In Chapter 13, you'll learn how the new Information Design Tool is different from the Universe Design Tool, and how to perform the conversion from UNV to UNX.
The Universe Design Tool and Information Design Tool share many concepts. However, you must take some differences into consideration when converting universes.

13 Comparing the Universe Design Tool and Information Design Tool

Previous chapters have described the different capabilities of Information Design Tool (IDT). IDT is the successor of the Universe Design Tool, so most concepts are common to both tools, and IDT can be seen as a superset of the Universe Design Tool. However, there are some slight differences you need to know about when converting a universe created with the Universe Design Tool to the new universe format if you expect the converted universe to behave like the original one. This chapter compares the two tools on different topics:

- The main workflows and capabilities
- The connections created by the two tools
- The data foundation and the database schema made of tables, joins, and so on
- The business layer and its classes/folders and objects
- The prompts/parameters and lists of values
- The security proposed by the two tools
- Some usability differences

Finally, the chapter describes how a universe is converted and how to perform this conversion in IDT.

13.1 General

Table 13.1 describes the main differences between the Universe Design Tool and IDT.
Universe Design Tool vs. Information Design Tool

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generates universe (.unv) that can be consumed by the following:</td>
<td>Generates universe (.unx) that can be consumed by the following:</td>
</tr>
<tr>
<td>- SAP BusinessObjects Web Intelligence</td>
<td>- SAP BusinessObjects Web Intelligence</td>
</tr>
<tr>
<td>- SAP Crystal Reports 2013</td>
<td>- SAP Crystal Reports for Enterprise</td>
</tr>
<tr>
<td>- SAP BusinessObjects Explorer</td>
<td>- SAP BusinessObjects Explorer (relational only)</td>
</tr>
<tr>
<td>- Query as a Web Service</td>
<td>- SAP BusinessObjects Dashboards</td>
</tr>
<tr>
<td>- SAP BusinessObjects Live Office, through SAP BusinessObjects Web Intelligence and Query as a Web Service</td>
<td>- SAP Lumira (relational only)</td>
</tr>
<tr>
<td>- SAP BusinessObjects Dashboard, through Query as a Web Service</td>
<td>- SAP Predictive Analysis (relational only)</td>
</tr>
</tbody>
</table>

Workflow Comparison

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doesn’t differ between authoring and consumption resources; the only supported file is the universe that can be saved locally or exported to the Central Management Server (CMS) repository.</td>
<td>Separates the authoring and consumption workflows. For authoring, the data foundation and business layer are saved in a local project. For consumption, the universe can be published locally or in the CMS repository.</td>
</tr>
<tr>
<td>You connect to the CMS repository in the User Authentication dialog box. You can open only one session at a time. Before opening a new session, you must close the previous one.</td>
<td>You can access several CMS repositories simultaneously. All sessions are managed in a single location, the Repository Resources view, where you can define and save predefined sessions.</td>
</tr>
<tr>
<td>Doesn’t have collaboration mode.</td>
<td>Supports designers’ collaboration and resource synchronization in shared projects.</td>
</tr>
<tr>
<td>Supports linked universes.</td>
<td>Doesn’t support linked universes.</td>
</tr>
<tr>
<td>Doesn’t support custom user attributes.</td>
<td>Supports custom user attributes (as of SAP BusinessObjects BI 4.0 SP4).</td>
</tr>
</tbody>
</table>

Connections

- **Universe Design Tool**
 - Can display values for only one table or one column at a time. The values are displayed in columns.
 - Supports metadata exchange to automatically create universes from third-party databases models or export universes to these models.
 - Can’t convert a universe based on a relational source into a universe based on SAP HANA.
 - Proposes a Software Development Kit (SDK) that covers all Universe Design Tool capabilities.

- **Information Design Tool**
 - Uses a common SHOW VALUES editor to display data from connections, tables, columns, query results, and so on. This editor can display values for several tables or columns. It proposes an advanced graphical display with a large number of supported charts and filtering capabilities that can be used to profile data.
 - Doesn’t support metadata exchange.
 - Supports the conversion of a universe based on another database to a universe based on SAP HANA (as of SAP BusinessObjects BI 4.1).
 - As of SAP BusinessObjects BI 4.1, it proposes an SDK that supports only simple workflows. Since its first release in SAP BusinessObjects BI 4.0 SP4, this SDK has been updated with new methods in SAP BusinessObjects BI 4.0 SP5 and SAP BusinessObjects BI 4.1.

Table 13.1 Workflow Comparison (Cont.)

13.2 Connections

Table 13.2 compares the different connections supported by the Universe Design Tool and IDT.
Table 13.2 Connection Support Comparison

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports two local connection types:</td>
<td></td>
</tr>
<tr>
<td>- Personal: Can be used only on the computer on which it was created.</td>
<td></td>
</tr>
<tr>
<td>- Shared: Created locally on the computer but can be used by all users.</td>
<td></td>
</tr>
<tr>
<td>Supports a secured connection, which is the connection created in the CMS repository.</td>
<td></td>
</tr>
<tr>
<td>Supports relational connections based on Connection Server and in common with IDT (interoperability).</td>
<td></td>
</tr>
<tr>
<td>Supports SAP NetWeaver BW and SAS relational connections through SAP BusinessObjects Data Federator XI 3.0.</td>
<td></td>
</tr>
<tr>
<td>Supports OLAP connections based on Connection Server created in the Universe Design Tool.</td>
<td></td>
</tr>
<tr>
<td>Doesn’t support OLAP connections created in IDT or CMC.</td>
<td></td>
</tr>
<tr>
<td>Supports connections based on stored procedures and Java beans.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information Design Tool</th>
<th>Universe Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports only one local connection, the one you create in a local project.</td>
<td></td>
</tr>
<tr>
<td>Supports a secured connection, which is the connection created in the CMS repository. To reference a secured connection, you must use a connection shortcut.</td>
<td></td>
</tr>
<tr>
<td>Supports relational connections based on Connection Server and in common with the Universe Design Tool (interoperability).</td>
<td></td>
</tr>
<tr>
<td>Multisource data foundation supports SAP NetWeaver BW or SAS relational connections based on the Federation Query Server. These connections can only be created in the CMS repository. It isn’t possible to create them locally. Supports also OLAP connection to SAP NetWeaver BW.</td>
<td></td>
</tr>
<tr>
<td>Doesn’t support OLAP connections based on Connection Server created in the Universe Design Tool.</td>
<td></td>
</tr>
<tr>
<td>Supports OLAP connections created in IDT or CMC. These connections can be used for multidimensional universes or direct access (for SAP systems).</td>
<td></td>
</tr>
<tr>
<td>Doesn’t support connections based on stored procedures and Java beans.</td>
<td></td>
</tr>
</tbody>
</table>

Supports connections created in SAP BusinessObjects Data Federator XI 3.0.

Supports the use of @variable in connection parameters.

Relational connection, for which you have the `DOWNLOAD CONNECTION` locally right granted, uses local middleware.

Can’t copy a local connection into the CMS repository.

You can navigate in the database structure but not in the database data.

You can send SQL queries to the database, but they are only validated and no data is returned. You can’t send direct MDX queries.

Table 13.2 Connection Support Comparison (Cont.)

| Support connections created in SAP BusinessObjects Data Federator XI 3.0, but supports multisource data foundations (as of SAP BusinessObjects BI 4.0) and federated tables (as of starting from SAP BusinessObjects BI 4.1). |
| Supports new connectivity types: Hadoop, Web Service, OData, and so on. |
| Supports the use of `@variable` in connection parameters, except if used in the `BEGIN_SQL` parameter, which can be set in the data foundation or in the business layer. |
| Allows you to choose either local or server middleware to use a relational connection for which you have the `DOWNLOAD CONNECTION` locally right granted. |
| Can publish a local connection into the CMS repository and copy its parameters in this newly created secured connection. |
| In the connection editor, you can navigate in the database structure and use the `SHOW VALUES` view to preview, filter, and analyze data, and then display the data using charts. |
| You can run custom SQL queries directly to a relational database or run custom MDX queries directly to an OLAP database. |

Table 13.2 Connection Support Comparison (Cont.)
13.3 Data Foundation

In the Universe Design Tool, the data foundation doesn’t exist, but it can be seen as the database schema—the set of tables and joins—used in the universe. Table 13.3 compares the concepts supported by the Universe Design Tool for this underlying model and data foundation created for relational universes in IDT.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>The database schema can only be used in one universe, unless you duplicate it.</td>
<td>A data foundation can be reused by several different business layers and, therefore, by several universes.</td>
</tr>
<tr>
<td>Displays the database schema as a whole.</td>
<td>Supports data foundation views.</td>
</tr>
<tr>
<td>Doesn’t support table grouping and colors.</td>
<td>Supports families to organize tables and assign them a color.</td>
</tr>
<tr>
<td>Doesn’t support calculated columns.</td>
<td>Supports calculated columns.</td>
</tr>
<tr>
<td>Defines context by explicitly adding all joins that may contribute to the context.</td>
<td>Defines contexts by adding only the necessary joins. It’s no longer mandatory to explicitly include or exclude all data foundation joins.</td>
</tr>
<tr>
<td>Generates only single-source universes.</td>
<td>Supports relational multisource data foundations.</td>
</tr>
<tr>
<td>Multisource is supported through a connection created in SAP Business-Objects Data Federator XI 3.0.</td>
<td></td>
</tr>
<tr>
<td>Doesn’t support tables that query different data sources, unless they are defined in SAP BusinessObjects Data Federator XI 3.0.</td>
<td>Supports federated tables (as of SAP BusinessObjects BI 4.1).</td>
</tr>
<tr>
<td>Can show the tables used by an object or the objects depending on a table.</td>
<td>Can show full dependencies between business layers, data foundations, objects, tables, and columns.</td>
</tr>
<tr>
<td>Supports strategies.</td>
<td>Doesn’t support strategies.</td>
</tr>
</tbody>
</table>

