Reading Sample

Dive into portions of two chapters in this reading sample. In Chapter 2, start analyzing the performance of your hardware, database, SAP memory configuration, and SAP work processes of SAP NetWeaver Application Server ABAP using simple instructions. In Chapter 9, first master the concept of locking for SAP and database systems. Then learn how you can monitor database locks and SAP enqueues.

“Introduction”

“Analysis of Hardware, Database, and ABAP Application Server”

“Locks”

Contents

Index

The Author

Thomas Schneider

SAP Performance Optimization Guide

837 Pages, 2013, $79.95

www.sap-press.com/3360
Contents

Preface and Acknowledgments ... 17
Introduction ... 19

1 Performance Management of an SAP Solution 33

1.1 SAP Solution Architecture ... 34
 1.1.1 SAP Solutions and SAP Components 34
 1.1.2 Client/Server Architecture 38

1.2 Monitoring and Optimization Plan for an SAP Solution .. 47
 1.2.1 Requirements of a Monitoring and Optimization Plan ... 47
 1.2.2 Service-Level Management 51
 1.2.3 Plan for Continuous Performance Optimization .. 57
 1.2.4 Tools and Methods for the Monitoring and Optimization Plan .. 63
 1.2.5 SAP Solution Manager 66

1.3 Summary ... 71

2 Analysis of Hardware, Database, and ABAP Application Server ... 75

2.1 Basic Terms ... 76
2.2 Hardware Monitoring ... 77
 2.2.1 Analysis of a Hardware Bottleneck (CPU and Main Memory) ... 79
 2.2.2 Identifying Read/Write (I/O) Problems 86
 2.2.3 Further Analysis at the Operating System Level .. 87

2.3 Database Monitoring ... 89
 2.3.1 The Performance Monitor in the DBA Cockpit ... 90
 2.3.2 Analyzing the Database Buffer 91
 2.3.3 Identifying Expensive SQL Statements 95
 2.3.4 Identifying Read/Write (I/O) Problems 102
2.3.5 Other Database Checks 104
2.4 Analyzing SAP Memory Configuration 112
2.4.1 Analyzing SAP Buffers 113
2.4.2 Analyzing SAP Extended Memory, SAP Heap Memory, and SAP Roll Memory ... 115
2.4.3 Displaying Allocated Memory 117
2.4.4 Other Monitors for Detailed Analysis 119
2.5 Analyzing SAP Work Processes 121
2.5.1 Work Process Overview Fields 122
2.5.2 Analyzing Work Processes 125
2.5.3 System-Wide Work Process Overview 128
2.5.4 Monitoring the Dispatcher Queue 130
2.6 Analysis of the Internet Communication Manager (ICM) ... 133
2.7 Continuous Monitoring Using CCMS 134
2.7.1 Working with the Alert Monitor 135
2.7.2 Arranging Monitoring Tree 138
2.7.3 Arranging Automatic Alert Messaging 141
2.7.4 Graphical User Interface in SAP Solution Manager .. 142
2.8 Summary .. 143

3 Workload Analysis .. 145
3.1 Basics of Workload Analysis and Runtime Analysis 146
3.2 Workload Monitor .. 148
3.2.1 Working with the Workload Monitor 149
3.2.2 Technical Settings for the Workload Monitor 152
3.3 Workload Analysis .. 152
3.3.1 Transaction Step Cycle 153
3.3.2 Other Time Components 155
3.3.3 Interpreting Response Times 156
3.3.4 Activity, Throughput, and Load 159
3.4 Performing Workload Analyses 161
3.4.1 Analyzing General Performance Problems 162
3.4.2 Analyzing Specific Performance Problems 169
3.5 End-to-End Workload Analysis 172
3.5.1 Basics of End-to-End Workload Analysis 173
3.5.2 Central Workload Monitor 174
3.5.3 Working with the Central Workload Monitor 175

4 Identifying Performance Problems in ABAP Programs ... 183
4.1 Single-Record Statistics .. 183
4.2 Performance Trace .. 188
4.2.1 Activating a Performance Trace 188
4.2.2 Evaluating an SQL Trace 190
4.2.3 Other Functions in the SQL Trace 195
4.2.4 Evaluating a Buffer Trace 197
4.2.5 Evaluating an RFC Trace 198
4.2.6 Evaluating an HTTP Trace 199
4.2.7 Evaluating an Enqueue Trace 199
4.3 Performance Analysis with ABAP Trace (Runtime Analysis) ... 201
4.3.1 Activating an ABAP Trace 201
4.3.2 Evaluating an ABAP Trace 203
4.3.3 Using Function Variations 205
4.3.4 Outlook: Single Transaction Analysis 207
4.3.5 Using Single Transaction Analysis 209
4.4 Analyzing Memory Usage with ABAP Debugger and in the Memory Inspector ... 210
4.5 Code Inspector .. 216
4.6 Central Single Statistics Records 218
4.7 End-to-End Runtime Analysis in SAP Solution Manager ... 220
4.7.1 Activating the Runtime Analysis 221
4.7.2 Displaying an End-to-End Runtime Analysis in SAP Solution Manager ... 223
4.8 Summary .. 225

5 Hardware Sizing and System and Load Distribution ... 229
5.1 Initial Hardware Sizing .. 231
5.1.1 Overview of the Project for Initial Sizing 232
5.1.2 Performing a Sizing Project in Detail 238
5.1.3 SAP Standard Application Benchmarks 242
5.2 Sizing to Deal with Increased Workload, Change of Release, or Migration .. 247
 5.2.1 Overview of a Sizing Project in the Environment of an Installation that is Already Used 247
 5.2.2 Performing Sizing in the Environment of Installations Used in Production 248

5.3 Planning the System Landscape 256
 5.3.1 Distribution of SAP Application Instances 257
 5.3.2 Hardware Consolidation 258
 5.3.3 System and Database Consolidation 260

5.4 Services of the SAP NetWeaver Application Server 262

5.5 Summary .. 266

6 Memory Management ... 269
 6.1 Memory Management Fundamentals .. 270
 6.1.1 Basic Terms .. 270
 6.1.2 SAP Roll Memory, SAP Extended Memory, and SAP Heap Memory 272
 6.1.3 SAP Extended Shared Memory and SAP Paging Memory .. 279
 6.2 Features of Operating Systems .. 280
 6.2.1 Zero Administration Memory Management for Microsoft Windows 280
 6.2.2 Memory Management for Linux .. 281
 6.2.3 Memory Management for IBM i ... 282
 6.3 Configuring and Monitoring Memory Areas 283
 6.3.1 Monitoring Swap Space .. 285
 6.3.2 Configuring and Monitoring SAP Memory Areas .. 287
 6.3.3 Assistance with Troubleshooting .. 291
 6.4 Summary .. 298

7 Load Distribution and Remote Function Calls 301
 7.1 Load Distribution within the ABAP Instances 302
 7.1.1 Distributing Message, Enqueue, and ATP Services .. 303

7.2 Remote Function Calls (RFCs) .. 320
 7.2.1 Fundamentals and Concepts .. 320
 7.2.2 RFC Cycle .. 323
 7.2.3 Configuring and Testing RFC Destinations 326
 7.2.4 Monitoring Inbound and Outbound Loads 330
 7.2.5 Configuring Parallel Processes with Asynchronous RFCs ... 335
 7.2.6 Monitoring Data Transfer with Transactional RFCs .. 336
 7.2.7 Background RFCs ... 338

7.3 New Load Distribution Concept 338

7.4 SAP Virtual Machine Container 341

7.5 Summary .. 343

8 SAP GUI and Internet Connection 347
 8.1 SAP GUI ... 348
 8.1.1 Interaction Model and Performance Measurement .. 348
 8.1.2 Analyzing and Optimizing the Performance of GUI Communication 350
 8.2 SAP Web Applications .. 356
 8.2.1 Planning the Use of Web UI and the SAP GUI .. 357
 8.2.2 HTTP Trace in the Internet Communication Manager .. 359
 8.3 Analyses on the Presentation Server 360
 8.3.1 Presentation Server Trace for Web Applications .. 362
 8.3.2 Operating System Performance Tools .. 364
15 Optimizing Database Queries with SAP HANA 659

15.1 Application Scenarios for SAP HANA 661
15.2 Principles of Main Memory Data in SAP HANA and
TREX .. 665
15.2.1 Column-Based Data Storage 667
15.2.2 Data Compression ... 668
15.2.3 Data Storage in Main Memory 672
15.2.4 Partitioning and Parallelization 675
15.2.5 Indexing ... 676
15.2.6 Data Modeling from a Performance View 679
15.3 Overview of the SAP HANA Architecture and Sizing 681
15.3.1 SAP HANA Architecture 681
15.3.2 Sizing .. 685
15.3.3 SAP HANA Administration Tools 687
15.4 Technical Optimization Options in Detail 690
15.4.1 Main Memory Analysis 690
15.4.2 Identifying and Analyzing Expensive SQL
Statements .. 698
15.4.3 Creating Indexes (Inverted Index and
Concatenated Index) ... 707
15.4.4 Administration of Delta Indexes 710
15.4.5 Load Distribution, Parallelization, and
Partitioning .. 715
15.4.6 Optimization of InfoCubes and DataStore
Objects for SAP HANA ... 717
15.5 Summary ... 721

Appendices ... 725

A Database Monitors ... 727
B Selected Transaction Codes ... 777
C Review Questions and Answers 781
D Glossary .. 787
E Sources of Information .. 799
F The Author ... 815

Index ... 817
Introduction

Why is the performance of your business IT application important? Users will be motivated and work efficiently with an application only if response times are good. A slow system leads to downtime and frustration. If the situation deteriorates further, at worst, you no longer have the throughput necessary for running business processes. The results are overtime, delays in production, and financial loss. In contrast, the systematic, proactive optimization of performance considerably increases the value of your business application.

A data processing system’s performance is defined as the system’s ability to fulfill requirements in terms of response time and data throughput. The system might be required to achieve, for example, a throughput of 10,000 printed invoices in one hour or a response time of less than one second for the creation of a sales order. Good performance, however, is not an absolute characteristic of a business application. Rather, it should be viewed as always relative to the demands made on the application.

Proactive Performance Management

In this book, performance optimization refers to a process that always includes five phases. The first two phases are understanding the business processes and setting and quantifying performance goals. These steps involve all participating parties—that is, technicians and application experts. Optimization can be successful only on the basis of these prerequisites. Phases three to five involve the systematic monitoring, identification, and analysis of problems, the implementation of optimization measures, and further analysis to verify the success of the introduced measures (see Figure 1). We advise against randomly tinkering with configuration parameters and similar impulsive tuning measures. The object of this book is to enable you to identify and analyze performance problems in order to deal with them effectively.
From a technical point of view, a business IT application is made up of many different components. These include the logical components: processes such as services, threads, or work processes, as well as memory areas such as buffers and user contexts. There are also the physical components such as processors (CPU), main memory (RAM), hard disks, and network segments. Each of these components allows for maximum throughput and optimal response time. If the interplay among the components is not appropriately balanced or an individual component has reached its performance limit, wait situations that have a negative effect on throughput and response times can occur. In this book, technical optimization refers to the identification, analysis, and solution of these problems by tuning the components and distributing the system’s load.

The second important task of performance optimization is preventing unnecessary load. Inefficient programs or their suboptimal use can weaken performance. The optimization of individual programs is referred to as application optimization.

The goal of optimization is to improve the system settings and applications to achieve the desired performance, based on existing hardware resources. If the existing resources are not sufficient, they must be extended according to the knowledge gained by analysis.

How much effort is involved in the performance analysis and tuning of an SAP solution? The answer to this question depends largely on the size of the system. For a small or medium installation with no modifications to the SAP standard or customer developments, it is normally sufficient to do performance optimization just before and shortly after the start of production and after large-scale changes, such as upgrades, large data transfers or client transports, or when new SAP solutions or additional users are introduced into the system. Of course, it is also necessary to intervene when acute performance problems occur. The tuning potential, along with its inherent effort in analysis and optimization, increases proportionately with the size of the system. Experience has shown that many performance bottlenecks are caused by customer developments and modifications to the standard SAP software. The most common reason for this is insufficient testing, but problems can also arise as a result of time constraints or lack of experience on the part of the developer. The extreme case would be a large, constantly developing installation with several hundred users, complicated process chains, a dozen or more developers (often from different consulting firms, working on the system at different times and in different places), and outsourced system management. In such a system environment, it is absolutely necessary for a small group of administrators and developers to have an overview of the entire system and keep an eye on performance.

