In Chapter 1, Richard Bremer and Lars Breddemann introduce you to the SAP HANA database architecture. Get the foundational information you need to understand the comprehensive administration concepts and tasks covered in the rest of the book.

“Architecture of the SAP HANA Database”

Contents

Index

The Authors

Richard Bremer, Lars Breddemann

SAP HANA Administration

722 Pages, 2014, $69.95/€69.95

www.sap-press.com/3506
Although the variety of components and setup options for SAP HANA may seem confusing, the system is not so complex if you understand the building blocks. The purpose of our first chapter is to help you understand how simple and beautiful SAP HANA systems really are.

1 Architecture of the SAP HANA Database

Since its first release three years ago, SAP HANA has evolved beyond being just another relational database management system. In this chapter, we will help you understand what this means for you, the administrator. In the first few sections, we will approach SAP HANA from the outside and slowly zoom in, shedding light on the hardware composition of the system, showing you what the operating system will see, and finally looking into the database processes to understand the internal architecture of the system. In addition to this, we will shed some light on distributed SAP HANA instances that allow scaling out the database, thereby increasing data storage and computing capacity. Following this journey into the database, we will again take a step back and talk about the appliance concept of SAP HANA before finishing up with some insight into the software release cycle.

1.1 The Basics

Before we really dive into the details, let’s try to make good on our promise in the chapter’s introduction and spend a page explaining what SAP HANA actually is. Today, SAP HANA is a technology platform for the new generation of SAP. (Notice that we say new, not next! SAP HANA is already a reality at SAP.)

The SAP HANA system contains many components that administrators need to understand (which you’ll learn all about in this book). However, for the interactions of end users and developers in an SAP HANA system, only two are visible: a relational database system fulfilling the famous ACID requirements (atomicity, consistency, isolation, and durability) and a development platform and application server within the same environment. By bringing application development
and data storage more closely together than in previous SAP systems, SAP HANA extends the toolset available to SAP developers to cater to all requirements in the modern world of business software.

Consider the highly simplified architectural overview of systems with SAP HANA in Figure 1.1: the two main components described in the previous paragraph are represented by two “server” components of the SAP HANA system. The database management system is the index server component, and most components of the development platform reside in the XS server.

![Figure 1.1 Simplified View of an SAP HANA System](image)

In Figure 1.1, the world outside of SAP HANA is divided into three parts (we hope the French do not mind); the client applications inhabit one of these, the administrators and developers another, and the external data sources the third. As opposed to the people of Gaul 2,000 years back, these parts communicate via the same language—or rather, the same two languages (by and large)—depending on which component of SAP HANA they converse with. SQL is the most prominent native language of the index server, and applications of the XS server are mostly exposed via HTML5 user interfaces.

Because we promised to keep it simple, we will stop here, and feed you the rest of the details step-by-step in the rest of the chapter. Before we go any further, though, we want to establish a few definitions that we’ll use consistently throughout the book:

> **Instance**

We will use the term *SAP HANA instance* (or simply *instance*) to refer to the collection of those processes that make up one SAP HANA environment on a single-node database server. For all practical purposes, these are the processes and programs that are created when you run the install program for the server components of the SAP HANA database. The instance consists mainly of the start processes, the core database processes, and some of the SAP HANA auxiliary processes (all of which we’ll describe in more detail in this chapter).

As with other SAP systems, an instance has two identifiers: the system ID (SID)—which is a three-letter alphanumeric identifier starting with a letter—and the two-digit instance number. The SID uniquely identifies the database instance. Except for special setups, there is a 1:1 mapping of SID to instance number, that is, the instance number is often a unique identifier as well. The instance number is used in defining the internal and external network ports of the SAP HANA system.

It is possible to install more than one SAP HANA instance on a single physical database server, and you can even operate SAP NetWeaver and SAP HANA instances on the same server.

Note

In the context of distributed systems that we will cover in Section 1.5 and in Chapter 6, we will not use the term “instance.” The reason is that “instance” is a widely used term in SAP NetWeaver systems, and the concept of instances in distributed SAP NetWeaver systems can’t be applied perfectly to the individual hosts of a distributed SAP HANA system.
1.2 The Physical View: SAP HANA Servers

Let’s begin the architectural overview with a glimpse at the hardware of an SAP HANA server. Assume that your server is a typical computer server, consisting of a mainboard with CPU and RAM, network interfaces, disks, and other devices you would expect to find in a computer system.

In Figure 1.2, we have cut down the database into its three most prominent internal and one very important external building blocks: the data and processing layer, the persistence layer, and the network layer. We will now discuss each of these building blocks in more detail.

1.2.1 Data and Processing Layer

The heart of SAP HANA is what we call here the data and processing layer, represented in the hardware world by the main memory and the CPUs (and auxiliary components). You may have heard that SAP HANA is an in-memory database, which means that the primary image of all data is in RAM and that all internal algorithms are optimized to work on data that is present in memory. Put simply, the database attempts to keep all database tables fully in main memory during regular operations. This leads to extreme demands for the amount of main memory installed in the database, and SAP HANA systems come with copious amounts of this once-rare resource.

The maximally possible amount of main memory in a single database server is determined by two choices made by SAP:

- The type of CPUs supported

 Presently, SAP HANA will only run on the Intel X86 architecture; more spef-
ically, the database code is optimized for the newer generations of the Intel XEON architecture (Westmere-EX and Ivy Bridge-EX), making use of its advanced SIMD instruction sets like SSE3 and SSE4.

At the time of writing, SAP HANA servers can contain a maximum of 8 CPUs with 10 CPU cores each (15 cores for Ivy Bridge), that is, 80 (120) CPU cores in total.

The maximum ratio of main memory to number of installed CPUs

Based on use-case studies, SAP has set a maximum ratio of main memory to number of installed CPUs of about 16 GB per CPU core for analytic use cases. In response to these two restrictions, the current generation of SAP HANA servers comes with at most one or two terabytes (TB) of main memory installed for the Westmere- and Ivy Bridge-based models, respectively.

For operating SAP Business Suite systems—which have mostly an OLTP workload—SAP allows larger amounts of main memory in a single server, bringing the currently available maximum to 6 TB of RAM.

Intel’s Processor Architecture

Readers interested in more details about how SAP makes use of Intel’s processor architecture can consult a joint white paper by Intel and SAP on the topic, which is referenced in “Intel & SAP HANA Solution Brief: Scaling Real-Time Analytics across the Enterprise—and into the Cloud”: www.saphana.com/docs/DOC-2592

1.2.2 Persistence Layer

SAP HANA could not be a database if it did not store data on a nonvolatile medium. Of course, the system also comes with enough disk storage to keep all data and other required information. Similar to most other database systems, SAP HANA writes transaction logs synchronously and keeps a full data image in asynchronously updated data volumes.

In general, these two systems come with two dedicated sets of disks. The data volumes always reside on classical discs whose total capacity must equal three times the installed RAM of the server according to the SAP HANA Server Installation Guide (downloadable from the SAP Community Network: https://scn.sap.com). For the log volumes, SAP initially required SSD storage with a capacity equaling the amount of installed RAM.

1.2.3 Network Layer

The number of network interfaces required in an SAP HANA system depends on several aspects of the system setup, such as clustering, implemented high-availability concepts, and more. These options will be covered later. For now, we will make some simplifications and only state that an outbound network interface must have a nominal throughput of at least 1 gigabit (Gbit), and 10 Gbit Ethernet is recommended.

Network topologies around SAP HANA systems can vary widely, but generally speaking SAP HANA can be treated like other databases in terms of network considerations for SAP NetWeaver systems or SAP BusinessObjects BI systems.

1.3 The Operating System View: Database Processes

In certain systems, classical hard drive technology is also supported. Both sets of disks need to fulfill SAP’s specifications for data throughput, I/O operations per second, and so on, which are available to SAP HANA hardware partners. Additional disks are needed for the software installation of SAP HANA and all related SAP components.

Internal or External Disks

As for the interesting question of whether the disks are internal to the database server or whether you may use of your existing enterprise storage—we’ll get to that in Section 1.6.

Although the data and log disks are intrinsic components of the database, SAP does not define the required nature of the devices to keep data and log backups. There are two backup methods available: file-based backup and network-pipe-based backups. For file-based backup, a dedicated storage device must be available in the file system of the SAP HANA server, and customers are free to choose the storage technology.

