
Reading Sample
In Chapter 3, you’ll find out how SAP HANA changes the way data
is stored. Learn the technical details behind row and column
storage, and get hands-on instructions for creating tables and data
marts for an SAP HANA project.

Jonathan Haun, Chris Hickman, Don Loden, Roy Wells

Implementing SAP HANA
860 Pages, 2015, $79.95/€79.95
ISBN 978-1-4932-1176-0

 www.sap-press.com/3703

 “Data Storage in SAP HANA”

 Contents

 Index

 The Authors

First-hand knowledge.

 © 2015 by Galileo Press, Inc. This reading sample may be distributed free of charge. In no way must the file be altered, or
individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

https://www.sap-press.com/implementing-sap-hana_3703/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1176

155

This chapter helps you understand how data is stored most effectively
in memory so you can get the best results in both compression and
performance.

3 Data Storage in SAP HANA

In this chapter, we’ll go into great detail on how data is stored in SAP HANA.
Understanding data storage in SAP HANA is an important foundation because
data storage differs from traditional database management systems in a number of
ways. First, we’ll start with on overview of data storage in SAP HANA to highlight
these differences, and then we’ll move into all of the components that make this
possible (Section 3.1 and Section 3.2, respectively). We’ll then discuss physical
data modeling for SAP HANA in Section 3.3 to draw clear differences between tra-
ditional database systems and techniques and tools that are available in SAP
HANA, and why it makes sense to actually think backward about a data model in
certain cases. This chapter ends in Section 3.4 with a case study for data modeling
using our sample organization, AdventureWorks Cycle Company.

3.1 OLAP and OLTP Data Storage

Storing data in SAP HANA is quite different from doing so in a traditional disk-
based database. The first and most obvious point is that SAP HANA is a relational
database management system (RDBMS), where data is stored entirely in memory,
instead of relational data being stored entirely on spinning disks.

Storing data entirely in memory was once a revolutionary concept that first had its
detractors making statements such as, “Data for an entire application or data
warehouse structure would never all fit into memory.” In fact, it was such an
unconventional idea that it took some time to gain ground. However, many lead-
ing vendors now have in-memory solutions and are touting both the in-memory
platform and stance for the same reason SAP sought to use this strategy in the first
place—unbelievable performance. Data loaded into SAP HANA and consumed by

156

Data Storage in SAP HANA3

external applications performs at an unbelievable speed—almost as if the data
were staged for a demonstration. The response times are simply too fast.

The example in the preceding box is a real-world result that this particular cus-
tomer would benefit from immediately just by porting its data to SAP HANA.
These are the incredible performance benefits of in-memory computing that SAP
has not been shy about touting—and rightfully so.

However, as with any great software platform, a developer must consider the
needs of the platform and embrace techniques that envelop all of its strengths.
This is where a gap has existed in the discussion of SAP HANA. SAP HANA simply
performs so well that it allows some sloppiness in the design and still performs at
an incredible pace. We believe that you can avoid this sloppiness by merely taking
a step back and catering the pillars of the development effort to the needs and spe-
cial characteristics native to the SAP HANA platform. As you weigh design consid-
erations at the onset of the project, begin by considering how you want to store
the data in the architecture that is unique to SAP HANA. In this section, we’ll pre-
pare you for these considerations by introducing you to the spinning disk problem,
and then talk about how this problem can be combated with some of the unique
features that SAP HANA brings to the development effort.

SAP HANA Real-World Performance: Exhibit A

In our lab at Decision First Technologies, we took data from a customer paired with the
SQL produced by an SAP BusinessObjects Web Intelligence report and placed the sup-
porting data in SAP HANA. We then took the underlying query provided by the Web
Intelligence report and ran it at the command line against the SQL Server database. The
original SQL Server–based query runtime? More than an hour. The query was tuned, and
the data was optimized in the SQL Server database, but the query was, frankly, quite
complex, and the data volume was large. The report was critical to the customer’s busi-
ness, so more than an hour of runtime was simply too long to wait for the data.

As a proof of concept, we moved the data to SAP HANA for the customer, used the
same exact SQL from the Web Intelligence report. We did not tune the database tables
or structures for SAP HANA; we merely ported the data from SQL Server to SAP HANA.
We did not tune the query. This was simply a copy-and-paste exercise. The new SAP
HANA query runtime? Four seconds.

Although we did absolutely nothing to the data or the report, the runtime was immedi-
ate. Needless to say, this was a compelling story for the customer, even before we
invoked the modeling techniques that exploit the storage and engine processes in SAP
HANA (we’ll discuss these later in this chapter).

OLAP and OLTP Data Storage 3.1

157

3.1.1 The Spinning Disk Problem

Spinning disks have been a performance bottleneck ever since they were intro-
duced. The closer the disk is to the CPU, the faster data is rendered, searched,
sorted, and processed; in SAP HANA, you take the physically spinning disk com-
pletely out of the equation to fully maximize this realization. Take, for instance,
the process flow of information in a typical system and database:

1. Data is collected from an application via user input from a screen or form.

2. Data is passed to the database in a process known as an input/output (or I/O)
transfer of information.

3. Data may be written to or read from a cache in memory on the database server.

4. Data is finally stored on a spinning disk.

I/O transfers performed without the use of a cache can take much longer to pro-
cess. Factors that contribute to extra time include physical disk platter spinning
rates, time needed to move mechanical components of the drive heads to read the
disk platter, and numerous other factors that are inherent to this disk-based pro-
cess and that add additional latency. This is a rather archaic process that hasn’t
changed greatly since the onset of computing. Conventional database systems try
to improve on this by targeting specific systems that provide disk caching con-
trollers.

Caching data is a method used to speed up this process of data access from a spin-
ning disk, and all of the major database vendors work closely with the disk man-
ufacturers to tune the needs and specific requirements of the database I/O pro-
cessing needs. In most cases, the database vendors seek to exploit caching
techniques to limit that final disk interaction as much as possible. This is simply
to avoid the native issues present with disk seek and write times by using the var-
ious optimizations of the caching controllers. This is all an effort to work around
the slowness of the disk, whose performance can be maximized only so far.

3.1.2 Combating the Problem

Many technologies that we rely on today were invented to work around the
inherent slowness caused by the disk. Take, for instance, online analytical process-
ing (OLAP) technologies (which enable faster read performance by physically
restructuring the data), online transaction processing (OLTP) technologies (whose
goal is to make writing data to disk as fast as possible), or, finally, column storage

158

Data Storage in SAP HANA3

technologies (whose goal is compression to both minimize storage and increase
the speed of access to the data). The important thing to keep in mind is that all of
these technologies, at their core, were designed around the spinning disk and its
native challenges. We’ll introduce each of these technologies briefly and then talk
about how they all fit into SAP HANA.

OLTP Storage Methods

An OLTP, or relational database, stores data in a normalized fashion at its core.
Data is normalized to reduce redundant data and data storage patterns to optimize
precious disk space and make the writing of that data to disk as fast as possible.
Without techniques to minimize the storage factor, relational databases, by
nature, use lots of space to store these redundant values. Consider Figure 3.1,
which shows a typical normalized RDBMS table structure that’s been designed to
reduce redundant data storage.

Figure 3.1 Normalized RDBMS Table Structure

OLAP and OLTP Data Storage 3.1

159

Data is normalized or reduced into multiple tables so that repeating values are
removed into multiple tables to store repeating values once and contain a pointer
to those repeating values. For example, in Figure 3.1, SALE_HEADER records are
normalized into their own table instead of just storing the columns into the SALE_

HEADER table. This concept is the pinnacle of an OLTP system. This is simply the
design principal on which OLTP systems are based.

There is nothing wrong with this design for inserting or storing data in conven-
tional RDBMS systems. In fact, for this purpose, it’s quite good. (There is a reason
this methodology is the way the world stores its data!) However, there is one fun-
damental problem with this system: getting data out.

Retrieving data from an OLTP system requires multiple joins and combinations of
various related tables. This is expensive in terms of processing in these database
designs. Often, reporting in these systems is certainly an afterthought. It is prob-
lems like this one—combined with the slowness and natural speed impediment—
that many technologies evolve to solve. Techniques such as OLAP technologies
were invented to solve this problem.

OLAP Storage Methods

OLAP data storage methods were conceived to combat slowness caused by both
data access to disk and the way that data was stored in conventional relational
databases, as just described. Technologies such as OLAP data storage physically
store the data in a different way because traversing a relational database on disk
isn’t exactly the fastest solution for reading or retrieving data. Figure 3.2 shows
this alternative data storage in an OLAP database, in a typical star schema (named
so because of the shape the related tables resemble).

In an OLAP database, data is organized into concepts called facts and dimensions.
The facts and dimensions are just standard tables, but their names denote what
they store. Facts are the heart of the star schema or dimensional data model. For
example, FACT_SALE is the fact table in Figure 3.2. Fact tables store all of the mea-
sures or values that will be used as metrics to measure or describe facts about a
business concept. Fact tables may also contain foreign keys to the date dimension
tables to allow pivoting or complex date metrics. Fact tables will be arranged with
differing granularities. Fact tables could have a high granularity and be at an
aggregate level, aggregating measures by calendar week or a product line, for
instance, or a fact table could be at the lowest level of granularity: a transaction

160

Data Storage in SAP HANA3

line from a source system or combined source systems. Fact tables also contain
foreign keys that refer back to dimension tables by the primary key of the dimen-
sion table. A fact is the “many” side of the relationship.

Figure 3.2 Data Stored in an OLAP Database

Dimension tables are the ancillary tables prefixed with “DIM_” in Figure 3.2.
Dimension tables are somewhat the opposite of fact tables because dimensions
contain descriptions of the measures in the form of accompanying text to describe
the data set for analysis by labeling the data, or the dimensions are often used to
query or filter the data quickly. In Figure 3.2, the DIM_CUSTOMER table provides
details about customer data or attributes and is used to filter and query sales from
the prospect of customer data. The same can be said for DIM_PRODUCT.

This is a dramatic solution because an entirely different table structure had to be
established and created. If the modeling task symbolized in Figure 3.2 isn’t

OLAP and OLTP Data Storage 3.1

161

enough, another element adds to the complexity: a batch-based process is created
out of necessity.

A batch-based process is needed to both load and transform the data from the
OLTP normalized data structure into the denormalized OLAP structure needed for
fast querying. That batch process is typically called extract, transform, and load
(ETL). An ETL process physically transforms the data to conform to this OLAP
storage method.

SAP’s solution for ETL data integration is SAP Data Services. SAP Data Services is
a fully functional ETL and data quality solution that makes building very complex
processes relatively straightforward. SAP Data Services is used to extract and
transform data through complex transforms with many powerful, built-in func-
tions. Because it’s the primary means to provision non-SAP data into SAP HANA,
SAP Data Services plays a pivotal role in setting up data models and data storage
the right way for maximum performance in SAP HANA. We’ll discuss this tool’s
capabilities at length later in this book.

OLAP data structures like those shown in Figure 3.2 are the focus and primary
use case of ad hoc analytical tools such as SAP BusinessObjects BI. The OLAP or
star schema structure allows the tool to be quite flexible with the data in terms of
drilling if hierarchies exist in the data or if you are using a date dimension (in the
preceding example, this is DIM_DATE) to not only search and sort but also effort-
lessly provide running calculations or more complex, date-based aggregations.
Analytic activities like these would be quite difficult to address in a fully normal-
ized OLTP system. Certainly, this data storage and system design eases the bur-
den placed by the slowness of the platform, as well as adding nice features for
analytics.

Typical ETL Process Workflow

1. After data is extracted from one or multiple source systems, the data loads to a stag-
ing database, where multiple transformations occur.

2. Staging is a key layer where the data loses the mark of the source system and is stan-
dardized into business concepts.

3. Data is loaded into the data warehouse tables and finalized into an OLAP structure
to allow for both high-performing reads and flexibility in analytical methods and ad
hoc data access.

162

Data Storage in SAP HANA3

Columnar Data Storage Technologies

One final data storage technology, and the one most relevant to SAP HANA, is the
columnar database architecture. Columnar databases also take on the problem of
working around the slowness of the disk by changing the way that data is stored
on the disk. We’ll walk through the SAP HANA specifics later in this chapter, but
it’s important to have a basic understanding of columnar architectures now.

Columnar databases have been around for quite some time, and the concept was
certainly not invented with SAP HANA. Rather, this was a design methodology
that was integrated into SAP HANA for the unique features and data storage
aspects that a columnar database brings to the data storage equation. Columnar
databases still use tables to store data as logical components, but the way that the
data is laid out on the disk differs considerably from standard, row-store tables.
Data values are gathered and stored in columns instead of rows. A very simple
example is a product table with colors and product descriptions. In Figure 3.3, the
data is stored in rows as it’s represented in the logical tables in the database.

Figure 3.3 Data Storage in Rows in a Table

Data is organized into rows in the physical storage of the data on disk. This is a
great design for OLTP systems and is the standard for most of the world’s data. So,
data in a column-store table would be arranged quite differently on the disk. Data
is arranged by the columns of the data in Figure 3.4.

