Contents at a Glance

PART I Production Planning Core Concepts
1. Introduction ... 31
2. Organizational Structures in SAP ERP 37

PART II Configuration Specifics for Manufacturing Types
3. Configuration Basics of Discrete Manufacturing 73
5. Configuration Basics of Repetitive Manufacturing 181

PART III Production Planning Workflow by Production Type
6. Production Planning for Discrete Manufacturing 203
7. Production Planning for Process Industries 299
8. Production Planning for Repetitive Manufacturing 361

PART IV Production Planning Workflow Tools
9. Sales and Operations Planning ... 429
10. SAP Demand Management .. 505
11. Material Requirements Planning 529
12. Long-Term Planning (LTP) .. 617

PART V Optimizing Production Planning
13. Special Procurement Types .. 647
14. Capacity Requirements Planning 675
15. Classification .. 719
16. Engineering Change Management 735
17. Co-Products and By-Products in Production Processes 769
18. Shift Notes and Shift Reports ... 789
19. Document Management System (DMS) 823
20. Digital Signature .. 857

PART VI Monitoring and Evaluation
21. Early Warning System .. 877
22. Reporting in SAP .. 897
23. Further Integration of Production Planning with Logistics Functions 949
Contents

Acknowledgments .. 27

PART I: Production Planning Core Concepts

1 Introduction ... 31
 1.1 Goals of This book ... 31
 1.2 Target Audience ... 32
 1.3 Structure and Content .. 33

2 Organizational Structures in SAP ERP ... 37
 2.1 Breaking Down the Structure into Units .. 37
 2.1.1 Client .. 39
 2.1.2 Company Code ... 40
 2.1.3 Plant .. 41
 2.1.4 Storage Location .. 43
 2.1.5 MRP Controllers ... 44
 2.1.6 Capacity Planners .. 45
 2.1.7 Production Schedulers .. 46
 2.2 Production Planning in SAP ERP ... 47
 2.2.1 Characteristics of Production Types .. 49
 2.2.2 Processes in Production Planning and Control 60
 2.3 Product Cost Planning ... 62
 2.4 SAP Calendar ... 64
 2.4.1 Public Holidays .. 65
 2.4.2 Holiday Calendar ... 65
 2.4.3 Factory Calendar ... 66
 2.5 Summary ... 68

PART II: Configuration Specifics for Manufacturing Types

3 Configuration Basics of Discrete Manufacturing .. 73
 3.1 Material Master ... 74
Contents

3.2 Bill of Materials (BOM) ... 75
 3.2.1 Define BOM Usages ... 76
 3.2.2 Allowed Material Types in the BOM Header 77
 3.2.3 BOM Status ... 78
 3.2.4 BOM with History Requirement .. 78
 3.2.5 Item Category in BOM ... 79
 3.2.6 Variable Size Item Formulas ... 80
 3.2.7 BOM Explosion Types ... 80
 3.2.8 BOM Selection (Order of Priority) 81

3.3 Work Center ... 81
 3.3.1 Work Center Category ... 82
 3.3.2 Field Selection in the Work Center 83
 3.3.3 Standard Value Key (SVK) .. 85
 3.3.4 Formulas for the Work Center .. 87
 3.3.5 Location Groups ... 88
 3.3.6 Control Key for Operations ... 90

3.4 Routing .. 91

3.5 Production Order Creation .. 92
 3.5.1 Maintain Order Types .. 93
 3.5.2 Number Ranges ... 95

3.6 Order Type-Dependent Plant Parameters 97
 3.6.1 Planning ... 98
 3.6.2 Implementation ... 100
 3.6.3 Cost Accounting ... 101

3.7 Production Scheduling Profile ... 102

3.8 Default Values for the Generation of Operations 104

3.9 Availability Check ... 105
 3.9.1 Define Checking Group ... 106
 3.9.2 Define Checking Rule ... 107
 3.9.3 Define Scope of Check ... 107
 3.9.4 Define the Checking Control .. 109

3.10 Stock and Batch Determination ... 111

3.11 Scheduling .. 111
 3.11.1 Scheduling Types for Production Orders 113
 3.11.2 Scheduling Parameters for Production Orders 113
 3.11.3 Scheduling Margin Key .. 115

3.12 Reduction Strategy ... 116
3.13 Confirmation .. 118
3.13.1 Process Overview ... 118
3.13.2 Parameters for Order Confirmation 119
3.13.3 Single Entry Screen for Confirmation 123
3.13.4 Time of Confirmation ... 125
3.14 Reason for Variances .. 126
3.15 Trigger Points ... 127
3.15.1 Define (Standard) Trigger Points Usage 128
3.15.2 Define a Group for Standard Trigger Points 128
3.16 Define Print Control ... 128
3.17 Background Jobs ... 129
3.18 Process Integration ... 131
3.19 Summary .. 131
4 Configuration Basics of Process Manufacturing 133
4.1 Master Data in Process Industries ... 134
4.1.1 Master Recipe Profile ... 135
4.1.2 Task list Assignment to Material Types 136
4.1.3 Task List Status ... 137
4.2 Order Type-Dependent Parameters ... 138
4.2.1 Master Data ... 138
4.2.2 Planning .. 140
4.2.3 Implementation ... 140
4.2.4 Cost Accounting ... 140
4.3 Production Scheduling Profile ... 140
4.4 Process Management .. 142
4.4.1 Control Recipe Destination .. 143
4.4.2 Process Instruction Characteristic 143
4.4.3 Process Instruction Category .. 143
4.4.4 Process Message Characteristic .. 144
4.4.5 Process Message Category ... 144
4.4.6 Process Instruction Sheet (PI Sheet) 144
4.4.7 Standard Settings and Tools ... 145
4.5 Process Messages ... 147
4.5.1 Create a Process Message Characteristic 147
4.5.2 Process Message Destination ... 148
4.5.3 Process Message Categories ... 149
Contents

4.6 Process Instruction Category ... 153
 4.6.1 Process Instruction Types ... 154
 4.6.2 Using a Wizard or Process Instruction Assistant 162
 4.6.3 Creating a Self-Defined Process Instruction Category 163
 4.6.4 Creating a Self-Defined Process Instruction Characteristic 164

4.7 Control Recipe/Process Instruction Sheets 167
 4.7.1 Create a Control Recipe Destination 169
 4.7.2 Scope of Generation .. 170

4.8 Background Jobs ... 172
 4.8.1 Background Job for Sending Control Recipes 173
 4.8.2 Background Job for Sending Process Messages 173
 4.8.3 Background Job for Deleting Process Messages 174

4.9 Process Management Configuration: At a Glance 174

4.10 Process Management: Configuration and Implementation
 Roadmap .. 175

4.11 Process Manufacturing Cockpit ... 177

4.12 Summary .. 179

5 Configuration Basics of Repetitive Manufacturing 181

 5.1 Repetitive Manufacturing Profile ... 182
 5.1.1 REM Production Type ... 182
 5.1.2 Reporting Points ... 184
 5.1.3 Automatic Goods Movements .. 184
 5.1.4 Reporting Points Confirmation and Kanban 186
 5.1.5 Activities Posting .. 186
 5.1.6 Separated Backflush ... 187
 5.1.7 Process Control .. 187
 5.1.8 Firming Planned Orders .. 188
 5.1.9 Automatic Stock Determination 188
 5.1.10 Batch Determination Procedure 189
 5.1.11 Reduction in Planned Order Quantities 189
 5.1.12 Reduction Period ... 189
 5.1.13 Create New Planned Orders on Goods Receipts
 Reversals .. 190
 5.1.14 Online Error Correction .. 190
 5.1.15 Reprocessing Errors Log Maintenance 191
 5.1.16 Movement Types for Stock Postings 191
PART III: Production Planning Workflow by Production Type

6 Production Planning for Discrete Manufacturing 203

6.1 Process Overview ... 204
6.2 Master Data ... 205
 6.2.1 Material Master ... 206
 6.2.2 Bill of Materials (BOM) 213
 6.2.3 Work Center ... 218
 6.2.4 Routing ... 227
 6.2.5 Production Version ... 239
6.3 Production Order Management ... 243
 6.3.1 Header Data .. 245
 6.3.2 Operations Overview ... 247
 6.3.3 Standard Trigger Points .. 249
 6.3.4 Components Overview ... 252
 6.3.5 Reread Master Data ... 253
 6.3.6 Statuses ... 254
 6.3.7 Scheduling ... 255
 6.3.8 Availability Checks ... 260
6.4 Release Production Order .. 265
 6.4.1 Automatic Release ... 266
 6.4.2 Individual Release .. 266
 6.4.3 Collective Release .. 266
6.5 Printing .. 268
6.6 Material Withdrawal ... 271
 6.6.1 Goods Issuance against the Production Order 271
Contents

6.6.2 Picking List ... 274
6.6.3 Backflush ... 276

6.7 Confirmation ... 278
6.7.1 Confirmation at the Operations Level 280
6.7.2 Progress Confirmation ... 283
6.7.3 Confirmation for Order .. 284
6.7.4 Confirmation Cancellation .. 284
6.7.5 Display Confirmation ... 285

6.8 Goods Receipt ... 285
6.8.2 Goods Receipt: Automatic Process 288

6.9 Postprocessing ... 288
6.9.1 Reprocessing Goods Movements 289
6.9.2 Cost Calculation ... 291

6.10 Settlement and Completion .. 292

6.11 Additional Functions and Information Systems 293
6.11.1 From Planned Order: Individual Conversion 293
6.11.2 From Planned Orders: Collective Conversion 294
6.11.3 Production Order Creation without Material 294
6.11.4 Mass Processing .. 294
6.11.5 Information Systems .. 296

6.12 Summary ... 298

7 Production Planning for Process Industries 299

7.1 Process Manufacturing Overview 300

7.2 Master Data in Process Manufacturing 302
7.2.1 Material Master ... 303
7.2.2 Bill of Materials (BOM) .. 304
7.2.3 Resource ... 304
7.2.4 Production Version ... 305
7.2.5 Master Recipe Creation .. 306

7.3 Process Management ... 315
7.3.1 Functions in Process Management 316
7.3.2 Elements in Process Management 316
7.3.3 Integrating Process Management with External Systems 316
7.3.4 Process Management and Manufacturing Integration and Intelligence .. 317
7.3.5 Process Instructions ... 317

www.sap-press.com
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.4 Routing</td>
<td>378</td>
</tr>
<tr>
<td>8.2.5 Production Version</td>
<td>383</td>
</tr>
<tr>
<td>8.3 Material Requirements Planning in Repetitive Manufacturing</td>
<td>388</td>
</tr>
<tr>
<td>8.3.1 Planned Independent Requirements</td>
<td>388</td>
</tr>
<tr>
<td>8.3.2 Run Material Requirements Planning (MRP)</td>
<td>389</td>
</tr>
<tr>
<td>8.3.3 Planning Results</td>
<td>389</td>
</tr>
<tr>
<td>8.3.4 Evaluate Planning Results (Material Level)</td>
<td>390</td>
</tr>
<tr>
<td>8.4 Collective Availability Check</td>
<td>391</td>
</tr>
<tr>
<td>8.5 Operational Method Sheet</td>
<td>392</td>
</tr>
<tr>
<td>8.6 Planning Table in Repetitive Manufacturing</td>
<td>393</td>
</tr>
<tr>
<td>8.6.1 Parameters Selection for the Planning Table</td>
<td>393</td>
</tr>
<tr>
<td>8.6.2 Creating an REM Planned Order in the Planning Table</td>
<td>396</td>
</tr>
<tr>
<td>8.6.3 Capacity Planning</td>
<td>399</td>
</tr>
<tr>
<td>8.6.4 Functions in the Planning Table</td>
<td>400</td>
</tr>
<tr>
<td>8.6.5 Range of Coverage</td>
<td>401</td>
</tr>
<tr>
<td>8.7 Material Staging</td>
<td>402</td>
</tr>
<tr>
<td>8.7.1 Material Staging: Current Situation</td>
<td>403</td>
</tr>
<tr>
<td>8.7.2 Material Staging: Trigger Replenishment</td>
<td>405</td>
</tr>
<tr>
<td>8.7.3 Material Document of Material Staging</td>
<td>406</td>
</tr>
<tr>
<td>8.8 Production List</td>
<td>407</td>
</tr>
<tr>
<td>8.9 Confirmation</td>
<td>409</td>
</tr>
<tr>
<td>8.9.1 Overview</td>
<td>409</td>
</tr>
<tr>
<td>8.9.2 REM Assembly Confirmation</td>
<td>411</td>
</tr>
<tr>
<td>8.9.3 REM Component Confirmation</td>
<td>413</td>
</tr>
<tr>
<td>8.9.4 REM Activities Confirmation</td>
<td>413</td>
</tr>
<tr>
<td>8.9.5 REM Actual Assembly Confirmation</td>
<td>413</td>
</tr>
<tr>
<td>8.9.6 Separated Backflush</td>
<td>416</td>
</tr>
<tr>
<td>8.9.7 Postprocessing of Components</td>
<td>417</td>
</tr>
<tr>
<td>8.10 Reversals and Scrap</td>
<td>417</td>
</tr>
<tr>
<td>8.10.1 Document-Specific Reversal</td>
<td>418</td>
</tr>
<tr>
<td>8.10.2 Document-Neutral Reversal</td>
<td>420</td>
</tr>
<tr>
<td>8.10.3 REM Actual Assembly Scrap</td>
<td>420</td>
</tr>
<tr>
<td>8.10.4 REM Actual Component Scrap</td>
<td>421</td>
</tr>
<tr>
<td>8.10.5 REM Actual Activity Scrap</td>
<td>422</td>
</tr>
<tr>
<td>8.10.6 Reset Reporting Point (RP) Confirmation</td>
<td>422</td>
</tr>
<tr>
<td>8.11 Collective Confirmation</td>
<td>422</td>
</tr>
<tr>
<td>8.12 Costing Activities (Cost Object Controlling)</td>
<td>423</td>
</tr>
</tbody>
</table>
Contents

8.13 Reporting ... 424
 8.13.1 Document Log Information .. 425
 8.13.2 Reporting Point Statistics ... 425
8.14 Summary .. 426