1.3 The Operating System View: Database Processes

If you log on to the operating system of an SAP HANA database, the first thing you will notice is that it is a Linux OS. Up to and including SPS 7, the only supported operating system was SUSE Linux Enterprise Server (SLES) 11 or SUSE Linux
Enterprise Server for SAP Applications 11, most probably on service pack level 2 or 3. With SPS 8, SAP introduced support also for Red Hat Enterprise Linux 6.5; see SAP Note 2009879.

We have divided the processes that belong to an SAP HANA database server into four factions, as displayed in Figure 1.3. We will now walk you through this quartet of process groups.

1.3.1 System Start

All SAP systems are started by a process named SAP Start Service (see Figure 1.4), which in Linux operating systems is represented by the sapstartsrv OS process. SAP HANA is no exception to this rule. You will find sapstartsrv running for each instance of the SAP HANA database on your server.

1.3.2 Core Database Processes

The most interesting processes for us are of course the core database processes. Purists might argue that our definition is not quite correct, because we include here the SAP Web Dispatcher, which is not an SAP HANA process but rather a standard SAP component. However, for our purposes a "core process" is an OS process that is started by the HDB daemon, and the SAP Web Dispatcher is one of

Figure 1.3 Operating System Processes of the SAP HANA Database

Figure 1.4 Boot Sequence of an SAP HANA System
them. It is also the only process whose activity is not monitored in the list of running services in SAP HANA Studio (Figure 1.5).

![Active Processes of a Typical SAP HANA Database System](image)

Figure 1.5 Active Processes of a Typical SAP HANA Database System

Next, we will give you an idea of the purpose of all of these processes that, combined, represent a fully functioning SAP HANA database. We will choose a somewhat arbitrary ordering, based on what we perceive are the most important processes. (Here again, we will keep it simple and provide further details for some processes in Section 1.4.)

The Index Server

For most practical purposes, the index server is the database process in SAP HANA. It has the following jobs:

- It provides the SQL interface on SAP HANA’s SQL port.
- It manages all database tables and other objects of the database catalog.
- It processes all SQL queries in the database.

As such, the index server will under normal circumstances have the largest resource footprint among all the processes on the SAP HANA server—for memory as well as for CPU usage.

The Name Server

SAP HANA needs a logical view of itself—for example, its components and locations of data—which is called the topology. The topology is managed by the name server component. The name server becomes particularly important in distributed database systems (which we have not mentioned yet; they will be covered in Section 1.5). The name server also hosts the backup manager, responsible for coordinating synchronized backups of all system components.

The XS Server and the SAP Web Dispatcher

Since the beginning, but especially since the SPS 5 release, SAP HANA has been a development platform built around the integrated database kernel. Of course, the database itself (index server) offers development capabilities, such as designing database schemas, views, and SAP HANA data models or stored procedures. The XS server—which was introduced with SPS 5—targets the development layer on top of these rather technical tools.

Among the features provided by the XS server, you can find:

- Server-side JavaScript
- OData services and XMLA
- Development of user interfaces (HTML5) with SAPUI5
- Application definitions to expose sets of development artifacts as applications

Applications created in SAP HANA XS server are exposed through HTTP. As a web-server component, SAP HANA uses the SAP Web Dispatcher, which will be well-known to all SAP NetWeaver administrators.

The Compile Server

With the release of SAP HANA SPS 6 (revision 60), the compiling of L-script procedures has been moved from the index server process into the newly established compile server process. This is a mandatory, automatically installed component of SAP HANA that, in our experience, you do not need to know much about.

The Preprocessor

For processing unstructured data, SAP HANA’s preprocessor component creates searchable, full-text indexes and offers capabilities such as tokenization, normal-
ization, stemming, and extraction processing. It might be regarded as a supporting component to the index server for text search and text analysis.

The Statistics Server

The statistics server is a database process which provides the statistics service. Starting with SPS 7 (revision 70), it is possible to have the statistics service integrated into the index server and name server processes, thus eliminating the need for a dedicated further database process. The statistics server is thus an optional process that is enabled in the default configuration and also in SPS 7.

The Script Server

The script server is an optional component that is at present only required for certain functionalities associated with the Application Function Library (AFL). It is not enabled by default.

1.3.3 SAP HANA Auxiliary Processes

All processes mentioned so far are required for the regular operations of an SAP HANA system. The auxiliary components we discuss next are native parts of SAP HANA but are only used for specific tasks, such as updating the software.

SAP HANA Lifecycle Manager

Software updates are the main topic of the SAP HANA Lifecycle Manager (HLM), which is a graphical application that supports updating just the database or all components of a so-called SAP HANA Support Package Stack (see Section 1.7.1) by using corresponding components installed on the database server. The frontend application is available from within the administration tool SAP HANA Studio and also accessible through a web interface. HLM’s functionality extends beyond updating, with support for system landscape modification (renaming the system, provisioning additional database instances, etc.) and more.

In the SPS 8 release of SAP HANA, the functionalities for system lifecycle management have mostly been switched off, and hdblc (discussed ahead) is now the preferred tool for all related tasks.

The hdb* Tools

SAP HANA comes with a range of command-line tools, which we here summarize as hdb*-tools, because their names begin with the acronym hdb. These tools are installed into the directory `/usr/sap/<SID>/HDB<instance>/exe`. Among these tools, you can find:

- **hdblc and hdblcgui**
 These are new applications for installing and updating the database introduced with SPS 7. It is planned that hdblc will become the backend tool used by HLM in higher support packages.

- **hdbsql**
 This is a command-line SQL console that comes with the client package (it is thus available on any computer that has the SAP HANA client installed).

- **hdbuserstore**
 This is a secure store for database credentials that can be used for password-free authentication, for example, in hdbsql. It is also used by SAP NetWeaver Application Servers on SAP HANA to store their database credentials. hdbuserstore is also part of the client package.

SAP HANA Studio and Client

With a fully installed instance of the SAP HANA database, you will always also get SAP HANA Studio and the client locally installed on the database server. However, in most cases, database administrators (DBAs) will use a local installation of SAP HANA Studio to connect to the server. The local installation of these tools is meant for emergency and bootstrapping DBA tasks when a remote connection is not available.

1.3.4 Further Auxiliary Processes

As an SAP system, SAP HANA comes with several standard SAP components used for basic operation and monitoring. There may also be additional components installed by vendors other than SAP.
SAP Host Agent
The SAP Host Agent is a tool for monitoring and controlling SAP instances. Part of this tool is the already mentioned SAP Start Service. There are further components, for example, saposcol, which collect information on an operating system level, and saphostctrl, which is used by HLM for providing user access to the HLM backend (for more information, see Section 12.4.1 in Chapter 12).

SMD Agent
The SAP Solution Manager Diagnostics Agent (SMD Agent) is another tool for collecting status and other monitoring information. In this case, it collects information to feed SAP Solution Manager. For information on integrating SAP Solution Manager with SAP HANA, see https://service.sap.com/solman-hana/.

Third-Party Tools
Depending on preferences and requirements, customers may operate certain non-SAP software components on their SAP HANA servers, such as antivirus software, monitoring agents, or backup management tools.

1.4 The Logical View: Internal Architecture of the Database
Let’s now take a look at the architecture within the database core processes. Figure 1.6 shows how these processes interact with each other. In the figure, we only highlight a few internal components of each of the core processes to keep it simple.

We also show optional services in the figure, such as the script server and the statistics server. You may remember that the statistics service can be moved from the dedicated statistics server process into the other database processes. In that setup, the statistics scheduler will run in the name server, and all other parts of the statistics service will be integrated into the index server (see Chapter 5 for details).

1.4.1 Index Server Architecture
Any SQL-based or MDX-based interaction with SAP HANA will enter the index server for SQL-based requests (including MDX) and the XS server for HTTP-based requests. Because it is the server relevant for administrators, this section focuses on the index server. For the sake of completeness, we briefly mention the XS server, but a detailed discussion would be outside the scope of this book.
be involved in the query execution, such as the processing engines of the row and column store. Also—and especially in distributed SAP HANA systems—the name server component will be involved to find the location of database objects required for query processing.

For certain functionalities, the index server will delegate a part of the workload to other processes: to the compile server for compiling functions in the SAP-internal L-language; to the script server for executing L-functions of the Application Function Libraries (AFL); or to the preprocessor for creating full text indexes and for other parts of processing unstructured data. The database clients will not notice these delegations; they simply converse with the index server.

L-Language

L-language is an internal, C-like language that is dynamically compiled with an optimizing compiler. It is not available for application development to SAP HANA users.

Both the index server and the XS server make use of SAP HANA’s repository for storing development artifacts. Although the XS server—which is technically an extended index server—comes with its own repository, all processes use the repository in the index server.

