Uwe Blumöhr, Manfred Münch, and Marin Ukalovic

Variant Configuration with SAP®
Contents at a Glance

1 Basic Principles of Variant Configuration 31
2 Creating a Product Model for SAP Variant Configuration 69
3 Business Processes in SAP ERP ... 219
4 Customizing SAP ERP for Variant Configuration 311
5 Special Features of Product Configuration in SAP CRM 337
6 Challenges in Variant Configuration 367
7 Enhancements in SAP Industry Solution DIMP 447
8 Enhancements and Add-Ons in the SAP Partner Environment .. 465
9 Project Lead Reports on Projects and Project Structures 543
10 Customer Reports on the Introduction of SAP Variant Configuration ... 579
11 Configuration Workgroup ... 637
12 Outlook for SAP Business ByDesign 647
A Database Tables of Variant Configuration 663
B APIs of Variant Configuration .. 669
C User Exits of Variant Configuration 671
D Comprehensive Examples of Variant Functions 673
E The Authors ... 681
Contents

Foreword ... 13
Introduction ... 21

1 Basic Principles of Variant Configuration .. 31

1.1 What Is Product Configuration? ... 31
1.1.1 Terminology .. 32
1.1.2 Elementary Configuration Modules ... 36
1.1.3 Product Configuration in Logistic Scenarios ... 39
1.1.4 Core Problem of Variant Diversity .. 41
1.1.5 Procedural and Declarative Approaches ... 44

1.2 What Is SAP Variant Configuration? .. 47
1.2.1 Product Configuration Using Variant Configuration (LO-VC) ... 48
1.2.2 Further Areas of Use .. 48
1.2.3 “Hello World” Example ... 49
1.2.4 Variant Configuration (LO-VC) ... 55
1.2.5 Internet Pricing and Configurator (IPC) ... 59

1.3 Enhancing Business Processes with Variant Configuration .. 63
1.3.1 Prerequisite for the Usage of Variant Configuration .. 63
1.3.2 Factors for the Usage of Variant Configuration ... 64
1.3.3 Exemplary Consideration on the Master Data Volume ... 66

1.4 Summary ... 67

2 Creating a Product Model for SAP Variant Configuration .. 69

2.1 Overview of the Modeling and Integration of Variant Configuration 69
2.1.1 Multivariant Product without Variant Configuration .. 70
2.1.2 Multivariant Product with Variant Configuration ... 70

2.2 Tools from the Classification System .. 75
2.2.1 Characteristic Management .. 75

2.2.2 Class Management .. 82

2.2.3 Classification .. 84

2.2.4 Search .. 85
Contents

2.3 Material Master, BOM, and Routing ... 87
 2.3.1 Material Master of the Configurable Material 87
 2.3.2 Super BOM of the Configurable Material 91
 2.3.3 Super Task List for the Configurable Material 94

2.4 Configuration Profile and Configuration Scenarios 97
 2.4.1 Overview of the Configuration Profile 97
 2.4.2 Configuration Profile in Detail 99
 2.4.3 Overview of Configuration Scenarios 105
 2.4.4 Planned/Production Order without BOM Explosion
 Scenario .. 105
 2.4.5 Order BOM Scenario 107
 2.4.6 Sales Order (SET) Scenario 113
 2.4.7 Planned/Production Order with BOM Explosion
 Scenario .. 118

2.5 Overview of Object Dependencies 121
 2.5.1 Types of Object Dependencies and Assignment 121
 2.5.2 The Procedural and Declarative Character of Object
 Dependencies .. 126
 2.5.3 Global and Local Object Dependencies 126
 2.5.4 Status of Object Dependencies 127
 2.5.5 Object Dependencies in Classification and Variant
 Configuration .. 128
 2.5.6 Execution Sequence of Object Dependencies 128
 2.5.7 Basic Syntax Rules 131
 2.5.8 Syntax Elements .. 134
 2.5.9 Variant Tables and Functions 136
 2.5.10 Evaluation Function for Object Dependencies 138

2.6 Object Dependencies for the Value Assignment Interface or
 the Sales View .. 142
 2.6.1 Product Modeling Environment PMEVC 142
 2.6.2 Example ... 146
 2.6.3 Variant Tables in Detail 152
 2.6.4 Constraints in Detail 158
 2.6.5 Preconditions .. 164
 2.6.6 Selection Conditions .. 167
 2.6.7 Procedures ... 168
 2.6.8 Reference Characteristics 171
 2.6.9 Variant Functions ... 174
 2.6.10 User Interface Design 177
2.7 Object Dependencies for BOM and Routing .. 179
 2.7.1 Local and Global Object Dependencies .. 179
 2.7.2 Selection Conditions for BOM and Routing 182
 2.7.3 Class Nodes in BOMs ... 183
 2.7.4 Classified Materials in BOMs .. 187
 2.7.5 Procedures in BOM and Routing .. 189

2.8 Pricing for Configurable Materials .. 192

2.9 Product Costing for Configurable Materials .. 198

2.10 Material Variants ... 200
 2.10.1 Material Master of the Material Variant .. 202
 2.10.2 BOM and Material Variant .. 204
 2.10.3 Routing and Material Variant .. 205
 2.10.4 Pricing and Material Variant ... 207
 2.10.5 Material Variant Matching .. 207
 2.10.6 Material Variant Matching at the Header and Assembly Levels 211

2.11 How to Create a Product Model for the IPC 212

2.12 Summary .. 218

3 Business Processes in SAP ERP .. 219

 3.1 Introduction—Variant Configuration in Business Processes 219
 3.1.1 BOMs in Variant Configuration .. 219
 3.1.2 Order Engineering Workbench ... 223
 3.2 Variant Configuration with iPPE—Modeling 229
 3.2.1 Product Variant Structure and Product Designer 230
 3.2.2 Modeling From Requirements to Production 231
 3.2.3 Feature and Requirement Structures .. 233
 3.2.4 Structure Nodes, Component Variants, and Object Dependencies ... 235
 3.2.5 Concepts ... 238
 3.2.6 Filter: Explosion and Configuration Simulation 240
 3.2.7 BOM Converter ... 242
 3.2.8 PLM WebUI .. 245
 3.3 Integration of Variant Configuration—The Classic Process 252
 3.3.1 Sales Activities ... 253
 3.3.2 Requirements Planning .. 255
 3.3.3 Controlling the Requirements Transfer 256
Contents

3.3.4 Procurement: In-House Production or External Procurement ... 259
3.4 Processes with Extended Integration Aspects .. 260
 3.4.1 In-House Production Process ... 262
 3.4.2 Quality Management and Variant Configuration ... 265
 3.4.3 Purchasing and Configurable Model Service Specifications ... 272
 3.4.4 Project System, Configurable Standard Networks, and Variant Configuration ... 275
 3.4.5 Customer Service and Configurable General Maintenance Task Lists ... 279
3.5 Planning and Variant Configuration .. 283
 3.5.1 Excursus: Evaluations in the Variant Configuration Environment ... 284
 3.5.2 Planning and Variant Configuration ... 288
 3.5.3 Pure Assembly Planning .. 289
 3.5.4 Characteristics Planning and Standard Product Planning ... 290
 3.5.5 Characteristics Planning and Standard Product Planning with Long-Term Planning ... 296
 3.5.6 Variant Planning and Planning with Planning Variants ... 299
 3.5.7 Variant Configuration and SCM APO ... 304
 3.5.8 Planning and SCM APO .. 307
3.6 Summary ... 308

4 Customizing SAP ERP for Variant Configuration ... 311
 4.1 Explicit Customizing of Variant Configuration .. 311
 4.1.1 Maintenance Authorizations ... 312
 4.1.2 Status ... 313
 4.1.3 Groups ... 315
 4.1.4 Configurable Objects .. 316
 4.1.5 Configuration User Interface ... 316
 4.2 Classification System Customizing .. 317
 4.3 Business Process Customizing Relevant for Variant Configuration ... 324
 4.3.1 Configurable Material Master .. 324
 4.3.2 Item Categories and Their Determination .. 327
4.3.3 Requirements Types, Requirements Classes, and Their Determination .. 329
4.3.4 Planning Strategies ... 332
4.3.5 Change Profiles in Order Change Management (OCM) .. 334
4.4 Summary .. 336

5 Special Features of Product Configuration in SAP CRM 337

5.1 Product Configuration in Different Channels 337
5.2 Configuration of Products versus Services 338
5.3 Procedure for Integrated Production in SAP ERP 339
 5.3.1 Sales Configuration versus Production Configuration 340
 5.3.2 Replication of the Master Data from SAP ERP 340
5.4 Creating a Product Model Using the PME 343
 5.4.1 Essential Properties and Differences Compared to Modeling in SAP ERP .. 343
 5.4.2 Calling the PME .. 344
 5.4.3 Product Models versus Knowledge Bases 345
 5.4.4 Version and Status Management 345
 5.4.5 Classes, Characteristics, and Values 346
 5.4.6 Object Dependencies in the PME 348
 5.4.7 Transport of Knowledge Bases 355
5.5 IPC User Interface ... 355
 5.5.1 JavaServer Pages and J2EE Engine 355
 5.5.2 Extended Configuration Management (XCM) 356
5.6 Special Functions of the IPC User Interface 357
 5.6.1 Images and Other Objects ... 357
 5.6.2 Import-Export of Configuration Results 357
 5.6.3 Pricing Overview ... 358
 5.6.4 Better Handling of Restrictable Characteristics 360
 5.6.5 Search/Set .. 360
 5.6.6 Displaying Long Texts (as of SAP CRM 2006s) 361
 5.6.7 Messages Controlled by the Configurator (as of SAP CRM 2006s) ... 361
 5.6.8 Configuration Comparison (as of SAP CRM 2006s) 362
5.7 UI Designer (as of SAP CRM 7.0) ... 363
5.8 Summary .. 365
6 Challenges in Variant Configuration ... 367

6.1 Performance Optimization .. 368
 6.1.1 Performance Bottlenecks—Occurrence and Influencing Factors ... 368
 6.1.2 Reasons for Performance Bottlenecks 370
 6.1.3 Performance Analysis ... 373