Figure 3.4 Data Stored as Columns in a Column-Store Table

Notice that the repeating values are stored only once, to minimize the physical
footprint of the data on the disk.

OLAP and OLTP Data Storage 3.1

163

Columnar databases have traditionally been used for OLAP applications, wherein
reads are very important because data can be read much more efficiently from this
type of storage structure. Data is read and presented quickly to a consuming appli-
cation or report. Other challenges can arise when you insert data into disk-based
column-store tables. For example, UPDATE operations are quite expensive for col-
umn-store data structures compared to their row-store cousins.

For reasons like these, porting an existing structure to a columnar form—while
not an insurmountable task—certainly has more considerations than simply mov-
ing the data over to a different platform. As mentioned, SAP HANA mitigates
some of these issues because in memory storage is so much faster. In a sense, SAP
HANA masks some of these issues, but you should still consider them when

Note

Column-store tables can still be relational tables and data. The difference lies in the way
the data is arranged on the disk.

Inserts in Disk-Based Column-Store Tables

In our lab at Decision First Technologies, we recently ported data for a data warehouse
OLAP structure from SQL Server to SAP (Sybase) IQ to take advantage of the superior
compression and read technology available in columnar SAP (Sybase) IQ tables. How-
ever, we did notice some considerations that should be made in this port. These consid-
erations are somewhat alleviated by the in-memory storage in SAP HANA, but they are
still worth considering because they are in the domain of a column-based database:

� SELECT statements or reads are much faster than with a conventional row-based
database. The data then loads to a staging database, where multiple transformations
occur.

� Using BULK INSERT uploading data is considerably faster and should be used when-
ever possible, especially with large record sets.

� UPDATES or MERGE target operations are considerably slower than a conventional
row-based database.

� DELETE inserts are faster when updates are needed.

The main takeaway is that SELECT SQL statements or reading data for operations such as
a report do not need to be altered too much, but the ETL process will most likely require
INSERTS, UPDATES, and DELETES to be altered, especially for delta or change-based
loads.

164

Data Storage in SAP HANA3

you’re porting very large existing data warehouse structures that require some
type of ETL process with, most often, non-SAP data.

Solutions Used by SAP HANA

We’ve discussed OLTP, OLAP, and columnar data storage methods and the rea-
sons they were introduced, and SAP HANA is unique in the sense that it can be a
bit of a chameleon. SAP HANA can act as any of these platforms by first physically
storing data in both row and column fashions; however, even more than that, it
can also act as an OLAP structure and even process data by interpreting multi-
dimensional expressions (MDX query language). It also has a common and con-
ventional SQL interface.

In essence, SAP takes advantage of the best of all of these platforms natively. This
adaptable nature has been great for SAP because it allows SAP HANA to quickly
and seamlessly be addressed under many conventional applications. If a multidi-
mensional, cube-based application, such as SAP BW or SAP Business Planning and
Consolidation (SAP BPC), needs MDX to interface data, then no problem. SAP
HANA has an interface layer to behave just like a cube to the application. Most
applications interact with a database via SQL, and SAP HANA is just as comfort-
able interfacing as SQL.

It’s important to note that most of these technologies were invented to combat
the slowness of disk-based data access. But SAP HANA is different. Even though it
can masquerade as any of these technologies, it’s taking on the performance prob-
lems directly. Instead of working around the issues of the platform, SAP HANA
simply changes the platform altogether. It skips the disk, and data is stored
directly in memory close to the CPU, where it performs better. That SAP HANA
works natively as any of these technologies is merely a product-related strategy to
foster adoption of SAP HANA as a platform capable of replacing existing, under-
lying database technologies while offering developers new and exciting ways to
both access and model data. We’ll cover both accessing and modeling data in later
chapters of this book.

SAP HANA goes even further in rethinking the developer’s platform by moving
the various data processing layers in an application so that a developer must
re-envision what he or she is trying to achieve. It’s truly a revolutionary plat-
form.

Data Storage Components 3.2

165

3.2 Data Storage Components

To begin using SAP HANA, you must first load or provision your data into SAP
HANA, but to do this, you need a persistent layer of data storage. This persistent
layer (also known as a persistent model) is made up of basic data storage and orga-
nizational components that are actually quite common concepts to database-savvy
professionals. The first two organizational components are schemas and users.
From there, the components start to diverge and take on a much more SAP
HANA–specific dialect: row-store tables and column-store tables.

Let’s wade further into the organizational components mentioned above: schemas
and users, column-store tables, and row-store tables. We’ll conclude our discus-
sion with a comparison of use cases for row- and column-store tables. All of the
storage components mentioned in this chapter are found in SAP HANA Studio
under the Administration Console and Modeler perspectives.

3.2.1 Schemas and Users

Recall that SAP HANA has many conventional components that make database
administrators and database developers quickly feel at home. These are mostly
organizational components that facilitate administrative tasks. At a very high
level, a user is used to connect to and authenticate SAP HANA, and a schema is
used to group and classify various database objects, such as tables or views.
Because these aren’t new concepts for SAP HANA, we will assume basic knowl-
edge of what they mean, and will instead focus our discussion on what is required
to provide a foundation for further discussion of SAP HANA–specific topics and
for building the physical database-level objects for the case study examples.

Schemas

Schemas are similar to concepts that exist in other conventional database plat-
forms. Most database platforms use schemas as a subdividing tool, and SAP HANA
is no exception. In SAP HANA, schemas are used to divide the larger database
installation into multiple sub-databases to organize the database objects into log-
ical groupings. You use schemas to logically group objects such as tables, views,
and stored procedures. A schema in SAP HANA is essentially a database within the
larger database or catalog. (We’ll go into specific details about how to create a
schema in Section 3.4.1, as part of the case study for this chapter.)

166

Data Storage in SAP HANA3

Figure 3.5 shows the BOOK_USER schema in SAP HANA, from which all of the case
study examples in this book will be crafted. The BOOK_USER schema is the only
user-defined schema that is visible. The rest of the schemas visible in the figure—
SYS, _SYS_BI, _SYS_BIC, and _SYS_REPO—are all default system-generated schemas.

Figure 3.5 The BOOK_USER Schema in SAP HANA

Users and User Authentication

SAP HANA users are no different from users in any other conventional database
in the sense that, if you want to work in SAP HANA, you must have a user name
to log on to the system. After logging on to SAP HANA, your user must have priv-
ileges to perform certain tasks. Much like schemas, users feel quite standard in
concept to most savvy database administrators.

SAP HANA also supports the concept of a role, which is a superset of privileges.
Roles are granted to database users and inherit the privileges assigned to the role
the user belongs to.

When SAP HANA is installed, a database user called SYSTEM is created as the
default admin user. This user has superior system-level privileges to create users,
access system tables, and so on. As a best practice, you should not use the system

Data Storage Components 3.2

167

user for normal administration activities or assign roles to this user. Use the SYS-
TEM user to create database users with roles with the minimum set of responsi-
bilities to perform the user’s duties.

Users in SAP HANA exist only as database users to map to the privileges discussed
earlier, and for internal authentication, this is the only means available.

3.2.2 Column-Store Tables

Because SAP HANA is optimized, or tuned, for storing data in columns over stor-
ing data in rows, you should use column-store tables whenever possible. Reading
data is much faster in column-based tables; from a data storage perspective,
columnar storage and compression are two of SAP HANA’s best offerings. In a col-
umn-store table, data simply compresses at higher rates.

As discussed earlier in this chapter, columnar storage allows repeating values to
be expressed only once in storage, which allows the physical storage required to
compress. In SAP HANA, this compression is due to run-length encoding or the
storage of sorted data where there is a high probability of two or more values
being stored contiguously or in the same spatial locale. Run-length encoding
counts the repeating values as the same value, which is achieved by storing the
original column as a two-column list.

This sophisticated system of reducing redundancy is an important concept of col-
umn-based storage for financial reasons. SAP HANA is licensed and priced by

Operating System Administrator User

Aside from the SYSTEM database user, it’s also important to note that an operating system
administrator user (<sid>adm) is also created on the SAP HANA system upon installation.
This user exists to provide a context or linkage to the base operating system in SAP HANA.

This user has unlimited access to all local system resources and owns all SAP HANA files
and all operating system processes. Within SAP HANA Studio, this user’s credentials are
required to perform advanced operations, such as stopping or starting a database pro-
cess or executing a recovery. This isn’t to be confused with a database user because the
<sid>adm user is concerned with the operating system on only the SAP HANA machine.

Additional References

For additional information about user authorizations, roles, and best practices on SAP
HANA security, please consult Chapter 2 and Chapter 11 of this book.

168

Data Storage in SAP HANA3

memory blocks, so the more memory you need to store your data, the more
expensive your SAP HANA solution will be. However, pricing and cost are only
one side of the equation.

Compression is also an important aspect of high-performing queries in SAP
HANA. When data is compressed, it can be loaded into the CPU cache faster. The
limiting factor is the distance between memory and the CPU cache, and this per-
formance gain will exceed the additional computing needed to decompress the
data. One factor that enables compression is run-length encoding, which stores
values as a two-column list, while repeated values are stored only once in one col-
umn, with another column as an index or pointer to the repetitious storage. One
would think this would cause a latency in performance, but the two-column list’s
equality check on the index column is based on a higher-performing integer value
for the equality comparison—which is why proper compression can speed up
aggregate operations or table scans considerably. These are the operations that
stand to benefit the most from compressed data in SAP HANA.

It’s easy to create a table as a column-store table in SAP HANA. To create a col-
umn-store table, just use the Administration Console perspective in SAP HANA
Studio (as shown in Figure 3.6), and select Column Store under the Type menu.
Now, you have a column-store table that is ready for use!

Figure 3.6 Creating a Column-Store Table

Data Storage Components 3.2

169

When you’re deciding between a row- and column-store table, consider how the
data is going to be used. For example, column-store tables are a good choice
because some features, such as partitioning, are available to only column-based
tables. So if partitioning is required in your application, your decision of whether
to use column- or row-based tables has already been made.

You should also weigh column-based storage in terms of updates and inserts. Bulk
updates, or bulk operations in general, perform well against large tables with col-
umn storage. Column-store tables are great choices for large tables with lots of
read-based operations or SELECT statements—especially when you’re performing
aggregate operations. A number of aggregate functions exist natively in the col-
umn engine. Consider the list of SAP HANA functions that are available as native
column functions by using column engine expressions as arguments. Thus,
columnar tables simply perform better because they’re able to use functions built
directly into this column engine rather than having to switch the processing and
physically move the data to the row engine.

The following functions use column-engine expressions as arguments:

� Numeric functions: TO_DECIMAL, TO_NUMBER, TO_BIGINT, TO_REAL, TO_DOUBLE,
TO_CHAR, TO_NCHAR, TO_DATE, TO_TIMESTAMP, and BINTOHEX/HEXTOBIN.

� String functions: LTRIM, RTRIM, TRIM, LENGTH, SUBSTR, INSTR, and LOWER, UPPER.

� Date and time functions: WEEKDAY, DAYS_BETWEEN, SECONDS_BETWEEN, ADD_DAYS,
UTCTOLOCAL, LOCALTOUTC, ISOWEEK, and QUARTER.

� Mathematical functions: LN, LOG, EXP, POWER, SQRT, SIN, COS, TAN, ASIN, ACOS,
ATAN, SINH, COSH, FLOOR, and CEIL.

� Logic driving functions: NULLIF, NVL, NVL2, and COALESCE.

� Date extract function: EXTRACT (YEAR /MONTH FROM <column engine
expression>)*.

Three more specific advantages to column-store tables will never be achieved in
row-store tables. The first of these advantages is that columnar storage with
proper compression eliminates the need for additional indexing. The columnar
scans of the column-store tables, especially for run-length encoded tables, allow
very high-performing reads. In most cases, these reads are fast enough that an
index, with its additional overhead of metadata in terms of both storage and
maintenance, is simply not necessary. It’s basically an obsolete concept for a col-
umn-store table in many cases. Without having a need to index, not only does SAP

170

Data Storage in SAP HANA3

HANA gain storage due to compression, but you also don’t need to account for
extra storage space or time in terms of jobs and scheduled offline tasks necessary
to maintain indexes to speed data retrieval as you would in a conventional data-
base. In a sense, you’re actually gaining performance while simplifying the phys-
ical model because you don’t have to maintain separate index structures.

The second advantage is that the nature of the column-store structure makes par-
allelization possible; that is, data is already vertically partitioned into columns.
With that partitioned structure of divided columns, SAP HANA easily allows par-
allel operations to be assigned to multiple cores on the CPU. This way, multiple
columns can be searched and aggregated at the same time by different cores. The
portioning that requires extra thought and maintenance—much like the indexing
structures—is both redundant and unnecessary with column-store tables and col-
umn-engine processing in SAP HANA.

The final advantage is the elimination of physical aggregate data structures. Tradi-
tional BI applications and designs often call for aggregation in the database models
at the presentation layer simply to deal with reporting or retrieving data against
large and cumbersome record sets. This is often to work around the fact that the
platform and disk-based data access bind I/O operations and simply prove negative
performance implications when performing complex aggregations or queries across
larger data sets. To solve this problem in a traditional RDBMS, data is physically per-
sisted into aggregate tables that roll up the data to a higher level of granularity.