PART IV: Production Planning Workflow Tools

9 Sales and Operations Planning ... 429
 9.1 Sales and Operations Planning: An Overview 431
 9.1.1 Information Structures .. 436
 9.1.2 Planning Methods .. 438
 9.1.3 Planning Types in Standard SOP 440
 9.1.4 Distribute Key Figures ... 447
 9.1.5 Working with Macros ... 451
 9.2 Flexible Planning ... 452
 9.2.1 Creating a Self-Defined Info Structure 453
 9.2.2 Planning Hierarchy .. 459
 9.2.3 Planning Type ... 462
 9.2.4 Working with Self-Defined Macros in Flexible Planning 465
 9.2.5 Row Attributes in a Planning Type 467
 9.2.6 Planning in Planning Table .. 468
 9.2.7 Additional Features of Planning Tables 475
 9.2.8 Info Structure Entries in SAP Database Tables 476
 9.3 Maintaining Version Management .. 477
 9.3.1 Copy Version ... 477
 9.3.2 Delete Version ... 478
 9.3.3 Scheduling Copy or Deleting Versions 479
 9.4 Forecasting ... 479
 9.4.1 Forecasting View in Material Master 480
 9.4.2 Forecast Profile ... 481
 9.4.3 Forecast Strategy .. 483
 9.4.4 Using the Forecast Profile .. 486
 9.5 Rough-Cut Planning Profile ... 486
 9.5.1 Create a Profile ... 487
 9.5.2 Pegged Requirements ... 490
 9.6 Events ... 491
 9.6.1 Create Events ... 492
 9.6.2 Assignment of Events ... 493

www.sap-press.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.3</td>
<td>Operations and Component Scraps in Bill of Materials (BOM)</td>
<td>548</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Scrap in Routing</td>
<td>549</td>
</tr>
<tr>
<td>11.3</td>
<td>Safety Stock</td>
<td>549</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Safety Stock Availability</td>
<td>550</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Master Data Selection</td>
<td>551</td>
</tr>
<tr>
<td>11.4</td>
<td>MRP Procedures</td>
<td>551</td>
</tr>
<tr>
<td>11.4.1</td>
<td>MRP Types</td>
<td>552</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Configuring MRP Types</td>
<td>556</td>
</tr>
<tr>
<td>11.5</td>
<td>Consumption-Based Planning</td>
<td>557</td>
</tr>
<tr>
<td>11.5.1</td>
<td>MRP Type VB: Manual Reorder Point Planning</td>
<td>559</td>
</tr>
<tr>
<td>11.5.2</td>
<td>MRP Type VM: Automatic Reorder Point Planning</td>
<td>561</td>
</tr>
<tr>
<td>11.5.3</td>
<td>MRP Type V1/V2: Manual or Automatic Reorder Point Planning with External Requirements</td>
<td>562</td>
</tr>
<tr>
<td>11.6</td>
<td>Forecast-Based Consumption Planning</td>
<td>562</td>
</tr>
<tr>
<td>11.6.1</td>
<td>Basics of Forecasting</td>
<td>563</td>
</tr>
<tr>
<td>11.6.2</td>
<td>MRP Type VV: Forecast-Based Planning</td>
<td>565</td>
</tr>
<tr>
<td>11.6.3</td>
<td>MRP Type R1: Time-Phased Planning</td>
<td>566</td>
</tr>
<tr>
<td>11.7</td>
<td>Types of Planning Runs</td>
<td>567</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Single-Item, Single-Level</td>
<td>567</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Single-Item, Multilevel</td>
<td>568</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Total Planning Online</td>
<td>568</td>
</tr>
<tr>
<td>11.7.4</td>
<td>Total Planning Background</td>
<td>569</td>
</tr>
<tr>
<td>11.7.5</td>
<td>Single-Item Planning, Sales Order</td>
<td>569</td>
</tr>
<tr>
<td>11.7.6</td>
<td>Single-Item Planning, Project</td>
<td>570</td>
</tr>
<tr>
<td>11.8</td>
<td>Scheduling</td>
<td>570</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Scheduling In-House Production</td>
<td>571</td>
</tr>
<tr>
<td>11.8.2</td>
<td>Basic Date Determination</td>
<td>571</td>
</tr>
<tr>
<td>11.8.3</td>
<td>Planned Order Dates</td>
<td>573</td>
</tr>
<tr>
<td>11.8.4</td>
<td>Scheduling External Procurement</td>
<td>573</td>
</tr>
<tr>
<td>11.8.5</td>
<td>Forward and Backward Scheduling</td>
<td>575</td>
</tr>
<tr>
<td>11.9</td>
<td>Procurement Proposals</td>
<td>576</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Planned Orders</td>
<td>577</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Planned Order Profile</td>
<td>581</td>
</tr>
<tr>
<td>11.9.3</td>
<td>Purchase Requisitions</td>
<td>582</td>
</tr>
<tr>
<td>11.10</td>
<td>Executing Material Requirements Planning</td>
<td>582</td>
</tr>
<tr>
<td>11.10.1</td>
<td>Planning File Entry and the Selection of Materials for Planning</td>
<td>583</td>
</tr>
</tbody>
</table>
Contents

11.10.2 Net Requirements Calculation Logic ... 585
11.10.3 Planning Control Parameters in Materials Requirements Planning ... 587
11.11 Configuration Settings for MRP ... 590
11.11.1 Activating MRP .. 590
11.11.2 Configuration for Scope of Planning .. 590
11.11.3 Plant Parameters ... 591
11.11.4 Configuration for MRP Group .. 592
11.12 MRP Run Analysis .. 594
 11.12.1 Stock Overview ... 595
 11.12.2 Stock/Requirements List ... 597
11.13 Planning Calendar ... 606
11.14 MRP Areas ... 609
 11.14.1 Configuring MRP Areas ... 609
 11.14.2 Set Up an MRP Area in the Material Master 611
 11.14.3 Running MRP at the MRP Areas Level 614
 11.14.4 Planning Results of MRP for MRP Areas 615
11.15 Summary .. 616

12 Long-Term Planning (LTP) ... 617

 12.1 LTP Master Data and Planning Data ... 618
 12.1.1 Master Data: BOM .. 619
 12.1.2 Planning Data: Planning Quantity 621
 12.1.3 Planning Data: Version Number of PIRs 622
 12.1.4 Create a Planning Scenario .. 623
 12.2 Long-Term Planning: Business Process .. 623
 12.2.1 Enter PIRs for the Simulative Version 625
 12.2.2 Run LTP (Simulative MRP) ... 626
 12.2.3 Evaluate the LTP Stock/Requirements List 628
 12.3 Further Options in LTP .. 631
 12.3.1 Manually Create a Simulative Planned Order 631
 12.3.2 Firm the Simulative Planned Order Using 632
 a Firming Date ... 632
 12.3.3 Calculate Average Plant Stock .. 633
 12.3.4 Copy LTP Results to Operative Planning 634
 12.4 Evaluate Information Systems for LTP ... 638
 12.4.1 Setting Up a Purchasing Information System for LTP 638
Contents

12.4.2 Evaluating with the Purchasing Information System for LTP ... 639
12.4.3 Setting Up an Inventory Controlling Information System for LTP .. 640
12.4.4 Evaluating the Inventory Controlling Information System for LTP ... 641
12.4.5 Capacity Planning ... 641
12.5 Summary .. 643

PART V: Optimizing Production Planning

13 Special Procurement Types ... 647

13.1 Overview .. 648
13.2 Phantom Assembly ... 650
13.3 Direct Production ... 651
13.4 Direct Procurement .. 656
13.5 Stock Transfer (Inter-Plant Transfer) .. 659
13.6 Withdrawal from Alternate Plant ... 662
13.7 Production in Alternate Plant ... 664
13.8 Subcontracting ... 666
13.9 Consignment .. 670
13.10 Pipeline Material ... 673
13.11 Summary .. 673

14 Capacity Requirements Planning .. 675

14.1 Process Overview .. 676
14.2 Capacity Requirements and Capacity Evaluation ... 677
14.2.1 Capacity Requirements ... 678
14.2.2 Standard Evaluation of Capacity Utilization ... 679
14.2.3 Variable Evaluation of Capacity Utilization ... 682
14.2.4 Cumulating the Capacity Requirements ... 686
14.2.5 Checking Capacity Availability ... 687
14.3 Finite Scheduling .. 693
14.4 Dispatching ... 695
14.4.1 Process Steps ... 695
14.4.2 Profiles for Dispatching ... 697
14.4.3 Dispatching Sequence ... 704
16.3 Engineering Change Request (ECR)/Engineering Change Order (ECO) ... 757
16.3.1 ECR Creation ... 758
16.3.2 Check ECR (Header) ... 760
16.3.3 Change Possible (Object) and Digital Signature 761
16.3.4 ECR Checked (Header) and Digital Signature 763
16.3.5 Automated Transactions and Convert ECR to ECO 764
16.3.6 Changes to the Master Data .. 765
16.3.7 Complete and Release Change (Object) 765
16.3.8 Close and Release ECO .. 766
16.4 ECR/ECO Step-by-Step Approach: At a Glance 767
16.5 Summary .. 768

17 Co-Products and By-Products in Production Processes 769
17.1 Check in Material Master .. 771
 17.1.1 Co-Product .. 771
 17.1.2 By-Product .. 774
17.2 Bill of Materials (BOM) ... 774
 17.2.1 Co-Product .. 774
 17.2.2 By-Product .. 775
17.3 Process Order ... 776
 17.3.1 Co-Product .. 776
 17.3.2 By-Product .. 777
17.4 Goods Issue ... 778
 17.4.1 Co-Product .. 778
 17.4.2 By-Product .. 779
17.5 Confirmation ... 780
 17.5.1 Co-Product .. 780
 17.5.2 By-Product .. 781
17.6 Goods Receipt ... 782
 17.6.1 Co-Product .. 782
 17.6.2 By-Product .. 783
17.7 Documented Goods Movement ... 784
 17.7.1 Co-Product .. 785
 17.7.2 By-Product .. 785
17.8 Cost Analysis ... 785
 17.8.1 Co-Product .. 785
18 Shift Notes and Shift Reports .. 789

18.1 Shift Note Overview ... 790
18.2 Configuration for Shift Notes ... 791
 18.2.1 Define Shift Note Types .. 791
 18.2.2 Define Number Ranges .. 793
 18.2.3 Define Screen Templates .. 795
 18.2.4 Maintain Catalogs .. 798
 18.2.5 Make Settings for Shift Note Type 799
 18.2.6 Control Settings for Printing Shift Notes 803
 18.2.7 Master Data Maintenance for Shift Notes 805
 18.2.8 Create a Shift Note .. 807
 18.2.9 Change the Shift Note .. 809
 18.2.10 PDF Printout or Print Preview of the Shift Note 810
 18.2.11 Send a Shift Note by Email ... 810
 18.2.12 Shift Notes List .. 810

18.3 Configuration for Shift Reports ... 812
 18.3.1 Define the Shift Report Type .. 813
 18.3.2 Digital Signature Functionality in Shift Reports 815
 18.3.3 Master Data Maintenance .. 815
 18.3.4 Create a Shift Report .. 817
 18.3.5 Shift Reports List .. 820
 18.3.6 Keywords Search in Shift Reports 821

18.4 Summary .. 822

19 Document Management System (DMS) 823

19.1 DMS Configuration ... 823
 19.1.1 Define Number Ranges .. 824
 19.1.2 Define the Document Type .. 826
 19.1.3 Document Status .. 830
 19.1.4 Document Browser and ACLs ... 832
 19.1.5 Object Link ... 833

19.2 DMS in Action .. 837
 19.2.1 Document Info Record (DIR) .. 837
 19.2.2 Assign Originals to DIR ... 839
Contents

19.2.3 Document Hierarchy .. 839
19.2.4 Additional Data (Classification System) 841
19.2.5 Object Links ... 842
19.2.6 New Version of DIR .. 843
19.2.7 Document Status .. 844
19.2.8 Document Distribution ... 844
19.2.9 Distribution List ... 845
19.3 WebDocuments .. 846
19.4 Additional Features of DMS .. 850
 19.4.1 Digital Signature ... 850
 19.4.2 Search Functions ... 850
 19.4.3 Document Status ... 853
 19.4.4 SAP EasyDMS .. 854
19.5 Summary .. 855

20 Digital Signature ... 857
20.1 Configuration Steps to Set Up a Digital Signature 858
 20.1.1 Define Authorization Groups 858
 20.1.2 Define Individual Signatures 859
 20.1.3 Define a Signature Strategy ... 860
 20.1.4 Assign a Signature Strategy to a DMS Document Type 863
20.2 Digital Signature in Action ... 864
20.3 Digital Signature Logs .. 869
20.4 Application of Digital Signature in SAP ERP Components 871
 20.4.1 Production Planning for Process Industries (PP-PI) 871
 20.4.2 Quality Management (QM) Component 872
 20.4.3 Plant Maintenance (PM) Component 872
 20.4.4 Document Management System (DMS) 872
 20.4.5 Engineering Change Management (ECM) 873
20.5 Summary .. 874

PART VI: Monitoring and Evaluation

21 Early Warning System .. 877
21.1 Overview .. 877
21.2 Exceptions .. 879
 21.2.1 Set Up Exceptions .. 880
22.4.3 Repetitive Manufacturing ... 922
22.4.4 Standard Analysis: Work Center .. 922
22.4.5 Standard Analysis: Operations ... 925
22.4.6 Standard Analysis: Material .. 926
22.4.7 Key Figures ... 927
22.4.8 Other Info Structures ... 927
22.4.9 Standard Analysis: Goods Receipt in Repetitive
Manufacturing .. 929
22.4.10 Standard Analysis: Product Cost .. 931

22.5 Data Browser .. 932
22.6 QuickViewer .. 937
22.7 SAP Query ... 942
22.7.1 Maintain InfoSets ... 942
22.7.2 Create User Groups ... 943
22.7.3 Create Queries .. 944

22.8 Assign a Transaction Code to a Query .. 945
22.9 Summary ... 947

23 Further Integration of Production Planning with Logistics
Functions .. 949

23.1 Integration Prerequisites ... 950
23.2 Integration Aspects of Production Planning with Quality
Management ... 952
23.2.1 Configuration Steps ... 953
23.2.2 QM Master Data .. 954
23.2.3 End-to-End Production Process Flow with
QM Integration .. 962

23.3 Integration Aspects of Production Planning with Materials
Management .. 967
23.3.1 Managing Master Data .. 968
23.3.2 Production Planning (PP) Master Data 971
23.3.3 End-to-End Process Flow ... 972
23.3.4 Display Automatically Generated Vendor Delivery
Schedule Lines in the Scheduling Agreement 973

23.4 Integration Aspects of Production Planning with Sales and
Distribution (Make-to-Order Production) .. 973
23.4.1 Managing Master Data .. 974
1 Introduction

A company that’s in the business of manufacturing a product and selling it to customers goes through the rigor of production planning and then production execution. The Production Planning component (which we’ll refer to as PP throughout the book) in the SAP ERP system plays a critical role in the logistics functions of the company to accomplish just this. This component enables the company to benefit from historical data to prepare a forecast, which can then be used in sales and production planning. From an initial sales plan or sales orders from customers, to the highly integrated and complex chain of interdependent activities in Logistics in the SAP system, the PP component reflects its strength, both in planning and execution. It seamlessly integrates with sales, procurement, quality, maintenance, projects, human capital, finance, and controlling functions of the company. It also integrates with the Manufacturing Execution System (MES), as well as with Manufacturing Integration and Intelligence (MII).

1.1 Goals of This book

The goals of this book are to provide you with the step-by-step approach to configure and implement three different production types in PP: discrete, process, and repetitive manufacturing.

The book will first lay the initial foundation in the form of configuration, and will then explain how the configuration impacts actual business processes. The configuration to business process approach is maintained throughout the book.

The next goal is to provide comprehensive coverage to the production planning workflow tools available. Further, there are significant “hidden”, or lesser-used functionalities in PP that you can integrate even when (and long after) your SAP ERP system implementation is complete. These tools are covered to bring greater optimization to your business processes and greater return on your investment in the SAP ERP system.
The book offers several real-life examples and other modeling hints and tips to help you decide which option best meets the business needs of the company. Screenshots are used extensively and are duly supported by in-depth coverage of concepts and terminologies. SAP ERP 6.06 (Enhancement Package 6) is used in the screenshots. The menu paths or transaction codes are given to perform each step. Where possible, a deliberate attempt is made to use the SAP Internet Demonstration and Evaluation System (IDES), so you can configure and implement a solution in a training client. Where specific or unique data is used, all necessary prerequisites and hints are given to enable you to set up the data or meet the prerequisite before attempting to run a business process. While this book can only cover so much of a topic, we highly encourage you to explore and try out a large number of options, icons, menu paths, and other pointers available in order to continue the process of self-learning and eventually become an “expert” in the PP component of SAP ERP.

In this book, we also cover several cross-component functionalities that not only enable you to leverage their strengths in PP, but also in other Logistics components that are implemented in your company. For example, you can use the classification system, digital signature, Early Warning System (EWS), Flexible Planning standard analysis, Document Management System (DMS), shift notes and shift reports, Engineering Change Management (ECM), information systems, and reporting in many other Logistics components. In other words, this book goes beyond the PP component to help in optimizing business processes in other Logistics components.