6.2 Change Management .. 376
 6.2.1 Engineering Change Management (ECM) 376
 6.2.2 Order Change Management (OCM) 388

6.3 Complex System Configurations .. 394
 6.3.1 System Configuration—Definition 394
 6.3.2 Dynamic Modification of the BOM Structure 395
 6.3.3 Interlinked Configuration Structures in LO-VC 400
 6.3.4 Composition Problems in SCE Advanced Mode 403

6.4 Master Data Distribution with Product Data Replication (PDR) ... 410
 6.4.1 Challenge and Opportunities 411
 6.4.2 PDR Components (ALE, Configuration Management, and Workflow) ... 413
 6.4.3 Setting Up PDR ... 413
 6.4.4 Preparations in the System ... 415
 6.4.5 Setup and Customizing of PDR 418
 6.4.6 Replication of a VC Model with PDR 427

6.5 Summary ... 444

7 Enhancements in SAP Industry Solution DIMP 447

7.1 Overview .. 447
7.2 DIMP—Discrete Industries and Mill Products 448
7.3 Special Requirements of the Mill Industry 449
 7.3.1 Sales Order Processing and Production Scenarios 450
 7.3.2 Production Discrepancies—Planned Configuration and Actual Configuration .. 450

7.4 Product Configuration Enhancements in SAP for Mill Products ... 452
 7.4.1 Fast Entry of Characteristics—Simplified Entry of Configurable Document Items .. 453
 7.4.2 Inheritance in Item Documents—Global and Local Items ... 456
Contents

7.4.3 Copying Default Values from the Customer Material Information Record .. 457
7.4.4 Working with Sales Order Versions .. 457
7.4.5 Variant Configuration in Connection with Make-to-Stock Production ... 460
7.4.6 Order Combination with Configurable Products 462
7.5 Summary .. 463

8 Enhancements and Add-Ons in the SAP Partner Environment ... 465

8.1 Sybit Model Tester (Company: Sybit GmbH) 467
8.1.1 Manual Testing—Transaction CU50 467
8.1.2 Benefits of Automated Tests ... 467
8.1.3 Sybit Model Tester .. 468
8.1.4 Summary .. 473
8.2 Sybit Configuration Visualizer (Company: Sybit GmbH) 473
8.2.1 Problem .. 473
8.2.2 Sybit Configuration Visualizer 475
8.2.3 User View ... 475
8.2.4 Modeler View—The Visualization Modeling Environment ... 477
8.2.5 System View .. 479
8.2.6 Summary .. 480
8.3 VCPowerPack (Company: AICOMP Group) 480
8.3.1 How VCPowerPack Works ... 481
8.3.2 VCPowerPack—CoreVC .. 481
8.3.3 VCPowerPack—SmartVC ... 482
8.3.4 VCPowerPack—SmartPR .. 483
8.3.5 VCPowerPack—SmartMD .. 485
8.3.6 VCPowerPack—Industry Solutions 485
8.3.7 Project Acceleration ... 485
8.3.8 Summary .. 486
8.4 it.cadpilot (Companies: itelligence AG and ACATEC Software GmbH) .. 486
8.4.1 CAD and SAP—Two Configuration Worlds? 487
8.4.2 Structure of Modern 3D CAD Systems 487
8.4.3 Controlling CAD Systems .. 488
8.4.4 Super BOM in Variant Configuration 489
Contents

8.4.5 Architecture ... 489
8.4.6 CAD Configuration ... 491
8.4.7 Advantages of a CAD Configuration Integrated into SAP ERP ... 492
8.4.8 Application Scenarios ... 493
8.4.9 Additional Options ... 495

8.5 Convenience Features for Sales, Marketing, and Modeling (Company: encoway GmbH) ... 497
8.5.1 K-Select ... 498
8.5.2 K-Assistant ... 500
8.5.3 K-Connect ... 501
8.5.4 K-Document ... 503
8.5.5 Quoteassistant ... 506
8.5.6 Summary of Convenience Features 507

8.6 top flow Framework and top flow-Variant Engine (Company: top flow GmbH) ... 507
8.6.1 Optimizing the Configuration Dialog Box 508
8.6.2 Functional Enhancements .. 511
8.6.3 New Object-Dependency Logic Options 512
8.6.4 Process Optimization with the top flow Variant Engine ... 514

8.7 Product Model Validation with ConfigScan (Companies: Fysbee SA and eSpline LLC) ... 515
8.7.1 Business Scenarios That Motivate the Need for Change ... 516
8.7.2 Anti-Patterns in Common Use .. 517
8.7.3 How ConfigScan Addresses these Issues 518
8.7.4 ConfigScan Validation Suite—The Basics 521
8.7.5 Working with the Test Editor .. 521
8.7.6 Use Case: Nokia Siemens Networks 524
8.7.7 Summary ... 526

8.8 Managing Variant Configuration (Company: eSpline LLC) 526
8.8.1 Managing the LO-VC Model Lifecycle 528
8.8.2 Managing the LO-VC Transactional Processes 534
8.8.3 Summary ... 539

8.9 Summary .. 540
9 Project Lead Reports on Projects and Project Structures 543

9.1 “We’re Implementing SAP!”—A Project Lead’s Experience Report ... 543

9.1.1 The Marketing Pitch and What Will Follow—Clarify the Prerequisites for Your Work 544
9.1.2 Analyze Your Business Processes and Improve Them 546
9.1.3 How Many Instances Would You Like to Have? 547
9.1.4 The Regional versus Global Approach 549
9.1.5 Dealing with Modifications to the Standard System 550
9.1.6 The Compromises You Can or Cannot Accept 551
9.1.7 Finding the Appropriate External Support 553
9.1.8 Communicate Changes Effectively 555
9.1.9 Communicate Necessary Compromise Effectively 556
9.1.10 Train Your Employees 557
9.1.11 Problems After Going Live 558
9.1.12 Changing Mass Data ... 559
9.1.13 Changing Business Models 561

9.2 Roles in a Variant Configuration Team 562

9.2.1 Expertise and Experts ... 562
9.2.2 Putting Together and Structuring the Project Team 567

9.3 ASAP for Variant Configuration Projects 567

9.3.1 Project Preparation ... 569
9.3.2 Business Blueprint ... 570
9.3.3 Realization ... 570
9.3.4 Final Preparation ... 571
9.3.5 Go-Live and Support .. 572
9.3.6 Golden Client Approach 572
9.3.7 Specific Features of IPC Scenarios 574

9.4 Summary ... 576

10 Customer Reports on the Introduction of SAP Variant Configuration ... 579

10.1 Progress of the Project at Getriebebau NORD 580

10.1.1 Initial Situation .. 581
10.1.2 Measures ... 582
10.1.3 Results ... 586
10.1.4 Summary ... 588
10.2 Configurable Materials at Krones AG 590
 10.2.1 Project ... 590
 10.2.2 Results ... 590
 10.2.3 Summary ... 593
10.3 Progress of the Project at Hauni Maschinenbau AG 594
 10.3.1 Personnel Resources ... 595
 10.3.2 Results ... 596
 10.3.3 Using the Order Engineering Workbench 599
10.4 Variant Configuration at the Felix Schoeller Group 602
 10.4.1 Project ... 602
 10.4.2 Results ... 604
 10.4.3 Extending Variant Configuration Using the IPC 608
 10.4.4 Summary ... 610
10.5 SAP at Hülsta and in the Hüls Corporate Group 610
 10.5.1 Initial Situation ... 611
 10.5.2 Preparation ... 611
 10.5.3 Project Objectives and Results 612
 10.5.4 Summary ... 619
10.6 Lenze Group—Past, Present, and Future Configuration 620
 10.6.1 Present Configuration—The EuLe Project 620
 10.6.2 Future Configuration—Powerful Process Integration 624
10.7 Product Configuration at Baldor Electric 626
 10.7.1 Starting Point of the Project 626
 10.7.2 Key Characteristics of the Project 627
 10.7.3 Basics of the Variant Model 633
 10.7.4 Conclusion .. 634
10.8 Summary .. 635

11 Configuration Workgroup ... 637

 11.1 Introduction to the CWG .. 637
 11.2 Tasks and Objectives ... 638
 11.3 History ... 640
 11.4 Organizational Structure ... 642
 11.5 CWG Conferences .. 643
 11.6 CWG Portal ... 644
 11.7 CWG Sandbox System .. 645
 11.8 Summary ... 646
12 Outlook for SAP Business ByDesign

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 SAP Business ByDesign</td>
<td>647</td>
</tr>
<tr>
<td>12.2 Product Configuration in Medium-Sized Businesses</td>
<td>648</td>
</tr>
<tr>
<td>12.3 Make to Order in SAP Business ByDesign</td>
<td>650</td>
</tr>
<tr>
<td>12.3.1 Extending the Product Concept</td>
<td>651</td>
</tr>
<tr>
<td>12.3.2 Make to Specification</td>
<td>652</td>
</tr>
<tr>
<td>12.3.3 Lightweight Product Variants</td>
<td>653</td>
</tr>
<tr>
<td>12.4 Product Configuration in SAP Business ByDesign</td>
<td>654</td>
</tr>
<tr>
<td>12.4.1 Product Model</td>
<td>654</td>
</tr>
<tr>
<td>12.4.2 Product Properties</td>
<td>655</td>
</tr>
<tr>
<td>12.4.3 Integration of a Configurator</td>
<td>657</td>
</tr>
<tr>
<td>12.4.4 Process Automation</td>
<td>658</td>
</tr>
<tr>
<td>12.5 Summary</td>
<td>658</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Database Tables of Variant Configuration</td>
<td>663</td>
</tr>
<tr>
<td>B APIs of Variant Configuration</td>
<td>669</td>
</tr>
<tr>
<td>C User Exits of Variant Configuration</td>
<td>671</td>
</tr>
<tr>
<td>D Comprehensive Examples of Variant Functions</td>
<td>673</td>
</tr>
<tr>
<td>E The Authors</td>
<td>681</td>
</tr>
</tbody>
</table>

Index | 683 |
A list of all BOM explosions including assigned object dependencies.

- An evaluation of the class nodes.

- A detailed list of the characteristic value assignment including assigned object dependencies for characteristics and values.