SAP’s remote services offer help with performance analysis and tuning—namely, SAP GoingLive™ Check, which enables your system to make a smooth transition to production operation, and SAP EarlyWatch® Check, which monitors your system and suggests additional optimizations.

How much effort is involved in the performance analysis and tuning of an SAP solution? The answer to this question depends largely on the size of the system.
Introduction

Proactive Measure	Effect on System	Immediate Value, Owing to Increased User Satisfaction	Immediate Value, Owing to Lower Operating Costs	Diminished Risk of Deterioration
Optimizing SQL statements | Reduction of database load | Faster response times for certain transactions | Stretching hardware investments (e.g., database server and memory system) | Avoiding overloading the database system

Proactive data management (e.g., data avoidance, archiving, and reorganization) | Reducing database growth | Faster response times for certain transactions | Stretching hardware investments | Maintaining manageable database size
Shorter times for maintenance work on the database (e.g., backup/recovery, upgrade, migration, and system copy) | Shorter downtime during maintenance work | Fewer personnel requirements for maintenance work | |

Table 1 Examples of the Value of Proactive Performance Management

Current Developments

With the development of the Internet, smartphones, and tablet computers, there has been a paradigm shift in the world of business software: software is no longer aimed at the highly specialized employee on his PC, but to users of the Internet (externally, or internally as an intranet) or the user of a mobile device. With SAP R/3, the traditional strategy of process automation was based on highly specialized users who accessed their SAP Enterprise Resource Planning (ERP) system from fixed work centers via installed SAP graphical user interfaces (GUIs). The role of these specialized agents, who had to be trained to use the software, is becoming unnecessary in many cases. Instead, the end user can have direct access to the enterprise’s SAP ERP systems via the Internet and mobile devices. Today, for example, the employees of many enterprises can enter their work and absent times, travel expenses, and so forth into the system themselves via the intranet, whereas previously, this would have been done by central users. Increasingly, customers order products directly via the Internet and no longer by means of letters, faxes, or telephone calls to sales centers.

User expectations concerning the usability and performance of an Internet or mobile application are disproportionately higher than the traditional employee’s expectations regarding their SAP ERP system. The employee relies on his own SAP ERP system; if it normally helps to make day-to-day work easier, it is accepted, and minor errors or weak points in performance are tolerated. The Internet user is quite different: if applications offered over the Internet do not work easily and effectively, users can immediately switch to the competition and, for example, make their purchases there—the competition is only a mouse click away. In addition, the Internet does not finish work at five p.m.; an e-business solution on the Internet must be available and work efficiently 365 days a year, 24 hours a day. Users of mobile applications apply the usability and performance standards they are accustomed to with other mobile apps to an SAP application.

With SAP HANA, SAP has succeeded in launching a product on the market that analysts today refer to as the most important innovation for years in the field of business software. The core element of the innovation is a main memory database around which additional services, such as an additional server referred to as XS Engine, are grouped. In this book, we tackle the SAP HANA database platform exclusively because practical experience is still lacking in relation to the additional services.

The most important argument in favor of introducing SAP HANA is performance. SAP HANA takes advantage of the availability of huge main memories and massive parallel processor architecture and consistently transforms them into performance by the most modern software architecture. You are perhaps wondering, do I even need a performance book if I have SAP HANA? Or does SAP HANA solve all performance problems? We are firmly convinced that the answer is no on both counts. On the one hand, even SAP HANA cannot perform miracles if your program reads complete database tables in the application server and—worse still—sends the data to the user’s web browser. The lion’s share of the runtime is then attributable to the application server, the network, and the browser. SAP HANA does not override the basic rules for efficient programming! A second no stems from the fact that every technical
Innovation is confronted with "greed" or, in other words, challenges. One of these challenges is called Big Data.

Big Data

By Big Data, we mean the phenomenon whereby more and more data of interest to companies is created, but which up to now, could only be evaluated and made available insufficiently, if at all. Examples of such data include posts in social networks; logs of web accesses; transaction data of persons (for example, via mobile positioning or posts with location data in social networks) and products (which, for example, are covered via RFID chips); data from cameras, microphones, and other sensors; financial transactions; and stock market data, as well as consumption data in the energy sector. Companies are eager to collect, link, and evaluate this data and thus gain valuable insights into their customers, markets, and products. A production engineer in the consumer goods industry can be used as an example here. In the future, he will be able to use not only past production figures and current orders, but also the current trends of social networks, to plan more effectively.

Small "errors," major impact

All of these data sources have in common that their quantity exceeds that of traditional business data (so-called master and transaction data) many times over. When transferred to our performance issue, this means that a non-performance-optimized system or program has a much greater impact than a "traditional" SAP Business Suite system. Thus, we conclude that performance know-how will continue to be a valuable asset in the future.

IT services

The demand for an open, flexible software architecture requires specialized, independently running software components that are linked via interfaces, which means a business process involves several software components. The constantly growing number of solutions and components presents an administrative challenge for data centers. The number of components has grown from the manageable SAP R/3 (with SAP instances, database, and hardware/operating system) to a constantly increasing range of technologies, including products that SAP does not produce but offers as a reseller.

Consequently, business process operators counteract this trend by integrating more and more service partners into the service and support processes. Outsourcing may involve only hardware (e.g., computer performance, hard disk memory, network resources, and so on), or it may also involve the application itself (i.e., application service providing, or ASP); for example, the services of an Internet product catalog can be completely allocated to a service provider instead of being operated by the catalog software in the enterprise. It is thus not only necessary to monitor hardware and software components, but monitoring must also go beyond company and component boundaries.

Overall, completely new requirements arise for administration and monitoring of SAP solutions—requirements that you cannot deal with using traditional concepts.

About This Book

The methods for performance analysis and optimization presented in this book reflect those initially used by experts in the EarlyWatch service and GoingLive Check and are included in the SAP Basis training courses ADM315 Workload Analysis and ADM490 Optimization of ABAP Programs. This is the seventh edition of this book, and with each new edition, we take the opportunity to thoroughly describe current trends in product development at SAP and, wherever relevant, to consider developments in the IT world in general.

In this edition, we have almost completely rewritten the Java topics and combined them in one chapter. Another new chapter is dedicated to the most important innovation from SAP for many years, SAP HANA, which initially focuses on the SAP HANA database platform. Other SAP HANA services are not yet dealt with due to a lack of practical experience. All other chapters have been revised and updated for this edition; for example, we describe the new ABAP load distribution concept (new to SAP NetWeaver 7.40) and have included the topic of background remote function calls (RFCs). We have also added a section on the SAP Sybase ASE database to Appendix A (Database Monitors).

Figure 2 presents the chapters of this book based on the five phases of performance optimization at a glance. Chapter 1 of this book, Performance Management of an SAP Solution, is intended for both SAP administrators and SAP consultants, as well as application developers and SAP project...
leads. It discusses the following fundamental questions about performance analysis at a non-technical level:

- Which preventative measures must you take to guarantee the optimal performance of an SAP solution?
- What performance tuning measures should you take into consideration?
- Who is involved in the tuning process?

Parts are provided by many different, sometimes external, service providers. To master this complexity, many service providers and customers implement service-level management (SLM). SLM calls for a structured, proactive method to ensure an adequate service level for the IT application users, taking into account both cost efficiency and the customer’s business objectives. In this book, we’ll describe the tools and methods used to implement SLM for an SAP solution.

Chapters 2-4 present performance analysis based on SAP NetWeaver Application Server (AS) ABAP. After reading this chapter, you will be able to perform a systematic performance analysis for AS ABAP, including databases and operating systems.

In this book, we initially follow the bottom-up analysis strategy, starting in Chapter 2, Monitoring Hardware, Databases, and ABAP Application Server, with an examination of the operating system, database, SAP memory management, and SAP work processes. At the same time, we provide solution proposals that should enable the administrator or consultant to solve the most important performance problems. For small and medium-size installations, this level of tuning is often sufficient.

Then, Chapter 3, Workload Analysis, discusses the more complex workload analysis as an example of top-down analysis. In Chapter 4, Identifying Performance Problems in ABAP Programs, you will find methods for analyzing individual programs using tools such as single-record statistics, SQL trace, and ABAP runtime analysis, among others.

The remainder of the book, Chapters 5-15, presents information necessary for a more in-depth performance analysis. These chapters are intended for SAP consultants responsible for the efficient functioning of large systems who need to reach the full tuning potential of their systems. These chapters are independent units to a large extent, and you can read them in any order once you are familiar with the content of the first four chapters. Any dependencies are shown at the beginning of each chapter.

Chapters 5-10 deal with the topics that relate to the application server and the presentation server:

- Chapter 5, Hardware Sizing and System and Load Distribution: This is the guide to avoiding hardware bottlenecks on the one hand, and
limiting the costs of unnecessary hardware on the other hand. Server consolidation—that is, the concentration of all services on a few powerful computers—has become an important IT market trend in recent years. We’ll describe what you must take into account to use these technologies efficiently.

- Chapter 6, Memory Management: The configuration of the memory areas allocated by the SAP system has a considerable influence on performance.
- Chapter 7, Workload Distribution and Remote Function Calls: Optimal workload distribution of web, dialog, update, and background requests helps ensure efficient use of hardware and the avoidance of bottlenecks brought about by suboptimal configurations. Interface performance between software components also contributes greatly to the efficiency of the entire solution. E-business solutions that consisted solely of a monolithic R/3 system were rarely used, even in the past. Instead, open solutions that comprise several components connected to each other via interfaces are the standard.
- Chapter 8, SAP GUI and Internet Connection: Analysis and configuration recommendations demonstrate the optimization potential of linking GUIs (i.e., a classical SAP GUI or web browser) with the application. The chapter discusses performance aspects of SAP GUI controls, Internet Transaction Server (ITS), Business Server Pages, and Web Dynpro for ABAP in detail.
- Chapter 9, Locks: Database and SAP locks ensure data consistency. You can avoid bottlenecks in throughput with an optimized administration of locks (for example, with the ATP server or by buffering number ranges).
- Chapter 10, Optimizing Java Virtual Machine and Java Programs: This chapter contains the description of the tools with which you can perform the performance analysis of Java Virtual Machine (SAP JVM) and Java programs.

Chapter 11 introduces the series of chapters on database topics and is a prerequisite for Chapters 12-15:

- Chapter 11, Optimizing SQL Statements: Ineffective SQL statements make heavy demands on the database and can hamper the performance of the entire application. In this chapter, we present a detailed analysis of “expensive” SQL statements, as well as optimization options via database indexes and program optimization (i.e., “five golden rules”).
- Chapter 12, SAP Buffering: Buffered tables on the application servers speed up access to frequently read data and help ease the load on the database.
- Chapter 13, Optimizing Queries to SAP NetWeaver Business Warehouse: SAP NetWeaver Business Warehouse queries are special SQL statements that usually process large quantities of data. Special optimization options exist for this type of queries.
- Chapter 14, Optimizing Search Queries Using TREX: You can use TREX for optimizing text-based and attribute-based search queries and SAP NetWeaver Business Warehouse queries (SAP NetWeaver BW Accelerator) instead of traditional database indexes and aggregation tables.
- Chapter 15, Optimization of Database Queries with SAP HANA: A separate chapter is dedicated to the new “child prodigy” from SAP, SAP HANA, which introduces the principles, tools, and methods for performance analysis and optimization.

Knowledge of performance optimization of SAP systems and applications is highly beneficial for SAP administrators, SAP application managers, SAP developers, and SAP project leads, and these are the target groups of this book. Every chapter first provides an introduction that is followed by a short section, “When Should You Read This Chapter?,” that specifies the target group of the chapter.

This book assumes theoretical and practical knowledge of the administration of SAP components in areas that involve the specific implementation of recommendations. You should be familiar with the use of the Computer Center Management System (CCMS), in particular. SAP NetWeaver Application Server ABAP System Administration (see Appendix E, Sources of Information) should serve as good preparation. Parts of this book (for instance, Chapters 4, 9, 11, and 12) also assume familiarity with the ABAP programming language, the functioning of relational databases, and SQL.