Table 13.3 Data Foundation Comparison

13.4 Business Layer

In the Universe Design Tool, the business layer doesn’t exist, but it can be seen as the set of objects exposed by the universe to client tools. In the business layer, IDT proposes new concepts compared to the classes and objects supported in the Universe Design Tool. Table 13.4 lists these IDT enhancements.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports relational objects: dimensions, details, and measures organized in classes.</td>
<td>Supports the same relational objects that have been renamed into dimensions, attributes, and measures. These objects are organized in folders.</td>
</tr>
<tr>
<td>Supports a flat representation of OLAP universe through the relational objects: dimensions, details, and measures.</td>
<td>Supports multidimensional business layer and multidimensional objects: hierarchies, levels, calculated members, calculated measures, analysis dimensions, and named sets.</td>
</tr>
<tr>
<td>Supports calculated measures with restrictions.</td>
<td>Supports full MDX expressions in these multidimensional objects.</td>
</tr>
<tr>
<td>Doesn’t take advantage of multidimensionality of hierarchies in OLAP universes.</td>
<td>Proposes a Member Selector dialog box to select members in a multidimensional hierarchy and use OLAP operators.</td>
</tr>
</tbody>
</table>

Table 13.4 Business Layer Comparison
<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>In an OLAP-generated universe, the objects can be edited.</td>
<td>In a multidimensional business layer created from an OLAP data source, the generated objects, especially the query that defines the object, can't be modified. However, you may add new objects to the business layer.</td>
</tr>
<tr>
<td>A WHERE clause can be added to an object in an OLAP universe.</td>
<td>It is not possible to add a WHERE clause to an object in a multidimensional universe.</td>
</tr>
<tr>
<td>Only four object types are supported: character, date, long text, and number.</td>
<td>More object types are supported: Boolean, date, date/time, long text, numeric, and string. Binary large objects ("blobs") are also supported, but no client tools can take advantage of them at this time.</td>
</tr>
<tr>
<td>A folder name is unique in a universe.</td>
<td>A folder name is unique only under its parent folder.</td>
</tr>
<tr>
<td>An object can have the Active or Hidden states.</td>
<td>An object can have the Active, Hidden, or Deprecated states.</td>
</tr>
<tr>
<td>Doesn't support measure details.</td>
<td>Supports measure attributes.</td>
</tr>
<tr>
<td>Doesn't support custom properties, except through the SDK.</td>
<td>Supports custom properties for the business layer, dimensions, attributes, measures, filters, folders, and parameters.</td>
</tr>
<tr>
<td>Classes and objects are exposed as a whole in the universe.</td>
<td>Supports business layer views that may contain subset of folders and objects. Views can be used in the business layer editor and also in the query panel.</td>
</tr>
<tr>
<td>Classes and objects depend on the database schema on which they have been created.</td>
<td>It's possible to change the data foundation on which a business layer relies.</td>
</tr>
<tr>
<td>Filters in relational universes are defined with an SQL expression.</td>
<td>Supports also business filters, where the condition is expressed based on objects of the business layer.</td>
</tr>
<tr>
<td>Filters in OLAP universes are defined with an XML expression.</td>
<td>Business filters are the only filters supported in multidimensional universes.</td>
</tr>
</tbody>
</table>

Table 13.4 Business Layer Comparison (Cont.)

13.5 List of Values and Parameters

Among IDT changes, the list of values, prompts, and renamed parameters have been completely redesigned to offer new capabilities and easier usability. Table 13.5 lists these enhancements.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lists of values are only defined in an object, which can have only one list of values associated.</td>
<td>Lists of values are defined in a data foundation or a business layer. Their editor contains a dedicated panel to manage these lists of values.</td>
</tr>
</tbody>
</table>

Table 13.5 List of Values and Prompt Comparison
Comparing the Universe Design Tool and Information Design Tool

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>A list of values can only be used in the object where it's defined. It isn't possible to use the same list of values for several objects.</td>
<td>The same list of values isn't limited to a single object. It's global to the data foundation or business layer where it's defined. It can be reused by several objects, prompts, or filters.</td>
</tr>
</tbody>
</table>
| Supports only lists of values defined from the following:
 ▶ An object's values (by default)
 ▶ The query panel | Supports list of values defined from the following:
 ▶ An object values (except if it's defined in a data foundation). Object values can be retrieved from the following:
 ▶ The query panel
 ▶ A custom hierarchy
 ▶ A static list
 ▶ An SQL expression |
| Uses an object to attach a list of values to a prompt or a filter. | Can directly attach a list of values to a prompt, a parameter, a filter, or an object. |
| If the list of values is defined with several columns, only the first column is used to return values. | If the list of values is defined with several columns, you can define which column returns values. Furthermore, if the list of values is re-used in several places, you can select for each case a different column to use. |
| Supports cascading lists of values. | Supports cascading and hierarchical lists of values. |
| Can't use lists of values content in an SQL script. | Supports the @execute function to return the list of values content in an SQL script. |
| Prompts are expressed using the @prompt built-in function. | Supports the same @prompt function but also a new object called parameter. Parameters are also used to prompt values, but are simpler to create, richer, and can be reused. |

Table 13.5 List of Values and Prompt Comparison (Cont.)

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>In the @prompt function, the object is identified by its parent name and its name.</td>
<td>In the @prompt function, the object is identified by its full parent path and its name.</td>
</tr>
<tr>
<td>Prompts are identified by the question prompted to the user.</td>
<td>Parameters are identified by a name that can be different from the question prompted to the user. They can also have a description.</td>
</tr>
<tr>
<td>Prompts can only be answered by the user (prompt to user).</td>
<td>Supports parameters prompted to users and also parameters with preset values.</td>
</tr>
<tr>
<td>Proposes a wizard to create @prompt expressions.</td>
<td>The wizard is no longer available to generate @prompt expressions. The editor is available to create parameters only.</td>
</tr>
<tr>
<td>Supports cascading prompts.</td>
<td>Supports cascading and hierarchical parameter dependencies.</td>
</tr>
<tr>
<td>The @prompt function supports alphanumeric, numeric, and date prompt.</td>
<td>The @prompt function supports alphanumeric, numeric, date types, and K-prompts, which return a not-quoted string to give more flexibility when concatenating strings in an expression.</td>
</tr>
<tr>
<td>Using a key to compare values is named the PRIMARY KEY option.</td>
<td>Supports the same option, but it has been renamed as INDEX AWARE PROMPT.</td>
</tr>
<tr>
<td>Only OLAP universe supports optional prompts.</td>
<td>Relational and multidimensional universes support optional prompts used in business filters.</td>
</tr>
</tbody>
</table>

Table 13.5 List of Values and Prompt Comparison (Cont.)

Security

In IDT, security profiles are the equivalent of the Universe Design Tool access restrictions. However, they have been extended. Let’s see how they can compare with one another, in terms of their functional behavior and aggregation as well as their user interface.
13.6.1 Access Restrictions and Security Profiles (Relational Universe)

In IDT, access restrictions have been replaced and extended by data security profiles and business security profiles. Table 13.6 points out the differences between the two concepts for a relational universe.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
</table>
| Supports access restrictions to secure universes: Connection, SQL, Controls, Objects, Rows, and Table Mapping. | Supports data and business security profiles:
- Connections, SQL, Controls, Rows, and Tables data security profiles are the equivalent of connection, SQL, controls, rows, and table mapping access restrictions.
- Create Query and Display Data business security profiles are the equivalent of objects access restriction. The first secures objects and views in the query panel, whereas the second secures objects that retrieve data. They have been adapted to also support multisource universes. The Filters business security profile can also be used to filter data but through conditions expressed on business layer objects. Such a filter is always applied to the query, while a Rows data security profile is added only if its conditional table is used in the query. |
| Supports the LIMIT SIZE OF LONG TEXT OBJECTS to parameter in controls access restriction. | Doesn’t support this parameter anymore in the Controls data security profile. Other parameters are equivalent. |
| Supports the WARN CARTESIAN PRODUCT option in the SQL access restriction. | Doesn’t support this option anymore in the SQL data security profile. |
| Objects access restriction is used to deny objects. By default, a user can see all objects and classes in the universe, except the ones denied by the Objects access restriction. | Uses the Create Query and Display Data business security profiles to grant or deny objects. When a data security profile is assigned to a user, all objects and views are, by default, denied to him. Create Query and Display Data business security profiles are used to grant or deny objects or views. |

Table 13.6 Relational Universe Security Comparison

13.6.2 Access Restrictions and Security Profiles (OLAP Universe)

In the Universe Design Tool, the access restrictions you can define for an OLAP universe are a limited subset of the access restrictions types supported by relational universes. Indeed, they secure generic database concepts without being specific to relational databases: connection, controls, and objects.

IDT doesn’t convert the OLAP universes created with the Universe Design Tool. However, the multidimensional universes created in IDT can be secured by business security profiles. Table 13.7 compares the security concepts enforced by the two tools.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports the CONNECTION access restriction.</td>
<td>Supports the CONNECTION business security profile for multidimensional universes (as of SAP BusinessObjects BI 4.1).</td>
</tr>
<tr>
<td>Supports an alias table as the source or replacement table in the TABLE MAPPING access restriction.</td>
<td>Supports only the data foundation table as a replacement table in the TABLES data security profile. It’s no longer possible to type free text as the replacement table, and thus define the dynamic table (using @prompt or @variable).</td>
</tr>
<tr>
<td>Supports @variable use in the Rows access restriction. It can substitute for predefined parameters.</td>
<td>Supports @variable use in the Rows data security profile and Filters business security profile. It can substitute for predefined parameters or custom user attributes.</td>
</tr>
</tbody>
</table>

Table 13.7 OLAP and Multidimensional Universe Security Comparison
Comparing the Universe Design Tool and Information Design Tool

13.6.3 Aggregation

In addition to the differences in the access restriction and security profiles behavior, IDT offers more options to aggregate security profiles. These differences are listed in Table 13.8.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports only one access restriction.</td>
<td>Support for business security profiles:</td>
</tr>
<tr>
<td></td>
<td>CREATE QUERY, to secure the business layer objects and views</td>
</tr>
<tr>
<td></td>
<td>DISPLAY DATA, to secure the objects to query data</td>
</tr>
<tr>
<td>Object access restriction is used to deny objects. Can see all objects and classes in the universe, except the ones denied by the objects access restrictions that apply to him.</td>
<td>CAN’T FILTER DATA returned by an OLAP universe. The Filters business security profile can secure hierarchies members.</td>
</tr>
</tbody>
</table>

Table 13.7 OLAP and Multidimensional Universe Security Comparison (Cont.)

