André Faustmann, Michael Greulich, André Siegling, Benjamin Wegner, and Ronny Zimmerman

SAP® Database Administration with IBM® DB2®

- Concepts and specifics of DB2/SAP operations
- Lifecycle: parameterization, monitoring, and backups/testing
- SAP and DB2 administration tools in action

Galileo Press
Bonn • Boston
Contents at a Glance

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2 SAP System Landscapes</td>
<td>25</td>
</tr>
<tr>
<td>3 Basics and Architecture of the IBM DB2 for LUW Database</td>
<td>71</td>
</tr>
<tr>
<td>4 Lifecycle</td>
<td>233</td>
</tr>
<tr>
<td>5 Administration Tools Inside and Outside the SAP System</td>
<td>327</td>
</tr>
<tr>
<td>6 Backup, Restore, and Recovery</td>
<td>463</td>
</tr>
<tr>
<td>7 Monitoring DB2 SAP Systems with SAP Solution Manager</td>
<td>575</td>
</tr>
<tr>
<td>8 SAP NetWeaver Business Warehouse and IBM DB2 for LUW</td>
<td>647</td>
</tr>
<tr>
<td>9 Common Problems and Their Solutions for DB2 Administrators</td>
<td>697</td>
</tr>
</tbody>
</table>
Contents

Foreword .. 15
Acknowledgments ... 17

1 Introduction ... 19

1.1 Who This Book Is For .. 21
1.2 Focus of This Book .. 22
1.3 Contents of This Book ... 22

2 SAP System Landscapes .. 25

2.1 SAP System Architecture ... 26
 2.1.1 Three-Layer Architecture 26
 2.1.2 Options for Using Different Combinations of Layers ... 28
2.2 Installation Options for SAP Systems 30
 2.2.1 Scenario 1: Single Host Environment 30
 2.2.2 Scenario 2: Distributed Installation 31
 2.2.3 Scenario 3: Clustering the SAP Instances 31
 2.2.4 Scenario 4: High Availability for SAP Solutions ... 32
2.3 Database Layer for IBM DB2 for LUW Environments 34
 2.3.1 Database Partitioning 34
 2.3.2 High Availability Disaster Recovery 35
 2.3.3 DB2 pureScale .. 37
2.4 Three-System Landscape in Brief 38
2.5 SAP System Landscapes with More Than One Solution ... 40
 2.5.1 SAP Business Suite on SAP NetWeaver 41
 2.5.2 Mixing SAP Solutions 43
2.6 Software Logistics and System Landscape in Detail 44
 2.6.1 Basics of ABAP Software Logistics 45
 2.6.2 Enhancement of ABAP Software Logistics by CTS+ ... 57
2.7 SAP Instance in Detail ... 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.1</td>
<td>Processes of an SAP Instance: Overview</td>
<td>64</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Directories of an SAP Instance</td>
<td>66</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary</td>
<td>68</td>
</tr>
<tr>
<td>3.1</td>
<td>Concepts and Basics of Relational Databases</td>
<td>71</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Motivation and History</td>
<td>72</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Tasks and Functions of Database Systems</td>
<td>73</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Relational Data Model and SQL</td>
<td>77</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Brief Overview of SQL</td>
<td>81</td>
</tr>
<tr>
<td>3.1.5</td>
<td>Implementation Techniques for DBMS</td>
<td>86</td>
</tr>
<tr>
<td>3.2</td>
<td>Process Architecture of the IBM DB2 for LUW Database</td>
<td>89</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Engine Dispatchable Units (EDUs)</td>
<td>89</td>
</tr>
<tr>
<td>3.2.2</td>
<td>DB2 for LUW Processes</td>
<td>91</td>
</tr>
<tr>
<td>3.2.3</td>
<td>EDU Categories</td>
<td>93</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Connection Process</td>
<td>98</td>
</tr>
<tr>
<td>3.2.5</td>
<td>EDUs: Special Purposes</td>
<td>100</td>
</tr>
<tr>
<td>3.3</td>
<td>Memory Management and Buffers</td>
<td>103</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Instance Memory</td>
<td>105</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Database Memory</td>
<td>108</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Application Memory and Private Memory</td>
<td>111</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Memory Settings and the Self-Tuning Memory Manager (STMM)</td>
<td>114</td>
</tr>
<tr>
<td>3.4</td>
<td>Tablespaces</td>
<td>119</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Basis of DB2 for LUW Tablespaces</td>
<td>120</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Automatic Storage</td>
<td>130</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Tablespace Organization and Extension</td>
<td>133</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Storage Groups and Multi-Temperature Storage</td>
<td>139</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Reclaimable Storage</td>
<td>141</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Table Compression</td>
<td>146</td>
</tr>
<tr>
<td>3.5</td>
<td>Transaction Logs and Trace Files</td>
<td>154</td>
</tr>
<tr>
<td>3.5.1</td>
<td>File System Structure in SAP Environments</td>
<td>154</td>
</tr>
<tr>
<td>3.5.2</td>
<td>DB2 for LUW Transaction Logs</td>
<td>157</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Diagnostic Log and Trace Files</td>
<td>162</td>
</tr>
</tbody>
</table>
4.2 Installation of SAP Systems .. 243
 4.2.1 Downloading the Software ... 243
 4.2.2 Performing the Installation as a Central System Installation ... 249
 4.2.3 Installation of Distributed Systems 265
 4.2.4 Installation of Additional Partitions for the IBM DB2 Database Partitioning Feature 273
 4.2.5 Installing SAP Systems Based on IBM DB2 with the pureScale Feature 276
4.3 Updating the SAP System .. 279
 4.3.1 Applying Kernel Patches ... 279
 4.3.2 Applying Patches to the SAP System 282
 4.3.3 Applying Patches to the Database 289
4.4 Upgrade for SAP Systems .. 294
 4.4.1 Upgrading the SAP Instance 295
 4.4.2 SAP Enhancement Package Installation 300
 4.4.3 Upgrading the Database Instance 301
4.5 System Copy ... 311
 4.5.1 Database-Independent System Copy 312
 4.5.2 IBM DB2 for LUW-Specific Procedure 314
4.6 Uninstalling SAP Systems ... 317
 4.6.1 Uninstall SAP Systems using SPM or SAPinst 317
 4.6.2 Deleting a Database Instance Manually 323
4.7 Summary .. 325

5 Administration Tools Inside and Outside the SAP System .. 327
 5.1 Operating System Tools ... 327
 5.1.1 Starting the Database .. 328
 5.1.2 Stopping the Database ... 329
 5.1.3 DB2 Command Line Processor 331
 5.2 DBA Cockpit ... 335
 5.2.1 DBA Cockpit UI .. 336
 5.2.2 System Landscape .. 339
 5.2.3 Performance .. 352
 5.2.4 Space ... 390
 5.2.5 Backup and Recovery ... 411
5.2.6 Configuration ... 413
5.2.7 Job ... 439
5.2.8 Alerts .. 445
5.2.9 Database Diagnostics 447
5.2.10 BW Administration ... 453
5.2.11 Favorites .. 456
5.3 Administrative Tools for Troubleshooting 458
5.3.1 db2cklog .. 459
5.3.2 db2diag .. 459
5.3.3 db6util .. 460
5.3.4 db2pd ... 460
5.3.5 db2support .. 461
5.3.6 Other Available Troubleshooting Tools 461
5.4 Summary .. 462

6 Backup, Restore, and Recovery 463
6.1 Infrastructure Planning ... 464
6.2 Objects That Need Data Backup 466
 6.2.1 Objects of the DB2 for LUW Database 467
 6.2.2 Objects of the DB2 for LUW Database Software .. 468
 6.2.3 Objects of the DB2 for LUW Instance 468
 6.2.4 Objects of the SAP System 468
 6.2.5 Objects of the Operating System 469
6.3 Data Backup Methods ... 470
 6.3.1 Data Export ... 471
 6.3.2 Offline Data Backup 472
 6.3.3 Online Data Backup 474
6.4 Recovery Methods ... 476
 6.4.1 Restore versus Recovery 477
 6.4.2 Steps of Restore and Recovery 479
 6.4.3 Restore and Recovery from an Offline Data Backup .. 481
 6.4.4 Restore and Recovery from an Online Data Backup .. 482
6.5 Recovery Scenarios ... 483
 6.5.1 Partial Restore and Complete Recovery 484
6.5.2 Database Reset .. 485
6.5.3 Point-in-Time Recovery 486
6.5.4 Full Restore and Complete Recovery 488
6.5.5 Disaster Recovery .. 489
6.6 Backup Strategies .. 490
6.6.1 General Notes and Concepts 490
6.6.2 Big Databases and Their Data Backup 495
6.7 DB2 for LUW Backup and Restore Tools 501
6.7.1 Setup for Log Archiving 501
6.7.2 Data Backup with the BACKUP DATABASE Command .. 509
6.7.3 Restore and Recovery with the RECOVER DATABASE Command .. 527
6.7.4 Restore with the RESTORE DATABASE and ROLLFORWARD DATABASE Commands 533
6.7.5 Changing the Hardware Platform using Backup and Restore .. 546
6.7.6 The History File ... 547
6.8 Integration with DB2 for LUW in HP Data Protector 554
6.8.1 Platform and Integration Support 554
6.8.2 DB2 for LUW Integration Concept 555
6.8.3 Integrating DB2 for LUW and Creating Backup Specifications .. 557
6.8.4 Restore and Recovery 569
6.9 Summary .. 573

7 Monitoring DB2 SAP Systems with SAP Solution Manager .. 575

7.1 Event Monitoring .. 576
7.1.1 Event Types .. 577
7.1.2 Creating and Activating Event Monitors 585
7.1.3 Event Monitoring Output Options 587
7.1.4 Listing Event Monitors 592
7.1.5 Formatting Collected Data from Files and Pipes .. 592
7.2 Monitoring with SAP Solution Manager 7.1 592
7.2.1 Technical Background 593
9 Common Problems and Their Solutions for DB2 Administrators ... 697

9.1 Sources for Help to Solve Problems ... 698
 9.1.1 SAP Notes Search ... 698
 9.1.2 SAP Support Request .. 701
 9.1.3 SAP Community Network ... 706
 9.1.4 IBM DB2 Database Product Documentation 707

9.2 Approach to Troubleshooting .. 708
 9.2.1 Identify the Problem ... 709
 9.2.2 Create a Support Ticket ... 710
 9.2.3 Collect Data ... 710

9.3 SAP Instance Cannot Connect to the Database 711
 9.3.1 Symptoms .. 711
 9.3.2 Problem Investigation .. 712

9.4 Poor Database Performance .. 716
 9.4.1 Symptoms .. 716
 9.4.2 Investigating the Problem .. 716

9.5 SAP System Does Not Start Due to a Missing License 720
 9.5.1 Symptoms .. 720
 9.5.2 Solving the Problem .. 721

9.6 Database Is in Backup Pending Mode .. 722
 9.6.1 Symptoms .. 723
 9.6.2 Solutions .. 723

9.7 Log Archive Destination Is Not Available 725
 9.7.1 Symptoms .. 725
 9.7.2 Solutions .. 726

9.8 The Transaction Log for the Database Is Full 728
 9.8.1 Symptoms .. 728
 9.8.2 Solutions .. 729

9.9 DB2 Backup Runtime Unacceptably High 731
 9.9.1 Symptoms .. 731
 9.9.2 Solutions .. 732

9.10 Summary ... 735

The Authors .. 737
Index .. 739
If you’re new to SAP system administration with IBM DB2 for Linux, UNIX, and Windows databases, or you already have some experience and now want to gain a general overview of other features or functions, you’ve found the right book!

1 Introduction

IBM is a well-known information technology company that offers a wide range of products from computing technology, which covers the needs of entire data-center infrastructures, to equipment for small businesses and point-of-sales/services. From this wide range of IBM products, our focus in this book is on the database software that is also supported by SAP and its products.

This book demonstrates and explains the powerful capabilities of the IBM DB2 for LUW (Linux, UNIX, and Windows) database (in the course of this book, we’ll commonly refer to this database as DB2 for LUW). Over the past few years, some multifunctional tools have emerged that are a result of a very close cooperation between SAP and IBM.

When we talk about IBM’s database, we need to be specific concerning which of the different products we are referring to.

There are three main streams within IBM’s DB2 product portfolio (see Figure 1.1):

- IBM DB2 for Linux, UNIX, and Windows (LUW)
- IBM DB2 for z/OS
- IBM DB2 for i

Let’s take a closer look at each of these.
Introduction

Figure 1.1 Different DB2 Databases Provided by IBM

IBM DB2 for LUW

The *IBM DB2 for Linux, UNIX, and Windows* (LUW) database is the database we are explaining in this book. Over the different releases in the past, the naming has changed a bit, so depending on the source you may see different nomenclatures. The following terms are taken from the SAP Product Availability Matrix (PAM) where the supported databases for different products are listed:

- DB2/UDB 8
- DB2 for LUW V9.1
- DB2 for LUW V9.7
- DB2 for LUW 10.1¹

IBM DB2 for z/OS

The second database in our list of IBM’s products, DB2 for z/OS, isn’t just a database for another operating system. This product has its own product management and development stream. It’s designed for IBM z mainframes and has a strong integration into the operating system. The handling of this database is also different compared to the DB2 for LUW database. The old name for this product was DB2/390, which was based

¹ The “V” for version, as in V9.1 and V9.7, is usually not included for the latest software release of the database. So if a newer release (e.g., 11.0) is available, DB2 for LUW 10.1 will then be named DB2 for LUW V10.1.
on the OS390 operating system. In some rare cases, you might find this name as well.

Again, this database software is another product, not just another version for a different operating system. In the past, it was called DB2/400 or DB2 for i5/OS. This is a relational database management system (RDBMS) that works together with IBM i on IBM Power Systems (including AS/400, iSeries, and System i) and has a strong integration into the operating system.

Now that you know something about the different designations of IBM’s database products, there are two other names that may be used in the SAP context: DB4 (named for OS 400) and DB6 (RS6000 hardware is considered to be the inspiration for DB6). If you see these terms, note that DB4 refers to the DB2 for i, and DB6 refers to the DB2 for LUW.

Finally, we also have to mention Informix. When IBM took over the Informix company in 2001, it also integrated the database of the same name into its product portfolio. Informix is still developed as its own product, but usually as a dedicated software product, so you won’t mix it up with the other DB2 database products.

1.1 Who This Book Is For

Everyone interested in database technologies and administration in the wide field of SAP system landscapes should benefit from reading this book. If you are new to SAP system administration, this book shall help you understand the concepts related to SAP systems and the IBM DB2 database. You’ll also learn how to perform basic system administration tasks and procedures.

This book also addresses system administrators who are already familiar with SAP system administration, but now find themselves with a new database vendor and the need for guidance regarding the IBM DB2-specific issues they will face.
1.2 Focus of This Book

This book will help you understand the basic concepts of the software we just discussed. If you are new to IBM DB2 for LUW, you'll get a good start with this book.

When you are administering SAP landscapes, you'll find a wide range of different tasks in your daily work life. Many will be planned, but you might also face unplanned failures, downtimes, and errors. In most cases, you should find ideas on how to handle the issues in your current situation within this book. The most important procedures will be explained in detail, whereas other issues will be addressed with an overview. In those cases, we'll point to documentation that covers everything in detail, such as in PDF documents, SAP Notes, or other documentation provided by SAP or IBM.

Make sure to check the SAP or IBM documentation when making far-reaching decisions, because contents in the documentation and recommendations may change over time. This book can help to find the relevant information and the sources to find the up-to-date information for your specific situation.

1.3 Contents of This Book

Chapter 2 After this introduction, we start Chapter 2 by spending some words on the SAP solutions we consider to be relevant for this book. First, we'll discuss the three-layer architecture that forms an SAP system. We'll draw a picture that shows how SAP systems can be distributed over different hosts, and then we'll focus on the database layer. You'll get an idea here of how IBM's products can meet the requirements of special situations regarding the database layer. We'll also look into the details of an SAP instance, including how the processes are organized and how they connect to a database.

Chapter 3 In Chapter 3, we discuss the IBM DB2 for LUW database. You'll learn about the database's architecture in detail. We start with the general concepts of database systems and explain the relational data model as the basis for this database as well. The introduction to the topic closes
with an overview of SQL as the language for accessing data stored within a database.

Within the architecture, we describe the kernel processes, log management, required file systems, buffer and memory management, organization of tablespaces, and log and trace files as an important source to gather information in certain situations.

Finally, we’ll take a closer look at special and powerful features such as database partitioning, high availability, and the pureScale cluster.

The lifecycle of SAP systems goes hand in hand with its databases, as described in Chapter 4. The chapter starts by giving an overview of the installation of SAP solutions. After installing, it’s often necessary to apply patches as bug- and security fixes or to get new features. We’ll touch on this topic as well. Then we show you how to copy SAP instances if needed. You’ll also learn about the upgrade process and how SAP systems can be deleted if necessary.

One of the biggest parts of this book is the chapter about the administration of the IBM DB2 for LUW database. We explain how to stop and start the database. Then we go over the DB2 command line processor (CLP). We also focus on the DB layout and the changes that might be necessary. You’ll also learn about administration using the SAP tools and the powerful Transaction DBACOCKPIT. After explaining how to do these administration tasks, we then provide specific examples.

The insurance for every administrator is the system backup. You hope that you seldom or never need it, but you should definitely have backups at least for your productive data. Chapter 6 shows how you can back up IBM DB2 for LUW environments. Then we show how to recover data and databases in case of failures, data loss, or unintended deletion of database contents. We discuss the tools that the database comes with, and even if you use centralized backup software and hardware, these database tools may be used in background. As an example, we’ll show the integration of backups for IBM DB2 for LUW databases in the HP Data Protector backup software.

Similar to the backup software, you’ll use central monitoring software in your system landscape. One implementation that is very powerful,
especially for SAP system landscapes and environments, is SAP Solution Manager. In Chapter 7, we show you how to integrate the SAP systems in SAP Solution Manager monitoring, and which parameters need to be monitored.

Chapter 8

In this chapter, we focus on a powerful feature of IBM DB2 for LUW: database partitioning. This feature provides a lot of powerful possibilities to improve the performance for large databases, especially SAP NetWeaver Business Warehouse (BW).

Chapter 9

Finally, in Chapter 9 we provide some examples of what you might do if you face failures while you are responsible for an SAP system based on an IBM DB2 for LUW database. First, we explain how to get help or find information in general, followed by some examples that will inspire you if you face such situations.

We hope that the following chapters will provide the knowledge and insights you need as you work with system administration in SAP systems with IBM DB2 for LUW.
The clear best practice recommendation of IBM is, if possible, to set each parameter, which is dynamically administrable by STMM, to AUTOMATIC. SAP follows this recommendation precisely while installing DB2 for LUW, with an exception of INSTANCE_MEMORY_DBM because it gets a constant memory value.

Next to process architecture and memory management, data storage constitutes the third pillar of a DBMS. Each database requires a storage structure to store its data. In the environment of relational databases, this data is called a tablespace. In DB2 for LUW databases as well, all data such as tables, indexes, and so on are stored in tablespaces.
3.4.1 **Basis of DB2 for LUW Tablespaces**

Tablespaces constitute a logical storage structure on the database level. The database reproduces its storage structure on physical files or RAW devices. In the DB2 for LUW environment, this storage location is called a container, regardless of whether it's a file, a folder, or a raw device. Figure 3.18 shows an example.

The DB2 for LUW database essentially distinguishes four tablespace categories:

- **Large tablespace**

 This is the main category of DB2 for LUW tablespaces in an SAP environment. Like the regular tablespace, this tablespace category stores tables and indexes. It was developed to overcome the boundaries of the “old” regular tablespace, can hold significantly larger tables, and supports more than 255 columns on one data page.
- **Regular tablespace**
 This is the normal category of DB2 for LUW tablespaces. It stores all permanent data; that is, tables and indexes. You can even store large objects (LOB) data in this tablespace. The catalog tablespace SYSCATSPACE is a special regular tablespace. It’s obligatory for each DB2 for LUW database and contains the system catalog tables.

- **System temporary tablespace**
 In this tablespace, temporary and database-internal data is stored, which is generated during different operations, such as sorting, creating an index, or reorganizing tables in a tablespace.

- **User temporary tablespace**
 This tablespace stores temporary declared tables that the user creates in the database.

During the creation of a DB2 for LUW database, at least one catalog tablespace (as regular tablespace), one large tablespace, and one system temporary tablespace are created for ensuring database functionality.

The tablespace management, executed by you or the database administrator, is important for the database’s functioning. DB2 for LUW has three concepts for tablespace management:

- **System Managed Storage tablespace (SMS)**
 The operating system takes over container management here. Containers are folders in which objects are stored. Each database object (for example, a table), has at least one physical file you access by usual system calls to the operating system. The properties of a SMS tablespace include the following:

 - During the creation of database objects, a file is created for each object and stored in a folder, which is the container of this object. If there are several containers, the data pages of the object Round Robin are distributed over these containers.
 - Large tablespaces can’t be managed via SMS.
 - A table and the corresponding indexes must be located in one tablespace.
 - If necessary, the object files in the containers grow until the file system is full. If there are several containers or directories, the tablespace is full after the first container or directory is filled.
After a tablespace has been created, changes such as adding a container are no longer possible.

I/O is executed through the file cache of the operating system.

Database Managed Storage tablespace (DMS)
The database takes over container management itself here. Containers are files or raw devices (device files). Following are the properties of a DMS tablespace:

- During creation, containers (files) are specified by a container size. They can grow by use of the `AUTORESIZE` option, until the optional `MAXSIZE` is reached.
- A table and the corresponding indexes can be located in different tablespaces.
- After tablespace creation, it's possible to add, increase, decrease, or delete containers.
- Performance is about 5–15% better than for SMS tablespaces because DMS is using preallocated space.
- Higher management efforts are required than with SMS tablespaces, but there is better control over the data storage.

Automatic Storage
Compared to SMS and DMS, this is actually not a tablespace management type but rather uses both management types. It offers an automated tablespace management on a higher level. For more information, see Section 3.4.1.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting with versions 10.1 and 10.1 FP1 of DB2 for LUW, SMS, and DMS tablespaces are declared outdated for permanent data. Therefore, these two types should only be used for tablespaces with temporary data, and all permanent data in the future should be stored in automatic storage tablespaces.</td>
</tr>
</tbody>
</table>

If you administrate the DB2 for LUW database in an SAP environment, you generally use the DBA Cockpit (see Chapter 5). Nevertheless, we'll now show you how to create a tablespace by using an example to illustrate various important tablespace parameters. The statement in Listing 3.1 creates a tablespace in an SAP environment.
db2 "CREATE LARGE TABLESPACE EXAMPLETBLS
IN DATABASE PARTITION GROUP SAPNODEGRP_PRD
PAGESIZE 16384
MANAGED BY AUTOMATIC STORAGE
USING STOGROUP IBMSTOGROUP
INITIALSIZE 32 M
INCREASESIZE 32 M
MAXSIZE 1 G
EXTENTSIZE 2
PREFETCHSIZE AUTOMATIC
BUFFERPOOL IBMDEFAULTBP
NO FILE SYSTEM CACHING
DROPPED TABLE RECOVERY OFF"

Listing 3.1 Create a Tablespace in SAP

The resulting tablespace is stored in the storage group IBMSTOGROUP (see Section 3.4.1). Tablespace configuration is executed with the following parameters:

- **PAGESIZE**

 The parameter Pagesize specifies the size of the data pages in the tablespace. A page is the smallest usable data block in a tablespace; that is, a growing table is always extended by one page as the contents grow. The standard value PAGESIZE is defined during the creation of a database through the database parameter pagesize; otherwise, it's 4KB. The page size of a tablespace limits the maximum size, according to tablespace category and type. Table 3.3 gives you an overview.

