, 255
MMDAO0001, 215
MM_EDI_DESADV_IN, 216
MMFABO001, 207
MM_INVBEL, 237
MM_MATBEL, 237
MM_MESSAGES_MAC, 70
MMMED, 57
MMPUR_DYNAMIC_CAST, 62
MMPUR_MESSAGE_FORCED, 70
MMPUR_METAFIELD, 57, 70
MMSRV_SM_BAPI_CUST, 221
MMSRV_SM_MAIN, 221
MMSRV_SM_NOTIFY, 222
MODE_SET, 95, 108
Modification, 29
MODULE, 159
MODULE ... ON CHAIN-REQUEST, 164
Module pool, 151

www.sap-press.com

Index

265

Index

MOVE-CORRESPONDING, 113
MRBP, 151

MRBR, 244

MRFLB001, 208

MRIS, 243

MRKO, 243
MRM_BLOCKREASON_DELETE, 249
MRM_BLOCKREASON_DELETE_CUST, 249
MRM_DOWNPAYMENT, 248
MRM_ERS_HDAT_MODIFY, 241
MRM_ERS_IDAT_MODIFY, 241
MRMHO0001, 252

MRMHO0002, 252

MRMHO0003, 253
MRM_HEADER_CHECK, 242
MRM_HEADER_DEFAULT, 242
MRM_INVOICE_UPDATE, 247
MRM_ITEM_CUSTFIELDS, 145, 241
MRM_MRIS_HDAT_MODIFY, 243
MRM_MRIS_IDAT_MODIFY, 243
MRM_MRKO_HDAT_MODIFY, 243
MRMNO0001, 253
MRM_PARTNER_CHECK, 247
MRM_PAYMENT_TERMS, 244
MRM_RELEASE_CHECK, 244
MRM_RETENTIONS, 248
MRM_TOLERANCE_GROUP, 244
MRM_TRANSACT_DEFAULT, 245
MRM_UDC_DISTRIBUTE, 245
MRM_VARIANCE_TYPE, 246
MRM_WT_SPLIT_UPDATE, 245
MSEG, 96

MSEG-ZEILE, 117

Multiple account assignment, 86

N

NIWEO0000, 238
NIWEO0001, 239
NIWEO0002, 239
NIWEO003, 240
Number range, 197, 213, 250

266

o

0OB28, 172, 174
OBBH, 182
Object, 62
OBYC, 140
OK-CODE, 44
OPEN, 40
ORDCHG, 217
Order, 22

Hold, 22

Order confirmation, 217
ORDERS, 217

ORDRSP, 217

Outline agreement, 205
Overdelivery quantity, 129, 131
OXK3, 146

P

PAI_DETAIL, 96, 114
PAI_HEADER, 96
Parameter

Interface, 26

Parameters

CHANGING, 50
Interface, 31

Parameter type

C_EXIT_PARAM_CLASS, 179
C_EXIT_PARAM_FIELD, 179, 185
C_EXIT_PARAM_NONE, 179

Parked document, 175
Partner role, 247

Pass by value, 50

Pass By Value, 102
PBO_DETAIL, 96, 112
PBO_HEADER, 96, 109
Pipeline

Processing, 252
Settlement, 243

POST, 41
POST_DOCUMENT, 96, 117
Posting transaction

WRX, 140

Prerequisite, 173, 181
Price variance, 164

www.sap-press.com

Pricing, 200, 208

PROCESS_ACCOUNT, 40, 71

PROCESS AFTER INPUT, 148

PROCESS BEFORE OUTPUT, 148

PROCESS_HEADER, 40, 71

Processing
IDoc, 216

Processing type, 102

PROCESS_ITEM, 40, 71

PROCESS_SCHEDULE, 40, 71

Program
RGGBRO00O, 177
RGGBS000, 185
RMO0O6BD70, 219
RMO0O6BV70, 218
RMO0O6BW?70, 219
RMO6ED47, 220
RMO6EFLB, 208
RMO6EW47, 220
RMO06ID47, 220
RMO6IW47, 219, 220
RMO7IARCS, 237, 238
RMO7IDELS, 238
RMO7MADES, 237
RMO7MARCS, 236, 237
SAPLMRIM, 189

Program table, 154

Project, 18, 21

Purchase order, 37, 199
Document overview, 212
Input check, 40, 69
Message collector, 69
Purchase order date, 128
Purchase order history, 34, 200
Purchase order number, 47
Selection variant, 72