13.6.4 Security Editor

IDT proposes the **Security Editor** which is dedicated to creating, editing, assigning, and managing security profiles. This editor is more complete and offers more capabilities than the security management dialog box you can use in the Universe Design Tool. The main differences between the two tools are listed in Table 13.9.
Comparing the Universe Design Tool and Information Design Tool

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must import the universe to edit its access restrictions and the user(s) and/or group(s) they are assigned to.</td>
<td>Can edit a universe security profiles and the user(s) and/or group(s) they are assigned to without importing it.</td>
</tr>
<tr>
<td>Can display and manage the access restrictions of only one universe at a time.</td>
<td>Displays in the Security Editor an overview of all universes in the CMS repository and all of their security profiles. Furthermore, the Security Editor can display all universes that have security profiles explicitly assigned to a user or a group.</td>
</tr>
<tr>
<td>Can’t run secured queries.</td>
<td>Can run a query from a universe published in the CMS repository. Security assigned to the connected user applies.</td>
</tr>
<tr>
<td>Can’t display inherited security profiles.</td>
<td>Can display security profiles inherited by a user or a group.</td>
</tr>
</tbody>
</table>

Table 13.9 Security Editor Comparison

13.6.5 Central Management Console Rights

Both applications can benefit from the BI platform framework and define some security rights. These rights slightly differ, as described next.

Application Rights

The authoring workflows in the Universe Design Tool and IDT are different. This affects the specific rights supported by the two tools. Table 13.10 compares and shows the equivalencies between these rights.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLY UNIVERSE CONSTRAINTS</td>
<td>ADMINISTER SECURITY PROFILES</td>
</tr>
<tr>
<td>N/A</td>
<td>Publish universes</td>
</tr>
<tr>
<td>N/A</td>
<td>RETRIEVE UNIVERSES</td>
</tr>
<tr>
<td>CREATE, MODIFY, OR DELETE CONNECTIONS</td>
<td>CREATE, MODIFY, OR DELETE CONNECTIONS</td>
</tr>
</tbody>
</table>

Table 13.10 Application-Specific Rights Comparison

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECK UNIVERSE INTEGRITY</td>
<td>N/A</td>
</tr>
<tr>
<td>REFRESH STRUCTURE WINDOW</td>
<td>N/A</td>
</tr>
<tr>
<td>USE TABLE BROWSER</td>
<td>N/A</td>
</tr>
<tr>
<td>LINK UNIVERSE</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>USE SHARED PROJECTS</td>
</tr>
<tr>
<td>N/A</td>
<td>SAVE FOR ALL USERS</td>
</tr>
<tr>
<td>N/A</td>
<td>COMPUTE STATISTICS</td>
</tr>
</tbody>
</table>

Table 13.10 Application-Specific Rights Comparison (Cont.)

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE AND EDIT QUERIES BASED ON UNIVERSE</td>
<td>CREATE AND EDIT QUERIES BASED ON THE UNIVERSE</td>
</tr>
<tr>
<td>EDIT ACCESS RESTRICTIONS</td>
<td>EDIT SECURITY PROFILES</td>
</tr>
<tr>
<td>ASSIGN SECURITY PROFILES</td>
<td></td>
</tr>
<tr>
<td>DATA ACCESS</td>
<td>DATA ACCESS</td>
</tr>
<tr>
<td>UNLOCK UNIVERSE</td>
<td>N/A</td>
</tr>
<tr>
<td>NEW LIST OF VALUES</td>
<td>N/A</td>
</tr>
<tr>
<td>PRINT UNIVERSE</td>
<td>N/A</td>
</tr>
<tr>
<td>SHOW TABLE OR OBJECT VALUES</td>
<td>N/A</td>
</tr>
<tr>
<td>N/A</td>
<td>RETRIEVE UNIVERSE</td>
</tr>
</tbody>
</table>

Table 13.11 Universe-Specific Rights Comparison

13.6.6 Connection Rights

In the Universe Design Tool, relational universes are created on top of relational connections that are also supported by IDT. During conversion in the CMS repository,
these connections aren’t converted, and their general and custom rights are similarly enforced in the two tools.

OLAP connections created in the Universe Design Tool aren’t supported by IDT, and there is no conversion path between these connections and the OLAP ones supported by IDT.

13.7 Miscellaneous

In addition to the functional changes described previously, IDT also presents some differences in usability and its framework compared to the Universe Design Tool. These main changes are listed in Table 13.12.

<table>
<thead>
<tr>
<th>Universe Design Tool</th>
<th>Information Design Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has only one menu bar and toolbar.</td>
<td>Displays in the menu bar and toolbar only the main commands. Most commands are contextual and displayed in each editor and view toolbar.</td>
</tr>
<tr>
<td>Supports a Scan and Repair command.</td>
<td>Supports the Check Integrity command you can run on different locations to validate the following:</td>
</tr>
<tr>
<td></td>
<td>- A data foundation or business layer, before saving or publishing them</td>
</tr>
<tr>
<td></td>
<td>- A published universe and its security Each rule result status can be categorized as an error, a warning, or information.</td>
</tr>
<tr>
<td>Copying objects between two universes works perfectly.</td>
<td>We don’t recommend that you copy objects between two data foundations or business layers because it may lead to erroneous results.</td>
</tr>
<tr>
<td>Can create .pdf reports that document the universe.</td>
<td>Can create .pdf, .html, or .txt reports that document the business layer or data foundation.</td>
</tr>
<tr>
<td>Supports a split screen for the tables and joins schema.</td>
<td>Doesn’t support a split screen, but different editors can be organized and displayed side by side.</td>
</tr>
<tr>
<td>Supports only online help.</td>
<td>Supports online help, context help, cheat sheets, and a WELCOME page.</td>
</tr>
</tbody>
</table>

Table 13.12 Additional Differences

Even with this list of differences, universes created in both tools remain similar and answer the same objectives and requirements. Universes created with IDT propose more capabilities than universes created with the Universe Design Tool, which brings universe conversion to the table. Conversion of the universes created in the Universe Design Tool to the IDT format is a straightforward process.

13.8 Universe Conversion

IDT can convert a universe created with the Universe Design Tool to save it in the new file format supported by IDT. You may also use the semantic layer Java SDK to run this conversion, especially if you have a large number of universes to convert, because IDT can only convert one universe at a time.

This section first lists the universes that can be converted or not before describing how this conversion differs between local and secured universes, especially for connections. The universe conversion is covered next, including the specific case of linked universes. Finally, the section ends by describing the security conversion: rights, access restrictions, and object access levels.
13.8.1 Universe Conversion Scope

The following universes created in the Universe Design Tool can’t be converted because IDT doesn’t support them:

- Relational universes based on a stored procedure or on a Java bean.
- Relational universes based on an SAP Business Objects Data Federator XI 3.0 connection.
- OLAP universes based on an OLAP connection created with the Universe Design Tool. Only relational universes can be converted, and the remainder of this section focuses only on relational universe.
- OLAP connections created in the Universe Design Tool aren’t converted because OLAP universes aren’t converted by IDT.

Oracle OLAP 9i and Oracle OLAP 10g

Relational universes based on a relational connection to Oracle OLAP 9i and Oracle OLAP 10g can be converted by IDT, but they use hints in the joins between tables that are not supported in IDT data foundation, so queries on the converted universe fail.

Universe conversion generates a relational universe that complies with the different layers in IDT. The converted universe contains the three resources described in previous chapters:

- Connection or connection shortcut in case of a secured universe
- Data foundation
- Business layer

If the universe is a secured universe saved in the CMS repository, its security is converted as well. Security in IDT reuses and extends the Universe Design Tool’s security, so the conversion is done with respect to the original universe’s security.

SAP BusinessObjects Web Intelligence Change Source

Converting a universe doesn’t change the reports that use it. For example, SAP BusinessObjects Web Intelligence supports universes created with both tools. After the universe conversion, you need to explicitly change the original universe used by Web Intelligence documents so they can access the converted universe. Otherwise, they keep consuming the universe created with the Universe Design Tool.

13.8.2 Local versus Secured Universe Conversion

IDT can convert both local relational universes and universes saved in the CMS repository. If the universe is local, then the conversion also generates the different resources in a local project. The relational personal or shared connection used by the source universe is converted into the equivalent local connection in IDT. The same parameters are used to recreate the local connection embedded in the converted universe, as shown in Figure 13.1.

You can republish the generated resources to generate a local .unx universe that can be consumed by client tools.

In a local conversion, there are no access restrictions or security rights to convert. A local conversion can convert universes created in previous releases (SAP BusinessObjects XI R2 or SAP BusinessObjects XI 3.x), whereas a secured conversion must have a universe created or upgraded in a CMS repository of a SAP BusinessObjects BI 4.x system.

If the universe is secured, then the conversion generates the converted universe in the same CMS repository. This universe reuses the same secured relational connection used by the source universe, as shown in Figure 13.2. The generated universe contains a connection shortcut to this secured connection.
Comparing the Universe Design Tool and Information Design Tool

CMS Repository
RDBMS
Convert .unv .unx

Figure 13.2 Secured Universe Conversion

The conversion of the universe itself is done through the creation of the data foundation and business layer. These resources are converted in the same manner in a local conversion or a conversion in the CMS repository.