1.2 Target Audience

This book is intended for all readers who use PP in the SAP ERP system. They may be the component’s team leader, project team members in an SAP ERP system implementation, integration managers, production planners, or production controllers working in operational positions in the company. Because this book covers three different production types, namely, discrete, process, and repetitive manufacturing, it tends to benefit those readers who are either transitioning or intending to transition from companies using different production types. Additionally, if the company is embarking on production and capacity expansion, then this book can help by facilitating the creation of the new enterprise structure needed in the SAP ERP system to support the expansion. Finally, this book can be
an invaluable reference to SAP ERP system consultants and even business process owners who are considering the transition to a consulting career and need a comprehensive understanding of the required concepts and fundamentals.

1.3 Structure and Content

This book provides a deep-dive approach to deliver in-depth and comprehensive coverage to three different production types in the SAP ERP system: discrete, process, and repetitive manufacturing. It begins with covering the enterprise structure that you need to set up in the PP component, which also reflects the interdependencies of other components’ enterprise structures. The configuration basics that you need to know for each production type are covered next. Similarities and differences in various production types are highlighted to enable you to comprehensively differentiate one from the other. The configuration of each production type is then put to actual use, in which we show the impact of the configuration on the business processes. The connecting point here is that a business process must be comprehensively understood first, before proceeding to model and configure it in the SAP ERP system.

The book then transitions to cover the production planning workflow tools available. You’ll also learn how to optimize your production processes by making use of several latent features that are often not as frequently used to bring about business processes improvements. This book moves toward conclusion by covering the reporting capabilities, including the flexibility to create self-defined queries. Finally, the book concludes by broadly covering the integration aspects of the PP component with some of the other SAP ERP components.

In summary, the following structure is used:

In Part I of this book, starting in Chapter 2, we cover the broad outline of the entire book and why you should proceed to implement a specific functionality or how it will benefit your business processes. We’ll discuss the enterprise structure that you’ll need to set up in the PP component, which at the same time also depends on the enterprise structures of other components. The enterprise structure forms the backbone of the SAP ERP system, in which all the important business processes of the company are mapped. Eventually, reporting also takes important elements from the enterprise structure.
In Part II of this book, we move forward with covering the configuration basics that you need to set up for each production type. However, the primary focus of the three chapters in this part is on the configuration basics only, whereas the actual and practical use of configuration basics are covered with the business processes in Part III. **Chapter 3** covers the configuration basics of discrete manufacturing, whereas **Chapter 4** attends to the configuration basics of process manufacturing. **Chapter 5** covers the configuration details that you need to know for repetitive manufacturing.

Part III of this book discusses the production planning workflow by each production type, and here we make logical connections to the business processes of each production type for which we undertook the configuration in the relevant chapters of Part II. **Chapter 6** provides an in-depth coverage of the business processes of PP in discrete manufacturing. **Chapter 7** brings out the similarities and differences between discrete and process manufacturing, but remains primarily focused on the process industry-specific functionality known as Process Management. Process Management then matures to a user-friendly functionality known as XSteps. In the same chapter, we also cover how to use the Process Manufacturing Cockpit. The focus of **Chapter 8** is on the important business processes of repetitive manufacturing, in which, once again, we make consistent and logical links to the configuration chapter.

Part IV of this book covers the PP workflow tools. **Chapter 9** focuses on Sales and Operations Planning (SOP), in which we cover product group, flexible planning, and standard analysis in flexible planning. Forecasting as an invaluable planning tool is also covered in this chapter. **Chapter 10** is on SAP Demand Management, in which we cover planning strategies and production methods such as make-to-order (MTO) and make-to-stock (MTS). Material requirements planning (MRP) is covered in **Chapter 11**, in which we discuss the planning calendar and also MRP areas. In **Chapter 12**, you’ll see how you can use MRP to successfully execute Long-Term Planning (LTP) to simulate what-if planning scenarios.

Part V is all about optimizing PP. **Chapter 13** covers special procurement types, such as subcontracting, phantom assembly, procurement or production at another plant, withdrawal from another plant, consignment, and pipeline materials. In **Chapter 14**, we show you how to manage the capacity requirements planning (CRP) in your SAP ERP system, including its evaluation and leveling. **Chapter 15** covers the versatile and dynamic functionality of the classification
system, which is cross-modular and finds several applications not just in the PP component but also in other Logistics components. In **Chapter 16**, we show you how you can leverage Engineering Change Management (ECM) to bring better control and visibility to your master data creation processes or the changes made to already-created master data, not just in the PP component but also in other Logistics components. The co-products and by-products that the actual production process generates find comprehensive coverage in **Chapter 17**. The option to record details specific to a shift or for various shifts in a day and then be able to generate a report is covered in **Chapter 18**, when shift notes and shift reports are discussed. A dedicated chapter on the Document Management System (DMS) in **Chapter 19** is to reflect upon the importance of having a plethora of a company’s digital assets in a secure environment that is also easily accessible when needed. DMS is also a cross-modular component, and you can implement it not just in the PP component but in other Logistics components. Next, in **Chapter 20**, we show you the benefits of implementing the digital signature functionality in your business processes to eliminate or reduce the manual signature and approval process. Digital signature is also cross-modular.

The last part, Part VI, is all about monitoring and evaluating your PP component in SAP ERP. In **Chapter 21**, you’ll learn how to quickly set up alerts in your SAP ERP system with the Early Warning System (EWS) to closely monitor important deviations to your business processes and take quick decisions and actions. You can also set up EWS in other Logistics functions, if needed. In **Chapter 22**, you’ll learn the features, functionalities, menu paths, navigation tools, and many options available to run a large number of standard reports available in SAP ERP. The concepts that you’ll develop here will enable you to expand your knowledge horizon to explore standard reports available in other Logistics components. In this chapter, we also cover how you can quickly create your own reports by using the SAP Query tools. Finally, in **Chapter 23** we give you some “flavors” to the complex and highly interconnected world of PP component integration with other Logistics functions. Here, we provide five examples in which the PP component integrates with Materials Management (MM), Quality Management (QM), Project Systems (PS), and Plant Maintenance (PM) components. We also provide a roadmap you can use to ensure effective planning and comprehensive monitoring of cross-components integration during your SAP ERP system implementation project.
In the appendices, you’ll find a comparison table of the production types (discrete, process, and repetitive), and a glossary of some of the more important terms used in PP.

While this book is certainly a significant expansion to the areas and functionalities that the PP component offers, please note that we do not cover the following:

- Variant configuration
- Distribution resource planning
- Kanban
Implementing discrete manufacturing, also known as shop floor control, involves a series of logical and sequential configuration steps to ensure complete mapping of configuration with the business processes of the company.

3 Configuration Basics of Discrete Manufacturing

During an SAP ERP implementation project, when it’s established that discrete manufacturing will most closely serve the business needs of the company, the next logical step is to have intensive discussions and several workshops to agree on the configuration objects of discrete manufacturing. Configuration of the specific production type (which in this case is discrete manufacturing) forms the basis on which the business processes of the company will run. For example, how should the system behave when it comes across a material or capacity shortage during production order creation or release? How should it behave when the actual production exceeds the defined under-delivery or over-delivery of the material? What should the system do if it's unable to schedule production within the defined basic dates? For each of these (and many more) questions, you can set the controls on the degree of freedom or flexibility (or strictness) that you want the system to allow you to perform business functions. For example, you can configure the system to allow you to create a production order despite a component shortage, but to stop you from releasing it until the requisite components for production are available in stock.

In this chapter, we cover the configuration basics needed to set up the master data used in discrete manufacturing. Next, we follow a step-by-step process to create a new production order type PP10, including assigning it a new number range. All of the subsequent configuration steps covered for this order type and in this chapter are sufficient to enable you to run end-to-end business process in SAP ERP. In Chapter 6, we cover the business processes side of the configuration undertaken in this chapter.
If, as an SAP ERP system consultant or as a business process owner, this is the first time you’re configuring and implementing the Production Planning (PP) component, then we suggest that you follow the step-by-step approach that we use in this chapter. Because the PP component integrates with several other components such as Materials Management, Quality Management, and most importantly with Controlling-Product Costing (CO-PC), we suggest that you maintain close coordination all along by consulting the resources of these components.

Note

The business processes of discrete and process manufacturing are also similar in a lot of ways. Where there is a difference, these are specifically covered in the relevant chapters (process manufacturing is covered in Chapter 4).

3.1 Material Master

The configuration of the material master is primarily managed within the Materials Management (MM) component of the SAP ERP system. During an SAP ERP system implementation, the MM team coordinates with the client to discuss and agree on a large number of MM-specific configuration objects, which also includes material types. A material type is a unique identification to distinguish materials used in various business processes. Some examples of material types are raw materials, semi-finished goods, trading materials, packing materials, non-ivaluated materials, spare parts, and consumables. However, the importance and involvement of PP can’t be overemphasized here as the material requirements planning (MRP) and work scheduling views of the material master are very important to PP, both from a planning and execution perspective.

Apart from the option for quantity and value updates, you can also control the views that the system makes available to the end user during material master creation. For example, normally the purchasing view isn’t available for finished goods because the company doesn’t purchase finished goods. Similarly, for raw materials, the sales views aren’t available because the company normally doesn’t sell its raw materials.

To set up the attributes of material types, follow the configuration (Transaction SPRO) menu path Logistics – General • Material Master • Basic Settings • Material Types • Define Attributes of Material Types.
Figure 3.1 shows the configuration view of Material Type FERT (Finished product). On the lower-right side of the screen, you can control the views that you want the system to make available during material master creation. At the bottom of the screen is the Price control field, which enables you to select whether the material will have a moving average or standard price.

3.2 Bill of Materials (BOM)

Similar to the material master, a material’s BOM is used extensively in various areas of the supply chain, including planning and costing. A BOM is a formally structured list of components that you need to use to produce a material. These components may be raw materials or packing materials procured directly from vendors or subassemblies produced in-house.

The BOM has a large number of functions. You can have a BOM that is specific to engineering/design only, whereas you can have another BOM of the same material
that you can use for costing purposes. You can have a production BOM and also a sales BOM. In a sales BOM, the system explodes the components and makes them an integral part of sales processing. For example, when a company sells a new car, it also includes the accessories such as a spare tire, the tire changing toolkit, and the owner’s manual, among other things. These accessories are, in fact, components in a sales BOM.

A material BOM is a central component in MRP. When the system runs the MRP on a material, it looks for its BOM to plan not just at the finished goods level but also at the components’ and raw materials’ levels. The material BOM is always single-level, and you can explode and display the cascade of BOMs as a multilevel structure. The system displays a single-level BOM by showing its immediate next component or assembly. It’s in a multilevel BOM that the system reflects comprehensive details of all of the assemblies, components, the associated quantities of assemblies and components, and their logical relationship to each other.

3.2.1 Define BOM Usages

A BOM usage controls the activities and functions that the system can perform in business processes. To create a new BOM usage, follow the configuration (Transaction SPRO) menu path Production • Basic Data • General Data • BOM Usage • Define BOM Usages, or use Transaction OS20.

Here you’ll find several standard BOM usages. You can create a new BOM usage by choosing New Entries, and selecting the control functions to allow or disallow the business processes in which the BOM usage is applicable (see Figure 3.2).

![Figure 3.2 BOM Usages](image-url)
3.2.2 Allowed Material Types in the BOM Header

You can control the material types that the system allows for creation of a material BOM. For example, you normally don’t create a material BOM for spare parts or consumable material types. This control on material types for BOM creation also helps prevent the creation of unnecessary or unwanted material BOMs. If a company has several company-specific material types, then you need to specifically identify and perform the necessary configuration for all of the material types that will have any BOM usage.

To specify the material types for a material BOM creation, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Bill of Material • General Data • Define Material Types Allowed for BOM Header, or use Transaction OS24.

Figure 3.3 shows that you can also specify the BOM usage for the material type at the header level. The * symbol denotes that a BOM can have all usage types and can also be used in all material types at the header level.

Note

In addition to maintaining the control function of the material type at the BOM header level, you can also do the same for a material at the BOM item level. To do so, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Bill of Material • Item Data • Define Material Types Allowed for BOM Items, or use Transaction OS14.
3.2.3 BOM Status

You can control the different applications of a material BOM from its status. For example, during new product development, a material has a BOM status as Engineering/design. When the Engineering/design departments approve it, the next status can be Costing to enable the Product Costing team to calculate the cost of the material. Finally, when the costing department also approves the material BOM, it can attain the status of Production. This status enables the production team to begin producing the material. When the BOM has a Production status, it becomes available during the production order creation, whereas when its status is either Engineering/design or Costing, it isn’t available in production order creation. You can also set the status in which all functions are possible.

To create or set the BOM status, follow the configuration (Transaction SPRO) menu path Production • Basic Data • General Data • Define BOM Status, or use Transaction OS23. As shown in Figure 3.4, you can control whether the BOM status should allow business functions such as being available during MRP explosion, for costing, or for work scheduling (production).

![Figure 3.4 BOM Statuses](www.sap-press.com)

3.2.4 BOM with History Requirement

You can control whether changes made to the material BOM are with reference to a change number or Engineering Change Management (ECM). With a history requirement or change number, the system requires you to enter the change number before it allows you to make the desired changes, which adds a level of security.

Note

See Chapter 16 for more on Engineering Change Management (ECM).
To select the BOM usage and status combination for which you want to set the history requirements, follow the configuration (Transaction SPRO) menu path `Production • Basic Data • General Data • Configure History Requirement for BOMs`, or use Transaction OS25. You can mark the required BOMs with a history requirement by selecting the checkbox.

3.2.5 Item Category in BOM

The item category provides further divisions to the different BOM classes. While some item categories are relevant for production or for planning, others are merely to provide information.

Following are some of the most important predefined item categories:

- **L: stock item**
 Stock items contain components that you store in your warehouse and include as a part of Inventory Management.

- **N: nonstock item**
 A nonstock item is a material that isn’t available in stock but is procured directly for the given production order. A nonstock item has direct relation to the procurement process. There is also no need to have a material master (item code) for nonstock material. If you use nonstock material, you also have to fill in the procurement details, such as cost element, purchasing group, material group, and price.

- **R: variable-size item**
 In this item category, you can use the formula and also define the variables’ sizes to enable the system to perform calculations and suggest the component’s quantity.

- **T: text item**
 The text item has a descriptive character.

- **M: intra material**
 This item category is commonly used in master recipes (process industry). Materials that are temporarily used in process engineering are recorded as components with this item category.

The material input parameter (`MatInpt`) indicates whether a material reference to the item exists. This isn’t the case with document items or nonstock items. The inventory-management parameter (`InvMg`) allows you to set that you can only use those materials whose quantities are managed in inventory management.
To maintain a new item category or make changes to the existing ones, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Item Data • Define Material Types Allowed for BOM Header, or use Transaction OS24. Select or deselect the checkboxes to meet your business needs.

3.2.6 Variable Size Item Formulas

In the fabrication industry, it’s common that component issuance to produce an assembly is often based on a formula. For example, to produce the fuel tank of a motorcycle, the warehouse issues the steel sheet based on the formula, which calculates the requirement. When you assign the variable-size item in the BOM of the material, and with item category R, the system enables you to enter the variable-size details in the relevant area of the BOM’s item details area.

Notes

Before you proceed to create a formula for a variable size item, you can also self-define a unique unit of measure to denote the formula via Transaction CUNI.

To create a variable size item formula, follow the SAP ERP system configuration (Transaction SPRO) menu path Production • Basic Data • Item Data • Define Variable-Size Item Formula, or use Transaction OS15. Figure 3.5 shows the list of available formulas that you can use, or you can create a new one.