In Figure 3.7, we see an example of an aggregate table where transaction-level
sales data has been aggregated to raise the granularity of the data to records
totaled by period, year, and product. This table would need to be created for anal-
ysis in a traditional RDBMS if the sales transaction table contained lots of history
and the analysis was mostly done at the year level of granularity. This would elim-
inate the performance problem while still addressing the reporting need.

Figure 3.7 Example of an Aggregate Table

Deriving this aggregate table is relatively straightforward; it’s just a SUM of the
quantity and amount column in the transactional source. This means that

Data Storage Components 3.2

171

Select PERIOD, YEAR, PRODUCT, QTY, SOLD_AMT From Table_A

would become

Select PERIOD, YEAR, PRODUCT, SUM(QTY), SUM(SOLD_AMT)
From Table_A
Group By PERIOD, YEAR, PRODUCT

This is a very simple example; the logic from moving from transactional granular-
ity to an aggregate byproduct isn’t terribly difficult to derive or design. However,
you would need an ETL process to physically transform the structure and move
the data over to this new structure. So, even with this one simple example, we’ve
added quite a bit of complexity in terms of more data and more processes to be
maintained.

On top of this complexity, this model introduces another problem: inherent
latency. The data in the aggregate will never be real time because the aggregate
will be handled by either an ETL process (by definition, a batch-based process) or
the database layer (which may introduce concurrency issues with updates in
terms of locking operations that could potentially block reads during rebuilds). So
the important point to take away about a column-store table in SAP HANA oper-
ating using column-engine native functions is that it isn’t necessary!

This layer can be completely removed. SAP HANA can scan the data and perform
the simple or complex aggregation at runtime in memory with similar speeds as
a conventional architecture performing against aggregates. This is all happening
in real time against the base transaction-level data; there is no need to have a
latent, batch-based process. When you have this level of performance natively,
you simply don’t need these additional layers. Because the data has not persisted,
storage needs and costs actually diminish with the support of these column-store
structures in SAP HANA.

This is a very simple example, but you can see how this might grow as the needs
for multiple views of aggregated data produce more duplicated, redundant data
with more processes to maintain. By removing these layers, you dramatically sim-
plify the data model, thus simplifying the interaction of querying the data. With
this single-layer model, there is no need to hop from reading an aggregate view of
the data to reading the base transactional view of the data. You use the same SQL
from the clause and base statement and add in function calls when necessary. This
type of simplification is a major benefit of using SAP HANA and one of the ways
SAP HANA is transforming the data landscape.

172

Data Storage in SAP HANA3

3.2.3 Row-Store Tables

Row-store tables are exactly what they sound like; data is stored in memory but in
a row fashion. Because these tables, at the base storage level, are very similar to
traditional database structures and constructs found in conventional databases,
we won’t go into the level of detail in this book to discuss row base-level compo-
nents and data storage methodology as we did with column-store tables.

However, one item to pay particular attention to with row-store tables is that
there is virtually no additional compression occurs when using a row-store table.
So, what is a proper use case for a row-store table?

Row-store tables were included in the SAP HANA platform to first and foremost
offer the ability for SAP HANA to be used as a valid and suitable OLTP platform (i.e.,
as a basis for SAP Business Suite). A large part of enabling that possibility is that row-
store tables and a row engine exist to process row-by-row data access requests.

The backbone of any OLTP system that involves data entry is rapid, row-by-row
access to complete or mostly complete records. These aren’t cases in which one
SQL statement is returning, parsing, and aggregating millions of records on just a
few columns. An OLTP design requires one customer record to be looked up and
written into the application layer quickly, in real time, while a sales transaction is
being established in the system. This response time needs to be instantaneous, and,
in most cases, the entire row of the record is needed to satisfy the application.

This type of data access is effectively the complete opposite of the OLAP style of
churning through complex data sets to group, sort, and aggregate on just a few
columns. Because of needs like this, SAP needed to include both platforms and
engines. This inclusion of both sides (both row and column) of the data processing
house makes SAP HANA truly unique, and presenting a viable row-store option
fosters rapid adoption of SAP HANA as much more than a valid BI- or OLAP-serv-
ing platform. By serving the row needs, SAP HANA is the new, remarkable, mul-
tifaceted platform built and scaled to handle complex and sizable applications,
such as the SAP Business Suite.

In Summary

In short, use a row-store table if you’re developing a transactional interactive system,
such as a row-based system or an OLTP design. Row-store tables will suit this purpose
well. The bottom line is:

Data Storage Components 3.2

173

It’s easy to create a table as a row-store table in SAP HANA Studio. The process is
much like the one outlined earlier to create a column-store table. Just use the
Administration Console perspective, and select Row Store under the Type

menu, as shown in Figure 3.8. After performing this step, you now have a row-
store table that is ready to use.

Figure 3.8 Row-Store Table in SAP HANA Studio

3.2.4 Use Cases for Both Row- and Column-Store Tables

Because they are primarily suited for most tasks in SAP HANA, column-store
tables are generally the reflexive first choice for an application developer. How-
ever, as shown earlier, row stores certainly have their place for developers, as

� If your table will be used mostly for getting data in through a user input–driven
design, use a row-store table.

� If your table will mostly be used for retrieval or aggregate-based operations, use a
column-store table.

174

Data Storage in SAP HANA3

well. Though we’ve already touched upon some of the reasons for row- vs. col-
umn-storage, we’ll conclude this section with a succinct list that will help you
decide the correct type of table to create.

If you find yourself in the following scenarios, use column-based storage:

� Tables are very large in size, and bulk operations will be used against the data.
There are two primary examples that fit this scenario:

� Data warehouse tables

� Historical tables with large record sets

� Data is primarily staged for reads or SELECT statements. There are two primary
examples that fit this scenario:

� Data warehouse tables or data mart tables for BI reporting

� Application-based tables that will serve as the basis for reports or getting
data out

� Aggregate functions will be used on a small number of columns with each
SELECT or read operation.

� Table will be searched by values in one or a few columns.

� Table will be used to perform operations that require scanning the entire set of
data, such as average calculations. Searches like this are quite slow, even with
proper indexing in conventional or row-based structures. The columnar con-
structs of SAP HANA are quite good at this type of analysis.

� High compression can be achieved by large tables that contain columns with
few distinct values in relation to the record count.

� Complex aggregations or calculations will be needed often on one or a few col-
umns in the table.

If you find yourself in the following scenarios, use row-based storage:

� Table is relatively small in size or record count, making low compression rates
less of an issue.

� Table will be used for returning one record quite often. A classic use case for
this is an OLTP application table. This is probably the most important point and
will ultimately be the best overall use case.

� Row-store tables in SAP HANA will be the backbone of the OLTP application base.

� Aggregations aren’t required.

Modeling Tables and Data Marts 3.3

175

� Writing data one record at a time is required.

� Fast searching isn’t required.

When considering these criteria, you’ll notice clear patterns that emerge regard-
ing which type of data is best for each storage method. If your application requires
record-by-record OLTP-style data interaction, you’ll need to use row-based tables.
Be cautious with these tables because when they become large, they offer virtually
no compression. This will bloat the licensed memory required to store the data.
Column-based storage is best used for applications that have many complex read-
based or SELECT operations, such as OLAP or data warehousing structures. Col-
umn-based table structures compress nicely, and properly modeled physical data
structures will take advantage of all of the sophisticated functions that are avail-
able only to column-store tables.

3.3 Modeling Tables and Data Marts

When considering modeling data for SAP HANA, we’ll limit our discussion to
modeling the data needed to fuel and power the column-store tables and engine
for maximum performance and processing. To examine row-store data modeling
in this book would overlap too much with conventional data modeling books
because modeling data in a row-store table follows a conventional normalized
playbook. The column-store tables and the compression that is offered in the SAP
HANA platform are what expand this playbook into something that exists outside
of the conventional normalized data constructs.

The SAP HANA data modeling playbook offers ideas that initially seem contrary to
conventional data logic and wisdom. However, this is with good reason. It’s only
when considering the SAP HANA platform and storage paradigm, as discussed in
detail earlier in this chapter (Section 3.2.2), that these ideas begin to converge,
resonate, and ultimately become conventional.

In this section, we’ll review the modeling of tables and data marts that take advan-
tage of SAP HANA-specific functionality that ultimately prepares SAP HANA for
any type of data consumption. We’ll start with modeling for a traditional OLAP
approach and then see how this evolves for SAP HANA. We’ll then move on to a
discussion of how to denormalize data, which is an especially important part of
the data modeling process for SAP HANA.

176

Data Storage in SAP HANA3

3.3.1 Legacy Relational OLAP Modeling

To compare and contrast data modeling techniques for SAP HANA, it’s valuable
to start with a basic understanding of legacy relational data modeling techniques.
Legacy relational OLAP modeling is when data is arranged into a series of tables
of both facts and dimensions for performance for reporting, as well as to organize
data effectively into data marts. A data mart is a collection of one or more rela-
tional OLAP fact tables and dimensions that are unified in purpose. For this chap-
ter, we’ll use two example data marts: the first for sales data and the second for
financial data.

Both structures are simplistic in nature; it’s plain to see that the focal point of the
design resides around speed of access to the data. The fact table in each case con-
tains fields that are used for measuring data. Usually amounts or counts will be
used as attributes in a fact table. The other fields present in a fact table will be for-
eign key fields related to a primary key field in a dimension.

This series of one-to-many relationships of dimensions to facts gives expansive
querying abilities to the dimensions that will, in many cases, search, sort, and
pivot the data effectively. The dimensions are used to describe the facts and grant
a means for actively querying the facts.

It’s important to remember that all of these tables are just regular database tables.
Fact tables will always be the heart of the dimensional data model. Dimensions
can also be conformed or shared across multiple fact tables or data marts. Con-
forming dimensions, which is the overlap of tables, is a common practice in rela-
tional OLAP data models. Dimensions are usually conformed because there is no
need to store the table more than once; they will be used across data marts. These
conformed dimensions are logically represented in a logical data model of each
mart, but the data is physically persisted in only one table to reduce storage.

Figure 3.9 shows an example of a financial data mart. In this mart, you have
Account, Date (Time), Department, Scenario, and some type of Organization

structure dimensions—all relating to a simple fact table containing the Amount

values. The data is modeled into these tables because these subjects of data are
commonly used concepts for financial applications. The Date dimension allows
for flexible time-based reporting, and this dimension will be conformed across
the next data mart shown in Figure 3.10: the sales data mart.

Modeling Tables and Data Marts 3.3

177

Figure 3.9 Typical Relational OLAP Data Model for a Financial Data Mart

Figure 3.10 Typical Relational OLAP Data Model for a Sales Data Mart

178

Data Storage in SAP HANA3

In a typical sales data mart, you have dimensions such as Product, Date (Time),

Customer, Currency, and some type of Organization (Territory in this case)—all
relating to a simple fact table containing the Amount values. The Date dimension
is used for the same flexible time reporting principles outlined in the financial
data mart, but all of the other dimensions represent subjects that are needed for
sales analysis and reporting.

Notice that the Date dimension and the Currency dimension are repeated or
shared across the two data marts. Physically, at the database level, the tables aren’t
repeated; there is only one DIM_CURRENCY table and one DIM_DATE table, so
it’s merely a logical repetition for organizational purposes. This repetition is a per-
fect example of a conformed dimension. We’ll use conformed dimensions while
building out the examples in the case study in this chapter (Section 3.4) to save on
table space for the data marts in SAP HANA.

Recall that data marts are segregated in terms of the data that they measure and
describe. Considering Figure 3.9 and Figure 3.10, it’s easy to see why there are
two different data marts. There is little similarity with respect to the fact tables
between these two data marts. The finance data mart simply has one amount field
and all of the dimensional foreign keys. This allows quick pivoting and aggrega-
tions of the amount data by any of the dimensions. The sales data mart contains
more complex facts because there are many more facets of a sale to measure, but
the important point to note is that all sales measures are centrally located in the
fact table so that all of the dimensional pivoting, querying, and sorting is done
effortlessly across any or all of the dimensions. This is the primary concept that is
central to a relational OLAP model.

The other concept central to a data mart is the grain of the data that is stored in the
fact table or tables that make up the data mart. The grain of the data—sometimes
known as the granularity of the data mart—is specific to the logical key structure
of the fact table. The logical key structure is the single attribute (or combination of
attributes) that makes the row of data in the fact unique.

Note

Data marts can contain more than one fact table, but for the sake of simplicity and clear
explanation of concepts in SAP HANA, we’ll keep the dimensional model relatively
simple.

Modeling Tables and Data Marts 3.3

179

Take, for example, the sales data mart in Figure 3.10. The FactInternetSales table
has two primary key columns that make a composite key or a combined logical
key: SalesOrderNumber and SalesOrderLineNumber. Data in this example is
stored at the line level of the transaction; this is the lowest level of granularity,
as this is at the line item of the sale. However, data is often repeated and stored
in other fact tables at a higher level of granularity, such as by calendar week or
product. This pre-aggregation, or materialized aggregation, is often necessary as
a performance boost or method to realize a performance gain when the database
platform runs out of tuning capabilities.