<table>
<thead>
<tr>
<th>Page Size</th>
<th>DMS Regular Tablespace</th>
<th>DMS Large Tablespace or Automatic Storage</th>
<th>SMS Regular Tablespace</th>
<th>SMS Tablespace in Automatic Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 KB</td>
<td>64 GB</td>
<td>8 TB</td>
<td>64 GB</td>
<td>8 TB</td>
</tr>
<tr>
<td>8 KB</td>
<td>128 GB</td>
<td>16 TB</td>
<td>128 GB</td>
<td>16 TB</td>
</tr>
<tr>
<td>16 KB</td>
<td>256 GB</td>
<td>32 TB</td>
<td>256 GB</td>
<td>32 TB</td>
</tr>
<tr>
<td>32 KB</td>
<td>512 GB</td>
<td>64 TB</td>
<td>512 GB</td>
<td>64 TB</td>
</tr>
</tbody>
</table>

Table 3.3 Limits by Tablespace Page Size
IN DATABASE PARTITION GROUP
You have to specify a database partition group here; otherwise, the IBMDEFAULTGROUP would be taken by default (or IBMTEMPGROUP for the system temporary tablespaces).

MANAGED BY AUTOMATIC STORAGE USING STOGROUP
As a target for the container, a storage group is used here (see Section 3.4.2). This is possible since DB2 for LUW 10.1. The usage of a target path or raw device, which was used before 10.1, is also possible.

Note: Alternative
The following alternative can also be used:
MANAGED BY DATABASE USING <container-specifications> – For DMS tablespaces, you have to use containers (with location and size) or raw devices as a target.

INCREASESIZE, INITIALSIZE, MAXSIZE
Containers are created with the size INITIALSIZE; they grow automatically according to the step size INCREASESIZE, until MAXSIZE. If these parameters aren’t defined, the standard values are INCREASESIZE, INITIALSIZE = specified by DBM, and MAXSIZE=NONE. (The not shown parameter AUTORESIZE is YES by default, which only makes sense in case of an AUTOMATIC STORAGE tablespace.) It’s important to know that these parameters belong to the entirety of all containers. For example, if you have four containers, and the INCREASESIZE is 32MB, then every container will grow up with 8MB in one increasing step.

EXTENTSIZE
This has two meanings:
- If the tablespace has more than one container, EXTENTSIZE determines the number of pages that are written in a container during the round-robin process, before the next container is used.
- EXTENTSIZE specifies in which portions (in pages) space is allocated for tables or indexes within the containers of a tablespace. When these pages are full, the next area of pages is reserved with the appropriate number of pages.

These two meanings ensure that a table is spread equally over all containers of a tablespace as illustrated by Figure 3.19.
The standard value for `EXTENTSIZE` is determined by the parameter `dft_extent_sz` for the DB2 for LUW database; the standard value in an SAP environment is 2. The default value is only used if no `EXTENTSIZE` value is specified in the `CREATE TABLESPACE` statement.

- **PREFETCHSIZE**
 This specifies how many pages are loaded from the tablespace into the buffer pool during the prefetching function. The standard value for the DB2 for LUW instance is determined by the parameter `dft_prefetch_sz` and equals `AUTOMATIC`.

- **BUFFERPOOL**
 This defines the buffer pool the tablespace has to use; the page size of the buffer pool has to be consistent with the page size of the tablespace. The standard value indicates the default buffer pool `IBMDEFAULTBP`.

- **NO FILE SYSTEM CACHING**
 This deactivates the local file system cache for I/O operations. The default value depends on the operating system, the file system, and the data type (temporary, LOB, etc.). The DB2 for LUW documentation contains an extensive table giving the values for the different operation and file systems, and indicates how and when the different I/O types (direct IO, concurrent I/O) can be inserted. In general, you can say that the I/O performance takes advantage of using this option.

- **DROPPED TABLE RECOVERY ON**
 This activates the function for restoring deleted tables with the
ROLLFORWARD DATABASE command. The default value in an SAP environment is OFF.

As administrator, it’s important for you to know how to access information on tablespaces in the DB2 for LUW database. The following command enables you to check administrative details of all tablespaces:

db2 list tablespaces show detail

Figure 3.20 shows an extract of this command output. You see information on the tablespace R15#STABD from SAP system R15.

<table>
<thead>
<tr>
<th>Tablespace ID</th>
<th>= 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>R15#STABD</td>
</tr>
<tr>
<td>Type</td>
<td>Database managed space</td>
</tr>
<tr>
<td>Contents</td>
<td>All permanent data. Large table space.</td>
</tr>
<tr>
<td>State</td>
<td>Ox0000</td>
</tr>
<tr>
<td>Detailed explanation:</td>
<td>Normal</td>
</tr>
<tr>
<td>Total pages</td>
<td>1327194</td>
</tr>
<tr>
<td>Used pages</td>
<td>1327192</td>
</tr>
<tr>
<td>Free pages</td>
<td>1662</td>
</tr>
<tr>
<td>High water mark (pages)</td>
<td>1325460</td>
</tr>
<tr>
<td>Page size (bytes)</td>
<td>16384</td>
</tr>
<tr>
<td>Extent size (pages)</td>
<td>2</td>
</tr>
<tr>
<td>Prefetch size (pages)</td>
<td>2</td>
</tr>
<tr>
<td>Number of containers</td>
<td>1</td>
</tr>
<tr>
<td>Minimum recovery time</td>
<td>2012-12-27-00.15.19.960000</td>
</tr>
</tbody>
</table>

Figure 3.20 Tablespace Information

Figure 3.20 shows you that the tablespace R15#STABD belongs to the DMS type and to the category LARGE TABLESPACE. You can also see the statistics of the pages, which indicate how large the tablespace is and how many pages are available. Because AUTOCREASE is activated by default in SAP environments, the number of free pages should not be large during normal tablespace growth. The number of free pages doesn’t increase unless tablespace data is deleted; for this reason, reorganization possibly can be reasonable (see Section 3.4.3). The HIGH WATER MARK indicates the highest filling level of the tablespace, as well as EXTENTSIZEx, PREFETCHSIZE, and the number of containers belonging to the tablespace.

The status of the tablespace is yet another key piece of information in Figure 3.20. A hexadecimal coding indicates the tablespace status. Most status values are related to tablespace operations executing external DB2
for LUW commands; for example, backup, loading, and so on. Table 3.4 briefly overviews the main statuses of a DB2 for LUW tablespace.

<table>
<thead>
<tr>
<th>Status Code</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>Normal: The tablespace is active and usable.</td>
</tr>
<tr>
<td>0x20</td>
<td>Upcoming backup: Tablespace backup must be performed before write access is possible.</td>
</tr>
<tr>
<td>0x40</td>
<td>Ongoing recovery: Tablespace recovery is being performed.</td>
</tr>
<tr>
<td>0x80</td>
<td>Upcoming recovery: After completing a restore operation, a tablespace recovery has to be performed before it can be used again.</td>
</tr>
<tr>
<td>0x100</td>
<td>Upcoming restore: After creating the containers for a tablespace that has to be restored, the tablespace is waiting for restore.</td>
</tr>
<tr>
<td>0x400</td>
<td>Ongoing reorganization: A table of the tablespace is currently being reorganized.</td>
</tr>
<tr>
<td>0x800</td>
<td>Ongoing backup: The tablespace is currently being saved.</td>
</tr>
<tr>
<td>0x2000</td>
<td>Ongoing restore: The tablespace is currently being restored.</td>
</tr>
<tr>
<td>0x4000</td>
<td>Offline: One container is damaged. The tablespace can’t be used.</td>
</tr>
<tr>
<td>0x10000000</td>
<td>DMS rebalancing function: Between the containers, a rebalancing is executed (see Section 3.4.1).</td>
</tr>
</tbody>
</table>

Table 3.4 Important Status Values for DB2 for LUW Tablespaces

Altogether, there are 25 different status values for tablespaces. It’s important to know that tablespaces can have several status values at the same time, under certain circumstances.

Besides the options to configure tablespaces during their creation, a number of other parameters influence the usage of tablespaces. The three main parameters are listed here:

- **NUM_IOSERVERS** (database parameter)
 This parameter defines how many `db2pfchr` (prefetchers) are started for each database, for loading data (pages) from the tablespace to the
buffer pool in advance. The current default value is set on AUTOMATIC; that is, it complies with maximum parallelism (see the next parameter) but is at least 3.

- **DB2_PARALLEL_IO** (DB2 profile registry variable)
 If this parameter isn't set, the DB2 for LUW database assumes that there is a physical disk behind each container; that is, for a tablespace with two containers, I/O parallelism is set to 2. Beyond this parameter, a complex behavior is hiding; for example, you can also specify different degrees of parallelism for different tablespaces depending on their storage layout. We can't go more into detail here. In practice, especially in SAP environments, it's proven that the most simple and effective way to achieve good I/O performance is to parallelize the I/O over the number of containers for a tablespace. SAP default is to not set DB2_PARALLEL_IO.

- **DB2_SET_MAX_CONTAINER_SIZE** (DB2 profile registry variable)
 If this parameter is set, it defines a limit to the container size in an automatic storage tablespace. If a container file reaches this limit, the automatic storage will create a new container file.

We won’t discuss the internal organization of data storage in tablespaces and containers in detail at this point because it would exceed the scope of this book. Nevertheless, for your work with tablespaces, you need to know some terminology. In the following, we particularly discuss the internal organization of the DMS tablespace and its containers with stripes, stripe sets, and ranges. Figure 3.21 illustrates one tablespace with four (very small) containers. CONTAINER 0 and CONTAINER 1 each receive six extents (size of an extent = EXTENTSIZE), while CONTAINER 2, 3, and 4 each receive three extents.

A stripe is an order of extents that is used across containers. The STRIPES 0, 1, and 2 contain the CONTAINERS 0, 1, and 2, whereas the STRIPES 3, 4, and 5 only contain the CONTAINERS 0 and 1, and so on. A range consists exactly of those stripes, which hold the same containers in a coherent way; thus, RANGE 0 contains the STRIPES 0-2 (EXTENT 0-8), RANGE 1 contains the STRIPES 3-5 (EXTENT 9-14), and so on. The stripe sets represent the third unit. A stripe set is a group of containers of a tablespace, which is separated from other containers of that tablespace; that is, they don’t form
a stripe together. Figure 3.21 illustrates this principle. Within a stripe set, the extents are distributed via round-robin over the involved containers.

![Diagram of a tablespace](image)

Figure 3.21 Internal Organization of a Tablespace

The arrangement of the tablespace elements just named results in the **tablespace map**. The tablespace map for the example in Figure 3.21 is as follows (excluding \texttt{EXTENTSIZE=16}) in Table 3.5.

<table>
<thead>
<tr>
<th>Range No.</th>
<th>Stripe Set</th>
<th>Stripe Offset</th>
<th>Max. Extent</th>
<th>Max. Pages</th>
<th>Start Stripe</th>
<th>End Stripe</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>143</td>
<td>0</td>
<td>2</td>
<td>3 (0, 1, 2)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>239</td>
<td>3</td>
<td>5</td>
<td>2 (0, 1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>20</td>
<td>336</td>
<td>6</td>
<td>8</td>
<td>2 (3, 4)</td>
</tr>
</tbody>
</table>

Table 3.5 Tablespace Map

It's important to understand the basic structure of a DMS tablespace, particularly for increasing or decreasing procedures (see Section 3.4.3).

As a DB2 user, you can use the following command to access information on the tablespace map and containers:

\texttt{db2 get snapshot for tablespaces on <DB Name>}

The output of this query gives you a lot of information on a tablespace and its container. Figure 3.22 shows a small example.
With this query, you find information on automatic resizing (INCREASE SIZE, TIME OF LAST SUCCESSFUL RESIZE, etc.), for example, or on REBALANCER MODE. Furthermore, the individual containers and tablespaces are displayed, so you can recognize to which STRIPE SET this container belongs. In an SAP environment, you can find a graphical presentation of the tablespace map in the WebDynpro version of the DBA Cockpit (see Chapter 5).

Now that you have a good foundational understanding of what tablespaces are, in the following sections, we'll delve into some of the details of the topics already discussed.

3.4.2 Automatic Storage

As indicated before, Automatic Storage was launched with DB2 for LUW 9. Since then, this concept has been improved with each new release; and since DB2 for LUW 10.1 it even supports the latest database storage concepts such as multi-temperature storage. Because Automatic Storage is activated by default since DB2 for LUW release 9.1, you need to know its basic concepts and main processes.
Automatic Storage puts tablespace management on a higher level, and thereby dramatically simplifies administration. Thus, available storage capacity is managed on the database level and not for each individual tablespace anymore. Figure 3.23 shows this from a logical perspective.

![Figure 3.23 Automatic Storage](image)

The groundwork for the usage of Automatic Storage is already laid out during the creation of a database. The following extract of a command shows the creation of an SAP database for the system PR2:

```sql
create database PR2
automatic storage yes on
   /db2/PR2/sapdata1, /db2/PR2/sapdata2
dbpath on /db2/PR2 ...
```

The option `automatic storage yes` activates Automatic Storage, while the clause `on /db2/PR2/sapdata1, /db2/PR2/sapdata2` specifies the storage path. The second option `dbpath on` determines the highest point of the hierarchical directory structure of a database. The database directory structure holds all information related to this database, such as database configuration files, history files, and so on (for more information, see Section 3.5). Hence, the option `dbpath` enables you to physically separate
the actual data files (that is, containers), from database management information.

After creating the database with Automatic Storage and a storage path, the three obligatory tablespaces are created automatically (catalog tablespace, system temporary tablespace, user tablespace). All other tablespaces, created by the administrator or installation scripts, consequently don’t contain information on storage locations. All other options (EXTENTSIZEx etc.) for tablespaces can be used as discussed previously. Automatic Storage independently creates the containers in the storage path. If several storage paths are available, the tablespace is distributed as equally as possible.

The creation and nomination of containers follows a defined scheme: <storage path>/<instance name>/NODE###/<database name>/T####/#/C####.#<ending>. The schemes elements are described here:

- **Storage path**
 Defined during the creation of a database (see the previous command extract below Figure 3.23).

- **Instance name**
 The name of the DB2 for LUW instance to which the database belongs.

- **NODE###**
 The unique database partition number.

- **Database name**
 The name of the database to which this container belongs.

- **T######**
 The unique tablespace ID within the database.

- **C#######**
 The unique container ID within the tablespace.

- **Ending**
 A code of three letters reflecting the tablespace type:
 - **CAT**: Container of system catalog tablespace.
 - **TMP**: Container of a system temporary tablespace.
 - **UTM**: Container of a tablespace for temporary user tables.
 - **USR**: Container of a regular tablespace.
 - **LRG**: Container of a large tablespace.
In this example, the path to a tablespace container `PR2#DDICD (ID = 24)` would be as follows:

```
/db2/PR2/sapdata1/db2pr2/NODE0000/PR2/T000024/C0000000.LRG
```

As described previously, the simplified administration constitutes the major advantage of Automatic Storage. This is most evident when storage space is added to a tablespace.

Note: Storage Paths and Parallelization

In a small or mid-sized environment, the database is often installed on one physical LUN of a storage system. Normally this logical unit number (LUN) is presented with a single mount point (or drive) to the operating system.

Does it make sense to put more than one storage path on this single LUN? Yes, absolutely! Initially, Automatic Storage puts one container for a tablespace on every storage path. Therefore, you get a parallelization for the I/O of this tablespace by the number of storage paths (see parameter `DB2_PARALLEL_IO` earlier). This is the reason SAP wants to start with four storage paths during the installation.

(In the following section, we use some examples with DB2 for LUW for SAP with fewer than four storage paths. This is only for a simpler illustration and not a recommendation.)

3.4.3 Tablespace Organization and Extension

At this point we want to make a little excursion in the DB2 for LUW world before the time of Automatic Storage, just for a better understanding of its advantages. Auto-resizing of tablespaces have existed since DB2 for LUW 8.2.2, before the launch of Automatic Storage. As we already indicated, the options `AUTORESIZE`, `INCREASESIZE`, `INITIALSIZE`, `MAXSIZE` determine how, and how far, a tablespace and its containers can grow. It's essential that DB2 for LUW extends only those containers that were used in the last range. Auto-resizing stops after one of the containers of the last range can't be extended, or `MAXSIZE` has been reached. Figure 3.24 shows an example with one tablespace having two containers of a different size.
The illustration shows that administrators have four alternatives for extending tablespaces:

1. By extending the file system of the full container (or both containers) both containers can grow again. This is the easiest solution.

2. The tablespace size increases due to the creation of new containers. The administrator adds containers with the statement `ALTER TABLESPACE <TablespaceName> BEGIN NEW STRIPE SET <Container>` and, thereby, starts a new stripe set in the tablespace. The old containers remain unchanged.

3. The third alternative is to add another container to an existing stripe set of the tablespace, using the statement `ALTER TABLESPACE <TablespaceName> ADD TO STRIPE SET ...`. If the new container is large enough to include all stripe sets, it’s positioned in such a way that it starts in the first stripe of the set as well (as indicated in Figure 3.24). If the new container isn't large enough, it's positioned so that
it ends with the last stripe of the stripe set. The result of adding containers to an existing stripe set is a rebalancing process (described in more detail later in this section).

4. The last and not recommendable alternative is to create a new range indirectly by extending only the containers with enough room to grow.

If a tablespace is managed by Automatic Storage, and the storage capacity for the containers is used up, the administrator only has two alternatives left. As he works on a higher level with storage paths due to Automatic Storage, he has no direct access to containers. Thus, the alternatives 2 through 4 in the preceding list can’t be used here, or in other words, these alternatives are automated. Figure 3.25 shows a database with two storage paths.

![Diagram of a database with two storage paths showing the behavior of a DMS Tablespace](image)

Figure 3.25 New Storage Path in Automatic Storage: Behavior of a DMS Tablespace
The easiest alternative is still to increase the capacity of a storage path. As a result, the Automatic Storage mechanism of the DB2 for LUW database recognizes this, and the containers can grow up. This is the preferred recommendation. If you have any chance to increase the capacity of the storage paths, do it.

However, sometimes you have to add a new storage path to the database. The way Automatic Storage handles and uses this new path depends on your decisions. You have two alternatives:

- You add the storage path and do nothing more. Automatic Storage then acts similar to alternative 2 described earlier. The new storage path isn’t used yet, but is only applied after the previous containers are full. If this is the case, a new container is created in the new storage path for each tablespace that must be extended. In doing this, a new stripe set is always created, without any rebalancing operations.

- After adding the new storage path, you execute a rebalancing for each tablespace by use of this statement: `ALTER TABLESPACE <Tablespace-Name> REBALANCE`. As a result, another container is added to the tablespace and the extents are distributed anew. This second option is clearly recommended by IBM.

Warning!

If you add a single storage path, you could lose I/O performance. For example, if you have a DB2 for LUW database with four storage paths and one container per path for tablespace X, then you automatically have a parallelism of 4 (when `DB2_PARALLEL_IO` is not set). If the storage paths are full, and you add a new path, one new container is created on this path. If the old paths are full, the new stripe set is only using the new container, and the parallelism for the tablespace decreases to 1. So, if all four old paths are full, the right decision is to add four new paths to keep the parallelism for the tablespace.

Besides adding storages paths, you can also delete paths. For deletion, you first mark a storage path with the statement `ALTER DATABASE DROP STORAGE ON <StoragePath>`. Then, the administrator has to empty the DMS tablespace containers by use of the rebalancing statement. Automatic Storage-administrated SMS tablespaces for temporary tables marked for deletion in the storage path must be deleted. When the storage path is free, Automatic Storage removes it from database configuration.
SMS tablespaces for temporary tables have to be recreated. If you don’t want to delete SMS tablespaces, you have to restart the database because SMS tablespaces are redefined during start after a storage path is deleted.

The rebalancing process for tablespaces of the DB2 for LUW database has already been mentioned several times. Rebalancing reorganizes the extents of a tablespace in the containers. The addition of a container, executed by Automatic Storage or manually, always aims to distribute the extents of a tablespace equally on all its containers—if this is supported by container sizes. The deletion of a container aims to clear this container and to distribute the extents on the remaining containers as equally as possible.

If you use Automatic Storage, the administrator can start rebalancing manually for some special maintenance tasks. During the normal system operations (and if you have equal sized storage paths), the Automatic Storage functionality acts as if no rebalancing is necessary. With an explicit start of a rebalancing run, it's possible to balance disparities, which may come from missing space or suboptimal tablespace extensions operations. This may appear as a step backward, compared to automatic rebalancing for a DMS tablespace without Automatic Storage, but it isn't. The problem of rebalancing is its massive I/O load. For this reason, it's a major advantage for the administrator to be able to control the start of rebalancing. From DB2 for LUW 10.1 on, you're even able to stop rebalancing operations in times with intensive loading and to restart them later with the command

```
ALTER TABLESPACE <TablespaceName> REBALANCE SUSPEND | RESUME.
```

If a tablespace is in the rebalancing process, you can view this with the statement `db2 get snapshot for tablespaces on <DB Name>` (see the previous section). For more detailed information on the rebalancing status of a tablespace, use the table function `MON_GET_REBALANCE_STATUS`, for example, with the following statement:

```
db2 "select varchar(tbsp_name, 20) as tbsp_name, reblancer_mode, reblancer_status, reblancer_extents_remaining, reblancer_extents_processed, reblancer_start_time from table(mon_get_rebalance_status(NULL,-2)) AS T"
```
This statement enables you to see when rebalancing was started, how many extents were already realized, and how many are still open.

Tips & Tricks

Now that you understand the basics of the DB2 for LUW tablespaces, following are some rules of thumb about the administration of these tablespaces.

Rules of thumb for DMS tablespaces only:

- Try to have equal-sized containers in one stripe set of a DMS tablespace. Unequal container sizes may lead to I/O hotspots.
- Manual increasing containers other than those of the highest stripe set poses the risk of rebalancing.
- If you create new containers in an existing stripe set that are smaller than the existing containers, the new containers will be “hanging from the ceiling” instead of “standing on the floor.” That is, they use the highest range of this stripe set.
- Multiple stripe sets in a tablespace will be removed after a redirected restore. That is, in a standard DMS tablespace, all previously existing containers (of possibly different sizes) will finally form one stripe set. A database restore without the `REDIRECT` clause keeps the stripe sets.

Rules of thumb for Automatic Storage tablespaces only:

- Use storage paths of equal size to maintain the possibility the containers of a tablespace being of mutual size by use of rebalancing, if necessary.

Rules of thumb for DMS and Automatic Storage tablespaces:

- Auto growth mechanisms (in Automatic Storage or autoresize tablespaces) only affect those containers using the highest range (in the highest stripe set).
- With Automatic Storage or autoresize tablespaces, you should focus your attention on the free space available in the underlying file systems.
- With respect to the performance of the `BACKUP DATABASE` command, try to do the following:
 - Distribute your database’s objects among several tablespaces (no single tablespace installation).
 - Have several containers per DMS or Automatic Storage tablespaces instead of one big container.
 - Avoid dominant tablespaces (i.e., disproportionally larger than the average tablespace size).
3.4.4 Storage Groups and Multi-Temperature Storage

With DB2 for LUW 10.1, storage management was enhanced by a new concept: the storage groups. A storage group is a group of established storage paths, in which containers from Automatic Storage tablespaces can be stored. The aim of storage groups is to bundle storage paths with the same properties, with regard to their quality. I/O performance is the decisive quality criterion for storage paths used for multi-temperature storage.

