
Leseprobe
Hans-Peter Habelitz zeigt Ihnen, dass der Einstieg in die Programmierung
von Java leicht gelingen kann. Er macht Sie in dieser Leseprobe mit den
Grundlagen vertraut. Außerdem können Sie einen Blick in das vollständi-
ge Inhalts- und Stichwortverzeichnis des Buches werfen.

Hans-Peter Habelitz

Programmieren lernen mit Java
537 Seiten, broschiert, mit DVD, 3. Auflage 2015
19,90 Euro, ISBN 978-3-8362-3517-4

 www.rheinwerk-verlag.de/3776

 »Grundbausteine eines Java-Programms«
»Klassen und Objekte«

 Inhaltsverzeichnis

 Index

 Der Autor

 Leseprobe weiterempfehlen

Wissen, wie’s geht.

mailto:?body=Leseproben-Empfehlung: �Programmieren lernen mit Java�, Rheinwerk Verlag, http://gxmedia.galileo-press.de/leseproben/3776/leseprobe_rheinwerk_programmieren_lernen_java.pdf&subject=Leseprobe: �Programmieren lernen mit Java�
https://www.rheinwerk-verlag.de/programmieren-lernen-mit-java_3776/?GPP=lpn

60

Kapitel 2
Grundbausteine eines
Java-Programms

Der große Weg ist sehr einfach, aber die Menschen lieben die Umwege.

(Laotse, Tao Te King, übers. Zensho W. Kopp)

Im vorigen Kapitel haben Sie bereits Java-Programme erstellt. Dabei waren die Quell-

texte vorgegeben, weil Sie zunächst die grundlegenden Arbeitsabläufe und die Werk-

zeuge, die dafür benötigt werden, kennenlernen sollten. In diesem Kapitel stehen nun

die Sprachelemente von Java im Mittelpunkt.

2.1 Bezeichner und Schlüsselwörter

Bezeichner sind Namen für Elemente, die im Programm verwendet werden. Sie sind

nicht von Java vorgegeben, sondern werden vom Programmierer, also von Ihnen, als

Namen für die Elemente festgelegt, die Sie verwenden möchten. Bezeichner können aus

beliebig vielen Zeichen und Ziffern bestehen, müssen aber immer mit einem Buchsta-

ben beginnen. Zu den Buchstaben gehören auch Währungszeichen (wie z. B. das Dollar-

zeichen $) und Sonderzeichen wie der Unterstrich _. Groß- und Kleinschreibung werden

unterschieden. Das heißt, dass zahl ein anderer Bezeichner ist als Zahl. Bezeichner kön-

nen frei gewählt werden, dürfen aber nicht mit Schlüsselwörtern der Sprache und den

Literalen true, false und null übereinstimmen, die in Java eine bereits festgelegte

Bedeutung haben.

Am Beispiel der Übungsaufgabe 2 des vorigen Kapitels können Sie leicht nachvollzie-

hen, an welchen Stellen im Quellcode Bezeichner und Schlüsselwörter verwendet

werden:

/* Kreisberechnung: Für einen Kreis werden der Umfang und der
* Flächeninhalt berechnet.
* Der Kreisradius wird beim Programmstart als Parameter
* übergeben.
*/

2.1 Bezeichner und Schlüsselwörter

61

public class Kreisberechnung2 {
public static void main(String[] args) {
double radius;
double umfang, inhalt;
radius = Double.parseDouble(args[0]);
umfang = 2.0 * 3.1415926 * radius;
inhalt = 3.1415926 * radius * radius;
System.out.print("Umfang: ");
System.out.println(umfang);
System.out.print("Flaeche: ");
System.out.println(inhalt);

}
}

Listing 2.1 Quellcode der Aufgabe 2 aus Kapitel 1

In Listing 2.1 werden als Bezeichner Kreisberechnung2 sowie radius, umfang und inhalt

verwendet.