In this example, the fact table is at the line level, although it also contains header
information in a denormalized fashion. Denormalizing data is merely the process of
optimizing the data for reads by grouping redundant attributes together into one
structure, rather than splitting the redundant attributes into multiple normalized
tables. In an OLTP-normalized model, both the header-level data and the line-level
data would be in two separate tables. Denormalizing occurs to ensure that one read
from the FactInternetSales table obtains the necessary data, rather than reading two
tables and reconstructing the data logically in the database engine with a join. This
principle of denormalizing is crucial to optimizing performance in an OLAP model.

SAP HANA takes this principle of denormalizing data further to a level that at first
seems contrary to performance and storage considerations; however, upon closer
inspection, we find that, in many cases, denormalized data performs much faster
in a column column-store table in SAP HANA using native column column-store
functions than a normalized table structure in SAP HANA. In a normalized design,
in many cases, SAP HANA may need to use the slower row engine to join the data.
So even though this may seem counterintuitive at first, it’s a core principle that
will make an already fast SAP HANA system even faster!

Key Points about Data Marts

� Fact tables are the central element, or heart, of the data mart.

� Fact tables are surrounded by dimension tables.

� Fact tables contain only the measures and foreign keys back to the dimension tables.

� Dimension tables describe the facts.

� Denormalizing data or materializing aggregated data are techniques that are often
used to boost performance when performance gains are no longer available from the
database platform.

180

Data Storage in SAP HANA3

3.3.2 SAP HANA Relational OLAP Modeling

Many of the concepts and even physical structures translate over to SAP HANA
directly from the conventional legacy OLAP counterparts. However, some distinc-
tions specific to SAP HANA emerge. Let’s now explore these distinctions in detail;
these will drive the focus and the discussion to draw attention to the techniques
to exploit SAP HANA for maximum performance benefit.

The baseline for relational OLAP modeling in SAP HANA is exactly what we’ve
just described. It is best practice to lay out a solid relational OLAP model as a start-
ing point for running BI operations against SAP HANA, but then a major deviation
occurs: further denormalizing.

In SAP HANA, joins are sometimes more costly than one read against a compressed
column-store data set containing the columns needed for any and all aggregate
operations. Because SAP HANA has some pretty sophisticated built-in functions
available in the column engine, we recommend that you flatten, or denormalize,
dimensional columns into the facts so that you have data between two tables with
high cardinality, or a high degree of uniqueness within the column. This way, there
is one read against the table that is used to get all the data you need. (We’ll go into
further detail around denormalizing techniques in Section 3.3.3.)

It’s true that SAP HANA can render hierarchies against denormalized or flattened
data natively, but to maximize reusability in the SAP HANA analytic model, we still
recommend that you keep the core attributes of a dimension in a true dimensional
structure residing in a separate table. This way, if attributes from one dimension
are all that is needed—for an attribute view, for example—then there is less work
needed if a change needs to occur in the base table’s columns. This allows for
greater reusability when the base data is distributed in a more standard fashion.

Another technique that works well in an SAP HANA relational OLAP data model
is adding aggregate columns directly into the fact tables rather than only storing
the components of aggregations. For example, if you often multiply quantity by
price to store an extended price in a fact table, consider storing the extended price
as a calculation. The calculation will happen just as fast as if you stored the calcu-
lated value in a separate column. Storing the calculation is also always faster than
reassembling the calculation at runtime in either the column or row engine. The
final benefit of not storing the calculated data is that there is no redundant data
occupying valuable space in memory in the SAP HANA database.

Modeling Tables and Data Marts 3.3

181

Of course, keep in mind that after you have calculated columns stored in SAP
HANA tables, you’ll need to explicitly state the columns when you need to insert
data to avoid inadvertently setting the calculated columns by mistake.

Table 3.1 shows a scenario in which you have a simple example of a conventional
query and table storage structure that stores the components of quantity and price
as a stored, calculated value in the faster query block. This is unnecessary with
SAP HANA because the calculation can be stored instead of a value that needs
updates. This speeds the query because the calculation happens in real time and is
always updated.

Paying attention to dates and time is also important for dimensional modeling in
SAP HANA. For a best practice much like the denormalizing examples listed ear-
lier, keep a date or time dimension separated from your facts for drilling or range-
based date manipulation, just as with a standard dimensional model. However,
SAP HANA offers built-in time dimension tables, as shown in Table 3.2.

Scenario SQL Needed

Conventional select *

from my_table

where quantity * price = 100;

Faster query select *

from my_table

where extended price = 100;

Supporting DDL for calculated
extended_price column

alter table fact_sale

add (extended_price decimal(10,2)

GENERATED ALWAYS

AS quantity * price);

Table 3.1 Calculated Column for a Faster Query

SAP HANA Generated Time Dimension Table Description

_SYS_BI.M_TIME_DIMENSION_YEAR Time series with a year focus

_SYS_BI.M_TIME_DIMENSION_MONTH Time series with a month focus

_SYS_BI.M_TIME_DIMENSION_WEEK Time series with a week focus

_SYS_BI.M_TIME_DIMENSION General time series generated data

Table 3.2 SAP HANA–Generated Time Dimension Tables

182

Data Storage in SAP HANA3

These tables will be shown in detail later in the analytic modeling sections. To
take advantage of this built-in functionality, it’s important to note that dates
should be stored in your fact tables with sister varchar(8) columns in a format of
YYYYMMDD. You’ll notice in the case study at the end of this chapter that, for
each date column listed in the FactInternetSales table, there are both datefield-
nameKEY columns and datfieldname_CHAR columns present. The second column is
simply a varchar(8) representation of the date, needed to facilitate joins to the
varchar(8) fields in the M_TIME_DIMENSION tables referenced in Table 3.2.
This may or may not be convenient for your data, depending on how your date
columns are stored in the source data. This is very convenient for native SAP Busi-
ness Suite data because this is how this data is stored in SAP. So, you can take
advantage of this functionality without modification when you are running SAP
Business Suite on SAP HANA, but with non-SAP data, you may very well have to
transform the base date values to this varchar() format.

As an example value for both types of date fields, 2013-01-01 00:00:00 in your
table would also be stored in a varchar(8) column (20130101) to take advantage of
the built-in date and time attribute tables present in SAP HANA. Note that this
functionality really serves its best use with SAP-native date formats in SAP
sources. For source-agnostic BI, we recommend that you use a custom date dimen-
sion table because this adds the most flexibility and deals with dates in all formats.

A final item worth considering when you’re constructing your data model in SAP
HANA is the fact that you must ensure data type support for all of your aggregate
operations. Take a simple example of a numeric column with a data type Deci-
mal(8,4) containing a value 1111.1111. If this number is multiplied by 10, you
have a value of 11110.1111. This value is now out of range in the base column of
the SAP HANA table. You must always store your data at the greatest precision
required for the max operation that will occur on that data.

This requires some thinking in advance about the types of calculations that will
occur on the data you’re using, even while choosing data types up front for your
tables. Please keep in mind that the maximum declaration that is currently
allowed is Decimal(34,4). No matter what you’re going to use, if you’re sticking
with a DECIMAL data type, this is the maximum value allowed. A best practice to
avoid this behavior is to simply convert all decimal columns to float to handle
overflow for division operations ratios; this always avoids overflow issues
because SAP HANA doesn’t handle the conversion automatically.

Modeling Tables and Data Marts 3.3

183

3.3.3 Denormalizing Data in SAP HANA

In column-store tables within SAP HANA, denormalized data is something that
you should always find in some area of a dimensional data model. Recall our rec-
ommendation that you flatten or denormalize dimensional columns into the facts
where you have data between two tables that have high cardinality or a high
degree of uniqueness within the column. This is because joining data from a
dimension with high cardinality is often more costly in terms of performance than
just storing the attributes from the dimension that will be used often for querying
or aggregations directly into the fact.

Two important principles are addressed by denormalizing data in SAP HANA.
First, avoid the join in the engine and (most times) stay entirely in the column
engine, where processing is much faster. Second, the penalty for the redundant
data, from a storage perspective, isn’t too severe because the column-store
table stores only the values that repeat once, anyway, due to the nature of com-
pression in the column-store table. Normalization is something that typically
occurs in a relational database to increase performance and decrease storage;
however, in columnar tables in SAP HANA, this idea is turned on its head

Key Points about SAP HANA–Specific Data Marts

� As with non–SAP HANA data marts, fact tables are the central element, or heart, of
the data mart.

� As with non–SAP HANA data marts, fact tables are surrounded by dimension tables.

� As with non–SAP HANA data marts, fact tables contain the measures and foreign
keys back to the dimension tables, but also specific denormalized attributes where
cardinality is high between tables.

� SAP HANA data marts also contain a time dimension, but have dates stored both as
date values and character data types for use against SAP HANA time dimension
tables when SAP application data is primarily used in SAP HANA.

� Denormalizing data to extremes that would cripple a conventional database is often
the way to get optimal performance in SAP HANA.

� Materializing aggregated data is simply not necessary with SAP HANA because per-
formance is considerable in column-store tables and in the column engine.

� Numeric types that will be used in aggregate calculations require particular attention.
You must cover the size of the resulting value from a calculation in the base numeric
column. Remember that decimal(34,4) is the maximum allowed decimal type.

184

Data Storage in SAP HANA3

because compression helps with both the speed of access and limiting the extra
footprint of the data in memory.

Take, for instance, a product dimension and a sales fact table. These tables are
often used together in SQL queries for reporting. Maybe you want to filter on
attributes such as color, class, or style, or you need to see standard cost as an
aggregated value to be used in calculations such as price or sold quantity. These
are combinations that will occur quite often in typical sales analysis scenarios.
Product data will have a high degree of uniqueness or cardinality, as well, because
data is often stored at the SKU or UPC level. A record in the product dimension
will be a record of unique product attributes and is the perfect candidate for
denormalizing aspects of the dimension into the fact.

To start, you must identify the attributes in the table that will be the subject of
querying, filtering, or aggregations. For this example, we selected the highlighted
attributes from the DIM_PRODUCT table shown in Figure 3.11 to store as denor-
malized attributes in the fact table.

Figure 3.11 Columns from DIM_PRODUCT Added to Reduce Frequent Joins

Modeling Tables and Data Marts 3.3

185

To create the columns in the FactInternetSales table, you now need to write an
ALTER TABLE SQL statement to add the new columns. Listing 3.1 shows an example
of the ALTER TABLE statement that is used to add the columns to the FactInternet-
Sales table.

alter table fact_internet_sales add
 (
 "DIM_PRD__STANDARDCOST" DECIMAL(19,4) CS_FIXED null,
 "DIM_PRD__FINISHEDGOODSFLAG" INTEGER CS_INT null,
 "DIM_PRD__COLOR" VARCHAR(15) null,
 "DIM_PRD__SAFETYSTOCKLEVEL" INTEGER CS_INT null,
 "DIM_PRD__REORDERPOINT" INTEGER CS_INT null,
 "DIM_PRD__LISTPRICE" DECIMAL(19,4) CS_FIXED null,
 "DIM_PRD__SIZE" VARCHAR(50) null,
 "DIM_PRD__SIZERANGE" VARCHAR(50) null,
 "DIM_PRD__WEIGHT" DOUBLE CS_DOUBLE null,
 "DIM_PRD__DAYSTOMANUFACTURE" INTEGER CS_INT null,
 "DIM_PRD__PRODUCTLINE" VARCHAR(2) null,
 "DIM_PRD__DEALERPRICE" DECIMAL(19,4) CS_FIXED null,
 "DIM_PRD__CLASS" VARCHAR(2) null,
 "DIM_PRD__STYLE" VARCHAR(2) null,
 "DIM_PRD__MODELNAME" VARCHAR(50) null
);

Listing 3.1 SQL Data Definition Language (DDL) Used to Create FactInternetSales

In Figure 3.12, you can see what the FactInternetSales table looks like after you
execute the SQL to add the columns. All of the denormalized columns are ready
for use in the fact table. Notice that the columns were not removed from DIM_
PRODUCT to foster reusability and ease maintenance for analytic modeling, as
you’ll see later in the book.

SQL Used to Add the Columns to the Fact Table: FactInternetSales

-- Add DIM_Product columns to FACT_INTERNET_SALES
-- due to high cardinality.
-- Don Loden
-- 02.15.2013

186

Data Storage in SAP HANA3

Figure 3.12 FactInternetSales Table after Replicating the Columns from DIM_PRODUCT

3.4 Case Study: Creating Data Marts and Tables for an
SAP HANA Project

To illustrate various presentation options and use cases, this book uses a case
study to follow a project from the ground up by starting with the data model; then
provisioning the data, creating the analytic model; and, finally, fully realizing the
BI capabilities with the consumption of the data using the SAP BusinessObjects BI
tools. To perform all of these actions, we’ll be using the sample Microsoft Adven-
tureWorks data model for a fictitious company called AdventureWorks Cycle
Company. We chose this data and model because it’s a readily available sample
schema with data that is familiar to many developers.