- An evaluation of the configuration profiles, including object dependencies.

2.6 Object Dependencies for the Value Assignment Interface or the Sales View

As already described, object dependencies are required for two usages: the high-level configuration (sales configuration, in the dialog, for the value assignment interface) and the low-level configuration (BOM and routing explosion, also without dialog). The following section discusses the first usage in more detail.

2.6.1 Product Modeling Environment PMEVC

Various transactions or methods are provided for the maintenance of object dependencies for the value assignment interface. The most important maintenance environment for object dependencies for the value assignment interface, both local and global, is the PMEVC product modeling environment (see Figure 2.29). This section therefore focuses on this environment. Section 2.7 introduces additional maintenance options.

The PMEVC product modeling environment has been available as Transaction PMEVC since SAP ERP Release 5.0. A similar function is also part of the IPC. PMEVC is short for *Product Modeling Environment Variant Configuration*. The concept behind this transaction is to create an environment in which you can maintain the entire variant model via the model structure from the high-level configuration perspective. Similar to the CUMODEL variant model browser, you can first obtain an overview of the existing model structure and then navigate to details.

You can also create and change numerous components of the configuration model from this product modeling environment. This enables you to create and change all types of object dependencies, both global and local. The same applies to configuration profiles, variant tables, and IPC data.
The product modeling environment uses an additional editor for the maintenance of object dependencies. In contrast to the traditional object dependency editor, this editor allows you to use the following elements:

- Context-sensitive input help
- Drag-and-drop
Object dependency wizard for preconditions, selection conditions, and table-based constraints

You can call the context-sensitive input help via the function key [F4] or the second button in the editor (see Figure 2.29). All types of syntax elements as well as characteristics and characteristic values are provided. You can insert them in their respective positions in the object dependency syntax.

The drag-and-drop function enables you to copy individual characteristic values from the lists on the left (see Figure 2.29) to the editor in PMEVC. As the example in Listing 2.7 shows, the characteristic and the characteristic value are transferred in the form of an equation.

char1 = 'value1'

Listing 2.7 Example of a Syntax Generated via Drag-and-Drop

As already mentioned, the object dependency wizard enables you to create preconditions and selection conditions as well as table-based constraints without having to write the syntax yourself. The wizard queries all necessary information, and the system creates the syntax and all other required data.

The PMEVC product modeling environment not only enables you to completely maintain all object dependencies that are relevant for the value assignment interface; PMEVC also allows for nearly all maintenance steps of the modeling for the high-level configuration. This includes the following aspects:

- Maintenance (creation, modification, display, assignment) of object dependencies for the configuration profile, characteristics, and characteristic values
- Class-specific characteristic adaptation
- Simple classification (no multiple classification)
- Creation of a configuration profile (several profiles for one material master are not possible, but you can maintain all existing configuration profiles)
- Usage of change numbers
- Maintenance of the structure of variant tables
- Maintenance of the content of variant tables
- Modification of object dependencies for the BOM
- Creation of the knowledge base and runtime version for the IPC
Object Dependencies for the Value Assignment Interface or the Sales View

- Material-specific activation of the IPC as the configurator in SAP ERP
- Maintenance of the user interface design
- Maintenance and assignment of variant conditions for pricing

Enhancement Package 5 (EHP5) of ERP Release 6.0 is likely to provide the additional option to not only change existing object dependencies in the BOM but also create new object dependencies. You can also use drag-and-drop.

The system functions are also supposed to be enhanced. If you start the simulation from PMEVC (button in Figure 2.29), the system first displays a screen for assigning values to reference characteristics. Depending on the configuration scenario—that is, whether it is a sales order or material variant scenario—you can assign values to all relevant reference characteristics before the actual value assignment screen opens.

Besides these two aspects (creation of new object dependencies for BOM items and simulation with reference characteristics), EHP5 will probably provide the following additional PMEVC functions:

- Creation of new characteristic values
- Creation of new descriptions and long texts in additional languages for characteristics and characteristic values
- Easier maintenance of characteristics groups within the scope of user interface design, including drag-and-drop option
- Detailed view for BOMs and BOM items

Most of the master data of the Variant Configuration model cannot be maintained via PMEVC. Consequently, it is required that the following master data be created via the common transactions in advance:

- Characteristics
- Classes
- Material masters
- BOMs including all objects at the item level
- Routings including all objects at the operation level
- Variant functions
Change numbers
Objects that couldn’t be created in PMEVC before Release ERP 6.0

After this introduction of PMEVC, the following section describes an example of its usage.

2.6.2 Example

After these rather theoretical explanations, it may be helpful to provide you with a practical example of how you can use PMEVC to create object dependencies for the value assignment interface. For this purpose, you use the object dependency wizard in PMEVC.

To map dependencies between the individual characteristics of the value assignment interface, you should use tables or, if they don’t become too long, variant tables. The advantage of tables is that you can read the dependency type from them more easily than when evaluating the syntax of the object dependencies directly. Furthermore, the usage of variant tables has a major advantage if the model is “alive”: If the dependencies in the model change, you have to change only the content of the variant table, without having to modify the syntax of the object dependencies.

The easiest way to evaluate the table is to write object dependencies that query the table and only allow for value assignments that comply with the table. This is to be implemented in such a way that no disallowed value assignments are possible. The list of the allowed values for each characteristic is supposed to be dynamically restricted in such a way that only allowed value assignments are possible. For the selection of such “elegant” object dependencies, you must use a type for which the user doesn’t have to specify a point in time when the object dependencies are to be processed. You should therefore use constraints.

In Figure 2.30, PMEVC was called with material T-VPC. The system has found the BOM for the material. These are initially the two only entries in structure (1). You now require at least the variant class and the configuration profile. As already mentioned, the variant class, including its characteristics, needs to be created outside PMEVC. In Figure 2.30 the existing variant class is already assigned.

This variant class (or a complete group of variant classes) was previously included in the PMEVC environment (see the bottom left of Figure 2.31, here under Environment • Classes and Context menu). You then simply assign the variant class via drag-and-drop.
Object Dependencies for the Value Assignment Interface or the Sales View

Figure 2.30 Getting Started in PMEVC: Class Assignment and Creation of a Configuration Profile

Figure 2.31 Variant Tables—Creation and Content Maintenance with PMEVC
In contrast to the variant class, you can create the configuration profile directly from PMEVC. As you can see in Figure 2.30 (2), this function is available in the context menu at the material master level. Similar to the common transaction for the creation of configuration profiles, you can create a configuration profile with the default values. Unlike the common transaction, there are also default values for the name and variant class type.

In addition to the two previously mentioned steps, the model structure consists of four objects: material master, configuration profile, variant class, and BOM.

A variant table (see Figure 2.31) is supposed to map the allowed combinations for the value assignment of numerous characteristics. In this example, we assume that this includes the three characteristics: “Special wish,” “Casing,” and “CPU.” For this purpose, perform the following steps:

1. **Create a variant table**
 First you create the variant table via the context menu in the environment, because it isn’t provided here yet.

2. **Name of the table**
 The window CREATE VARIANT TABLE opens, in which you enter a name for the table. ENGINEERING CHANGE MANAGEMENT is optional and not supposed to be used in this example.

3. **Description of the table**
 The system then displays the detail screen (see Figure 2.31) with five tabs. In the **Basic Data** tab, enter a description (language-dependent), and then release the variant table.

4. **Assigning characteristics**
 In the **Characteristics** tab, specify the three mentioned characteristics in any sequence.

5. **Entering the table content**
 Finally, enter the allowed combinations of the value assignment with regard to the three characteristics as rows in the **Contents** tab.

After the variant tables have been created and their content has been maintained, you require object dependencies. Object dependencies read the table and dynamically
Object Dependencies for the Value Assignment Interface or the Sales View

restrict the value lists of the corresponding characteristics in such a way that only value assignments from the table are possible. For this purpose, start the table constraint wizard via the context menu for the configuration profile, as shown in Figure 2.32.

Figure 2.32 Creating Object Dependencies Using the Table Constraint Wizard

The wizard guides you through the individual steps of the creation of constraints and queries you for all required information. It is possible that the wizard may dynamically adapt the steps to the already specified information. The wizard processes the following steps:

1. **Start**

 The first step of the wizard provides information on the procedure for the creation of a constraint with reference to a variant table.
2. *Mode of Action*

The second step queries you about the mode of action. Here, you're supposed to restrict the value lists for characteristics. This is the first selection option in this step. The difference from other selection options is described in the following.

It is possible that the wizard won't provide the Value Restriction option. In this case, the required prerequisite—that the characteristics whose value lists are supposed to be restricted are indicated as restrictable in the characteristic definition—is not met.

3. *Configuration Object*

Next, the wizard queries you for the configuration object. In addition to characteristics from classes, you can also use and evaluate other reference objects in constraints. Because this example is supposed to restrict characteristics of a variant class, the corresponding variant class is also the configuration or reference object.

4. *Variant table*

After the configuration object step, the variant table selection is implemented. Because this example contains only one variant table in the PMEVC environment, no comprehensive selection can be made.

5. *Explanation*

In the Explanation step, you can assign a language-dependent long text to the object dependencies, that is, to the table constraint. It also lists the characteristics of the variant table to exclude characteristics for object dependencies if required.

6. *Constraint Name*

For constraints, the name must be assigned externally, that is, by the user. This request, including a short text, is made in the Constraint Name step.

7. *Complete*

All steps are completed. A description of these steps is provided once again in detail before the user can complete the table constraint.

The system then displays the completed table constraint (see Figure 2.33). After saving, you can directly test it by calling the configuration simulation from PMEVC via the Test button.
The value assignment interface displays the three characteristics: “Special wish,” “Casing,” and “CPU.” Initially, the corresponding input help ([F4] key) provides all values from the variant table for each characteristic. However, if you start assigning values to any of the three characteristics, the system provides the values only for the other two characteristics that lead to an allowed value assignment according to the variant table. The same applies to two characteristics to which values have been assigned.