The application of multi-temperature storage, also called multi-tiered storage, relies on prioritizing data. Prioritizing follows these criteria: access frequency, maximum access time, and volatility. According to this approach, data priority is today regarded as a three-stage model:

1. **Hot data**
 - This data type has the highest priority because it has the highest access frequency, and its access time must be as short as possible. Hot data generally takes up only a small amount of overall data. This data is stored in very fast and therefore use very expensive data carriers, for example, internal Fusion-io cards or solid-state drive (SSD) arrays.

2. **Warm data**
 - This data type has average priority because it is regularly accessed. The access time should be short; therefore, such data is also stored in fast storage systems, for example, flip-chip (FC) arrays.

3. **Cold data**
 - This data is rarely accessed, so that longer access times are tolerable. Accordingly, this data has lower priority. Cold data is by far the largest data amount in a system. It can be stored in slower and lower-priced storage systems, for example, hard drive arrays with SAS or serial ATA (SATA) discs.

However, which data has which priority depends on the company and can be very different. Therefore, the installation of multi-storage should be preceded by a thorough analysis.

The new storage groups in DB2 for LUW 10.1 support data distribution on multi-temperature storage systems, if necessary, in combination with partitioned tables. Figure 3.26 shows an example.
Starting from DB2 for LUW 10.1, the concept of storage groups is applied after you activate Automatic Storage during database creation. Following this, the standard storage group `IBMSTOGROUP` is created automatically, and all storage paths are initially grouped here. Other storage groups can be created with the statement `CREATE STOGROUP`. The statement `ALTER STOGROUP` enables you to manage all storage groups.

The two main alternatives for accessing information on storage groups of a database are the following:

- To find information on storage groups, for example, storage group ID, read transfer rate, or controller overhead, query `SYSCAT.STOGROUPS` catalog views, with the statement `db2 "select * from SYSCAT.STOGROUPS"`.

Figure 3.26 Multi-Temperature Storage with Storage Groups
To access information on the storage paths of a storage group, its usage status, and capacities, query the table function `ADMIN_GET_STORAGE_PATHS`, for example, with the statement:

```
db2 "SELECT VARCHAR(STORAGE_GROUP_NAME, 15) AS STOGROUP,
    VARCHAR(DB_STORAGE_PATH, 20) AS STORAGE_PATH,
    VARCHAR(DB_STORAGE_PATH_STATE, 12) AS PATH_STATE,
    FS_TOTAL_SIZE, FS_USED_SIZE, STO_PATH_FREE_SIZE FROM
    TABLE(ADMIN_GET_STORAGE_PATHS('',-1)) AS T"
```

Figure 3.27 shows the output of this statement.

<table>
<thead>
<tr>
<th>STOGROUP</th>
<th>STORAGE_PATH</th>
<th>PATH_STATE</th>
<th>FS_TOTAL_SIZE</th>
<th>FS_USED_SIZE</th>
<th>STO_PATH_FREE_SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBMSTGROUP</td>
<td>/db2/PRG/sparta1</td>
<td>IN_USE</td>
<td>8705240528</td>
<td>4499941216</td>
<td>5200006440</td>
</tr>
<tr>
<td>IBMSTGROUP</td>
<td>/db2/PRG/sparta2</td>
<td>NOT_IN_USE</td>
<td>5200006440</td>
<td>3233914556</td>
<td>3933914556</td>
</tr>
</tbody>
</table>

2 record(s) selected.

Figure 3.27 Information on a Storage Group

If you use DB2 for LUW database 10.1 in an SAP system, you can use the features of storage groups and multi-temperature storage. For analyzing and partitioning of SAP tables, you can use the IBM ABAP tool DB6 Partitioning Administrator (see SAP Note 1686102).

3.4.5 Reclaimable Storage

Starting from DB2 for LUW 9.7, an additional tablespace attribute is available: the online release of allocated but unused storage space to the file system. To offer this option, the Row-ID (RID) and the physical address of a data page were decoupled in the internal storage management of DMS tablespaces. This also enables the administrator to release the unused areas of a tablespace, lying below the high water mark (HWM) of the tablespace.

Figure 3.28 illustrates this procedure, followed by a description.
1. The initial situation is a tablespace with four objects. The high water mark (HWM) defines the highest page ever used in the tablespace. In this example, there is a free area of extents lying directly below the HWM, which has already been released through a deletion process. Before DB2 for LUW 9.7, it was possible to rerelease this free area below HWM, without having to perform extensive reorganization work.

2. If a table is deleted, different extents become free within the tablespace. Here, the reclaim storage feature comes into play.

3. If you use a DMS tablespace without Automatic Storage, you first have to lower the HWM with the statement `ALTER TABLESPACE <TBSP_Name> LOWER HIGH WATER MARK`. This statement moves extents to close the gaps and to shift the HWM on the lowest possible position (HWM = used pages). Extent movement processes can take a long time, depending on the size, the number of gaps, and the load. Also, this process is very I/O intensive; therefore, it can be suspended with the command `ALTER TABLESPACE <TBSP_Name> LOWER HIGH WATER MARK STOP`. The
following statement enables you to monitor extent movement processes:

db2 "SELECT varchar(tbsp_name,15) as tbsp_name,
 last_extent, num_extentsMoved, num_extentsLeft,
 total_move_time from table
 (mon_get_extent_movement_status('TBSP_NAME',-1))
AS T"

Figure 3.29 show an example output of this statement.

<table>
<thead>
<tr>
<th>TBSP_NAME</th>
<th>LAST_EXTENT</th>
<th>NUM_EXTENTS_MOVED</th>
<th>NUM_EXTENTS_LEFT</th>
<th>TOTAL_MOVE_TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>T32#FACTD</td>
<td>2800</td>
<td>430</td>
<td>1052</td>
<td>8872</td>
</tr>
</tbody>
</table>

1 record(s) selected.

Figure 3.29 Monitoring Extent Movements

- **LAST_EXTENT**: Last extent moved during this operation.
- **NUM_EXTENTS_MOVED**: Number of extents moved during these operations until now.
- **NUM_EXTENTS_LEFT**: Number of extents left to be moved during this operation.
- **TOTAL_MOVE_TIME**: Previous runtime of the operation in milliseconds (msec).

4. Finally, the extents released from above HWM are returned to the file system by downsizing the corresponding containers. Use the following statement to trigger this process: `ALTER TABLESPACE <TBSP_Name> REDUCE ...`. In case of an Automatic Storage tablespace, it's sufficient to use this statement with the option MAX; the preceding step (lower HWM) is executed automatically. A DMS tablespace requires both statements. The statement `ALTER TABLESPACE <TBSP_Name> REDUCE ...` has the following options:

- **MAX**: Removes all free extents and provides the file system with maximum storage capacity (works only with Automatic Storage tablespaces).
When no option is indicated, all containers are downsized by the free extents from above HWM and those already allocated by the file system. In the initial situation from Figure 3.28, this would only apply to the three rows above HWM. The extents aren’t moved!

- `<number> K|M|G or %`: Reduces container size by the indicated size in kilobyte (K), megabyte (M), gigabyte (G), or by the percentage rate.

- **STOP**: Stops a running `REDUCE` operation.

Analyze Tablespace Storage

To determine which tablespaces have large gaps and are therefore suitable for the reclaim operation, you can consult the different values for the tablespace pages, as well as the HWM. The following statement enables you to get the current values for the total number of usable pages (`TBSP_USABLE_PAGES`), the number of free pages (`TBSP_FREE_PAGES`), and the HWM (`TBSP_PAGE_TOP`):

```sql
db2 "select substr(TBSP_NAME,1,14) as TS_NAME,
    TBSP_USABLE_PAGES as Usable_pages,
    TBSP_PAGE_TOP as High_water_MARK,
    TBSP_FREE_PAGES as Free_pages
from table ( MON_GET_TABLESPACE ( NULL , -1 ) ) as ts
where reclaimable_space_enabled = '1'"
```

The output of this statement only shows those tablespaces supporting reclaimable storage; thus, SMS tablespaces and tablespaces older than DB2 for LUW 9.7 aren’t shown. Figure 3.30 shows you an extract of the statement output for a DB2 for LUW with an SAP system.

Then, the aim is to determine which free pages are lying above and which are below the HWM:

- **free pages above HWM = Usable_pages - High_water_MARK**
 This free area above HWM can be returned to the file system without extent movements.

- **free pages below HWM = Free_pages - (Usable_pages - High_water_MARK)**
This number, being certainly of greater interest, indicates the pages released from below HWM during operation. It quantifies the gaps in the tablespace. This free storage capacity can only be eliminated and returned to the file system by extent movements.

After determining the free pages of a tablespace, you can decide if it’s reasonable to release storage capacity to the file system. According to this formula, the tablespace T32#FACTD from Figure 3.30 has approximately 1,490 free pages below HWM and approximately 1,674 pages above HWM. Thus, a reclaim operation with the REDUCE MAX option would lead to 3,164 pages * 16KB (PAGESIZE) \(\approx\) 50MB to return to the file system.

Figure 3.30 Analysis of Tablespaces on Free Pages

After determining the free pages of a tablespace, you can decide if it’s reasonable to release storage capacity to the file system. According to this formula, the tablespace T32#FACTD from Figure 3.30 has approximately 1,490 free pages below HWM and approximately 1,674 pages above HWM. Thus, a reclaim operation with the REDUCE MAX option would lead to 3,164 pages * 16KB (PAGESIZE) \(\approx\) 50MB to return to the file system.

Note

The alternatives for reclaim storage explained here can only be applied with DMS or Automatic Storage tablespaces that were created with version 9.7 or newer DB2 for LUW versions. Tablespaces that were created with older versions can’t use these functions, even after a database upgrade. A migration from old to new tablespaces isn’t possible. To use reclaim storage, you have to delete tablespaces and create new ones.

In an SAP environment, you can use the DB6-ABAP Tool DB6CONV to move the complete data from one (old) to another (new) tablespace.
3.4.6 Table Compression

The IBM DB2 database software (and its different derivatives) has always been a pioneer in the different approaches for data compression in a database. The aim always was and still is to save hardware. A positive side effect of compression is performance enhancement in most cases. Due to compression, writing and reading operations require less I/O accesses. In sum, these savings clearly outbalance the slightly higher CPU usage.

At this point, describing all compression alternatives that the DB2 for LUW database supports is beyond the scope of this book. Nevertheless, we'll briefly present the different DB2 for LUW compression alternatives and outline the key points for administrators.

Alternative Row Format

The value compression option already exists since DB2 for LUW 8.1. DB2 for LUW offers the possibility to save table rows in standard or alternative format. The storage format determines how the table row is stored in a page. The alternative storage of rows enables you to store 0 values and data types with variable length, such as `VARCHAR`, more efficiently; this explains the term “value compression.” In this way, all 0 values of a table with alternative row format don’t occupy storage pages, for instance.

Value compression is activated during table creation with the option `CREATE TABLE ... VALUE COMPRESSION`. However, it’s also possible to activate or deactivate value compression subsequently by use of `ALTER TABLE ... ACTIVATE VALUE COMPRESSION` or `DEACTIVATE VALUE COMPRESSION`. If you use DB2 for LUW for SAP systems, value compression is automatically set by default. Thus, nearly all SAP tables in a DB2 for LUW database work with the alternative row format.

Row Compression

As the first compression type, the classical row compression was launched with DB2 for LUW 9. Row compression uses a compression dictionary to save recurring patterns in data rows separately and only once. Figure 3.31 illustrates this approach.
Table

<table>
<thead>
<tr>
<th>Firstname</th>
<th>Lastname</th>
<th>Street</th>
<th>City</th>
<th>Postal Code</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>Newman</td>
<td>45 Halliford</td>
<td>London</td>
<td>N1 3RH</td>
<td>020 0732428</td>
</tr>
<tr>
<td>Frank</td>
<td>Postman</td>
<td>23 Halliford</td>
<td>London</td>
<td>N1 3HF</td>
<td>020 7224 5652</td>
</tr>
<tr>
<td>Tim</td>
<td>Fairchild</td>
<td>15 Halliford</td>
<td>London</td>
<td>N1 3EE</td>
<td>020 7227 6620</td>
</tr>
<tr>
<td>Melinda</td>
<td>Donovan</td>
<td>2 Greenman</td>
<td>Brentwood</td>
<td>CM14 8SB</td>
<td>020 221 6754</td>
</tr>
<tr>
<td>Jane</td>
<td>Newman</td>
<td>88 Queen's</td>
<td>Brentwood</td>
<td>CM14 4HD</td>
<td>020 221 576</td>
</tr>
<tr>
<td>Frank</td>
<td>Hensley</td>
<td>96 Queen's</td>
<td>Brentwood</td>
<td>CM14 4EY</td>
<td>020 221 017</td>
</tr>
</tbody>
</table>

Figure 3.31 Classical Row Compression

The compression dictionary is responsible for the whole table, and is therefore also referred to as *table-level compression dictionary*. Since DB2 for LUW 9.7, compression captures all data of a table, except LOB data. In a DB2 for LUW database, the classical row compression of tables is activated by `CREATE TABLE` with the option `COMPRESS YES (STATIC)`. The element `STATIC` must only be used for DB2 for LUW 10.1; otherwise, adaptive compression is activated (discussed in more detail later in this section).

Row compression can be activated subsequently for existing tables, with the statement `ALTER TABLE ... COMPRESS YES (STATIC)`. All previous data of the table remains uncompressed, until a reorganization or table movement in another tablespace is executed.

Before DB2 for LUW 9.5, row compression led to considerable administrative efforts because the compression dictionary had to be created manually with the command `REORG TABLE <Table_Name> RESETDICTIONARY`. Naturally, this was only reasonable when tables reached a least minimum quantity of data records. With version 9.5, Automatic Dictionary Creation (ADC) was introduced. This feature ensures that the compression dictionary is created automatically when compression is activated for a table and when a basic quantity of data is loaded into the table using `INSERT` or `LOAD` operations. Usually, ADC starts when a table has reached a size of...
1–2MB. All data loaded before ADC remains uncompressed until a full reorganization or data row change is executed.

Another issue you have to keep in mind as administrator is the degeneration of compression due to high alternation rates in the table or rapid table growth. Because the compression dictionary is created only once, dictionary contents don’t reflect the actual table contents in an optimal way; that is, there are certain patterns missing and the compression rate declines. The larger the alternation rate of the table with different data records, the faster the compression rate declines. Under some circumstances, it may be favorable to completely abandon compression of tables with very high alternation rates.

Adaptive Compression

With DB2 for LUW 10.1, the classical row compression was extended and improved. The enhanced row compression is called adaptive compression. As enhancement to the classical approach, a second, page-based dictionary level was added. For this reason, it’s also referred to as page-level compression dictionary. Thus, a table contains one dictionary for the whole table and another dictionary for each data page that is nearly 100% in use. Figure 3.32 shows an example.

Equivalent to classical table creation, adaptive compression is activated with the command `CREATE TABLE` with the option `COMPRESS YES`. For DB2 for LUW 10.1, another option is required because adaptive compression is used by default. In an SAP environment, however, the registry parameter `DB2_ROWCOMPMODE_DEFAULT=STATIC [DB2_WORKLOAD]` sets the default compression to the classical row compression (because the adaptive compression isn’t compatible with the statement `REORG ... INPLACE`).

If the database isn’t upgraded to version 10.1, the adaptive compression can also be activated subsequently for existing tables, with the statement `ALTER TABLE ... COMPRESS YES ADAPTIVE`. Here too, all previous data of the table remains uncompressed, until a reorganization or table movement in another tablespace is executed. This means that no “old” data comes into the table-level dictionary, but the pages, which satisfy a filling level of nearly 100%, will be completely included (with the old data) into the newly created page-level dictionary.
Figure 3.32 Adaptive Compression

The reorganization is executed with the same commands as the classical row compression.

If you want to identify the compression a table uses, you can apply the following small SQL query:

```
db2 "SELECT SUBSTR(TABSCHEMA, 1, 10) AS TABSCHEMA, SUBSTR(TABNAME, 1, 20) AS TABNAME, COMPRESSION, ROWCOMPMODE FROM SYSCAT.TABLES WHERE TABNAME='<TableName>' AND TYPE='T'"
```

Figure 3.33 shows query extracts over all tables of an SAP system.

The table column COMPRESSION can have the following values:

- **V (value)**
 The table uses the alternative row format but no row compression.

- **R (row)**
 The table uses the standard row format and row compression (classical or adaptive).
Basics and Architecture of the IBM DB2 for LUW Database

- **B (both)**
 The table uses the alternative row format and row compression (classical or adaptive).

- **N (none)**
 The table uses the standard row format but no row compression.

```sql
SELECT SUBSTR(TABSCHEMA, 1, 10) AS TABSCHEMA, SUBSTR(TABNAME, 1, 20) AS TABNAME, COMPRESSION, ROWCOMPMODE FROM SYSIBM.SYSTABLES WHERE TYPE NOT LIKE 'V'
```

<table>
<thead>
<tr>
<th>TABSCHEMA</th>
<th>TABNAME</th>
<th>COMPRESSION</th>
<th>ROWCOMPMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPPR2</td>
<td>TCHT</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>SAPPR2</td>
<td>THEXS</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>SAPPR2</td>
<td>TSINMH</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>SAPPR2</td>
<td>TSINJ</td>
<td>R</td>
<td>A</td>
</tr>
<tr>
<td>SAPPR2</td>
<td>VSEBCIF</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SAPPR2</td>
<td>VSEBCLSDF</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>SAPPR2</td>
<td>USRINTDT</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>SAPPR2</td>
<td>VSSVAR</td>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>SATTOOLS</td>
<td>DBH_STG_ME</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SATTOOLS</td>
<td>DBH_STG_CF</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.33 Table Attributes for Compression

The column **ROWCOMPMODE** indicates the type of row compression—
A (adaptive) stands for adaptive compression, and S (static) for classical row compression.

Note
For an integrated DB2 for LUW and SAP installation, classical row compression is set automatically for all tables for any actual version of the DB2 for LUW database. The classical row compression is integrated in the SAP tool R3load.

There are different ways to analyze which table is suitable for compression by use of SQL queries and the administrative function `ADMIN_GET_TAB_INFO`. The function `ADMIN_GET_TAB_COMPRESS_INFO` enables you to analyze how much storage capacity the compression of a table saves. As a DB2 for LUW administrator with SAP access, there are many comfortable options based on the DBA Cockpit (see Chapter 5, Section 5.2.3).
Index Compression

Index compression is the second important compression alternative after the row compression. This alternative was launched with DB2 for LUW 9.7 and operates with three different compression alternatives:

- **Variable slot directory**
 Each index page has a slot directory, in which each slot has a byte offset for each index key. During this process, the slot size isn’t statically defined but is variable for each entry size.

- **RID list compression**
 Each index always contains a key value and a key data field in the form of one or more Record-IDs (RIDs). In this process, the RID—8 bytes long by default—is saved in a compressed form. To be more precise, only the delta of the previous RID is stored for a RID.

- **Prefix compression**
 Basically, this is the counterpart to RID list compression because the key value of an index entry is compressed here. This process checks the key values for common prefixes to remove their redundancies.

The database automatically determines which compression process to use, so it’s possible that several processes will be applied in parallel. Index compression runs in unique as well as in secondary indexes. Block indexes and XML path indexes can’t be compressed.

Index compression essentially operates similar to ADC; that is, compression is regularly ensured by the database, and manual administration isn’t necessary.

If one of the two row compressions is activated for a table, all the indexes of the table are compressed automatically as well. If compression was already activated during table creation, the administrator has no other steps to take—compression is executed automatically. However, if compression is activated later on with the statement `db2 ALTER INDEX <IndexName> COMPRESS YES` or indirectly by activating the compression for the table, the index must be reorganized so that already existing data is compressed. For this purpose, the following command has to be used for all indexes: `db2 REORG INDEXES ALL FOR TABLE <TableName>`.
The following short statement indicates whether an index is compressed:

```sql
db2 "SELECT CHAR(INDNAME,20) AS INDEX,
      COMPRESSION FROM SYSCAT.INDEXES
WHERE TABNAME='<TableName>'"
```

There is also an administrative function for indexes called `ADMIN_GET_INDEX_COMPRESS_INFO`. It enables you to access information on index compression, for example, the percentage rate of storage capacity savings.

You can use an IBM management tool for index and table compression management, which is particularly suitable for SAP. It’s very useful when you can’t use an actual version of the DBA Cockpit. By use of SAP Note 980067, you can load this tool from the SAP Service Marketplace and install it as an ABAP program in the system. The tool offers you a GUI for managing table and index compression in your DB2 for LUW database. Figure 3.34 shows the entry into the compression tool.

Figure 3.34 Compression Tool for DB2 for LUW on SAP

Other Compressions in DB2 for LUW

There are other compression alternatives in the DB2 for LUW database, which we’ll discuss in this subsection for the sake of completeness.
The backup compression alternative was launched with DB2 for LUW 8. By use of the COMPRESS option, it’s possible to define for each backup operation, except a file-level backup (with \texttt{BACKUP DATABASE ... USE SNAPSHOT}), that the created database image becomes compressed. The backup compression is successful, even if row and index compression is already used. Backup compression also includes LOB data.

Starting with DB2 for LUW 10.1 onward, it’s also possible to compress archive log files. In parallel with other compressions, this compression type enables you to save more storage capacity. The activation of log archive compression is executed by the database parameters \texttt{LOGARCHCOMPR1} and \texttt{LOGARCHCOMPR2}.

Another possibility to save storage capacity is the LOB inlining alternative. Usually, the storage of LOB objects (data types BLOB, CLOB, and DBCLOB) only includes the storage of descriptors in a table referring to the actual storage location. The descriptor size increases with the LOB size and accordingly uses storage capacity. For very small LOB objects, it’s therefore more effective to save them directly in the table together with regular data. This direct storage process can be used for inline LOBs from DB2 for LUW 9.7 onward; in the SAP surrounding, it’s also set by default.

The compression of temporary objects constitutes another compression type that can be used from DB2 for LUW 9.7. This compression type is activated automatically, if the DB2 Storage Optimization license is installed, and can’t be deactivated. It operates like the classical row compression, inclusively ADC. The essential differences are that the ADC only becomes active from a table size of up to 100MB and sets up a compression dictionary.

All compression alternatives named in this section are supported in the SAP environment and are therefore usable with a corresponding DB2 for LUW release.

\textbf{Note}

Some of the compression features described in Section 3.4.4 require a separate license for the DB2 Storage Optimization feature. However, this license is part of the SAP OEM license for DB2. For this reason, as the SAP client, you can use all compression alternatives of DB2 for LUW.
The DBA Cockpit is the major tool for monitoring and maintaining the DB2 database in your SAP system. In addition to describing the DBA Cockpit, we’ll explain some of the tools at the operating system level you can use without running the SAP system.

5 Administration Tools Inside and Outside the SAP System

The SAP strategy is to shift more and more functionality from operating system commands to an easy-to-understand and easy-to-use web frontend, the DBA Cockpit. The administrator can easily make changes to improve the system performance from within the same screen. All database key performance indicators (KPIs) can be accessed easily. Therefore, the biggest part of this chapter is describing all of the functions available in the DBA Cockpit.