Welche Bezeichner bereits als Schlüsselwörter vergeben sind, sehen Sie in Tabelle 2.1. Sie

listet die in Java reservierten Schlüsselwörter auf.

Schlüsselwörter von Java

abstract default if protected throws

assert do implements public transient

boolean double import return try

break else instanceof short void

byte enum int static volatile

case extends interface strictfp while

catch final long super

char finally native switch

class float new synchronized

const for package this

continue goto private throw

Tabelle 2.1 Schlüsselwörter in Java

2 Grundbausteine eines Java-Programms

62

Die Bedeutung jedes einzelnen Schlüsselwortes soll im Augenblick nicht erläutert

werden. Die Erläuterungen werden dort folgen, wo die Schlüsselwörter eingesetzt

werden. Die Liste soll hier nur zeigen, welche Bezeichner Sie als Programmierer für

eigene Zwecke nicht verwenden dürfen.

In Listing 2.1 werden als Schlüsselwörter vor dem Klassenbezeichner Kreisberechnung2

z. B. public class verwendet, und vor den Bezeichnern radius, umfang und inhalt steht

das Schlüsselwort double.

Die in Kapitel 1 erwähnten Code Conventions enthalten auch Namenskonventionen

(Naming Conventions).

Namenskonventionen

� Bezeichner werden mit gemischter Groß- und Kleinschreibung geschrieben. Groß-

buchstaben dienen dem Trennen von Wortstämmen, z. B. kreisRadius, mittlerer-
Wert.

� Variablennamen beginnen mit Kleinbuchstaben, z. B. meinKonto, anzahlZeichen.

Namen von Konstanten werden mit Großbuchstaben geschrieben. Einzelne Wörter

werden durch den Unterstrich _ getrennt, z. B. MAX_WERT.

� Klassennamen beginnen mit einem Großbuchstaben, z. B. ErstesBeispiel. Da Klas-

sennamen als Teil des Namens der Datei verwendet werden, die die Klasse im Byte-

code enthält, unterliegen diese auch den Regeln des jeweiligen Betriebssystems.

Wie bereits erwähnt wurde, handelt es sich bei den genannten Konventionen um frei-

willige Vereinbarungen, die keineswegs eingehalten werden müssen. Sie haben sich

aber in weiten Bereichen durchgesetzt und sind Zeichen professionellen Program-

mierens.

2.2 Kommentare

Kommentare im Quellcode sind Texte, die vom Compiler beim Übersetzen nicht beach-

tet werden. Mit Kommentaren können Sie für sich selbst und für andere Leser Hinweise

in den Quellcode einfügen.

In Java können drei unterschiedliche Arten von Kommentaren verwendet werden:

� Einzeilige Kommentare

Sie beginnen mit // und enden automatisch mit dem Ende der Zeile.

Beispiel:

int anzahl; // zählt die gelesenen Zeichen

2.3 Variablen und Datentypen

63

� Mehrzeilige Kommentare

Sie beginnen mit /* und enden mit */. Da für das Ende des Kommentars eine Zei-

chenfolge eingegeben werden muss, kann sich der Kommentar über mehrere Zeilen

erstrecken.

Achtung: Der Kommentar darf die Zeichenfolge */ nicht enthalten, denn dadurch

würde der Kommentar beendet.

Beispiel:

/* Dieser Kommentar ist etwas länger
und erstreckt sich über zwei Zeilen.
*/

Die Zeichenfolge /* und */ muss nicht am Zeilenanfang stehen. Der Kommentar

kann an beliebiger Stelle beginnen.

� Dokumentationskommentare

Sie beginnen mit /** und enden mit */ und können sich ebenfalls über mehrere Zei-

len erstrecken. Sie werden gesetzt, um vom JDK-Werkzeug javadoc automatisch eine

Programmdokumentation erstellen zu lassen.

Nach den Code Conventions sollte jedes Programm mit einem beschreibenden Kom-

mentar beginnen. Innerhalb des Programmtextes können weitere Kommentare einge-

fügt werden, um z. B. Aufgaben von Klassen, Methoden und Variablen zu erläutern.