A special feature of the traditional configurator is that if the allowed value range for a characteristic is restricted to a value, the system automatically sets this value. This is done only for required characteristics in the IPC. Note that the characteristics need to be restrictable according to the characteristic definition. As a result, the
lists of the allowed values for characteristics to which values have been assigned are restricted to the value assignment, as already described.

2.6.3 Variant Tables in Detail

The first usage of variant tables was introduced in the example above. You can address variant tables in all types of object dependencies. The columns of variant tables are always characteristics. The rows represent value assignment combinations. You can use variant tables for different purposes:

- Value restrictions in constraints (in this context, values can already have been assigned—as described in the example)
- Inferences of values in constraints or procedures
- Conditions as preconditions, selection conditions, if conditions in procedures or constraints, and as a condition part in constraints
- Consistency checks via constraints

These purposes are discussed in more detail in the introduction to the corresponding types of object dependencies in Sections 2.6.4 through 2.6.7.

At this point, the structure and maintenance of variant tables will be introduced (see Figure 2.31 and Figure 2.34). You can maintain the variant table's structure and content via PMEVC. There are also specific transactions for the following tasks:

- Content maintenance (Transaction CU60)
- Creating, changing, and displaying the table structure (Transactions CU61 through 63)

The BASIC DATA tab of variant tables (see Figure 2.31) contains names, the description (language-dependent short text), the status, and the group. The status can be adapted via Customizing and also includes the content maintenance and usage in object dependencies as well as distribution locks for the content and structure.

The same aspects apply to groups as to characteristic and class groups; it is also a separate list in Customizing. Furthermore, you can couple the variant table with a database table in the basic data. This is described in detail later in this section. The basic data is complemented by the authorization groups for the content and structure maintenance.
The **Characteristics** tab, which is assigned to a variant table, provides the columns of the variant table. For the maintenance of the table content and for the usage in object dependencies, the settings in the characteristic definition—such as single-level/multilevel, restrictable, required characteristic, default values, or object dependencies—are irrelevant. In the characteristic view, you can define a first key. This key is merely a prerequisite and is significant only if you want to infer values from the variant table. This can be done via constraints or procedures. For value restrictions, conditions, or mere consistency checks, the system ignores the key information.

For inference of values, constraints with an inference part can evaluate more than the **Value Assignment Alternative** (key in the **Characteristics** tab) that is specified in the tab. You can create these additional alternatives in the corresponding view.

In PMEVC, you can also maintain the elements of the **Content** directly in the variant table.
Besides maintaining content from PMEVC, you can implement the content via a common transaction, namely, Transaction CU60. In addition to the standard display (1 in Figure 2.35), this transaction also allows for displays as a matrix (2) and as a list (3). These last two displays enable you to easily decide which combination is supposed to be used (decision table).

Figure 2.35 Variant Tables—Content Maintenance with the Common Transaction

[!] **IPC-Compatible Table Content**

You can also select multiple values for each field in the standard display. This display isn’t IPC-compatible, but you can transfer it to such a display using the respective menu entry (Add up, Untag).

Besides the already introduced options of maintaining variant table content using PMEVC or a common transaction, namely, Transaction CL60, you can also import content from Excel tables. For this purpose, you can use Transaction CU60E.
To import data using Transaction CU60E, the SAP ERP system requires an existing variant table. This means that you first have to create the required characteristics and then use these characteristics to create the variant table structure.

The example in Figure 2.36 assumes that the result of the data import is a variant table (as illustrated at the top of Figure 2.36). The specified preparations in the ERP system include the creation of the three characteristics that are used in this example (multimedia package, CD drive, and speakers) as well as the creation of the variant table structure (T_TAB_VPC00).

When creating and filling the Excel table, the following needs to be considered: The columns of the Excel table and their sequence must correspond to those of the variant table, and all values in the Excel table must be in the text format. This also applies to numerical characteristics in the variant table. The Excel table mustn't contain headers or descriptions—only language-independent characteristic values. The system checks the format of the values during the data import and cancels the transaction if necessary. The Excel file needs to be saved as a csv file (see Figure 2.36). This means that semicolons are used as separators for this Excel file format.
Transaction CU60E requires solely the name of the variant table as well as the name and address of the Excel file as specifications. You start the data import using the Execute button ([F8]). Only complete data imports are possible; an option for change uploads does not exist. The system deletes possibly existing variant table content and fills the variant table with the new entries.

Transaction CU60E

With regard to Transaction CU60E, please refer to SAP Note 516885. It also contains a documentation for this transaction.

As already mentioned, you can use variant tables in all types of object dependencies. Basically, the syntax always looks the same (see Listing 2.8).

table <table name>
 (<column characteristic>=<interface characteristic>,...)

Listing 2.8 Syntax Concept for Calling Variant Tables

You can break down this visual similarity as follows:

- The call starts with the keyword table.
- Then the name of the table is specified.
- Next, all columns of the variant table that are to be evaluated are listed in brackets. You don’t always have to evaluate the entire table. Because the characteristics of the table don’t have to correspond to the characteristics of the user interface, the system assigns the corresponding characteristic to the value assignment interface after each column characteristic.

Figure 2.33 shows an example of such a table call in constraints. Note that \$X. precedes the characteristics from the value assignment interface. This refers to material T-VPC, as you can see in the constraint directly above the table call. As mentioned in Chapter 1, you cannot address objects (the material master in this case) as flexibly as in constraints. In this case, you can only use the \$self., \$root., or \$parent. levels. The table access from Figure 2.33 would then be as shown in Listing 2.9.

table TAB_VPC (T_PC6R = $self.T_PC6R,
 T_PC6R = $self.T_PC6R,
 T_PC6R = $self.T_PC6R)

Listing 2.9 Table Access in Preconditions, Selection Conditions, and Procedures
Characteristics of the value assignment interface for which the values are supposed to be inferred must be linked with $self.; $parent. and $root. are also allowed.

![Database Table](image)

Figure 2.37 Coupling of Variant and Database Tables

Coupling with database tables also needs to be discussed (see Figure 2.37) in the context of the maintenance of the variant tables. The background for this function is the requirement to also address database tables in object dependencies. However, this is not directly possible in object dependencies. There are two options for addressing database tables in object dependencies.

- **Directly addressing a database table (variant function)**
 You create a variant function and address the database table in the function module that corresponds to the variant function. The variant function is used in object dependencies.

- **Indirectly addressing a database table (coupled variant table)**
 You create an appropriate variant table and couple it with the database table. If the coupling is active, you can directly include the variant table in any type of object dependencies. Then the database table is also addressed.

The second option uses an assignment of the database table in the maintenance of the basic data of the variant table structure. You can also distinguish between the following two scenarios.

1. **Scenario 2—Starting Point Database Table**
 An existing database table is to be addressed using this approach. You must create the appropriate characteristics, that is, characteristics with the appropriate format, in this scenario. You have to create characteristics only for the fields (that is, the columns of the database table) that are to be addressed in the object dependencies. Then you create a variant table that contains exactly these characteristics as columns. You must include the name of the database table in the basic data of the variant table. This allows for a field assignment. All characteristics of the variant table are linked to the columns of the database table. Finally, you must activate the coupling. Afterward, you can evaluate the database table in all types of object dependencies by addressing the coupled variant table in the syntax.
2. Scenario 2—Starting Point Variant Table

An existing variant table that may already be used in object dependencies is to be converted into a database table. This scenario is used, for example, when variant tables reach a size that may lead to performance problems. However, there may also be other reasons.

In this case, you need to create an appropriate database table. With regard to the format, the fields of the table must be created in such a way that they can include at least the values of the corresponding characteristics. The key fields of the database table are not relevant for Variant Configuration. Only the key combination of the variant table is critical for the evaluation of object dependencies. Of course, you must select the database table key in such a way that uniqueness is ensured for later content.

Analogous to the first scenario, you must now couple the variant table with the still empty database table, activate it, and assign the corresponding fields. Finally, the content of the variant table is transferred to the database table using Transaction CU59. In this second scenario, you don’t have to adapt all object dependencies that use this variant table. They have exactly the same function as before. Bear in mind that the content of the variant table is inactive when the coupling has been activated.

In the standard version, you maintain the content directly in the database table. You can lock the content maintenance of the variant table via the status. You can also delete the content of the variant table to prevent misunderstandings. Additional maintenance in the variant table with a delta transfer of this data to the database table is also possible. However, this isn’t very useful because you cannot delete rows when implementing a delta transfer, and problems may occur due to the key of the database table.

2.6.4 Constraints in Detail

As already mentioned, you can use all types of object dependencies for the configuration in the value assignment interface. Constraints are the most important and default type of object dependencies, because they can be used for nearly all tasks. You can therefore perform the following tasks using constraints:

- Setting values
- Checking values (in consistency checks)
- Addressing any objects that are also in the multilevel configuration (not only \$self, \$parent, or \$root)
- Working with a high performance level
- Working in a declarative way (this means you don't have to consider a processing sequence or similar factor in the modeling process)

Constraints are collected in dependency nets (also referred to as constraint nets). Dependency nets are generally assigned to the configuration profile. It doesn’t matter whether a large number of constraints are assigned to a dependency net. However, the number of dependency nets in a configuration model should be kept to a minimum, even though you cannot always ensure that only one dependency net is assigned to the configuration profile of the header material of the configuration profile.

Need for Multiple Constraint Nets

If, for example, individual configurable assemblies of the overall model are sold separately, all constraints that are related to this assembly must also be assigned to the configuration profile of this assembly via a dependency net.

Within the dependency net, the constraints are local object dependencies; the dependency net itself is global. Note that both have a status. Constraints are consequently active only if the following conditions are met:

- The constraint is released.
- The dependency net is released.
- The dependency net is assigned to a configuration profile that is considered during configuration.

A constraint consists of at least two and at the most four sections. Objects and restriction are the mandatory sections here. The following explains the four sections according to their sequence:

1. **Objects**
 In this section, you enter all used classes and objects and define variables.

2. **Condition**
 This section is only used to (optionally) specify a central condition under which the constraint is supposed to be evaluated.
3. **Restriction**
 In this section, you define equations, tables, and functions for inferences of values and/or value checks.

4. **Inferences**
 This section enables you to (optionally) enhance the inference and restrict characteristic values.