Nevertheless, you’ll still need to use some of the toolset at the operating system level in your daily work when administrating a DB2 database. We’ll describe these tools first, then get into the details of the DBA Cockpit, and finally put a special focus on troubleshooting.

5.1 Operating System Tools

Not all functions can be performed in the DBA Cockpit; a lot of tasks, especially maintaining, starting, and stopping the database, have to be performed at the operating system level. In this section, we’ll explain how to perform these actions, even when the SAP system is offline.
5.1.1 Starting the Database

Starting and stopping your DB2 database can be accomplished in many ways. SAP offers the Landscape Virtualization Manager (LVM) to centrally start, stop, or relocate your systems. For more information about the SAP LVM, refer to http://help.sap.com/nwlvm.

SAP provides the operating system script `startsap` to start the SAP server and the DB2 database. With these parameters, `startsap` can be used for the tasks shown in Table 5.1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wild Card</th>
<th>Description of the Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>db</td>
<td>Start ABAP database</td>
</tr>
<tr>
<td></td>
<td>jdb</td>
<td>Start Java database</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>Start database and SAP instance</td>
</tr>
<tr>
<td></td>
<td>r3/j2ee</td>
<td>Start SAP instance only</td>
</tr>
<tr>
<td></td>
<td>check</td>
<td>Check the status of database and SAP system instances</td>
</tr>
<tr>
<td></td>
<td>startupsrv</td>
<td>Start <code>sapstartsrv</code></td>
</tr>
</tbody>
</table>

Table 5.1 Parameter `startsap`

If you use the `startsap` script with the parameter `db` to start your database, the script `startdb` is run. `startdb` issues the DB2 command `db2start` to start the database instance first and activates the database afterward (see Figure 5.1).

```
 Vall2:prosedm S2o: startsap db
 Checking db0 Database
 Database is not available via R3trans
-----------------------------------------------
 01/31/2013 14:03:15  0  0  SQL1062N  DB2START processing was successful.
 SQL1063N  DB2START processing was successful.
 Database activated
```

Figure 5.1 `startsap db`

If you need to use the DB2 commands and can’t use the SAP script, start and activate the database with the DB2 commands `db2start` and `db2 activate database`.

328
db2start can be executed as a command line processor (CLP) or as a system command as shown in Figure 5.2.

![Figure 5.2 db2start](image)

If the database is stopped, you can start the DB2 instance layer with db2start. The per-instance Engine Dispatchable Units (EDUs) such as db2wdog, db2sysc, db2tcpcm, and db2ipccm are started.

The command ACTIVATE DATABASE allows you to explicitly activate a selected database (see Figure 5.3).

![Figure 5.3 db2 ACTIVATE DATABASE Command](image)

After the database layer is started, the per-database EDUs like db2loggr, db2loggw, db2dlock, db2pfchr, and db2pclnr are started. The EDUs are explained in detail in Chapter 3, Section 3.2.1.

Another option to start a database is to establish a connection to the database with the command as shown in Figure 5.4.

![Figure 5.4 db2 connect to DBSID](image)

5.1.2 Stopping the Database

Similar to the script startsap, SAP provides the script stopsap to stop your database and/or your system. Depending on the parameters used, you can stop your ABAP database, a Java database, an SAP instance, sapstartsrv, or both database and SAP instance.
As you can see in Figure 5.5, the script `stopsap` checks to see if the database is running. If so, the stop procedure is started. The first step is the deactivation of the database. After deactivation has been successfully completed, the `db2stop` command is issued to stop the database instance.

```
330
stopsap: stopping the database
As you can see in Figure 5.5, the script stopsap checks to see if the database is running. If so, the stop procedure is started. The first step is the deactivation of the database. After deactivation has been successfully completed, the db2stop command is issued to stop the database instance.

As you can see in Figure 5.5, the script stopsap checks to see if the database is running. If so, the stop procedure is started. The first step is the deactivation of the database. After deactivation has been successfully completed, the db2stop command is issued to stop the database instance.

```

The command `db2 deactivate database` deactivates the specified database (see Figure 5.6). Unsaved buffer pool content is copied back to DB2 containers, all files are closed, and all necessary database services are stopped.

```
Figure 5.5  stopsap
Deactivate database
The command db2 deactivate database deactivates the specified database (see Figure 5.6). Unsaved buffer pool content is copied back to DB2 containers, all files are closed, and all necessary database services are stopped.

```

The terminate command performs an internal commit and causes the database connection to be lost (see Figure 5.7). All other existing DB connections, such as running SAP work processes, are not affected. The database would shut down if you terminated the last remaining database connect and the database was not explicitly activated using command ACTIVATE DB.

```
Figure 5.6  db2 Deactivate Database
Figure 5.7  db2 terminate
```

The command `db2stop` can be issued, as shown in Figure 5.8, if the database isn’t active anymore. It stops the database instance including the per-instance EDUs.

```
db2stop
The command db2stop can be issued, as shown in Figure 5.8, if the database isn’t active anymore. It stops the database instance including the per-instance EDUs.

```

330
Because the DBA Cockpit is integrated into the SAP system, it’s only available if the SAP system is online. When the SAP system is offline, you can still use the command line processor (CLP) to issue SQL statements or DB2 commands, and call stored procedures. The CLP is essentially a command processor or shell environment that is customized for working with DB2.

You can use the DB2 CLP as your primary interface to interact with your DB2 instances and databases. It can be an alternative to using GUIs such as the DBA Cockpit in the SAP world. For the most part, the interface is only used occasionally when the GUI isn’t available. The DB2 CLP provides maximal support for working with DB2 instances. It’s a good choice for database administrators and application developers who prefer a more traditional command interface.

The CLP is mostly used to do the following:

- Stop a DB2 instance.
- Start a DB2 instance.
- Issue DB2 commands for configuring a DB2 instance or database.
- Establish a database connection.
- Execute SQL statements.
- Run DB2 tools and utilities.

You use the `db2` command to start the CLP. As we mentioned, the CLP is used to execute database utilities, SQL statements, and online help. It offers a variety of command options. You can use the CLP in the following modes:

- **Interactive input mode**
 The interactive input mode is characterized by the `db2 => [input prompt]` (see Figure 5.9).
You can issue database manager commands and SQL statements from the command prompt. For example:

```
db2 -> connect to sample
```

For general help, type: `?`.

For command help, type: `? command`, where command can be the first few keywords of a database manager command. For example:

```
? CATALOG DATABASE for help on the CATALOG DATABASE command
? CATALOG for help on all of the CATALOG commands.
```

To exit `db2` interactive mode, type `QUIT` at the command prompt. Outside interactive mode, all commands must be prefixed with `'db2'`.

To list the current command option settings, type `LIST COMMAND OPTIONS`.

For more detailed help, refer to the Online Reference Manual.

```
db2 =>
```

Figure 5.9 CLP Interactive Input Mode

When you start the DB2 CLP in interactive input mode, you can enter your `db2` commands at the `db2` prompt. In the interactive input mode, the `db2` shell or command processor is specially configured and initialized for processing the DB2 commands and SQL statements, as well as for returning the output of the processing.

Command mode

You can use this mode by simply using the prefix `db2` when executing DB2 commands or SQL statements (see Figure 5.10).

```
vml3:db2prd 8> db2 get dbm cfg | grep DISPATCHER  
WLM dispatcher_enabled (WLM DISPATCHER) = NO
```

Figure 5.10 CLP Command Mode

When using the CLP command mode, the shell or command processor environment is maintained. This indicates to the operating system that the command that follows has to be handled by the DB2 CLP. The processor or shell environment isn't initialized; therefore, operating system commands can be still issued as before.

Batch mode

The batch mode uses the `-f` file input option and the `-z` file output option (see Figure 5.11).
The batch mode enables you to specify a file with a set of DB2 commands or SQL statements. These commands are processed by the CLP. The batch mode is an extension of the command mode.

Using the shell command `!` allows you to execute operating system commands from the interactive mode or the batch mode. For example, on UNIX-based systems, you can run `!ls -ltr` and on Windows operating systems `!dir`.

CLP Syntax

For commands:

```
  db2 -[option-flag], [db2-command or sql-statement]
```

To request help:

```
  db2 ? [phrase, message, sqlstate or classcode]
```

You can use the CLP help commands to learn about the available options or to gain information from the CLP (see Table 5.2). Note that a blank space must separate the question mark from the variable name.

Table 5.2 CLP Help Options

<table>
<thead>
<tr>
<th>Statement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>View CLP general help.</td>
</tr>
<tr>
<td>? phrase</td>
<td>View the help text associated with a specific command or topic. If there is no information for your requested information, the general help screen is displayed.</td>
</tr>
<tr>
<td></td>
<td>? help, for example, requests information on how to use and read the help screens.</td>
</tr>
<tr>
<td>? sqlstate</td>
<td>You can request help for a message specified by a valid SQLSTATE.</td>
</tr>
<tr>
<td>? message</td>
<td>You can request information for a message specified by a valid SQLCODE.</td>
</tr>
<tr>
<td>? class-code</td>
<td>You can request information for a message specified by a valid class code.</td>
</tr>
</tbody>
</table>
When you want to stop the CLP, use the command **QUIT** or **TERMINATE**. **QUIT** just stops the CLP. **TERMINATE** stops the CLP, removes any associated backend process and frees memory that is being used. Before stopping the database manager (**db2stop**), it's recommended that you issue **TERMINATE**. If you change database configuration parameters, it might be ostensible to issue **TERMINATE** so that these changes take effect.

CLP options

The CLP options you see in figure are the default settings. They can be changed by setting the **DB2OPTIONS** environment variable or by using command line flags. Under Linux you can use the command `setenv DB2OPTIONS -m` to turn on that the number of rows affected is displayed.

![db2 list command options](image)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Current Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Display SQLCA</td>
<td>OFF</td>
</tr>
<tr>
<td>-c</td>
<td>Auto-Commit</td>
<td>ON</td>
</tr>
<tr>
<td>-d</td>
<td>Retrieve and display XML declarations</td>
<td>OFF</td>
</tr>
<tr>
<td>-e</td>
<td>Display SQLCODE/SQSTATE</td>
<td>OFF</td>
</tr>
<tr>
<td>-f</td>
<td>Read from input file</td>
<td>OFF</td>
</tr>
<tr>
<td>-l</td>
<td>Display XML data with indentation</td>
<td>OFF</td>
</tr>
<tr>
<td>-L</td>
<td>Log commands in history file</td>
<td>OFF</td>
</tr>
<tr>
<td>-m</td>
<td>Display the number of rows affected</td>
<td>OFF</td>
</tr>
<tr>
<td>-n</td>
<td>Remove new line character</td>
<td>OFF</td>
</tr>
<tr>
<td>-o</td>
<td>Display output</td>
<td>ON</td>
</tr>
<tr>
<td>-p</td>
<td>Display interactive input prompt</td>
<td>ON</td>
</tr>
<tr>
<td>-q</td>
<td>Preserve whitespaces & linefeeds</td>
<td>OFF</td>
</tr>
<tr>
<td>-r</td>
<td>Save output to report file</td>
<td>OFF</td>
</tr>
<tr>
<td>-s</td>
<td>Stop execution on command error</td>
<td>OFF</td>
</tr>
<tr>
<td>-t</td>
<td>Set statement termination character</td>
<td>OFF</td>
</tr>
<tr>
<td>-v</td>
<td>Echo current command</td>
<td>OFF</td>
</tr>
<tr>
<td>-w</td>
<td>Display FETCH/SELECT warning messages</td>
<td>ON</td>
</tr>
<tr>
<td>-x</td>
<td>Suppress printing of column headings</td>
<td>OFF</td>
</tr>
<tr>
<td>-z</td>
<td>Save all output to output file</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Figure 5.12
db2 list command options

Setting the **DB2OPTIONS** environment variable overrides the default settings. Using a flag in the command line operation overrides the **DB2OPTIONS**. In case you want to override the system defaults, the settings in **DB2OPTIONS** and the settings used in the command line flags during an interactive session or a batch job you can use the **UPDATE COMMAND**
OPTIONS command. Afterwards, the settings will revert to the settings chosen before.

Now that we’ve discussed your non-DBA Cockpit options, it’s time to get into the core of this chapter.

5.2 DBA Cockpit

The DBA Cockpit is an SAP tool used to manage the underlying databases. It’s a part of every SAP NetWeaver-based system. Initially, it was developed by IBM and SAP for managing DB2 databases. Now all SAP-supported database platforms can use it as a central point for database administration tasks and monitoring. The DBA Cockpit is a consolidated interface to standard DBA functionality, most of which has existed in SAP transactions for years. As shown in Figure 5.13, you can run the DBA Cockpit locally on an SAP NetWeaver-based system by calling Transaction DBACOCKPIT.

![Figure 5.13 Running a DBA Cockpit on a Local SAP System](image)

Alternatively, as shown in Figure 5.14, you can also run the DBA Cockpit on your SAP Solution Manager system, where you can access all databases in your system landscape using remote connections.
If you use the DBA Cockpit as part of the SAP Solution Manager system, you can update and administer all databases from a central system rather than logging on to each individual system separately.

Now that you have an understanding of the DBA Cockpit and how it can be used with your SAP system, we’ll get you familiar with the UI and walk you through the multitude of screen options and tools.

5.2.1 DBA Cockpit UI

In older versions of the DBA Cockpit, the classical SAP GUI-based user interface was used. The new web browser UI differs from this classical approach with regards to the overall screen layout and navigation, customizing of the UI, and additionally provided functions.

You can find the following areas in the web browser UI as shown in Figure 5.15.
Following are the navigation and screen layout of the browser UI areas:

- **COMMON HEADER AREA**
 This area provides a set of standard functions. You can, for example, customize the layout or log off from the DBA Cockpit.

- **TOP LEVEL NAVIGATION**
 In the top-level navigation (including second-level navigation), you can switch between the cross-system area on the SYSTEM LANDSCAPE tab page and the database-specific area on the DATABASE tab page. The SYSTEM LANDSCAPE tab page provides information about the overall system landscape. The DATABASE tab page provides information about the selected database.

 In the second-level navigation, the main tasks areas for your database administration are provided. For fast navigation, pull-down menus corresponding to the related detail levels are available.

- **DETAIL NAVIGATION**
 Here you find the main actions of the main task areas. Depending on your selected main action, a set of related actions is available. For example, if you choose PERFORMANCE – HISTORY, the subactions DATABASE and TABLES become available.
- **System Landscape Selector**
 This provides you a quick overview of all configured systems.

- **Favorites List**
 This list contains links to special tools and actions. If you want to add a specific tool or action to your list, choose **Personalize • Add Favorite** in the common header area. You can rename or delete favorites by choosing **Personalize • Organize Favorites**.

- **Useful Links List**
 You’ll find a link to the IBMDB2 Information Center and to the SAP on DB2 for LUW in the SCN: SAP Community Network.

- **Framework Message Window**
 Messages that are provided by the framework are displayed in the message window. The windows contain a complete history of all messages that are sent during a session.

 When a new message is generated, the message windows are automatically expanded. If there is no message, the window is collapsed by default.

- **Global Toolbar**
 This toolbar provides a set of globally available functions for navigation and content-related functions.

- **Central System Data**
 In this area, you find, for example, the time of the last refresh, the startup time, or the database name.

- **Content Area**
 The content area displays details of the current selected action. Depending on the chosen action, you can see the following areas:

 - **Selection area**
 In this area, you can enter selection criteria for the content to be displayed.

 - **Summary area**
 This area provides a summary overview of the selected data.

 - **Content**
 Depending on the screen and action you have chosen, the content is displayed here.
 CONTENT DETAIL AREA

If the content in the content area is displayed as a table, you can select a table row and display more details of this table entry in the detail area.

<table>
<thead>
<tr>
<th>DBA Cockpit Correction Note for SAP Basis 7.02/7.30/7.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Note 1456402 is a collection of corrections for the DBA Cockpit in SAP Basis Release 7.02/7.30/7.31. This note includes other required SAP notes, and it’s regularly extended and updated.</td>
</tr>
<tr>
<td>Implement and update the note using Transaction SNOTE (refer to Chapter 9).</td>
</tr>
</tbody>
</table>

Now that you’re familiar with the UI, we’ll delve into the different screen areas and tools that are available to help you manage the database KPIs and maintain them if necessary.

5.2.2 System Landscape

The System Landscape area provides tools for all systems connected to your DBA Cockpit. The following tools and options are available for you to use to configure and manage your system landscape:

- System configuration
- Central Calendar
- Database connections
- DB Connection Monitor
- Self-monitoring
- SLD System Import

We’ll discuss each of these tools in greater detail in the following subsections.

System Configuration

If you don’t use SAP Solution Manager for monitoring, you can also use the DBA Cockpit to monitor your databases. Therefore, you have three possibilities, which we discuss in the next sections.
Create Configuration Connection Manually

You can create the system configuration and database connection manually, if the monitored database has not been configured during the integration of a system using SAP Solution Manager. This setup includes the basic setup necessary to connect to the monitored database.

Prerequisites

As a prerequisite, the user for the database connection needs to have sufficient permission. And, if they don’t exist, you need to create the tablespace SAPTOOLS and SAPEVENTMON in the monitored database.

Create tablespaces

To create the tablespaces that don’t exist as shown in Figure 5.16, choose the button **set up tablespace saptools** and **set up tablespace sapeventmon**. Instead of using these buttons (i.e., if you don’t have the necessary patch level) you can go to the **Space/Tablespaces** area. Here you can click the **Add** button to see the screen shown in Figure 5.17 and to create the tablespaces.

![Figure 5.16](image)

Figure 5.16 Tablespace that Don’t Exist
Enter “SAPTOOLS” in the Name field. In the Contents area, select LARGE OBJECTS. In the Space Management by area, choose Autostorage. Click the Check button, and if you don’t run into an error, click Execute. In a second step, repeat the same procedure for table SAPEVENTMON.

To add a system, call the DBA Cockpit, and go to the System Configuration. Here you see a list of all available systems and the current system status. Click the Add button, and a wizard will guide you through the following screens as shown in Figure 5.18.
The INTRODUCTION step provides you an overview of the configuration steps. No actions have to be taken here; just click CONTINUE to move to the screen shown in Figure 5.19.

Here you specify the following:

- The name of the system you want to monitor. This name is a unique ID and doesn't have to be the SAP system ID.
- A description of the monitored system.
- The connection type you want to use. You can use REMOTE DATABASE CONNECTION, REMOTE DATABASE CONNECTION AND RFC DESTINATION, or REMOTE DATABASE CONNECTION VIA RFC DESTINATION.

Specifying the RFC destination is an optional step that is only necessary if you have chosen a connection type that requires an RFC destination.
The RFC destination must already exist and be available. You can test the connection by clicking **Test Connection** as shown in Figure 5.20. Click **Continue** to move to the screen shown in Figure 5.21.

![Figure 5.20 Integrate a System: RFC Destination](image)

Here you can pick an existing database connection or create a new one. See the “Database Connections” section later in this chapter to find details on how to create a database connection.

In the screen shown in Figure 5.22, you specify how you want to collect monitoring data:

- **Activate Alert Monitoring**
 If you use the RZ20 alert monitor, use this option. If you're using the
DBA Cockpit in SAP Solution Manager 7.1, you should switch to E2E alerting instead. This doesn't need any specific setup.

- **Collect Space and Performance History Data**
 Check this option if the monitoring data has to be collected by the remote system.

- **Show Scheduled Jobs in Central Planning Calendar**
 Check this option if your actions should appear in the Central Planning Calendar.

![Integrate a System: Monitoring Settings](image)

Figure 5.22 Integrate a System: Monitoring Settings

On the last screen, you get a summary of all performed actions.

Use the System Landscape Directory
The second option for system configuration is to use database information that is stored in the system landscape directory (SLD) and generate or update your system information automatically. For more details see Section 5.2.3.

Set Up Database Connections
You can use the DATABASE CONNECTION screens starting in Figure 5.21 to set up database connections that are used for non-monitoring components.

Central Calendar
The CENTRAL CALENDAR screen visualizes actions on all of the databases of your SAP systems connected to your DBA Cockpit. This is a single point to manage your DBA actions in an integrated SAP environment. Depending on the database platforms you use next to DB2 10.1 the available actions may differ, but they way in which you use it is always the same.
By using the selection screen (Figure 5.23), you can decide from which date you want to see the performed actions and what factory calendar to use.

![Figure 5.23 Central Calendar Selection](image)

In the **Central Calendar** screen (Figure 5.24), you can only check the results of the performed action. If you need to schedule, change, delete, or execute actions, you have to jump into the SAP system’s DBA Planning Calendar, which we explain next.

![Figure 5.24 Central Calendar](image)

Steps to Access the Central Calendar

You start the Central Calendar by choosing **Central Calendar** on the **System Landscape** tab page. The Central Calendar displays an overview of past actions and planned actions.
Figure 5.25 shows you the overview of a day you get when you open the Central Calendar. This example shows you two affected systems: PRD and PR2. On system PR2, three actions are planned for Thursday the 27th of December. One action is running right now.

On system PRD, only one action is planned, but it isn’t executed yet. By clicking the Legend button, you can see the color-coded statuses (Table 5.3) that are used in the Central Calendar.

<table>
<thead>
<tr>
<th>Status</th>
<th>Color</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light blue</td>
<td>Planned</td>
<td></td>
</tr>
<tr>
<td>Dark blue</td>
<td>Running</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Finished successfully</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Finished with warning</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Finished with error</td>
<td></td>
</tr>
<tr>
<td>Dark yellow</td>
<td>No longer available</td>
<td></td>
</tr>
<tr>
<td>Dark red</td>
<td>Scheduling failed</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3 Color-Coded Statuses in the Central Calendar

To see a summary of the actions for a day, click the DAY header. In the DETAILS area, you see a summary of the actions and the status for each system as shown in Figure 5.26.
You have several options you can use to obtain new statistics for the scheduled jobs. One option is to choose the Refresh button. If you have a lot of actions planned, this might take a long time, so this option isn’t recommended.

To schedule the refresh, choose the Refresh in the Background button, and use the dialog box shown in Figure 5.27.

![Schedule Refresh Dialog Box](image)

Figure 5.27 Schedule Refresh Dialog Box

This dialog box provides the following options:

- **Run in Dialog**
 This runs the refresh in the dialog mode. This option isn’t recommended.

- **Start Immediately in the Background**
 The job is immediately started as a background job.

- **Schedule**
 The refresh job runs in the background on the date you choose.

Database Connections

In this area, you can set and maintain technical attributes for remote database connections. These connections are used for administration, monitoring, or application programs that use secondary connections to external databases. New connections can be created in this screen, but you can also create them using the System Configuration page (see the previous “System Configuration” section).
When you call the DATABASE CONNECTIONS screen, a list (see Figure 5.28) of available database connection definitions is displayed.