Underlying all of these database components is the disk storage, in which those processes that control data on their own create data and log volumes; see Chapter 5.

Note

Multiple core processes of SAP HANA own data and thus create data and log volumes. Processes creating data and log volumes are the index server, the name server, the XS server, the statistics server, and the script server.

A simplified schematic of the index server is shown in Figure 1.7.

When communicating with the database, clients first need to open a connection and acquire a session through the connection and session management component, which will also involve the authentication manager to validate the credentials provided with the connect attempt.

Upon successful authentication, the clients can send commands to the database, typically in the form of SQL statements. All statements are executed in the context of a transaction—coordinated by the **Transaction Manager**, which is responsible for transactional isolation and keeping track of open and closed transactions. Upon events such as committing or rolling back transactions, the Transaction Manager informs the involved relational stores so that they can take appropriate action. In combination with the persistence layer, the Transaction Manager is also responsible for achieving atomic and durable transactions.
Actual statement execution involves the components listed under Request Processing and Execution Control in Figure 1.7. Statements first have to be parsed, checked, and optimized to generate an execution plan. Depending on the nature and content of the statement, different execution engines might be involved, such as the stored procedure processor (for SQLScript procedures) or the planning engine.

Several functionalities of the database have been implemented in a common infrastructure called the calculation engine. To many people, the calculation engine will be best known for its set of intrinsic calculation engine operators that can be used within SQLScript procedures. There is, however, more to this engine, such as operators for L and R, or planning operators.

All of these processing engines operate on top of the in-memory stores of the database. SAP HANA presently offers four such stores. The most important one is the column store, which manages column store tables that are typically used to store application data; it also contains, for example, the text-search capabilities of the database. The row store is a row-oriented in-memory store, typically used for system/basis tables (e.g., for basis tables of SAP NetWeaver systems) but not for application data. Data federation allows transparent access to objects in remote databases (a concept typically termed Smart Data Access in SAP HANA) and is in fact a virtual store, as its data has no local persistence within SAP HANA. Finally, the liveCache is an in-memory object store, well-known from the SAP Business Suite, where it is used in applications such as the SAP SCM component SAP Advanced Planning and Optimization (APO).

The Metadata Manager is a component for maintaining metadata of the database catalog, such as table and view definitions. It is a single metadata catalog for all in-memory stores, technically implemented as a collection of row store tables.

The interface between the in-memory store and the data volumes on disk is implemented in the persistence layer. This component manages the data pages for the in-memory stores and their persistence in the data volume; it also controls the writing of transaction log entries to the log volumes.

1.4.2 XS Server Architecture

As we mentioned earlier, a detailed discussion of the XS server is outside the scope of this book; however, Figure 1.8 shows a diagram of its basic architecture.

HTML access enters the system through the SAP Web Dispatcher, which delegates the access request to the XS server. Depending on the request, different processors in the XS server will be involved in the request processing, for example, the JavaScript runtime or the OData handler.

In most cases, the request will involve application data, which in SAP HANA is always stored in one of the relational stores of the index server process. Hence, the XS server will involve the appropriate index server component for such data access through a database-internal network protocol (even if both components are on the same physical server).

Figure 1.8 XS Server Architecture

1.5 Distributed SAP HANA Systems

Now that you know the fundamental concepts behind SAP HANA systems, we will go one step further and introduce distributed SAP HANA systems.

As we mentioned earlier, the database size of SAP HANA servers is restricted to 2 TB of main memory (6 TB for SAP Business Suite systems). If that was the end of the story, we would not need to talk about SAP HANA as a serious player in today’s database market. The way to implement larger database systems is through scaling out, that is, building database systems that span multiple physical servers. To avoid confusion with the server processes, from now on we will use the term *host* to denote a single physical server machine in an SAP HANA system. Hence, there can be single-host database systems (which we have covered so far) and multihost systems, also called *distributed systems* or *scale-out systems*.
In a distributed SAP HANA system, most core components of the system exist on each of the individual hosts, as depicted in Figure 1.9. In some cases, a component can play different roles, depending on which host it is running on, such as the name server, which runs as an active master name server on one host (host 1 in our figure) and as a read-only slave on the other hosts. In Figure 1.9, we have marked in bold those components that can play different roles on the different hosts of the scale-out instance.

In this figure, hosts 1 through n are active, that is, they control data and take part in database operations, such as query executions. The last host is called standby.

This host is a high-availability component, technically identical to the others, but on standby and ready to take the workload of an active host that might fail for whatever reason. For more details on high-availability features in SAP HANA scale-out systems, see Chapter 6.

1.5.1 The Name Server in Distributed Systems

In distributed SAP HANA systems, the name server process plays a particularly important role. It maintains the system topology, which describes the system in two aspects: the logical description of the database (which hosts exists, what is the role of the hosts, etc.) and the map of data locations (the mapping of database objects to hosts and processes on the hosts).

This topology information will be required for query execution in the distributed database system. In order to avoid excessive network communication, a copy of the topology is held available on each host.

To avoid the complexities involved in keeping a resource consistent even though it is changed by multiple processes, there is at any point in time only one name server process that is allowed to modify topology information. This process is named the active master name server. All other name servers only hold a read-only copy of the topology.

Because the topology is a highly critical resource, there is built-in redundancy in the topology management. The system can have up to three configured name server masters. One of these—initially the first one that becomes active upon
system start, typically the one on the master node—is the active master name server. The other two masters constantly monitor the availability of the active master name server. If the active master name server fails, one of the other master name servers will be appointed the new active master name server and thus gain write access to the topology. This redundancy process for the name server functionality is independent from the host failover we mentioned earlier.

1.5.2 Distributed Index Servers: Data and Query Distribution
Many data objects in the SAP HANA database can be distributed across multiple database nodes, either by moving entire objects from one host to another, or—in the case of database tables—by partitioning the table into multiple physical partitions and distributing these partitions across the nodes (see Chapter 9).

In a scale-out scenario, one of the index server processes plays a special role. It is called the master index server and typically resides on the first host of the database system (the order of hosts is determined at installation time). The extended responsibilities of the master index server include (but are not limited to) the following items:

- **Metadata management**
 Similar to topology management, the metadata catalog of the database is centrally managed and replicated to all other index servers. If metadata changes are required on an arbitrary host, this host will signal the metadata change to the Master Metadata Manager on the master index server.

- **Transaction management**
 Transaction handling in distributed architectures requires particular efforts to ensure consistency throughout the transactions. In SAP HANA, this is implemented via distributed transactions and a two-phase commit mechanism. If a transaction is started that involves data owned by different index server processes, a primary transaction will be started on the Master Transaction Manager, and all other involved index servers will start local transactions that are linked to this primary transaction.

 During the commit phase, the Master Transaction Manager will send requests to all of these local transactions to prepare the commit and will, upon successful acknowledgement, finally commit the transaction—or upon an error message, it will initiate a rollback.

- **Row store**
 The row store in SAP HANA can be distributed as well, albeit with a smaller feature set than the column store. It is, for example, not possible to partition row store tables. In a typical system configuration, all row store tables of applications are located on the master index server.

- **liveCache**
 The SAP liveCache cannot be distributed. If implemented in a distributed landscape, it will reside on an additional dedicated host (not on the master index server).

1.5.3 Distributed Persistence
All processes that own data create data and log volumes. Hence, if a system consists of four worker nodes, the four index server processes (and other data-owning processes) will each create a data volume and log volumes. In Table 1.1, we give an overview of all database processes and whether or not they have their own data and log volumes on the master or slave nodes of an SAP HANA system.

<table>
<thead>
<tr>
<th>Process</th>
<th>Persistence on Master</th>
<th>Persistence on Slave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index server</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Name server</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>XS server</td>
<td>Yes</td>
<td>Yes (if enabled on slave)</td>
</tr>
<tr>
<td>Statistics server</td>
<td>Yes (if dedicated process)</td>
<td>N/A</td>
</tr>
<tr>
<td>Script server</td>
<td>Yes (if running)</td>
<td>Yes (if enabled)</td>
</tr>
<tr>
<td>Compile server</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Preprocessor</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 1.1 Data Persistence in SAP HANA Scale-Out Systems

In the terminology of nodes and hosts we introduced earlier, data volumes in a distributed SAP HANA system belong to a node, not to a host. This becomes evident if you consider a failover of a node from one host to another; in this case, the previous failover-host must assign all data volumes of the worker node on the failing host.