The book does not cover the following topics:

- Hardware tuning and network tuning
 Although this book helps you to identify bottlenecks in the CPU, main
memory, I/O, or network, a detailed analysis would require hardware or network provider tools. In view of the enormous number of products offered, we cannot include this subject (especially the tuning of hard disks).

Databases

In the CCMS, SAP offers tools that standardize most administrative and analysis tasks for different database systems. If you want to do more in-depth database tuning, however, you need to be familiar with the different database system architectures. It is not possible for this book to go into sufficient detail on the fine points of all database systems that can be used in conjunction with SAP solutions. However, this information is also unnecessary because reference material on tuning is available for all database systems. This book cannot replace these materials, nor does it endeavor to do so. Instead, the emphasis is on the SAP-specific context of database tuning and on explaining concepts common to all database systems. The specific examples used always refer to individual database systems. In Appendix A, you will find an overview of the most important monitors for analyzing database systems.

Application tuning

Many problems with performance can be solved only with detailed knowledge of the application and the individual SAP system modules. A change in customized settings often solves the problem. This book does not provide the know-how for tuning individual SAP system modules. However, it does provide you with analysis strategies so you can narrow performance problems down to certain applications and then consult the appropriate developer or consultant.

One question that was heatedly discussed prior to this book’s publication is the extent to which release-dependent and time-dependent information, for example, menu paths, recommendations for configuration parameters, and guide values for performance counters, should be included. Factors such as a new version, patches (for the SAP system component, database, or operating system), or a new generation of computers, among others, could render previous information obsolete overnight. In the worst-case scenario, outdated recommendations could even have negative effects on performance. We are aware of this risk. Nevertheless, we have decided to include time-dependent information and rules in this book. This is the only way you can use this book as a reference for daily work in SAP administration. On the other hand, it is clear that this is not a book of fixed rules and regulations, and anyone who views performance optimization as mechanical rule following is mistaken. This book cannot replace direct analysis of the solution, the SAP Help Portal, or up-to-date SAP Notes on the SAP Service Marketplace. It aims only to support them.

All information on menu paths, references to performance monitor screens, and guideline values for performance counters refer to SAP NetWeaver 7.30, unless otherwise noted. At some points, we give a preview of SAP NetWeaver 7.40.

In this book, you will find several orientation aids that are intended to facilitate your reading of its contents.

Highlighted information boxes include content that is worth knowing and useful, but which is also beyond the actual explanation. To enable you to immediately classify the information in the boxes, we have marked the boxes with symbols:

- **Tips** marked with this symbol give you specific recommendations that can make your work easier.
- **In boxes that are marked with this symbol, you will find information about additional topics or important content that you should remember.**
- **This symbol indicates features that you should note. It also warns you about common errors or problems that may occur.**
- **Examples** identified by this symbol indicate scenarios from practical experience and demonstrate the presented functions.

As for previous editions, we will provide updates and, if necessary, corrections to the book on the publisher’s website (www.sap-press.com).
With the analysis of hardware resources, the database, and the work processes and memory areas of SAP NetWeaver AS ABAP, we are going bottom-up into performance analysis. Get an initial overview of the current situation in the system.

2 Analysis of Hardware, Database, and ABAP Application Server

This chapter provides the basic information on analyzing the performance of your hardware, database, SAP memory configuration, and SAP work processes of SAP NetWeaver Application Server ABAP. Procedure road-maps at the end of each section summarize the most important analysis paths and clarify when to use the various monitors. The last section describes the central Alert Monitor, which integrates the performance indicators from all areas.

This chapter will provide simple recommendations to help you optimize each component, except where in-depth explanations are required (these are given in subsequent chapters). Unnecessary background information is intentionally kept to a minimum so that even application consultants or system administrators with limited experience in performance analysis can use this chapter to improve the performance of their system. For example, we describe monitoring and customizing SAP extended memory without explaining SAP extended memory in detail. You can find more detailed information in Chapters 5-15. Our experience suggests that you can solve many performance problems in the operating system, database, and SAP Basis by using simple instructions, without delving into technical details.

When Should You Read This Chapter?
You should read this chapter if you want to use your SAP system to technically monitor and optimize the performance of your SAP system, database, or operating system.
2.1 Basic Terms

The terms computer, server, application server, SAP instance, database, database server, and database instance are used in this book as follows:

Computer
A computer will always mean a physical machine with a CPU, main memory, IP address, and so on.

SAP application instance
An SAP application instance, also referred to as an SAP instance, is an administrative unit: it consists of a set of SAP work processes that are administered by a dispatcher. It also includes a set of SAP buffers located in the host computer’s shared memory and accessed by the work processes. An SAP application instance can be an ABAP application instance (SAP NetWeaver Application Server ABAP, referred to as AS ABAP), or a Java application instance (SAP NetWeaver Application Server Java, referred to as AS Java). There can be multiple SAP instances on one computer. As a result, there will be multiple dispatchers and sets of buffers. An application server is a computer with one or more SAP instances.

Database
Every SAP system has only one database. The term database refers to a set of data that is organized into files, for example. The database can be thought of as the passive part of the database system.

The active part of the database system is the database instance, an administrative unit that allows access to the database. A database instance consists of database processes with a common set of buffers in the shared memory of a computer. A database server is a computer with one or more database instances. A computer can be both a database server and an application server if a database instance and an SAP instance run on it.

In the SAP environment, there is normally only one database instance for each database. Examples of database systems in which multiple database instances can access a database are DB2 and Oracle Parallel Server. This book does not cover the special features of these parallel database systems.

SAP system
We refer to SAP software components that are based on SAP Basis as SAP systems. These are SAP ERP, SAP NetWeaver BW, SAP APO, SAP SRM, and SAP NetWeaver Portal.

According to this terminology, an SAP ERP system can consist of one or two systems, depending on whether the Java and ABAP parts run on a joint system with one database (for example, SAP NetWeaver double stack) or on two systems with separate databases. This terminology also applies to SAP Solution Manager.

SAP documentation and literature use the term server in both a hardware sense and a software sense. Therefore, the term can refer to a computer, for example, in the term database server, and to a logical service, such as in the terms message server and ATP server. Thus, we also use ABAP server or Java server as short forms for SAP NetWeaver Application Server (AS) ABAP or Java.

2.2 Hardware Monitoring

The operating system monitor analyzes hardware bottlenecks and operating system problems. To start the operating system monitor for the application server you are currently logged on to, select the following menu:

Operating system monitor

Alternatively, you can use Transaction ST06. The main screen of the operating system monitor appears.

The operating system monitor was revised for SAP Basis version 7.10. Since the revision, Transactions OS06, OS07, and ST06 open a monitor that you can use to monitor both the local and remote computers. For versions prior to 7.10, the new transactions are available under Transactions OS06N, OS07N, and ST06N; with Transactions OS06, OS07, and ST06, you can still access the older transactions. All information discussed in this book is also available in the old transactions. You can view the detail analysis by clicking the Detail Analysis Menu button.

You can also call the operating system monitor from the server overview:

Tools • Administration • Monitor • System monitoring • Server (Transaction SM51)

Then, position the cursor on the desired application server and, in the menu, choose GoTo • Monitors • OS Monitor.
Analysis of Hardware, Database, and ABAP Application Server

Structure

The operating system monitor screen is divided into three areas (see Figure 2.1). In the top-left window, you can view the list of computers that are monitored. There, you can select a computer that you want to analyze. In the lower-left window, you select the analysis data. The window on the right contains data on the selected computer and analysis.

By default, the selection list shows all computers on which SAP ABAP instances have been installed. Essentially, any computer can be integrated into the remote operating system monitor, provided a monitoring agent has been installed on the relevant computer. We strongly recommend installing monitoring agents on computers that run a stand-alone database, an SAP Java instance, or a TREX.

Figure 2.1 Main Screen of the Operating System Monitor

You should install this monitor even if you use a tool from a different vendor to monitor utilization of your computers. If you need support from SAP, an SAP expert can analyze the computers only via the SAP monitor.

2.2.1 Analysis of a Hardware Bottleneck (CPU and Main Memory)

You will find an overview of the most critical operating system and hardware data under SNAPmPT in the analysis selection of the operating system monitor (see Figure 2.1). All data is refreshed every 10 seconds by the auxiliary program saposcol. To update the data on the screen (after 10 seconds or longer), you need to click the corresponding button.

Under the header CPU, you will find the fields User Utilization, System Utilization, and Idle. These values indicate the percentage of total CPU capacity currently being used by user processes (i.e., the SAP system, database, and other processes), the percentage being used by the operating system itself, and the percentage not being used. The Number of CPUs field indicates the number of CPU threads. Average Processes Waiting is the average number of work processes waiting for a free processor. This value is indicated as averaged over 1, 5, and 15 minutes. The other values in the CPU header are of less importance for the performance analysis. Table 2.1 provides an overview of the fields of the operating system monitor.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Utilization</td>
<td>CPU workload caused by user processes (SAP system, database, etc.).</td>
</tr>
<tr>
<td>System Utilization</td>
<td>CPU workload caused by the operating system.</td>
</tr>
<tr>
<td>Idle</td>
<td>Idle CPU capacity. This value should be at least 20%, but ideally at least 35%.</td>
</tr>
<tr>
<td>Number of CPUs</td>
<td>Number of CPU threads.</td>
</tr>
<tr>
<td>Average Processes Waiting</td>
<td>Number of processes waiting for CPUs, averaged over 1, 5, or 15 minutes.</td>
</tr>
<tr>
<td>Physical Memory</td>
<td>Available physical main memory (RAM) in KB.</td>
</tr>
</tbody>
</table>

Table 2.1 Operating System Monitor Fields
Analysis of Hardware, Database, and ABAP Application Server

Processors, Cores, and Threads

As a description of the computer equipment, you can find the following specifications, for example: "2 processors, 8 cores, 16 threads, processor of manufacturer X with 2.93 GHz clock speed." What does this information on the number of processors, cores, and threads mean for the SAP system?

The term processor refers to the central processing unit (CPU) of a computer, which is capable of executing programs. Here, a distinction is made between single-core processors and multicore processors. Multicore processors have multiple fully developed processing cores on one chip. The individual cores share only the bus; that is, they are considered full CPUs. Multithreaded CPUs have one CPU, but register as multiple CPUs on the operating system. As a result, various queues exist for these cores between which the core switches. To optimize this switching, each thread has its own register set, including a stack pointer and program counter, so you can switch among the threads without additional processor cycles. These hardware-based threads should not be confused with the threads that generate the application processes (that is, user or software threads). Within a process of the database or the ABAP, Java, or TREX server, you can generate multiple (software) threads that the operating system executes in time slices. The switch between the (software) threads is referred to as a context switch. Considering this, it can be assumed that additional (hardware) threads promote context switches among (software) threads and therefore support a better utilization of the existing core; however, the increase in performance doesn’t fully come up to an additional core.

The MEMORY header contains information on the available physical main memory (Physical Memory field) and values of the operating system paging.

Under the Swap header, the amount of currently allocated swap space is listed. The swap space must be greater than the total of the configured memory area.

Program Terminations Due to Memory Shortage

If the sum of the physical memory and swap space is smaller than the total amount of memory required by the SAP system, database, and other programs, this may cause program terminations or even operating system failure. You should therefore ensure that there is sufficient swap space.

To display the CPU workload over the previous 24 hours, select the analysis PREVIOUS HOURS CPU. The Previous Hours CPU screen is displayed. The column headers are the same as in the fields under CPU in the operating system monitor initial screen, except that the values are for one hour. Similar overview is available for main memory usage (Previous Hours Memory) for the swap space, and so on.

When Is There a CPU or Main Memory Bottleneck?

The unused CPU capacity Idle should normally average at least 20% per hour. This enables the system to accommodate temporary workload peaks. A reading of 35% idle CPU capacity is even better. For the paging rate, the following guideline values apply:

- For computers that contain a database, Java instance, or TREX, only very minor paging rates should occur; that is, they should be dimensioned in such a way that the available main memory corresponds to the configured memory areas.
- For computers that include only ABAP instances, you can tolerate moderate paging rates of up to 20% of the physical main memory per hour.