<table>
<thead>
<tr>
<th>Database Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
</tr>
<tr>
<td>Number of Database Connections: 2</td>
</tr>
</tbody>
</table>

By default, the database connections that are defined in the local system are displayed as detailed in Table 5.4.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE DATABASE CONNECTION</td>
<td>Name of the database connection. You can choose this unique name.</td>
</tr>
<tr>
<td>DB NAME</td>
<td>Name of the database.</td>
</tr>
<tr>
<td>DB HOST</td>
<td>Name of the database host.</td>
</tr>
<tr>
<td>DB SCHEMA</td>
<td>Name of the monitored database schema.</td>
</tr>
<tr>
<td>USER NAME</td>
<td>Name of the connect user.</td>
</tr>
<tr>
<td>PERMANENT</td>
<td>Is the connect user permanently available?</td>
</tr>
<tr>
<td>MAX. CONNECTIONS</td>
<td>Maximum allowed numbers of open connections.</td>
</tr>
<tr>
<td>OPT. CONNECTIONS</td>
<td>Optimal number of connections.</td>
</tr>
</tbody>
</table>

Table 5.4 Columns used for Database Connections

If you want to add a database connection, click the ADD button, and the dialog box shown in Figure 5.29 appears.
In this dialog box, you can enter the values that are detailed in Table 5.5.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Name</td>
<td>Unique name you choose freely (except names reserved by SAP).</td>
</tr>
<tr>
<td>Database System</td>
<td>Name of the database system.</td>
</tr>
<tr>
<td>Connection Maximum</td>
<td>Limits the number of database connections that are currently held.</td>
</tr>
<tr>
<td>Connection Optimum</td>
<td>Optimal number of connections.</td>
</tr>
<tr>
<td>Permanent</td>
<td>Set this parameter if the connection is absolutely required to run your system. If this parameter is set, the database connection is handled like a local one, so if the database connection isn’t available, a work process that wants to use it can’t run.</td>
</tr>
</tbody>
</table>

Table 5.5 Attributes for Adding a Database Connection
To change one of your database connections, select the connection and choose the **Change** button. Now you can change the field you like. To check if you have entered the correct user and password, click the **Test** button. The result is displayed in a protocol in the content detail area. To save, click the **Save** button. If you want to delete a connection, choose the connection and click the **Delete** button. Be aware that you can only delete connections that aren't used by a system registered in the DBA Cockpit.

DB Connection Monitor

The DB Connection Monitor allows you to monitor all database connections from all connected application servers. All disconnected database connections are hidden by default. The information in Table 5.6 is displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WORK PROCESS</td>
<td>Number of the work process.</td>
</tr>
<tr>
<td>HANDLE</td>
<td>Each work process can have several connections; this is an internal number of each connection.</td>
</tr>
<tr>
<td>CONNECTION NAME</td>
<td>Name of the connection.</td>
</tr>
<tr>
<td>CONNECTION ID</td>
<td>ID of the connection.</td>
</tr>
</tbody>
</table>

Table 5.6 Columns in the DB Connection Monitor
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection State</td>
<td>This is the state of the connection. Possible states are active, inactive, connecting, and disconnected.</td>
</tr>
<tr>
<td>TX (Changing Operation)</td>
<td>Tells you if a changing operation was executed.</td>
</tr>
<tr>
<td>BC (Block COMMIT)</td>
<td>Indicates if COMMIT statements are blocked.</td>
</tr>
<tr>
<td>HC (Cursor with HOLD)</td>
<td>The connection has a cursor with hold.</td>
</tr>
<tr>
<td>PRM - Permanent Connection</td>
<td>The connection is permanent.</td>
</tr>
<tr>
<td>RCT - Reconnect</td>
<td>Indicates that the connection automatically reconnects after it is closed.</td>
</tr>
<tr>
<td>FRC - Force Reconnect</td>
<td>The connection is forced to reconnect after it is closed.</td>
</tr>
<tr>
<td>TIM - Timeout</td>
<td>Timeout when the connection is closed.</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum allowed open connections.</td>
</tr>
<tr>
<td>Optimum</td>
<td>Optimal number of connections.</td>
</tr>
<tr>
<td>Date</td>
<td>Date when the connection was established.</td>
</tr>
<tr>
<td>Time</td>
<td>Time when the connection was established.</td>
</tr>
<tr>
<td>DB Host</td>
<td>Host name.</td>
</tr>
<tr>
<td>Program</td>
<td>Program that opened the connection.</td>
</tr>
</tbody>
</table>

Table 5.6 Columns in the DB Connection Monitor (Cont.)

SLD System Import

Before we briefly explain the SLD system import, note that we don’t recommend that you use this outdated function anymore. Instead, you should use SAP Solution Manager for the setup and monitoring of the system landscape. If you want to use it anyway, choose the SLD SYSTEM IMPORT Button.

The SLD SYSTEM IMPORT screen appears, and you see the following nodes (depending on your landscape):
5.2.3 Performance

Performance is the first point on the Database tab of the DBA Cockpit. The goal of the performance tuning is to maximize the use of your system resources to perform work as efficiently and rapidly as possible. The DB2 database is designed to manage work efficiently, but it is possible to improve the performance by customizing settings and the configuration of your database according to your setting.

Therefore the following areas are available on the tab:

- Performance Warehouse
- Time Spent Analysis
- Workload Statistics
- Top SQL Statement Analysis
- Snapshots
- Critical Activities
- Utilities
- History

We’ll explain each of these areas in the following subsections.
Performance Warehouse

The Performance Warehouse screen allows you to analyze the historical performance data of your database system and your SAP applications. All relevant performance indicators that are collected from all SAP systems are stored in your central Business Intelligence (BI) system. The historical data can then be mined, trended, and analyzed, using powerful SAP NetWeaver Business Warehouse (BW) interfaces with charts, dashboards, and drilldown capabilities.

Performance Warehouse: Configuration

This screen is only available in the DBA Cockpit of your SAP Solution Manager system if the Database Performance Warehouse has been configured.

The prerequisite to use the Performance Warehouse option is to have an SAP Solution Manager system with enabled Solution Manager Diagnostics (SMD). You use the SMD Setup Wizard to configure the extraction of data into the SMD BI component. Your data is stored in the SMD BI. You can access the Configuration screen of the performance warehouse by choosing Performance Warehouse • Configuration. You can configure all necessary parameters on the Performance Warehouse Configuration screen. The available tab pages include Configuration, Web Reports, and Report Categories, which we'll explained in the following list:

- **Configuration**
 You can view or modify the configuration parameters for the monitored system. Depending on your database platform, the displayed selection of values can vary. For all database platforms, the parameters BI Server, Managing DBA Cockpit, and Reporting Time Zone are displayed. The BI Server parameter designates which BI server to use for performance data. The Managing DBA Cockpit-parameter indicates which DBA Cockpit is allowed to change data collectors or configuration for this database. The DBA Cockpit of the SAP Solution Manager system is the default setting. For all reports, the performance data timestamps are converted to one global time zone.

- **Web Reports**
 You can configure the display on the reporting screen by modifying the integrated SAP Business Explorer (BEx) web templates. For each
Administration Tools Inside and Outside the SAP System

Report category, you can view or modify the views by expanding the appropriate report category. The main report categories are displayed. To dive deeper into the details of a view, select it in the table. Then you can display the name, detailed description, category of the report, database platform used, and data providers.

- **Report Categories**
 You can view and modify the categories for BEx web templates. You can change the sequence of the categories on the REPORTING screen using the Up and Down buttons.

Time Spent Analysis

The Time Spent Analysis area has been available since DB2 version 9.7. It’s a starting point for performance tuning or to identify time-based problems of your database. By picking a time frame and metrics, you can create an aggregated view on the time line of the current or past performance situation of your database. This allows you to analyze specific workload situations in real time. Besides using the standard database KPIs such as the buffer pool hit ratio, you can also identify how much time is spent on the different kinds of database operations.

The Time Spent Analysis area of the tab is divided into the following two subareas:

- The **Selection** area (see Figure 5.30) lets you decide if you want to use the data collected during the periodic data collection or ad-hoc data to run the analysis. You can choose the time frame, the involved service classes, the applied metrics and how to drill down the analysis.

![Figure 5.30 Time Spent Analysis Selection](image)

- The **Chart** view Time Spent in DB2 by Metric includes the options to display it as a pie chart, as shown in Figure 5.31, or to display it as a time line histogram.

![Figure 5.31 Time Spent in DB2 by Metric](image)
Workload Statistics

The WORKLOAD STATISTICS area has been available since DB2 V9.5. These basic statistics describe the overall behavior of the database system. For example, you can use them to do the following:

- Investigate a system slowdown and understand the type of slowdown.
- Monitor your service level agreements (SLAs).
- Define workload management (WLM) thresholds using the high water-mark metrics.
- Search for members, time frames, or service classes in which queries are running long.

In the SELECTION area (see Figure 5.32), you can choose the time frame and the service classes. By choosing ADVANCED SELECTION, you see all available service classes and the parent service class. If you have a distributed database system, you can also filter by members and service classes.
After applying the selection, you can see the results in the **Activity Lifetimes** (shown in Figure 5.33) and the **Statistics** tab. You can choose between three different histogram types.

Figure 5.32 Workload Statistics Selection

Figure 5.33 Activity Lifetime Histogram
The following histogram types are available:

- **Activity Execution Time Histogram**
 This histogram displays the execution times of all activities that were executed in the selected service class and time frame. *Execution time* means the time an activity has spent executing. It doesn’t include the time spent during initialization, queuing, or between cursor operations.

- **Activity Lifetime Histogram**
 This histogram displays the lifetime of all activities that were executed in the selected service class and time frame. *Lifetime* means the total elapsed time of an activity, including the time spent during initialization, queuing, or between cursor operations.

- **Activity Queue Time Histogram**
 This histogram displays the time activities spent in a WLM queue in the selected service class and time frame.

Below the histogram chart, an additional chart is displayed with the total number of activities that have been completed, rejected, or aborted as shown in Figure 5.34.

![Figure 5.34 Workload Statistics Chart](image)

The *Statistics* tab provides you with average metrics and a range of high watermarks. The information from Table 5.7 is displayed.
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time From</td>
<td>Time and date the statistics interval begins.</td>
</tr>
<tr>
<td>Time To</td>
<td>Time and date the statistics interval ends.</td>
</tr>
<tr>
<td>Member</td>
<td>The member that has captured the statistics.</td>
</tr>
<tr>
<td>Service Superclass</td>
<td>Name of the service superclass for which the statistics were created.</td>
</tr>
<tr>
<td>Service Subclass</td>
<td>Name of the service subclass for which the statistics were created.</td>
</tr>
<tr>
<td>COORD. ACT. LIFETIME Top</td>
<td>High watermark for the coordinator activity lifetime (in milliseconds).</td>
</tr>
<tr>
<td>COORD. ACT. LIFETIME Avg.</td>
<td>Arithmetic mean of the coordinator activity lifetime (in milliseconds).</td>
</tr>
<tr>
<td>UOW Total Time Top</td>
<td>High watermark for the unit of work lifetime (in milliseconds).</td>
</tr>
<tr>
<td>ACT. TEMP. TABLESPACE Top</td>
<td>High watermark for the temporary tablespace usage of a single DML activity (in kilobytes).</td>
</tr>
<tr>
<td>AGG. TEMP. TABLESPACE Top</td>
<td>High watermark for the aggregate temporary tablespace across all DML activities (in kilobytes).</td>
</tr>
<tr>
<td>Activity CPU Time Top</td>
<td>High watermark for processor time used (in milliseconds).</td>
</tr>
<tr>
<td>Rows Read Top</td>
<td>High watermark for the number of rows read.</td>
</tr>
<tr>
<td>Rows Returned Top</td>
<td>High watermark for the number of rows returned.</td>
</tr>
</tbody>
</table>

Table 5.7 Workload Statistics

Top SQL Statement Analysis

The Top SQL Statement Analysis area of the screen has been available for databases as of release DB2 V9.7. This tool helps you display information about SQL statements that are executed either very often or that are very expensive with respect to specific metrics. With this information, you can identify SQL statements that consume a lot of resources and can
think about fine-tuning these statements to improve the performance of the database.

Let’s examine the analysis steps and how to work with this tool.

The Package Cache data collector of the data collection framework (DCF) captures the required data and dumps it into the history tables. The data collector performs a top “n” analysis and only stores the data of those statements that are in the top “n” based on the defined metric in the history tables. Therefore, the data provided in this screen isn’t a 100% view on all executed SQL statements on the database server because it includes only the top “n” statements.

In the SELECTION area (see Figure 5.35), you specify the time frame and the way the top SQL statements are chosen. You can select either the TOP SQL STATEMENTS BY or the CUSTOM radio button.

Top SQL Statement Analysis

<table>
<thead>
<tr>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Frame: Today</td>
</tr>
<tr>
<td>Top SQL Statements by: Custom</td>
</tr>
<tr>
<td>Coef. Start Execution Time: ></td>
</tr>
<tr>
<td>Coef. Executions: ></td>
</tr>
<tr>
<td>Avg. Coef. Start, Execution Time: ></td>
</tr>
<tr>
<td>Rown per Row / Rows Processed: ></td>
</tr>
<tr>
<td>DP Cuts / Rows Processed: ></td>
</tr>
<tr>
<td>SQL Statement Text: ></td>
</tr>
<tr>
<td>Reduce Output to a Maximum of: 50 SQL Statements</td>
</tr>
<tr>
<td>Display Static Packages</td>
</tr>
<tr>
<td>Apply Selection</td>
</tr>
<tr>
<td># Rown Read: 2</td>
</tr>
<tr>
<td># Rown Modified: 0</td>
</tr>
</tbody>
</table>

Figure 5.35 Top SQL Statement Analysis Selection

SQL STATEMENTS BY lets you choose a ranking criterion from a dropdown list. This will be the first metric column and is used for ranking. The CUSTOM radio button allows you to define your own filter criteria. You can also limit the number of SQL statements and use the DISPLAY STATIC PACKAGES option, if you want to analyze static packages.

By clicking the APPLY SELECTION button, the information detailed in Table 5.8 is displayed.
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT TEXT</td>
<td>Text of the SQL statement.</td>
</tr>
<tr>
<td>RANKING METRIC</td>
<td>Default: COORD. STATEMENT EXEC. TIME = EXECUTION time by coordinator agent.</td>
</tr>
<tr>
<td></td>
<td>This metric column is used for ranking. You choose what metric to use in</td>
</tr>
<tr>
<td></td>
<td>the SELECTION area.</td>
</tr>
<tr>
<td>NO. OF COORD. EXECUTIONS</td>
<td>Number of executions by coordinator agent.</td>
</tr>
<tr>
<td>AVG. COORD._STMT. EXEC. TIME</td>
<td>Average execution time for the statement in milliseconds.</td>
</tr>
<tr>
<td>TOTAL CPU TIME</td>
<td>Total CPU time in milliseconds.</td>
</tr>
<tr>
<td>ROWS READ/ROWS PROCESSED</td>
<td>Ratio of rows read from the base table compared to the rows processed</td>
</tr>
<tr>
<td></td>
<td>(SELECT, UPDATE, INSERT, or DELETE statement). A high value indicates</td>
</tr>
<tr>
<td></td>
<td>statements with inefficient access; the value “1” stands for optimal</td>
</tr>
<tr>
<td></td>
<td>access.</td>
</tr>
<tr>
<td>BP GETS/ROWS PROCESSED</td>
<td>The average number of pages read from the buffer pool per rows processed</td>
</tr>
<tr>
<td></td>
<td>(SELECT, UPDATE, INSERT, or DELETE statement).</td>
</tr>
</tbody>
</table>

Table 5.8 Top SQL Statement Analysis

By double-clicking on an SQL statement, you open the SQL STATEMENT Details area as shown in Figure 5.36.

Figure 5.36 Top SQL Statement Analysis Details: SQL Statement
On the SQL Statement tab page, you can see the complete SQL statement as a text. To jump into the current access plan of the statement, click the EXPLAIN button (also see the “EXPLAIN Access Plan” section).

The Metrics Summary tab displays a chart with the time spent information for the SQL Statement as shown in Figure 5.37. Under the chart, the following information is displayed:

![Metrics Summary Chart]

Figure 5.37 Top SQL Statement Analysis Details: Metrics Summary

- **Statement metadata**
- **Miscellaneous metrics**
- **Sorts**
- **Locking**
- **Logger**
- **Buffer pool**
- **Direct I/O**
- **Metrics Details**

The Metrics Details tab page provides you with time slices and detailed information for each time slice as shown in Figure 5.38. When highlighting a time slice, the following information is displayed:
The **Access Plan Versions** tab gives you an overview of the different generated access plans for this SQL statement in the history (see Figure 5.39). An access plan version is a virtual version number. If the SQL statement is flushed from the package cache and recompiled, a new version is used. The estimated query costs can be used as an indicator for similar access plans. To find out more about the access plan, just select the line you want to dive deeper into, and the **Access Plan Details** area appears.
The SQL Statement tab is displayed first when you go into the Access Plan Details screen (see Figure 5.40). You see the SQL Statement and information about the Compilation Environment.

You can take a look at the access plan of the statement by clicking the Historic EXPLAIN button. History in this context means that you see...
an access plan from the time it was generated. To find out more about the EXPLAIN function, see the "EXPLAIN Access Plan" subsection in Section 5.2.11.

In the Metrics Summary tab, you see a chart view of Time Spent in SQL Statement during the time frame defined in the selection area (see Figure 5.41). Under the chart, the following information is displayed:

- Statement metadata
- Miscellaneous metrics
- Sorts
- Locking
- Logger
- Buffer pool
- Direct I/O

![Figure 5.41](Image)

Figure 5.41 Top SQL Statement Analysis Details with Access Plan Versions and Metric Summary

The Metrics Details tab (see Figure 5.42) allows you to display the following detailed information for specific time slices for the access plan version:
Snapshots

In the Snapshots task area, you can handle various snapshots to monitor data in an unfiltered and raw format. Snapshot data is collected right after you start the database until now. Data is accumulated over a long time period, so it isn’t the best tool to investigate short-term performance or workload problems. If you want to use it for a shorter time period, you can set an explicit starting point using the Reset and Since Reset buttons. Or if your snapshot data is collected by the DCF, you can specify a time interval for your analysis. This option is applicable for the following snapshot options:

- Database
- Buffer Pools

Figure 5.42 Top SQL Statement Analysis Details with Access Plan Versions and Metric Details
Tablespaces
Containers
Tables
SQL Cache
System Resources
Transaction Log

The following options can’t be used with DCF support:

- Schemas
- Applications

When choosing Performance/Snapshots in the top level navigation, the Database snapshot is opened by default, and the snapshot options (see Figure 5.43) appear on the left.

Figure 5.43 Snapshots Options

Database
When you look at your database snapshot, depending on the version of your database and if you configured the data collection framework, you either have a database snapshot with or without DCF support.

If you don’t have DCF support, your Database screen provides you a selection of performance data that you can use to identify performance-critical partitions before starting a more detailed analysis. For each partition of your database system, the following information is shown:
- Number and total size of buffer pools
- Number of data and index logical reads
- Number of data and index physical reads
- Average physical read and write time required to read data from and write data to
- The buffer pool
- Executed SQL statements
- Package cache size
- Package cache quality

In contrast to the database snapshot without DCF support, if you do have DFC support, you can view the current data and monitor the periodically collected data.

The DATABASE screen provides the following:

- A selection area where you can specify the time frame
- An overview table with the most important key figures aggregated over the selected time period
- A detailed results list of selected monitoring data
- A graphical view of the history data (see Figure 5.44)
- A detailed view of all historical data collected during a specified time frame

To analyze your database snapshot data, first identify the period in which you experienced problems. These problems can be long-running background jobs or bad user response time, for example.

In the SELECTION AREA, you specify the time frame. Now refresh your monitoring data by clicking APPLY SELECTION. You now see information about each partition. To find out more about a partition, select the line in the overview table for detailed information. Select the SUMMARY tab to see a graphical view of the history (Figure 5.45) and a summary of many relevant figures (Figure 5.44).
Figure 5.44 Snapshot: History

Figure 5.45 Snapshot: Database Summary
Schema

Using the **Schema** option allows you to research performance problems if more than one SAP component is installed within the same database. You can identify the workload distribution among the components and identify performance-critical components. The information detailed in Table 5.9 is provided for your components.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER</td>
<td>Name of the connection user</td>
</tr>
<tr>
<td>PARTITION</td>
<td>Number of the partition (only displayed if you use a multi-partition database)</td>
</tr>
<tr>
<td>SAP COMPONENT</td>
<td>Shows you if your connection user is related to the SAP component</td>
</tr>
<tr>
<td>DATA LOGICAL READS</td>
<td>Number of read accesses to data stored in the buffer pool</td>
</tr>
<tr>
<td>DATA LOGICAL READS (%)</td>
<td>Percentage of logical data read accesses</td>
</tr>
<tr>
<td>INDEX LOGICAL READS</td>
<td>Number of read accesses to index data stored in the buffer pool</td>
</tr>
<tr>
<td>INDEX LOGICAL READS (%)</td>
<td>Percentage of index logical data read accesses</td>
</tr>
<tr>
<td>DATA PHYSICAL READS</td>
<td>Number of read accesses to data on disk (I/O)</td>
</tr>
<tr>
<td>DATA PHYSICAL READS (%)</td>
<td>Percentage of physical data read accesses</td>
</tr>
<tr>
<td>INDEX PHYSICAL READS</td>
<td>Number of read accesses to index data stored on disk (I/O)</td>
</tr>
<tr>
<td>INDEX PHYSICAL READS (%)</td>
<td>Percentage of physical index data read accesses</td>
</tr>
</tbody>
</table>

Table 5.9 Component Information Displayed in Snapshot: Schema

Buffer Pools

If you want to investigate your databases buffer pools, use the **Buffer Pools** option (see the **Buffer Pool** tab shown in Figure 5.46). You can use this snapshot with or without DCF support.
As shown in Figure 5.46, the BUFFER POOL screen gives you an overview of several key indicators of buffer pools.

When displaying the BUFFER POOLS screen with DCF support, you see the current global buffer pool snapshot just as you do without DCF support, and you see the periodically collected monitoring data. In the SELECTION area, you can define the time frame you want to investigate. The most important key figures are displayed in an overview table. These figures are aggregated over the selected time period. When selecting an entry from the overview table, you get a detailed view on the selected data. You can jump into the history data and get a graphical view on this data (see Figure 5.47).
Tables

To display information about each tablespace in your database, choose the TABLESPACES option. The tablespace snapshots also offer DCF support.

When running a tablespace snapshot without DCF support (see Figure 5.48), you get an overview of your database activities. This includes the tablespace name, the member for distributed systems, the buffer quality, the average physical read and write time, the data logical reads, the data physical reads, the index logical reads, the index physical reads, and the buffer pool name.
When displaying the tablespace snapshot screen with DCF support, you see the current global tablespace snapshot data just as you do without DCF support, and you see the periodically collected monitoring data. In the Selection area, you can define the time frame you want to investigate how to sort your tablespaces and the maximum number of rows (see Figure 5.49).

The most important key figures are displayed in an overview table. These figures are aggregated over the selected time period. When selecting an entry from the overview table, you get a detailed view of the selected
data. You can jump into the history data and get a graphical view of this data (see Figure 5.50).

![Figure 5.50](image)

Figure 5.50 Snapshot: Tablespace with DCF Support

Container List

The snapshot CONTAINER option is available for DB2 V9.7 or higher. Your DCF needs to be set up correctly, and your database configuration parameter MON_OBJ_METRICS needs to be a value other than NONE.

Containers are physical storage objects in which the DB2 tablespACES store their data. A tablespace can span one or many containers.