13.8.3 Data Foundation and Business Layer

When a universe is converted, the created data foundation and business layer are defined to behave as in the original universe. A single-source data foundation is created for the converted universe. As shown in Chapter 5, Section 5.1, this data foundation can’t be enabled for multisource. The database schema used in the universe is recreated in this data foundation. The tables, including alias and derived tables, their columns, the joins that link them, and the contexts are recreated in this data foundation with the same properties. This data foundation contains only one view—the master view. The conversion also creates a business layer that relies on this data foundation.

The converted business layer is created with only one business layer view. The objects (dimensions, measures, details, filters) and classes from source universe are converted in the converted business layer as objects (dimensions, measures, attributes, filters) and folders with the same properties: name, description, SELECT and WHERE clauses, extra tables, translations, and so on. These objects are organized in the same folders in which the corresponding objects are organized in the source universe.

Prompts can be either converted as @prompt or as parameter objects. You select this option in the conversion wizard (see Section 13.9).

Lists of values associated with objects are converted as explicit lists of values based on business layer objects in the business layer. These new lists of values are based on the query panel and are attached to their corresponding objects. But lists of values using custom SQL are converted into list of values based on business layer objects with custom SQL.

Universe parameters are converted and set either in the data foundation or in the business layer, depending on the place where they were defined in the original universe.

13.8.4 Linked Universe

Linked universes used in the Universe Design Tool to reference a core universe in a derived universe are no longer supported in IDT, but they can be converted by IDT. During the conversion, the core universe is explicitly copied in the converted derived universe, as shown in Figure 13.3.

The converted universes are still working and expose the same list of objects as the source universe. The dynamic link provided by the core universe is no longer provided in the converted universes, so you can’t make changes in the core that are inherited by all derived universes. Such changes must be explicitly made in every converted universe.

Figure 13.3 Linked Universes Conversion

Although their behaviors are different, reusability can also be achieved in IDT by doing the following:

- Sharing a data foundation with several business layers
- Creating one single universe with the following:
Comparing the Universe Design Tool and Information Design Tool

The folders and objects of the core universe and its derived universes

Several business layer views, one for each derived universe, each view containing the objects and folders of this derived universe before the conversion.

13.8.5 Universe Rights Conversion

When a secured universe is converted, its security rights settings are also converted to secure as identically as possible the converted universe. Its rights access levels and advanced security rights settings are recreated and assigned to the converted universe for the same groups and users.

Because the rights differ between the two universe types, a mapping is done between them during conversion:

- The value for all general Create and Edit queries based on this universe and Data access rights are identically set.
- The Edit access restrictions right is no longer supported by IDT, but its value is set to Edit security profiles and Assign security profiles rights.
- The following rights are no longer supported by IDT, thus their values aren’t kept during conversion: Unlock universe, New list of values, Print universe, and Show table or object values.

13.8.6 Access Restriction Conversion

The security defined in IDT is a super-set of the security set in the Universe Design Tool and the access restriction conversion is done by mapping its parameters to equivalent security profiles. However, the slight differences between access restrictions and security profiles require some adaptation during the conversion phase to get the same behavior applied to the converted universe as in the original universe.

For each universe to convert, each access restriction generates one or several data security profiles and/or a business security profile. By default, a Universe Design Tool access restriction is converted into a data security profile and assigned to the same user and group. The name of this data security profile is the name of the access restriction. The definition of this data security profile is directly retrieved from the access restriction definition (connection, controls, SQL, rows, and table mapping security).

In IDT, however, priority is no longer defined at the group level but at the data security profile level. If the access restriction is assigned to more than one user or group, and if this conversion doesn’t allow the converted security to properly reflect the same security as in the source universe, then the access restriction is converted into several data security profiles, one for each user or group.

The names of these data security profiles are the names of the access restriction followed by the user or group names: <Access Restriction Name>_<user or group name>. The definitions of these data security profiles are all identical and are directly retrieved from the access restriction definitions (connection, controls, SQL, rows, and table mapping security). These data security profiles are assigned to the same users and groups as their corresponding access restrictions and are prioritized using the group priority in the Universe Design Tool.

If the access restriction defines the objects access restriction, then a business security profile is created and attached to the converted universe. This business security profile has the same name as the access restriction, and it defines both Create Query and Display Data business security profiles to deny the same objects denied in the objects access restriction:

- In Create Query, the master view is granted and all objects and classes denied in the access restriction are denied in the security profile.
- In Display Data, the All objects shortcut is granted to grant all objects by default. Furthermore, all objects and classes denied in the access restriction are also denied in the security profile.

This business security profile is assigned to the same users and groups as the access restriction.

13.8.7 Access Restriction Aggregation Option Conversion

When the universe is converted, its aggregation options are converted with these rules:

- The Controls and SQL data security profile aggregation option is set to Priority because it’s the only one available for controls and SQL access restriction.
- The Rows data security profile aggregation option is defined from the value of the original universe rows access restriction aggregation option:

In IDT, however, priority is no longer defined at the group level but at the data security profile level. If the access restriction is assigned to more than one user or group, and if this conversion doesn’t allow the converted security to properly reflect the same security as in the source universe, then the access restriction is converted into several data security profiles, one for each user or group.

The names of these data security profiles are the names of the access restriction followed by the user or group names: <Access Restriction Name>_<user or group name>. The definitions of these data security profiles are all identical and are directly retrieved from the access restriction definitions (connection, controls, SQL, rows, and table mapping security). These data security profiles are assigned to the same users and groups as their corresponding access restrictions and are prioritized using the group priority in the Universe Design Tool.

If the access restriction defines the objects access restriction, then a business security profile is created and attached to the converted universe. This business security profile has the same name as the access restriction, and it defines both Create Query and Display Data business security profiles to deny the same objects denied in the objects access restriction:

- In Create Query, the master view is granted and all objects and classes denied in the access restriction are denied in the security profile.
- In Display Data, the All objects shortcut is granted to grant all objects by default. Furthermore, all objects and classes denied in the access restriction are also denied in the security profile.

This business security profile is assigned to the same users and groups as the access restriction.
13.8.8 Object Access Level

The Universe Design Tool supports object access level for any business objects defined in a universe (measure, dimension, and detail). IDT also supports them for any business objects defined in a business layer of a universe (measure, dimension, attribute, etc.).

The different access levels are identical for both tools: public, controlled, restricted, confidential, and private. The user access level you define in the CMC can be identically defined for a universe defined with the Universe Design Tool or a universe defined with IDT. User access levels inherited by a user from the groups the user belongs to are also aggregated identically in the Universe Design Tool and IDT.

When a universe is converted, object access levels that are object properties are converted as well. The user access levels defined for this universe are also recreated for the converted universe, for the same user(s) and group(s).

13.9 Converting Universes in Information Design Tool

Universe conversion can be run from IDT. This process converts both local universes and universes saved in the CMS repository. We describe both workflows in the next sections.

13.9.1 Converting a Local Universe

To convert a local universe, follow these steps:

1. In the menu bar, select File • Convert Universe to open the Convert .UNV Universe dialog box.

2. Click the Select .UNV Universe from the Local File System button to select the universe to convert:
 - In the Open dialog box, navigate in the file system to select the universe to convert, and then click OK.
 - The dialog box closes and the universe name to convert is displayed in the Select the .UNV Universe to Convert text field. As shown in Figure 13.4, the dialog box is updated. Enter the destination folder for the converted resources.

![Figure 13.4: Convert a .UNV Universe Dialog Box for a Local Conversion](image)

3. Click the Browse button located near the Destination Local Project Folder text field to select the destination folder:
 - In the Select Local Project dialog box, select a project or a folder in a local project, and then click OK.
 - The Select Local Project dialog box closes, and the selected project or folder is displayed in the Destination Local Project Folder text field.

4. To convert the @prompt expressions as parameter objects, select the Automatically convert @Prompt expressions into universe named parameters checkbox.

5. Click OK to start the conversion. The converted connection, data foundation, and business layer are generated in the selected folder or project.
13.9.2 Converting a Secured Universe

The conversion of a secured universe is quite similar to a local universe; except the security that is converted with the universe. Before starting the conversion, make sure you have the ADD OBJECTS TO FOLDER right for the destination folder so you can create the converted universe. Then, to convert a secured universe, follow these steps:

1. In the menu bar, select File • Convert Universe to open the Convert .unv Universe dialog box.
2. Click the Select .unv Universe from a Repository button to select the universe to convert:
 - In the Open Session dialog box, create a new session or open a predefined one (see Chapter 3, Section 3.4), and then click OK.
 - In the universe browser dialog box, navigate in the Universes folder in the CMS repository, select the universe to convert, and click OK.
 - The dialog box closes, and the universe name to convert is displayed in the Select .unv Universe to Convert text field.
3. Click the Browse button located near the Destination Repository Folder text field to enter the destination folder:
 - In the universe browser dialog box, navigate in the Universes folder in the CMS repository, select the destination folder, and then click OK.
 - The dialog box closes, and the folder name is displayed in the Destination Repository Folder text field.
4. You may optionally choose to retrieve the converted universe after the conversion is done:
 - Click the Browse button located near the Destination Local Project Folder text field to open the Select Local Project dialog box.
 - Select the project or a folder in a local project, and then click OK.
 - The Select Local Project dialog box closes, and the selected project and folder are displayed in the Destination Local Project Folder text field, as shown in Figure 13.5.
 - To remove security from the extracted resources (see Chapter 9, Section 9.4), select the Save for all users checkbox.
5. To convert @prompt expressions as parameter objects, select the Automatically convert @Prompt expressions into universe named parameters checkbox.
6. Click OK to start the conversion. The converted universe is generated in the selected folder in the CMS repository. It has the same name as the original, except for its .unv extension that is replaced by .unx. If you've opted to retrieve the converted universe at the same time, its resources are also generated in the local project folder you've selected.

To convert a secured universe, you can also directly right-click the universe in the Repository Resources view. The Convert .unv Universe dialog box opens, where you can define the same options previously described.