![Figure 3.5 Variable-Size Item Formulas](www.sap-press.com)

3.2.7 BOM Explosion Types

You can control how the system takes a specific component’s explosion into account in the Basic Data view of the BOM creation screen. You can control whether direct production, a phantom assembly, or even Long-Term Planning...
(LTP) is deactivated. For example, if you don’t want the system to plan a particular component in LTP, you can set its explosion type status in the Basic Data view of the material’s component. If you don’t find the desired configuration settings, then you can configure using the configuration (Transaction SPRO) menu path Production • Basic Data • Item Data • Define Explosion Types.

3.2.8 BOM Selection (Order of Priority)

You can control how the system makes an automatic selection of a BOM to incorporate it; for example, in a planned order during an MRP run. For example, during the MRP run, if the system is unable to find a material’s BOM for production (BOM usage 1), then you can define the next BOM selection priority as universal (BOM usage 3).

To configure the BOM selection and its order of selection priority, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Bill of Material • Alternative Determination • Define Order of Priority for BOM Usages, or use Transaction OS31. Here you define the selection ID to combine all BOMs with one unique ID. Then you define the selection priority of each BOM and finally assign the BOM usage, such as production or universal.

3.3 Work Center

A work center is a machine or a group of machines, a person or a group of persons, or a group of person(s) and machine(s) that adds value to the manufacturing process. During an SAP ERP system implementation, the production and the product costing teams discuss and mutually agree on the number of work centers that needs to be available. The decision is primarily focused on ensuring that the production department is able to schedule and plan work centers and machines capacities, whereas the product costing team ensures that the activities-wise and cost centers-wise reporting is available. For example, if Packaging as a work center entails significant cost that the product costing team needs to monitor its cost and activities, then it makes sense to create a work center and assign a separate cost center and associated activities to it. If it doesn’t require monitoring, then the production line cost center is sufficient.

In the following sections, we explain how to make field selections in the work center so that during creation of the work center, the system either makes a field
entry as mandatory or optional. We also discuss how you can use a standard value key (SVK) to define which activities for an operation are important from a business perspective. You can define formulas for the work center that you can use in capacity requirements planning (CRP), scheduling, and costing. You can use the location groups to account for the time it takes to move a product from one work center to another, and the system corresponding considers this during scheduling. Finally, you can use a control key for operations as a control function to decide if, for example, scheduling or printing for an operation is allowed.

3.3.1 Work Center Category

A work center category is a control function that ensures the master data applications and business processes of discrete manufacturing in which you can use the work center. For example, work center category 0007 is available for rate routing in repetitive manufacturing, or work center category 0008 is available and used for process manufacturing. For work center category 0007, you’ll find the available application option for repetitive manufacturing. Similarly for work center category 0008, you’ll find the application for master recipe.

To create a work center category, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • General Data • Define Work Center Category, or use Transaction OP40. Select the work center category 0001 used in discrete manufacturing, and double-click on the Application folder. You can see the available applications in the resulting screen in Figure 3.6 for Cat. (category) 0001.

![Figure 3.6 Application of Work Center Category](www.sap-press.com)
3.3.2 Field Selection in the Work Center

You can control the fields in the SAP ERP system for which entry is mandatory, optional, an input option, or is hidden from display. For example, during the work center creation, if you want the user to enter information in a specific field, you can select the Req. radio button. You can also control that when the user enters information in one field, how the system prompts the user to perform any dependent function. This option works when one modifiable field relates to the influencing fields. For our example, you select the work center category as 0001 as an influencing field, and make the Backflush field indicator (a modifiable field) as a mandatory entry. So, whenever a user is going to create a work center with category 0001, it will become a mandatory requirement to select the Backflush field also.

Note
The field selection option isn’t just restricted to work centers; you can also use it in BOM, routing, and confirmation.

To define field selection in a work center, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • General Data • Define Field Selection, or use Transaction OPFA. Figure 3.7 shows that the Screen group Basic data has several modifiable fields, such as Backflush or Person responsible. Notice that you have five options available in the modifiable fields:

- **INPUT**
 The entry in this field is optional.

- **Req. (required)**
 The entry in this field is mandatory.

- **Disp. (display)**
 No entry because it’s available for display only.

- **Hide**
 The system hides this field, and it isn’t displayed.

- **HiLi (highlight)**
 Any specific field can be highlighted if you want the user to pay attention. For example, when making a field entry as Req., you can also select the checkbox HiLi to enable the user to quickly see the fields requiring entries.
Double-click on the Backflush field or click on the Modified button. In the screen that appears as shown in Figure 3.8, click on the New values button. In the popup that appears, enter the work center category as “0001” and choose Continue. Select the Req. radio button to ensure that whenever a user creates a work center of category 0001, selecting the Backflush indicator will become mandatory.

Figure 3.7 Modifiable Fields of the Basic Data Screen Group

Figure 3.8 Modifiable Field with Influences
Repeat the same with the work center categories 0008 and 0015, but this time select the Hide radio button. The system won’t show the Backflush field whenever the user proceeds to create a work center with work center categories 0008 and 0015. Save your entries.

3.3.3 Standard Value Key (SVK)

During the course of an SAP ERP system implementation, one of the main areas where the production and the product costing teams collaborate is in defining the standard value key (SVK). A SVK consists of individual parameters that are then grouped together as one SVK. You assign the SVK in the Basic Data view of the work center and also enter the formula that the system will use for each of the parameters. The sequence of steps is used to define a SVK:

1. Define the parameters.
2. Assign the parameters to the SVK.
3. Create a formula for the work center.
4. Assign a formula against each parameter.

We explain this with an example. Suppose that in addition to monitoring and recording standard durations such as setup, machine, or labor, your product costing department also wants you to record the electricity and steam consumed in producing a product. The reason to record these two unique parameter values is that significant highly cost is associated with these values. For example, in the caustic soda industry, electricity consumption is excessive and is closely monitored, so it’s a critical cost component that the company wants to monitor and control.

When the user uses a specific work center (or resource) consisting of the SVK in the routing (or master recipe), the system requires the user to enter the standard consumptions. For our example, in the master recipe, the system prompts the user to define the standard electricity consumption in producing 1 metric ton of caustic soda. The product costing team will also have an associated cost (in the form of an activity type) assigned to this parameter (electricity). When the user performs the confirmation against the process order and enters the actual electricity consumed, the production and product costing teams can monitor the variances between standard consumption and actual consumption.
You can assign up to six parameters to a SVK. In other words, you can monitor and record up to six important parameters that have direct cost implications on a given work center. You can also use SVK in scheduling and capacity calculations.

To define a parameter, use configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • General Data • Standard Value • Define Parameters, or use Transaction OP7B. You’ll see the initial screen consisting of standard and user-defined parameters. Double-click on SAP_02, and the screen shown in Figure 3.9 appears. You can see the standard parameter with TIME as a Dimension and Standard value unit in MIN (minutes). If you’ve created a self-defined parameter such as Steam or Electricity, then you can give the dimension and the unit of measure in which you want to record the consumption value.

Next, to create the SVK follow the configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • General Data • Standard Value • Define Standard Value Key, or use Transaction OP19 or Transaction OPCM.

Figure 3.10 shows the Std val. key SAP1, which consists of the standard parameters SAP_01, SAP_02, and SAP_03. If you have any self-defined parameter that you want to be part of the SVK, you can enter them here. As noted previously, you can enter up to six parameters in SVK. Make sure to select the Generate checkbox when defining SVK because then the system automatically performs the calculations defined in the formulas. If not selected, then it does the calculation for scheduling and capacity planning during production order creation, which often leads to system performance issues.
3.3.4 Formulas for the Work Center

The system uses previously defined parameters to define formulas, which you can then use in CRP or scheduling. You can use parameters such as the following:

- SAP_08: Base quantity
- SAP_09: Operation quantity
- SAP_11: Number of operation splits

A formula definition also holds the control for the following applications:

- CRP
- Scheduling
- Costing

To define the formula parameter, if it’s different from the ones already available, use the configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • Costing • Work Center Formulas • Define Formula Parameters for Work Centers, or use Transaction OP51.
To define the formula that you can use in the work center for costing, CRP, and scheduling, follow the configuration (Transaction SPRO) menu path Production • Basic Data • Work Center • Costing • Work Center Formulas • Define Formula for Work Centers, or use Transaction OP54.

In Figure 3.11, notice the formulas for calculating the production processing duration. The system calculates the capacity requirement as:

\[\text{Capacity requirement} = \text{Standard value} \times \frac{\text{Order quantity}}{\text{Base quantity}} \]

You can reduce the processing duration if the operation is processed simultaneously at several work centers, per the following formula:

\[\text{Duration} = \frac{\text{Standard value} \times \text{Order quantity}}{\text{Base quantity} \times \text{Number of splits}} \]

In Chapter 6, you’ll assign these formulas to scheduling, capacities, and costing views of the work center.

3.3.5 Location Groups

A location group consists of a physical location where each work center is located. You can combine several work centers into one location group if they are in close proximity to one another. You can use the move time matrix to provide standardized values to different transitions times (also known as interoperation times)
Building on the important configuration of process manufacturing that you undertook in Chapter 4, this chapter covers the important business processes and functions and also provides the vital and logical links of configuration with business processes. Greater focus is placed on Process Management in the master recipe, which is unique to process industries only.

7 Production Planning for Process Industries

Production Planning for Process Industries (PP-PI) is characterized by product complexity. There are also additional requirements to integrate Batch Management (BM) and Quality Management (QM) in process manufacturing in PP-PI. Some of the industries in which process manufacturing finds extensive implementation include chemicals, edible oil refining, pharmaceuticals, fertilizers, beverages, food, and food processing. Any manufacturing industry that deals with liquids, where the product flows in a liquid or semi-solid form, or where the processed material cannot be brought back to its original state or disassembled, characterizes process manufacturing.

The chapter begins with an overview of process manufacturing and how it fits into the planning and production perspectives. The process manufacturing process flow provides a comprehensive and step-by-step explanation of each stage involved. Important process manufacturing master data is covered next, with extensive focus on the master recipe, in which the system not only facilitates material quantity calculation but also Process Management. We cover some of the standard features available in Process Management such as input and calculated values, integration with the Document Management System (DMS), and digital signature. We then cover the end-to-end business processes involved from the creation of the process order to how Process Management integrates with it.

Next, we cover the highly versatile and intuitive functionality of Execution Steps (XSteps) when you either want to implement it or simply transition from process...
instructions to XSteps. More features and functionalities of XSteps are shown, as well as their correlations to the configuration made in Chapter 4.

We then cover the process manufacturing cockpit that you've already configured in Chapter 4 to see how it helps and facilitates the business processes. We also cover process messages evaluation.

Finally, the remaining chapter provides brief coverage of the rest of the standard processes of PP-PI, such as goods issuance, confirmation, and goods receipt. Because these processes are all similar in discrete manufacturing, we suggest that you visit the relevant sections of those chapters (Chapter 3 and Chapter 6). Efforts have also been made to provide maximum links to the configuration made in Chapter 4. If deemed necessary, the pointers to necessary configurations are given in this chapter.

7.1 Process Manufacturing Overview

Figure 7.1 shows an overview of the end-to-end process involved in process manufacturing. The business processes involved can broadly be divided into the following areas:

- Process planning
- Process order execution
- Process Management
- Order closure

The production planning in PP-PI begins when you convert the output of material requirements planning (MRP), which in this case is a planned order, into a process order. This is then followed by a material availability check to ensure that the required quantities of components needed to produce the material are available. If you’ve enabled material quantity calculation in master recipe of the material, the system calculates the components’ quantities. If not, it reads off the information from material BOM. At this stage, you can also enable the system to perform batch determination of the components that you want to use in production.

You proceed with releasing the process order as well as printing the process order. With a released process order, you can generate a control recipe. A generated control recipe takes the form of a process instruction (PI) sheet. You can run
several of these process order management activities automatically or in the background to minimize managing them manually. For example, you can determine that on creation of the process order, the system can automatically release it too. If not, you have to manually release the process order. Alternatively, you can use a separate transaction to release a large number of process orders (mass processing), which again can be carried out as a manual task.

The Materials Management (MM) component plays an important role when you want to issue raw materials and components against a process order. The QM component (if integrated with the PP component) enables extensive in-process (during production) quality inspection checks. During this time, you also maintain the PI sheet and assign it a Complete status. You then perform confirmation of the process order, either at the individual phase level or at the entire process order level. When goods are produced, you can again engage the MM component.
for ensuring goods receipt against the process order. You can now send the process messages back to the SAP ERP system.

The Cost Object Controlling activities such as work in process (WIP) determination, variance calculation, and settlement are order-specific in nature and are usually processed in the background. The PP component completely integrates with Cost Object Controlling in the SAP ERP system, so it’s imperative that extensive coordination is ensured for comprehensive business processes mapping.

To optimize and bring greater visibility to your business processes, you can implement and integrate several additional processes and functionalities, such as digital signature, Engineering Change Management (ECM), Document Management System (DMS), co-products and by-products, shift notes, and shift reports. You can also integrate QM during production (in-process quality inspection) or at the time of goods receipt.

7.2 Master Data in Process Manufacturing

Process manufacturing has its own unique and often overlapping master data with other production types, such as discrete manufacturing or repetitive manufacturing. If you set up master data in the right sequence, it’s much easier and logical to interconnect them because you’ve already taken care of the predecessor-successor relationship.

The creation of master data for process manufacturing begins with the material master of the product (a finished good or an assembly). You create the bill of materials (BOM) of the product that you want to produce and assign components, together with the quantities needed to produce the product. If needed, you can also define the scrap percentage at the operation or component levels.

You then create the resource and then create the master recipe for the material, in which you also assign the previously created resource.

Finally, you create the production version for the material and assign the material’s BOM; that is, the master recipe.

When all of the logistical master data is in place, your CO team can create a product cost estimate of the material and also release it.
You need to maintain a close coordination and liaison with the CO team to ensure that when working in the PP component, you’re completely aligned with their working and reporting needs.

For example, for each resource, you need to assign a cost center, which your CO team should provide you with. They may provide you with one cost center for multiple resources or one cost center for an individual resource, depending on how they want to see the cost center reporting and evaluation.

The following make up the important master data in PP-PI:

- Material master
- BOM
- Resource
- Master recipe
- Production version

We’ll discuss each in detail in the following subsections.

7.2.1 Material Master

The material master is the central master record in Logistics and the supply chain. The system defines a *material* as a substance or commodity that you can buy or sell on commercial basis. You can also relate a material to either being consumed or produced. A few examples of material are raw material, packing material, consumables, semi-finished goods, and finished goods. The material is not just restricted to production-based processes but all those for which the company wants to maintain inventory (stock items). So, you may also have materials that are used in Plant Maintenance (PM) processes, or you can even have non-valuated materials.

For PP-PI, there is an extensive use of *Batch Management (BM)*. A *batch* is a uniquely identifiable partial quantity of a material. The batches of a material are managed in separate stocks. In a production process, a batch is a quantity of a specific material produced during a standardized production run. This quantity therefore represents a non-reproducible unit with unique specifications. The key properties of a batch are homogeneity and non-reproducibility.
A batch can be traced across the entire supply chain; that is, from the receipt of the raw material to processing in production and the creation of the final product, all of the way to sales and delivery to the customer. There are complete batch traceability, batch determination, and batch derivation functionalities available. You can use the batch information cockpit (Transaction BMBC) for complete top-down or bottom-up evaluation of batches of materials.

The system creates batches for a material, and the data of the material master is valid for all batches assigned to it. In contrast to the material master, a batch master record contains data that uniquely identifies the corresponding batch and characterizes the unit as one that cannot be reproduced. The characteristic batch specifications are assigned using characteristics from the classification system in the material master and are inherited by the corresponding batch master records.

Note
Refer to Chapter 15 on the classification system, in which you'll learn how to create classes and characteristics that you can eventually use in BM. We suggest that you extensively coordinate with the MM consultant for activation as well as complete business process mapping of BM in production processes.