With the container list, you can gain an overview of the containers of your database. Data within the tablespACES are striped evenly across all containers. The information given in Table 5.10 is displayed.
Table 5.10 Snapshots: Container Lists

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLESPACE NAME</td>
<td>Name of the tablespace.</td>
</tr>
<tr>
<td>CONTAINER NAME</td>
<td>Name of the container.</td>
</tr>
<tr>
<td>ACCESSIBILITY</td>
<td>Tells you if the container is accessible: 1 means that the container is accessible, and 0 means the container isn't accessible.</td>
</tr>
<tr>
<td>STRIPE SET</td>
<td>Stripe set of the container.</td>
</tr>
<tr>
<td>DIRECT WRITES</td>
<td>Write operations not using the buffer pool of the container.</td>
</tr>
<tr>
<td>DIRECT READS</td>
<td>Read operations not using the buffer pool of the container.</td>
</tr>
<tr>
<td>DIRECT READ TIME</td>
<td>Elapsed time for read operations not using the buffer pool of the container in milliseconds.</td>
</tr>
<tr>
<td>DIRECT WRITE TIME</td>
<td>Elapsed time for write operations not using the buffer pool of the container in milliseconds.</td>
</tr>
<tr>
<td>EST. TIME PER WRITE</td>
<td>Estimated time for write operations in milliseconds.</td>
</tr>
<tr>
<td>PAGES READ</td>
<td>Number of pages read from the container.</td>
</tr>
<tr>
<td>PAGES WRITE</td>
<td>Number of pages written to the container.</td>
</tr>
</tbody>
</table>

Tables

The snapshot TABLES option can be used to analyze the tables of your database. You can find out which tables are candidates for reorganization, which tables are accessed the most and need to be reorganized, or which tables have frequent update operations and need new statistics. You can use this option with or without DCF support.

You see an overview of your database’s tables and relevant figures. For each table, you can jump into SINGLE TABLE ANALYSIS by clicking the DETAILED TABLE ANALYSIS button. To find out more about the SINGLE TABLE ANALYSIS option, read Section 5.2.4. The information that can be displayed in this option is shown in Table 5.11.
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE SCHEMA</td>
<td>Name of the schema.</td>
</tr>
<tr>
<td>TABLE NAME</td>
<td>Name of the table.</td>
</tr>
<tr>
<td>PARTITION</td>
<td>In multi-partition databases, the number of partitions is displayed.</td>
</tr>
<tr>
<td>ROWS WRITTEN</td>
<td>Number of changed rows by <code>INSERT</code>, <code>DELETE</code>, or <code>UPDATE</code> in the table.</td>
</tr>
<tr>
<td>ROWS READ</td>
<td>Number of rows read from the table.</td>
</tr>
<tr>
<td>OVERFLOW ACCESS</td>
<td>Number of reads and writes to overflowed rows of the table. A high number is an indicator for a necessary reorganization.</td>
</tr>
<tr>
<td>PAGE REORGs</td>
<td>Number of page reorganizations executed for the table. A high number of these reorganizations adversely affect performance.</td>
</tr>
<tr>
<td>OVERFLOWS CREATED</td>
<td>Number of automatically created page overflows.</td>
</tr>
<tr>
<td>TABLE SCANS</td>
<td>Number of executed scans, which gives you an indicator for a missing index for a table or a bad access plan.</td>
</tr>
</tbody>
</table>

Table 5.11 Snapshot: Tables

When displaying the TABLES screen with DCF support, you retrieve a list of the current tables snapshot just as you do without DCF support, and you also see the periodically collected monitoring data. In the SELECTION area, you can define the time frame you want to investigate, the schema, the table, the number of rows read and written, the overflow access, the page reorganizations, and the maximum number of rows. The most important key figures are displayed in an overview table. These figures are aggregated over the selected time period. When selecting an entry from the overview table, you get a detailed view on the selected data. You can jump into history data and get a graphical view on this data (see Figure 5.51).
The snapshot **APPLICATIONS** option provides you with information about applications that are currently connected to your database. You don't see historic data but only the most recent unit of work of the selected application.

The first step is to specify the filter criteria in the **SELECTION** area from which service class you want to retrieve information. Additionally, you can say whether you want to display information about DB2 autonomic processes by selecting the **SHOW DB2 AUTONOMICS AND UTILITIES** checkbox. Now click the **APPLY SELECTION** button.

In the **SUMMARY** area (see Figure 5.52), you can set a filter on the retrieved snapshot data. For the state of an application, the following values are possible:

- **Active**
 The application is active and executing activities on the database.

- **Inactive (having an uncommitted activity)**
 Currently, the application is inactive and not executing activities on
the database. In the past, the activity was active, and some past activities have not been committed.

Figure 5.52 Snapshots: Applications Summary

- **INACTIVE (NO UNCOMMITTED ACTIVITY)**
 Currently, the application is inactive and not executing activities on the database. All activities in the past have been committed.

- **INACTIVE (NO AGENT ASSIGNED)**
 No agent/coordinator is assigned to the application.

Activity types, activity states, and events recently processed, are only displayed for activity types that are currently processed. For activity types, the following values are possible:

- **LOAD**
- **READ DML**
- **WRITE DML**
- **DDL**
- **CALL**
- **OTHER**

Activity states can be the following, for example:

- **CANCEL PENDING**
- **EXECUTING**
- **IDLE**
- **INITIALIZING**
- **QUEUED**
- **TERMINATING**
Some of the following events recently processed are possible:

- **Process Request**
- **Process Routine**
- **Wait Request**
- **Acquire Lock**
- **Wait WLM Queue**

The application information given in Table 5.12 is displayed when accessing the screen.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Handle</td>
<td>A unique ID for the application.</td>
</tr>
<tr>
<td>Application State</td>
<td>State of the application.</td>
</tr>
<tr>
<td>Application Name</td>
<td>Name of the application.</td>
</tr>
<tr>
<td>UOW Runtime</td>
<td>Total runtime of the current unit of work in milliseconds.</td>
</tr>
<tr>
<td>Entity</td>
<td>Type or name of the system entity.</td>
</tr>
<tr>
<td>Client PID</td>
<td>Process ID of the client application making the connection to the database.</td>
</tr>
<tr>
<td>Client Workstation</td>
<td>Client workstation (TPMON special register).</td>
</tr>
<tr>
<td>Client User ID</td>
<td>In an SAP ABAP system, the client user ID is the SAP user name. This ID is</td>
</tr>
<tr>
<td></td>
<td>specified in the TPMON special register.</td>
</tr>
<tr>
<td>Client Application</td>
<td>The client application as specified in the TPMON special register. In an</td>
</tr>
<tr>
<td></td>
<td>ABAP system, you use “ptype BTC” for batch work processes, “ptype SPO”</td>
</tr>
<tr>
<td></td>
<td>for spool work processes, “ptype UPD” or “ptype UPD2” for update work</td>
</tr>
<tr>
<td></td>
<td>processes, and the SAP transaction code for dialog work processes.</td>
</tr>
<tr>
<td>Service Superclass</td>
<td>Name of the service superclass to which the coordinating agent is assigned.</td>
</tr>
<tr>
<td>Service Subclass</td>
<td>Name of the service subclass to which the coordinating agent is assigned.</td>
</tr>
</tbody>
</table>

Table 5.12 Snapshots: Applications
Activity
If you want to start investigations on a long-running activity, you can trace, capture, or cancel the activity. By using the Trace Activity button, you start the Application Activity Trace in a separate web browser. In the Assigned Agents tables, you see all of the agents that are currently assigned to the application handle. The Unit of Work Progress table shows collected data by the trace about the application handle. By choosing Open Dialog Settings, you can configure the metrics you’re interested in.

To capture an activity, click the Capture Activity button. Now go to Critical Activities – Threshold Violations (see the “Critical Activities” section). Use the filter function to find your manually captured activity more easily.

To cancel an activity, click the Cancel Activity button. If the cancellation of the activity is successful, an SQL error SQL4725N with the status SQLSTATE 57014 is returned.

SQL Cache
The SQL Cache option allows you to investigate SQL statements that are executed very often and therefore are stored in the SQL cache of your system. You can find out which statements consume a lot of resources and if fine-tuning these statements can improve the performance of your database.

As you can see in this excerpt of the Selection screen (Figure 5.53), you have various options to filter your result set. Without filtering, you might get a very large, hard-to-overview result set. The Top SQL Statements by...
dropdown box offers you different ranking criteria. The value you choose here is the first metric column in the result set. If you choose the CUSTOM radio button instead of TOP SQL STATEMENTS BY, you can specify your own filter criteria for relevant fields. By choosing the APPLY SELECTION button, the information is displayed as detailed in Table 5.13.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement Text</td>
<td>Text of the SQL statement</td>
</tr>
<tr>
<td></td>
<td>This metric column is used for ranking. You choose the metric to use in the SELECTION area.</td>
</tr>
<tr>
<td>No. of Coord. Executions</td>
<td>Number of executions by coordinator agent.</td>
</tr>
<tr>
<td>Total CPU Time</td>
<td>Total CPU time in milliseconds.</td>
</tr>
<tr>
<td>Rows Read/Rows Processed</td>
<td>Ratio of rows read from the base table compared to the rows processed (SELECT, UPDATE, INSERT, or DELETE statement). A high value indicates statements with inefficient access; the value 1 stands for optimal access.</td>
</tr>
<tr>
<td>BP Gets/Rows Processed</td>
<td>The average number of pages read from the buffer pool per rows processed (SELECT, UPDATE, INSERT, or DELETE statement).</td>
</tr>
</tbody>
</table>

Table 5.13 Snapshots: SQL Cache

To get detailed information about an SQL statement, select the relevant line from the result list. You'll see an SQL STATEMENT and a STATEMENT METRICS tab as shown in Figure 5.54.

On the SQL STATEMENT tab, you can see the SQL statement text and the compilation environment. The access plan of the statement can be accessed by clicking the EXPLAIN button. (For more details, see the “EXPLAIN Access Plan” section.) To jump into the ABAP source code, use the SHOW SOURCE button. You can choose between opening it in an SAP GUI or a web frontend.
Figure 5.54 Snapshots: SQL Cache and SQL Statement Tabs

The **Statement Metrics** tab displays the chart view (see Figure 5.55) **Time Spent in SQL Statement**. In the same area, you can also find the following information:

- **Statement metadata**
- **Miscellaneous metrics**
- **Sorts**
- **Locking**
Logger
Buffer pool
Direct I/O

System Resources

To get an overview of your system resources, navigate to the **Snapshots – System Resources** option. On this screen, you find the information shown in Table 5.14 for every currently monitored database system.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Name</td>
<td>Name of the host.</td>
</tr>
<tr>
<td>Operating System</td>
<td>Operating system name.</td>
</tr>
<tr>
<td>Members</td>
<td>Members located on this host.</td>
</tr>
<tr>
<td>CPU Usage</td>
<td>Current CPU usage on the host in percent.</td>
</tr>
<tr>
<td>CPU Load Short</td>
<td>In UNIX systems, you see this information. It's a short-period CPU load indicator; for example, it's loading samples for the past 5 minutes.</td>
</tr>
<tr>
<td>CPU Load Medium</td>
<td>This information is also only available on UNIX systems. It's a medium-period CPU load indicator; for example, it's loading samples for the past 10 minutes.</td>
</tr>
<tr>
<td>CPU Load Long</td>
<td>This information is also only available on UNIX systems. It's a long-period CPU load indicator; for example, it's loading samples for the past 15 minutes.</td>
</tr>
<tr>
<td>CPUs Online</td>
<td>Number of CPUs currently online.</td>
</tr>
<tr>
<td>Memory Total</td>
<td>Total size of physical memory in megabytes.</td>
</tr>
<tr>
<td>Memory Free</td>
<td>Free physical memory in megabytes.</td>
</tr>
</tbody>
</table>

Table 5.14 Snapshots: System

Critical Activities

The **Critical Activities** task area lets you define thresholds on resources to gain information or cancel database activities that are behaving abnormally. These thresholds can be controlled proactively before the action begins or reactively while the action is running and using resources. The
activities Thresholds Violations and Threshold Configuration are available.

In the Threshold Violations screen, you gain information to analyze threshold violations that occur in your database. You can specify a certain time frame and for this time frame the information shown in Table 5.15 is displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIOLATION TIME</td>
<td>Time the threshold violation occurred</td>
</tr>
<tr>
<td>MEMBER</td>
<td>The member where the violation occurred</td>
</tr>
<tr>
<td>PREDICATE</td>
<td>Predicate that was violated</td>
</tr>
<tr>
<td>VIOLATED VALUE</td>
<td>Value that violated and exceeded the threshold predicate</td>
</tr>
<tr>
<td>SERVICE SUPERCLASS</td>
<td>Service superclass in which the violation occurred</td>
</tr>
<tr>
<td>SERVICE SUBCLASS</td>
<td>Service subclass in which the violation occurred</td>
</tr>
</tbody>
</table>

Table 5.15 Critical Activities: Threshold Violations

To display detailed information about a threshold, click on the line. You’ll then get a tab with general information about the activity that violated the threshold.

You’ll also see a tab called SQL Statement, which displays the executed SQL statement that is part of the activity. To dive deeper into the access plan of the SQL statement, choose EXPLAIN and the access plan will open in a separate window (for more details, see the “EXPLAIN Access Plan” section).

All defined thresholds for your database system are displayed on the Threshold Configuration screen. Here you can enable or disable your threshold, create a new threshold, or drop an existing threshold.

Utilities

You can access the Database Utilities, Database Utility History, and Inplace Table Reorganization options by choosing Performance • Utilities and then picking one of the options as shown in Figure 5.56.
We’ll explain each of these options in the following subsections.

Database Utilities

By clicking the DATABASE UTILITIES option, you can monitor the influence of utilities on your database performance. Depending on the utility, the performance can be influenced by high physical I/O or by locking situations of database resources. Following are examples of different types of utilities:

- ASYNC_INDEX_CLEANUP
- BACKUP
- CRASH_RECOVERY
- RESTART_RECREATE_INDEX
- RESTORE
- ROLLFORWARD_RECOVERY
- RUNSTATS

After running utilities as shown in Figure 5.57, the information given in Table 5.16 is displayed.
In the content detail area, you’ll find an overview table with further information concerning whether the processing mode is concurrent or serial. The following processing modes are possible:

- **Concurrent**
 Any element of the progress list can be updated at any time due to concurrent processing.

- **Serial**
 The elements of the list where one task needs to be fully completed before the next task starts.

- **<space>**
 Only one phase is used without parallelism.

In this overview table that displays the running phases, you find information about the partition, the start time, the sequence number, the action description, the progress in percent, the number of processed and total units, metrics of the work units, and the current execution state of the utility.

Database Utility History
The Database Utility History screen allows you to get an overview of all of the logged database utility operations for a certain time frame (see Figure 5.58). With this option, you can analyze operations that were
performed on your database system in this time frame. To use this option, you must have set up the DCF correctly.

When you access this option the starting and ending time of the event, the type of utility and of the affected object, the schema and the name of the affected, the type of utility operation and the invoker that indicated if the utility was started automatically or manually is displayed.

![Figure 5.58 Utility History Details Area](image)

Inplace Table Reorganization

In the **Inplace Table Reorganization** screen, you can get an overview of currently running and interrupted inplace table reorganizations. This allows you to access the tables while they are being reorganized.

For an inplace reorganization, you can perform the following actions:

- **Pause**
 - Pause a running inplace reorganization.

- **Resume**
 - Resume a previously paused inplace table reorganization.
Suspend
Suspend a table reorganization.

The overview shown when choosing the **Inplace Table Reorganization** option displays the information given in Table 5.17.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE SCHEMA</td>
<td>Name of the table schema of the table that is currently being reorganized</td>
</tr>
<tr>
<td>TABLE NAME</td>
<td>Name of the table</td>
</tr>
<tr>
<td>PARTITION</td>
<td>Number of the partition</td>
</tr>
<tr>
<td>REORG STATUS</td>
<td>Status of the inplace table reorganization</td>
</tr>
<tr>
<td>PROGRESS</td>
<td>Progress of the reorganization in percent</td>
</tr>
<tr>
<td>START DATE</td>
<td>Start date of the reorganization</td>
</tr>
<tr>
<td>START TIME</td>
<td>Start time of the reorganization</td>
</tr>
<tr>
<td>ACCESS MODE</td>
<td>Displays the access mode for other users trying to access the table while reorganization is taking place</td>
</tr>
<tr>
<td>TABLESPACE</td>
<td>Name of the affected tablespace</td>
</tr>
</tbody>
</table>

Table 5.17 Utilities: Inplace Table Reorganization

History
As an administrator, you should take action to prevent potential problems before they occur. Historical trends help you make proactive analysis easier. When you navigate to **Performance • History**, you can access the history of either your database or your tables (see Figure 5.59).

![History: Options](image)

Figure 5.59 History: Options

To see historic data, you first need to configure your database to collect this information (see Section 5.2.6). After everything is configured, your...
database provides a day-by-day trend analysis of your database activities when you click on the DATABASE option. For each day, the values shown in Table 5.18 are monitored.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
<td>In a multi-partition database number of the monitored partition</td>
</tr>
<tr>
<td>Date</td>
<td>Date of the monitoring</td>
</tr>
<tr>
<td>Avg. Phys. Read Time</td>
<td>Average physical read time</td>
</tr>
<tr>
<td>Avg. Phys. Write Time</td>
<td>Average physical write time</td>
</tr>
<tr>
<td>Data Logical Reads</td>
<td>Read accesses to data in the buffer pool</td>
</tr>
<tr>
<td>Data Physical Reads</td>
<td>Read accesses to data on disc (I/O)</td>
</tr>
<tr>
<td>Data Physical Writes</td>
<td>Write accesses to data on disc (I/O)</td>
</tr>
<tr>
<td>Index Logical Reads</td>
<td>Read accesses to index data in the buffer pool</td>
</tr>
<tr>
<td>Index Physical Reads</td>
<td>Read accesses to index data on disc (I/O)</td>
</tr>
<tr>
<td>Index Physical Writes</td>
<td>Write accesses to index data on disc (I/O)</td>
</tr>
<tr>
<td>COMMIT Statements</td>
<td>Number of COMMIT statements</td>
</tr>
<tr>
<td>ROLLBACK Statements</td>
<td>Number of ROLLBACK statements</td>
</tr>
<tr>
<td>Lock Waits</td>
<td>Number of times applications or connections waited for locks</td>
</tr>
<tr>
<td>Lock Wait Time</td>
<td>Elapsed time applications or connections waited for locks</td>
</tr>
<tr>
<td>Deadlocks</td>
<td>Number of deadlocks</td>
</tr>
<tr>
<td>Lock Escalations</td>
<td>Number of locks that have been escalated from several row locks to a table lock</td>
</tr>
<tr>
<td>Exclusive Lock Escalations</td>
<td>Number of locks that have been escalated from several row locks to an exclusive table lock</td>
</tr>
</tbody>
</table>

Table 5.18 Performance: History Database

To find out more details about a specific day, select the row, and a details area appears with a SNAPSHOT and an INTERVAL tab. Measured values from the selected day are displayed in the SNAPSHOT tab. The INTERVAL tab shows the delta values of the measurements provided under SNAPSHOT.
This provides you with a day-to-day analysis of your table activities (see Figure 5.60).

Figure 5.60 Performance: History Tables

In this trend analysis, the information shown in Table 5.19 is displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>Date of the monitored data</td>
</tr>
<tr>
<td>TABLE SCHEMA</td>
<td>Name of the schema</td>
</tr>
<tr>
<td>TABLE NAME</td>
<td>Name of the table</td>
</tr>
<tr>
<td>PARTITION</td>
<td>In a multi-partition database number of the monitored partition</td>
</tr>
<tr>
<td>ROWS WRITTEN</td>
<td>Numbers of rows written</td>
</tr>
<tr>
<td>ROWS READ</td>
<td>Numbers of rows read</td>
</tr>
<tr>
<td>OVERFLOW ACCESSES</td>
<td>Numbers of read accesses that caused an overflow</td>
</tr>
<tr>
<td>PAGE REORGs</td>
<td>Numbers of internal page reorganizations during INSERT</td>
</tr>
</tbody>
</table>

Table 5.19 Performance: History Tables
5.2.4 Space

Space and storage are very important aspects of your database performance configuration. In general, the disk I/O is the slowest part of your machine. This can be the bottleneck if you have a poor data and storage layout. In the Space section, you’ll see the following options:

- Overview
- Automatic Storage
- Database
- Tablesspaces
- Containers
- File Systems
- Tables and Indexes
- Single Table Analysis
- Performance Warehouse

In the following subsections, we’ll explain each of these options and how to manage them to provide optimal speed.

Overview

The Overview option gives you general information about the space of your database. The Databases and Tablespaces and Tables and Indexes tab pages are available.

As shown in Figure 5.61, on the Database and Tablespaces tab, you see the date and time of the last analysis, the total number, the total size, the free space, the used space, the minimum used space, and the maximum used space in a tablespace.

On the tab Tables and Indexes tab (see Figure 5.62), you also see the date and time of the last analysis, the total number of tables, the total amount of used space, the total number of indexes, the total size of indexes, the oldest REORG check, and the latest REORG check.
Automatic Storage

If you've enabled automatic storage management during the SAP system installation, or if you have activated it later, this function is available. Automatic storage simplifies the storage management for table spaces. To find out more details about automatic storage, please refer back to Chapter 3, Section 3.4.1.

In this screen you can access information about the automatic storage file systems of your database. You can add, change, or delete the storage paths by selecting the line and clicking the corresponding button. For more background information about storage groups, refer to Section 3.4.2. Figure 5.63 shows an example of how to change your storage paths.
For each of your storage paths, the information shown in Table 5.20 is displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE GROUP NAME</td>
<td>Name of the storage group</td>
</tr>
<tr>
<td>STORAGE PATH</td>
<td>Full path name</td>
</tr>
<tr>
<td>FS ID</td>
<td>ID of the related file system</td>
</tr>
<tr>
<td>TOTAL SIZE (GB)</td>
<td>Total size available in the file system</td>
</tr>
<tr>
<td>USED SIZE (GB)</td>
<td>Use size in the file system</td>
</tr>
<tr>
<td>AVAILABLE SIZE (GB)</td>
<td>Free size available in the file system</td>
</tr>
<tr>
<td>OVERHEAD (MS)</td>
<td>Specifies the I/O controller usage and disk seek and latency time</td>
</tr>
<tr>
<td>DEVICE READ RATE (MB/SEC)</td>
<td>Specifies the device specification for the read transfer rate in megabytes per second</td>
</tr>
</tbody>
</table>

Table 5.20 Automatic Storage
By selecting a line, you can jump into the automatic storage details.

Database

By choosing Space/Database, you can monitor the space that is consumed by your database. Not only can you check the already-consumed space, but you can also consider the progress of space growth. With this information, you can predict whether your database is running out of space and your archiving and reorganization operations are successful, and you can identify short-term growth triggered by specific activities.

To analyze your database, first identify the time period you want to investigate. In the Selection area, you specify the time frame and apply the selection. To dive deeper into historic data, select a line, and the History Details area is displayed. Here you can analyze the space growth in more detail.

Tablespaces

To gain information and alter your tablespaces, use the tablespaces tools. Depending on how you set up your tablespaces, you can access the Automatic Storage and/or DMS/SMS Tablespaces tabs. Automatic Storage is available if you enabled automatic storage management (see Section 3.4.2) for the tablespace. If you have chosen manual maintenance of your tablespace, the DMS/SMS Tablespaces tab is available (for more information on DMS/SMS tablespaces, see Section 3.4).