For operating systems that page continuously (for example, Microsoft Windows), the value indicated in the operating system monitor as the paged-in rate is the key statistic on paging performance. For other operating systems that page only when necessary (such as most UNIX derivatives), the key statistic is the paged-out rate. If the operating system monitor sometimes shows values that exceed these guideline values, this does not automatically mean you have a hardware bottleneck. Rather, you should use the workload monitor to check whether the high CPU workload or the paging rate is associated with poor response times. Corresponding analyses can be found in Chapter 3, Section 3.4.1, Analyzing General Performance Problems.

If you observe high paging rates on several computers, you should calculate the virtual main memory allocated by the SAP instances and the database (see Sections 2.4.3 Displaying Allocated Memory and 2.3.2 Analyzing the Database Buffer). Compare this with the available physical main memory. As a rule of thumb, there should be approximately 50% more virtual memory than physical memory.
In Microsoft Windows and Oracle Solaris operating systems, the analysis of the paging rate on the database server can lead to misinterpretation because in these operating systems, read/write operations (I/O) can sometimes be counted as paging. For more information on this issue, please refer to SAP Notes 124199 (Solaris) and 689818 (Windows).

Causes of Hardware Bottlenecks

If you detect a hardware bottleneck on one or more SAP system computers, it may be due to one or more of the following causes:

- **Incorrect load distribution**
 In a distributed system with multiple computers, if you discover a hardware bottleneck on at least one computer while other computers have unused resources, the workload is probably not optimally distributed. To improve performance, redistribute the SAP work processes and the user logons.

 It is extremely important that the database server has enough resources. A CPU or main memory bottleneck on the database server means the required data cannot be retrieved quickly from the database, which causes poor response times in the entire system.

- **CPU load of individual programs**
 In the operating system monitor (Transaction ST06), select the analysis **Snapshot > Top CPU processes**. The overview of the operating system processes is displayed. Here, you can see all currently active processes and their demands on resources.

 Figure 2.2 shows an overview of a system on which an ABAP instance and a DB2 database are installed. You can identify the following processes:

 - **dw_<instance>**: SAP work process of the SAP ABAP instance on a UNIX operating system. On Windows operating systems, the name is `dispswork`.
 - **db2sysc**: Database process of DB2 database. The processes of other databases normally carry the brand name (such as Oracle), which appears in the process or user name.

Operating system processes, which you can identify from the following elements of the name, are also part of SAP instances:

- **jstart**: Server process of SAP Java instance.
- **TREX**: TREX process. The server type is indicated in the process name, for instance, index server, preprocessor, and so on.
- **icman**: Process of the Internet Communication Manager (ICM).
- **saposcol**: Auxiliary program, which collects the data for the operating system monitor, for example.

To check whether individual processes are placing a heavy load on the CPU for long periods of time, refresh the monitor periodically and observe any changes in the value **CPU (%)**. If the processes that place a heavy load on the CPU entail processes of SAP Basis or the database, the subsequent specified monitors provide further information on the processes’ activities.
Start the monitor in a second mode, identify the process with the heavy CPU load using the process ID, which you can also find in the corresponding basis monitors, and check the monitors to determine which program or tables, queries, and so on are being processed by the process.

- **SAP work processes of ABAP instance**
 Open a new user session and call the local work process overview (see Section 2.5, Analyzing SAP Work Processes). From the work process overview, note the name of the ABAP program and the user corresponding to the process identifier (PID).

- **Server process of Java instance**
 Open the SAP Management Console (see Chapter 10, Section 10.3, SAP Management Console). Use a thread dump to obtain process-internal information.

- **TREX processes**
 Open the TREX administration tool (see Chapter 14, Section 14.2). You can find details on the TREX services in the Services monitor.

- **ICM**
 Open the ICM monitor (see Section 2.6, Analysis of the Internet Communication Manager [ICM]).

- **Database processes**
 Open the database process monitor in the Database Administration (DBA) Cockpit (see Section 2.3.3, Identifying Expensive SQL Statements) to identify the SQL statements that are being processed by the database.

Using the operating system monitor in conjunction with the monitors mentioned, you can fairly easily identify programs, transactions, SQL statements, or TREX queries that cause high CPU load.

A CPU bottleneck can be caused by external processes. In the operating system monitor, if you find external processes (that is, processes that are not part of the SAP system) with high CPU consumption that cause a CPU bottleneck, you should find out whether these processes are really necessary for your system or whether they can be switched off or moved to another computer. The following are examples of external processes:

- Administrative software, virus scanners, backups, external systems, screen savers (!), and so on.

Identifying a CPU bottleneck

Suppose you notice a CPU bottleneck during times of peak user activity. The process overview in the operating system monitor reveals a single SAP work process that is causing a CPU load of 30% over several minutes. At the same time, the SAP work process overview shows a long-running background program. You should try to see if the background program could be run at a time when the dialog load is lighter.

To identify programs with high memory requirements that may be causing a main memory bottleneck, you can use a method similar to that previously described for CPU bottlenecks. See also Chapter 6, Memory Management.

Operating systems normally administer their own file system cache. This cache is located in the main memory, where it competes for memory space with the SAP system and the database. If the cache is too large, it causes high paging rates, even though the physical main memory is more than large enough to accommodate both the SAP system and the database. SAP recommends reducing this cache to 7-10% of the physical memory.

The operating system parameters for configuring the file system cache include `dbc_max_pct` for HP-UX, `ubc-maxpercent` for Digital UNIX, and `maxperm` for AIX.

To reduce the size of the file system cache for Microsoft Windows, call the network settings (symbol: NETWORK) in the Control Panel of your Windows operating system. Select the tab SERVICES, the service SERVER, and the Properties button. In the following screen, under the screen area OPTIMIZATION, select the MAXIMIZE THROUGHPUT FOR NETWORK APPLICATIONS option, and confirm by clicking OK. You must reboot the computer to activate the file cache’s new settings.

A main memory bottleneck creates excessive paging, which in turn requires more processor use and can lead to a CPU bottleneck. Removing the cause of excessive paging usually makes the CPU bottleneck disappear.
2.2.2 Identifying Read/Write (I/O) Problems

In the operating system monitor (Transaction ST06), you’ll find in the analysis view SNAPSHOT • DISK, among other things, information on hard drive load and (if the operating system makes it available) information on the drives’ wait and response times.

By double-clicking a row in the hard drive monitor, you can display an overview of the average response times over the previous 24 hours for the selected hard drive. Table 2.2 lists the displayed fields and their significance.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>Operating system name of the hard disk.</td>
</tr>
<tr>
<td>Utilization (%)</td>
<td>Load on the hard disk (in %).</td>
</tr>
<tr>
<td>Queue Length</td>
<td>Number of processes waiting for I/O operations.</td>
</tr>
<tr>
<td>Wait Time (ms)</td>
<td>Wait time (in ms).</td>
</tr>
<tr>
<td>Service Time (ms)</td>
<td>Service time (in ms).</td>
</tr>
<tr>
<td>Transfer (Kbyte/s)</td>
<td>Transfer rate (in Kb/second).</td>
</tr>
<tr>
<td>Operations (per Sec)</td>
<td>Number of I/O operations (per second).</td>
</tr>
<tr>
<td>Response Time (ms)</td>
<td>Average response times of the hard disk (in ms).</td>
</tr>
</tbody>
</table>

Table 2.2: Fields of the Hard Disk Monitor

If you determine via these monitors that individual drives are heavily loaded (LOAD (%) > 50 %), a potential I/O bottleneck exists. However, you can gain only limited information about I/O problems from the SAP system. To perform a more detailed analysis, you need tools provided by the hardware manufacturer.

An I/O bottleneck is particularly critical if it is on the hard drive on which the operating system’s paging file resides. The operating system monitor is recommended particularly for the database server. To prevent bottlenecks during read or write operations to the database, use the database performance monitor and the hard drive monitor. For further details on these problems, please see Section 2.3.4, Identifying Read/Write (I/O) Problems.

2.2.3 Further Analysis at the Operating System Level

For UNIX operating systems, the SAP system logs all operating system parameter changes. The change log can be displayed via the following path in the operating system monitor: OTHER FUNCTIONS • PARAMETER CHANGES. Place the cursor over the name of a server and click the HISTORY OF FILE button. This log lets you determine whether the start of performance problems can be linked to the time when particular parameters were changed.

With the OTHER FUNCTIONS • LAN CHECK BY PING tool, you can carry out a quick test on the network. Select any database server, application server, or presentation server and test the network connection (for example, response times or whether there was any data loss). Although the analysis is incorrectly called LAN check, you can also address computers in WAN. You can find an example of an analysis with this tool in Chapter 8, Section 8.1.2, Analyzing and Optimizing the Performance of GUI Communication.

Summary

Performance problems may be indicated if at least one of the following items are true:

- The average idle CPU capacity is less than 20% every hour.
- More than 20% of the physical main memory is paged every hour.
- Utilization of individual hard drives is more than 50%.

Excessive utilization of the hard drives, particularly on the database server, can cause system-wide performance problems. To check whether the high CPU load or paging rate significantly damages response times in the SAP system or database, use the workload monitor (see Chapter 3, Section 3.4, Performing Workload Analyses).

Figure 2.3 and Figure 2.4 show the procedure for analyzing a hardware bottleneck: a common solution for resolving bottlenecks is to redistribute the workload (for example, move work processes). Possible causes of a CPU bottleneck include inefficient applications, which can usually be identified in the database process monitor and work process overview, and external processes that do not belong to an SAP instance or the database instance. You should always perform a complete performance analysis.
analysis before deciding whether the existing hardware is sufficient for SAP system demands.

Figure 2.3 Detailed Analysis of a Hardware Bottleneck (CPU)

Figure 2.4 Detailed Analysis of a Hardware Bottleneck (Main Memory)

2.3 Database Monitoring

SAP NetWeaver Application Server (AS) can currently be operated with eight different relational database systems, as well as with the main memory database SAP HANA. Even if these database systems all have a different architecture, performance problems can still occur independently of the database system used. To help customers analyze and tune their databases, SAP NetWeaver AS ABAP has its own database monitor with basic functions that work independently of the database system used.

In this section, we present the steps of database performance analysis based on an Oracle database. In Appendix A, you will find information and notes on the other databases, as well as more details on Oracle databases. Chapter 15, Optimizing Database Queries with SAP HANA, deals with the SAP HANA main memory database.

The most important functions that you require for performance monitoring of the database include the following:

- Overview of the database buffers' status
- Overview of the currently running database operations, particularly the SQL statements
- Statistics on the executed SQL statements and their costs
- Overview of the distribution of read and write accesses at the logical (tablespaces) and physical level (for example, container for DB2 for Linux, UNIX, and Windows or datafiles for Oracle) and thus about the hard drives
- Overview of the current lock situations

Basic functions of the database monitor
Locks on database tables or business objects are a prerequisite for consistent data. If locks are held too long, performance problems may occur in the system because users and processes have to wait for the locks to be released. This chapter presents the lock concepts and their monitoring in detail.

9 Locks

In an SAP system, many users can simultaneously read the contents of database tables. For changes to the dataset, however, you must ensure that only one user can change a particular table’s content at a time. For this purpose, table content is locked during a change operation. The first section of this chapter introduces you to the concept of locking for SAP and database systems.

If locks remain in place for a long time, wait situations can occur, limiting the throughput of the SAP system. The second section of this chapter deals with the general performance aspects of using locks.

The SAP system uses special buffering techniques for availability checking with Available to Promise (ATP) logic and for document number assignment, which minimize the lock time and maximize the throughput. These techniques will be discussed in the third and fourth sections.

When Should You Read This Chapter?

You should read this chapter to help you do the following:

- Find out more about database locks and SAP enqueues
- Analyze system problems that are caused by database locks or enqueues

This chapter does not offer instruction on programming SAP transactions. Use ABAP textbooks or SAP Help for this.
9.1 Lock Concepts of Database System and SAP System

The consistency of the data in a database or SAP system is achieved by locks. The lock concepts of SAP and database systems have the same ultimate purpose of preserving data consistency, but they are based on different technologies and used in different situations. Locks that the database system manages are known as database locks, and locks that the SAP system manages are known as SAP enqueues.