Currently, this SAP HANA system is a blank slate containing nothing but a bare
install. So, first, you’ll need to create a schema to house and organize the tables
that you’ll create. Then, you’ll finally create the tables and model them to follow
the best practices in an SAP HANA data model.

Case Study: Creating Data Marts and Tables for an SAP HANA Project 3.4

187

3.4.1 Creating a Schema for the Data Mart

Before you can begin building tables in SAP HANA Studio using SQL or a tool such
as SAP Data Services, you need a schema created to house and organize your
tables. To create the schema in SAP HANA, you must have a user created that can
authenticate to SAP HANA. For all of the connections in the case study for this
book, you’ll be using the user BOOK_USER.

To create the schema using BOOK_USER, perform the following steps:

1. Open SAP HANA Studio and connect using the BOOK_USER user, as shown in
Figure 3.13.

If you’re currently connected as a different user and need to change the user,
you may do so in the pop-up menu. Get to this menu by right-clicking your
connected SAP HANA system.

2. Open the Development perspective.

3. Open the Project Explorer view.

Figure 3.13 Choosing a User Name to Sign In

4. Browse in the Project Workspace to the folder where you want to create your
schema definition file and right-click the folder. A menu pops up with a field

188

Data Storage in SAP HANA3

where you can specify the name of the schema. For our example, use BOOK_
USER.hdbschema. Then, choose Finish to save the schema.

5. Define the schema name by opening the file you just created in the previous
step by inserting this code: schema_name = "BOOK_USER";.

6. Save and activate the schema file.

� Commit the schema to the repository by right-clicking the BOOK_USER
schema and choosing Team � Commit.

� Activate the schema by right-clicking the BOOK_USER schema.

� Choose Team � Commit.

By performing these steps, you’ve now both created and activated a schema in
SAP HANA, as shown in Figure 3.14. This schema is ready for use. In the next sec-
tion of the case study, you’ll begin to create the column-store tables. These tables
will be the foundation of all the rest of the examples in this book.

Figure 3.14 Finished Schema Ready for Use in SAP HANA

Caution!

If you want your schema to be a design-time object, you’ll need to create the schema as
a file to be saved in the repository.

Case Study: Creating Data Marts and Tables for an SAP HANA Project 3.4

189

3.4.2 Creating the Fact Table and Dimension Tables in SAP HANA

We’ll show you a few different ways to create the fact and dimension tables in
SAP HANA, especially during the data provisioning sections using the unique fea-
tures of SAP Data Services. However, for this chapter, to focus on creating the
tables and the underlying model of the tables, you’ll create the tables using SQL
in the SAP HANA Studio.

To create the tables using SQL in the SAP HANA Studio, perform the following
steps:

1. Open SAP HANA Studio and connect using the BOOK_USER user.

2. Open the Modeler perspective.

3. Open the Project Explorer view.

4. Browse in the Project Workspace to select the tables folder under the BOOK_
USER schema that you created earlier (shown in Figure 3.14).

5. Click the SQL button, indicated by the arrow in Figure 3.15.

Figure 3.15 Opening the SQL Editor for the Current Session to Create the Tables

190

Data Storage in SAP HANA3

6. Type each of the following SQL statements—Listing 3.2 for FactInternetSales,
Listing 3.3 for DIM_PRODUCT, Listing 3.4 for DIM_CUSTOMER, and Listing
3.5 for DIM_DATE into the SQL Editor, as shown in Figure 3.15.

Listing 3.2 is the main fact table with Internet sales measures. The only things
differentiating this fact table from a standard fact table are the extra varchar()
date columns for SAP HANA functions and denormalized columns from prod-
uct dimension.

CREATE COLUMN TABLE "BOOK_USER"."FACT_INTERNET_SALES" ("PRODUCTKEY"
INTEGER CS_INT,
 "ORDERDATEKEY" INTEGER CS_INT,
 "ORDERDATE_CHAR" VARCHAR(8), --SUPPORTS HANA DATE FUNCTIONS
 "DUEDATEKEY" INTEGER CS_INT,
 "DUEDATE_CHAR" VARCHAR(8), --SUPPORTS HANA DATE FUNCTIONS
 "SHIPDATEKEY" INTEGER CS_INT,
 "SHIPDATE_CHAR" VARCHAR(8), --SUPPORTS HANA DATE FUNCTIONS
 "CUSTOMERKEY" INTEGER CS_INT,
 "PROMOTIONKEY" INTEGER CS_INT,
 "CURRENCYKEY" INTEGER CS_INT,
 "SALESTERRITORYKEY" INTEGER CS_INT,
 "SALESORDERNUMBER" VARCHAR(20) NOT NULL ,
 "SALESORDERLINENUMBER" INTEGER CS_INT NOT NULL ,
 "REVISIONNUMBER" INTEGER CS_INT,
 "ORDERQUANTITY" INTEGER CS_INT,
 "UNITPRICE" DECIMAL(19,
 4) CS_FIXED,
 "EXTENDEDAMOUNT" DECIMAL(19,
 4) CS_FIXED,
 "UNITPRICEDISCOUNTPCT" DOUBLE CS_DOUBLE,
 "DISCOUNTAMOUNT" DOUBLE CS_DOUBLE,
 "PRODUCTSTANDARDCOST" DECIMAL(19,
 4) CS_FIXED,
 "TOTALPRODUCTCOST" DECIMAL(19,
 4) CS_FIXED,
 "SALESAMOUNT" DECIMAL(19,
 4) CS_FIXED,
 "TAXAMT" DECIMAL(19,
 4) CS_FIXED,
 "FREIGHT" DECIMAL(19,
 4) CS_FIXED,
 "CARRIERTRACKINGNUMBER" VARCHAR(25),
 "CUSTOMERPONUMBER" VARCHAR(25),
 "DIM_PRD__STANDARDCOST" DECIMAL(19,
 4) CS_FIXED,
 "DIM_PRD__FINISHEDGOODSFLAG" INTEGER CS_INT,
 "DIM_PRD__COLOR" VARCHAR(15),

Case Study: Creating Data Marts and Tables for an SAP HANA Project 3.4

191

 "DIM_PRD__SAFETYSTOCKLEVEL" INTEGER CS_INT,
 "DIM_PRD__REORDERPOINT" INTEGER CS_INT,
 "DIM_PRD__LISTPRICE" DECIMAL(19,
 4) CS_FIXED,
 "DIM_PRD__SIZE" VARCHAR(50),
 "DIM_PRD__SIZERANGE" VARCHAR(50),
 "DIM_PRD__WEIGHT" DOUBLE CS_DOUBLE,
 "DIM_PRD__DAYSTOMANUFACTURE" INTEGER CS_INT,
 "DIM_PRD__PRODUCTLINE" VARCHAR(2),
 "DIM_PRD__DEALERPRICE" DECIMAL(19,
 4) CS_FIXED,
 "DIM_PRD__CLASS" VARCHAR(2),
 "DIM_PRD__STYLE" VARCHAR(2),
 "DIM_PRD__MODELNAME" VARCHAR(50),
 PRIMARY KEY ("SALESORDERNUMBER",
 "SALESORDERLINENUMBER"))

Listing 3.2 SQL DDL (Fact Table) for FactInternetSales

The standard product dimension describes product-level attributes. Notice that
certain columns have been repeated in the fact table in Listing 3.3, yet they still
exist here for reusability in the SAP HANA analytic model.

CREATE COLUMN TABLE "BOOK_USER"."DIM_PRODUCT" ("PRODUCTKEY" INTEGER
CS_INT NOT NULL ,
 "PRODUCTALTERNATEKEY" VARCHAR(25),
 "PRODUCTSUBCATEGORYKEY" INTEGER CS_INT,
 "WEIGHTUNITMEASURECODE" VARCHAR(3),
 "SIZEUNITMEASURECODE" VARCHAR(3),
 "ENGLISHPRODUCTNAME" VARCHAR(50),
 "SPANISHPRODUCTNAME" VARCHAR(50),
 "FRENCHPRODUCTNAME" VARCHAR(50),
 "STANDARDCOST" DECIMAL(19,
 4) CS_FIXED,
 "FINISHEDGOODSFLAG" INTEGER CS_INT,
 "COLOR" VARCHAR(15),
 "SAFETYSTOCKLEVEL" INTEGER CS_INT,
 "REORDERPOINT" INTEGER CS_INT,
 "LISTPRICE" DECIMAL(19,
 4) CS_FIXED,
 "SIZE" VARCHAR(50),
 "SIZERANGE" VARCHAR(50),
 "WEIGHT" DOUBLE CS_DOUBLE,
 "DAYSTOMANUFACTURE" INTEGER CS_INT,
 "PRODUCTLINE" VARCHAR(2),
 "DEALERPRICE" DECIMAL(19,
 4) CS_FIXED,
 "CLASS" VARCHAR(2),

192

Data Storage in SAP HANA3

 "STYLE" VARCHAR(2),
 "MODELNAME" VARCHAR(50),
 "ENGLISHDESCRIPTION" VARCHAR(400),
 "STARTDATE" LONGDATE CS_LONGDATE,
 "ENDDATE" LONGDATE CS_LONGDATE,
 "STATUS" VARCHAR(7),
 PRIMARY KEY ("PRODUCTKEY"))

Listing 3.3 SQL DDL (Dimension Table) for DIM_PRODUCT

This standard customer dimension table describes customer-level attributes
(Listing 3.4). The CUSTOMERKEY field has a foreign key that relates this table to
the fact table.

CREATE COLUMN TABLE "BOOK_USER"."DIM_CUSTOMER" ("CUSTOMERKEY"
INTEGER CS_INT NOT NULL ,
 "GEOGRAPHYKEY" INTEGER CS_INT,
 "CUSTOMERALTERNATEKEY" VARCHAR(15),
 "TITLE" VARCHAR(8),
 "FIRSTNAME" VARCHAR(50),
 "MIDDLENAME" VARCHAR(50),
 "LASTNAME" VARCHAR(50),
 "NAMESTYLE" INTEGER CS_INT,
 "BIRTHDATE" DAYDATE CS_DAYDATE,
 "MARITALSTATUS" VARCHAR(1),
 "SUFFIX" VARCHAR(10),
 "GENDER" VARCHAR(1),
 "EMAILADDRESS" VARCHAR(50),
 "YEARLYINCOME" DECIMAL(19,
 4) CS_FIXED,
 "TOTALCHILDREN" INTEGER CS_INT,
 "NUMBERCHILDRENATHOME" INTEGER CS_INT,
 "ENGLISHEDUCATION" VARCHAR(40),
 "SPANISHEDUCATION" VARCHAR(40),
 "FRENCHEDUCATION" VARCHAR(40),
 "ENGLISHOCCUPATION" VARCHAR(100),
 "SPANISHOCCUPATION" VARCHAR(100),
 "FRENCHOCCUPATION" VARCHAR(100),
 "HOUSEOWNERFLAG" VARCHAR(1),
 "NUMBERCARSOWNED" INTEGER CS_INT,
 "ADDRESSLINE1" VARCHAR(120),
 "ADDRESSLINE2" VARCHAR(120),
 "PHONE" VARCHAR(20),
 "DATEFIRSTPURCHASE" DAYDATE CS_DAYDATE,
 "COMMUTEDISTANCE" VARCHAR(15),
 PRIMARY KEY ("CUSTOMERKEY"))

Listing 3.4 SQL DDL (Dimension Table) for DIM_CUSTOMER

Case Study: Creating Data Marts and Tables for an SAP HANA Project 3.4

193

The standard time dimension describes date attributes (Listing 3.5). The DATE-
KEY field has a foreign key that relates this table to the fact table on multiple
date attributes. The basic concept is that the date dimension will be related
back on any date column in the fact table to allow for flexibility on any type of
date- or time-based reporting.

CREATE COLUMN TABLE "BOOK_USER"."DIM_DATE" ("DATEKEY" INTEGER CS_INT
NOT NULL ,
 "FULLDATEALTERNATEKEY" DAYDATE CS_DAYDATE,
 "DAYNUMBEROFWEEK" INTEGER CS_INT,
 "ENGLISHDAYNAMEOFWEEK" VARCHAR(10),
 "SPANISHDAYNAMEOFWEEK" VARCHAR(10),
 "FRENCHDAYNAMEOFWEEK" VARCHAR(10),
 "DAYNUMBEROFMONTH" INTEGER CS_INT,
 "DAYNUMBEROFYEAR" INTEGER CS_INT,
 "WEEKNUMBEROFYEAR" INTEGER CS_INT,
 "ENGLISHMONTHNAME" VARCHAR(10),
 "SPANISHMONTHNAME" VARCHAR(10),
 "FRENCHMONTHNAME" VARCHAR(10),
 "MONTHNUMBEROFYEAR" INTEGER CS_INT,
 "CALENDARQUARTER" INTEGER CS_INT,
 "CALENDARQUARTERYEAR" VARCHAR(8),
 "CALENDARYEAR" INTEGER CS_INT,
 "CALENDARYEARMONTH" VARCHAR(15),
 "CALENDARYEARWEEK" VARCHAR(20),
 "CALENDARSEMESTER" INTEGER CS_INT,
 "FISCALQUARTER" INTEGER CS_INT,
 "FISCALYEAR" INTEGER CS_INT,
 "FISCALSEMESTER" INTEGER CS_INT,
 PRIMARY KEY ("DATEKEY"))

Listing 3.5 SQL DDL (Dimension Table) for DIM_DATE

7. Press (F8) to execute the queries.

After executing all four SQL statements, you have one fact table and three dimen-
sion tables. These tables form the core of the data mart that will be used in the
subsequent sections of the case study, and this data set will remain the base data
for all of the examples present in this book. You’ll also notice a financial structure
consisting of the following data mart tables:

� FACT_FINANCE

� DIM_CURRENCY

� DIM_ORGANIZATION

194

Data Storage in SAP HANA3

� DIM_SCENARIO

� DIM_DATE

� DIM_ACCOUNT

� DIM_DEPARTMENT_GROUP

Note that DIM_DATE is a conformed dimension across the financial mart and
sales mart. DIM_DATE references the same table that was created in this section.
These financial data mart tables are created in the same manner as the sales data
mart. The descriptions were given only to limit redundant descriptions for the
case study.