On the tabs, the values shown in Table 5.21 are displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLESPACE NAME</td>
<td>Name of the tablespace</td>
</tr>
<tr>
<td>PARTITION</td>
<td>Number of the partition (only displayed if you use a multi-partition database)</td>
</tr>
<tr>
<td>TS TYPE</td>
<td>Type of tablespace (only with DMS/SMS)</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>Contents of tablespaces</td>
</tr>
<tr>
<td>TS STATE</td>
<td>Status of the tablespace</td>
</tr>
<tr>
<td>KB TOTAL</td>
<td>Total space used by the tablespace</td>
</tr>
</tbody>
</table>

Table 5.21 Tablespaces
Column Description

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE SIZE (KB)</td>
<td>Size of a page</td>
</tr>
<tr>
<td>NO. CONTAINERS</td>
<td>Number of containers</td>
</tr>
<tr>
<td>KB FREE</td>
<td>Amount of free space</td>
</tr>
<tr>
<td>HIGH-WATER Mark (KB)</td>
<td>Maximum value of reached used pages</td>
</tr>
<tr>
<td>PERCENT USED</td>
<td>Used space in relation to available space</td>
</tr>
<tr>
<td>AUTORESIZE</td>
<td>Indicator if the tablespace is enabled for automatic resizing (only with DMS/SMS)</td>
</tr>
<tr>
<td>PENDING FREE PAGES</td>
<td>Number of free pages in the status pending</td>
</tr>
</tbody>
</table>

Table 5.21 Tables (Cont.)

To get more detailed information about tablespace, click a line of the overview table (see Figure 5.64).

![Figure 5.64](image)

In the details area, you find some general information about the tablespace such as the name, the database partition group, the total space, the used space in percent, and the free space.

The **Technical Settings** tab provides the information shown in Figure 5.64. The different radio button options are as follows:

- **CONTENTS**
 - This area includes options that describe the type of data stored in the tablespace. This can be **Regular Data**, **Large Objects**, **Temporary User Objects**, or **Temporary System Objects**.
Space Management by

This area shows whether the tablespace containers are managed by the DATABASE (DMS), the file system (SMS), or if the automatic storage management is enabled. If automatic storage management is enabled, the AUTORESIZE checkbox is selected by default. This marked checkbox means that tablespace containers are automatically extended using the space in the file system where they are located. The RECLAIMABLE STORAGE ENABLED checkbox indicates that the tablespace is enabled for reclaimable storage. Unused extents can be released to the system for reuse.

Size of I/O Units

In this area, Page Size, Extent Size, and Current Prefetch Size are displayed.

Disk Performance

In this area, you can monitor disk performance. You get information about the Overhead, Transfer Rate, and File System Caching.

- **Overhead** displays I/O controller overhead, disk seek, and latency time in milliseconds.

- **Transfer Rate** displays the time needed to read one page into memory in milliseconds. These two values can be used to determine the cost of I/O during query optimization.

- **File System Caching** indicates how you use the file system caching. YES indicates that file system caching has been explicitly enabled, and you use the FILE SYSTEM CACHING clause of the CREATE or ALTER TABLESPACE statement. NO says that file system caching has been explicitly disabled. OPERATING SYSTEM indicates that the default of the file system is used, and no explicit file system caching clause has been specified.

Additional Information

If you need further information to decide if you should turn off the file system caching, refer to SAP Note 1353421 (DB6: How to disable file system caching for tablespaces).

Values for tablespaces that have AUTORESIZE enabled or that are completely managed by automatic storage management are shown on the Storage Parameters tab.
Storage Parameters tab. Under Settings, you see the Initial Size allocated when the tablespace is created and you see how the database increases the tablespace whenever it gets full (see Figure 5.65). This can be done using an automatically chosen value: Automatic, Absolute by a certain size, or Relative by a certain set percentage. It’s also possible to set the maximum size of the tablespace.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Size</td>
<td>32.76 KB</td>
</tr>
<tr>
<td>Current Size</td>
<td>32.758 KB</td>
</tr>
<tr>
<td>Increase Size</td>
<td></td>
</tr>
<tr>
<td>Automatic</td>
<td></td>
</tr>
<tr>
<td>Absolute by 0 KB</td>
<td></td>
</tr>
<tr>
<td>Relative by 0 %</td>
<td></td>
</tr>
<tr>
<td>Maximum Size:</td>
<td>NONE KB</td>
</tr>
</tbody>
</table>

Figure 5.65 Tablespace: Storage Parameters

Under Size, you see the current size. If there was a resize, you see the date and time of the last automatic resize operation. If the last automatic resize operation failed, the SQL error is displayed in the lower half of the screen.

The Containers tab displays information about the containers of the selected tablespace.

The Tablespace Map tab gives you a simple graphical overview of the tablespace. You can see size all of containers and how they are allocated to stripe sets.

This overview helps you find out if data is evenly distributed if you have multiple containers. If you’re planning to expand storage space, you can figure out how a container or stripe set can be added without incurring the cost of rebalancing the containers.

On the Tablespace screen, you can maintain your tablespaces, change tablespaces and container settings, convert regular to large tablespaces, rebalance tablespaces, start and stop the reduction of the high-water mark, add new tablespaces, and delete tablespaces.
To delete a tablespace, select the tablespace and choose the DELETE button. Be aware that you can only delete tablespaces that aren’t in use by the SAP system. If a tablespace is obsolete and should be deleted, you have to delete the corresponding data class before you can delete the tablespace.

To change a tablespace, select the tablespace and click the CHANGE button.

![Change Tablespace dialog box](image)

Figure 5.66 Tablespaces: Change

In the CHANGE TABLESPACE (see Figure 5.66) dialog box you can change the following settings:

- **TECHNICAL SETTINGS**
 - **Prefetch Size**
 Numbers of pages to be prefetched.
 - **Overhead**
 I/O controller overhead and disk seek and latency time in milliseconds.
- **Transfer Rate**
 Time to read one page.

- **Buffer Pool Name**
 Name of the allocated buffer pool.

- **File System Caching**
 Activates or deactivates the file system caching.

- **Dropped Tables**
 Using this checkbox you can enable the opportunity to recover dropped tables using the `RECOVER DROPPED TABLE ... TO` option of the `ROLLFORWARD DATABASE` command. Dropped table recoverability is not a standard setting of tablespaces in SAP systems.

- **Storage Parameters**

 - **Space Management by Auto Storage**
 Activate Automatic Storage for a tablespace that isn’t yet automatically managed.

 - **Storage Group Name**
 Assign a new storage group here (available as of DB2 V10.1).

 - **AUTORESIZE Enabled**
 Allows DB2 to automatically enlarge tablespace containers in the file system where they reside. This option can be activated/deactivated online for DMS tablespaces.

 - **Maximum Size**
 Enables you to set an absolute value in kilobytes that will not be exceeded by automatic extensions. If, as in Figure 5.66, you use the value `NONE`, there is no maximum size limit. Containers will be extended until the file system is completely occupied.

 - **Increase Size**
 Enables you to specify the size in kilobytes or in percent by which the tablespace will be extended if it’s full.

 - **Containers**
 Optional field that appears if your tablespace isn’t managed by automatic storage management. You can add or delete containers. Be aware that adding or changing containers might have a heavy impact on your system performance because it can cause a rebalancing.
When adding a tablespace (choose the ADD button), you have to set a name for your tablespace (see Figure 5.67). Then you can define the CONTENTS, the SIZE OF I/O UNITS, the DISK PERFORMANCE, the SPACE MANAGEMENT, and the AUTORESIZE parameters. For more details, review the information on changing tablespaces, or for background information go to Section 3.4.

![Figure 5.67 Tablespace Add](image)

Containers

The CONTAINERS page is very similar to the TABLESPACES page. The overview page shows the tablespaces and the corresponding containers. From here, you can change, add, and delete tablespace containers. The information in Table 5.22 is displayed on the CONTAINERS OVERVIEW screen.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLESPACE NAME</td>
<td>Name of the tablespace</td>
</tr>
<tr>
<td>PARTITION</td>
<td>In a multi-partition database, the number of the monitored partition</td>
</tr>
<tr>
<td>STRIPE SET</td>
<td>The number of the strip set the container belongs to</td>
</tr>
<tr>
<td>CONTAINER NAME</td>
<td>Name of the container in which the tablespace data is stored</td>
</tr>
</tbody>
</table>

Table 5.22 Containers
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type of the container</td>
</tr>
<tr>
<td>KB Total</td>
<td>Total size of the container</td>
</tr>
<tr>
<td>Pages Total</td>
<td>Total amount of pages</td>
</tr>
<tr>
<td>Accessible</td>
<td>Indicates whether the container is accessible or not</td>
</tr>
<tr>
<td>FS ID</td>
<td>File system ID</td>
</tr>
<tr>
<td>FS Free Size (GB)</td>
<td>Free space in the file system</td>
</tr>
</tbody>
</table>

Table 5.22 Containers (Cont.)

File Systems

The File Systems function is only available if you aren’t using the remote data connection.

As shown in Figure 5.68, this function lets you access information about the file systems. You can find out how much free space is available in your file system, which you would need to know if you wanted to extend tablespaces, for example. The information shown in Table 5.23 is displayed.

Figure 5.68 File Systems
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount Point</td>
<td>Location in the operating system directory structure where the file system appears</td>
</tr>
<tr>
<td>KB Total</td>
<td>Size of the file system</td>
</tr>
<tr>
<td>KB Used</td>
<td>Amount used on the file system</td>
</tr>
<tr>
<td>Percentage Used</td>
<td>Percentage of used space of the total size in the file system</td>
</tr>
<tr>
<td>KB Free</td>
<td>Amount free on the file system</td>
</tr>
<tr>
<td>Percentage Free</td>
<td>Percentage of free space of the total size in the file system</td>
</tr>
<tr>
<td>File System Type</td>
<td>Type of the file system</td>
</tr>
<tr>
<td>Device Name</td>
<td>Name of the device</td>
</tr>
<tr>
<td>Block Size</td>
<td>Block size used in the file system</td>
</tr>
</tbody>
</table>

Table 5.23 File Systems

Tables and Indexes

To access data about your tables and indexes, choose TABLES AND INDEXES, and then choose the FITTING option. In these areas, you can find the largest indexes and tables, as well as information on which tables and indexes to reorganize regarding space reclaim, performance degradation, and where data compression could make sense.

Figure 5.69 Tables and Indexes: Options

The following options displayed in Figure 5.69 are available:

- **Top Space Consumers**

 Used to identify the top space consumers in your database for a specified time period.
> **Automatic Maintenance Queue/RTS Requests**
> Displays information about objects that are in the queue for automatic maintenance (including RUNSTAT runs) or have a real time statistics request.
>
> **Compression Status**
> Allows you to check the compression status of a table or determine whether a table is a suitable candidate for compression.
>
> **Virtual Tables**
> Used to check whether or not a table can be virtualized or materialized to save space.
>
> **Indexes**
> Provides an overview of all indexes in your database.

We’ll go into greater detail about these screen options in the following subsections.

Top Space Consumers
The Top Space Consumers screen is used to access information about the largest tables of your database. A prerequisite for this is that you have the DCF set up correctly.

The screen provides a selection area where you can specify filter criteria for the collected data, an overview table (see Figure 5.70) displaying the retrieved data, and a detail area where you can get more information about the collected historic data during the selected time frame.

![Figure 5.70](image)

Table: Top Space Consumers
Automatic Maintenance Queue/RTS Requests

The **Automatic Maintenance Queue/RTS Requests** tab is new as of DB2 10.1. In the **Selection** area, you can choose the maximum number of rows. The **Automatic Maintenance Queue** tab displays information about all queued and running automatic maintenance jobs for all members. To find out where you plan and maintain automatic maintenance, check Section 5.2.6.

The **Runstats Candidates** tab displays objects that are candidates for the **RUNSTATS** command. This command updates statistics about the characteristics of a table and/or statistical views or associated indexes.

Under the tab **Request for Real Time Statistics (RTS)** you find information about all real-time statistics requests that are currently being processed and that are pending in the system.

Compression Status

The **Compression Status** screen provides information about already-compressed tables or about tables that are candidates for compression. On the **Compressed Tables** tab, you see tables and indexes that are enabled for compression and that are compressed (see Figure 5.71).

![Figure 5.71 Tables and Indexes: Compression Status](image)

The **Compression Candidates** tab page includes the following:
Tables that have already been compressed but more space could be saved by recompressing it based on a better compression dictionary

- Tables that have been enabled for compression but contain records that aren’t compressed yet
- Tables with indexes that aren’t yet enabled for index compression
- Tables with compressed indexes, where you can save more space by recompressing the table
- Already classically compressed tables that save space using the new adaptive compression

On the **Compressed Tables** and the **Compression Candidates** overview tabs shown in Figure 5.71, that data explained in Table 5.24 is displayed.

<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE SCHEMA</td>
<td>Name of the table schema.</td>
</tr>
<tr>
<td>TABLE NAME</td>
<td>Name of the table.</td>
</tr>
<tr>
<td>DATA COMPRESSION</td>
<td>Indicates if the table is enabled for data compression.</td>
</tr>
<tr>
<td>INDEX COMPRESSION</td>
<td>Indicates if the indexes are enabled for index compression.</td>
</tr>
<tr>
<td>SAVINGS (MB)/ESTIMATED SAVINGS (MB)</td>
<td>Total savings caused by data or index compression/Total savings caused by data or index compression that can be archived.</td>
</tr>
<tr>
<td>TOTAL SIZE (MB)</td>
<td>Total size of the table/if the compression would be performed.</td>
</tr>
<tr>
<td>SAVINGS (%)/ESTIMATED SAVINGS (%)</td>
<td>Percentage of the savings/Percentage of the estimated savings.</td>
</tr>
<tr>
<td>LAST CHECK DATE</td>
<td>Last check date.</td>
</tr>
<tr>
<td>LAST CHECK TIME</td>
<td>Last check time.</td>
</tr>
</tbody>
</table>

Table 5.24 Compressed Tables

By choosing a line of the overview table, you can display details about the compression status. Here you can see the current saving and the estimated saving when compressing the database. These estimated savings are calculated when running the compression check. A compression check can be started by using the action button **START COMPRESSION CHECK...** You
can start the check immediately in the background or schedule it. After the compression check completes, the COMPRESSION CANDIDATES table is updated. Now you have the option to compress the table by marking the table and using the COMPRESS button.

Virtual Tables

An SAP system contains thousands of empty tables consuming a lot of space. To save this space, you can replace them with virtual tables. Virtual tables are actually views; with the first WRITE operation on such a view, the virtual table is automatically replaced with a table. This action is performed by the database shared library (DBSL) in your SAP system. A remote or CLP access does not materialize a virtual table.

On this screen, you have the Virtual Tables and the Candidates for Virtualization tab. The Virtual Tables screen contains a list of all virtual tables in your system. By choosing Materialize, you can materialize tables.

The Candidates for Virtualization tab shows a list of tables that could be recreated as virtual tables because they are empty, not volatile, don't have a partitioning key, and don't use multidimensional clustering (MDC). By clicking Convert Empty Tables, these tables are dropped and recreated as virtual tables.

Indexes

Information about the indexes of your database can be accessed on the Indexes screen. Effective indexes are the best way to improve the performance of a database. Without an index, the SQL Server engine is like a reader trying to find a word in a book by examining each page. By using the index, the reader can complete the task in a shorter time. Without an index in a database, a table has to be scanned, and every row has to be examined. Sometimes scans are unavoidable, but especially on large table, scans have a terrific impact on the performance. Optimizing and tuning the indexes of your database therefore is a very important task for every database administrator.

In the Selection area, you can specify filter criteria, a time frame, and how your indexes are sorted. According to your filter criteria, the information from Table 5.25 is displayed in the overview tables.
<table>
<thead>
<tr>
<th>Column</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE NAME</td>
<td>Name of the table</td>
</tr>
<tr>
<td>TABLE SCHEMA</td>
<td>Name of the table schema</td>
</tr>
<tr>
<td>INDEX NAME</td>
<td>Name of the index</td>
</tr>
<tr>
<td>INDEX SCHEMA</td>
<td>Name of the index schema</td>
</tr>
<tr>
<td>NUMBER OF LEAFS</td>
<td>Number of leaves in the index</td>
</tr>
<tr>
<td>CARDINALITY</td>
<td>Cardinality of the index</td>
</tr>
<tr>
<td>LAST USED</td>
<td>Date when the index was last used</td>
</tr>
<tr>
<td>EST. PHYS. INDEX SIZE (KB)</td>
<td>Estimated physical index size</td>
</tr>
<tr>
<td>EST. LOG. INDEX SIZE (KB)</td>
<td>Estimated logical index size</td>
</tr>
</tbody>
</table>

Table 5.25 Tables and Indexes: Index

Single Table Analysis

The Single Table Analysis screen allows you to analyze and maintain single tables. You can check and maintain statistics information for each table and index such as cardinality, table size, and number of overflow records.

As you can see in Figure 5.72, you enter the schema and the name of the table you want to analyze. After you click the APPLY SELECTION button, you’ll see information in the summary area below about the size of the table, administrative actions being taken, and current savings by compression.

Figure 5.72 Single Table Analysis: Selection

Above the selection area, the following buttons are available to optimize your table and its indexes:
RUNSTATS
Schedule a RUNSTATS job for a single table.

REORG
Schedule a REORG job for a table.

COMPRESSION CHECK
Schedule a job to check whether a table would benefit from compression.

COMPRESSION ON/OFF
Switch the compression of a table on or off.

VOLATILE ON/OFF
Change the VOLATILE attribute of a table. Volatile tables are not processed by automatic RUNSTATS.

COUNT
Count the number of rows.

On the System Catalog tab, you find information that’s available from the system catalog entry of the selected table. Here you find information about space management, technical attributes, statistical data, RUNSTATS profiles, and compression settings (see Figure 5.73).

![Table showing space management, technical attributes, and statistics data](image)

Figure 5.73 Single Table Analysis: System Catalog
Table Structure tab Figure 5.74 shows the TABLE STRUCTURE tab, which provides an overview of the database columns of your table and detailed information about each column. In the COLUMN DISTRIBUTION table, you get an overview of the most frequently occurring values of the table.

<table>
<thead>
<tr>
<th>DB Column No.</th>
<th>DB Column Name</th>
<th>DB Type</th>
<th>DB Length</th>
<th>Inline Length</th>
<th>Hidden</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PROGRNAME</td>
<td>VARCHAR</td>
<td>120</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>ROSTATE</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>SQLK</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>EDTX</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>ENBA</td>
<td>VARCHAR</td>
<td>6</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>CLAS</td>
<td>VARCHAR</td>
<td>12</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>6</td>
<td>TYPE</td>
<td>VARCHAR</td>
<td>9</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>OCCURS</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>SUBC</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>9</td>
<td>APPL</td>
<td>VARCHAR</td>
<td>3</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>SECU</td>
<td>VARCHAR</td>
<td>24</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>CNAM</td>
<td>VARCHAR</td>
<td>36</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>COAT</td>
<td>VARCHAR</td>
<td>24</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>13</td>
<td>VERN</td>
<td>VARCHAR</td>
<td>18</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>LEVL</td>
<td>VARCHAR</td>
<td>12</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co. No.</th>
<th>Seq. No.</th>
<th>Value</th>
<th>Value Count</th>
<th>No. of Dist Value</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

Indexes The INDEX tab page provides a list of all indexes that are defined for the chosen table. For each index the index name, the rule for index uniqueness, the type of index, and the date and time of the last RUNSTATS run are displayed. You can access detailed information using the following tabs under the overview:

- **SYSTEM CATALOG**
 Provides you with general index information, statistics data, and technical attributes (see Figure 5.75).

- **INDEX STRUCTURE**
 Displays the structure of the index and provides more information about the compression and the index size.
Compression Status
Indicates whether the index is compressed, and provides the values of your saved pages and saved leaf pages.

REORGCHK
Displays information about the cluster ratio, allocated space, total numbers of existing and deleted entries in the index, and cardinality.

Table Status tab
The Table Status tab gives you an overview of the physical size, logical size, REORG information, availability, and other technical attributes (see Figure 5.76).

On the Compression Status tab, you can see if the compression is enabled, what code path was taken to build the dictionary, the build time, and the estimated compression.

Compression Status tab
On the REORGCHK tab, you can see the percentage of overflow rows, the table size divided by allocated space, and the full pages divided by allocated pages as a percentage (see Figure 5.77). The number of records that have overflowed is also shown. An overflow row can be created when rows are updated and the new rows contain more by bytes than the existing ones. Overflow rows can also be created when you add columns to already existing tables. The recommended threshold for overflow rows is under 5% of the total numbers of rows.