In order to facilitate host-independent data volumes, they must reside on a common file system that can be accessed from all hosts of the database system. Such
a common file system may be established by using traditional filer concepts or by other means, such as file systems that stretch across local disks of multiple hosts. In SAP HANA setups, this is a choice made by the hardware vendor. We will not cover vendor-specific details in this book.

1.6 The Appliance Concept of SAP HANA

Initially, SAP HANA was only available as a so-called appliance, that is, a bundle of SAP software preinstalled on a certified piece of hardware from one of the SAP HANA certified hardware vendors. By 2014, SAP partially lifted some of the restrictions related to SAP HANA by introducing a concept called Tailored Data Center Integration that adds the ability to reuse certain data center components for an on-premise installation of SAP HANA. Meanwhile, SAP HANA is also available as a hosting or cloud offering from different service providers, including SAP itself.

In this section, we will briefly discuss these three installation options. We will conclude the section by diving into some details of how SAP HANA may and may not be used.

1.6.1 SAP HANA Appliance Offerings

When planning an on-premise installation of SAP HANA, the easiest way to make sure the system hardware is tailored for optimal system performance and matches SAP's requirements is to choose a system from the wide range of SAP HANA appliance offerings from certified hardware partners.

The list of all certified appliance systems based on the Intel Westmere architecture is maintained in the Product Availability Matrix (PAM) for SAP HANA, available on SAP Service Marketplace at https://service.sap.com/sap/support/pam. The certified systems based on the more recent Intel Ivy Bridge architecture are listed on SCN at https://scn.sap.com/docs/DOC-52522.

Appliance systems are usually classified by the system size in terms of installed main memory or other characteristics, such as disk space or number of CPUs, that follow directly from that choice. For the system sizes of single-host systems, there is a schema similar to T-shirt sizes in the fashion industry, as listed in Table 1.2. In this table, we denote Ivy Bridge configurations with the addendum "Ivy" in the first column. There is also now more liberty regarding the file system sizes for log and data volumes, which we indicate by listing typical minimum configurations.

<table>
<thead>
<tr>
<th>Size</th>
<th>RAM</th>
<th>CPUs * Cores</th>
<th>Data file system</th>
<th>Log file system</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS</td>
<td>128 GB</td>
<td>2 * 10</td>
<td>1 TB</td>
<td>160 GB</td>
</tr>
<tr>
<td>S</td>
<td>256 GB</td>
<td>2 * 10</td>
<td>1 TB</td>
<td>320 GB</td>
</tr>
<tr>
<td>M</td>
<td>512 GB</td>
<td>4 * 10</td>
<td>2 TB</td>
<td>640 GB</td>
</tr>
<tr>
<td>L</td>
<td>1024 GB</td>
<td>8 * 10</td>
<td>4 TB</td>
<td>1280 GB</td>
</tr>
<tr>
<td>XS Ivy</td>
<td>128 GB</td>
<td>2 * 15</td>
<td>> 1 TB</td>
<td>> 128 GB</td>
</tr>
<tr>
<td>S Ivy</td>
<td>256 GB</td>
<td>2 * 15</td>
<td>> 1 TB</td>
<td>> 320 GB</td>
</tr>
<tr>
<td>M Ivy</td>
<td>512 GB</td>
<td>2 * 15</td>
<td>>= 1.5 TB</td>
<td>>= 512 GB</td>
</tr>
<tr>
<td>L Ivy</td>
<td>1 TB</td>
<td>4 * 15</td>
<td>>= 3 TB</td>
<td>>= 512 GB</td>
</tr>
<tr>
<td>XL Ivy</td>
<td>2 TB</td>
<td>8 * 15</td>
<td>>= 6 TB</td>
<td>>= 512 GB</td>
</tr>
</tbody>
</table>

Table 1.2 General-Purpose Configurations of SAP HANA Appliance

Amount of Disk Storage Built into SAP HANA Systems

In Table 1.2, we explicitly list file system sizes, not storage sizes, because all hardware vendors build some sort of redundancy into their storage components. The amount of installed disk space will typically be much larger than the required file system sizes, at least for the data and log areas.

When deciding on a SAP HANA system setup, several aspects have to be considered. The most important ones—scaling the right size, whether or not the system should be used for a SAP Business Suite system, and how the actual deployment will be handled—are discussed next.

Scaling SAP HANA System Sizes

As the amount of data in a database system grows, the system’s hardware needs to be scaled to accommodate the added data volume (or the increased workload). In the world of SAP HANA, there are two options available: scale up and scale out.

For database sizes up to 1 TB of RAM, several hardware vendors have setups that are ready for scale up. You might start with a database size of, say, 256 GB of RAM and if needed increase the database size to 512 GB or 1 TB of RAM by adding more CPUs, disk space, and RAM to the existing hardware server.
Scale-out systems are typically configurations of multiple M- or L-sized hosts, but some vendors also offer configurations based on S-sized hosts. Be warned, though, that with most hardware vendors a scale-out system does not use the same hardware components as a single-host system, especially when it comes to "external" factors, such as the chassis and so on. As an example, for a given vendor a single-host system might be delivered as a rack-mounted server, whereas the same vendor’s scale-out systems are based on blade server technology.

In most cases, the transition from a single-host system (database sizes of up to 1 TB of RAM) to a scale-out system requires an exchange of hardware in the system being scaled. In most likely all cases, hardware components such as additional network devices, additional disks, or other storage system components will need to be added.

Specific details on the scalability options are available from the individual hardware vendors.

SAP HANA for SAP Business Suite Systems

The system configurations from Table 1.2 are available for all types of SAP HANA installations. For SAP Business Suite systems only, with their typical OLTP workload and comparatively large amounts of data that is not accessed frequently, special configurations are available with a higher ratio of RAM to CPU power, as listed in Table 1.3. These configurations are not supported for installations other than SAP Business Suite.

<table>
<thead>
<tr>
<th>RAM</th>
<th>CPUs * Cores</th>
<th>Data file system</th>
<th>Log file system</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TB</td>
<td>4 * 10</td>
<td>4 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>2 TB</td>
<td>8 * 10</td>
<td>8 TB</td>
<td>2 TB</td>
</tr>
<tr>
<td>4 TB</td>
<td>8 * 10</td>
<td>16 TB</td>
<td>4 TB</td>
</tr>
</tbody>
</table>

Table 1.3 SAP HANA Appliance Configurations for Business Suite Systems

Deployment Process of SAP HANA Appliance Systems

Next to the preselection and certification of hardware components, the appliance concept comes with further simplifications related to the deployment of an SAP HANA system. The initial installation of the operating system, file system layout, and SAP HANA software will be performed by the hardware vendor so that customer teams do not need to have dedicated installation knowledge for SAP HANA systems.

There is also an integrated support concept, in which SAP customer incidents serve as a single point of entry for all issues related to the SAP HANA system. SAP Support will distribute these incidents to the support teams of the hardware or OS vendor if necessary.

1.6.2 Tailored Data Center Integration

Especially for larger customers with standardized hardware landscapes and tiered IT operations, the appliance concept for SAP HANA servers will often not fit well into the existing structure of the data center. To address this situation, SAP started opening up the appliance concept in 2013 with Tailored Data Center Integration.

In this concept, the supported hardware systems are still restricted to those certified systems listed in the Product Availability Matrix for SAP HANA. Customers can, however, buy these servers without disks (this refers to storage for data and logs) and use their existing enterprise storage systems instead. For this purpose, the integration of custom storage adapter technologies, such as fiber channel adapters for SAN boot, is permitted.

Note

Not all storage systems are supported in SAP HANA Tailored Data Center Integration. Supported storage systems will be made available online in SAP’s Partner Information Center at https://global.sap.com/partners/directories/SearchSolution.epx. Currently (July 2014), the list of certified storage solutions is available on SCN. *SAP Certified Enterprise Storage Hardware for SAP HANA* can be found at https://scn.sap.com/docs/DOC-48516.

Further steps are already planned for Tailored Data Center Integration, such as opening of the network layer to use the existing enterprise network.

With Tailored Data Center Integration, responsibility is shifted from the hardware vendor to the project team in multiple areas. One area is the hardware setup—in particular, the integration of the existing enterprise components into the SAP HANA server. SAP provides a tool for measuring throughput and latency between the SAP
HANA server and enterprise storage system as part of the SAP HANA software, starting with SPS 7. Documentation of this tool is available in SAP Note 1943937.

The second area of shifted responsibility is software installation. With Tailored Data Center Integration, hardware vendors are no longer responsible for installing the SAP HANA software. Instead, this is (generally speaking) the responsibility of the project team. SAP only supports SAP HANA installations that have been performed by persons who have successfully achieved the "SAP Certified Technology Specialist [Edition 2013]—SAP HANA Installation" (E_HANAINS131) certification.