Ordering a Computer

When you configure and order a new computer, you must check that all necessary components are available—for example, housing, CPU, main memory, hard drive, and so on. The “all-or-nothing” principle applies: when a component is sold out, the availability of the entire computer cannot be confirmed. Since you usually check the availability of the various components in succession, you want to be certain that other users do not access the already checked approved components until the whole order has been finally confirmed or canceled.

9.1.1 Database Locks

Database locks are managed by the lock handler of a database instance. The locked entity is typically a row in a database table (special exceptions are explained at the end of Section 9.2.1, Database Locks). Database locks are set by modifying SQL statements (UPDATE, INSERT, or DELETE) and by the statement SELECT FOR UPDATE. Locks are held until the SQL statement COMMIT (database commit) finalizes all changes in the database and then removes the corresponding database locks. The time interval between two commits is called a database transaction. A program can undo the effects of all modifying SQL statements by executing a database rollback with the SQL statement ROLLBACK. In this case, all database locks are also removed.

Ordering a Computer (Continuation)

The aforementioned example of the availability check when ordering a computer using database locks is achieved in programming with the SQL statement SELECT FOR UPDATE: a particular item of travel data is read and locked with this statement. When this check has been successfully performed for all components, the data is then changed (with an UPDATE in the relevant table rows), and then the COMMIT command is used to finalize changes and release all locks. Once a lock has been set, other users can still read the affected data (a simple SELECT is still possible), but they cannot lock it. Neither an UPDATE nor a SELECT FOR UPDATE can be performed. Such a lock is known as exclusive.

After a transaction step, the SAP work process automatically triggers a database commit (or a database rollback). This removes all database locks. This means a database lock is not held during multiple transaction steps (via multiple input screens in the SAP system).

9.1.2 SAP Enqueues

To hold locks during multiple steps of an SAP transaction, use SAP enqueue administration. Work processes in the enqueue table, located in the main memory, manage SAP enqueues. To retain these enqueue even when an SAP instance is shut down, save them in a local file on the enqueue server.

An SAP enqueue locks a logical object. Therefore, an enqueue can lock rows from several different database tables if these rows form the basis of a single business document. An SAP enqueue can also lock one or more complete tables. SAP enqueue objects are created and modified in the ABAP dictionary (dictionary section LOCK OBJECTS). They are closely related to the concepts of SAP transaction and SAP logical unit of work (SAP LUW). Both of these are described extensively in the ABAP literature for dialog programming. Therefore, this chapter will not discuss the functions and uses of these techniques as part of ABAP programs. Rather, we will focus on aspects related to performance analysis. If you discover performance problems caused by the incorrect use of SAP enqueues, consult the responsible ABAP developer.

An SAP enqueue is a logical lock that acts within the SAP system. If a row in a database table is locked by an SAP enqueue, it can still be changed by an SQL statement executed from the database or by a customer-developed ABAP program that does not conform to SAP enqueue conventions. Therefore, SAP enqueues are valid only within the SAP system. Database locks,
in contrast, resist all change attempts. They lock a table row “tight” for all database users and prevent changes by users outside the SAP system.

For each object that can be held by an enqueue, there are two function modules: an enqueue module and a dequeue module. An SAP enqueue is set explicitly within an ABAP program by an enqueue function and is explicitly released by a dequeue function module. As a result, SAP enqueues can be held in place through multiple transaction steps. When an SAP transaction is completed, all SAP enqueues are automatically removed.

An SAP LUW can also contain program modules that require a V2 update. An SAP enqueue is not used for this. You should not use modules that use this V2 update to process data that requires the protection of enqueues (also see Chapter 7, Section 7.1.8, Update).

Table 9.1 compares the main features of database locks and SAP enqueues.

Ordering a Computer (Continuation)

Using our example of computer configuration and ordering, we will explain how SAP enqueue management works. A computer consists, for example, of the housing, CPU, main memory and hard drive. The individual components are edited on different input screens—that is, with several transaction steps—and are locked for editing by SAP enqueues. After determining the availability of each component, you can confirm the order for the entire computer. This concludes the dialog part of the transaction.

Under the protection of the enqueues, an update work process then transfers the changes to the database tables. When the update has been completed, the SAP LUW is finished, and the enqueues are unlocked.

Monitoring Locks

In this section, you will find information on how to monitor database locks and SAP enqueues.

9.2.1 Database Locks

What happens in the event of a lock conflict—that is, when a work process wants to lock an object that is already locked? With database locks, the second process waits until the lock has been removed. This wait situation is known as an exclusive lock wait. Most databases do not place a time limit on these locks. If a program fails to remove a lock, the wait situation can continue indefinitely.

This could become a major problem if the program fails to release a lock on critical SAP system data, such as the number range table NRIV. There is a danger that one work process after another will be waiting for this lock. If all work processes are waiting, no work process is available to allow you to intervene from within the SAP system. If you can identify the program holding the problem lock, you can terminate it through the operating system as a last alternative.
To monitor current lock wait situations, call the database-lock monitor (Transaction DB01), which you can start from the DBA Cockpit (Transaction DBACOCKPIT) by selecting PERFORMANCE • WAIT SITUATIONS ON LOCKS AND DEADLOCKS or from the system-wide work process overview (Transaction SM66) by selecting GoTo • DB LOCKS.

For a description of this monitor and information on how to troubleshoot lock wait situations, see Chapter 2, Section 2.3.5, Other Database Checks. Lock wait situations increase database time and result in high database times in workload-monitor statistics. Some database systems explicitly monitor lock wait times, which you can view in the database performance monitor.

Checking lock wait situation

[ex] Lock Situation in the Database

With the following sample program, you can provoke a lock situation in the database:

REPORT zts_lock.
DATA: lv_text type natxt.
SELECT SINGLE FOR UPDATE text FROM T100 INTO lv_text WHERE sprsl = 'DE' AND ARGBB = '00' AND msgnr = '001'.

BREAK-POINT.

To do so, proceed as follows:

1. Start the program in the ABAP Workbench (for instance, via Transaction SE38). After a few seconds, the debugger opens, and the program stops at the BREAK-POINT command. Before that, the program has set a database lock using the SELECT SINGLE FOR UPDATE command. Since the program waits in the debug mode, this database lock is not undone.

2. Open a second session and restart the program. An hourglass is displayed in the second session.

3. Again, you can restart the program in a third session, and the system again displays an hourglass.

4. Open another session and start the database lock monitor as previously described. The lock situation is displayed, and you can see which work process holds the lock and which one waits. Based on the work process overview (Transaction SM50) and the database process monitor, you can now analyze what happens in the process that holds the lock. In this example, the process overview displays the STOPPED status and gives DEBUG as the reason.

5. Go to the debugger, where you continue the execution of the program in the first session. The program is terminated, and the database lock is undone due to an implicit commit or rollback of the database interface. As a result, the program can continue in the second session, which had to wait at the SELECT SINGLE FOR UPDATE command up to now. Within a very short period of time, it will thus reach the BREAK-POINT command and start the debugger.

6. Continue the program in the debugger for the second session and, if you started the program in further sessions, in these sessions to release the locks.

Basically, you should set programs to request locks as late as possible. It is preferable for a program to read and process data from the database before setting locks or making changes in the database. This is illustrated in Figure 9.1. The top part of the diagram shows how several changes are made during a database transaction and how, as a result, database locks are held for too long. The lower part of the diagram shows a more appropriate programming method: the transaction is programmed so that it collects the changes in an internal table and then transfers these changes to the database as a group at the end of the transaction. This reduces the lock time in a database.

Figure 9.1 Locks Should Be Set as Late as Possible
Performance problems due to delays in releasing locks frequently occur when customers modify the programming of update modules. The separation of update modules from dialog modules is an attempt to reduce the number of locks needed in the dialog part of a transaction because changes to the database and the associated locks are mainly the task of the update modules. However, sometimes the update module is modified—for example, to supply a customer-developed interface with data. This modification may cause problems if the update module has already set locks and, for example, the modification generates expensive SQL statements. The locks cannot be released until the SQL statements are fully processed, and lengthy lock waits may result.

Another source of problems with locks is background programs that set locks and then run for several hours without initiating a database commit. If dialog transactions need to process the locked objects, they will be forced to wait until the background program finishes or initiates a database commit. To solve this problem, you should ensure that the background program either initiates a database commit at regular intervals (without sacrificing data consistency) or runs only when it will not interfere with dialog processing. Similar problems may occur when background jobs are run in parallel—that is, when a program is started several times simultaneously. Parallel processing is recommended only when the selection conditions of the programs do not lock the same data.

While you are working in the ABAP debugger, database commits are generally not initiated, and all locks stay in place until you are finished. You should therefore avoid using the debugger in a production SAP system.

Causes

Performance problems due to delays in releasing locks frequently occur when customers modify the programming of update modules. The separation of update modules from dialog modules is an attempt to reduce the number of locks needed in the dialog part of a transaction because changes to the database and the associated locks are mainly the task of the update modules. However, sometimes the update module is modified—for example, to supply a customer-developed interface with data. This modification may cause problems if the update module has already set locks and, for example, the modification generates expensive SQL statements. The locks cannot be released until the SQL statements are fully processed, and lengthy lock waits may result.

Another source of problems with locks is background programs that set locks and then run for several hours without initiating a database commit. If dialog transactions need to process the locked objects, they will be forced to wait until the background program finishes or initiates a database commit. To solve this problem, you should ensure that the background program either initiates a database commit at regular intervals (without sacrificing data consistency) or runs only when it will not interfere with dialog processing. Similar problems may occur when background jobs are run in parallel—that is, when a program is started several times simultaneously. Parallel processing is recommended only when the selection conditions of the programs do not lock the same data.

While you are working in the ABAP debugger, database commits are generally not initiated, and all locks stay in place until you are finished. You should therefore avoid using the debugger in a production SAP system.

Deadlocks

We’ll now present an example of a situation known as a deadlock. Assume that work process one and work process two both want to lock a list of materials. Work process one locks material A, and work process two locks material B. Then, work process one tries to lock material B, and work process two tries to lock material A. Neither work process is successful because the materials already have locks on them. The work processes block each other. A deadlock is identified by the database instance and solved by sending an error message to one of the work processes. The corresponding ABAP program is terminated, and the error is logged in the SAP syslog.

You can avoid deadlocks with correct programming. In our example, the program should be changed so that its internal material list is sorted before any locks are set. Then the lock on material A will always be set before the lock on material B. Therefore, programs requiring the same materials are serialized and not deadlocked.

Deadlocks should occur very rarely. Frequent deadlocks indicate incorrect programming or configuration of the database instance.

If, in some database systems (for example, DB2 and SAP MaxDB), a work process places single-row locks on more than 10% of the single rows in a table, the locks are automatically replaced by table locks. Here, the database decides that it is more efficient to lock the entire table for a work process than to maintain several locks on individual rows. Table locking has consequences for parallel processing in background jobs, where each program is intended to update a different part of the same table at the same time. It is not possible to schedule background jobs so that one updates the first half of the table and the other updates the second half because the database may decide to lock the table exclusively for one of the jobs. One program that is particularly affected by this is the period closing program in materials management.

Deadlocks

We’ll now present an example of a situation known as a deadlock. Assume that work process one and work process two both want to lock a list of materials. Work process one locks material A, and work process two locks material B. Then, work process one tries to lock material B, and work process two tries to lock material A. Neither work process is successful because the materials already have locks on them. The work processes block each other. A deadlock is identified by the database instance and solved by sending an error message to one of the work processes. The corresponding ABAP program is terminated, and the error is logged in the SAP syslog.

You can avoid deadlocks with correct programming. In our example, the program should be changed so that its internal material list is sorted before any locks are set. Then the lock on material A will always be set before the lock on material B. Therefore, programs requiring the same materials are serialized and not deadlocked.

Deadlocks should occur very rarely. Frequent deadlocks indicate incorrect programming or configuration of the database instance.