The objects section is mandatory and must contain the objects that are addressed in the constraint. Objects can be classes, material masters, and documents. The declaration has the following syntax:

- **Class**

 (class type)class name, for example, (300)T_VPC

- **Material master**

 (Material)(class type)(Nr = '<material number>'),

 for example, (Material)(300)(Nr = 'T-VPC')

- **Document**

 (Document)(class type)(Type = '<document type>', Version = '<document version>', Part = '<document part>', Nr = '<document number>'),

 for example, (Document)(017)(Type='DRM',Version='01',Part='000',Nr='T-VPC')

In the objects section, you can also locally define variables for the constraint; the constraint in Figure 2.33 uses such an object variable. Object variables for classes are declared by `is_a`, and for all other objects by `is_object`, as shown in Figure 2.33. The constraint in Figure 2.33 would be as shown is Listing 2.10 without variables.

```
objects:       (300)t_vpc
restrictions:  table tab_vpc (  t_pc6r = (300)t_vpc.t_pc6r,
                                  t_pc8r = (300)t_vpc.t_pc8r,
                                  t_pc3r = (300)t_vpc.t_pc3r).
```

Listing 2.10 Sample Constraint: Table Call without Using Variables

Note that in this context you can also declare the variant class instead of the material master in the objects sections, as done here. After the equals sign, the syntax is as follows: `<object>.<characteristic>`.

In the objects section, you can also define characteristic variables, which are class-specific. You therefore don’t have to use object variables here. In the syntax, this
Object Dependencies for the Value Assignment Interface or the Sales View

is implemented with where and a list of the variables separated by a semicolon. The constraint in Figure 2.33 would be as follows with characteristic variables (Listing 2.11):

```plaintext
objects:      (300)t_vpc where  ?spe = t_pc6r ;
             ?cas = t_pc8r ;
             ?cpu = t_pc3r.

restrictions:  table tab_vpc (  t_pc6r = ?spe,
                               t_pc8r = ?cas,
                               t_pc3r = ?cpu).
```

Listing 2.11 Sample Constraint—Table Call Using Characteristic Variables

Specific Variable Names

As shown here, question marks are often used as variables so that they can be easily identified. You cannot use variables for characteristics from tables, that is, for columns.

If the objects section lists multiple objects, use a comma to separate them.

The restriction section is the second section that is mandatory in constraints. Here, you can carry out consistency checks. The constraint reports an inconsistency when the restriction section is not met. You can also use constraints to infer values. For this purpose, the equations must be solved for the value that is supposed to be inferred, or you must use the inference section. This is further detailed in the context of the inferences section below. The restriction section enables you to restrict values (see Figure 2.33). You can use variant tables and variant functions.

You can also work with conditions in the restriction section. The if syntax element is provided for this purpose. Additional syntax elements, such as then or else, are not available. As shown in Listing 2.12, first the statement and then the if condition is provided.

```plaintext
restrictions:
(300)t_vpc.m1 = 'a'     if (300)t_vpc.m2 = 'x1'.
false              if (300)t_vpc.m2 = (300)t_vpc.m3.
```

Listing 2.12 Restrictions with if Conditions

This restriction section contains two statements that are listed with a comma. The first statement consists of the assignment of the a value for the m1 characteristic. The second statement only leads to an inconsistency message if the if condition
after false is met. The processing of the false syntax element basically generates inconsistency messages and can only be used in constraints.

In constraints, you can use a condition section. The condition section must always be inserted between the objects and the restriction section. It contains exactly one logical expression. The constraint is not processed until the condition of the condition section is met, which is very good regarding the performance. You can also work with variables and variant tables in the condition section, as Listings 2.13 and 2.14 show.

```small
objects: (300)t_vpc where ?os = t_pc01;
         ?hd = t_pc04.
(300)t_vpr where ?tr = t_pr02.
condition : specified ?hd.
restrictions : ?tr = ?os
```

Listing 2.13 Sample Constraint with Condition Section

```small
objects: (300)t_vpc where ?spe = t_pc6r;
         ?cas = t_pc8r;
         ?cpu = t_pc3r.
condition: table tab_vpc ( t_pc6r = ?spe,
                           t_pc8r = ?cas,
                           t_pc3r = ?cpu).
restrictions: false.
```

Listing 2.14 Sample Constraint with Table Call in the Condition Section

In Listing 2.13, the restriction section is evaluated under the condition that a value has been assigned to the t_pc04 characteristic. In this case, the system checks whether the same values have been assigned to the t_pc01 and t_pr02 characteristics. If no values have been assigned to t_pc01, the system copies the value assignment of t_pr02 to this characteristic.

In Listing 2.14, an inconsistency message is output if the (300)t_vpc variant class in the value assignment interface corresponds to a row of the tab_vpc variant table in the configuration. This is used if inconsistent value assignment combinations are collected in variant tables. You can also create such constraints with the table constraint wizard. In this case, you must select the CHECKING INCONSISTENT COMBINATIONS entry as the mode of action. In this context, have a look at Figure 2.32 in Section 2.6.2.
The inferences section, which is optional just like the condition section, is the fourth section of a constraint. This section is always the last section of the constraint and enhances the evaluation of the restriction section. This “enhanced evaluation” can refer to equations, variant tables, variant functions, and restrictable characteristics. The syntax of the inferences section is merely a list of characteristics. Consequently, an equation, \(V = L \times W \times H \), for example, in a restriction section without a subsequent inferences section is only evaluated for calculation in such a way that \(V \) is the product of \(L, W, \) and \(H \). However, if the constraint has the following structure, the fourth value is inferred from any three values (see Listing 2.15).

```
objects:   (300)t_vpc where
          v = t_pc91;  l = t_pc92;
          b = t_pc93;  h = t_pc94.
restrictions:   v = l * b * h.
inferences:     v, l, b, h.
```

Listing 2.15 Sample Constraint with Equation and Inferences Section

Variant tables and functions for which more than one value assignment alternative is defined are additional examples (see Figure 2.34 in Section 2.6.3). If you don’t use the inferences section here, the system can only evaluate the first key, that is, the first value assignment alternative. However, if the constraint has the following structure and if two additional value assignment alternatives exist for the first and third characteristics and for the second and third characteristics, the system can infer the remaining third characteristic from the table from any two characteristics to which values have been assigned (see Listing 2.16).

```
objects:   (300)t_vpc where
          ?spe = t_pc6r ;
          ?cas = t_pc8r ;
          ?cpu = t_pc3r.
restrictions: table tab_vpc ( t_pc6r = ?spe,
                                      t_pc8r = ?cas,
                                      t_pc3r = ?cpu).
```

Listing 2.16 Sample Constraint with Variant Table and Inferences Section

For usage with restrictable characteristics, have a look at the constraint in Figure 2.33 in Section 2.6.2.

Now that we’ve discussed constraints in detail, the following sections deal with the other types of object dependencies. As already mentioned, you can use all
types of object dependencies to design the value assignment interface in sales and distribution.

2.6.5 Preconditions

You can use preconditions to disallow individual characteristic values or entire characteristics for the value assignment interface. If you don’t use preconditions, values can be assigned to any characteristic of the value assignment interface in any sequence. You can select any value from the list of the allowed values—irrespective of the value assignment of other characteristics. In this context, you have to find answers to two questions:

1. What is supposed to be disallowed? That is, which characteristic or which characteristic value is supposed to be dynamically disallowed?
2. When is it supposed to be allowed? That is, when is the corresponding characteristic or characteristic value supposed to be allowed within the scope of the value assignment?

The storage location of the respective precondition answers the first question. The syntax answers the second question. For example, if the XYZ engine is only supposed to be offered for the sport version of a car configuration, a precondition must be assigned to the XYZ characteristic value of the characteristic for the engine selection (What is supposed to be disallowed?). The syntax contains the prerequisite that the sport version was selected for which the XYZ+ engine is allowed (When is it supposed to be allowed?).

What effect does it have when the $self.version = 'sport' precondition is assigned to the XYZ characteristic value?

- **Assigning the “Sport” value to the “Version” characteristic**
 If the “Sport” value is assigned to the “Version” characteristic, the list of allowed values in the characteristic for the engine will provide all values as if no precondition exists.

- **Assigning a different value than “Sport” to the “Version” characteristic**
 If a different value than “Sport” is assigned to the “Version” characteristic, the “XYZ” value will be missing in the list of allowed values in the characteristic for the engine.

- **No value assigned to the “Version” characteristic**
 Note that the precondition is considered to be met if no value is assigned to the
"Version" characteristic. In this case, the list of allowed values of the engine characteristic would include all engine values. In the standard version all allowed values are initially available. During the value assignment, the system hides the values that are no longer allowed. If you don’t want to use this standard logic, you must implement this by adding \$self.version = 'sport' and \$self.version specified. The system then first provides all values that can be generally selected, and the list of allowed values is gradually extended.

- **Sequence of the value assignment**

 The precondition mentioned in the previous item is elegant in one direction only: if values are assigned first to the version and then to the engine. If you start by assigning values to the engine, you can select any engine and any version. Only then is the precondition evaluated. It retroactively disallows the XYZ engine. This leads to an inconsistency message if the XYZ engine and a version other than sport are selected. You can avoid this by assigning a precondition to the sport version. Another option is to force a processing sequence. A value is not supposed to be assigned to the “Engine” characteristic until the version is known. In this case, you use a precondition for the characteristics. You assign a precondition of the \$self.version specified (When is it supposed to be allowed?) to the engine characteristic (What is supposed to be disallowed?).

- **Multiple preconditions**

 You can also assign multiple preconditions to characteristic values or characteristics. In this case, the value assignment is only allowed if all preconditions are met. It can be considered an And link. You can only implement an Or link between preconditions when you include the conditions in a precondition. A precondition can be any complex condition using any brackets, negations, and concatenation with and or.

Values or characteristics that are excluded via preconditions are not displayed in the value assignment interface by default. However, you can use the settings in the configuration profile (see Figure 2.38), for example, to define that disallowed characteristic values or characteristics are displayed but not used for the value assignment.