1.6.3 Hosting and Cloud Offerings

In addition to on-premise installations, SAP HANA is also available through hosting and cloud offerings. For classical hosting, many service providers offer SAP HANA as part of their hosting portfolio; contact your favorite service providers for details.

For cloud offerings, there are presently three categories available:

- **Cloud on SAP HANA**

 Cloud on SAP HANA refers to applications hosted by SAP on SAP HANA hardware, such as SAP Sales and Operations Planning (S&OP).

- **Cloud platform services**

 Developers or partners who want to develop applications on SAP HANA that can be hosted on cloud infrastructure should look into the *SAP HANA Cloud Platform*. This offering allows development and operation of applications on SAP HANA hosted in SAP’s data centers. The development toolset includes SAP HANA’s native development capabilities as well as a full, Java-based development environment.

 For simpler use cases, there is also the *SAP HANA One* offering, which is a SAP HANA system hosted on Amazon Web Services. It is mostly intended for test cases and prototypes but also supported for production usage.

- **Cloud infrastructure services**

 Similar to hosting, SAP HANA cloud infrastructure services allow running SAP HANA systems (and other components of the SAP landscape) in a “foreign” data center. One such offering is *SAP HANA Enterprise Cloud* (HEC); an alternative offering is the *SAP HANA Infrastructure Subscription*, presently offered by SAP and by Amazon Web Services.

1.6.4 Generic Deployment Considerations

Regardless of how SAP HANA is installed—on premise or hosted, appliance or tailored—there are certain generic restrictions and guidelines regarding the usage of the SAP HANA system, especially on production instances. We will now touch on several of these properties.

Multiple SAP HANA Instances on One Hardware System

If an SAP HANA instance is used in the production tier of a system landscape, there is only one SAP HANA instance allowed on the physical SAP HANA system. That is, you must not install multiple SAP HANA instances on the same single-host or scale-out server in production usage.

In nonproduction tiers of the system landscape, such as development, test, quality assurance, or sandbox systems, multiple SAP HANA instances may be installed on the same physical server. See Chapter 3 for details, and refer to SAP’s statement in SAP Note 1681092.

Multiple Applications on One SAP HANA Instance

If you want to run multiple applications which use (i.e., store data and perform queries in) the same instance of SAP HANA, the situation is less restrictive but more complicated. SAP supports concurrent applications on the same SAP HANA instance in many cases, but there is a body of rules surrounding this topic.

The rule set is maintained in several SAP Notes, starting with SAP Note 1661202. This note lists all applications that may be set up with the same SAP HANA instance as the primary database. Because the content of this white list is changing with time, we will not reproduce it here. The range of applications includes SAP BW on SAP HANA, custom data marts, accelerators, and many more.
For the particular case of planning an SAP BW on SAP HANA system, more detailed considerations are listed in SAP Note 1666670. The most important of these may be that SAP does not support running multiple instances of SAP BW on the same production instance of SAP HANA. For the nonproduction tiers of the system landscapes, multiple SAP BW systems may be using the same physical SAP HANA system, but each SAP BW instance will need its dedicated SAP HANA instance.

Finally, for the SAP Business Suite, there is a dedicated white list maintained in SAP Note 1826100, which lists those applications that may be installed on the same database instance and server (in production) as an SAP Business Suite component, with specific considerations for individual components of SAP Business Suite.

In the scope of this book, more important than the application white lists themselves are the administration considerations that should in many cases discourage you from running multiple applications on the same database—at least if one of these applications is critical in some sense (security, business processes, etc.). We briefly mention the most prominent of these considerations here without going into detail yet; that's what the rest of the book is for:

- **Lifecycle management**
 You can only patch the entire database software at once, not “the portion of the database used by application <x>.” The same is true for database backup and recovery.

- **Resource and workload management**
 The resource and workload management features of SAP HANA currently (as of SPS 8) are limited in scope but constantly improving. Today, depending on the criticality of the applications it may not be recommended to operate multiple applications on the same database system.

- **Security**
 Although you can restrict developers to work only in a certain area of the database system, this is not entirely possible for database administrators and, in many scenarios, also not for application support staff.

SAP HANA and SAP NetWeaver Application Servers

Starting with SAP NetWeaver 7.40 and SAP HANA SPS 7, operating instances of SAP NetWeaver Application Server on the same hardware as instances of the SAP HANA database is supported. See SAP Note 1953429 and [www.saphana.com/docs/DOC-4391 (“Overview—SAP HANA and SAP NetWeaver AS ABAP on One Server”) for details.**

Support of Scale Out for Specific Scenarios

Although scale out is a generic, publically available feature of SAP HANA, managing data appropriately in a distributed landscape and for performance-critical application is far from a trivial operation.

Although SAP BW on SAP HANA actively manages data distribution in distributed SAP HANA instances, such application support is not possible in all circumstances, especially not in custom data marts. SAP recommends that customers planning to use SAP HANA scale out for scenarios other than SAP BW contact SAP HANA product management for best practices and expert advice.

Note

Scale-out support for SAP Business Suite systems is in a pilot phase as of July 2014.

Virtualization

On-premise operation of SAP HANA on virtualized servers is for production (since SPS 8) as well as nonproduction (since SPS 6) use, as described in SAP Note 1995460 and [www.saphana.com/docs/DOC-3334 (“SAP HANA Virtualized—Overview”)]. Several restrictions apply for the deployment of SAP HANA on virtualized hardware. We list the most relevant ones here:

- The only hypervisor supported for production usage is VMware vSphere 5.5. vSphere 5.1 is supported only for nonproduction use.
- Virtual machines must be hosted on certified SAP HANA hardware, and only single-host systems are supported as hardware platforms.
- The initial VM installation (including SAP HANA instance in the VM) must be performed by the hardware vendor team or a certified person.
- Memory overcommitment is not supported.

1.7 Release Cycles of SAP HANA Database Software

SAP HANA software is released in two categories of software bundles: Support Package Stacks and revisions. Support Package Stacks are major releases of SAP HANA in which new functionality and significant changes can be introduced, including, in rare cases, even incompatible changes. Revisions are patches to the software for the purpose of minor improvements and bug fixes.
1.7.1 Support Package Stacks
An SAP HANA Support Package Stack (SPS) is a bundle of the core database software (SAP HANA database, client [driver] package, SAP HANA Studio, etc.) with additional components that are part of (at least certain) SAP HANA license bundles, such as the real-time data replication technology SAP Landscape Transformation (SLT).

Support package stacks presently have a loosely defined release cycle: SAP intends to release (and has released since the beginning of SAP HANA) a new support package stack every six months, in May and in November of each year. We write “loosely defined,” because there are no fixed and committed release dates for future support package stacks, and it may happen that the release of a support package stack is delayed by a few weeks.

SAP intends to end the lifecycle of a support package stack a few months after the release of the successive SPS; customers operating an older SPS level will have to upgrade to the latest SPS after the end of the lifecycle for their SPS.

1.7.2 Revisions
An SAP HANA revision (also called an SAP HANA Support Package or SP) contains the core database software, including the database clients and SAP HANA Studio, as well as certain add-on components, such as the Application Function Libraries (AFL). Revisions do not follow a fixed release cycle; instead, they are released when needed. If there are very important bug fixes, there might be two revisions within two weeks, and there may be a month or more without a new revision.

In order to support better planning of SAP HANA patching, SAP introduced two special types of revisions, as described in SAP Note 2021789.

SAP HANA Datacenter Service Points
SAP HANA Datacenter Service Point revisions are only released after testing in SAP’s own production systems. Next to the regular scenario and regression testing performed for all revisions, they have undergone real-life testing in production systems with significant workloads, including SAP BW and SAP Business Suite components. SAP plans to release one such revision for each Support Package Stack of SAP HANA approximately three months after the release of the SPS.

1.8 Summary
You should leave this chapter with a good understanding of the major building blocks of SAP HANA systems in the hardware world as well as in terms of processes running on the operating system of your SAP HANA server.

If you remember that the database server is a typical server and that the three main processes in the database are the index server (the database itself) and the XS server (development platform/application server) as the system’s work horses and the name server (owner of the system topology) as the bookkeeper of the system’s overall structure, then you have understood the big picture.

You should now also have a basic understanding of the properties of distributed SAP HANA instances and of the different options of deploying SAP HANA, including the concepts of SAP HANA appliances and Tailored Data Center Integration.