If, in some database systems (for example, DB2 and SAP MaxDB), a work process places single-row locks on more than 10% of the single rows in a table, the locks are automatically replaced by table locks. Here, the database decides that it is more efficient to lock the entire table for a work process than to maintain several locks on individual rows. Table locking has consequences for parallel processing in background jobs, where each program is intended to update a different part of the same table at the same time. It is not possible to schedule background jobs so that one updates the first half of the table and the other updates the second half because the database may decide to lock the table exclusively for one of the jobs. One program that is particularly affected by this is the period closing program in materials management.

Table Locks

There are database parameters you can use to specify when the database should convert single-row locks to a table lock.

Sometimes, the database locks entire tables for administrative reasons. This happens when indexes are created or when particular tables and indexes are analyzed—for example, during the Oracle analysis VALIDATE STRUCTURE. If these actions are performed during production operation, substantial performance problems may result.

9.2.2 SAP Enqueues

SAP enqueues are managed in the enqueue table located in the global main memory of the enqueue server. The work processes in the enqueue server directly access the enqueue table; the enqueue server also carries out lock operations for work processes from other application servers, which are communicated via the message service (1 and 2 in Figure 9.2).
The following abbreviations are used in Figure 9.2: DIA for dialog work process, ENQ for enqueue work process, and ENQ tab for enqueue table.

![Figure 9.2](image)

Figure 9.2 Communication for Setting and Removing SAP Enqueues

For work processes in the enqueue server, setting and releasing locks takes less than 1 millisecond; for work processes in other application servers, it takes less than 100 milliseconds.

If an SAP enqueue is requested but already held by another user, the attempt to set a lock is rejected and an error message is sent back to the ABAP program. The application developer has to decide how to deal with this error message with suitable programming. For programs in dialog mode, the error message is normally forwarded to the user, for example, with the message "Material X is locked by user Y." For background programs, you will normally attempt to set the lock again later. After a certain number of unsuccessful attempts, an error message is written to the program log.

If SAP enqueues are held for too long, performance problems can arise because after a failed attempt, the user will repeat the entry. Take, for example, a user who needs to process a material list, and to do so needs to set 100 SAP enqueues. If the attempt to set lock number 99 fails, the program is interrupted with the message "Material number 99 is locked," and all of the previous system work is in vain and must be repeated. Therefore, rejected enqueue requests lead to higher system workload and restrict the throughput of transactions.

You can get an overview of all currently active SAP enqueues by using Transaction SM12, under the following menu:

Tools • **Administration** • **Monitor** • **Lock Entries**

Start the test programs under the following menu to diagnose errors:

Extras • **Diagnose** or **Extras** • **Diagnose in VB**

If errors are identified, check the SAP Service Marketplace for notes, or contact SAP directly.

You can view statistics on the activity of the enqueue server with the menu option **Extras** • **Statistics**. The first three values show the number of enqueue requests, the number of rejected requests (unsuccessful because the lock requested was already held by another), and the number of errors that occurred during the processing of enqueue requests. The number of unsuccessful requests should not be more than 1% of the total number of enqueue requests. There should be no errors.

9.3 Number Range Buffering

With many database structures, it is necessary to be able to directly access individual database records. You do this with a unique key. **Number ranges** assign a serial number that forms the main part of this key. Examples of these numbers include order numbers and material master numbers. SAP number range management monitors the number status so that previously assigned numbers are not re-issued.

9.3.1 Fundamentals

A business object for which a partial key must be created using the number range is defined in the SAP system as a **number range object**. A number range contains a **number range interval** with a set of permitted characters. The number range interval is made up of numerical or alphanumeric characters and is limited by the **From-Number** and **To-Number** fields. You can assign one or more intervals to a number range.

The current number level of a range, which is the number that is to be assigned next, is stored in the database table **NRIV**. If a program needs...
Index

A
ABAP, 465, 468, 787
web services, 372
ABAP application instance, 76, 265
ABAP Class Builder, 553
ABAP class library, 778
ABAP debugger, 183, 210, 226
ABAP Dictionary, 107, 480, 481, 503, 521, 551, 787
display, 778
maintenance, 778	
table, 778
ABAP Editor, 296, 512, 778
ABAP/heaplimit, 169
ABAP instance, 344
ABAP List Viewer, 205
Control, 348
ABAP objects, 553
ABAP program, 495, 501
quality analysis, 216
runtime analysis, 188
ABAP program termination, 291
ABAP repository information system, 778
ABAP runtime analysis, 201, 203, 226, 496
runtime error, 779
Web Dynpro applications, 202, 376
ABAP server, 155
statistics, 147
ABAP shared object, 293
ABAP trace, 65, 183, 201
summary, 208
single-transaction analysis, 209
variants, 205
ABAP web service
performance analysis, 373
ABAP Workbench, 216, 386, 515, 778
BSP development, 369
Access plan, 748
ACID principles, 787
Action profile, 176
Activation queue, 720
Active data, 720
Active session history, 100
Activity, 169
Adaptive Computing Controller, 258
Address space, 270, 787
Administration tool
database, 516
Agent, 173, 746, 748
Agent private memory, 746
Aggregate, 467, 603, 609, 651, 659, 681
compress, 611
create, 606
functions, 497
indexing, 610
maintenance, 609, 610
suggestion, 608
Aggregation, 206
Alert, 136
Alert messaging
automatic, 141
monitor, 787
server, 622, 627, 638
Allocation analysis, 424
Allocation rate, 429
Allocation trace, 457
American National Standards Institute
(ANSI), 787
Analysis linguistic, 619, 664
Analysis method, 135
Analytical applications, 562
APO server, 261
Appliance, 664
Application analysis, 145
business document volume, 779
Application buffer, 559
monitor, 279, 551
object-oriented, 521
Application error, 294
Application level, 38
Application Link Enabling (ALE), 787
Administration, 777
Application monitor, 779
Application optimization, 20
Application server, 41, 76, 155, 195, 787
Application Service Providing (ASP), 25
Application support layer, 746
Application tuning, 61, 30
Archiver stuck, 108, 164
Array fetch, 192
ATAB, 516
ATP logic, 398
ATP server, 304, 398, 400, 403
ATP service, 262, 303
Attribute, 563, 569, 575
display attribute, 569
navigation attribute, 569
Attribute index, 44
Attribute vector, 669, 677
Automatic workload repository, 100
Auto-reaction method, 141
Auxiliary storage pool, 282
Availability, 47, 176, 303
Availability check, 398, 553
Average response time, 170

B

Background job
scheduling monitor, 777
Background load, 165
Background processing, 787
analysis, 778
Background program, 230, 388
Background service, 262, 302, 304
Backup, 48, 49, 53
Backup index server, 642
Bandwidth, 674
BAPI, 787
Batch input, 176
Benchmark, 242, 245, 795
BEx analyzer, 565
BEx web analyzer, 565
bgRFC monitor, 338
Big Data, 24, 663
Binary search, 677, 730
Blade server, 664
Block, 92
Bottleneck analysis, 145, 306
Browser, 787
BSP applications
runtime analysis, 202, 376
B* tree, 590
Buffer, 43, 91, 521
access, 526
attribute index, 44
buffer hierarchy, 44
catalog buffer, 746
communication buffer, 746
database buffer, 44
data buffer, 92
data model-oriented, 44
get, 465
management, 526
metadata buffer, 742
object-oriented application buffer, 44
operating system buffer, 44
package buffer, 746
pool, 746
process buffer, 741
quality, 92, 110
setting, 114, 515
single-record buffer, 526
status, 539
storage subsystem, 44
synchronization, 528, 558, 777
synchronization monitor, 549
TABL, 526
table buffer, 44, 526, 557
TABLP, 526
trace, 188, 197
types, 44, 521, 523
Business hours, 53
Business process, 47
Business Server Pages (BSPs), 39, 347, 357, 367
Button, 788
BW Administrator Workbench, 591, 595, 608, 652, 777
BW aggregate maintenance, 777
BWA index, 652
checking and switching off, 653
maintain, 654
BW check report, 777
BW query, 562, 565
analysis, 580
background print, 601
BW Query Monitor, 777
BW workload statistics, 579
C

Calc engine, 684
CALL, 272
Catalog buffer, 556
Catalog cache, 732, 746
CA Wily Intrroscope, 65, 452, 457
Enterprise Manager, 454
WebView, 454
Workstation, 454
Central monitoring system, 174
Central SAP monitor, 65, 778
Central single-record statistics, 218
Change, 537, 545
Change and Transport Organizer, 788
Change and Transport System, 531
Change Log, 720
Change request, 531
Change run, 612, 656
Changing secondary indexes, 487
Characteristic, 563, 575
Characterizing parameters, 146
Checking group, 401
Checkpoint, 92
Check set, 627
Class loader, 409
Class statistic, 457
CLEAR statement, 213
Client, 788
Client destination statistics records, 333
Client/server architecture, 38
scalability, 46
Client statistics records, 333
Cloud application, 662
Cluster coding, 671
Clustered index, 774
CO, 788
Code cache, 416
Code completion, 703
Code Inspector, 183, 216, 226, 527, 702
Code push-down, 659, 681
Column-based data storage, 616, 659, 665, 667
Column store, 683, 694
Command monitor, 734
Common Programming Interface
Communication, 788
Compilation, 416
Compressibility, 680
Compression, 616, 625, 666, 668
class coding, 671
prefix coding, 671
run-length coding, 671
sparse coding, 671
Computer, 76, 124
Computer Center Management System (CCMS), 29, 35, 63, 134, 484, 788
Alert Monitor, 135, 330
monitoring, 134
monitoring tree, 138
System Component Recovery (SCR), 174
Concordance, 620
Concurrent mark-sweep collector, 412
Condition table, 535, 550
Connection view, 422
Consolidation strategy, 261
Container, 89
Context switch, 80, 271, 788
Continuous performance optimization, 57
Controls, 347
CO-PA Accelerator, 661
Core, 80, 742
Cost-based optimizer (CBO), 476
Coupling
hard, 321
soft, 321
CPU, 46, 80, 788
bottleneck, 81, 84, 106, 165
load, 79, 82, 106, 166, 250
requirement, 245, 343
resources, 305
sizing, 686
time, 156, 159, 162, 168, 187, 306
trace, 401
wait time, 307

Creating secondary indexes, 487
Cursor, 193
Cursor cache, 270
Cursor ID, 193
Customer interaction center, 212
Customizing, 788
Customizing data, 534
Customizing Organizer, 788

D
Data archiving, 788
Database, 76, 788
analysis, 728
buffer, 91, 665, 729
error log file, 105, 750
standstill, 108
tasks, 733
Database access, 183
fully qualified, 191
Database administration, 110
Database administrator cockpit see DBA Cockpit, 727
Database analysis, 89
Database Analyzer, 738
Database buffer, 91, 665
Database consolidation, 256, 260
Database global memory, 746
Database heap, 746
Database index
missing, 107
Database instance, 76, 289, 788
Database level, 40
Database load, 499, 722
Database lock, 104, 382, 383, 385, 450, 750, 789
IBM DB2 for z/OS, 762
Informix, 743
MaxDB, 717
monitor, 124, 386
SQL Server, 773
Database monitor, 64, 89, 118, 386, 727
Database object
missing, 777
Database operation, 192
Database optimizer, 107, 472, 475, 492, 702, 789
Cost-based (CBO), 107
Database performance monitor, 90, 779
Database performance problem, 167
Database procedure, 156
calls, 156
subrecord, 156
time, 156
Database process, 82, 698
monitor, 96, 124, 189, 450, 457, 733, 742, 755, 762, 773
Database processor, 106
Database query parallelization, 666
Database response times
long, 125
Database server, 40, 76, 789
Database service, 343
Database system, 76, 382, 788
parallel, 76
Database table, 561
Database time, 154, 162, 167, 168, 185
Database tuning, 30
Database view, 509, 660, 731, 739, 745, 752, 759, 765, 769, 775
Data buffer, 92, 93, 94, 746, 761, 771
Data cache, 92, 732, 771
Data Control Language (DCL), 789
Data Definition Language (DDL), 789
Datafile, 89
Data locality, 675
Data Manipulation Language (DML), 789
Data mining, 562, 664
Data modeling
SAP HANA, 679, 684
Data package, 612
Data retention
centralized, 642
decentralized, 642
DataStore object, 563, 564, 575
HANA-optimized, 717, 719
indexing, 593
Data volume, 737
transformed, 349
Data warehouse, 563
DB2 for LUW, 747