7.2.2 Bill of Materials (BOM)

The bill of materials (BOM) in PP-PI is the same as in discrete manufacturing. Refer to Chapter 3 and Chapter 6 for a detailed understanding of the configuration and business processes involved in BOMs.

The material quantity calculation is unique only to the PP-PI and uses components of the material defined in its BOM. When calculating the components’ quantities that the system should use in reference to each other, it refers to the information in the BOM. See Section 7.2.5 concerning the master recipe for a detailed understanding of material quantity calculation.

To create a BOM, use Transaction CS01.

7.2.3 Resource

The resource in process manufacturing is the same as the work center is in discrete manufacturing. Refer to Chapter 3 and Chapter 6 for a detailed understanding
of the configuration and business processes involved in work centers (resource in PP-PI).

To create a resource, use Transaction CRC1.

The system offers and makes available standard configuration for PP-PI, which you can use if your business processes are not too complex. For example, you can set usage as "008" (for Master Recipe + Process Order) and standard value key as “SAP4” (Process Manufacturing), in which only Duration is listed as an activity. The available control key that you can use is PI01 (Master Recipe/Process Order).

7.2.4 Production Version

A production version determines which alternative BOM the system should use in combination with the master recipe for process manufacturing. In PP-PI, it’s mandatory to define a production version. The system uses the production version during the creation of a master recipe to identify the BOM for the material and pull the BOM details from the master recipe.

When you create the master recipe for a material and plant combination, we suggest that you also enter the production version for the material on the initial screen. The production version should be created prior to the creation of the master recipe and then be used for creation of the master recipe.

To create a new production version, use Transaction C223. You can also create a production version in the MRP 4 view of the material master or even in the work scheduling view. In this view (Transaction MM02), make sure that SELECTION METHOD is set as either “2” (SELECTION BY PRODUCTION VERSION), or “3” (SELECTION ONLY BY PRODUCTION VERSION). Refer to Chapter 6 for a detailed understanding of the business process of a production version and how to create one in the SAP ERP system. It’s mandatory to create a production version for process manufacturing (and also in repetitive manufacturing), but it’s optional in discrete manufacturing.

Note

Creating a production version directly from Transaction MM02 should be an exception because there may still be some incomplete data at this stage. We recommend using Transaction C223 to achieve this objective.
7.2.5 Master Recipe Creation

Before you create the master recipe, you can create a production version and include BOM details only (and not the master recipe details because you don’t have them at that time). Next, you’ll create the master recipe and give reference to the production version because it’s a mandatory requirement to enter a production version during master recipe creation. You can then go back to the production version and incorporate the master recipe details, including group number and group counter that the system generated, when you saved the master recipe. The system suggests the master recipe group number and the group counter when you again go back to production version. This approach in creating the master recipe helps in having a materials list (BOM) in the master recipe, which you can then also use in material quantity calculation.

A second approach that you can use in creating the master recipe is to first create a master recipe group, without reference to a material and plant combination. When the system generates the recipe group number, create a production version of the material, and enter the BOM and master recipe details. Finally, when you assign the header material number in the change master recipe option for the master recipe group, the system prompts you to enter a production version to enable it to explode the BOM.

To create a master recipe for which the production version already exists, follow the SAP menu path Logistics • Production • Process • Master Data • Master Recipes • Recipe and Material List • Create, or use Transaction C201. On the initial screen of the master recipe, enter the material, the plant, and the production version, and the header screen appears. We’ll discuss the different screen elements of this screen in the following subsections.

Recipe Header

Figure 7.2 shows the header details screen of the master recipe.

The Charge Quantity Range area is valid as the lot size quantities in the master recipe. It contains the default values for the operation, phase, and secondary resources. A proportional relationship exists between the default values for operation quantities and their unit of measure, versus the recipe quantities and their unit of measure. Compared with master recipes, you enter this relationship directly in the operation details in routing and rate routings.
As an example, when the master recipe unit of measure is pieces and the operation unit of measure is kilogram (KG), then for every 7KG of the operation, there are 4 pieces (PC) of the master recipe, the quotient is 4/7. The charge quantity is 4 PC, and the operation quantity is 7KG. The system also provides the option to maintain a base quantity for detailed working.

Materials

The master recipe integrates the details of the operations and BOM together as one master data by using the production version. The system explodes the BOM in the master recipe to bring up the details of the material BOM. The material BOM details in the task list (master recipe) help enable a unique feature to process manufacturing known as *material quantity calculation*.
Note

You need to adopt one of the two approaches mentioned previously for the creation of a production version in relation to the master recipe to ensure the master recipe contains the materials (BOM).

Material Quantity Calculation

In a process order, the system calculates the components quantities directly from the BOM and takes the material quantity calculation into account.

With the material quantity calculation, you can do the following:

- Change the header product quantity with reference to components’ quantities or even with respect to the active ingredient proportions.
- Calculate the planned scrap at the phase level, and also include it in the planned production cost.
- Change components’ quantities with reference to each other, the header product, or the active ingredient proportions (batch characteristics and their values).
- Change operation or phase quantities when these are not in proportion to the product quantity.

For material quantity calculation to work effectively, you need to make sure that you create the master recipe with reference to the BOM and consisting of components and quantities.

Because the planned scrap of the component is entered either in the material master or in the BOM, the system automatically increases the component quantity during planned order or process order creation. You can use the planned scrap of a component as a variable to calculate the other component’s quantity using the material quantity calculation formula.

When you create the process order, the system automatically calculates the quantities based on the formulas. For a formula that is processed at the batch level and also uses active ingredient proportions (batch characteristics values), you need to manually trigger the material quantity calculation in the process order and after batch determination.
Note

Note that the system only considers batch characteristics with numeric values.

When the system explodes the BOM in the master recipe, you can go to the Material Quantity Calculation screen shown in Figure 7.3 by choosing Goto • Material Quantity Calculation or by clicking on the Material Quantity Calc. (calculation) icon in the Materials tab of master recipe.

![Material Quantity Calculation](image)

Figure 7.3 Material Quantity Calculation in the Master Recipe

Generally, the following steps are involved in entering the formula for the material quantity calculation:

1. In the screen shown in Figure 7.3, place the cursor on the field for which you want to change the quantity using a formula, and click on the Select formula button in the menu bar.

2. In the Formula Definition box, enter the formula or equation, which derives the output field value.

3. While creating a formula, you can also double-click on the variables that you want to include in the formula or place the cursor on the variable and click on the Insert in Formula button in the menu bar.

You can use formula operators such as +, -, *, /, DIV, and MOD. You can also use exponential, rounding (ROUND), absolute values (ABS), truncation
(TRUNC), EXP, LOG, SIN, COS, TAN, square root (SQRT), IF THEN ELSE conditions, and IF THEN NOT conditions.

We now show two examples to demonstrate how you can use the material quantity calculation to calculate product quantity and to show the interdependency of one component on another in calculations.

Example 1

In our first example, enter a formula using the following steps (refer to Figure 7.3):

1. For the header material quantity (1990) formula, place the cursor on the Formula Indicator field, and click on the Select Formula button in the menu bar. This shows up as 001,001:Quantity just below the Formula Definition bar.

2. Place the cursor on the field with the quantity 50.000 KG for Material CH-1410, and click on the Insert in formula button in the menu bar. This automatically brings up [002, 001] in the Formula Definition bar, in which you then enter "* 1.9". This means that the material quantity for the material 1900 will be 1.9 times the quantity of the material CH-1410.

3. Click on the Refresh icon (), and the system denotes the row containing the material 1990 with the Formula icon ().

4. If you then click on the Calculate Product Qty button, the system updates the product quantity of material 1990 from 100KG to 95KG (50KG for material CH-1410 * 1.90 = 95KG).

5. Figure 7.4 shows the updated product quantity for material 1990. This compares with 100 KG as shown in Figure 7.3.
Example 2

In the second example of material quantity calculation, the system calculates one component’s quantity based on the calculation that is associated with another component. Perform the following steps (refer to Figure 7.3 again):

1. To enter the formula for the component quantity (CH-1430), place the cursor on the FORMULA INDICATOR field, and choose the SELECT FORMULA button in the menu bar. This shows up as 004,001 CH-1430:QUANTITY just below the FORMULA DEFINITION bar.

2. Place the cursor on the field with quantity 30 KG for MATERIAL CH-1430, and choose the INSERT IN FORMULA button. This automatically brings up [002, 003] in the FORMULA DEFINITION bar, in which you then manually enter “– 8”. This means that the material quantity for the material CH-1430 will be subtracted by 8KG from the quantity of material CH-1420.

3. Click on the REFRESH icon, and the system denotes the row containing the material 1430 with the FORMULA icon.

4. Because the quantity for material CH-1420 is 30KG, the system subtracts it by 8KG to update the quantity for material CH-1430 as 22KG. If you refer to Figure 7.3, the original quantity (before the material quantity calculation) for this material, CH-1430, was 19KG.

Figure 7.5 shows the updated product quantity for material CH-1430.

Figure 7.6 appears when you click on the FORMULA OVERVIEW icon and contains comprehensive details of all of the formulas and calculations involved.
When you click on the Back icon twice, the system takes you to the screen shown in Figure 7.7, which now has updated quantity details of all components, including base quantity of 95KG for material 1990.

If you create a process order for material 1990 for a quantity of 100KG, the system will divide the components’ quantities by 95KG (the new base quantity) and then multiply each quantity with 100KG (the process order quantity) to arrive at the individual component quantity. For example, for component CH-1410, the quantity calculation for 100KG of process order is the following: 50KG / 95KG * 100KG = 52.63KG.

Operations and Phases Tab

Master recipes use something called a phase, which work in the same manner as operations do in routing for discrete manufacturing. It’s easier to maintain
detailed levels working at the phase level in the master recipe because you can manage and incorporate more production details, including Process Management.

In the master recipe, you assign activities such as production duration or labor hours at the phase level and not at the operation level. Hence, the confirmation of a process order is recorded for a phase and not an operation. You also assign a resource (work center) at the operation level. The phases below the operation then adopt the resource that you assigned at the operation level. The system assigns the standard values and activities (controlled by a control key in the resource) as active at the phase level and not at the operation level. The sum total of standard values at a phase is in fact the total time required to process the operation. The system assigns the components of the BOM (materials list) to phases and not to operations. You can, however, integrate in-process quality inspections of QM either at the operation level or the phase level.

To create a phase below an operation, you need to select the Phase checkbox in the Operations tab, which then automatically copies the resource from the operation. At the same time, when defining a phase, you also have to assign the superior operation so that the system knows which specific phase relates to which operation.

You can maintain the relationships among various phases as start-finish, finish-start, finish-finish, or start-start. The phases can either work in parallel or in overlapping sequences. In the Operations tab of the master recipe, you can access the phase relationship screen for phases by selecting the phases and choosing Goto • Relationships.

You assign individual control recipe destinations at the phase level and assign the process instructions in the respective phases of the master recipe. If you’ve defined the scope of generation in the configuration of the process instructions, it reduces the data maintenance efforts at the master recipe level. Alternatively, you can maintain the desired process instruction details either in the master recipe or in the process order. For process instructions that have characteristic values based on a material, you need to assign them at the master recipe level. To assign process instructions to the phases in the Operations tab of the master recipe, use the menu path Goto • Process Management • Process Instructions.

Figure 7.8 shows the Operations tab of the master recipe, in which the operation is 0005. Enter the Resource “CH_BLEND” at the operation level, and the system
automatically copies it in all of the phase below it. The phase is 0010 and is denoted by the Phase checkbox. When you define an operation as a phase, you also have to define the Superior Operation, which, for our example, is 0005 (the operation).

The control recipe destination is 10. This is the same control recipe destination that you configured in Chapter 4.

Notice that the system automatically copies the control key, PI01, from the resource CH_BLEND. Select the phase 0010, and double-click the line item 0010 (the operation), and the system takes you to the screen shown in Figure 7.9.

Figure 7.8 Operations Overview in the Master Recipe

Figure 7.9 Standard Values in the Master Recipe

This shows the Standard values tab of the master recipe in which you can enter the duration of the activities, such as Setup, Machine, or Labor hours required to
produce the material at each operation. From here you can click on the Process Instructions tab to configure the process instructions which are an integral part of process management. We’ll visit this screen a bit later in the upcoming section.

7.3 Process Management

Because a large number of features and functionalities of process instructions exist within an operation’s phase of the master recipe, it warrants a separate section in this chapter. This section deals with process instructions (which is a part of process management) that you need to define in the Process Instructions tab shown previously in Figure 7.9.

If you’re working with a manufacturing organization, a permanent requirement is to monitor system performance and plant parameters. For example, when the production of a certain item is scheduled, the plant operator needs to have a series of clear and comprehensive instructions to follow. Similarly, the plant operator is required to record and report back data, such as steam temperature twice a shift or an abnormal vibration in the suction pump, so that it will be available for future reference or corrective action.

Therefore, there’s a need of functionality in the SAP ERP system that is able to transfer and communicate all such information in a timely manner from plant operator back to the Process Control System (PCS). This has been made possible by the Process Management functionality.

Note

Transmitting information between an SAP ERP system and a PCS is possible by defining the type of the control recipe destination. We focus on the transfer to PI sheets to show you that implementing process management can still yield significant added value without integrating SAP with a PCS.

Process Management completely integrates with core SAP ERP system components such as MM, QM, and the cross-application DMS. It offers functionality such as goods issues and goods receipts, process order confirmations, and results recording of quality inspection data. All of this information helps in analysis and report generation functions, not to mention benefiting the business process owners who are directly using the information.
7.3.1 Functions in Process Management

The following summarizes the functions supported by Process Management in PP-PI:

- Receiving control recipes from released process orders
- Sending control recipes to process operators or PCSs
- Preparing process instructions as texts so that the process operators can display them on their computer screens
- Receiving, checking, and sending process messages with actual process data
- Monitoring process messages and control recipes
- Manually creating process messages

7.3.2 Elements in Process Management

Figure 7.10 shows an illustration of the various elements involved in process management for data flow. Starting from the top left, creating a process order forms the basis for the generation of the control recipe. The system sends the control recipe in the form of a PI sheet to the predefined control recipe destinations. The process operator follows the instructions given in the PI sheet and also fills the PI sheet with relevant plant parameters and other important data, and then returns it as a process message either back to the SAP ERP system or to an external system.

![Figure 7.10 Overview of Process Management](www.sap-press.com)
7.3.3 Integrating Process Management with External Systems

In an automated environment, OLE for Process Control (OPC), and OPC Data Access (ODA) enables the system to read and write data points and events using the OPC server for the SAP ERP system. This function is also available in production orders (discrete manufacturing).

Note

The OPC is a standard that uses COM/DCOM technology to define interfaces independent of the manufacturer for use in an industry. The SAP ERP system designed the OPC standard especially for the process control level. OPC servers allow access to various data sources, such as PCSs, programmable logic controllers, and temperature sensors, and thus provide process data that can be requested by OPC clients.

7.3.4 Process Management and Manufacturing Integration and Intelligence

With Manufacturing Integration and Intelligence (MII), the SAP ERP system offers an adaptive manufacturing solution for production. MII provides manufacturing companies increased flexibility through improved linking of the SAP ERP system to the production process level and by making real-time information available. You can use MII both in the process order and production order environment. MII provides standardized, preconfigured connectors to enable real-time data integration in the Manufacturing Execution Systems (MES) and Supervisory Control and Data Acquisition (SCADA) systems.

Note

You can find more information on MII/MES in Chapter 23.

You can run real-time analyses and display the results in browser- and role-based dashboards. These analyses provide important information for checking and supporting decision making such as warnings, job lists, analyses, reports, and real-time messages about production variance.

7.3.5 Process Instructions

An operation in the master recipe may have several phases, and each phase requires a control recipe destination. After a control recipe destination is defined
for an operation, it automatically applies to all of the phases of that operation. It's within each phase that process management-related information is incorporated, including process message categories, process instruction characteristics, and control recipe destinations.