3.5 Summary

SAP HANA is a tremendously powerful and flexible platform, in part because it
truly has the ability to act as a chameleon and masquerade as multiple platforms.
SAP HANA is unique in the sense that it can easily replace many of these platforms
quickly because it shares the common, conventionally approved language for data
access: SQL. This makes SAP HANA a plug-and-play fit for replacing the data and
analytic architecture for many applications with a far more sophisticated and well-
thought-out development platform. The fact that SAP HANA can also interpret
MDX queries natively speaks to the same rapid integration and replacement of
conventional cube-based technologies.

Native support for MDX was one reason it was no surprise that SAP undertook the
task of moving SAP BW to SAP HANA so quickly. For an application such as SAP
BW, moving to SAP HANA was merely another database port. This ease of move-
ment and transport goes a long way toward SAP’s no-disruption model. Now that
the SAP Business Suite is also certified to run on SAP HANA, the sky is the limit
in terms of possibilities on a mature and robust platform that really does do it all.

Now that you have an understanding of how SAP HANA stores data and what is
needed for high-performing data in SAP HANA, we can look toward Part II of the
book, which focuses on the data provisioning process. We call out the word pro-
cess because you shouldn’t just load your data into SAP HANA. Before you provi-
sion data into SAP HANA, there are some things that need to be addressed with a
thorough pre-provisioning process. We’ll examine this pre-provisioning in pro-
cess in detail in Chapter 4.

7

Contents

Acknowledgments .. 17
Preface ... 19

PART I Introduction

1 SAP HANA, SAP BusinessObjects BI,
and SAP Data Services .. 27

1.1 What Is SAP HANA? .. 28
1.1.1 Software Layers and Features ... 28
1.1.2 Hardware Layers and Features .. 32

1.2 Business Intelligence Solutions with SAP HANA 38
1.2.1 SAP BW on SAP HANA .. 38
1.2.2 Native Implementation of SAP HANA for Analytics 42

1.3 SAP Business Suite on SAP HANA .. 57
1.4 Traditional EIM with SAP Data Services ... 60

1.4.1 Align IT with the Business .. 60
1.4.2 Establish Processes to Manage the Data 61
1.4.3 Source System Analysis .. 61
1.4.4 Develop a Data Model ... 62
1.4.5 Load the Data .. 62

1.5 Traditional Business Intelligence with SAP BusinessObjects BI 62
1.5.1 The Semantic Layer (Universe) .. 63
1.5.2 Ad Hoc Reporting .. 64
1.5.3 Self-Service BI .. 64
1.5.4 IT-Developed Content .. 66

1.6 Solution Architectural Overview .. 66
1.6.1 SAP Data Services .. 67
1.6.2 SAP BusinessObjects BI .. 70
1.6.3 SAP HANA ... 73

1.7 Summary ... 76

2 Securing the SAP HANA Environment 77

2.1 Configuring the SAP HANA Environment for Development 78
2.1.1 Introduction to the SAP HANA Repository 79
2.1.2 Configuring SAP HANA Studio ... 80

8

Contents

2.1.3 Setting Up Packages and Development Projects 87
2.1.4 Setting up Schemas in SAP HANA 95

2.2 SAP HANA Authorizations ... 100
2.2.1 Types of SAP HANA Privileges .. 101
2.2.2 Granting of Privileges and the Life Cycle of a Grant 106

2.3 User and Role Provisioning .. 108
2.3.1 Creating Roles (the Traditional Approach) 109
2.3.2 Creating Roles as Repository Objects 110
2.3.3 Preventing Rights Escalation Scenarios 115
2.3.4 Common Role Scenarios and Their Privileges 116
2.3.5 User Provisioning ... 126

2.4 SAP HANA Authentication .. 131
2.4.1 Internal Authentication with User Name and Password 133
2.4.2 Kerberos Authentication .. 135
2.4.3 SAML Authentication ... 136
2.4.4 Other Web-Based Authentication Methods for

SAP HANA XS .. 137
2.4.5 Summary and Recommendations 138

2.5 Case Study: An End-to-End Security Configuration 139
2.5.1 Authentication Plan .. 139
2.5.2 Authorization Plan ... 147
2.5.3 User Provisioning Plan .. 150

2.6 Summary ... 152

3 Data Storage in SAP HANA ... 155

3.1 OLAP and OLTP Data Storage .. 155
3.1.1 The Spinning Disk Problem .. 157
3.1.2 Combating the Problem ... 157

3.2 Data Storage Components ... 165
3.2.1 Schemas and Users ... 165
3.2.2 Column-Store Tables .. 167
3.2.3 Row-Store Tables ... 172
3.2.4 Use Cases for Both Row- and Column-Store Tables 173

3.3 Modeling Tables and Data Marts ... 175
3.3.1 Legacy Relational OLAP Modeling 176
3.3.2 SAP HANA Relational OLAP Modeling 180
3.3.3 Denormalizing Data in SAP HANA 183

3.4 Case Study: Creating Data Marts and Tables for an
SAP HANA Project ... 186
3.4.1 Creating a Schema for the Data Mart 187

Contents

9

3.4.2 Creating the Fact Table and Dimension Tables
in SAP HANA ... 189

3.5 Summary ... 194

PART II Getting Data Into SAP HANA

4 Preprovisioning Data with SAP Data Services 197

4.1 Making the Case for Source System Analysis 197
4.2 SSA Techniques in SAP Data Services ... 202

4.2.1 Column Profiling .. 205
4.2.2 Relationship Profiling ... 211

4.3 SSA: Beyond Tools and Profiling .. 215
4.3.1 Establishing Patterns .. 217
4.3.2 Looking Across Sources .. 219
4.3.3 Treating Disparate Systems as One 219
4.3.4 Mapping Your Data .. 220

4.4 Summary ... 222

5 Provisioning Data with SAP Data Services 223

5.1 Provisioning Data Using SAP Data Services Designer 223
5.1.1 Metadata ... 225
5.1.2 Datastores .. 227
5.1.3 Jobs ... 231
5.1.4 Workflows ... 234
5.1.5 Data Flows ... 244
5.1.6 Transforms ... 255
5.1.7 Built-In Functions ... 277
5.1.8 Custom Functions and Scripts ... 281
5.1.9 File Formats ... 285
5.1.10 Real-Time Jobs ... 288

5.2 Introduction to SAP Data Services Workbench 290
5.2.1 Building a Data Flow .. 293
5.2.2 Moving Data from an Existing Data Warehouse 297
5.2.3 Porting Data with the Quick Replication Wizard 297
5.2.4 Modifying Data Flows and Jobs .. 304

5.3 Data Provisioning via Real-Time Replication 305
5.3.1 SAP Data Services ETL-Based Method (ETL and DQ) 306
5.3.2 SAP Landscape Transformation ... 307

5.4 Summary ... 308

10

Contents

6 Loading Data with SAP Data Services 309

6.1 Loading Data in a Batch ... 309
6.1.1 Steps .. 309
6.1.2 Methods .. 319
6.1.3 Triggers .. 328

6.2 Loading Data in Real Time ... 335
6.3 Case Study: Loading Data in a Batch .. 340

6.3.1 Initialization ... 344
6.3.2 Staging ... 345
6.3.3 Mart ... 374
6.3.4 End Script .. 387

6.4 Case Study: Loading Data in Real Time .. 389
6.5 Summary ... 395

PART III Multidimensional Modeling in SAP HANA

7 Introduction to Multidimensional Modeling 399

7.1 Understanding Multidimensional Models 400
7.2 Benefits of SAP HANA Multidimensional Modeling 404

7.2.1 Business Benefits .. 404
7.2.2 Technology Benefits ... 408

7.3 Summary ... 411

8 Tools and Components of Multidimensional Modeling 413

8.1 SAP HANA Studio ... 413
8.1.1 Systems View ... 417
8.1.2 Quick Launch View .. 418

8.2 Schemas .. 420
8.3 Packages ... 423
8.4 Summary ... 426

9 Creating SAP HANA Information Views 427

9.1 Attribute Views ... 427
9.1.1 Creating an Attribute View ... 429
9.1.2 Defining Properties of an Attribute View 431

Contents

11

9.1.3 Creating Hierarchies ... 439
9.1.4 Saving and Activating the Attribute View 442

9.2 Analytic Views ... 444
9.2.1 Creating an Analytic View .. 445
9.2.2 Defining Properties of an Analytic View 447
9.2.3 Saving and Activating the Analytic View 459

9.3 Calculation Views .. 460
9.3.1 Creating a Calculation View ... 461
9.3.2 Defining a Graphical Calculation View 466
9.3.3 Defining a Script-Based Calculation View 474

9.4 Summary ... 478

10 Multidimensional Modeling in Practice 479

10.1 Data Processing in SAP HANA ... 479
10.1.1 Normalized Data versus Denormalized Data 480
10.1.2 Data Modeling versus Multidimensional Modeling 485
10.1.3 Managing Normalized Data in SAP HANA 487

10.2 Case Study 1: Modeling Sales Data to Produce Robust Analytics 490
10.2.1 Creating the Supporting Attribute Views 490
10.2.2 Creating Analytic Views .. 508

10.3 Case Study 2: Building Complex Calculations for
Executive-Level Analysis .. 515
10.3.1 Creating the Package .. 516
10.3.2 Creating the Calculation View .. 518
10.3.3 Defining the Calculation View .. 520

10.4 Summary ... 533

11 Securing Data in SAP HANA ... 535

11.1 Introduction to Analytic Privileges ... 536
11.1.1 What are Analytic Privileges? ... 536
11.1.2 Types of Analytic Privileges .. 537
11.1.3 Dynamic vs. Static Value Restrictions 538

11.2 Creating Analytic Privileges .. 540
11.2.1 Traditional Analytic Privileges ... 540
11.2.2 SQL-Based Analytic Privileges ... 556

11.3 Applying Analytic Privileges ... 561
11.3.1 Applying Analytic Privileges to Information Views 561
11.3.2 Interaction of Multiple Analytic Privileges and

Multiple Restrictions .. 563

12

Contents

11.3.3 Interaction of Multiple Information Views with
Analytic Privileges .. 564

11.4 Case Study: Securing Sales Data with Analytic Privileges 567
11.4.1 Overview and Requirements .. 568
11.4.2 Implementation Strategy .. 569
11.4.3 Implementation Examples .. 570

11.5 Summary ... 581

PART IV Integrating SAP HANA with SAP Business Intelligence Tools

12 Building Universes for SAP HANA .. 585

12.1 SAP HANA and the Universe ... 587
12.1.1 When to Use a Universe with SAP HANA 590
12.1.2 Connecting Universes to SAP HANA 592

12.2 Manually Building UNX Universes for SAP HANA 600
12.2.1 Creating Relational Connections 601
12.2.2 Creating OLAP Connections .. 610
12.2.3 Testing Connections Using the Local or

Server Middleware ... 612
12.2.4 Creating Projects .. 613
12.2.5 Designing the Data Foundation .. 617
12.2.6 Designing the Business Layer .. 632
12.2.7 Publishing the Universe .. 639

12.3 Automatically Generating UNX Universes for SAP HANA 642
12.3.1 Creating a Local Connection ... 642
12.3.2 Selecting Information Views ... 645
12.3.3 Reviewing the Data Foundation and Business Layer 648
12.3.4 How SAP HANA Metadata Impacts the Process 655

12.4 The SAP HANA Engines in Universe Design 656
12.4.1 SAP HANA Join Engine ... 658
12.4.2 SAP HANA OLAP Engine .. 659
12.4.3 SAP HANA Calculation Engine .. 660

12.5 Case Study: Designing a Universe to Support Internet Sales Data ... 662
12.5.1 Creating the Universe Connection and Project 662
12.5.2 Designing the Data Foundation .. 663
12.5.3 Designing the Business Layer .. 671
12.5.4 Publishing the Universe .. 688