DBA, 789
DBA Cockpit, 90, 125, 386, 481, 483, 687, 727, 732
DB2 for IBM i, 755
DBA log, 777
DBA Planning Calendar, 483
Deadlock, 388, 789
Debugger, 417
Debugging, 211
Decomposition, 625
vertical, 625
Default data cache, 741
DELETE statement, 213
Delta index, 636, 639, 655, 672, 708, 710
activate, 640
integrate, 641
Demilitarized Zone (DMZ), 40, 264
Drop optimization, 416
Dequeue module, 384
Dequeue module, 384
Destination, 322, 326
Deoptimization, 416
Deoptimization, 416
Deoptimization, 416
Deoptimization, 416
Demilitarized Zone (DMZ), 40, 264
Drop optimization, 416
Dequeue module, 384
Dequeue module, 384
Destination, 322, 326
Deoptimization, 416
Deoptimization, 416
Deoptimization, 416
Deoptimization, 416
Deoptimization, 416
Fact table (Cont.)

index, 591
SAP HANA, 718
Failover recovery, 259
Failover solution, 304
FE Net Time, 350
Fetch, 537
Fetch operation, 192, 505
F fact table, 596
Fiber Distributed Data Interchange (FDDI), 790
File and network I/O analysis, 439
File operation, 439
Files statistics, 439
File system cache, 85
Firewall, 790
Flow, 563
FOR ALL ENTRIES, 505, 507, 509
Fragmentation, 547, 555
FREE statement, 213
Frontend
time, 350
trace, 221
Full table scan, 473, 480, 488, 589, 730
Function builder, 318
Function module, 317

Garbage collection (GC), 408, 409, 456, 790, 793, 809
analysis, 441, 457
collector, 412
compacting, 411
full, 410
JVM, 409
log, 415
mark and copy, 411
mark and sweep, 411
partial, 410
Gateway monitor, 324
Generation, 409
Generation time, 154
Global cache hit ratio, 762
Globally Unique Identifier, 790
GoingLive Check, 25, 295
GoingLive Functional Upgrade Service, 254
Gross-time optimization, 210
GUI, 790
communication, 350
time, 155, 187, 349, 352
GUID, 790

H

Hard disk, 674
access, 737
monitor, 773
Hardware, 46
analysis, 77
Hardware bottleneck, 82, 165, 166, 167, 168, 169
analysis, 79
Hardware capacity, 166
Hardware consolidation, 256, 258
Hardware landscape, 303
Hardware monitoring, 75
Hardware partner, 231, 234
Hardware sizing, 229, 231, 401
Hardware tuning, 29
Harmonization, 256
Hash table, 214
Heap, 272
dump, 447
dump analysis, 457
memory, 790
Hierarchy, 571, 575
High availability, 303, 304, 790
High-availability cluster, 259
High water mark, 115
Hints, 493
Hit ratio, 92
HotSpot, 102, 430, 676, 773
HotSpotJava Virtual Machine, 411
HPROF file, 447
HTML business template, 372
HTML Control, 348
HTTP call, 376
HTTP trace, 199, 225, 359
HTTPWatch, 364
HybridProvider, 563, 564

Hypertext Markup Language (HTML), 790
Hypertext Transfer Protocol (HTTP), 790

I

IAC, 790
IBM DB2
for IBM i, 753
for Linux, UNIX, and Windows, 746
for z/OS, 760
IBM DB2 for Linux, UNIX, and Windows
execution plan, 751
IBM i, 282, 754
IBM Informix Dynamic Server
execution plans, 744
IDES, 790
Index, 603, 659, 681, 707
administration, 480
B* index, 677
bitmap index, 590, 593
B* tree index, 593
BWA index, 652
concatenated, 679, 707
create, 480
divide, 637
efficient, 193
fragmentation, 485
inverted, 677, 707
logical, 623, 637
main memory, 616
maintain, 480
missing, 107
physical, 623, 637
primary index, 108
quality, 486
reorganize, 485
TREX index, 616
Indexing, 588, 645
Index range scan, 473, 480
Index scan, 590
Index servers, 623, 642, 683
Index unique scan, 473
Index update, 645
InfoCube, 563, 566, 575, 605
HANA migration, 777
HANA-optimized, 717
indexing in the BWA, 650
overview, 777
transactional, 591
InfoObject, 563
InfoProvider, 563, 575, 597
InfoSet, 563
Initial sizing, 232, 236
In-memory application, 662
In-memory computing, 616, 666
In-memory database, 674
Insert-only approach, 680
Installation
central, 303
distributed, 303
Integer ID, 668
Integrity, 48
Interaction model, 348
Interfaces, 301
Internal Document (IDoc), 791
IDoc type, 790
Internal table, 210
Internet Demo and Education System, 790
Internet Application Component, 790
Internet Communication Framework (ICF), 367, 370
Internet Communication Manager (ICM), 133, 262, 357, 359, 367, 621
monitor, 65, 133, 360, 373, 779
Internet connection, 347
Internet of Things, 663
Internet Pricing and Configuration (IPC), 261, 271, 341, 791
Interprocess Communication (IPC), 791
Intranet, 791
Intrinsic statistics, 174
Introscope Trace, 456
Invalidation, 114, 530, 531
I/O bottleneck, 86, 103, 194
I/O operation, 457
iSeries, 282
iView, 38
Java, 792
Java application instance, 76, 265
Java bytecode, 416
Java Development Kit (JDK), 408
Java Dictionary, 523, 556
Java heap, 409, 414, 457
analysis, 447
Java runtime, 421
JavaScript, 683
Java Server Page (JSP), 40, 347
Java Servlet, 40, 347
Java statistics, 173
Java trace, 65
Java Virtual Machine (JVM), 341, 407, 457, 792, 797
memory area, 409
work processes, 418
Java workload monitor, 178
Job analysis, 778
Job overview, 611
Join, 575, 590
Join engine, 684
Just-in-Time (JIT) compiler, 407, 408, 416, 431
Key figure, 146, 563
Key performance indicator (KPI), 135
Knowledge management (KM), 617
Landscape reorganization, 636, 638
Landscape replication, 684
Large I/O pool, 741
Latency time, 359, 440, 674
Leaf, 590
Linearity, 238
Line item dimension, 575, 719
Linux, 281
liveCache, 261
Load, 160, 170
inbound, 330
outbound, 330
Load distribution, 147, 166, 301
ABAP, 302
incorrect, 82, 127
new, 318
Load from external systems, 176
Loading, 566
Load profile, 147, 454
Load time, 154
Local Area Network (LAN), 45, 792
LAN check, 87
Local memory, 270
Lock, 381, 382, 437, 457
database lock, 382
lock conflict, 385
locking with quantities, 400, 401
lock object, 383
monitoring, 385
SAP enqueue, 382, 398
shared enqueues, 400
table lock, 389
wait situation, 381
Lock escalation, 737
Lock handler, 382
Locking with quantities, 304
Lock list, 746
Log area, 108, 737
Logical analysis, 61
Logical changes, 164
Logical unit of work (LUW), 336, 792
Logistic Information System (LIS), 317, 561
Logon group, 264, 308, 329
maintenance, 779
monitor, 303
Loop
nested, 214
Low-speed connection, 355
LRU, 792
Main memory (Cont.)
bottleneck, 81, 85, 165
buffering, 392
configuration monitor, 249
requirement, 283, 287
sizing, 685
workload, 80
Maintenance view DDRDIFFVIEW, 482
Master data, 534
Master data table indexing, 593
Master index server, 636, 642
Master service, 715
Memory
allocation, 117, 275, 691
area, 283, 298
available, 286
configuration, 112, 269
configuration monitor, 290, 295, 403, 543, 553, 555, 598, 779
extract, 212
fixed allocated (heap), 293
Inspector, 210, 212
 leak, 446, 449, 457
local, 270, 792
management, 792
physical, 118, 690
pipe, 133, 370
profile, 168
shared, 270
used, 691
virtual, 270, 691, 797
virtual required, 286
Memory Analyzer, 446, 457
Memory management, 116, 168
IBM i, 282
integrated, 409
Linux, 281
Merge, 640, 672, 710
auto merge, 711
critical merge, 712
hard merge, 711
smart merge, 712
Message server, 229, 263, 344
Message service, 262, 303
Metadata, 91
Method, 416, 457
memory requirement, 426
Method Parameter Trace, 457
Microsoft SQL Server, 470
Microsoft Windows, 280, 307
Migration, 255
Missing index, 481
Mobile client, 38
Mode, 272, 793
PRIV mode, 290
Mode list (mode list), 290
Model View Controller (MVC), 367
Modularization unit, 201, 210
Monitoring, 47, 55
central, 50
Monitoring agent, 140, 218
Monitoring plan, 47, 50
Monitoring system
central, 174
Monitoring tree, 138
Moore’s law, 793
Multicore processor, 80
Multilinguism, 575
MultiProvider, 563, 565, 575
Multithreaded CPU, 80
Name server, 621, 683
Nametab buffer, 522
Nested loop join, 50, 590, 745
Net time, 350
Network, 87, 194, 306
alert monitor, 779
connection, 439
graphics, 777
I/O and file I/O trace, 457
monitor, 779
operation, 439
problems, 194
transfer time, 365
tuning, 29
Non-dialog work processes, 277
Nonoptimal load distribution, 167
NRIV, 397
Number range, 391
buffering, 391, 393, 396
Number range (Cont.)
buffer mode, 397
interval, 391
number range level, 396
object, 391
Object Linking and Embedding (OLE), 793
OLAP, 246, 261, 562, 793
OLAP cache, 553, 576
configuration, 598, 777
monitor, 599, 777
monitoring, 596
OLAP engine, 683
OLAP processor, 576
Old generation, 409, 413
collectors, 412
Online Transaction Processing (OLTP), 246, 261, 562, 793
Open object, 772
Open operation, 192
Open SQL monitor, 451
Operating mode, 798, 793
Operating system, 269, 298, 793
command, 779
configuration parameter, 291
file, 777
limit, 295
monitor, 64, 77, 86, 124, 189, 249, 353, 753, 779
paging, 271
parameter, 87
process, 82
restrictions, 284
swap space, 291
Operation mode, 312
Optimization
technical, 20
Optimization plan, 47, 50
Oracle, 93, 767
Oracle wait event, 98
Outsourcing, 24
Package cache, 746
Package dimension, 572
Page in, 796
Page out, 796
Pages, 92
Parallelization, 666, 675, 715
Parameter change, 87
Parameter maintenance, 360
Parameters
characterizing, 146
Parsing, 472
Partitioning, 315, 625, 675, 716
area-based, 676
horizontal, 675
round robin, 676
vertical, 675
PASE runtime environment, 282
Passport, 173, 218, 793
Pending period, 529, 538
PERFMON program, 364
Performance, 48, 793
measurement, 348
Performance forum, 72
Performance HotSpot analysis, 430
Performance HotSpot Trace, 457
Performance indicator, 134
Performance management
proactive, 21
Performance problem
general, 161
specific, 161, 169
Performance trace, 188, 352, 585, 635
Performing sizing project, 238
Permanent generation, 409, 414
Permanent performance problem, 163
Physical main memory (RAM), 269, 283, 298
Physical read access, 92
Pivoting, 564
Planning application, 562
Plug-in, 37
Pool size, 649
Pop-up window, 793
Prefix coding, 671
Prepare, 193
Prepared statement, 761
Prepared templates, 372
Preprocessing
distribution, 637, 648
Preprocessor, 621, 637, 683
capacity, 649
configure, 648
modes, 648
Presentation level, 38
Presentation server, 41
analyses, 360
Presentation server trace, 362
Primary index, 471, 482, 730
Priority class, 339
Private mode, 126, 277
Probe, 453
Procedure cache, 771
Process
close, 127
eexternal, 84
stopped, 126
Process after input (PAI), 793
Process before output (PRO), 793
Process chain, 566
Process ID, 124
Processing time, 156, 159, 162
Processor, 80, 255, 788
Processor thread, 345
Profile parameter, 291
abap/atrapath, 203
abap/atrasizequota, 203
abap/heap_area_slu, 275, 278, 294, 296
abap/heap_area_nondia, 275, 278, 294, 297
abap/heap_area_total, 275, 278, 295
abap/heap_limit, 275
dbs/io_buf_size, 193
em/address_space_MB, 281
em/blocksize_KB, 274
em/initial_size_MB, 117, 274, 289, 295
em/max_size_MB, 281
maintain, 778
PHYS_MEMSIZE, 117, 281, 289
Profile parameter (Cont.)
rdisp/atp_server, 303
rdisp/bufrefmode, 530
rdisp/bufreftime, 530
rdisp/enqname, 303
rdisp/max_wprun_time, 309
rdisp/mshost, 303
rdisp/PG_MAXFS, 280
rdisp/PG_SHM, 280
rdisp/ROLL_MAXFS, 274, 295
rdisp/ROLL_SHM, 116, 274
rdisp/vb_dispatching, 316
rdisp/obj/buffersize, 401
rdisp/obj/max_objects, 401
rdisp/object/file, 189
rdisp/object/max_diskspace, 190
rdisp/object/setting, 295
stat/dbprocrec, 156
ztta/roll_area, 274, 278
ztta/roll_extension, 274, 278, 290, 294
ztta/roll_first, 275, 276, 278
Program
RSCOLLO, 152
SAP_COLLECTOR_FOR_PERFORMANCE, 152
saposcol, 79
Program buffer, 292, 522
Program counter, 80
Program error, 291
Program Global Area (PGA), 93
Program termination, 291
Promotion, 409
PTF package, 757
Python trace, 634
Queue server, 622, 623
configure, 637, 645
Quick Sizer, 232, 239, 298
Remote function call (RFC) (Cont.)
queued (qRFC), 322
statistics, 333
synchronous, 322
time, 326	race, 187, 188, 198
transactional, 797
transactional (bRFC), 322, 336
Rendering time, 365
Reopen operation, 192
Reorganization, 716
Replication, 642, 684
generic, 524
trigging, 643
Report, 561, 562
precalculation, 601
Report RSSNR0A1, 394
Request, 537, 545
Required field, 512
Reset or check the number range buffer, 190
Reset or check the number range buffer, 190
Resource requirements, 231, 238, 802
Resource monitor, 736
Resource requirements, 231, 238, 802
Response time, 326
synchronous, 322
time, 326
trace, 187, 188, 198
transactional, 797
transactional (bRFC), 322, 336
Rendering time, 365
Reopen operation, 192
Reorganization, 716
Replication, 642, 684
generic, 524
trigging, 643
Report, 561, 562
precalculation, 601
Report RSSNR0A1, 394
Request, 537, 545
Required field, 512
Reset or check the number range buffer, 177
Resource management, 259
Resource monitor, 736
Resource requirements, 231, 238, 802
Response time, 54, 55, 145, 156, 183, 305, 729
Response time distribution, 176
RFID, 794
Roll buffer, 288
Roll-in, 154, 273, 788
Roll memory, 294
Roll-out, 154, 273, 788
Rollup, 564
Roll wait time, 155, 187, 326, 349
Root recognition, 620
Roundtrip, 349, 440
Row-based read, 479
Row cache, 95
Row-ID, 471
Row store, 683, 697
Rule-based optimizer (RBO), 478
Run-length coding, 671
Runtime, 430
analysis, 146, 188, 201, 453
constant, 216
logarithmically increasing, 216
Quadratic dependency, 216
Quality analysis, 216
Quantity structure, 234
Query
analytic, 673
parallelization, 625
SAP GoingLive Check, 231, 235, 247
SAP GoingLive Functional Upgrade Check, 248
SAP GoingLive Migration Check, 248
SAP GUI, 347, 358, 794
controls, 347, 348
to-end-to-end runtime analysis, 222
for HTML, 37, 358
for Java environment, 37, 38, 358
for Windows, 37, 38, 358
transaction, 222
SAP HANA, 500, 659, 794
administration, 719
cloud application, 662
compression, 668
database platform, 661
indexing, 676
main memory area, 690
scalability, 500
scaling, 46
sizing, 685
SAP HANA Studio, 687
SAP heap memory, 115, 272, 274, 294, 298, 342
SAP host agent, 755
SAP Implementation Guide (IMG), 598, 779, 791
SAP instance, 76, 149, 257, 288, 791
maintenance, 777
overview, 778
SAP Internet Transaction Server (ITS), 39, 261, 271, 310, 356, 370, 791
external, 371
integrated, 279, 370, 779
monitor, 65
performance analysis, 373
status monitor, 372
SAP J2EE Engine, 35
SAP Java Virtual Machine (JVM), 408
SAP Java Virtual Machine Profiler, 419, 447, 457
SAP kernel, 295
SAP liveCache, 36, 147, 262, 728, 792
SAP logical unit of work (SAP LUW), 383
SAP Management Console, 417, 456
SAP MaxDB, 470, 732
command monitor, 735
execution plan, 738
resource monitor, 736
SAP memory area, 287
SAP memory configuration, 112, 126
monitor, 64, 112
SAP memory management, 168
SAP NetWeaver 7.40, 35, 528
SAP NetWeaver 7.30, 31
SAP NetWeaver Administrator, 64, 66
SQL trace, 450
SAP NetWeaver Application Server, 38, 356, 265
SAP NetWeaver Application Server (AS)
ARAP, 76, 265
SAP NetWeaver Application Server (AS)
Java, 35, 76, 265, 407
server node, 421
SQL trace, 450
SAP NetWeaver BW, 36, 359, 553, 561, 794
administration tools, 578
data selection, 594
frontend, 565
indexing, 588
monitor, 777
optimization, 586
performance optimization, 574
SAP HANA, 661
statistics, 581, 654
SAP NetWeaver BW Accelerator (BWA), 575, 578, 660, 795, 619, 624
creating indexes, 652
delta index, 655
indexing InfoCubes, 650
monitor, 777
sizing, 626
Workbench, 578
SAP NetWeaver Cloud, 662
SAP NetWeaver Enterprise Search, 36, 618, 794
SAP NetWeaver Portal, 36, 38
SAP NetWeaver Process Integration, 36, 787
Saposcol, 79
SAP paging, 271
memory, 279, 298, 555, 793
SAP parameter
tolerance, 119
SAP performance menu, 779
SAP performance trace, 183
SAP Product Lifecycle Management (SAP PLM), 35
SAP R/3, 22
SAP repository browser, 778
SAP remote system, 119
SAP role area
SAP resource database, 778
SAP repository, 778
SAP service, 794
SAP system
trace, 779
SAP system service, 794
SAP System Identifier (SID), 570, 795
SAP System Management Console, 417, 456
SAP System Trace, 119
SAP System Service, 229, 303
SAP Solution Manager, 71, 139, 148
SAP Solution Landscape, 35
SAP Solution Marketplace, 298
SAP Service, 70
analysis, 69
monitoring, 66
performance optimization, 69
service-level management, 57
scaling, 69
workload analysis, 69
SAP Standard Application Benchmark, 229, 242
SAP Supplier Relationship Management (SAP SRM), 35
SAP Supply Chain Management (SAP SCM), 35
SAP Sybase, 796
SAP Sybase ASE, 740
database process, 742
data buffer, 741
engine, 742
SAP S/4HANA, 357
SAP System Identifier (SID), 570, 795
table, 570
SAP system service, 794
SAP system trace, 779
SAP transaction, 383
SAP Web Dispatcher, 40, 229, 262, 264, 310
SAP work process, 41, 82, 104, 121, 289, 298, 733
overview, 121
Savpoint, 92
Scalability, 238, 716, 795
horizontal, 46, 795
program, 215
vertical, 46, 795
SD benchmark, 242
Search Engine Service (SES), 617
Secondary index, 469, 472, 480, 482
Select
identical, 195
SELECT * clause, 505
Selection screen, 511
Selectivity, 476, 478, 488
SELECT, indexed, 504
Semaphore, 125
Sensor data, 664
Sequential read, 192, 479, 730, 738, 745, 751, 757, 758, 762, 764, 768, 774
Segmentation, 125
Server, 77, 795
Server consolidation, 256, 259
Server destination statistics records, 333
Server profile, 167
Service, 302
maintenance, 202
Service-level agreement, 51
Service-level management (SLM), 51, 68, 71, 795
Service-level reporting, 51, 53, 56, 71
Service maintenance, 372, 376
Session, 341
external, 272
internal, 272
Session monitor, 96
Shadow process, 96, 98
Shared cache area, 95, 99
Shared memory, 270, 292, 341, 370, 398, 553, 746, 795
Transaction (Cont.)