Purchase order requisition, 194

Purchase requisition, 38
Selection variant, 72

Purchasing, 37

Purchasing information record, 219

Q

Quantity variance, 164
Query, 76
Query Painter, 76

R

RAWSTRING, 119, 120, 122
RBDRSEG, 150
RBMA, 150
Reference, 62, 95
Reference key, 183
Release procedure, 196
Release strategy, 203
Report
RGUGBRO00, 174, 183
RGUGBR28, 174
RMOG6EFAB, 207
RMMRIMRB, 253
Repository Browser, 98, 152
REQOTE, 217
Request for quotation (RFQ), 37
Reservation, 134, 235
RESET, 95, 108
Retention amount, 248
Return item, 211
Return-table, 123
RGGBRO000, 177
RGGBS000, 185
RGUGBRO0O0, 174, 183
RGUGBR28, 174
RMO6BD47, 219
RMO6BV70, 218
RMO06BW47, 219
RMO06BW?70, 219
RMO6ED47, 220
RMOG6EFAB, 207
RMOG6EFLB, 208
RMO6EW47, 220
RMO06ID47, 220
RMO6IW47, 219, 220
RMO7IARCS, 237, 238
RMO7IDELS, 238
RMO7MADES, 237
RMO7MARCS, 236, 237
RMMR1MRB, 253
RMVKONOO, 243, 252
RSEG, 150
Runtime behavior, 34

www.sap-press.com

Index

267

Index

S

SAP Enhancement Framework, 29
SAPLMR1M, 189
SAP Query, 75
Schedule, 129
Scheduling agreement, 129, 205
Scheduling agreement schedule, 129
Scheduling data, 71
SCREEN-NAME, 163
Screen Painter, 98, 152
SE11, 42, 120
SE18, 22, 30
SE19, 23, 24, 31, 155
SE24, 59
SE80, 43, 98
Selection

dynamic, 75

list, 82

variant, 75
Serial number, 232
Service catalog, 226
Service entry, 222

entry sheet, 223
Service line, 83, 87
Service master, 221
Service specification, 223
SGTXT, 228, 230, 250
Shipping notification, 217
Ship-to party, 135, 138
Signature, 26
SMOD, 18
SMOD_MRFLB001, 207
Source, 213
Source document

Substitution, 188
SQO01, 76
SQO02, 76
SRVDET, 222
SRVEDIT, 223
SRVESI, 223
SRVESKN, 223
SRVESLL, 224
SRVESSR, 224
SRVEUSCR, 224

268

SRVKNTTP, 225
SRVLIMIT, 225
SRVMAIL1, 226
SRVMSTLYV, 226
SRVREL, 226
SRVSEL, 227
STATUS_AND_HEADER, 95, 119
Step, 173
Stock determination, 232
Storage location, 125, 231
Structure, 101
CI_DRSEG_CUST, 147
DRSEG, 147
DRSEG_CI, 147, 149
Subcontracting, 212, 234
Subcontracting component, 234
Subscreen, 98, 145, 152, 155
SUBSCRIBE, 39
Substitution, 171, 182
Constant value, 184
Exit, 184
Exit routine, 185
Field-field assignment, 184
Source document, 188

T

T80D, 177, 185
Table

BKPF, 172

BSEG, 172

GBO1, 182

MSEG, 96

Parameter, 50

T80D, 177, 185

Work area, 154

YDRSEG, 190
Table control, 147, 152, 160
Table Control Wizard, 152
TABLE_LINE, 136
TABPAGE_LABEL_SET, 147, 158
Tabstrip, 39
Text field, 97
Text symbol, 158

www.sap-press.com

Tolerance check, 145, 164, 249
Tolerance key, 165, 166
Tolerance limit, 129, 164
Transaction

AC03, 222

CMOD, 18, 21

MB21, 134

MB22, 134

ME23N, 54

ME31K, 210

ME31L, 210

ME59, 204

MES84, 207

MIGO, 93, 106, 112, 119, 228

MIR4, 151
MIRG, 151

MIR7, 175

MIRA, 151

MIRO, 145, 147, 175
MLS1N, 89

MLS6, 223, 226
ML87, 223, 226
MRBP, 151

0B28, 172, 174
OBBH, 182

OBYC, 140

OXK3, 146

SE11, 42, 120

SE18, 22, 30

SE19, 23, 24, 31, 155
SE24, 59

SE80, 98

SMOD, 18

5Qo01, 76

5Q02, 76

TRANSPORT_FROM_DYNPRO, 40
TRANSPORT_FROM_MODEL, 39

TRANSPORT_TO_DYNPRO, 39
TRANSPORT_TO_MODEL, 40
Type, 28, 106

DESADV, 216
Type group, 57
Type input

Direct, 107

Index

V)