In Figure 2.38, the settings were called via the menu during the configuration. The With excluded characteristics checkbox was selected here. As a result, the disallowed value, XYZ, is displayed but cannot be selected. Similarly, disallowed characteristics would be displayed, but you couldn’t assign values to them.
You can use variant tables in all types of object dependencies, that is, also in preconditions. The syntax of a precondition that uses the table from Figures 2.31 and 2.34 could be, as shown in Listing 2.17:

```java
table TAB_VPC (   T_PC6R = $self.T_PC6R,
                 T_PC8R = $self.T_PC8R,
                 T_PC3R = $self.T_PC3R)
```

Listing 2.17 Sample Variant Table in a Precondition

This example has the same syntax as a procedure. Instead of $self, you can also use $parent or $root everywhere—provided that this is correct with regard to content. You could assign such a precondition with exactly this syntax to one of the three mentioned characteristics; however, this wouldn’t be a clean solution.

Considering the increasing elegance of the solution, the following three options can be used to disallow values.

- Precondition for the characteristic (as described)
- Precondition for the characteristic value (as described later)
- A constraint with this variant table and restrictable characteristics (as the most elegant solution; see Figure 2.33)

If you selected the variant with the precondition for the characteristic, the precondition wouldn’t affect the value assignment of the three characteristics. Not
until values have been assigned to all three characteristics addressed in the variant table does the precondition become active and output an inconsistency if the table doesn’t contain this value assignment combination.

However, preconditions for characteristic values are more elegant than this variant with a precondition for the characteristic but still not as elegant as the variant with a constraint. For example, if you assume that values are assigned to the characteristics in a fixed sequence and the T_PC3R characteristic is the last characteristic to which a value is assigned, you can provide preconditions for the characteristic values of this characteristic. The precondition for the value ‘03’ would have the following syntax (see Listing 2.18):

```plaintext
table TAB_VPC (   T_PC6R = $self.T_PC6R,   T_PC8R = $self.T_PC8R,   T_PC3R = '03')
```

Listing 2.18 Sample Variant Table in a Precondition for Characteristic Value ‘03’

Analogous preconditions also apply to the other values of this characteristic. Compared to the first variant—that is, the precondition for the characteristic—this has the advantage that only the values that lead to a consistent value assignment are provided for the third characteristic. Preconditions for characteristics or characteristic values don’t require restrictable characteristics.

2.6.6 Selection Conditions

Selection conditions can dynamically convert optional characteristics into required characteristics.

Optional Characteristics

This technology requires that the ENTRY REQUIRED checkbox in the characteristic is not set, that is, the characteristic is actually a so-called optional characteristic.

If you assign a selection condition to such a characteristic, the characteristic dynamically becomes a required characteristic if the condition is met. Let’s illustrate this with an example.
Creating a Product Model for SAP Variant Configuration

Ex

Sport Version Requires a GPS

For the car configuration, the selection of a GPS needs to become a prerequisite for the sport version. In this context, the rules and the syntax must be analogous to the pre-conditions. The selection conditions must be assigned to the GPS characteristic (What is required?); the content of the syntax is the condition of the sport version (When is it required?). The syntax is analogous to the precondition specified previously: `$self.version = 'sport'`. The selection condition with this syntax is assigned to the GPS characteristic. This way, the selection of a GPS is required for the sport version.

Compared to the rules of preconditions, there are two differences, which must be considered:

- **Multiple selection conditions for a characteristic**
 If multiple selection conditions are assigned to a characteristic, it is sufficient for the characteristic to become a required characteristic when one selection condition is met.

- **No value assigned to a characteristic in a selection condition**
 If a selection condition addresses characteristics to which no value has been assigned, the selection condition is not met. In contrast to a precondition with the same syntax, the selection condition above outputs "false," that is, not met if no version is selected.

2.6.7 Procedures

Procedures are object dependencies that set values. In contrast to other types of object dependencies, they can affect processing sequences. For this purpose, the configuration profile is assigned with procedures, and a sorting is transferred. There is also the option of assigning procedures to characteristics and characteristic values. However, this method is not supported for the configurator of the IPC and is consequently not discussed here. Instead, we’ll discuss in detail the assignment to the configuration profile. Procedures allow for fixed or dynamic assignments of values. The following list describes in detail what this means:

- **Fixed assignment of values**
 A fixed assignment of values refers to an assignment of values that cannot be overwritten by users or constraints. Attempts to do so would result in inconsistencies. Procedures can also not overwrite external assignments of values, that is, values set by users or constraints. The same applies to users and constraints.
Index

? → Assignment of default values, 136
|| → Character string link, 135

A

A2A → Application to application, 658
ABAP and object dependencies, 131
ABAP function module, 57, 591
ABAP programming language, 55, 564
Abstracter data type (ADT), 407
Access node, 230
Action, 61, 124
Actual characteristics, 451
Actual configuration, 450
Actual value assignment, 451
ACWG → American Configuration Workgroup, 640
Adaptable Custom Solution (ACS), 224, 229
Advanced mode, 61
Advanced Planning & Optimization (APO), 304, 451
Aggregation, 408
Aggregation characteristic, 410
ALE → Application Link Enabling, 314
Alternative Dates, 383
American Configuration Workgroup (ACWG), 640
Americas' SAP Users' Group (ASUG), 637
Analysis tool, 141
AP Application Platform, 62
AP Configuration Engine, 62, 337, 338, 370
Application group, 455
Application Link Enabling (ALE)
ALE distribution, 411
ALE distribution model, 413, 418
ALE partner profile, 417, 418
ALE partner profiles, 413
Application log, 439
Application Programming Interface (API), 669
Application-to-application (A2A), 658
AP Pricing Engine, 338
Arithmetic operator, 134
ASAP Implementation Roadmap, 567
Assemble-to-order (ATO), 41
Assembly processing, 275, 393
Assignment of default values, 136
Assignment of production resources and tools, 97
Assignment of values
Dynamic, 123, 169
Fixed, 123, 168
ASUG → Americas' SAP Users' Group, 637
Asynchronous, 618
ATO → Assemble-to-order, 41
Authorization group, 77
Authorization object
C_LOVC_DEP, 312
C_TCLS_BER, 323
Automated product configuration, 35
Avenue from VC, 532
Avenue Migration, 533
Avenue Orchestrator, 527
Avenue Remodel, 533
Avenue to VC, 533
Avenue XML, 532

B

B2B → Business-to-Business, 48
B2C → Business-to-Consumer, 48
Backward chaining, 47
BAdI, 229
Balancing, 408
Baldor Electric, 626
Baseline, 428, 430
Explosion, 432
Batch classification, 451
Batch job, 431
Batch selection criteria, 451
Bill of material explosion, 101
Bill of materials, 37, 214, 219, 371, 377
Application, 101, 222, 420
Index

Configurable bill of materials, 38
Enhancements, 38
Explosion, 101
Filter, 101
Has part, 406
Maintenance, 183
Manual enhancement, 38
Maximum BOM, 38
Minimum BOM, 406
Part of, 400, 406
Relationship
Structures, 582
Super BOM, 38
Synchronization, 232
Usage, 221
Business Object, 648
Building block, 406
Business Application Programming Interface (BAPI), 534
BO → Business object, 648
Business-to-Business (B2B), 48
Business-to-Consumer (B2C), 48
Business Transaction Event (BTE), 417

C
Cable, 449
CCE → Core Constraint Engine, 657
Change
ECR, 378
Mass data, 559
Master, 378
Master record, 378
Number, 376, 378, 390
Number type, 378
Type, 380
Changeable material variants, 450
Change management for master data, 73
Characteristic, 36, 37, 71, 371, 377
Characteristic value, 371
Create, 51
Dependency, 37
Disallow a characteristic value, 164
Display, 455
Fast data entry, 454
Group, 77, 177

Component decomposition, 37
Composition problem, 39, 395, 403
Decomposition problem, 403
Dynamic modification of the BOM structure, 395
Interlinked component structure, 395, 400
Top-down approach, 403
Condition, 159, 162, 348
Condition technique, 59
Condition type, 193
VA00, 193
VA01, 193
Configit A/S, 535
ConfigScan Validation Suite, 515, 528
Configurable
Assembly, 102
General maintenance task list, 280
Material, 49
Model service specification, 274
Purchased material, 591

Management, 75
Name, 76
Planning, 292, 330
Status, 77
Value, 36
Characteristics-dependent planning, 451, 461
Character string link, 135
Character string operator, 135
Checkbox
Configurable Material, 89
Class hierarchy, 55
Classification, 84
System, 55, 75
Classified materials, 187
Class management, 82
Class network, 55
Class node, 57, 82, 183, 217, 322, 371, 591
Cloth, 449
Coaching project, 582
Coil, 449
Company philosophy, 552
Comparison function, 226
Component condition, 348
Component formula, 348, 354
Component list in planned and production order, 260
Component structure, 37

684
Standard network, 276, 278
Configuration, 35
 Browser, 103
 Configuration result, 35
 Definition, 427, 429
 Folder, 427, 429, 430
 High-level configuration, 58, 368, 378
 Indicator, 55
 Interactive configuration, 35, 45
 Low-level configuration, 58, 368, 378
 Management, 413, 419
 Module, 36
 Profile, 49
 Result, 35, 373
 Scenario, 99, 105
 Settings, 103, 209
 Step, 45
 Task, 32
 User interface, 316
 Configuration model, 35
 Complete, 53
 Configuration process
 Order BOM, 397, 398
 Sales order, 398
 Configuration profile, 56, 72, 215, 377, 398
 And PMEVC, 146
 Of the configurable component as a filter, 259
 Configuration rules, 37, 55
 Declarative, 400
 Declarative approach, 44, 46
 Procedural approach, 44, 45
 Simple rule, 45
 Configuration-specific modules, 55
 Configuration structure, 103
 Bottom-up approach, 403
 Configuration supporting point, 294
 Configuration UI, 316
 Configuration Workgroup (CWG), 59, 637
 Board of Directors, 642
 Bylaws, 638
 CWG conference, 643
 CWG Portal, 638, 644
 CWG Sandbox, 645
 Executive Committee, 642
 Membership, 642
 President, 643
 Registered association, 642
 Configurator, 36
 Configurer, 594
 Configure-to-order (CTO), 41, 340
 Confirmation, 260, 269
 Constraint, 46, 56, 124, 146, 586
 Net, 56, 159, 408
 Constraints and class nodes, 186
 Construction type, 281
 Consultant role
 IPC expert, 564
 Master data expert, 565
 Modeler, 564
 Pricing expert, 565
 Project lead, 566
 Solution architect, 563
 VC expert, 563
 Context-sensitive input help in PMEVC, 144
 Conversion, 243
 Copy control, 255
 Core Constraint Engine (CCE), 657
 Correction package, 428, 438
 Coupling of variant table and database table, 152, 157
 CTO → Configure-to-order, 41
 Customer Relationship Management (CRM), 48, 337, 338
 Customer Services, 261, 279
 Customer-specific production, 40
 Customizing of material master, 324