13.10 Summary

Information Design Tool is the Universe Design Tool successor, and it proposes several major changes and enhancements: in the workflows, in the authoring resources, and in their capabilities. Some features, however, aren't identically supported, and some are not supported at all. For this reason, assessing the features...
you use is important if you plan to move your existing universes created with the Universe Design Tool to universes compatible with IDT.

When you’re ready to convert, you can use IDT to run this conversion. IDT can convert both local and secured universe. In the latter case, security is converted as well.
Contents

Preface .. 23
Acknowledgments ... 27

1 Introduction to the Semantic Layer .. 29
 1.1 What Is a Semantic Layer? ... 29
 1.2 A Well-Designed Semantic Layer .. 33
 1.2.1 Characteristics ... 33
 1.2.2 Designing a Semantic Layer .. 34
 1.3 Semantic Layer Components ... 35
 1.3.1 The Universe ... 36
 1.3.2 The Information Engine ... 38
 1.3.3 Information Design Tool .. 40
 1.3.4 Client Tool Technology .. 40
 1.4 Deploying the Semantic Layer in SAP BusinessObjects BI 4.0 42
 1.5 SAP BusinessObjects BI Applications that Consume the Semantic Layer ... 44
 1.5.1 SAP BusinessObjects Web Intelligence ... 44
 1.5.2 SAP Crystal Reports for Enterprise .. 46
 1.5.3 SAP BusinessObjects Dashboards ... 47
 1.5.4 SAP BusinessObjects Explorer ... 48
 1.5.5 SAP Lumira ... 50
 1.5.6 SAP Predictive Analysis ... 52
 1.6 Summary ... 53

2 Introduction to Information Design Tool ... 55
 2.1 Installing Information Design Tool .. 56
 2.2 Getting Started .. 58
 2.2.1 Welcome Page ... 58
 2.2.2 New Universe Wizard ... 60
 2.3 Information Design Tool Interface ... 62
 2.3.1 Menu and Toolbar ... 63
 2.3.2 Working with Views .. 64
 2.3.3 Working with Editors ... 65
4.4.2 Connection Server .. 134
4.4.3 Download Connection Locally ... 135
4.4.4 Relational Connections to SAP NetWeaver BW and SAS .. 136
4.4.5 OLAP Connections ... 136
4.5 Connection Parameters .. 137
4.5.1 Authentication and Data Source Parameters 137
4.5.2 Connection Server Configuration Parameters 138
4.5.3 Connection Server Custom Parameters 139
4.5.4 Configuration Files ... 140
4.6 Managing Connections .. 141
4.6.1 Creating a Connection in a CMS Repository 142
4.6.2 Creating a Local Connection .. 145
4.6.3 Publishing a Connection .. 146
4.6.4 Creating a Connection Shortcut 146
4.6.5 Editing a Connection ... 147
4.6.6 Switching Server/Client Middleware 148
4.6.7 Testing a Connection .. 149
4.7 Data Preview ... 150
4.7.1 Relational Database ... 150
4.7.2 OLAP Connections .. 152
4.8 Summary .. 155

5 The Data Foundation .. 157

5.1 Creating a Data Foundation .. 159
5.2 Identifying Tables, Columns, and Keys 162
5.2.1 Database Catalog Browser .. 163
5.2.2 View Table Data and Information 165
5.2.3 Insert Tables in the Data Foundation 166
5.2.4 Search and Filter .. 168
5.3 Identifying Joins, Keys, and Cardinalities 169
5.3.1 Joins and Cardinalities ... 169
5.3.2 Join Editor .. 172
5.3.3 Join Types .. 175
5.3.4 Detect Joins, Keys, and Cardinalities 178
5.3.5 Joins Strategy ... 183
5.4 Derived Tables .. 184

5.4.1 Create a Derived Table in the Data Foundation
- Schema ... 185
5.4.2 Create a Derived Table from a Selected Table 189
5.4.3 Replace a Table with a New Derived Table 189
5.4.4 Merge Multiple Tables and Derived Tables in a New Derived Table ... 190
5.5 Calculated Columns .. 191
5.6 Solving Loops (Alias Tables, Contexts, Shortcut Joins) 194
5.6.1 Resolving Loops by Eliminating Joins 196
5.6.2 Resolving Loops with Alias Tables 197
5.6.3 Resolving Loops with Contexts 198
5.6.4 Create and Edit Contexts .. 200
5.6.5 Shortcut Joins .. 203
5.6.6 Detection Tools .. 204
5.7 Chasm Traps and Fan Traps .. 206
5.7.1 Fan Traps ... 209
5.7.2 Chasm Traps ... 209
5.8 List of Values ... 212
5.8.1 Static List of Values ... 213
5.8.2 List of Values Based on Custom SQL 215
5.8.3 List of Values Parameters and Options 216
5.8.4 Customize List of Values Columns 217
5.9 Parameters .. 218
5.9.1 Parameter Definition .. 219
5.9.2 Prompt Text ... 220
5.9.3 Data Type .. 220
5.9.4 Allow Multiple Values .. 221
5.9.5 Keep Last Values .. 221
5.9.6 Index Aware Prompt .. 221
5.9.7 Associated List of Values ... 221
5.9.8 Select Only from List ... 222
5.9.9 Set Default Values .. 222
5.9.10 Parameter Custom Properties 222
5.9.11 Parameters Usage .. 223
5.10 The SQL Editor .. 223
5.11 Built-in Functions ... 226
5.11.1 @derivedtable ... 226
5.11.2 @execute ... 227
5.11.3 @prompt ... 227
Contents

5.11.4 @variable ... 230
5.12 Families, Comments, and Data Foundation Views ... 231
 5.12.1 Families .. 231
 5.12.2 Comments .. 234
 5.12.3 Data Foundation View .. 235
5.13 Data Foundation Search Panel ... 238
 5.13.1 Table and Column Names Selection ... 240
 5.13.2 Table Types Selection ... 241
 5.13.3 Column Types Selection ... 241
 5.13.4 Families Selection ... 242
 5.13.5 Contexts Selection ... 242
 5.13.6 Possible Actions after Tables Selection in a Data Foundation View 243
5.14 Data Foundation Editor ... 249
 5.14.1 Possible Actions in the Data Foundation Schema ... 245
 5.14.2 Possible Actions in the Data Foundation Pane ... 248
 5.14.3 Possible Actions in the Aliases and Contexts Pane .. 248
 5.14.4 Possible Actions in the Parameters and List of Values Pane ... 249
 5.14.5 Possible Actions in the Connection Pane .. 250
 5.14.6 Possible Actions in the Data Foundation Toolbar .. 252
 5.14.7 Possible Actions in the Data Foundation View Tab .. 253
 5.14.8 Possible Actions in the Actions Menu ... 254
 5.14.9 Data Foundation Actions ... 255
 5.14.10 Data Foundation Properties ... 259
5.15 Checking Integrity .. 260
 5.15.1 Run the Check Integrity ... 261
 5.15.2 Understand the Result of the Check Integrity Process .. 262
 5.15.3 Analyze and Fix Errors and Warnings .. 263
 5.15.4 Customize the Validation Rules ... 265
 5.15.5 Validation Rules Definition ... 266
5.16 Previewing Data .. 267
5.17 Data Foundation Refresh Structure ... 269
 5.17.1 Data Foundation Impacts after Refresh Structure ... 272
 5.17.2 Business Layer Impacts after Refresh Structure .. 273
5.18 Showing Dependencies .. 274
5.19 Data Foundation Parameters .. 277
5.20 Summary ... 282

6 Multisource Data Foundations ... 285

6.1 The Federation Technology ... 286
 6.1.1 Merging Information from Multiple Data Sources ... 286
 6.1.2 Federation Query Server ... 288
 6.1.3 Supported Data Sources ... 289
6.2 Multisource Data Foundations .. 290
 6.2.1 Choosing the Data Foundation Type ... 290
 6.2.2 Creating a Multisource Data Foundation .. 291
 6.2.3 Multisource Data Foundation Editor .. 293
6.3 Working with a Multisource Data Foundation ... 294
 6.3.1 Creating Multisource Joins .. 294
 6.3.2 Creating Multisource Derived Tables .. 296
6.4 Federated Tables .. 301
 6.4.1 Federated Tables Usage ... 301
 6.4.2 Federated Table Definitions .. 303
 6.4.3 The Federation Layer Editor .. 306
 6.4.4 Creating Federated Tables from Scratch ... 311
 6.4.5 Creating a Federated Table from a Source Table Template ... 314
 6.4.6 Defining Mapping Rules ... 315
 6.4.7 Defining Pre-filters ... 320
 6.4.8 Defining Post-filters .. 321
 6.4.9 Defining Source Table Relationships ... 323
 6.4.10 Understanding Core and Non-Core Tables .. 326
 6.4.11 Using Federated Tables in the Data Foundation ... 332
6.5 Multisource Scenarios ... 334
 6.5.1 The Union Scenario ... 334
 6.5.2 The Mixed Sources Scenario ... 338
 6.5.3 The Data Quality Scenario .. 342
6.6 Data Federation Administration Tool .. 344
 6.6.1 Data Federation Administration Tool User Interface ... 344
 6.6.2 Query Auditing ... 346
6.7 Optimization Techniques ... 349
 6.7.1 Preparing the Federation Query Server Environment ... 349
 6.7.2 Gathering Statistics ... 352
 6.7.3 Deployment Factors Impacting the Performance ... 352
 6.7.4 Optimization by Parameter Settings .. 353
 6.7.5 The Semi-Join Functionality ... 355
6.7.6 The Merge-Join Functionality ... 357
6.7.7 The Source Discriminating Filter 357
6.8 Summary ... 358