Underdelivery quantity, 131

Unlimited variance, 169

Unloading point, 135, 138

Upcast, 62

Update module, 50, 95, 102

Update termination, 103

Updating, 50, 117

User exit, 17
Activate, 21
Deactivate, 21
EXIT_RMO6EFAB_001, 208
EXIT_RMO6EFLB_001, 208
EXIT_RMO6LBAT_001, 216
EXIT_RMO6LBEW_001, 216
EXIT_RMMRIMRB_*, 253
EXIT_RMVKONOO_*, 252
EXIT_SAPLBASO_*, 222
EXIT_SAPLEBND_*, 197, 203, 226
EXIT_SAPLEBNE_001, 198
EXIT SAPLEBNF_*, 196, 203
EXIT_SAPLEINL_001, 208
EXIT_SAPLEINM_*, 217
EXIT_SAPLEINR_* 127, 129, 234, 235
EXIT_SAPLIEO1_007, 232
EXIT SAPLKONT 011, 141, 240
EXIT SAPLLIFS * 238
EXIT_SAPLMBMB_001, 230
EXIT_SAPLMDBF_*, 232
EXIT_SAPLME59_001, 204
EXIT_SAPLMEKO_*, 209, 210
EXIT SAPLMELO_001, 216
EXIT_SAPLMEQR_001, 213
EXIT_SAPLMEQUERY_*, 75, 80, 213
EXIT_SAPLMEREQ_*, 198
EXIT_SAPLMEXF_001, 210
EXIT_SAPLMIGO_001, 234
EXIT SAPLMLSK 001, 83, 84, 224
EXIT_SAPLMLSL 001, 225
EXIT_SAPLMLSP_*, 87, 88, 223, 224, 227
EXIT_SAPLMLSR_*, 89, 223, 224, 225
EXIT_SAPLMLST 001, 226
EXIT_SAPLMLSX_* 223, 225, 226
EXIT_SAPLMMDA_001, 215
EXIT_SAPLMRIM_*, 167, 249, 250

WWW.sap-press.com 269

Index

EXIT SAPLMRM_BAPI_001, 251
EXIT SAPLMRMC_*, 167, 250, 251
EXIT SAPLMRME_003, 250
EXIT SAPLMRMH_*, 252, 253
EXIT SAPLMRMN_*, 253, 254
EXIT SAPLMRMP_*, 167, 250, 251
EXIT_SAPLNIWO_*, 239
EXIT SAPLNIW1_* 239
EXIT SAPLNIW3_* 240
EXIT SAPLNIWE_*, 239
EXIT SAPLWNO08_001, 218
EXIT_SAPLWN12_001, 218
EXIT SAPLWN35_001, 218
EXIT SAPLWSUS 001, 213
EXIT SAPMO7DR_*, 231
EXIT SAPMMO06B_001, 197
EXIT SAPMMOG6E_*, 20, 199, 204, 205,
207, 214, 215
EXIT_SAPMMO6L_001, 216
EXIT SAPMMO7M_*, 230, 231, 232, 234
EXIT SAPMMO7R_001, 236

User group, 76

User master, 84

\

Validation, 171, 172
Change of message class, 174
Exit routine, 177

Valuation, 139, 238

Value contract, 207
Variable
B_RESULT, 179
Variance, 167
Unlimited, 169
Vendor, 127
address, 215
evaluation, 215
Visibility, 107

W

Work area, 75, 76, 177, 185
WRF_MRM_ASSIGN_TEST, 246
WRF_PREPAY_INVOICE, 246
WRX, 140

X

XMBF0001, 232
XML invoice, 251
XSTRING, 119

Y

YDRSEG, 190

270 WWW.sap-press.com

	SAP PRESS – reading sample

	ABAP Development for Materials Management in SAP: User Exits and BAdIs
	Jürgen Schwaninger

	Contents at a Glance
	Contents

	chapter 5: User Exits and BAdIs in Inventory Management
	5.1 Custom Fields in Transaction MIGO
	5.1.1 Custom Fields: An Overview
	5.1.2 Preparations in the ABAP Dictionary
	5.1.3 Preparation of the Function Group
	5.1.4 Preparation and Status Management in MB_MIGO_BADI
	5.1.5 Activation of Custom Header Data
	5.1.6 Activation of Custom Item Data
	5.1.7 Updating the Data

	5.2 Other Functions of the BAdI MB_MIGO_BADI
	5.2.1 Noting Custom Data
	5.2.2 Input Checks in Transaction MIGO

	5.3 Checking and Prepopulating Standard Fields
	5.3.1 Prepopulation of Storage Location and Text
	5.3.2 Checking the Standard Fields

	5.4 Check of the Earliest Delivery Date
	5.5 Tolerance Limits f or Scheduling Agreements
	5.5.1 Overwriting Overdelivery Quantity
	5.5.2 Overwriting Default Quantity

	5.6 Enhancement of Reservations
	5.6.1 Prepopulating Fields
	5.6.2 Checking Entries

	Index

	www.sap-press.com

	(c) Galileo Press GmbH 2011

	www:
	sap-press:
	com: www.sap-press.com