D

 Database table, 152, 157, 586
 AUSP, 322
 Database table and variant table, 137
 ESSL, 274
 PLPO, 191, 278
 STPO, 189
 TB31, 317
 VBAK, 171, 253
 Data type, 77
 Character format CHAR, 77
 Numerical format NUM, 77
 Data volume, 67
 Decision table, 154
Index

Declarative approach, 44
Declarative modeling, 348
Declarative object dependencies, 126
Decoupling point, 450
Default value
 Dynamic, 169
Delta list, 62, 342
Dependency editor, 181
Dependency Maintenance Table (DMT), 245
Dependency net, 159
Dependency type, 121
 Action, 61, 372
 Constraint, 56, 400
 Monitoring rule, 408
 Precondition, 55, 121
 Procedure, 56, 122, 372
 Reevaluating rule, 408
 Selection condition, 56, 57, 122
Discrete Industries and Mill Products (DIMP), 447
Distribution lock, 313
Distribution order, 428, 433
 Package, 428
Distribution package, 412, 428, 433
Distribution type, 427
Distribution unit, 428, 433
Document, 82, 377
Drag-and-drop in PMEVC, 144
DSAG → Deutschsprachige SAP-Anwendergruppe, 637
Dynamic assignment of values, 123, 169
Dynamic bill of materials, 93
Dynamic database (DDB), 374
Dynamic instantiation, 39
Dynamic sequence, 95

Engineer-to-order (ETO), 32, 41, 223, 591, 596
Equipment, 264, 279
eSpline LLC, 466, 527
ETO → Engineer-to-order, 32
Event type coupling, 426
Experience report, 543, 566
Experts, 562
Explosion profile, 420, 429
Extended Configuration Management (XCM), 608
External procurement, 259

F
False, 162
Films, 449
Filter, 259
Finish-to-order, 450
Fixed assignment of values, 123, 168
Formula, 348
Forward chaining, 46
FOX → Framework for Object Explosion, 420
Framework for Object Explosion (FOX), 420, 428, 430
Function, 138, 176
 Module, 176, 587
 Formula, 348
Function modules and object dependencies, 137
Fysbee SAS, 466, 528

G
General maintenance task list, 262
German-Speaking SAP User Group, 637
Global object dependencies, 127, 179
Gold VC Client, 528, 628
Group, 315
GSS PSM to BOM, 248
Guided Structure Synchronization (GSS), 245, 248
Index

H

Header, 96
Header material, 591, 607
Hello World example, 49
Hierarchy allowed, 322
High-level configuration, 101, 340

I

IDoc → Intermediate Document, 411
Individual customization, 36
Industry solution, 447, 449
Inferences, 160, 163
InfoSet, 285
Info structure S138, 284
Inheritance, 55
In-house production, 259
Initiating object records for OCM, 331, 390
In list queries, 135
Inspection characteristic, 265
Inspection lot, 264
Inspection type, 266
Instantiation
 Dynamic, 39, 397
 Manual, 397
 Material variant, 399
Integrated Product and Process Engineering (iPPE), 230, 232
 Access, 240
 Access node, 230
 BOM converter, 232, 242
 Concept, 232, 238
 Concept group, 239
 Configuration simulation, 240
 Enhanced, 237, 238
 Feature and requirement structure, 231, 233
 Filter, 240
 Node, 230
 Structure node, 230
 Variance scheme, 231, 238
 Variants, 231
 View node, 231
Integrated product engineering, 232
Integration of a configurator, 657
Interaction Center, 337
Interface design, 102
Intermediate Document (IDoc), 411, 413, 435
Internet Pricing and Configurator (IPC), 48, 59, 370, 608, 647
 IPC_CONFIGURATION_UI, 316
 IPC database, 213
 IPC Data Loader, 214
 IPC modeling
delta, 218
 IPC Product Configurator, 63
Invisible, 172
IPC → Internet Pricing and Configurator, 608
iPPE → Integrated Product and Process Engineering, 230
Item category, 93, 257, 327, 453
 AGC, 257
 TAC, 257, 327
 TAM, 327
Item category determination, 327
Item category group, 257

J

Java programming language, 59, 565

K

KBIF → Knowledge Base Interchange Format, 640
KB object → Knowledge-base object, 213
KBO → Knowledge-base object, 61
KMAT, 50
Knowledge base, 61, 341, 373, 404
Knowledge Base Interchange Format (KBIF), 532, 640
Knowledge-base object (KB object), 61, 213

L

Length orientation, 449
Lifecycle phase, 419
Lifecycle profile, 419
Local object dependencies, 126, 179, 180
Index

Lock, 99
Logical operator, 134
Logistics information system, 284
LO-VC-compatible mode, 60
LO-VC Variant Configuration, 48, 369, 370
Low-level configuration, 340

M

Maintenance authorizations, 312
Maintenance plan, 280
Maintenance task list, 48
Make-to-order, 40, 603
Make-to-order (MTO), 40, 603
Production, 461
Make-to-specification, 652
Make-to-stock, 39, 41, 603
Production, 460
Managing Variant Configuration, 526
Manufacturing step, 460
Mass customization, 36
Mass production, 36
Master data change management, 376
Master inspection characteristic, 265
Material, 49, 377
Material BOM, 73
Changeable, 450
Material master, 71, 262
Customizing, 325
View concept, 88
Material variant, 73, 201, 653
Matching, 201, 207
Maximum BOM, 38
mdata, 136
Message interface, 658
Message type (IDoc), 411
Middleware (SAP CRM), 214
Mill industry, 449
Mill products, 447
Minimum BOM, 406
MMCOM, 198
MMCOM-VKOND, 198
Model concept, 57
Model service specification, 49, 260, 262, 274
MRP
Group, 90, 258

Type, 90
MTO → Make-to-order, 40, 603
MTS → Make-to-stock, 39, 41, 603
Multiple BOM, 92, 221
Multiple classification, 320
Multivariant product, 70

N

NetWeaver Business Client (NWBC), 245
Network, 262, 591
Not specifiable, 349
Number range, 417

O

Object dependencies, 55, 56, 73, 125, 378
Basic data, 181
Declarative, 126
Global, 126
Local, 126
Procedural, 126
Release, 127
Semi-declarative, 126
Status, 127
Wizard in PMEVC, 144, 146
Object dependency type
Constraint, 372
Object management record, 383
Objects, 159
Search in classes, 85
Type, 422
OCM → Order Change Management, 73, 260, 334
On-demand solution, 648
Operation, 97
Operation list in the production order, 260
Operative environment, 297
Operator
Arithmetic, 134
Character string operator, 135
Logical, 134
Order
Bill of materials, 73, 93, 224, 255
BOM, 220, 596
Index

Combination, 462
Routing, 96, 255
Type, 255
Order Change Management (OCM), 73, 260, 334, 376, 388, 459
Order Engineering Workbench, 223
Organizational area, 100, 323
Original package, 428
Overall change profile, 334
Overall profile, 389, 392

P
Packet type, 425
Paper, 449
Pattern Matching System, 375
PDR → Product Data Replication, 410
Pfunction, 176
Pipes, 449
Planned configuration, 450
Planned independent requirement, 294
Planned order, 264, 295
Planning, 73, 283
Profile, 285
Strategy, 25, 70, 332, 333, 334, 389
Table, 285
Variant, 299, 300, 330
Plant Maintenance, 261, 279
PLM extension, 414
PLM-Extension, 415
PLM WebUI, 245
PME
Product Modeling Environment (Java PME), 404
PMEVC, 142, 214
PMS → Pattern Matching System, 375
Portal solution, 602
Postponement, 450
PP-Read Master Data, 260
Precondition, 121, 164, 586, 591
Precondition and variant table, 166
Pricing, 58, 59, 72, 262, 272
Procedure, 194
Problem-solving processes, 559
Procedural approach, 44, 45
Procedural modeling method, 348
Procedural object dependencies, 126
Procedure, 56, 122, 168, 189, 586, 591
Evaluate, 130
Procedure and class node, 184
Process automation, 658
Procurement type, 90
Product, 33
Configurable, 34, 621, 655
Designer, 233
Model, 654
Property, 655
Specifiable, 651
Specification, 34, 651
Specified, 651
Structure, 232
Values, 42
Variant, 34, 653
Variant structure, 230
Product and process flexibility, 649
Product configuration, 31, 34, 36, 39
Automated, 35
Procedure, 34
Product costing with quantity structure, 199
Product Data Replication (PDR), 410
Delta filtering, 423, 435
Package posting, 436
Replication of a VC model, 427
Sending the package, 435
Production configuration, 340
Production order, 259, 264, 388
Production order change management, 376
Production rule system, 46
Production scenario, 39
Assemble-to-order, 41
Configure-to-order, 41
Engineer-to-order, 41
Make-to-order, 40, 650
Make-to-specification, 653
Make-to-stock, 39
Production tolerances, 451
Product model
Create, 69
Product Modeling Environment (PME), 59
Java PME, 59
Product property, 655
Product property format
Boolean value, 655
Index

Code, 655
Decimal number, 656
Free text, 656
Integer, 656
Quantity, 655
Product specification, 34
Product Structure Management (PSM), 248
Product variant, 40
Project BOM, 220
Project Builder, 276
Project system, 260, 262, 275
Property
 Default value, 656
Punch-out approach, 631
Purchase order, 262, 272, 274
Purchase requisition, 272