7 The Business Layer .. 361
7.1 The Business Layer Objectives ... 361
7.2 Creating the Business Layer .. 363
7.2.1 OLAP Direct Access .. 363
7.2.2 Business Layer Entities and Concepts 364
7.2.3 Multidimensional Business Layer Creation 367
7.2.4 Relational Business Layer Creation 373
7.2.5 The Business Layer Editor .. 375
7.3 Objects .. 376
7.4 Folders ... 378
7.5 Dimensions ... 379
7.5.1 Dimension Definition: SELECT Clause 382
7.5.2 Dimension Definition: WHERE Clause 384
7.5.3 Validation .. 385
7.5.4 Extra Tables ... 385
7.5.5 Preview Data and List of Values 387
7.6 Attributes .. 387
7.6.1 Attribute Definition: SELECT Clause and WHERE Clause .. 389
7.6.2 Preview Data and List of Values 390
7.6.3 Attribute Validation and Other Properties 391
7.7 Measures and Calculated Measures 391
7.7.1 Measure Definition: SELECT Clause and WHERE Clause .. 395
7.7.2 Preview Data and List of Values 395
7.7.3 Projection Function .. 396
7.7.4 Measure Validation and Other Properties 399
7.8 Calculated Members .. 399
7.8.1 Solve Order .. 402
7.8.2 Format String .. 402
7.8.3 Scope Isolation .. 402
7.8.4 Language ... 403
7.9 Named Sets ... 403
7.10 Analysis Dimensions .. 406
7.11 Hierarchies .. 408
7.11.1 Level-Based Hierarchies .. 408
7.11.2 Parent-Child or Value-Based Hierarchies 408
7.11.3 Hierarchy Creation .. 409
7.12 Levels .. 410
7.13 List of Values .. 411
7.13.1 List of Values Based on Business Layer Objects 415
7.13.2 List of Values Based on the Query Panel 415
7.13.3 List of Values Based on a Custom Hierarchy 416
7.13.4 Static List of Values ... 417
7.13.5 List of Values Based on Custom SQL 418
7.13.6 List of Values Parameters and Options 419
7.13.7 Customize List of Values Columns 422
7.14 Parameters .. 423
7.14.1 Parameter Definition .. 424
7.14.2 Prompt Text .. 425
7.14.3 Data Type .. 425
7.14.4 Allow Multiple Values .. 425
7.14.5 Keep Last Values .. 425
7.14.6 Index Aware Prompt .. 426
7.14.7 Associated List of Values ... 426
7.14.8 Select Only From List .. 427
7.14.9 Set Default Values ... 427
7.14.10 Parameter Custom Properties 427
7.14.11 Dependent Parameters ... 428
7.14.12 Parameters Usage ... 429
7.14.13 Mandatory and Optional Parameters 430
7.14.14 Parameter Dialog Box .. 431
7.15 Filters and Mandatory Filters .. 431
7.15.1 Native Filter Validation and Extra Tables 433
7.15.2 Filter Properties .. 433
7.16 Navigation Paths .. 435
7.16.1 Default Navigation Paths .. 436
7.16.2 Custom Navigation Paths .. 438
7.17 Index Awareness .. 439
7.17.1 Primary Key ... 440
7.17.2 Foreign Key ... 440
7.18 Aggregate Awareness ... 441
7.18.1 The Aggregate Aware Process 442
11.4.2 Retrieving a Locale in a Universe with @Variable 629
11.4.3 Using @Variable in Different Patterns 630
11.5 Multilingual and Multidimensional Universes 632
11.5.1 Metadata .. 633
11.5.2 Data .. 634
11.6 Summary .. 634

12 Connecting to SAP ERP, SAP NetWeaver BW, and SAP HANA .. 635
12.1 Access to SAP NetWeaver BW 636
12.1.1 SAP NetWeaver BW Interfaces 636
12.1.2 Connection Parameters to SAP NetWeaver BW 638
12.1.3 Creating an SAP NetWeaver BW OLAP Connection 640
12.1.4 Creating a Relational Connection to SAP NetWeaver BW ... 643
12.1.5 Creating a Multisource Data Foundation Automatically ... 648
12.1.6 Creating a Business Layer Automatically 649
12.1.7 Creating a Data Foundation and a Business Layer Manually .. 651
12.1.8 SAP NetWeaver BW Relational Universe Performance 652
12.2 Access to SAP ERP .. 652
12.2.1 SAP ERP Connection Parameters 653
12.2.2 Creating a Relational Connection to SAP ERP 654
12.2.3 Data Foundation on SAP ERP 656
12.2.4 Single-Source Data Foundations on SAP ERP 659
12.2.5 Multisource-Enabled Data Foundations on SAP ERP 661
12.2.6 Business Layers on an SAP ERP-Based Data Foundation ... 663
12.3 Access to SAP HANA .. 664
12.3.1 Creating a Universe on SAP HANA Views 665
12.3.2 Creating a Data Foundation and a Business Layer Automatically .. 671
12.3.3 SAP HANA Views: Recommendations and Constraints ... 676
12.3.4 Creating a Multidimensional Access on SAP HANA 679
12.4 Migrating a Universe to SAP HANA 681
12.5 Summary .. 685

13 Comparing the Universe Design Tool and Information Design Tool .. 687
13.1 General .. 687
13.2 Connections ... 689
13.3 Data Foundation ... 692
13.4 Business Layer ... 693
13.5 List of Values and Parameters .. 695
13.6 Security ... 697
13.6.1 Access Restrictions and Security Profiles (Relational Universe) .. 698
13.6.2 Access Restrictions and Security Profiles (OLAP Universe) ... 699
13.6.3 Aggregation ... 700
13.6.4 Security Editor .. 701
13.6.5 Central Management Console Rights 702
13.6.6 Connection Rights ... 703
13.7 Miscellaneous ... 704
13.8 Universe Conversion .. 705
13.8.1 Universe Conversion Scope .. 706
13.8.2 Local versus Secured Universe Conversion 707
13.8.3 Data Foundation and Business Layer 708
13.8.4 Linked Universe .. 709
13.8.5 Universe Rights Conversion 710
13.8.6 Access Restriction Conversion 710
13.8.7 Access Restriction Aggregation Option Conversion 711
13.8.8 Object Access Level .. 712
13.9 Converting Universes in Information Design Tool 712
13.9.1 Converting a Local Universe 712
13.9.2 Converting a Secured Universe 714
13.10 Summary .. 715

The Authors ... 717
Index .. 719
Index

@aggregate_aware, 441, 467, 674
@catalog, 296, 297
@derivedtable, 184, 226
@execute, 212, 215, 225, 227, 419, 449, 467, 696
@select, 382, 390, 391, 399, 400, 403, 404, 409, 411, 419, 449, 452, 459, 460, 471, 498
@ABUSER, 230, 472, 696
@DOCNAME, 230, 472
@DOMINANT_PREFERRED_VIEWING_LOCALE, 630
@DPNAME, 230, 472
@PREFERRED_VIEWING_LOCALE, 231, 473, 630
@UNVNAME, 231, 473
@where, 383, 449, 452, 473

A

ABAP functions, 303, 652, 661
Access restriction, 67, 579, 697, 698
Connection, 698
Controls, 698
Objects, 698
Rows, 698
SQL, 698
Table mapping, 698
Activate_multi_threaded_union_operator, 354
Activate_order_based_optimization_rule, 357
ACTIVATE_SEMI_JOIN_RULE, 356
Active Directory, 100, 607
Adaptive Processing Server, 134, 349
Aggregate awareness, 171, 184, 207, 366, 441, 467
Aggregate navigation, 366
Agnostic file, 88
All objects, 590, 594
ALL operator, 539
Allow complex operands in query panel, 505
Allow query stripping, 505
Allow use of subqueries, 505
Allow use of union, intersect and minus operators, 505
All views, 590
Alternate connection, 583, 589
Allow users to edit list of values, 217, 420, 456
Allow users to search values in the database, 421, 456
Analysis dimension, 365, 372, 404, 406, 409, 414, 436, 461
Type, 407
ANSI SQL-92, 175, 279, 290, 294, 318, 495, 662
ANY operator, 539
Apache, 119
Derby, 119
Hadoop, 119, 691
Hive, 100
Array fetch size, 654
Assigned groups, 580
Assigned users, 580
Audit, 42
Authentication, 42, 99, 552, 638, 653, 666, 680
Active Directory, 100, 607, 618
Enterprise, 99, 618
LDAP, 100, 607, 618
SAP, 100, 607
Automatic refresh before use, 217, 420, 456
Auto-save, 705
AUTO_UPDATE_QUERY, 279, 595
Available locale, 616

BEGIN_SQL, 279
BEx query, 636, 695
BI connection, 518, 519, 636, 640
BI platform, 43, 289, 292
Blob, 453, 694
BLOB_COMPARISON, 279
Bottom operator, 541
bsLogin.config, 100
Built-in functions, 178, 184, 192, 399, 403, 492
Business intelligence, 29
Find and replace, 482
Multidimensional business layer refresh structure, 384, 404, 409, 485, 497
Parameters, 366, 500, 503
Query options, 216, 420
Relational business layer, 260, 277, 361, 364, 366, 373, 374, 380, 385, 388, 392, 414, 431, 439, 453, 473, 484, 486, 497, 500, 503, 670
Search, filter, show, and hide, 479
Business layer view, 362, 366, 473, 694
Business object name, 72
Business security profile, 67, 571, 573, 579, 587, 698
Connection, 587, 589, 603
Create Query, 588, 590, 603
Display Data, 588, 593, 603
Filters, 588
Filters (multidimensional universe), 596, 604
Filters (relational universe), 595, 603
Cheat sheet, 60, 68, 704
Check integrity, 64, 72, 202, 226, 245, 250, 260, 261, 262, 265, 273, 333, 385, 388, 391, 399, 450, 484, 485, 486, 487, 488, 491, 500, 563, 564, 565, 704
Cluster, 97
ID, 98, 561
Name, 98, 551
Column filter, 656
Combined query, 514, 543
Conditional table, 585, 698, 699
ConnectionLimit, 140
Connection, 36, 55, 60, 77, 86, 117, 163, 168, 260, 263, 266, 274, 292, 486, 490, 492, 493, 689
OLAP connection, 361, 363, 364, 367
Relational connection, 157, 159, 244, 250, 259, 362, 667, 679
Secured connection, 159, 160, 161, 363, 368, 667
Connection authentication, 127
Credentials mapping, 128
Fixed credentials, 128
Single Sign-On, 128
Connection editor, 65
Connection icons, 142
Connection Server, 39, 52, 118, 134, 690
ConnectionServer32, 134
ConnectionServer64, 134
Connection shortcut, 125, 146, 552
Connectivity, 31
Connector configuration view, 346
Constant, 527
Consumption, 581
Context help, 67, 704
Core table, 326, 341
CPU, 352
Crystal Decisions, 44
ex.cfg, 340
CSV, 417
CUID, 555
Currency, 650
Custom properties, 222, 259, 427, 460, 694
Custom SQL, 545
Custom user attribute, 688