You can assign process instructions to the phases in the Operations tab of the master recipe. To do this, select the specific phase, and use the following path in the Operations tab: Master Recipe → GOTO • PROCESS MANAGEMENT • PROCESS INSTRUCTIONS.

In the resulting screen shown in Figure 7.11, there are two process instruction categories, AREAD1 and PP10. AREAD1 relates to the request to the shop floor to get the measured value of the process parameter. The second process instruction category, PP10, is the same that you configured in Chapter 4.

Also, the Control Recipe Destination 10 (Production Floor) is the same that you configured in Chapter 4.

Double-click on the process instruction 0010 (with process instruction category AREAD1) to go to the screen shown in Figure 7.12.

A major benefit that Process Management offers is that its results can be checked for consistency and simulated to ensure completeness and correctness. Click the Check Process Instruction icon (giatan) in Figure 7.12 to check the consistency of the sequence of process instruction characteristics and the value of each characteristic defined. Then click the Simulate PI sheet icon (giatan) to show the simulated version of what the field and other information will eventually look like in a PI sheet.
Figure 7.12 contains the Message Category PP10 that you configured in Chapter 4. It also contains the process instruction characteristic ZPI_CREATION_DATE that you created earlier in Chapter 4. In the PI sheet, this field should show the Basic Finish Date of the process order. The output characteristic also have the same value (ZPI_CREATION_DATE) assigned.

7.3.6 Process Instruction Sheet

Figure 7.13 shows a general example of a PI sheet.

The following subsections explain some of the options available in the PI sheet and the data or other information that you need to maintain for using a specific function/option.

Input Value

Table 7.1 contains the PPPI characteristics needed for input field functionality in the PI sheet.
Table 7.1 PPPI Characteristics and Their Values as Defined in Process Management

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Characteristic Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPI_INPUT_REQUEST</td>
<td>CARBON DI OXIDE IN HP HEADER</td>
<td>This is the standard PPPI characteristic whenever it’s required that a field has an input value. The field value corresponding to this characteristic given as CARBON DI OXIDE IN HP HEADER will be the display name of the field in the PI sheet.</td>
</tr>
<tr>
<td>PPPI_VARIABLE</td>
<td>F</td>
<td>Each field can be tagged as a variable whose value can subsequently be used in calculations, if needed. For our example, give the variable tag as “F” as defined in characteristic value.</td>
</tr>
<tr>
<td>PPPI_REQUESTED_VALUE</td>
<td>NH3_CO2_HPH</td>
<td>This PPPI characteristic is the output value of a field. However, what governs the format and other details actually comes from characteristic value NH3_CO2_HPH.</td>
</tr>
</tbody>
</table>
Figure 7.14 shows the simulation of the CARBON DIOXIDE IN HP HEADER field and how it will look in the PI sheet. Hence, the PPPI characteristic PPPI_INPUT_REQUEST is the display field in the PI sheet. The value (any numeric value) will be given a tag of PPPI_VARIABLE as “F”, and the output format of the numeric value will be governed by characteristic NH3_CO2_HPH. For example, characteristic NH3_CO2_HPH stipulates having a field length of 5 with two decimal places and no negative values. In such a case, values such as 45.35 or 15.88 are acceptable but –15.88 isn’t acceptable in the PI sheet.

![Input Value in the PI Sheet](image)

Note
See Chapter 15 on the classification system, including classes and characteristics, for further information on creating characteristics that you can use in process management.

Tips & Tricks
If you’re not going to use the PPPI characteristic in any subsequent calculation and if you’re using it only for data entry purposes, you can eliminate the entire row PPPI_VARIABLE and its value F.

Calculated Value
You can extensively use the PI sheet for all kinds of calculations, as long as all of the relevant parameters required for calculation are available in the same PI sheet.

Table 7.2 contains the PPPI characteristics needed for the calculation field functionality in the PI sheet. It also shows that if the calculation formula is too long for a single line, it can be continued on the next line (up to eight lines can be used for the calculation formula). Also, for the calculation formula, the variables AA1, AA2, and AA3 must previously be defined in the same PI sheet.
The simulated version of the calculated field will appear as shown in Figure 7.15.

![Production Planning for Process Industries](image)

Figure 7.15 Calculation Field in a PI Sheet

Input Group and Dropdown Selection

Table 7.3 contains the PPPI characteristics needed for the input field functionality in the PI sheet.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Characteristic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPI_INPUT_REQUEST</td>
<td>PRODUCTION BASIS</td>
</tr>
<tr>
<td>PPPI_INPUT_REQUEST</td>
<td>PRODUCTION BASIS</td>
</tr>
<tr>
<td>PPPI_VARIABLE</td>
<td>A</td>
</tr>
<tr>
<td>PPPI_REQUESTED_VALUE</td>
<td>NH3_PR_201</td>
</tr>
<tr>
<td>PPPI_UNIT_OF_MEASURE</td>
<td>GC/MET</td>
</tr>
</tbody>
</table>

Table 7.3 PPPI Characteristics and Their Values as Defined in Process Management

They will result in a display as shown in the screen in Figure 7.16.
Call Function

As explained in Table 7.4, you can use the PI sheet to call up a transaction, while remaining on the PI sheet screen. The process instruction characteristics together with their values call up the DISPLAY PROCESS ORDER transaction while remaining in the PI sheet. The PPPI_BUTTON_TEXT enables you to define a meaningful description of the icon while remaining in the PI sheet. Set the icon text as Display Process Order and set PPPI_TRANSACTION_CODE as COR3 for this example, but these fields are flexible and can be set to whatever you need.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Characteristic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPI_FUNCTION_NAME</td>
<td>COPF_CALL_TRANSACTION</td>
</tr>
<tr>
<td>PPPI_BUTTON_TEXT</td>
<td>Display Process Order</td>
</tr>
<tr>
<td>PPPI_FUNCTION_DURING_DISPLAY</td>
<td>Allowed</td>
</tr>
<tr>
<td>PPPI_EXPORT_PARAMETER</td>
<td>New_Session</td>
</tr>
<tr>
<td>PPPI_INSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>PPPI_EXPORT_PARAMETER</td>
<td>TCODE</td>
</tr>
<tr>
<td>PPPI_TRANSACTION_CODE</td>
<td>COR3</td>
</tr>
</tbody>
</table>

Table 7.4 PPPI Characteristics and Their Values as Defined in Process Management
The simulated version of the characteristics is shown in Figure 7.17. Here you see the Display Process Order icon, which when clicked, brings up the Transaction COR3 (Display Process Order).

![Figure 7.17 Call Function in the PI Sheet](image)

Table Entry

Often there is a business need to enter multiple values in a tabular form for a single value or multiple values of parameter(s). Table 7.5 lists all of the PPPI characteristics needed to use the table-entry format in the PI sheet. Notice that you can control the table size (minimum four values, maximum six values in our example).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Characteristic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPI_DATA_REQUEST_TYPE</td>
<td>Repeated Data Request</td>
</tr>
<tr>
<td>PPPI_MINIMUM_TABLE_SIZE</td>
<td>4</td>
</tr>
<tr>
<td>PPPI_MAXIMUM_TABLE_SIZE</td>
<td>6</td>
</tr>
<tr>
<td>PPPI_INPUT_REQUEST</td>
<td>Hourly Flow Meter Readings</td>
</tr>
<tr>
<td>PPPI_VARIABLE</td>
<td>ABC</td>
</tr>
<tr>
<td>PPPI_REQUESTED_VALUE</td>
<td>NH3_02_FR_9</td>
</tr>
</tbody>
</table>

Table 7.5 PPPI Characteristics for Activating the Table Format with Multiple Values

Figure 7.18 illustrates the simulated version table entry format and shows six values being entered. Also note that up to four decimal places are allowed for each value (this is controlled via characteristic NH3_02_FR_9).
The SAP ERP system provides special procurement types that you can use to attend to unique business scenarios. This might be where the production of assembly and procurement of components are nontraditional in nature and involves complex and diverse logistics processes.

13 Special Procurement Types

A traditional production process involves procuring components from suppliers and vendors, producing them in-house, and eventually selling them to customers. However, in a truly globalized economy, both small companies and companies with giant production setups across many countries and locations must deal with diverse, challenging, and complex logistics and supply chain processes. The same processes also need to be mapped in the SAP ERP system for effective planning of procurement and production processes.

Consider the following actual and real-time business processes and the complexities involved:

- You have a vendor who keeps its material’s stock in your warehouse, but you only pay the vendor when your company actually consumes the material.
- You have a product in which few of the components become part of the assembly, yet are part of the overall product offering. During the packing process, you want all of these components available at the same time and place.
- You have a product in which some of the production steps are performed in-house, while the others are performed by external vendors/service providers.

These business scenarios and more are catered to with special procurement types in the SAP ERP system. These business processes vary from handling phantom assembly during production, subcontracting consignment to material production at another plant, to direct production or procurement.

When any special procurement is involved, you must ensure that you assign the relevant special procurement type key, either in the MRP 2 view of the material master or in the detailed view of the component in the material BOM. In this
chapter, we’ll first give you an overview of special procurement types in the SAP ERP system, and then we’ll discuss each type of special procurement.

13.1 Overview

A *special procurement type key* is the control function that the system looks for during the planning of the material to bring forth the relevant results (after planning) for immediate execution. The special procurement type key is plant-specific and you can assign this key at two levels, depending on the business processes:

- Material master (in the MRP 2 view)
- Bill of materials (BOM) in the detailed view of the component

Note

While we cover the maximum details of each of the business processes of special procurement types in this chapter, we suggest that you engage a Materials Management (MM) resource/consultant to have end-to-end comprehension of the processes involved.

Figure 13.1 shows the MRP 2 view of material P-100 and plant 3000. Assign the special procurement type key in the **Special Procurement** field by placing your cursor on the field and pressing [F4] or clicking on the dropdown menu. This leads to the popup that contains the list of several standard procurement types delivered by SAP ERP system in its standard offering, as well as additional special procurement types created to fulfill the specific business needs.

Note

You define the special procurement key using the configuration (Transaction SPRO) path **Production** \> **Material Requirements Planning** \> **Master Data** \> **Define Special Procurement Type** (see Figure 13.2).

Tips & Tricks

In a nonproduction SAP ERP system, whenever you assign a special procurement type key in the MRP 2 view of the material master or to a component in the BOM and then perform the necessary business transaction such as creating a production order or purchase requisition, you can always run material requirements planning (MRP) on that
material/component (Transaction MD02) to test how the system reflects the planning results of that specific special procurement type key. The same testing logic applies when you create a new special procurement key to cater to a business requirement.

You should now have a general understanding of the special procurement type processes. In the actual business processes of the company, preference should be given to making better and effective use of MRP results, so that the predecessor-successor relationship of the entire chain of events is available. Now let’s consider each of the special procurement types in detail.
13.2 Phantom Assembly

The special procurement type key for phantom assembly is 50. A phantom assembly is the logical grouping of one or many different components, which forms an integral part of a final or superior product’s offering. Examples of phantom assembly are the accompanying speakers, connecting wires, and so on when you buy a stereo system that you can install as and when needed. All of the components of phantom assembly are mandatorily required for the production process. Due to similarity to the production processes, it makes sense to group the components for availability. Hence, these logical grouping are purely organizational in nature to better manage the production processes. Also, note that the components in phantom assembly are never combined with each other, but are made available at the same time for an efficient production.

You don’t have to maintain routing for phantom assembly because it’s not produced, but you have to define the BOM, which is then eventually entered as a component in the material’s BOM. Phantom assembly doesn’t have stock of its own but that of components which make up the phantom assembly. Also, because no routing is available for phantom assembly, you can’t record the machine or the labor duration to reflect the same in cost accounting (Controlling–Product Costing). The superior product’s routing should account for the machine or labor hours involved in phantom assembly.

Figure 13.3 shows the configuration screen for phantom assembly for plant 3000 and special procurement key (Sp.Pr. Type) 50. The Phantom Item checkbox is also selected here.

With the special procurement type key 50 assigned to the material master, Figure 13.4 shows the Component Overview screen of the production order for material 1300-120, which contains the phantom assembly 1300-100. Phantom assembly 1300-100 has a grayed out line item and Phantom Item is checked. The phantom assembly explodes and individual components are listed directly below it. Any changes made to the quantity of phantom assembly 1300-100 automatically enable the system to calculate the components’ quantities accordingly (as defined in the BOM of the phantom assembly).
Direct Production

The special procurement type key for direct production is 52. Direct production means that there is no stock posting among the various stages of the production processes. An example of direct production is that during the textile make-up of
a garment, the production process starts with the spinning of raw cotton into weft material, which in turn is converted into weaving product (after going through several intermediate production steps), and finally into a grading material for onward production into a garment product for the customer. Instead of repeatedly performing goods issuance and goods receipt at each step of the production process, direct production serves the desired purpose of eliminating these steps.

Note

Direct production is alternatively referred to as collective order, in which the parent-child or superior-subordinate relationship of various orders in the production processes exists. The network of orders in the collective order, across different production levels, such as finished product, assembly, or component, is established that supports synchronized actions in the network of orders.

Some of the other functions available in direct production are listed here:

- Quantity changes in the leading order applied to the entire collective order
- Collective scheduling (optional)
- Collective opening of the production orders
- No goods postings required between production orders

You can’t create or use collective orders if one of its components has the following, however:

- Co-product
- By-product
- Discontinued material
- Inter-material

Note

Refer to Chapter 17 on handling co-products and by-products for more information.

The highest material of the direct production doesn’t contain the special procurement type key 52, whereas all of the subordinate materials do (the components defined in the material BOM of the finished/highest material). All subordinate materials of the collective order have their independent BOMs and routings.
With a collective order, you get to see an integrated view of the entire production process. Each order within the collective order offers its own comprehensive visibility, including the assignment of a separate order number. Further, it saves time and effort because you don't have to remove and place produced components during various production processes. The confirmation process at each individual order level is enough to move the produced component to the next (higher) order level. Finally, if you make changes to the collective order; for example, in quantity, the system automatically makes the necessary quantity adjustments in all of the subordinate orders. In a collective order, you just have to perform goods receipt of the topmost order and not for all of the subordinate orders.

Tips & Tricks

To view a collective order, use Transaction CO02 and choose **COLLECTIVE ORDER**.

Figure 13.5 shows the configuration screen for direct production/collective order for plant 3000 with a Sp.Pr. Type of 52. The **DIRECT PRODUCTION** checkbox has also been selected here.

Figure 13.5 Special Procurement Type Key 52 for Direct Production

Note

You also need to ensure that in Transaction OPJH, the **COLL. (COLLECTIVE) ORDER WITH GOODS MOVEMENT** checkbox is checked on for the relevant order type.
With special procurement type key 52 assigned to the material masters undergoing direct production, Figure 13.6 shows the header screen of the production order for material 400-100. Notice the Dates in collective order area in the General tab to denote that it’s a collective order (direct production). Choosing the Component Overview icon opens the Production Order Create: Component Overview screen shown in Figure 13.7.

![Figure 13.6 Collective Order Dates (Scheduling) in a Production Order](image-url)

The last two components shown in Figure 13.7, 400-140 and 400-150, are grayed out, and the Direct Procurement column reflects 2, denoting direct production.