12.6 Summary ... 689

Contents

13

13 Predictive Analytics with SAP HANA .. 691

13.1 Predictive Analysis and SAP HANA: The Basics 692
13.1.1 The Predictive Analysis Process .. 696
13.1.2 When to Use Predictive Analytics 703
13.1.3 Predictive Tools Available in SAP HANA 706

13.2 Integrating with SAP HANA ... 712
13.2.1 Installing the Application Function Libraries 712
13.2.2 Deploying Rserve ... 712
13.2.3 Leveraging R and PAL to Produce Predictive Results 713
13.2.4 Installing SAP Predictive Analysis 714
13.2.5 User Privileges and Security with

SAP Predictive Analysis .. 714
13.3 Integrating with SAP BusinessObjects BI .. 716

13.3.1 Exporting Scored Data Back to Databases 716
13.3.2 Exporting Algorithms .. 717

13.4 Case Study 1: Clustering Analysis ... 719
13.4.1 Preparing the Data ... 720
13.4.2 Performing Clustering Analysis ... 724
13.4.3 Implementing the Model ... 732

13.5 Case Study 2: Product Recommendation Rules 738
13.5.1 Preparing the Data ... 738
13.5.2 Performing Apriori Analysis .. 738
13.5.3 Implementing the Model ... 745

13.6 Summary ... 750

14 Professionally Authored Dashboards with SAP HANA 751

14.1 SAP HANA as a Data Source for SAP BusinessObjects
Dashboards ... 754

14.2 SAP HANA as a Data Source for SAP BusinessObjects
Design Studio .. 759
14.2.1 Connecting to SAP BW on SAP HANA 760
14.2.2 Connecting Directly to SAP HANA Data Sources 760
14.2.3 Connecting to the SAP HANA XS Engine 761
14.2.4 Consuming the SAP HANA Connections 763

14.3 Case Study: Exploring Data with SAP BusinessObjects
Design Studio on Top of SAP HANA .. 764
14.3.1 Gathering Requirements ... 764
14.3.2 Laying Out the Components ... 765

14

Contents

14.3.3 Connecting to SAP HANA .. 766
14.4 Summary ... 769

15 Data Exploration and Self-Service Analytics
with SAP HANA ... 771

15.1 SAP HANA as a Data Source for SAP BusinessObjects Explorer 772
15.1.1 Exploring and Indexing ... 773
15.1.2 Connecting SAP BusinessObjects Explorer to

SAP HANA ... 776
15.1.3 Creating an Information Space on SAP HANA 778

15.2 SAP HANA as a Data Source for SAP Lumira 780
15.2.1 Online Connectivity .. 783
15.2.2 Offline Connectivity ... 784

15.3 Case Study: Exploring Sales Data with SAP Lumira on
Top of SAP HANA ... 789
15.3.1 Business Requirements ... 790
15.3.2 Planned Solution .. 790

15.4 Summary ... 796

16 SAP BusinessObjects Web Intelligence with SAP HANA 797

16.1 Connecting SAP BusinessObjects Web Intelligence to
SAP HANA .. 797

16.2 Report Optimization Features with SAP HANA 800
16.2.1 Usage of JOIN_BY_SQL .. 800
16.2.2 Merged Dimensions versus Analytic/Calculation Views 803
16.2.3 Query Drill .. 804
16.2.4 Query Stripping .. 806

16.3 Case Study: Exploring Sales Data with SAP BusinessObjects
Web Intelligence on Top of SAP HANA ... 808

16.4 Summary ... 814

17 SAP Crystal Reports with SAP HANA 815

17.1 SAP HANA as a Data Source for SAP Crystal Reports 817
17.1.1 Configuring ODBC and JDBC Connections 819
17.1.2 Using SAP BusinessObjects IDT Universes 822
17.1.3 Using SAP BusinessObjects BI Relational Connections 824
17.1.4 Direct OLAP Connectivity to Analytic and

Calculation Views ... 826

Contents

15

17.2 Case Study: Exploring Data with SAP Crystal Reports on
Top of SAP HANA ... 831
17.2.1 Connecting to Data .. 832
17.2.2 Designing the Query .. 833
17.2.3 Limiting Query Results with Filter 834
17.2.4 Formatting the Report Display ... 835

17.3 Summary ... 836

Appendices ... 837

A Source System Analysis with SAP Information Steward Data Insight 837
A.1 Column Profiling .. 841
A.2 Address Profiling ... 843
A.3 Dependency Profiling .. 845
A.4 Redundancy Profiling ... 846
A.5 Uniqueness Profiling .. 847
A.6 Summary ... 848

B The Authors ... 849

Index... 851

851

Index

A

ACID compliance, 34
Active Directory, 135, 139

configuration in BOBJ, 143
role mapping, 151

Ad hoc reporting, 63, 64
Administration Console perspective, 168
Advanced analytics, 693
AdventureWorks Cycle Company, 139, 340,

490, 515, 567, 764, 765, 789, 808, 831
analytic privileges, 569
fact table, 385
real-time loading, 389
SAP BusinessObjects Web Intelligence, 808
SAP Crystal Reports, 831
SAP Lumira, 790
tables in SAP HANA, 340

Aggregate, 410, 781
all nodes, 441
awareness, 624
table, 170

Algorithm
predictive, 692
segmentation, 719
supervised learning, 695
unsupervised learning, 695

Analytic privilege, 102, 105, 536, 606
configure, 567
create traditional, 540, 541
dynamic values, 538, 546
Editor, 543
information views, 561, 564
SQL-based, 538, 556
static values, 538
traditional, 537

Analytic view, 444, 623, 777
calculated column, 453
column parameter, 454
copy from, 447
create, 445, 508
Data Foundation node, 447, 448
Derived from table parameter, 454
direct parameter, 454
hidden column, 456

Analytic view (Cont.)
input parameter, 457
Label column, 456
local attribute, 456
Logical Join node, 447, 450
measure, 444
properties, 447
save and activate, 459
Semantics node, 447, 455
static list parameter, 454
variable, 457
variable defined as, 458

Application Function Libraries (AFL), 75, 706,
712

Apriori algorithm, 707, 738, 741
ArcGIS, 781
Association algorithm, 707, 738, 741
Attribute, 401
Attribute view, 427, 428, 490, 627

calculated column, 434
create, 429, 493
Data Foundation node, 431
define, 496, 501, 502
derived, 507
filter, 434
hierarchy, 438
join types, 432
key column, 435
level hierarchy, 440
parent-child hierarchy, 440
primary key, 427
properties, 430, 431
save and activate, 442
Semantics node, 431, 438

Attunity Connector, 203
Authentication, 131, 137, 166, 605

AdventureWorks, 139
Kerberos, 135
methods, 132
SAML, 136
user name and password, 133

Authorization, 100, 137
AdventureWorks, 147
data, 100
functional, 100

852

Index

B

Batch data loading, 309
business rules validation stage, 358
driver stage, 348
end, 310
end script, 318, 387
full data set comparison target-based CDC,

321
initialization, 310, 311, 344
lookup stage, 352
mart, 310, 316, 374
methods, 319
parsing stage, 351
source-based CDC, 326
staging, 310, 313, 345
standard target-based CDC, 324
steps, 310
triggers, 328
truncate and reload, 320

BEx Web Application Designer, 759
Big data, 776, 817
Bulk loading, 252, 319
Business Function Library (BFL), 29, 408, 409,

707
security, 715

C

Calculation engine, 31, 657, 660
Calculation view, 460, 624, 777

add analytic view, 520
attribute columns, 470
calculated columns, 471
configuration options, 462
counters, 471
create, 461, 518
define, 520
Details pane, 519
example workflow, 465
final output, 529
graphical, 466
input parameters, 471
measure columns, 470
Output columns, 519
package, 516
Palette pane, 519

Calculation view (Cont.)
project analytic view, 521
Properties window, 519
restricted columns, 471
script-based, 474
scripting, 474
Tools Palette, 467
Union transform, 525

Cardinality, 347, 353
CDC, 50, 319, 327

source-based, 324, 326, 347
target-based, 324

CE_ functions, 474
Central Management Console (CMC), 610,

777
Central processing unit (CPU), 32
Classification algorithm, 707
Clustering algorithm, 707, 719
Columnar database architectures, 162
Column-store table, 30, 42, 162, 163, 165,

167, 173, 628
Compile server, 75
Compression, 32, 167, 168, 314
CPU

cores, 32
CSV, 780
Cube, 402, 445

D

Data
caching, 157
discovery, 701
quality, 53
standardization, 347

Data flow, 244
business rules validation stage, 251, 348
driver stage, 246, 348
lookup stage, 248, 348
parsing stage, 247, 348

Data Foundation node, 431, 432, 436, 448,
508, 617, 798

Data loading, 309
real time, 335, 336

Data mart, 54, 59, 62, 175, 176, 178, 179
modeling, 175, 186
SAP HANA–specific, 183

Index

853

Data mining, 693
Data model, 53, 62, 175

techniques, 176
Data provisioning, 45, 223

business rules validation stage, 250
data flow, 244
data load stage, 252
datastores, 227
driver stage, 246
jobs, 231
lookup stage, 248
metadata, 225
parsing stage, 247
transform, 255
workflows, 234

Data source name (DSN), 593, 605
Data warehouse, 53, 54, 59, 62
Datastore, 227, 231

configuration properties, 228
connection parameters, 228

Decision tree algorithm, 707
Delta load process, 50
Denormalization, 179, 180, 183, 347,

479, 483
logical, 484
physical, 484

Descriptive analytics, 694
DIM_CUSTOMER, 379
DIM_DATE, 380
DIM_PRODUCT, 376
DIM_SALES_TERRITORY, 380
Dimension, 62, 400, 401, 428, 799
Dimension table, 159, 160, 181, 242

create, 189
Direct Extract Connector (DXC), 45, 49
Disaster recovery (DR), 35
Disparate systems, 219
Document properties, 807, 813
DRAM, 32
Drilling, 805

E

EFFECTIVE_PRIVILEGES, 567
Enterprise information management (EIM),

28, 60

Error, 232
handling, 254
logging, 358

ESRI, 781
ETL, 38, 52, 53, 161, 171, 217, 306, 316
Excel, 760, 780
Exponential smoothing algorithm, 707
Extract, transform, and load (see ETL)

F

Fact, 62
Fact table, 159, 176

create, 189
FactInternetSales example, 185

Federated Identity System, 136
Flat file, 55
Forecasting

BFL algorithm, 707
PAL algorithm, 707, 708

Function
date and time, 169
date extract, 169
logic driving, 169
mathematical, 169
numeric, 169
string, 169

G

Geography, 781
Geospatial engines, 29
Grant, 106

life cycle, 106, 107
privilege, 106
roles to users, 130
SQL-based analytic privilege, 559
statements, 113

Granularity, 178, 239

H

Hierarchy, 400, 401
aggregate all nodes, 441
create, 439
level, 440

854

Index

Hierarchy (Cont.)
node style, 440
parent-child, 440
properties, 440, 441
view, 626
with root node, 442

High availability (HA), 35

I

IBM DB2, 46, 200, 203
Information Design Tool (IDT), 777, 798, 824
Information view, 96, 427, 485, 620, 628

analytic privileges, 561, 564
In-memory database, 29, 36
Input parameter, 454
Ivy Bridge, 33

J

Java database connectivity (see JDBC)
JDBC, 592, 798, 819, 822
JDE One World, 203
JDE World, 203
Job

batch, 232, 233
real time, 233, 288

Join
inner, 432, 451
left outer, 433, 451
referential, 433, 451
right outer, 433, 451
star, 473
temporal, 452
text, 434, 452

Join engine, 31, 657, 658
JOIN_BY_SQL, 800, 811

K

Kerberos, 132, 135, 137, 606
AdventureWorks, 146
C:/WINNT, 141

Key performance indicator (KPI), 752, 764

L

Latency, 802
Local connection, 615
Logical Join node, 450

M

Machine learning, 694
MDX, 164, 194, 408
Measure, 400, 799
Merged, 53
Metadata, 54, 63, 225, 227, 230, 402
Microsoft SQL Server, 46, 203
Modeler perspective, 416
MOLAP, 403
Multidimensional model, 29, 42, 49, 399,

400, 402, 403, 479, 485
benefits, 404
cube, 402
dimension, 400
hierarchy, 400
measure, 400
metadata, 402
OLAP, 400
star schema, 400
table, 422
transaction, 400

MySQL, 200

N

Name server, 75
Nearest Neighbor algorithm, 707
Node style, 440
Normalized data, 159, 479, 480, 487

challenges, 481
options, 488

O

Object Linking and Embedding Database for
OLAP (OLE DB for OLAP), 408, 592

ODBC, 592, 593, 798, 819

Index

855

OLAP, 155, 157, 172, 175, 176, 771, 806
connection, 610
data storage, 159
engine, 31, 657, 659
modeling, 176, 180
modeling in SAP HANA, 180
multidimensional OLAP, 403