BALE, 777
critical, 54
DB01, 91, 104, 384, 404
DB02, 91, 477, 777
DB05, 546, 777
DB12, 91, 777
DB13, 91, 777
DB13C, 91
DB20, 777
DB21, 483
DB24, 91
DB50, 732
DBACOCKPIT, 64, 124, 386, 481, 483, 687, 728, 732, 777, 789
DSWP, 178, 223, 454
DWDM, 348
LISTCUBE, 579, 777
Locking, 778
ME57, 511
OS06, 77
OS06N, 77
OS07, 77
OS07N, 77
OSS1, 777
response time, 183
RSA1, 578, 581, 591, 608, 652, 777
RSCUSTV14, 777
RSDDBWAMON, 627, 655, 777
RSDDV, 578, 627, 653, 777
RSMIGRHANADB, 721, 777
RSODSO_SETTINGS, 777
RSRAACLE, 599
RSRT, 579, 580, 585, 597, 627, 653, 777
RSRY, 655, 777
ST01, 779
ST02, 64, 112, 249, 286, 290, 293, 295, 403, 543, 553, 777
ST03, 64, 147, 149, 175, 303, 325, 330, 342, 373, 579, 582, 779
ST03G, 64, 173, 175
ST03N, 49, 251
ST04, 91, 118, 779
ST05, 188, 352, 463, 779
ST06, 64, 77, 91, 103, 119, 124, 249, 286, 353, 753, 777
ST06N, 77
ST07, 779
ST08, 779
ST09, 779
ST10, 779
ST11, 779
ST12, 207, 208
ST14, 779
ST22, 291, 779
STAD, 147, 175, 184, 325, 333, 342, 350, 375, 779
STAT, 536
STATTRACE, 173, 175, 219
STAMS, 779
STUN, 63, 779
SWIT, 779
SXM_BMON, 779
TREXADMIN, 125, 626, 630, 639, 643, 779
TU02, 779
VA01, 169
variant, 514
Transaction code, 797
Transaction data, 533
Transaction profile, 169
Transaction step, 151, 272
Transformation, 566
Transmission Control Protocol/Internet Protocol (TCP-IP), 796
Transparency, 672
Transport, 797
Transport domain, 797
Transport Domain Controller (TDC), 796
Transport management system (TMS), 779, 796
Transport Organizer (TO), 796
Tree, 590
Tree Control, 348
TREX, 36, 44, 262, 615, 660, 794, 797
administration, 779
applications, 617
architecture, 620
BWA, 624
compression, 668
distributed installation, 637
fundamentals, 616
monitoring server utilization, 628
optimization, 636
performance analysis, 628
process of a query, 622
Python trace, 634
reorganization, 638
replication, 642
RFC server, 650
search functions, 619
server overview, 630, 631
sizing, 624
tools, 626, 681
workload overview file, 633, 634
TREX index, 617
tRFC table, 337
Troubleshooting, 55
T-shirt sizing, 232
Tuning, 519
application tuning, 58, 72
program optimization, 59
technical, 57
Tupel reconstruction, 668

U

Unicode, 253, 271, 288
Unicode conversion, 253
Uniform Resource Locator (URL), 797
Unit dimension, 572
UNIX, 85, 307
standard implementation, 282
Update, 109, 313, 344
asynchronous, 314
deadlocked, 126
dispatching, 316
Dr. Thomas Schneider started his career at SAP AG in 1996. Among other things, he was in charge of the Center of Expertise for Performance in the Service & Support group and the responsible Support Alliance manager for key accounts. Since 2004 he has worked in the Research & Breakthrough Innovation group, where he first was responsible for IT Service & Application Management. Since 2009 he has focused on the Partner Development Infrastructure in the SAP Cloud organization as the responsible architect.