We hope that we have accomplished the goal of this chapter: to make you feel that SAP HANA systems are not that complicated to understand after all. Continue reading, and we will thoroughly destroy this impression by showing you thousands of fascinating details that administrators can and should know about our favorite SAP technology platform.
Preface .. 17

1 Architecture of the SAP HANA Database .. 23
 1.1 The Basics .. 23
 1.2 The Physical View: SAP HANA Servers 26
 1.2.1 Data and Processing Layer .. 27
 1.2.2 Persistence Layer ... 28
 1.2.3 Network Layer .. 29
 1.3 The Operating System View: Database Processes 29
 1.3.1 System Start .. 30
 1.3.2 Core Database Processes .. 31
 1.3.3 SAP HANA Auxiliary Processes 34
 1.3.4 Further Auxiliary Processes 35
 1.4 The Logical View: Internal Architecture of the Database 36
 1.4.1 Index Server Architecture ... 37
 1.4.2 XS Server Architecture .. 40
 1.5 Distributed SAP HANA Systems ... 41
 1.5.1 The Name Server in Distributed Systems 43
 1.5.2 Distributed Index Servers: Data and Query Distribution .. 44
 1.5.3 Distributed Persistence ... 45
 1.6 The Appliance Concept of SAP HANA .. 46
 1.6.1 SAP HANA Appliance Offerings 46
 1.6.2 Tailored Data Center Integration 49
 1.6.3 Hosting and Cloud Offerings 50
 1.6.4 Generic Deployment Considerations 51
 1.7 Release Cycles of SAP HANA Database Software 53
 1.7.1 Support Package Stacks .. 54
 1.7.2 Revisions ... 54
 1.8 Summary ... 55

2 SAP HANA Scenarios: Administration Considerations 57
 2.1 SAP HANA as a Database in Application Servers 58
 2.1.1 SAP HANA Accelerators for SAP Applications 59
 2.1.2 SAP HANA as the Primary Database for 60
2.1.3 SAP HANA as the Primary Database for SAP Business Suite ... 62
2.2 SAP HANA as a Development Platform ... 64
 2.2.1 Data Marts with SAP HANA (Standalone Implementation) 65
 2.2.2 Applications in SAP HANA .. 68
2.3 Mixed Scenarios .. 68
 2.3.1 SAP HANA Representations of SAP BW Models 70
 2.3.2 Consumption of SAP HANA Models through the SAP BW Layer 72
2.4 Summary ... 73

3 Installation and Updates .. 75
 3.1 Preparing for Installation and Updates ... 75
 3.1.1 Skill Set ... 75
 3.1.2 Server Hardware ... 76
 3.1.3 Operating System ... 76
 3.1.4 File System Setup ... 80
 3.2 Tools for Installing and Updating SAP HANA Systems 85
 3.2.1 Installation Tools .. 86
 3.2.2 Update Tools ... 87
 3.3 Installing an SAP HANA Database ... 88
 3.3.1 Downloading and Preparing the Software .. 88
 3.3.2 Running the Installation Tool .. 91
 3.4 Updating an SAP HANA Database ... 101
 3.4.1 Prerequisites .. 102
 3.4.2 Steps in an Update .. 106
 3.4.3 Running the Update Tool .. 107
 3.5 Installing Multiple Instances of an SAP HANA Database on the Same Physical Server (Nonproduction) ... 110
 3.6 Installation and Update in Batch Mode ... 111
 3.6.1 Password Treatment ... 112
 3.6.2 Preparing the Configuration File ... 114
 3.6.3 Performing the Installation ... 114
 3.6.4 Performing the Update .. 115
 3.7 Installing and Updating Scale-Out Systems 116
 3.7.1 Preparation .. 116
 3.7.2 Installing a Scale-Out System with hdbclmgui 117
 3.7.3 Updating a Scale-Out System .. 119
 3.8 Troubleshooting .. 119
 3.8.1 Log Files of hdblcm ... 119
 3.8.2 Useful Tests on the Command Line ... 120
 3.9 Summary ... 121

4 Administration Tools .. 123
 4.1 Introduction to SAP HANA Studio ... 144
 4.1.1 Your First Contact with SAP HANA Studio 124
 4.1.2 Connecting to SAP HANA Database Systems 127
 4.1.3 Principles of Working with SAP HANA Studio 131
 4.2 Database Administration with SAP HANA Studio 135
 4.2.1 Managing the Database Configuration ... 136
 4.2.2 Starting and Stopping the Database ... 140
 4.2.3 Starting and Stopping Individual Database Processes 144
 4.3 Monitoring the Database with SAP HANA Studio 144
 4.3.1 Getting an Overview of the Database System 145
 4.3.2 Monitoring Views in the Administration Editor 148
 4.3.3 The Statistics Service .. 149
 4.3.4 Other System Monitors ... 152
 4.4 DBA Cockpit for SAP HANA .. 153
 4.5 Summary ... 156

5 The Persistence Layer .. 157
 5.1 Log and Data Volumes: The Data Image on Disk 158
 5.1.1 Memory and Disk .. 159
 5.1.2 Page Management ... 161
 5.1.3 Transaction Logs ... 161
 5.1.4 Data Volumes and the Savepoint Operation 174
 5.1.5 System Start Procedure ... 184
 5.2 Log Backup .. 186
 5.2.1 Log Backup Procedure .. 187
 5.2.2 Enabling Log Backups ... 188
 5.2.3 Managing Log Backups .. 188
 5.3 Snapshots .. 189
 5.3.1 The Purpose of Snapshots .. 190
 5.3.2 Lifecycle of a Snapshot .. 190
 5.3.3 Creating a Database Snapshot in SAP HANA Studio 193
 5.3.4 Recovering the Database from a Snapshot 195
 5.3.5 SQL Syntax for Managing Database Snapshots 198
In order to work with a database, one needs an understanding of the objects the database can contain. This chapter will define the concepts behind each of these objects and then give examples of how the objects are used in SAP HANA.
9.1.4 Paged Attributes .. 353
9.1.5 Hot/Cold Data Aging Concept ... 354
9.2 Running Delta Merges .. 356
 9.2.1 Automerge ... 358
 9.2.2 Memory Merge .. 362
 9.2.3 Smart Merge ... 363
 9.2.4 Hard and Forced Merge .. 364
 9.2.5 Critical Merge ... 365
9.3 Partitioning and Distributing Tables 365
 9.3.1 Round-Robin Partitioning .. 366
 9.3.2 Hash Partitioning .. 367
 9.3.3 Range Partitioning .. 370
 9.3.4 Multilevel Partitioning ... 371
 9.3.5 Partition Pruning .. 371
 9.3.6 Repartitioning ... 377
 9.3.7 Colocated Partitions and Table Replicas 378
9.4 Optimizing Table Distribution and Partitioning 381
 9.4.1 Exporting Data .. 395
 9.4.2 Importing Data .. 401
 9.4.3 Custom Excel File Import ... 403
9.5 Checking Tables for Consistency .. 409
 9.5.1 Exporting Data .. 395
 9.5.2 Importing Data .. 401
 9.5.3 Custom Excel File Import ... 403
9.6 Summary ... 411

10 Sessions and Transactions .. 413
 10.1 Introduction to Sessions and Transactions 413
 10.1.1 Lifetime of a Session ... 417
 10.1.2 The Session Context ... 424
 10.2 Processes and Threads .. 428
 10.2.1 Sessions Running in Threads 431
 10.2.2 Stopping Processes and Threads 438
 10.2.3 Canceling a Running SQL Command 440
 10.2.4 Killing a Session ... 443
 10.2.5 Problems with Session Cancellation 443
 10.3 Monitoring Sessions and Transactions 445
 10.3.1 Using the Session Monitor .. 445
 10.3.2 Using the Monitoring Views via SQL 447
 10.4 Concurrency and Parallelism .. 451
 10.4.1 Types of Parallelism .. 451
 10.4.2 Locks and Blocking ... 452

11 Working with the Repository .. 467
 11.1 Properties of the SAP HANA Repository 467
 11.1.1 Accessing the Repository ... 467
 11.1.2 The Package Structure of the Repository 471
 11.1.3 Repository Content ... 475
 11.1.4 The Persistence of the Repository within the Database 476
 11.1.5 Ownership of Repository Objects 477
 11.2 Creating and Editing Objects in SAP HANA Studio 477
 11.2.1 Setting up a Development Project 478
 11.2.2 Creating Objects in the Developer Workbench 482
 11.2.3 Checking Out a Project .. 484
 11.2.4 Concurrent Development ... 485
 11.3 Deleting Development Objects in SAP HANA Studio 486
 11.3.1 Deleting Objects from the Systems View in SAP HANA Studio 487
 11.3.2 Deleting Objects from a Development Project 487
 11.4 Mechanisms for Exporting and Importing Objects 488
 11.4.1 Developer-Mode Export and Import 488
 11.4.2 Delivery-Unit Export and Import 489
 11.5 Change Recording and Transports 491
 11.5.1 Change Recording .. 492
 11.5.2 Transporting with the SAP HANA Application Lifecycle Manager 493
 11.6 Summary ... 494