OLTP, 155, 157, 172, 175, 248, 479, 480
Online analytic processing (see OLAP)
Online transaction processing (see OLTP)
Open database connectivity (see ODBC)
Operational reporting, 815, 816

use case, 815
Oracle, 203
Oracle Enterprise Edition, 46

P

Package, 423
create, 90, 424
custom, 89
default, 88
example structure, 90
hierarchy, 423
properties, 425
root, 492
setup, 87
structure, 568
sub, 492

Parallel processing, 54
Parallelization, 170
PeopleSoft, 203
Persistent layer, 165
Planning engines, 29
Polestar, 772
Predictive analysis, 692, 703

business case, 705
data discovery, 701
implementation, 698, 702, 716, 717, 732,

745
model development, 702
model evaluation, 702
process, 696
strategy, 697
tools, 699, 706

Predictive Analysis Library (PAL), 29, 408,
409, 707
implementation, 719
installation, 712
security, 715

Predictive model, 692, 702
maintenance, 702

Predictive Model Markup Language (PMML),
718

Preprocessing algorithm, 707
Preprocessor server, 75
Privilege, 101

analytic, 102, 105
application, 102, 104
object, 102
on users, 102
package, 102, 103
system, 102

Profiling
ad hoc, 203
advanced column, 210
basic column, 208
column, 203, 205, 207, 219
connection options, 203
relationship, 203, 211, 214

Project
create, 92
setup, 87
share, 94

Push down, 225, 253

Q

QaaWS Designer, 73
Query as a Service, 746
Query Browser panel, 756, 757
Query panel, 755
Query processing engine, 31
Quick Launch view, 416, 429

R

R language, 408, 410, 708
implementation, 728
installation, 712, 714
security, 715

856

Index

Random access memory (RAM), 33
RDBMS, 38, 57, 155, 170, 479
Real time, 46, 234, 816
Regression algorithm, 707
Relational connection, 610
Relational database management system (see

RDBMS)
Relational OLAP (ROLAP), 403
Relationship profile, 212
Replication

real time, 305
Repositories view

configuring, 85
Repository connection, 615
Repository workspace, 86
Restricted column, 453
Role, 109, 166

AdventureWorks, 149
as repository object, 110
CONTENT_ADMIN, 117
create, 109
custom functional, 118
developer, 120
Editor, 113
end user, 119
ETL service account, 125
MODELING, 117
MONITORING, 117
PUBLIC, 117
RESTRICTED_USER_JDBC_ACCESS/

RESTRICTED_USER_ODBC_ACCESS, 117
rights escalation, 115
SAP_INTERNAL_HANA_SUPPORT, 118
scenarios, 116
security admin, 122
system admin, 124

Root node, 442
Row engine, 31
Row-store table, 162, 165, 172

use case, 173
Rserve, 709

installation, 712
Rules engines, 29

S

SAML, 136
configuration, 145

SAP (Sybase) IQ, 203, 789, 791
Hilo.db, 789

SAP Assertion Tickets, 133
SAP Business Suite, 57
SAP Business Suite on SAP HANA, 47, 57, 58
SAP BusinessObjects Analysis for OLAP, 610
SAP BusinessObjects BI, 27, 28, 44, 59, 62, 70,

772
Central Management Console, 71
database repositories, 72
Java web application server, 71
server architecture layer, 71
universe, 63

SAP BusinessObjects BI Launch Pad, 71
SAP BusinessObjects BI Scheduler, 329
SAP BusinessObjects Credential Mapping,

605, 777
SAP BusinessObjects Dashboards, 66

connect to SAP HANA, 754
direct binding, 755

SAP BusinessObjects Design Studio, 66, 759
connect to SAP HANA, 759

SAP BusinessObjects Explorer, 772, 780
connect to SAP HANA, 772, 776
development background, 772
exploration view set, 772
facet, 773
index, 773
index storage, 775
index structure and storage, 775
indexing, 773
indexing on SAP HANA, 773
Information Space, 772, 773, 777, 778, 779
Information Space on SAP HANA, 778

SAP BusinessObjects Web Intelligence, 797,
808
connect to SAP HANA, 797
merged dimensions, 803
optimization for SAP HANA, 800
predictive model implementation, 746
query drilling, 804, 813
query stripping, 637, 806, 813

SAP BW, 30, 59, 760
SAP BW Accelerator (BWA), 38
SAP BW on SAP HANA, 38, 39
SAP Crystal Reports, 66, 815, 817, 818, 821,

832
2013, 816
2013 vs. Enterprise, 817

Index

857

SAP Crystal Reports (Cont.)
64-bit architecture, 817
analytic view, 826
application database, 816
BEx query, 819
calculation view, 826
connect to SAP HANA, 817
connecting to data, 832
database middleware, 819
designing a query, 833
direct connection to SAP HANA, 826
externally facing report, 816
highly formatted report, 815
JDBC, 818, 819, 821
ODBC, 818, 819, 820
OLAP connectivity, 826
OLAP data sources, 828
relational connection, 818, 819
SAP HANA connection options, 817, 818
SAP HANA relational connections, 824
SAP HANA universe connections, 822

SAP Data Services, 27, 28, 44, 52, 59, 60, 67,
223, 399
auto correct load, 365, 377
batch job, 310, 341
built-in functions, 244, 277, 278, 280, 281
business rules validation stage, 246
Case transform, 263, 355
Central Management Console, 67
checkpoint, 239
column profile results, 202
column profiling, 205, 207
custom functions, 281
data flow, 244
data flow processing, 245, 247, 248, 251
data load stage, 246
data loading, 309
Data_Cleanse, 270, 272, 337
database repositories, 68
datastore, 227
driver stage, 245
Exec() function, 393
file format, 285, 286
information platform services, 68
Java web application server, 67
job, 231
job execution controls, 312, 313
job recovery, 236, 237, 240

SAP Data Services (Cont.)
job server, 68
job structure best practices, 341
Key_Generation, 365, 373
lookup stage, 245
Lookup_ext(), 372
Management Console, 332
Map_Operation, 265
Match Editor, 275
Match transform, 273, 274, 339
merge, 358
metadata, 225
parallel execution, 235
parallel operations, 236
parsing stage, 245
preprovisioning data, 197
Query transform, 255
real-time job, 288, 290, 332, 390
relationship profiling, 211, 213
reusable object, 244
scheduling, 328, 329
script, 311, 318
script object, 284
series execution, 240
single-use object, 243
staging, 313, 314, 315, 345, 346
system configuration, 227
Table_Comparison, 261, 365, 366, 368, 373
transform, 244, 255, 257, 258, 260, 262,

263, 265, 267, 268
Try/Catch, 342
Validation transform, 267, 360
workflow, 234

SAP Data Services BI Scheduler, 329
SAP Data Services Designer, 69, 204, 212,

223, 224
SAP Data Services Repository Manager, 69
SAP Data Services Scheduler, 328
SAP Data Services Server Manager, 69
SAP Data Services Workbench, 69, 290, 291,

293, 299
data flow, 293
existing data warehouse, 297
modifying data flows and jobs, 304
porting data, 297, 303
Quick Replication Wizard, 303
supported transforms, 295

SAP Event Stream Processor (ESP), 45, 51

858

Index

SAP Governance, Risk, and Compliance (GRC),
126

SAP GUI, 760
SAP HANA, 28, 42, 73, 751, 754, 771, 772,

780, 815, 822
analytics appliance, 28
architecture, 74
calculation engine, 453, 626
client, 592
complex transformations, 45
custom solutions, 45
direct connection, 760
Extended Application Services, 410
hardware, 36
join engine, 626, 629
middleware, 760
multinode, 35
native performance, 45
OLAP connection, 610
OLAP engine, 434, 626
online, 783
performance, 156
R integration, 708, 720
real-time replication, 45
repository, 79
schema, 420
security, 77
sizing, 30
software layers, 28
table, 420, 422
third-party data, 44
web application server, 37

SAP HANA Live, 47, 57
SAP HANA Studio, 45, 55, 413, 419, 781

content, 418
Development perspective, 81, 82
hierarchies, 442
Modeler perspective, 416
Navigator view, 416
perspectives, 414, 415
Quick Launch view, 416, 418
security, 80, 418
supported OSs, 414
system object, 417
Systems view, 417

SAP HANA XS, 74, 137, 410, 411
SAP InfiniteInsight, 63, 691

SAP Information Steward, 269
address profiling, 843
column profiling, 841
data cleansing, 843
dependency profiling, 845
metadata, 837
profiling, 840
redundancy profiling, 846
uniqueness profiling, 847
validation rule, 839

SAP Landscape Transformation (SLT), 45, 201
SAP Logon Ticket, 133
SAP Lumira, 709, 772, 780

AdventureWorks, 790
connect to SAP HANA, 780
connectivity options, 785
forecast, 781
linear regression, 781
LUMS, 788
offline, 783, 784
online, 783
time-related hierarchy, 792

SAP MaxDB, 46
SAP Predictive Analysis, 63, 700, 709, 720,

738
clustering analysis, 724
installation, 714
SAP HANA security, 714

SAP Replication Server, 45, 52
SAP Sybase, 788

iqsrv15.exe, 788
SAPUI5, 88
Scheduling

execution command, 332
third party, 334

Schema, 95, 165, 187, 188, 316, 317, 420
as repository object, 97
column views, 422
create, 99, 187
create with user, 96
procedures, 422
properties, 95
setup, 95
tables, 421
views, 421

Scope of analysis, 813
Script server, 75

Index

859

Scrum, 751
Security, 77

adding system, 83
authentication, 131
authorizations, 100
Business Function Libraries (BFL), 715
configuring, 78
credentials, 132
data security, 535
Predictive Analysis Library (PAL), 715
SAP HANA-R integration, 715
SAP Predictive Analysis, 714
SSL, 144
user and role provisioning, 108

Security Assertion Markup Language (see
SAML)

Self-service analytics, 63, 64, 771
Semantics node, 431, 438, 455, 459, 473, 514
Siebel, 203
Single sign-on (SSO), 132, 606, 623
Smart Data Access, 31
Source system analysis (SSA), 61, 197, 198,

200, 837
example, 198
field misuse, 218
field overuse, 218
mapping, 220
mapping document, 215, 216, 220, 221
mappings, 200
multiple sources, 219
pattern, 217
technique, 202

Spinning disk, 157
SQL, 409, 780

analytic privileges, 538
engine, 629
Procedure Editor, 550
statement, 811
wizard, 548

SQL Data Definition Language (DDL), 185
SQLScript, 49, 474

Application Function Libraries, 707
Star schema, 159, 400
Statistical models, 694
Stored procedure, 49
_SYS_BIC, 409, 537, 620, 623, 798
_SYS_REPO, 96, 111

SYSTEM, 96, 111, 148, 150
disable, 150

System Landscape Transformation (SLT), 45,
307, 308, 816

Systems view, 429
SysWOW64 directory, 820

T

Table, 175
modeling, 175, 186

Tailored Datacenter Integration, 36
Teradata, 203
Time series algorithm, 707, 708
Transaction, 400
Transform, 53, 251, 255

Aggregate, 468
Case, 263
data quality, 257
Data_Cleanse, 269
Join, 467
Map_Operation, 265
Match, 273
platform, 257
Projection, 467
Query, 226, 326
Table_Comparison, 261, 325
text data processing, 258
Union, 468
Validation, 267

U

Universe, 63, 772, 776, 780, 822
business layer, 632, 798
Query panel, 833
UNX, 818

Universe Designer, 72
UNIX, 819
User

restricted, 127
User provisioning, 126

AdventureWorks, 150
automation, 128
manual, 129

860

Index

V

Variable, 318
Visualization, 710

W

Web service, 331, 746
scheduling, 330

Workflow
parallel execution, 234
reusability, 242
series execution, 240

X

X509, 133

First-hand knowledge.

Jonathan Haun, Chris Hickman, Don Loden, Roy Wells

Implementing SAP HANA
860 Pages, 2015, $79.95/€79.95
ISBN 978-1-4932-1176-0

 www.sap-press.com/3703

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This reading sample
and all its parts are protected by copyright law. All usage and exploitation rights are
reserved by the author and the publisher.

Jonathan Haun currently serves as the lead SAP HANA consultant and
consulting manager with Decision First Technologies. He is an SAP
Certified Application Associate and SAP Certified Technology Associate
for SAP HANA 1.0.

Roy Wells is a principal consultant at Decision First Technologies, where
he uses his 15 years of experience in system and application architecture
to lead clients in the successful implementation of end-to-end BI solu-
tions.

Chris Hickman is a certified SAP BusinessObjects BI consultant and
principal consultant at Decision First Technologies. His specific areas of
expertise include reporting, analysis, dashboard development, and
visualization techniques.

Don Loden is a principal consultant at Decision First Technologies with
full lifecycle data warehouse and information governance experience in
multiple verticals. He is an SAP Certified Application Associate on SAP
BusinessObjects Data Integrator and is very active in the SAP community,
speaking globally at numerous SAP and ASUG conferences and events.

 © 2015 by Galileo Press, Inc. This reading sample may be distributed free of charge. In no way must the file be altered, or
individual pages be removed. The use for any commercial purpose other than promoting the book is strictly prohibited.

https://www.sap-press.com/implementing-sap-hana_3703/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse%20the%20Book&utm_content=1176