Save the production order and it will generate a production order number. In the change mode of the production order (Transaction CO02), shown in Figure 13.8, the system shows the collective order for the main material 400-100 as 60003529, whereas individual production orders were created for each of the direct production materials, production order 60003527 for material 400-140, and production order 60003528 for material 400-150, respectively.
Alternatively, if a component is generally not a part of a collective order, you have the option to assign the special procurement key for direct production directly in the BOM item and not in the material master. For example, in one production process the component is part of the collective order, whereas in another production process it’s not. If you assign the special procurement type key 52 in the material master of the component, the system will make it a part of all of the collective orders in which this component is used. However, if you assign the special procurement type key to the component’s detailed view of the material BOM (and not in the material master), the system will only consider it for collective order/direct production where it finds the assigned key. This way, you can maintain better control of the material, which is only specific to certain production processes by virtue of its collective order status.
Index

A

ABC analysis, 913, 929
Activities posting, 186
Activity backflush, 411
Activity type, 230, 997
Actual costs, 997
Additional data, 723
Aggregation, 448, 909
Alternative BOM, 213, 997
Alternative sequence, 238
Approval, 139, 740
 with digital signature, 740
Assemble-to-order (ATO), 978
Assembly backflush, 410
Assembly processing, 977
Assembly scrap, 547
Attributes, 886
Authorization group, 858
Authorization object, C_SIGN_BGR, 858
Automated transaction, 748, 764
Automatic calculation of proportional factors, 449
Automatic goods movement, 184, 289, 914
Automatic goods receipt, 102, 288
Automatic reorder point planning, 561
Automatic stock determination, 188
Availability check, 105, 260
Available capacity, backlog, 687
Average plant stock, 633

B

Backflush, 276, 358, 778
 separate, 187
 separated, 416
Background job, 129, 172
Backlog dispatching date, 687
Backward consumption, 507
Backward scheduling, 112
Basic data, 219
Basic date determination, 571
Basic date scheduling, 111, 589
Basic load, 678
Basic mode, 938
Batch determination, 189
Batch Management (BM), 303
Batches, 111
Bill of materials (BOM), 75, 213, 304
BOM, 75, 213, 998
 define usage, 76
 explosion type, 80
 header, 77
 item category in, 79
 item overview, 215
 mass change, 218
 MRP product structure, 584
 operations and component scrap, 548
 phantom assembly, 650
 process industries, 304
 set by-product, 775
 single-level, 1012
 standard, 1012
 status, 78, 214
 usage, 621
 variant, 1014
 with history requirement, 78
Branch operation field, 237
Buffers, eliminate, 116
By-product, 769
 confirmation, 781
 cost analysis, 787
 create process order, 777
 documented goods movement, 785
 goods receipt, 783

C

Calculate proportional factors, 442
Call function, 323
Cancellation of confirmation, 284
Capacities tab, 221, 373
Capacity, 915
 analysis, 486
Index

Capacity (Cont.)
 comprehensive details, 373
 header, 222
Capacity availability check, 260, 264, 676, 687
 assign overall profile, 689
 interactive, 688
 perform finite scheduling, 693
Capacity evaluation, 487, 676
 base on individual requirements, 682
 different methods, 679
Capacity leveling, profile, 697
Capacity planner, 45, 617
 group, 222, 374
Capacity planning, 399, 641
 mass processing, 710
 production scheduling profile, 102
 sequence-dependent setup times, 708
Capacity planning table, increase capacity, 716
Capacity requirement, 678
 insufficient, 693
Capacity requirements
 cumulating, 686
 distribute, 685
 sort, 705
Capacity requirements planning → CRP
Capacity utilization, 224
Capacity utilization factor, 375
Catalog, 798
Change master
 create, 751
 process, 735
Change number, 78
 status, 758
Change type
 for change master records, 746
 for objects, 747
Characteristic, 720, 721
 define proportional factor, 460
 group, 721
 restrict to class type, 724
 source and target, 150
 value, 881
 view key figures, 927
Characteristic values combination (CVC), 432
Checking control, 109
Checking group, 106
Checking rule, 107
Class
 assign to material master, 726
 create, 725
 equipment, 731
 find object in, 729
 type, 724
Classification, 719
Client, 39
Code group, 807
Codes Overview screen, 799
Collective availability check, 264, 391
Collective confirmation, 422
Collective order, 652
Company code, 38, 40
Component
 backflush, 190, 410
 logical grouping, 650
 scrap, 548
Components allocation, 382
Components assignment, 234
Components data, 244
Confirmation, 118, 198, 278, 358, 410
 at operations level, 280
 cancellation, 284
 collective, 422
 cost calculation, 291
 for order, 284
 mass processing, 295
 process control, 198
 progress, 283
 reset reporting point, 422
 time of, 125
 type, 281
 variance, 126
Confirmation and backflush, 358
Consignment, 670
Consistency check, 242
Consistent planning, 439, 456
Consumption mode, 507
Consumption-based planning, 557
Control, 246
 data, 736
 key, 221, 371
 key for operations, 90
 profile, 692, 702
Index

Control recipe, 54, 167, 901
create background job, 173
define destination type, 315
destination, 143, 167, 169
destination in XSteps, 345
generating new, 340
generation, 332
maintaining, 334
sending, 332
Controlling area, 38
Controlling function, statuses, 832
Controlling-Profitability Analysis (CO-PA), 434
Conversion of a planned order to a production order, 983
Co-product, 216, 769
confirmation, 780
cost analysis, 785
create process order, 776
documented goods movement, 785
goods issue, 778
goods receipt, 782
Copy data, 475
Cost analysis, 785
Cost calculation, 291
Cost Object Controlling, 423
Costing, 226, 376
activities, 423
Creation of Project, 981
CRP, 400, 676
Cumulative modeling, 492
Customer independent requirement, 520

D

Data Browser, 932
Date Shift options, 738
Days' supply/safety time, 549
Deallocate, 677
Default values, 221
checkbox, 723
Delivery schedule, 588
Destinations/Message Categories folder, 150
Detailed capacity list, 679
Detailed scheduling in planned order, 573
Digital signature, 168, 857, 1000
assign, 746
Digital signature (Cont.)
configuration steps, 858
define authorization group, 858
define individual signatures, 859
define signature strategy, 860
in other SAP components, 871
in SAP DMS, 851
log, 869
multiple required, 868
perform, 763
PI sheet, 329
DIR, 837, 865
assign original files, 839
create new version, 843
document hierarchy, 840
object link, 842
Direct procurement, 656
Direct production, 651
Disaggregation, 448
percentage, 460
product group, 451
time-based, 449
Discrete manufacturing, 73, 203, 900
master data, 205
process flow, 204
production cycle, 771
production process, 50
standard analysis, 921
work center category 0001, 82
Dispatch, 677
operations, 714
perform finite scheduling, 693
Dispatching, 695
profiles, 697
sequence, 704
Distribution key, 678
Distribution list, 846
DMS, 327, 795, 823, 858, 918
assign signature strategy, 863
authorization controls, 832
classification integration, 841
configuration, 823
define document type, 826
digital signature, 850
document, 918
document browser, 832
Index

DMS (Cont.)
 document distribution, 844
 document status, 853
 search function, 850
 status network, 854
 WebDocuments, 846
Document hierarchy, 839
Document Info Record /L50478
 DIR
Document Key field group, 848
Document log information, 424
Document Management System → DMS
Document number range, 843
Document principle, 425
Document status, 830
 field controls, 831
Documentation of goods movement, 100
Documented goods movement, 784
Document-neutral reversal, 418, 420
Document-specific reversal, 418
Download, 913
Dropdown selection, 322
Dynamic function call, 160
Dynamic lot size creation, 540

E

Early Warning System—see EWS, 877
ECM, 78, 735
 check, 760
 configuration, 736
 Information System, 755
 maintain system profile, 751
ECO, 757
 close and release, 766
 lock/unlock, 768
ECR, 757
 convert to ECO, 764
 creation, 758
ECR/ECO workflow, 751
Email attachment, 913
Engineering Change Management → ECM
Engineering change order → ECO
Engineering change request → ECR
Engineering Workbench, 239
Engineer-to-Order (ETO), 58, 1000
 production, 979
Equipment
 class, 731
 shift note, 806
Equivalence Numbers button, 773
Error handling in automatic goods
 movements, 289
Errors log, reprocess maintenance, 191
Evaluation profile, 703
Event, 491
 assignment, 493
 create, 492
 in planning, 494
EWS, 877
 schedule, 887
Exception, 879
 analysis, 892
 analyze, 892
 create, 879
 group, 879, 885
Execution Steps (XSteps), 341

F

Factory calendar, 66, 223
Field selection, 83
Fields selection, 908
Filter settings, 910
Finished goods inspection, 966
Finite scheduling, 112, 257, 677, 693
Firming, 475, 554, 632
 planned orders, 188
 types for MRP, 554
Fixed lot size, 536
 with splitting, 537
Flexible planning, 431, 452
 self-defined macro, 465
 steps for creating standard analysis, 501
 update rules for key figures, 501
Float, 572
 after production, 115
 before production, 115
 before production and safety time, 259
Follow-up processing, 884
Forecast, 563
 allow for key figures, 459
 execute, 469
Forecast (Cont.)
model, 484
period pattern, 565
profile, 481
profile button, 470
strategy, 483, 484
using profile, 486
Forecast-based consumption planning, 562
Forecast-based planning, 558
Forecasting, 434, 479
basics, 563
view in material master, 480
Forward consumption, 507
Forward scheduling, 112
Functional location, assign shift note, 806
Future procurement needs, 618
Future requirements quantities, 617

G
Gap-Free Reports indicator, 814
General data in rough-cut planning profile, 488
Generation of operations, 104
Goods issue
backflushing, 782
coproduct, 778
Goods movement, stock/batch determination, 111
Goods receipt, 246, 285, 358, 782, 966
automatic process, 288
manual process, 286
Graph, 911
Graphical capacity planning table, 711
Graphical planning table, options, 715
Graphical representation, 911
Groff lot-sizing procedure, 540
Grouping, 223

H
History requirement, 79
Holiday calendar, 65

I
Incorrect change status, 768
Independent requirements
evaluation, 522
planning for, 522
reorganization, 524
stock/requirements list for, 522
Individual signature, 859
Individual/Collective indicator, 508
Info structure, 434, 436, 927
create self-defined, 453
entries in SAP database tables, 476
multiple planning types, 462
Information system, 296, 898, 901
available lists, 903
InfoSet, 937
assign to group, 943
create query, 944
create/maintain, 942
In-process inspection, 952, 963
Input group, 322
Inspection plan, 961
Inspection results, 160
Integration
Manufacturing Execution, 985
Manufacturing Integration and Intelligence, 986
Materials Management, 967
Plant Maintenance, 985
prerequisites, 950
Project System, 979
Quality Management, 952
Sales and Distribution, 973, 977
Interactive planning, 577
Inter-plant transfer, 659
Interval, 825
Inventory Controlling, 640
Inventory Controlling Information System, 640

K
Kanban, 58, 186, 1002
Key figures
distribute, 447
icon, 923
Index

Key figures (Cont.)
mass changes, 447
transfer to SAP Demand Management, 472
view, 927
Knowledge Provider, 829

L
Layout key, 704
Layout mode, 938
Lead time scheduling, 111, 589
capacity requirement, 678
Least unit cost procedure, 540
Level-by-level planning, 439, 456
LIS, 198, 361, 618, 1003
configure update, 140
List field, 939
List profile, 692
Local field, 942
Location group, 88
Lock, 242
Logical database, 937
Logistics Information System → LIS
Logistics, access standard analyses, 897
Long-term planning checkbox, 224, 375
Lot size, 536
configuring, 542
periodic, 537
with splitting, 538
Lot sizing
optimizing procedures, 538
part-period, 539
Low-level code, 584
LTP, 430
BOM, 619
calculate average plant stock, 633
copy results to operative planning, 634
evaluate information systems, 638
evaluate stock/requirements list, 628
Inventory Controlling Information System, 640
manually create a simulative planned order, 631
planning data, 618
run, 626
set up purchasing information system, 638

M
Macro, 451, 462
record, 467
self-defined, 465
self-defined, validate, 471
Maintain selection, 906
Maintain status profile, 743
Maintain Variant screen, 886
Make-to-order, 182
production, 973
Make-to-stock, 182
Mandatory reporting point, 184
Manual reorder point planning, 559
Manufacturing Integration and Intelligence (MII), 317, 986
Mass processing, 294, 496, 710
scheduling the job, 500
Mass processing job, setting up, 498
Master data
delete/not archive, 239
management, 974, 981
process industries, 134
process manufacturing, 302
REM, 365
selection, 551
use Engineering Workbench, 239
Master Inspection Characteristic (MIC), 958
Master recipe
create, 306
header, 306
materials List, 307
phase, 312
profile, 135
Material
assignment, 235, 383
availability check, 260, 261
base quantity, 213
class, 726
component assignment, activate backflush, 277
consumption, 921
create BOM, 213
create/maintain views, 211
Material BOM, 76, 77, 1003
declare as co-product, 774
Material BOM (Cont.)
make changes with reference to change master, 753
Material master, 74
activate backflush, 276
cooprod, 771
discrete, 206
forecasting view, 480
integrate classification system, 720
plant-independent/dependent views, 207
special procurement type key, 647
Material quantity calculation, 308
enter formula, 309
Material requirements planning → MRP
Material staging, 197, 358, 402
current situation, 403
material document of, 406
trigger replenishment, 405
Material stock, 716
Material type, 207
allowed in BOM header, 77
set up attributes, 74
Material withdrawal, 271
picking list, 274
Materials Management (MM), 802, 967
Materials, plan, 431
Microsoft Excel, copy select report data into, 914
Midpoint scheduling, 695, 709
Milestone, 279
Missing Parts Information System, 262, 919
Missing parts status, 904
Move time matrix, 89
Movement type, 191
Moving average price, 292
MRP, 389, 434, 529, 617, 1004
activate, 590
area, 609
area, setup in material master, 611
backward scheduling, 256
compare planning, 111
configuration settings, 590
configure area, 609
consumption-based planning, 531
controller, 44
create group, 592

MRP (Cont.)
creation of list, 588
element, 599
exception message, 602
group, 513, 594
individual conversion of planned order, 293
lot size, 535
material requirements planning, 531
planning control parameters, 587
planning file list, 583
planning results for MRP area, 615
planning run, 567
plant parameters, 591
repetitive manufacturing, 388
run analysis, 594
run at MRP area level, 614
run for REM, 389
scope of planning, 590
scrap, 547
simulate, 626
techical steps, 582
MRP procedure, 552
configuration, 556
PD, 553
R1 time-phased planning, 566
V1/V2 (manual or automatic reorder point
planning with external requirements), 562
VB (manual reorder point planning), 559
VM (automatic reorder point planning), 561
VV (forecast-based planning), 565
with the planning time fence and firming
logics, 553
Multiple commitments, 716
Multiple selection, 905

N
Net change planning (NETCH), 583
Net change planning in the planning horizon
(NETPL), 583
Net requirements calculation logic, 586
Net requirements planning, 585
Index

Notification functionality, 789, 792
Number range, 95
define, 793

O

Object
dependencies, 728
find in class, 729
highlight that belong together, 713
link, 833, 842
Object Maintenance checkbox, 738
Object management record, workflow, 751
ODA, 317
Online error correction, 190
OPC, 317
Opening date, 116
Operational method sheet (OMS), 199, 392
Operations, 313, 381
and phases, 312
Option profile, 685
Optional reporting point, 184
Order categories, 684
Order closure, 300
Order confirmation, parameter, 119
Order date, 573
Order Information System, 901
document links, 918
execution steps, 918
items, 916
production resource/tool, 916
Order progress report, 598
Order type, 93
consider stock/batch, 111
maintain, 93
Order type-dependent parameter, 138
Order type-dependent plant parameters, 97
cost accounting, 101
implementation, 100
planning, 98
Organizational structure, 37
Organizational unit, 39
Overall profile, 683, 697
capacity leveling, 697
dispatching, 691