D
Key column, 75, 162, 178, 182, 183, 246, 251
View, 157, 184, 250, 270, 668
Database catalog browser, 165, 166, 168, 178, 250, 251
Database credentials, 129, 130
Database delegated measure, 46
Database schema, 682
Data Federation Administration Tool, 58, 286, 289, 344, 644
Data Federation data source, 121, 572
Comment, 234, 235, 236, 237, 245, 254
Data foundation refresh structure, 272, 273, 274
Detect row count, 254
Editor, 65, 212, 218, 241
Family, 231, 232, 235, 236, 239, 242, 253, 692
Loop, 157, 171, 178, 194, 196, 197, 198, 202, 204, 234, 254, 260, 267
Master view, 235, 236, 237, 272
Multisource data foundation, 159, 288, 495, 637, 648, 661, 692
Parameters, 277, 281
Refresh structure, 251, 253, 254, 259, 269
Search and filter, 168
Search panel, 238, 240, 243, 253
Data integration, 285
Data modeling, 157
Data preview, 77, 150, 321, 513
Data provider, 41
Data quality, 301, 342
Data security profile, 67, 433, 571, 573, 579, 581, 698
Connections, 583, 601
Controls, 584, 602, 698
Rows, 585, 602, 698
SQL, 585, 602
Tables, 586, 603
Data source credentials, 129
Dependancy, 95, 566, 692, 697
Database-specific syntax, 297
Desktop Intelligence, 44
Direct access, 38, 576
Distinct filter, 306
Dominant locale, 613
Dump through, 436
Driver, 134
DSO, 645
END_SQL, 279
E-R model, 157, 162, 184
EXECUTOR_STATIC_MEMORY, 353
EXECUTOR_TOTAL_MEMORY, 353
Export parameter, 657
F
Fallback locale, 616, 622
Fan trap, 157, 206, 281
Federated table, 225, 231, 232, 234, 236, 241, 256, 301, 324, 349, 448, 477, 495, 585, 587, 692
Federation, 286
Federation editor, 77
Federation Layer, 293, 306
Federation Query Server, 121, 135, 136, 286, 289, 297, 349, 373, 459, 529, 539, 549, 572, 573, 637, 644, 690
File system, 87
Filter (Cont.)
Business filter, 430, 431, 459, 492, 495
Mandatory filter, 41, 431
Native filter, 431, 473
Flat layout option, 515
Folder, 88, 158, 197, 362, 365, 375, 376, 378, 391, 392, 404, 409, 431, 436, 459, 460, 461, 486, 670
Force users to filter values before use option, 421, 456
FORCE_SORTED_LOV, 279
Foreign key, 656, 659
Fully qualified hostname, 97
G
Generic connectivity, 119
GreenPlum, 120
Group, 101, 574, 578, 580, 599
Administrators, 101
Universe Designers, 101
H
Help, 60
Hierarchical Layout option, 515
Level-based hierarchy, 372, 408, 410, 436, 476, 517
Parent-child hierarchy, 372, 408, 436, 517
Hint, 140
HTML, 80, 704
IBM, 120
DB2, 363
Netezza, 120
ID, 125, 554
Impact analysis, 91
Import parameter, 657
Index awareness, 183, 184, 217, 220, 366, 422, 425, 439, 469
Index awareness foreign key, 440
Index awareness primary key, 440
Index aware prompt, 697
InfoCube, 645
InfoObject, 42, 580
InfoProvider, 640
Information engine, 36, 38
Information space, 49
Installer (client tools), 40, 56, 344
IP address, 97
IsNull, 329, 341
ISO 639-1, 630
ISO 3166, 630
Index

L
Language, 612
Language-specific columns, 628
Language-specific databases, 629
Language-specific rows, 627
Language-specific tables, 628
Language-specific columns, 628
Language-specific databases, 629
Language-specific rows, 627
Level business type, 411
Limit execution time, 504
Limit size of result set, 504
List of values, 39, 66, 77, 158, 162, 212, 219,
224, 227, 254, 267, 268, 269, 274, 275,
277, 365, 376, 379, 383, 387, 391, 411,
423, 431, 440, 448, 450, 453, 454, 459,
461, 465, 467, 468, 476, 477, 482, 485,
487, 488, 492, 493, 495, 500, 521, 527,
535, 595, 709
Based on a custom hierarchy, 416, 459
Based on custom SQL, 212, 215, 217, 223,
248, 254, 429, 447, 453
Based on the query panel, 415, 429, 459
Custom list of values, 455
Default list of values, 387, 396, 420, 454
Static, 212, 217, 217, 417, 422, 453
List of Values pane, 244
Local connection, 126, 145
Locale, 612
Local project, 86, 126, 289, 363, 567, 623,
671
Backup, 89
Local projects view, 64, 66
Lock, 109, 114