12 User Management and Security ... 497
 12.1 Essential Security-Related Concepts 498
 12.1.1 Object Ownership .. 498
 12.1.2 Stored Procedures in Definer Mode 498
 12.2 Database Users ... 498
 12.2.1 Creating Database Users ... 499
 12.2.2 Modifying Database Users 503
 12.2.3 Deactivating and Locking Users 504
 12.2.4 Dropping Database Users 506
 12.2.5 Built-in Database Users ... 513
 12.2.6 Restricted Users .. 515

13 Summary .. 465
16.1.2 Alerting ... 674
16.1.3 External Monitoring Tools 674
16.2 Error Messages ... 675
 16.2.1 Locating Error Messages 676
 16.2.2 Interpreting Error Messages 680
16.3 Diagnostic Files .. 681
 16.3.1 Dump Files ... 681
 16.3.2 Trace Files .. 683
 16.3.3 Collecting Diagnostic Files for a Support Incident 686
 16.3.4 Using the Merged Diagnosis Files Editor 687
16.4 Server Side Traces ... 692
 16.4.1 Database Trace and User-Specific Trace 694
 16.4.2 End-to-End Trace ... 696
 16.4.3 Expensive Statements Trace 696
 16.4.4 SQL Trace ... 699
 16.4.5 Performance Trace ... 700
 16.4.6 Kernel Profiler Trace 701
16.5 Client-Side Traces .. 701
 16.5.1 JDBC Trace .. 701
 16.5.2 The ODBC Trace .. 704
 16.5.3 SQLDBC Trace ... 705
 16.5.4 The ODBO/MDX Trace 706
16.6 Summary ... 706

The Authors ... 709
Index ... 711
Index

A

Accelerators, 59
ACID, 23
Active user, 595
ADMIN SESSION, 442
ADMIN statement, 559
Administration Editor, 125, 145, 164
monitoring views, 148
Overview screen, 146
Alerts, 149, 629, 642, 674
ALTER SYSTEM CANCEL SESSION, 441
ALTER SYSTEM DISCONNECT SESSION, 443
ALTER SYSTEM RECLAIM VERSION SPACE, 460
Analytic privileges, 475, 566
granting, 568
SQL-based, 569
Analytic views, 66, 475
Appliance, 46
APPLICATION, 427
Application Function Library (AFL), 34
APPLICATION* variables, 427
APPLICATIONSOURCE, 427
APPLICATIONUSER, 427
APPLICATIONVERSION, 427
Architecture, 26
data and processing layer, 27
network layer, 29
persistence layer, 28
processes, 29
servers, 26
Attribute views, 66, 475
Attributes, 353
Auditing, 534
global settings, 535
mandatory policies, 541
policies, 536
principles, 538
Authentication, 516
enabling multiple methods, 524
Kerberos, 520
Authentication (Cont.)
nam/password, 516
password policy configuration, 516
SAP Logon tickets, 523
Authorizations, 543, 575
tracing, 581
troubleshooting, 575
Automerges, 358

B

BackInt, 82, 166, 188, 199
Backup
file-based, 29
network-pipe-based, 29
Backup and recovery, 199, 625, 630
automating, 235
copying, 222
database parameters, 236
properties, 201
supported mechanisms, 199
system reviews, 235
Backup catalog, 228
incorrect information, 230
size, 230
Backup Editor, 205
Backup files, 214
Backup storage, 232
Binary large object (BLOB), 352
Blocking, 452
Bootstrapping, 615
cryption, 618
operating system, 616
role and user management, 618

C

Calculation engine, 40, 661
Calculation views, 66, 475
Catalog, 276, 553
objects, 275
Database recovery (Cont.)
phases, 211
process, 213
scenarios, 221
sequence, 211
specific data backup, 210
wizard, 216
Database shared library, 418
Database users, 632
HALM transport executor, 633
HALM transport manager, 633
HALM transport source user, 633
repository export manager, 633
repository import manager, 633
repository manager, 633
DBA Cockpit, 153, 673
functionalities, 154
DBBL. 418, 419, 423, 428
Decision tables, 475
Definer mode, 498
Delivery units, 472
import and export, 489
Delta merges, 176, 356
analysis, 361
auto, 358
critical, 365
data access, 358
data movement, 357
memory, 362
Deployment, 51, 603
applications, 605, 606, 607
multiple apps on one instance, 51
multiple databases on one server, 603
physical hardware, 605
SAP NetWeaver Application Server, 52
scale-out, 53, 603
single-node, 603
standard appliance, 603
Tailored Data Center Integration, 603
virtualization, 53, 605
Developer Workbench, 555
create object, 482
Development, 478
prepare repository, 478
set up a project, 478
Diagnosis Mode, 143
Diagnostic files, 681
collecting, 686
Disaster recovery, 236, 533, 611
storage replication, 611
system replication, 612
Distributed systems (see Scale-out systems)
DSOs, 71
Dump files, 681
E
 EFFECTIVE_PRIVILEGES view, 579
 EFFECTIVE_ROLES view, 580
 Encryption, 530, 531
 Error messages, 675
 locating, 676
 model activation, 677
 SAP HANA Studio, 676
 understanding, 680
Expensive statements trace, 630, 642, 696
EXPLAIN PLAN, 644
EXPORT, 401
Exporting, 395
example, 397
F
 Failback, 272
 Failover groups, 269
 configuration, 270
 wizard, 270
Functions, 312
example, 313
G
 Garbage collection, 459
Global allocation limit, 623
GRANTED_PRIVILEGES view, 577
GRANTED_ROLES view, 578
H
 Hadoop, 66
HALM, 470, 493, 633
Catalog roles, 544
vs. repository roles, 552
Character large object (CLOB), 212
monitoring, 219
most recent state, 209
performance, 220
Index
Catalog roles, 544
vs. repository roles, 552
Change recording, 491, 635
Character large object (CLOB), 352
monitoring, 358
most recent state, 351
performance, 357
[120x132]712
[120x179]CTS+, 614
[120x190]Critical merges, 365
[120x200]CREATE USER, 500
[120x211]Crash dump files, 681
[120x222]CPU, 27, 28
[120x233]Converter table, 178
CPU, 27, 28
Crash dump files, 681
CREATE USER, 500
Critical merges, 365
CTS+, 614

D
 DATA ADMIN, 573
Data aging, 354
Data backups, 160, 201
cancelling, 208
choosing, 223
consistency checks, 205
contents, 202
creation, 205, 233
deleting, 229, 234
naming files, 204
prerequisites, 206
running, 206
size, 203
SQL syntax, 233
Data consumption, 66
Data definition language (DDL), 453
Data federation, 40
Data files, 159, 174
free space, 178
page management, 161
Data manipulation language (DML), 453
Data marts, 65
and data consumption, 66
and data provisioning, 65
and life cycle management, 67
and user management, 67
and virtual data models, 66
features, 65
Data modeling, 66
SAP BW on SAP HANA, 69
Data provisioning, 65
Data volumes, 158, 174
disk full, 181
system views, 183
Database backups, 610
Database Configuration Editor, 138
database settings, 139
Database recovery, 209
arbitrary point-in-time, 210
 cancellation, 221
log area, 212
monitoring, 219
most recent state, 209
performance, 220
Disk full, 181
System views, 183
Database backups, 610
Database Configuration Editor, 138
database settings, 139
Database recovery, 209
arbitrary point-in-time, 210
 cancellation, 221
log area, 212
monitoring, 219
most recent state, 209
performance, 220

Index

Hard shutdown, 141
Hardware, 590, 599
HDB daemon, 31
HDB info, 429
hdbaddhost, 264
hdbinst, 85
hdblcm, 35, 85, 114
hdbm(gui) adding hosts, 264
removing hosts, 267
hdbmngui, 35, 85, 91, 111
installing scale-out systems, 117
updates, 107
hdbm, 111
updates, 111
hdbsql, 35, 427
hdbsql, 85
hdblm, 111
removing hosts, 267
Hosts, 26, 41
adding, 262
auto-failover, 268, 609
failover, 271
removing, 265
standby host, 43
Hot data, 354
Hyper-Threading, 436