Q
QM blocked stock, 271, 274
Quality Management, 261, 265

R
Read PP Master Data, 389
Reassignment, 460
Reconciliation Workbench (RWB), 251
Reference characteristic, 58, 80, 189, 217, 591
Access, 80
Release key, 379, 390
Replication table, 425, 439, 443
Replication workbench, 427
Report
 RUPSHIELEV, 423
 RUPSPOST, 422, 438
 RUPSSEND, 422, 435
Required characteristic, 78
 Dynamic, 167
Requirement
 Class, 329, 389
 Planning, 255
 Type, 258, 329
Requirements planning, 264
Requirements type, 275
Resetting values, 45
Restrictable characteristics, 146, 150
Restriction, 160, 161
Restrict values, 353
Routing, 39, 73, 377
 Simultaneously exploded routing as a template, 205
Running dot notation, 408
Runtime version, 61, 213, 341, 373, 404

S
SaaS → Software-as-a-Service, 648
Sales characteristics, 598
Sales configuration, 340
Sales Configuration Engine (SCE), 59, 375
 Advanced mode, 403
 LO-VC-compatible mode, 60
 Advanced mode, 61
Sales order, 262, 388
 Bill of materials, 220, 225, 591
 Change management, 459
 Production, 450
 Routing, 225, 229
 Stock segment, 256, 257
Sales Pricing Engine (SPE), 59
Sales types, 614
Sample model, 566
SAP APO, 451
SAP Apparel and Footwear Solution, 563
SAP Business ByDesign, 32, 647
SAP CRM, 48, 60
 CRM 5.0, 62
SAP Custom Development, 224, 229, 576
SAP Engineering & Construction, 449
SAP enterprise solutions, 647
SAP ERP, 32, 370
 ECC 6.0, 62
 ERP Central Component (R/3), 48
SAP for Aerospace and Defense, 448
SAP for Automotive, 449
SAP for High Tech, 448
SAP for Industrial Machinery & Components, 448
SAP for Mill Products, 449
SAP NetWeaver BW, 284, 286
SAP NetWeaver technology platform, 62
SAP Note
68033, 296
173756, 285
174758, 285
844816, 338
844817, 316
854170, 316
901689, 375
917987, 373
997111, 375
1081650, 373
1121318, 375
SAP philosophy, 553
SAP PLM, 563
SAP Vehicle Management System, 563
Scenario
Order bill of material, 107
Planned/production order with BOM
explosion, 118
Planned/production order without BOM
explosion, 105
Sales order (SET), 113
SCE → Sales Configuration Engine, 375
Schedule line category, 257, 331
SCREEN_DEP, 172
SDCOM-VKOND, 193
SD document categories, 254
Selection condition, 122, 167, 586, 591
Evaluate, 130
Semi-declarative object dependencies, 126
Sequence
Dynamic, 95
Sequences, 96
Serial number, 264, 271, 279
Profile, 264
Service, 274
Material, 283
Order, 281
Service-oriented architecture (SOA), 648
Service product, 338
Simple BOM, 220
Simulative environment, 296
Single-level BOM explosion, 605
SKKEY, 131
SOA → Service-oriented architecture, 648
Software-as-a-Service (SaaS), 528, 648
Solution for medium-sized businesses, 647
Specifiable, 349
Specified, 135, 348
SPE → Sales Pricing Engine, 59
Standard network, 48, 278
Standard product, 34
Planning, 292
Standard work breakdown structure, 277
Start logo, 100
Strategy, 91, 257, 275
Group, 257, 275
Planning strategy, 330
Structure node, 230
Super BOM, 38
Supply Chain Management (SCM), 304
Switch framework, 447
Synchronization unit (GSS), 249
Syntax element
$count_part, 136
$del_default, 136, 169
$PARENT, 133
$part_of, 136
$ROOT, 133
$SELF, 133
$set_default, 136, 169
$set_pricing_factor, 136, 195, 198
$subpart_of, 136
$sum_part, 136
Function, 176
Inv, 173
Invisible, 172
Pfunction, 176
Syntax rule, 132
System configuration, 60, 394, 395

T
Tab
Additional Data, 80, 82
Basic data, 77
Configuration Initial Screen, 100
Configuration Parameters, 101, 115
Descriptions, 79
Fast Data Entry, 454
Order BOM, 111
Restrictions, 80
Sales Order, 115

691
Index

User Interface, 102
Values, 79
Table, 137, 138
 Constraint, 323
 Constraint wizard in PMEVC, 149
 Formula, 348
Target system, 430
Task list type, 95
Technical characteristic, 598
Test Case Editor, 521
Test-Driven Development, 519
Test-Driven Modeling, 521
Tolerances, 268
Tools, 75
Trace, 140
Trace function, 374
Transaction
 BD87 - IDoc Overview, 435
 BF01 - BTE Administration, 417
 C223 - Change Production Versions, 560
 CA75 - Replace Production Resources and Tools, 560
 CA85 - Replace Work Centers, 560
 CA95 - Change Reference Operation Sets, 560
 CAVC_TEST, 669
 CC01 - Create Change Master, 378
 CC03 - Display Change Master, 385
 CEWB - Engineering Workbench, 560
 CFM1 - Create Integration Model, 306
 CFM2 - Activate Integration Model, 307
 CL02 - Class, 52
 CL20N - Assignment of Objects to Classes, 321
 CL24N - Assignment of Objects to a Class, 321
 CLGT - Set Up Tables for Search, 323
 CLMM - Change Classification, 560
 CMOD - User Exits, 317
 CN08 - Process Network Parameter from Sales Order, 278
 COCM1 - Procurement Elements Initiating Object Records, 391
 COCM - Initiating Object Records, 391
 CRWBD - Replication Workbench, 427
 CS20 - Change BOM Data, 560
 CS40 Assignment of Configured Material, 204
 CS40 - Assignment of Configured Material, 301
 CS62, 591
 CSKB - Order Browser, 223
 CT04 - Characteristics, 51
 CT12 - Where-Used List for Characteristics/Characteristic Values, 377, 387
 CTBW - Table Maintenance for BW and Classes, 286
 CU05 - Dependency Where-Used List, 387
 CU50 - Configuration Simulation, 388
 CU51E - Result-oriented order BOM, 581
 CU51 - Order BOM, 223
 CU60E, 154
 CU60E - Upload Spreadsheet to Variant Table, 629
 CU61 - Create Variant table, 372
 CU62 - Change Variant Table, 372
 CUMODEL, 138
 EXPO_TEST - Test Structure Explosion by FOX, 442
 IP10 - Schedule Maintenance Plan, 280
 IP41 - Create Maintenance Plan, 280
 MC(B - Standard Analysis Variant Configuration, 284
 MCSZ - Copy Management, 284
 MD04 - Stock/Requirements List, 272
 MD04 - Stock/Requirements List, 264
 MD50 - Sales Order Planning, 264
 MDP1 - Create Planning Table, 293
 MDPH - Planning Profile, 293
 MDPV - Type Matching, 301
 MIGO - Goods Movement, 271
 MM01 - Create Material, 49
 MM17 - Change Material Master Data, 560
 MM50 - Extend Materials, 560
 MS02 - Long-Term Planning, 299
 MS31 - Create Long-Term Planning Scenario, 299
 MS66 - Copy Simulative Dependent Requirements, 297
 NWRC - NetWeaver Business Client, 245
/OEWB/MAIN - Order Engineering Workbench, 224
Index

OISD - Service Products, 283
OMO1 - Activate Update, 285
OVRP - Update Group Change Item Level, 285
PCFG - Role Maintenance, 317
PMEVC - Modeling Environment, 57
PMEVC - Modeling Environment Variant Configuration, 316
PMEVC - Modeling Environment for Variant Configuration, 629
PMEVC - Product Modeling Environment for Variant Configuration, 53
PPECS - BOM Converter, 242
QE51N - Results Recording QM, 267
RSA2 - SAPI DataSource Repository, 287
SICO - Customizing Cross-System Viewer, 442
SLG1 - Application Log, 439
SLG1 - Application Log, 442
SM37 - Job Selection, 432, 434
SM50 - Process Overview, 434
ST01 - Authorization Trace, 442
ST05 - Performance Analysis, 375
STAD - Business Transaction Analysis, 375
SU03 - Maintain Authorizations, 404
UPS03 - Uniform Packaging Service, 628
UPS - UPS Cockpit (PDR), 436
UPSRCP - Post UPSRCP IDocs, 443
UPSSSETUP - Customizing Preparation for PDR, 413, 417
VA01 - Create Sales Order, 370
WE20 - Partner Profiles, 419
Transaction Tax Engine (TTE), 59
TTE → Transaction Tax Engine, 59
Type matching, 301
type_of, 135
Type of building block, 405
Types, 612

U

UPSMAS, 413
UPSRCP, 413
UPS (Uniform Packaging Service), 421
User exit, 564
User interface design, 177

V

Valuation for a single batch, 460
Value assignment type, 78
Value set, 35
Variability, 582
Variable in constraints, 160
Variant, 34
Bill of materials, 57, 92, 221
Class, 49, 52, 72, 82, 377
Class and PMEVC, 146
Class type, 321
Condition key, 58
Condition record, 194
Conditions, 586
Configurator LO-VC, 48, 55, 647
Diversity, 41
Function, 56, 137, 174
Model browser, 138
Parts, 182
Routing, 57
Table, 56, 136, 146, 372, 378, 586, 591, 657
Table and procedure, 170
Variant Configuration, 35
Basic principles, 31
Integration, 69
Main tasks, 58
Modeling, 69
Variant diversity, 41
Variant planning, 300
Variants, 35
Class, 400
LO-VC configuration, 400
LO-VC Variant Configuration, 397
VCSD_UPDATE, 171
Versioning, 227, 228
Versioning of order BOMs, 226
View node, 231
Virtual Machine Container (VMC), 62
VMC → Virtual Machine Container, 62

W

Web channel, 337
WF-BATCH (workflow user), 434

693
Index

Where-used list for characteristics/characteristic values, 86
Work breakdown structure, 276
Workflow Customizing, 426
Workflow system, 591

X

XCM → Extended Configuration Management, 608
XCM scenario, 316