On the CREATE STATEMENT tab, the SQL statement to create the table is displayed.
Index

A

ABAP environment
 landscape, 45
ABAP SCS Instance (ASCS), 32
ABAP software logistics, 45
ABAP system
 record changes, 46
ABAP Workbench, 47
Access control, 75
Access path, 88
Access Plan Details screen, 363
Access Plan Versions tab, 362
ACID properties, 76
Action
 change, 442
 schedule, 458
Activity
 cancel, 379
 capture, 379
 trace, 379
Activity Lifetime histogram, 357
Adaptive Compression, 148
Administration notification log file, 164
Administrator Workbench, 648
Advisor Mode
 Single Statement, 458
 SQL Cache, 457
Agent, 97, 594
 pools, 100
Agents On-the-Fly feature, 622
Aggregate functions, 85
Alert, 600, 614, 635
 configuration, 636
 custom, 639
 type, 606
Alert Configuration screen, 447
Alert Inbox, 642
Alert Message Log screen, 446
Alert Monitor, 445
Alter table, 80
Application layer, 26
ARCHMETH1 tab, 412
ASCS instance, 266
 installation, 267
Attribute, 78
Audit Log screen, 448
Authentication procedures, 182
Authorization and tracking system, 47
Auto join, 85
Automatic Maintenance Queue/RTS
 Requests screen, 427
Automatic Maintenance Request/RTS
 Requests tab, 403
Automatic Maintenance screen, 424
Automatic REORG, 426
Automatic Storage, 122, 130, 391
 manual rebalance, 137
 tablespace extension, 135
Automatic Storage Management, 260

B

Backup, 162, 463, 472, 474
 avoiding extra-large tablespaces, 496
 backup compression, 496
 BACKUP DATABASE, 509
 backup pending mode, 503, 723
 big database, 495
 check archive log files, 525
 check backup, 522
 data archiving, 496
 data compression, 496
 db2ckbkp, 522
 db2cklog, 525
 DB2 for LUW tools, 501
 deactivate database, 514
 exclude logs, 517
 export, 471, 546
 FAILARCHPATH, 492, 727
 file names, 514
 history file, 517, 547
 HP Data Protector, 554
 include logs, 517
 incremental backup, 496, 520
Backup (Cont.)
INCREMENTAL DELTA option, 521
INCREMENTAL option, 520
LOGARCHCOMPR1, 508
LOGARCHCOMPR2, 508
log archiving, 474, 501
LOGARCHMETH1, 502, 536, 723
LOGARCHMETH2, 502, 536, 723
LOGFILSIZ, 504
LOGPRIMARY, 504
LOGSECOND, 504
mechanism, 77
methods, 470
monitoring, 516
objects, 466
offline, 472, 473, 724
offline data backup, 513
online, 474
online data backup, 515
PAGE_AGE_TRGT_GCR, 507
PAGE_AGE_TRGT_MCR, 507
partial backup, 496
snapshot techniques, 496
SOFTMAX, 505
split mirror database, 496
standby database, 496
tablespace, 519
TRACKMOD parameter, 522, 566
two-phase backup, 496
USE SNAPSHOT, 510
USE SNAPSHOT SCRIPT, 512
Backup and recovery, 411
Backup Domain Controller (BDC), 53
Backup methods
export, 546
online data backup, 474
Backup objects
database, 467
database instance, 468
database software, 468
operating system, 469
SAP system, 468
Backup pending mode, 503, 559, 722
Backup strategy, 490
28-day backup cycle, 493
backup window, 491
Backup strategy (Cont.)
datacenter infrastructure, 464
double backups of log files, 491
error classes, 465
frequency, 490
long-term storage, 494
retention period, 493
sandbox systems, 500
test systems, 500
Batch mode, 332
Big Endian, 546
Binary data, 589
BI reporting, 645
BLU Acceleration, 695
brdb6brt, 544
Buffer, 103, 591
management, 88
pools, 109, 117, 420, 578
Business logic, 26
BW administration, 453
BW Data Distribution Wizard, 680
BW Health Checks screen, 453

C
Catalog partition, 197
Central Calendar, 344
access, 345
color code, 346
Change and Transport System (CTS), 46
Change Database Configuration
Parameter dialog box, 420
Change request, 49
syntax, 49
transport, 53
Check Environment, 416
Check table, 75
Circular log mode, 474
Clause
having, 85
Client, 46
concept, 46
thick, 26
thin, 26
Close coupling, 61
CLP
 help options, 333
 stop, 334
 syntax, 333
CLP Commands screen, 450
Clustered index, 686
Clustering the SAP instance, 31
Cluster services, 222
Codds Laws, 73
Collocation, 207
Command mode, 332
Complete recovery, 482
Compressed Tables tab, 403
Compression, 146
 candidates, 403
 dictionary, 147
Compression Status screen, 403
Compression Status tab, 409
Computing Center Management Systems (CCMS), 593
Computing infrastructure, 28
Concurrent users, 237
Configuration changes, 578
Configuration History screen, 430
Connection error, 713
Connect user account, 252
Consolidation route, 53
Consolidation system, 53
Container, 399
Containers tab, 396
Counter threshold, 601
Create Statement tab, 410
Create table, 82
Critical activity, 382
CTS, 46
 change request, 49
 client, 46
 Customizing, 49
 package STMP, 57
 request, 49
 task, 49
 TMS, 47
 Transport Organizer, 47
 Workbench, 49
CTS+, 44, 57, 58
 close coupling, 61
 CTS Deploy Web Service, 58

CTS+ (Cont.)
 CTS Deploy Web Service Client, 58, 59
 CTS Export Client, 60
 CTS plug-in, 61, 63
 import service, 61
 LPCONFIG, 59
 non-ABAP objects, 57
 requirement, 61
 requirements, 61
 Software Logistics Toolset, 58, 62
 Transport Organizer Web UI, 58, 60
CTS Deploy Web Service Client, 59
 technical requirements, 60
CTS Export Client, 60
Cumulative SQL Trace screen, 452
Customizing Organizer, 47
Customizing request, 49

D
Data backup, 77
 regional separation, 464
 solutions, 497, 498, 499, 500
Data backup methods, 470
 data export, 471
Database, 393, 419
 behavior, 355
 comprehensive information, 579
 configuration changes, 578
 connections from applications, 579
 create remote, 623
 driver installation, 624
 extractor, 626
 information on tablespaces, 583
 largest table, 402
 performance, 352, 613
 processing of statements, 581
 start, 328
 stop, 329
Database and Tablespaces tab, 390
Database client
 check version, 714
Database command line processor, 585
Database connection, 343
 attributes, 349, 350
Database diagnostics, 447
Database instance, 32, 266
Database layer, 27
 special features, 34
Database-level authorities, 187
Database Managed Storage tablespace (DMS), 122
Database management system (DBMS), see DBMS, 72
Database Manager Configurations output, 179
Database Manager (Instance) configuration, 176
Database Manager screen, 417
Database partition group, 665 maintain, 422
Database Partition Groups screen, 421
Database Partitioning Feature (DPF), 34, 195, 669
Database patch, 289
Database reorganization, 88
Databases
 Technical Settings tab, 394
Database Schema field, 252
Database snapshot analyze data, 367
Database structure create, 82
Database utility history, 385
Data classes maintain, 424
Data Classes screen, 423
Data Collection Framework (DCF), 365, 435
Data collector, 597
Data Definition Language (DDL), 80, 81
Data dictionary, 88
Data directory, 74
Data Manipulation Language (DML), 81
Data model, 78
Data modeling, 77
Data type, 80
Data Warehousing Workbench, 648
DB02
 row compression, 258
 status, 609
DB2 ACS API driver, 511
DB2 ACS scripted interface, 512
DB2 catalog cache, 460
db2cklog, 459
DB2 column-organized table, 695
DB2 command line processor, 331
db2dart, 503, 724
db2diag, 459
DB2 Event Monitors, 577
db2evmon, 592
DB2 for LUW architecture, 89
 architecture illustration, 102
 architecture of partitioned database, 196
 authentication, 181, 185
 compression, 152
 database process model, 91
 dynamic storage parameters, 116
 integration via CLI, 561
 integration via GUI, 559
 main memory, 103
 memory management levels, 103
 object-level privileges, 190, 191
 objects, 467
 offline data backup, 724
 parameters and configuration, 170
 profile registry, 172
 protect in failure, 208
 pureScale cluster architecture, 218
 security, 180
 security plug-in architecture, 183
 security roles, 193
 transaction logs, 157
DB2 full backup, 731
DB2 memory tracker command, 106
db2pd, 460
DB2 problem, 461
DB2 pureScale, 37
DB2 pureScale technology, see pureScale, 217
db2support, 461
DB2 task, 444
db6util, 460
DBA Cockpit, 335, 624, 731
 alerts, 445
 manage compression, 152
 system landscape, 339
UI, 336
DBA log, 442
DBA Planning Calendar
 backend jobs, 443
DBA Planning Calendar screen, 439
DB Connection Monitor, 350
DBMS
 data storage, 119
 implementation techniques, 86
DB parameters, 625
Deferred Table Creation function, 259
Defined threshold, 584
Define file quantity, 590
Delete from, 83
Delivery route, 53
Delivery system, 53
Delta threshold, 601
Designing process, 80
Development system (DEV), 45
Deviations
 intended, 416
Diagnostic Agent, 620
Diagnostic Logs screen, 451
Diagnostic log/trace files, 162
Direct I/O, 578
Directory, 74
Disaster recovery, 489
Disk performance, 395
Distributed installation, 29, 31
Distributed system, 265
 install central instance, 271
DML, 81
 data manipulation, 83
DPF
 configuration, 200
 coordinating agent, 670
Dump Directory screen, 450

EDUs (Cont.)
 pureScale, 219
 special purposes, 100
Enhanced Change and Transport System
 (CTS+), 57, see CTS+
Enhancement package, 300
Enqueue, 64
 services, 32
Entities, 78
Entity-relationship model, 77
Environment variables, 171
ER diagram, 78
ERM, 77, 78
Error logs
 control and analyze, 479
ER scheme, 78
ETL process, 648
Event monitor
 activate, 586
 create, 585
 list available, 592
 parameter options, 591
 write to file, 590
 write to pipe, 591
 writing behavior, 591
Event monitoring, 576
 output options, 587
Event monitor type
 ACTIVITIES, 577
 BUFFERPOOLS, 578
 CHANGE HISTORY, 578
 CONNECTIONS, 579
 DATABASE, 579
 LOCKING, 580
 PACKAGE CACHE, 581
 regular tables, 588
 set database parameters, 586
 STATEMENTS, 581
 STATISTICS, 582
 TABLE, 583
 TABLESPACES, 583
 THRESHOLD VIOLATIONS, 584
 UNIT OF WORK, 584
Event type, 577
Expert mode, 637
EXPLAIN, 364
Extended Latch Waits screen, 449

E

EDU pool, 100
EDUs, 89
 active connections, 97
 active database, 95
 active instance, 93
 categories, 93
 for HADR, 209
Fast Communications Manager (FCM), 92
Favorites list, 338
File
 format data, 592
 system, 400
File trans.log, 713
First Occurrence Data Capture (FODC), 168
Five-layer architecture, 86
Flight data model, 80
Foreign key, 80
Fuzzy-comparison, 84

Global directory, 66
Group by, 85
Groups, 85

HADR, 35, 208, 256
 automatic client rerouting (ACR), 214
 delayed replay function, 213
 multiple standby functionality, 213
 requirements, 215
 rolling update, 214
 synchronization modes, 210
 apply fix pack, 293
Heterogeneous system copy, 311, 312
Hierarchical list editor, 55
High Availability Disaster Recovery, see HADR
High-availability scenarios, 32
High water mark (HWM), 142
Histogram, 357
 Activity Execution Time, 357
 Activity Lifetime, 357
 Activity Queue Time, 357
Historical data, 353
History, 363
 database, 387
History (Cont.)
 data collector, 437
 table, 389
History file, 517, 527, 534, 547
 AUTO_DEL_REC_OBJ, 553
 LIST HISTORY command, 549
 parameters, 552
 PRUNE HISTORY command, 552
 REC_HIS_RETENTN, 552
 restore, 532, 546, 551
Homogenous system copy, 311, 314
Host, 620
 install additional instances, 32
 physical/virtual, 31
 separate, 31
 single, 30, 31
 type, 621
Housekeeping, 628
HP Data Protector, 554
 DB2 configuration, 559
 DB2 database, 564
 DB2 integration, 557
 DB2 Integration, 555
 DB2 Userexit program, 557
 DB2 users, 558
 logs and traces, 568
 platform and integration support, 554
 restore, 569
 rollforward recovery, 571
 start backup, 567
 tablespace, 564
HTTP connection, 59
IBM DB2 10.1
 Event Monitoring, 575
IBM DB2 database product documentation, 707
IBM DB2 Information Center, 338
IBM product support, 707
IBM Software Support troubleshooting, 459
IBM Tivoli System Automation for Multiplatforms (SA MP), 256
Import buffer, 50
Import service, 61
Incident, 631
Index, 74, 88, 405, 408
 compression, 151
 create in ABAP Dictionary, 458
define virtual, 458
Index Advisor, 457
Indirect archiving, 726
In-place table reorganization, 386
Insert into, 83
Installation export, 254
Installation options, 234
Instance-level authorities, 185
Instance Memory field, 257
Instruction
drop table, 82
Integrate a system, 342
Integration, 74
 system, 53
Integrity check, 75
Integrity rule, 80
Intended Deviations tab, 416
Interactive input mode, 331
Interactive Query Language, 81
Internet Communication Manager, 65
Intrapartition parallelism, 684
Introscope Agent, 623
IQL, 81

L
Landscape Management Database
 (LMDB), 620
Layer
different combinations of, 28
double-level architecture, 28
single-level architecture, 28
three-level architecture, 28
Little Endian, 546
Local change request, 57
Lock, 580
 management, 88
Lock-Wait Events screen, 448
Log archiving, 562
LOGARCHMETH1, 725
Log control files, 161
Log file, 76, 77, 411, 467
 administration notification, 164
 backup devices, 562
 chain, 530, 537, 550, 571
 change number/size, 730
 compression, 508
 DB2 diagnostic, 165
 primary/secondary, 157
 restore, 545
LOGFILSIZ, 730
Logging, 157
Logging Parameters screen, 411
Logical data group, 577
Logical method, 470
Logical partition, 34, 195
Logical restore, 477
Logical unit of work, 76
Log inclusion, 734
LOGPRIMARY, 729
LOGSECOND, 729
Low load, 474

J
Java Application Server, 67
Java instance, 32
Joined data, 84

K
Kernel, 64
 patch, 279
Key, 79
Key figure, 370
Knowledge base article, 701

M
Maintenance, 424
 strategy, 294, 300
Maintenance Optimizer, 285
Managed system, 596, 620, 623, 626, 637, 640, 644
Managed system (Cont.)
 configuration, 620
 configure database, 623
Massive parallel processing, 681
MDC Advisor screen, 453
Media error, 77
Memory
 application, 111
 database, 108
 gap, 87
 instance, 105
 management, 103
 private, 111
 settings, 114
Message, 338
 administration, 703
Message History screen, 451
Metric, 575, 599, 608, 632
 availability, 609
 configuration, 633
 custom, 638
 Exceptions category, 609
 performance, 613
 type, 599
Metrics Details tab, 361, 364
Metrics Summary tab, 361, 364
Missing license, 720
Monitoring data
 collect, 595
Monitoring Settings screen, 431
Monitoring template, 599, 629, 640
Multidimensional clustering (MDC), 686, 688
Multiple components in one database, 487
Multistage delivery, 56
Multi-temperature storage, 139

N

Near-line storage (NLS), 455
Network communication, 714
NLS Synchronization Check screen, 455
Nonclustered index, 686
Normalization, 80
Notations, 54
Notifications, 632
nslookup, 714
NULL value, 83
Numeric threshold, 602

O

Object-level privileges, 190
Objects
 DB2 for LUW Database, 467
 DB2 for LUW database software, 468
 DB2 for LUW instance, 468
 operating system, 469
 SAP system, 468
OEM license, 721
Offline data backup, 473, 724
 with log archiving, 481
 without log archiving, 481
On-demand archival, 508
Online data backup
 restore and recovery, 482
Operating system tool, 327
Operation, 74
 create table, 80
 drop table, 80
Optimal read performance, 733
Order by, 86

P

Package cache, 581
Parameter, 591
 LOGARCHMETH1, 559
 MAX_LOG, 507
 NUM_LOGSPAN, 507
Parameter Check tool, 414, 668, 681
Parameter deviation, 415
Parameterization, 666, 681
Partial restore, 482
Partitioned database
 data distribution, 204
Partitioned environment, 533, 540
Partition group, 202
 create, 202
Partitioning, 34
 key, 205
Partitions
 install additional, 273
Password mismatches, 715
Pattern, 441
Performance analysis, 576
Performance through parallelization, 195
Performance tuning, 354
Performance Warehouse, 353
Permanent storage location, 727
Physical method, 470
Physical partitioning, 34, 195
Physical restore, 477
Pipe, 591
 format data, 592
Platform group, 546
Poor database performance, 716
Presentation layer, 26
Primary application server instance, 32, 266
Primary key, 80, 82
Primary log, 729
Problem
 database is in backup pending mode, 722
 DB2 backup runtime unacceptably high, 731
 log archive destination available, 725
 poor database performance, 716
 SAP instance connect to the database, 711
 SAP system doesn’t start due to a missing license, 720
 transaction log for the database is full, 728
Production System (PRD), 45
Productive system, 38
Projection list, 84
pureScale
 administrator commands, 226
 cluster services, 222
 clusters, 219
 DB2 commands, 230
 EDUs, 219
 failure scenarios, 223
 high availability, 222
 shared storage, 222
pureScale feature, 276
 install-initiating host, 277

Q
Quality assurance, 57
Quality assurance system (QAS), 38, 45
Query language, 83

R
R3load, 680
R3trans, 713
RAID, 89
Range Threshold, 604
Reclaimable Storage, 141
Reconnect mechanism, 472, 515
Recover
 backup image, 528
 RECOVER DATABASE command monitoring, 529
Recovery, 463, 477
 complete, 478
 incomplete, 478
 method, 476
 restart, 478
 rollforward, 478
 scenarios, 480, 483
Redirected restore, 315
Redundancy, 80
Referential integrity, 75
Registry Variables screen, 420
Regular table, 588
Relation, 79
Relational database management system (RDBMS), 73
Relationships, 78
Release-specific software logistics toolsets, 62
Remote database, 623
 connection, 347
Remote Direct Memory Access (RDMA), 221
Renaming, 84
REORG, 429
 check, 390
REORGCHK tab, 410
Report
 DB6CONV, 680
Report Categories tab page, 354
Request owner, 49
Response time distribution, 717
Response times, 718
Restore, 162, 463, 477
 backup history, 529
 brdb6btrt, 544
 database point-in-time recovery, 487
 database reset, 485
 DB2 for LUW Tools, 501
 disaster recovery, 489
 full, 477
 full restore and a complete recovery, 529
 full restore and complete recovery, 488
 hardware change, 546
 history file, 527, 534, 546, 547, 551
 HP Data Protector, 554
 IBM DB2 pureScale, 533
 log file chain, 537
 log files, 545
 methods, 476
 Multiple Components in One Database (MCOD), 487
 offline data backup, 481, 539
 online data backup, 482
 partial, 477
 partial restore and complete recovery, 484
 partitions, 540
 point-in-time recovery, 486, 530, 538
 practice, 476
 pureScale, 540
 RECOVER DATABASE command, 527
 redirected restore, 543
 RESTORE DATABASE command, 533
 restore pending mode, 539
 ROLLFORWARD DATABASE command, 534
 rollforward pending mode, 536, 571
 scenarios, 483
 Restore (Cont.)
 steps, 479
 system downtime, 463
 tablesapce, 541
 tablesapce point-in-time recovery, 487
 USING LOCAL TIME option, 531, 538
 USING UTC TIME value, 531
 RESTORE DATABASE command, 533
 monitor, 535
 Restore pending mode, 539
 RFC connections, 52
 RFC destination, 342
 Role-based security, 193
 ROLLFORWARD DATABASE command
 monitor, 539
 Rollforward pending mode, 536
 Rollforward recovery, 459, 479
 Row compression, 146
 RUNSTATS, 429
 RUNSTATS characteristics, 422

S
SAP Business Suite, 41
 on SAP NetWeaver, 41
SAPCAR, 250
SAP Central Services, 32
SAP Community Network, 706
Sapdata directory, 260
SAP Developer Network, 338
SAP Diagnostic Agent, 595, 609, 617, 622, 623
 Node, 622
SAP Download Manager, 246
SAP environments
 file system structure, 154
SAP Host Agent, 594, 609, 622
 installation, 616
SAPinst, 471
 errors, 262
 latest version, 249
SAP instance, 27, 63
 cluster, 31
 directory, 66
dual stack, 67
 file system structure, 66
SAP solution, 40
handle data, 27
high availability, 32
mix in environment, 43
SAP Solution Manager, 42, 58, 63
automatic notification, 606
BI-based reporting, 628
configure Technical Monitoring function, 627
IBM DB2 10.1 LUW Monitoring, 616
monitor alerts, 614
monitoring parameters, 608
SAP Solution Manager 7.1
System Monitoring, 592
SAP system
buffer, 716
change kernel, 282
copy, 311
installation options, 30
install on second host, 269
manual deletion, 323
measure performance, 716
patch, 282
run without interruption, 32
special tasks, 31
system buffer, 716
tier, 29
uninstall, 317
update, 279
upgrade, 294
view tasks, 717
SAP system doesn't start due to a missing license, 720
SAP system installation
central installation, 249
documentation, 235
downloading the software, 243
SAP system landscape, 25
concept, 44
SAP system recovery
preconditions, 464
SAP work process, see DB2 LUW database, 98
SAP work process overview, 716
SAP xSearch, 700
Scheduled job statistics, 347
SCS instance, 32
Selection, 84
Self-Monitoring screen, 449
Self-Tuning Memory Manager (STMM), 114
Semaphore, 51
Service Classes tab, 433
Service Desk, 607, 628, 641
Shared disk, 256
Shared sort heap, 109
Single host environment, 30
Single-level architecture, 28
Single Sign-on (SSO), 59
Single Table Analysis screen, 406
Sizing, 237, 238
Quick Sizer, 239
SLD System Import, 351
SMD Setup Wizard, 353
Snapshot
application, 376
area, 365
buffer pool, 369
container list, 373
database, 366
operations, 512
schema, 369
SQL cache, 379
system, 382
Software Logistics Toolset (SL Toolset), 58, 62
Software Provisioning Manager, 250, 471, 546
start SAPinst, 266
Software Update Manager (SUM), 286, 287, 297
Solution Manager Diagnostics (SMD), 353
Sorting, 85
Space, 390
SP Stack Guide, 284
SQL, 77
subset languages, 81
SQL Command Line screen, 450
SQL error code SQL0964C, 728
SQL DIDL, 83
SQL query, 34
SQL Script Maintenance screen, 443
Table

changes, 583

compression, 146

Tables and indexes

missing, 448

Tables and Indexes tab, 390, 401

Tablespace, 119, 393, 583

add, 399

Tablespace (Cont.)

align sizes, 734

analyze storage, 144

backup, 519

categories, 120

change, 397

create in SAP environment, 122

create missing, 341

creation, 259

extension and organization, 133

maintain, 396

management, 121

map, 129

show information, 126

Tablespace Map tab, 396

Table Status tab, 409

Table Structure tab, 408

Task, see change request, 49

Technical Monitoring function

operations, 641

Template, 438, 599

alerts, 635

assignment, 640

configuration, 630, 637

custom, 629

metrics, 632

Template Definition screen, 438

Text Threshold, 604

Thread, 90

advantage, 90

disadvantage, 90

model, 89

Three-layer architecture, 26, 29

Three-system landscape, 38

Threshold, 584

Info Only, 601

type, 600

Threshold Configuration screen, 383

Threshold Violations screen, 383

Tier, 29

Time spent analysis, 718

Time Spent Analysis area, 354

Tivoli Storage Management (TSM), 727

Tivoli Storage Manager, 510

TMS, 47

communication system, 60
Index

TMS (Cont.)
consolidation route, 53, 55
consolidation system, 53
delivery route, 53, 55
delivery system, 53
integration system, 53
non-ABAP objects, 57
QA approval procedure, 57
standard transport layer, 54
STMS, 59
subdirectory, 50
transport directory, 49
transport domain, 51
Transport Domain Controller, 52, 53, 60
transport group, 51
transport layer, 54
Transport Organizer Web UI, 58
transport route, 53

Tool DB6CONV, 734
Top-level navigation, 337
Top Space Consumers option, 402
Top SQL Statement Analysis area, 358
Trace Status screen, 451
Transaction, 76
 DB02, 265
 DBACOCKPIT, 718, 731
 DBACOCKPIT, 275
 RZ20, 593
 SM21, 716, 728
 SM50, 716
 SNOTE, 699
 SOLMAN_SETUP, 617
 SOLMAN_WORKCENTER, 642
 SPAM, 282
 ST02, 716
 ST03N, 717
Transaction log, 88, 154
Transport developments, 47
Transport directory, 49, 469
 subdirectories, 50
 transport group, 51
Transport Domain Controller (TDC), 52
Transport layer, 54
 objects, 54
Transport Management System, see TMS, 47
Transport Organizer, 47
 information carrier, 49
 Web UI, 59
Transport request, 39
 data files, 51
Transport route, 53
 consolidation, 53
 define, 57
 delivery, 53
Transport Route Editor, 55
Transport tool tp, 59
Traps and dumps, 167
Trend analysis, 389
Trigger, 80
Troubleshooting, 458, 708

U

UML, 78
Unexpected performance issues, 578
Unformatted event tables (UE tables), 589
Unit of work (UOW), 584
Update, 83
Update database server and client side, 714
Upgrade, 294
 database client, 309
 database instance, 301, 309
 process, 299
Utilities, 383
 database, 384
 upgrade, 460

V

View, 75
Virtual table, 405
W

Web Reports tab page, 353
Wily Introscope Agent, 595, 626
Workbench Organizer, 47
Workbench request, 49
Workload management, 431
 object, 582

Workloads tab, 432
Workload statistics, 358
Workload Statistics area, 355
Work mode, 596
Work process, 65