P

Parameter Effectivity checkbox, 736
Parameter, define, 86
Part-period balancing, 540
Pegged order, 1006
Pegged requirements, 490
Percentage modeling, 492
Period Indicator, 563
Period profile, 692
Periodic analysis, 885
Periodic lot sizing procedures, 537
Phantom assembly, 650
Phase, 312
assign control recipe destination, 313
PI sheet, 319
calculations, 321
digital signature, 329
DMS, 327
instructions and notes, 326
long text input, 325
table entry, 324
using XSteps, 353
Picking list, 274
Pipeline material, 673
PIR, 388, 515
copy to operative planning, 634
MRP type PD, 553
reduction, 526
requirements class, 514
simulative version, 625
Planned Independent Requirement (PIR), 388, 445, 515
Planned order, 577
collective conversion, 294
creation, interactive planning, 577
individual conversion, 293
manual creation of, 579
profile, 581
scheduling in REM, 194
Planning
activity, 497
firming types, 555
Planning (Cont.)
 horizon, 516
 log, 696
 method, 434, 437, 438, 456
 MODE, 589
 results, 628
 scenario, create, 623
 strategy, 506, 513
 time fence, 553, 556
 work center, 228
Planning calendar, create, 607
Planning data
 planning quantity, 621
 version number of PIRs, 622
Planning hierarchy, 434, 450, 453, 459
 prerequisites, 460
Planning Indicator (PI), 514
Planning Job, maintain variant, 500
Planning run
 single-item planning, project, 570
 single-item planning, sales order, 569
 single-item, multilevel, 568
 single-item, single-level, 567
 total planning background, 569
 total planning online, 568
 types of, 567
Planning table, 195, 393, 431, 434, 468
 additional features, 475
 create REM planned order, 396
 functions, 400
 parameters selection for, 393
Planning type, 434, 440, 462
 create, 462
 event, 494
 row attributes in, 467
Plant
 assign to company code, 43
 production in alternate, 664
 withdraw material from alternate, 662
Pool of orders/operations, 679
Post activities option, 187
Posting Actual Activities screen, 415
Postprocessing, 288
 of components, 417
PP-PI, 299
Print, 914
 control, 128
 operational method sheet, 392
Printing, 268
Process control, 187, 198
Process Control System (PCS), 315
Process Industries subcomponent, 299
Process industries, production cycle, 771
Process instruction, 315, 317
 Calculation, 158
 category, 143, 153, 154
 create own category, 163
 Dynamic Function Call, 160
 in XSteps, 346
 Inspection Results Requests, 160
 maintenance, 135
 option, 135
 Process Data Request, 155
 Process Message Subscription, 157
 Sequence Definitions, 162
 sheet, 167
 switch to XSteps, 342
 Universal, 162
Process instruction (PI) sheet, 144
Process Instruction Assistant, 162
Process instruction characteristic, 143, 721
 create self-defined, 164
Process instruction type, 154
 Process Parameter, 155
Process integration, 131
Process Management, 142, 300, 315, 330
 activate, 144
 elements for data flow, 316
 functions, 316
 integrate with external systems, 317
Process manufacturing, 51, 901, 1008
 cockpit, 134, 177, 354
 configuration basics, 133
 material master, 303
 process flow, 53
 production version, 305
 resource, 304
 standard analysis, 921
Process message, 147, 337
 category, 144, 149
Index

Process message (Cont.)
characteristic, 144
create background job, 173
create characteristic, 147
destination, 148
evaluation, 355
Process order, 52, 902
creation and release, 331
evaluation, 355
Process Order Information System, 901
Process planning, 300
Processing key, 588
Procurement elements, interactive conversion of, 600
Procurement proposal, 576, 641
ranging, 544
Product cost planning, 62
Product Costing (CO-PC), 62
Product costs, 921
Product group, 431
creation, 440
plan, 442
Production
continuous, 51
discontinuous, 52
line, 57, 369
line category, 218, 370
list, 407
regulated, 52
Production manufacturing, master recipe, 306
Production order, 902
activate backflush, 276
automatic release, 266
check capacity availability, 687
collective release, 266
completion, 292
components overview, 252
create for EWS, 889
dates, 256
elements, 244
goods issuance against, 271
goods receipt, 285
header data, 245
individual release, 266
mass availability check, 262
operations overview, 247
Production order (Cont.)
print, 268
release, 265
scheduling, 255
scheduling parameter, 113
scheduling type, 113
settlement, 292
status, 254
Production order creation, 92
without material, 294
Production Order Information System, 254, 901
Production order management, 243
Production plan, create automatically, 443
Production Planning
discrete manufacturing, 203
integration with LO functions, 949
Process Industries, 299
repetitive manufacturing, 361
tables in SAP ERP, 934
Production plant, 665
Production resources/tools (PRT), 238
Production scheduler, 46
Production scheduling profile, 102, 139, 140
confirm capacity requirement, 690
create new, 102
Production storage location, 217
Production supply areas (PSAs), 59
Production type, 49, 1009
Production version, 239, 305, 383
Profile
control, 702
evaluation, 703
graphic, 685
list, 685
option, 685
overall, 683
overall, capacity leveling, 697
selection, 684, 701
strategy, 693, 699
time, 703
Profiles for dispatching, 697
Program, RCOCB004, 173
Progress confirmation, 279, 283
Proportional factors calculation, 449
Index

PRT, 238, 916
check, 260
Public holidays, 65
Pull list, 197, 402
Purchase requisition, 582
create automatically, 656
key, 588

Q

QM master data, 954
Qualitative characteristic, 721
Quality Management (QM), 952
Quantitative characteristic, 721
Quantity contract, 968
Quantity staged field, 405
Quantity-dependent in-house production
time, 572
Quantity-independent in-house production
time, 572
Query
assign transaction code, 945
create, 937, 944
Query InfoSet, 937
Quick Menu, 909
QuickViewer, 937

R

Range of coverage, 401
Rate routing, 57, 378
Reason for variance, 282
Receipt days' supply, 601
Recipe, 1010
Record quality results, 160
Reduction, 259
in planned order quantities, 189
level, 116
of lead-time scheduling, 112
period, 189
Reference object, 801
Reference routing, 378
Regenerative planning (NEUPL), 583
Relationships, 313
Relative Dates at Header Level section, 905
Release characteristics group, 146
Release key
options, 737
set up, 738
Relevant to finite scheduling, 224
REM, 55, 361, 1010
activities confirmation, 413
actual activity scrap, 422
actual component scrap, 421
analysis of goods receipt, 929
analyze planning results, 389
assembly confirmation, 411
capacity planning, 399
time, 572
create planned order in planning table, 396
level, 116
list of planned orders, 407
master data, 365
material master, 367
MRP, 388
naming profile, 192
planning table, 195, 393
process control, 187
process flow, 363
production line, 369
production type, 182
profile, 182, 368
reporting, 424
scheduling, 376
standard analysis, 922
summary of profile settings, 192
REM actual assembly
confirmation, 413
scrap, 420
Reorder point planning, 558, 559, 1010
manual/automatic, 562
Repetitive manufacturing → REM
Replenishment elements, 405
Replenishment storage location, 406
Replenishment strategies, 59
Report
quick menu, 909
standard analyses, 920
Reporting, 359, 897
Reporting point, 184
confirmation, 186

www.sap-press.com
Index

<table>
<thead>
<tr>
<th>Reporting point (Cont.)</th>
<th>SAP Demand Management (Cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistics, 425</td>
<td>receive key figures, 472</td>
</tr>
<tr>
<td>Reprocessing, 289</td>
<td>transfer planning figures to, 445</td>
</tr>
<tr>
<td>Requirement</td>
<td>transfer results validation, 474</td>
</tr>
<tr>
<td>category, 515</td>
<td></td>
</tr>
<tr>
<td>define, 882</td>
<td></td>
</tr>
<tr>
<td>type for customer requirement, 511</td>
<td></td>
</tr>
<tr>
<td>type for independent requirements, 511</td>
<td></td>
</tr>
<tr>
<td>Requirements class, 510</td>
<td></td>
</tr>
<tr>
<td>Requirements type, 510</td>
<td></td>
</tr>
<tr>
<td>Reread master data, 253</td>
<td></td>
</tr>
<tr>
<td>Reset reporting point (RP) confirmation, 422</td>
<td></td>
</tr>
<tr>
<td>Resource, 304</td>
<td></td>
</tr>
<tr>
<td>assign shift note, 805</td>
<td></td>
</tr>
<tr>
<td>Results recording, 953</td>
<td></td>
</tr>
<tr>
<td>Results validation, 474</td>
<td></td>
</tr>
<tr>
<td>Return operation field, 237</td>
<td></td>
</tr>
<tr>
<td>Reversal, 417</td>
<td></td>
</tr>
<tr>
<td>Revision level, 739</td>
<td></td>
</tr>
<tr>
<td>options, 737</td>
<td></td>
</tr>
<tr>
<td>Rough-cut capacity planning, 458</td>
<td></td>
</tr>
<tr>
<td>Rough-cut planning profile, 486</td>
<td></td>
</tr>
<tr>
<td>Rounding, 544</td>
<td></td>
</tr>
<tr>
<td>dynamic profile, 546</td>
<td></td>
</tr>
<tr>
<td>static profile, 544</td>
<td></td>
</tr>
<tr>
<td>Routing, 91, 227, 378, 1011</td>
<td></td>
</tr>
<tr>
<td>header details, 228</td>
<td></td>
</tr>
<tr>
<td>planning selection, 98</td>
<td></td>
</tr>
<tr>
<td>sequence, 236</td>
<td></td>
</tr>
<tr>
<td>Rows selection, 196</td>
<td></td>
</tr>
<tr>
<td>RP backflush, 414</td>
<td></td>
</tr>
<tr>
<td>Run schedule header, 189</td>
<td></td>
</tr>
<tr>
<td>Run schedule quantity (RSQ), 363</td>
<td></td>
</tr>
</tbody>
</table>

S

<table>
<thead>
<tr>
<th>Safety stock, 549</th>
<th>SAP Query, 942</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolute, 549</td>
<td></td>
</tr>
<tr>
<td>availability, 550</td>
<td></td>
</tr>
<tr>
<td>Sales & Operations Planning (SOP), 1011</td>
<td></td>
</tr>
<tr>
<td>Sales and Distribution, 977</td>
<td></td>
</tr>
<tr>
<td>Sales Information System (SIS), 434</td>
<td></td>
</tr>
<tr>
<td>Sales order creation, 974</td>
<td></td>
</tr>
<tr>
<td>SAP calendar, 64</td>
<td></td>
</tr>
<tr>
<td>SAP Demand Management, 430, 505</td>
<td></td>
</tr>
<tr>
<td>Planned Independent Requirements (PIR), 445</td>
<td></td>
</tr>
</tbody>
</table>

Screen template, define, 795	
Selection, 939	
dates, 904	
profile, 684, 692, 701	
Self-defined info structure, 453	
Self-defined process instruction category, 163	
Separated backflush, 416	
Sequence-dependent setup, 706
Sequences
 overview, 237
 parallel, 236
 routing, 236
Settlement, 358
 rule, 292
Setup group categories, 707
Setup matrix, 707
Setup time, 708
 optimization, 709
Shift note, 789
 assign to equipment, 806
 configuration, 791
 control settings for printing, 803
 create, 807
 define type, 792
 list, 810
 maintain master data, 805
 make changes to, 809
 print to PDF, 810
 reference object, 802
 send by email, 810
 send to SAP inbox, 801
 tab, 797
 track changes, 801
Shift note type, 220, 371, 791
 define, 792
 make settings, 799
 number range, 793
 use of, 801
Shift report, 789
 configuration node, 813
 content, 814
 create, 817
 digital signature, 815
 keyword search, 821
 list, 820
 status, 819
 type, 220, 371, 813
Shifts and intervals, 225
Shop Floor Control component, 900
Shop Floor Information System, 100, 920
Shop floor papers, print, 128, 268
Signature method, 860
Signature sequence, 861
Signature strategy, 860
 to SAP DMS document type, 863
Simulative planned order, 631
 firm, 632
Simulative planning, 617
Single-item planning, project, 570
Single-item planning, sales order, 569
Single-item, multilevel, 568
Single-item, single-level, 567
SOP
 change infostructure/key figures, 436
 mass processing, 496
 object, 435
 overview, 431
 standard, planning hierarchy, 450
 standard, planning types, 440
SOPDIS, 440
SOPKAPA, 440
SOPKAPAM, 440
Source list, 968
Special procurement, 217
Special procurement type, 647
 key, 648
Splitting, 232, 258
Standard analysis, 898
 goods receipt, 929
 info structure, 927
 material, 926
 operations, 925
 product cost, 931
 report, 920
 user-defined, 501
 work center, 922
Standard capacity evaluation, 679
Standard overview, 679
Standard trigger point, 249
Standard value key (SVK), 85, 371, 707
 create, 86
 field, 220
Standard values, 314
Static lot sizing procedure, 536
Statistics Currency characteristic, 461
Status network, 865
Status profile, 743
Statuses for change master records, 739
Index

Stock
- and batch determination, 111
- include transfer/blocked, 586
- overview report, 595
- posting, 191, 953, 967
- provided to vendor, 669
- statistics, 605
- transfer, 197, 659
Stock/requirements list
- 597, 1013
- evaluation, 601
- header details of, 600
- user settings, 605
Storage costs for optimum lot size
- 539
Storage location
- 43
Strategy group
- 506, 512, 513
- assign to MRP group, 513
Strategy profile
- 692, 699
- change, 715
Subcontracting
- 233, 666
Sub-total option
- 909
Superior operation
- 313
SVK
- 85
System status
- 904

T

Tabular capacity planning table, 716
Takt, 1014
- time, 538
Takt-based flow manufacturing, 361
Target stock level, 495
Task list, 487
- assignment to material types, 136
- delete, 239
- status, 137
- type to material type assignment, 953
Threshold value analysis
- 883
Time event
- 279
Time profile
- 692, 703
Time series
- 931
Time ticket/event
- 280
Time-based disaggregation
- 449
- allow, 459
Time-based scaling
- 713
Time-phased materials planning
- 558, 563, 566
- Total, 909
 - planning background, 569
 - planning online, 568
Transaction
- CO24, 262
- CO82, 95
- COMAC, 264
- COOIS, 254
- COPOC, 354
- CS02, 753
- CS20, 218
- CY39, 704
- MD02, 389
- MD03, 406
- MD61, 388
- OPDA, 707
Transport time matrix
- 89
Trend analysis
- 883
TREX
- 811, 829
Trigger point
- 127, 1014
- define group, 128
- define standard use, 128
- standard, 249
Trigger workflow
- 250

U

Update group, 502
Usage, 219, 370, 961
- decision, 953
User exit CYPPO001, 705
User group, create, 943
User Parameters icon, 516
User status, 743

V

Valuation area, 39
Value contract, 968
Variable evaluation, 682
- define with profiles, 682
Variable size item formula, 80
Variance, 126
- reasons for, 416
Variant, 906, 907
- attributes, 500
Index

Variant (Cont.)
maintain, 500
Variant Configuration, 728
Version
copy, 477
delete, 478, 479
management, 477
number, 519
View, 207
operations, 230

W

WebDocuments, 846
find URL, 849
What-if, 430
model, 430
Withdrawal from alternative plant, 662
Wizard, 162
Work Breakdown Structure (WBS), 902
Work center, 81, 369
activate backflush, 277
capacity evaluation, 680
category, 82
control key, 90

Work center (Cont.)
create, 218
cumulate capacities, 686
field selection, 83
formula, 87
standard analysis, 922
SVK, 85
Work Scheduling view, 141

X

XSteps, 341, 918
calculation, 347
control recipe destination, 345
genral information, 343
output characteristics and values, 349
parameter value, 346
parameters, 344
process messages in, 352
scope of generation in, 351
signature, 352
standard repository, 342
tables, 350
valuation, 344
XSteps (Execution Steps) option, 135
XSteps Optional option, 135