M
Mapping formula, 304, 308, 315
Aggregation, 305, 315, 318
Complex formula, 305, 315, 318
Constant, 305, 315, 319
Equality, 305, 315, 316
Mapping rule, 304, 327
MAX_CONCURRENT_MEMORY__CONSUMING_QUERIES, 353
MAX_INLIST_VALUES, 280
Max rows, 78
MDX, 36, 362, 369, 370, 382, 385, 389, 391,
395, 397, 400, 402, 403, 406, 407, 409,
411, 422, 429, 430, 447, 453, 466, 479,
482, 486, 597, 636, 638, 691
MDX editor, 380, 382, 385, 388, 391, 392,
399, 400, 409, 410, 447, 466
Measure, 158, 192, 207, 208, 209, 210, 274,
277, 282, 365, 369, 372, 376, 378, 379,
384, 387, 391, 395, 412, 414, 429, 431,
442, 447, 450, 451, 453, 454, 456, 457,
458, 459, 460, 461, 464, 471, 473, 476,
477, 485, 487, 488, 493, 500, 501, 505,
516, 670, 673, 677
Projection function, 369, 396, 486, 498
Member selector, 400, 403, 405, 408, 410,
411, 481, 516, 523
Menu (Information Design Tool), 63
Merge-join, 357
Metadata exchange, 689
Microcube, 46, 398
Microsoft, 120, 122
Microsoft SQL Server, 140, 159, 363, 681
Microsoft SQL Server Analysis Services, 38,
141, 363, 370, 401, 452, 519, 633
Middleware, 133
MIN_ACTIVATION_THRESHOLD_FOR__SEMI_JOIN_RULE, 356
MIN_SOURCE_CARDINALITY_THRESHOLD__FOR_SEMI_JOIN_RULE, 356
Min_store_cardinality_threshold_for_order_based_join_rule, 357
Min_transfer_cardinality_threshold_for_merge_join_rule, 357
MOLAP cube, 30
Monitoring, 42
Multiple SQL statements, 585
For each measure, 505
MultiProvider, 645
Multisource, 31
Multisource universe, 552, 559
N
Named set, 366, 370, 372, 376, 382, 403,
414, 429, 450, 451, 454, 461, 471, 482,
519
Business named set, 405
Native named set, 405
Navigation path, 66, 365, 376, 379, 383, 387,
389, 391, 409, 435, 459, 482
Custom navigation path, 438, 485
Default navigation path, 436
New Universe wizard, 60
nvl, 329, 341
O
Object, 590
Object access level, 377, 456, 480, 486, 571,
577, 712
Confidential, 577
Controlled, 577
Private, 577
Public, 577
Restricted, 577
Object data type, 217, 220, 377, 385, 391,
394, 399, 422, 425, 453, 462, 480, 486,
498
Object extra tables, 385, 391, 399, 433, 478
Object format, 366, 461, 480
Custom display format, 462, 486
Object state, 377, 378, 457
Object usage, 377, 378, 457
Object validation, 385, 391, 399, 433
OData, 119, 691
ODBC, 119, 133, 665
OLAP, 38, 632
OLAPClient, 39, 121
OLAPClient.cfg, 141
OLAP connection, 121, 552, 572, 690, 704,
706
OLAP dimension, 372, 382, 399, 406, 408
OLAP universe, 695, 699, 706
OLE DB, 119, 133
OLasso, 141
Online help, 704
Online tutorial, 704
Open session, 96
Operator, 505, 525, 528, 543, 596, 600
AND, 170, 172, 240, 600, 701
Intersection, 600
MAX, 600
MIN, 600
Multidimensional operator, 403, 518, 597,
693
OR, 240, 600, 701
Union, 385, 600, 631
Optimization, 349
Oracle, 120, 122, 140, 159, 363, 634, 681,
706
Oracle hint, 706
Oracle Hyperion Essbase, 38, 122, 363, 370,
452, 633
Original content locale, 616, 617, 633
Owner, 296, 297, 554, 587
Parameter, 66, 158, 162, 212, 213, 218, 224,
227, 244, 254, 268, 274, 275, 277, 279,
361, 365, 376, 412, 413, 423, 448, 450,
453, 459, 461, 465, 468, 476, 482, 485,
487, 493, 501, 504, 677, 695
Allow multiple values, 221, 425
Associated list of values, 221, 426
Index aware prompt option, 221, 426
Keep last values option, 221, 425
Parameter dependencies, 428
Prompt to users, 220, 424
Select only from list, 222, 427
Set default values, 222, 427
Set values, 220, 425
Partition, 334
Password, 705
PDF, 704
Performance, 33, 349
Pernute, 343
Personal connection, 690
Post-filter, 306, 309, 321
Predefined query, 695
Predefined session, 98
Preferences, 71
Preferred viewing locale, 76, 614, 639, 653
Pre-filter, 306, 309, 320
Preview data, 77, 150, 184, 267, 321, 387, 390, 395, 476, 486, 513
Primary key, 656, 659, 697
PRM, 140, 225, 377, 440
Product Availability Matrix (PAM), 119, 122
Product language, 76, 613
Program ID, 644
Project, 160, 263, 275, 374, 493, 667, 670, 671
Project synchronization, 64, 102, 109
Prompt, 39, 358, 520
A-prompt, 228
D-prompt, 228
DT-prompt, 228
K-prompt, 228, 697
N-prompt, 228
Publishing, 42
Publishing a universe, 547
Quality, 296, 297, 587
Properties, 216, 420
Query auditing, 346
Query banding, 140
Query drill, 46
Query engine, 158, 171, 186, 194, 196, 200, 202, 203, 213, 209, 277, 279, 280, 281, 384, 440, 442, 446, 500, 502, 674, 676, 677
Query filters, 541
Query governors, 366, 502, 503
Query limits, 504
Query options, 505
Query monitoring view, 346
Query panel, 36, 41, 45, 77, 185, 186, 194, 208, 210, 279, 282, 361, 373, 376, 379, 381, 387, 391, 400, 404, 410, 411, 415, 430, 433, 456, 457, 459, 465, 467, 481, 504, 511, 565, 588, 626, 673
Query stripping, 46, 505, 506
Query technique, 39
Query, 349, 352
Ranking filter, 541
Raw data, 80
RDBMS, 157, 159, 363, 664
Recent resources, 59
Refresh query, 516
Relational connection, 118, 124, 552, 572, 583, 690
SAP NetWeaver BW, 146, 572, 573, 577, 583
SAS, 146, 572, 573, 577, 583
Remote function call (RFC), 640, 643
Replacement table, 586
Report burning, 132
Repository resources, 64, 512, 643
Restricted key figure, 637
Retrieving universe, 566
Right, 571, 572
Add objects to the folder, 142, 554, 573
Add or edit user attributes, 607
Administer security profiles, 101, 573, 702
Apply universe constraints, 702
Assign security profiles, 574, 703, 710
Check universe integrity, 703
Compute statistics, 101, 573, 703
Create and edit queries based on the universe, 574, 703, 710
Create and edit query on top of this universe, 608
SAP BusinessObjects Analysis
Edition for Office, 637
Edition for OLAP, 123, 637
SAP BusinessObjects BI, 29
SAP BusinessObjects BI 4.0, 55, 57, 288
SAP BusinessObjects BI 4.1, 57, 58, 302, 677, 679, 681
SAP BusinessObjects BI Launch Pad, 615
SAP BusinessObjects Data Federator XI 3.0, 690, 691, 692, 706
SAP BusinessObjects Design Studio, 637
SAP BusinessObjects Explorer, 48, 124, 511, 555, 688
SAP BusinessObjects Live Office, 688
SAP BusinessObjects SQL, 290, 295, 297, 305, 318, 495, 560
Rich Client, 45, 57, 126, 135, 547, 550, 614
SAP BusinessObjects Query as a Web Service, 688
SAP BusinessObjects XI 3.0, 707
SAP BusinessObjects XI 3.x, 60
SAP BusinessObjects XI R2, 707
SAP Crystal Reports 2013, 47, 124, 688
SAP Crystal Reports Business View Manager, 572
SAP Crystal Server 2013, 118
SAP Data Services, 459, 682
SAP direct access, 518, 519, 637, 638
SAP ERP, 118, 303, 615, 652
SAP HANA, 38, 46, 49, 52, 122, 123, 159, 163, 168, 363, 377, 383, 434, 446, 465, 635, 664, 668, 676, 679, 689
Analytic view, 164, 664
Attribute view, 164, 664
Calculation view, 164
Hierarchy view, 164
View, 164, 373, 464, 667, 668, 670, 671, 672, 673, 674, 676, 678
SAP HANA Studio, 664, 667
SAP Java Connector (JC), 654
SAP Lumira, 50, 511, 555, 688
SAP NetWeaver BW, 38, 43, 46, 121, 152, 290, 293, 373, 387, 408, 434, 505, 549, 607, 635, 690, 695
SAP NetWeaver BW (Cont.)

Application Server, 639, 653
Client, 638, 653
Logon group, 639, 653
Message server, 639, 653
Server type, 639, 653
System ID, 639, 653
System number, 639, 653

SAP Predictive Analysis, 52, 511, 555, 688

SAP query, 652, 662

SAP Sybase, 363, 120

SAP Sybase ASE, 681

SAP variable, 504, 665, 668, 676, 677

SAS, 121, 289, 290, 549, 690

Save for all users, 562, 568, 714

SBO, 141

Scan and repair, 704

Scheduling, 42

Search, 94

Secondary credentials, 129

Secured connection, 124, 142, 690

Secured query, 608

Security, 31, 42, 571

Security aggregation, 82, 601, 700

AND algorithm, 600, 601, 701

ANDOR algorithm, 600, 601, 701

Less restrictive, 600

Moderately restrictive, 600, 712

Multiple-assignments, 599

Multiple-parents, 599

OR algorithm, 600, 601, 701

Parent-child, 599

Priority, 599, 700, 711

Very restrictive, 600, 712

Security Editor, 67, 102, 512, 573, 604, 701

Security profile, 571, 697

SELFJOIN_IN_WHERE, 280

Semantic layer, 29, 511

Semi-join, 355

Session, 96, 102, 564

Shared connection, 690

Shared project, 106, 623, 688

Shared resources, 289

SHORTCUT_BEHAVIOR, 280

Show dependencies, 250, 273, 274, 492

Single Sign-On (SSO), 100, 130, 552

Software Development Kit (SDK), 428, 460, 689, 694, 705

Sort, 515

Source discriminating filter, 357

Source information, 458

SQL builder, 297, 298

SQL editor, 174, 186, 193, 223, 224, 226, 380, 382, 384, 385, 388, 391, 392, 399, 432, 433, 439, 447, 466

SQL façade, 637, 652

Star schema, 635, 652

Star schema, 635, 652

Statistics, 345, 347, 352, 573

Stored procedure, 706

Strategy, 692

Subquery filter, 539

Substring, 630

Support package, 57

Synchronizing, 107

System parameters, 353

System parameters view, 346

T

Teradata, 120, 140, 363, 681

Text file, 80, 88, 93, 119, 138, 149, 214, 262, 363, 417, 489

THOROUGH_PARSE, 281

Top operator, 541

Translation Management Tool, 57, 611, 615, 633, 678, 695

Translation Server, 618

Translation status, 618

FINAL, 618

NEEDS_ADAPTATION, 618

NEEDS_L10N, 618

NEEDS_REVIEW_ADAPTATION, 618

NEEDS_REVIEW_L10N, 618

Translation status (Cont.)

NEEDS_REVIEW_TRANSLATION, 618

NEW, 618, 622

SIGNED_OFF, 618

TRANSLATED, 618

TXT, 704

U

UNICODE_STRINGS, 281

Union, 334, 631

Unit of measure, 650

Universe, 34, 55, 157, 182, 199, 205, 238, 269, 281, 361, 362, 371, 434, 441, 446, 457, 458, 473, 511, 664, 671, 673, 677

Core universe, 709

Derived universe, 709

Linked universe, 688

Local, 562, 566

Multidimensional universe, 361, 364, 525, 552, 557, 559, 579, 623, 632, 679, 695

Multisource universe, 285

OLAP universe, 68, 695, 699, 706

Relational universe, 68, 157, 164, 361, 363, 579, 623, 627, 664, 678

SDK, 222

Transient universe, 363

Universe SDK, 428

Universe-centric view, 606

Universe conversion, 60, 687, 705

Universe Designer, 40, 55

Universe Design Tool, 40, 47, 55, 57, 60, 68, 378, 387, 409, 436, 459, 547, 551, 553, 555, 638, 687

Universe (Information Design Tool), 572, 574

Universe Landscape Migration, 57, 682

Universe view, 512

Upper, 630

User attribute, 571, 606

User-centric view, 606

User defined object, 695

User guide, 67

User object, 695

V

View, 590

View column values, 296

View script, 545, 546

VirtualProvider, 645

Visible locale, 616, 622

W

Warn if cost estimate exceeds, 504

Web Service, 119, 691

Welcome page, 58, 60, 70, 704

Where clause, 585

X

XLIFF, 618

XML, 80, 120

XMLA, 133, 141

Zoom, 693

Z

University, 606

User-defined object, 695

User object, 695

Warning if cost estimate exceeds, 504

Web service, 119, 691

Welcome page, 58, 60, 70, 704

Where clause, 585

Zoom, 693
First-hand knowledge.

Christian Ah-Soon has worked for SAP BusinessObjects for 13 years as a program manager on areas like administration, security, internationalization, and installation. Christian holds a Ph.D. in computer science and graduated from TELECOM Nancy.

Didier Mazoué works for SAP as a member of the SAP BusinessObjects platform team, where he is the product owner for the semantic layer. He has years of experience with the SAP BusinessObjects product offerings.

Pierpaolo Vezzosi works at SAP as a member of the SAP BusinessObjects platform team, where he is the director of solution management for the semantic layer. He has years of experience with the SAP BusinessObjects product offerings.

We hope you have enjoyed this reading sample. You may recommend or pass it on to others, but only in its entirety, including all pages. This reading sample and all its parts are protected by copyright law. All usage and exploitation rights are reserved by the author and the publisher.

© 2016 by Rheinwerk Publishing, Inc. This reading sample may be distributed free of charge. In no way must the file be altered, or individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.