I

Idle cursor timeout, 458
IMPORT, 401
IMPORT FROM, 401
Imported packages, 473
Importing, 401
Excel file, 403
Index server, 24, 32
architecture, 37, 39
distributed, 44
master, 44
Index server process, 256
InfoCubes, 71
Installation, 75, 88
batch mode, 111
components, 90
defining administration user, 97
defining hostnames, 99
defining locations, 96
downloading software, 88
entering properties, 95
file system setup, 80
hardware, 76
instance number, 94
memory, 110
multiple instances, 110
OS configuration, 78
passwords, 112
scale-out, 116
setting passwords, 98
skills, 75
software packages, 77
system type, 94
tools, 85, 86
troubleshooting, 119
Instance, 25
distributed (see Scale-out systems)
Intel, 28, 46
Inverted indexes, 336
Ivy Bridge, 46

J

JDBC/ODBC, 64, 273
JobWorker, 432, 451
Join engine, 661

K

Kerberos, 500, 520, 618
register users, 522
setup, 521

L

Large object (LOB), 352
Latches, 431
Least recently used (LRU), 349
License keys, 624
Lifecycle management, 67
Linux OS, 29, 170
liveCache, 40, 45
L-language, 38
Load diagram, 639
LOCASE, 425
Locale_SAP, 425
Locate timeout, 458
Locals, 431, 186
choosing, 223
deleting, 229, 234
enabling, 188
location and file names, 187
log segment states, 188
managing, 188
procedure, 187
Log modes, 164
normal, automatic backup, 165
normal, no automatic backup, 165
overwrite, 165
Log segment file names, 162
location, 174
Log segments, 162
default sizes, 162
directory, 163
housekeeping, 166
location, 162
SQL query, 164
states, 167
writing to, 172
Log volumes, 158, 162
disk full, 168
Logical pages, 178
LSA++, 592

M

M_CONTEXT_VARIABLES, 425
M_MVCC_TABLES, 459, 460
M_SERVICES, 459
M_SESSION_CONTEXT, 427
M_VERSION_MEMORY, 459
MAX_VERSIONS_PER_RECORD, 461
MDX, 37
Memory, 110, 347
loading and unloading columns, 348
Memory Allocation Statistics dashboard, 153
Memory merge, 362
Memory Overview dashboard, 152
MergdogMonitor, 359
MERGE DELTA, 349
Merged Diagnosis Files Editor, 687, 690
MergedogMonitor, 360
Merges
hard and forced, 364
smart, 363
Metadata management, 44
Metadata Manager, 40
Master Metadata Manager, 44
Microsoft SQL Server, 66
Mixed scenarios, 68
SAP BW, 69
SAP BW on SAP HANA, 71
Monitoring, 144, 671
expensive statements trace, 630
locks, 456
SAP Solution Manager, 675
third-party tools, 675
via SQL, 447
views, 148, 672
Multihost systems (see Scale-out systems)
Multiversion Concurrency Control (see MVCC)
Mutexes, 431
MVCC, 322, 338, 458
column store, 462
row store, 459
mvcc_anti_ager.cc, 460
MvccAntiAgerChecker, 460
MVCCGarbageCollector, 459

N

Name server, 32, 43, 259
active master name server, 43
master, 43, 259
Native packages, 473
Nearline storage (NLS), 61, 355
Network layer, 29
Nodes, 26, 43, 162, 257
ID, 162, 262
master, 258
master node, 43
slave, 258
slave node, 43
standby, 258
standby node, 43
worker node, 43
NUM_VERSIONS, 460

P
Package structure, 634
defining, 474
Packages
privileges, 473
special, 474
Paged attributes, 353
Parallelism, 451
interquery, 451
intraquery, 452
types, 451
Parameter [authorization]
internal_support_user_limit, 637
Parameter [communication]
silenforce, 531
Parameter [indexserver.c]
instancecids, 227
Parameter [memorymanager]
global_allocation_limit, 111, 594, 623
Parameter [parallel]
tables_preloaded_in_parallel, 186
Parameter [persistence]
basepath_databackup, 203, 204, 625
basepath_logbackup, 187, 625
basepath_logvolumes, 170
data_backup_max_chunk_size, 236
enable_auto_log_backup, 165, 173, 188, 626
log_backup_timeout_s, 165, 173, 187
log_buffer_count, 174
log_buffer_size_kb, 174
log_mode, 165, 173, 188, 626
log_segment_size_mb, 162
logsegment_size_mb, 173
savepoint_interval_s, 176
Parameter [repository]
content_vendor, 490, 632
Parameter [sql]
default_table_type, 630
reload_tables, 186
Parameter [statisticsserver]
active, 226
instances, 226
Parameter [system_information]
usage, 132
Parameter [system_replication]
datashipping_logsize_threshold, 248
datashipping_logsize_threshold, 248
datashipping_maxRetentionTime, 249, 250
logshipping_timeout, 248
preload_column_tables, 249
reconnect_time_interval, 248
Parameter settings, 136
changes, 140
default value, 136
host-specific customizing, 136
system-wide customizing, 136
Partitioning, 365
colocated, 378
hash, 367
multilevel, 371
optimization, 381
pruning, 371
range, 370
repartitioning, 377
round robin, 366
table replicas, 378
Passwords, 516
blacklist, 519
policy, 518
Performance analysis, 639
Alerts tab, 642
expensive statements trace, 642
EXPLAIN PLAN, 644
load diagram, 639
PlanViz, 645
Persistence layer, 28, 40, 157
master server, 158
slave server, 158
Persistent staging area (PSA), 351
Physical data model, 66
Physical pages, 178
Plan eviction, 424
Planning engine, 40
PlanViz, 452, 645
analyzing joins, 660
calculation view, 646
equivalence, 646
joins, 661, 665
mapping information model, 652
query result, 648
timeline display, 656
user interface, 650
Preprocessor, 33
Privileges, 543, 553
analytic, 66, 566, 569
catalog, 553
combinations, 570
critical, 570
granting, 554
Privileges (Cont.)
object, 561
package, 564
repository, 559
revoking, 555
schema, 563
system, 560
types, 560
PRIVILEGES view, 576
Procedures, 312
Process auto-restart, 609
Process configuration, 624
Processes, 29, 31, 144, 413, 428
auxiliary, 34
care, 31
stopping, 438
Projects
checking out, 484
create and share, 480
setup, 478
Q
Queries, 420
executing, 422
parsing, 421
R
Recovery Point Objective, 237
Recovery Time Objective, 237
Red Hat Enterprise Linux 6.5, 30, 76
Release cycles, 53
REPO.IMPORT, 571
Repository, 277, 467
access, 467
access in SAP HANA Studio, 468
access in web IDE, 469
package structure, 471
persistency, 476
prepare packages, 478
properties, 467
Repository content, 475
applications, 476
modeling artifacts, 475
ownership, 477
Index

W
Worker threads, 432
WTS connection, 618

X
X.509, 500
XMLA, 33
XS server, 24, 33
architecture, 40
features, 33
Richard Bremer has worked on SAP’s in-memory technologies since 2008, starting as a support consultant for SAP BW Accelerator, and moving to the SAP HANA topic in 2010, working in the RIG / Customer Solution Adoption (CSA) team. He led the global SAP HANA CSA program before moving on to SAP HANA product management. Richard has supported dozens of SAP HANA implementation projects with expertise on data modeling, security, database administration, and system landscape design. He enjoys sharing knowledge and teaching front-line technologies to SAP consultants, customers, and partners. He is a frequent contributor to SAP TechEd events and SAP User Group meetings.

Lars Breddemann has been working with database management systems since 1998 as a developer, DBA, supporter, and systems architect. Having worked in SAP AGS product support since 2003, he has experience with multiple database technologies (Oracle, SAP MaxDB/liveCache), SAP Business Warehouse, and since 2010, SAP HANA. In 2011, he moved to the Customer Solution Adoption (CSA) team, where he assumed the role of SAP HANA expert. Specializing in core database technology, development, supportability, and performance analysis, Lars educated hundreds of users, partners, and colleagues and has been called into projects around the globe as the go-to authority. Lars is an acclaimed SAP TechEd speaker, a leading SCN contributor and moderator, and was appointed as one of the first SAP HANA Distinguished Engineers in 2012.

We hope you have enjoyed this reading sample. You may recommend or pass it on to others, but only in its entirety, including all pages. This reading sample and all its parts are protected by copyright law. All usage and exploitation rights are reserved by the author and the publisher.