2.3 Variablen und Datentypen

Sollen in einem Programm Daten zur Be- und Verarbeitung zur Verfügung gestellt wer-

den, so werden Variablen als Behälter benötigt. Variablen können als Namen für einen

Speicherplatz im Hauptspeicher aufgefasst werden. An diesem Speicherplatz wird der

Wert der Variablen abgelegt. Der Wert kann dann im Laufe des Programmablaufs ausge-

lesen und verändert werden. Wie groß dieser Speicherplatz ist und welche Art von

Daten darin abgelegt werden können, wird durch den Datentyp festgelegt. Durch die

begrenzte Größe des Speicherbereichs ist auch der Wertebereich der Variablen begrenzt

(siehe Abbildung 2.1).

Abbildung 2.1 Variablendefinition

2387

Wert

NameDatentyp

Arbeitsspeicher

int zahl1;

2 Grundbausteine eines Java-Programms

64

Zur Deklaration geben Sie den Datentyp und – durch ein Leerzeichen getrennt – den

Namen der Variablen an. Abgeschlossen wird die Deklaration wie jede Anweisung durch

ein Semikolon:

Datentyp variablenname;

Werden mehrere Variablen des gleichen Typs benötigt, dann kann hinter dem Datentyp

auch eine Liste der Variablennamen folgen. Die Liste besteht aus den durch Kommata

getrennten Variablennamen:

Datentyp variablenname1, variablenname2, ...;

Merke

Eine Variablendeklaration besteht aus dem Datentyp, gefolgt von einem einzelnen

Variablenbezeichner oder einer durch Kommata getrennten Liste von Variablenbezeich-

nern. Sie wird durch ein Semikolon abgeschlossen.

Java kennt acht sogenannte primitive Datentypen, die Sie in Tabelle 2.2 aufgelistet

finden.

Datentyp Verwendung Größe
in Byte

Größe
in Bit

Wertebereich

boolean Wahrheitswert 1 8 false, true

char Zeichen 2 16 0 bis 65.535

byte Ganzzahl 1 8 –128 bis 127

short Ganzzahl 2 16 –32 768 bis 32.767

int Ganzzahl 4 32 –2.147.483.648 bis 2.147.483.647

long Ganzzahl 8 64 –9.223.372.036.854.775.808 bis

9.223.372.036.854.775.807

float Kommazahl 4 32 Betrag ca. 1,4 × 10– 45 bis 3,4 × 1038

(Genauigkeit ca. sieben Stellen)

double Kommazahl 8 64 Betrag ca. 4,9 × 10– 324 bis 1,7 × 10308

(Genauigkeit ca. 15 Stellen)

Tabelle 2.2 Primitive Datentypen

2.3 Variablen und Datentypen

65

Konkrete Werte wie die Zahlen 13, 28, 1.5 werden als Literale bezeichnet. Beachten Sie,

dass im Java-Quellcode die englische Notation gilt. Deshalb ist bei Kommazahlen der

Punkt als Dezimaltrennzeichen zu verwenden.

Merke

Bevor eine Variable in einem Programm verwendet werden kann, muss sie deklariert

werden. Dabei werden der Datentyp und der Name (Bezeichner) festgelegt.

Als Dezimaltrennzeichen wird der Punkt verwendet.

2.3.1 Namenskonventionen für Variablen

Die Namenskonventionen machen zu Variablenbezeichnern folgende Aussagen:

� Variablennamen werden in gemischter Groß-, Kleinschreibung geschrieben, begin-

nen aber immer mit einem Kleinbuchstaben, z. B. zahl1, mittelwert, kleinsteZahl.

� Setzen sich Variablennamen aus mehreren Wörtern zusammen, werden die internen

Wörter mit Großbuchstaben begonnen, z. B. groessterRadius, anzahlSpieler.

� Variablenbezeichner sollten kurz und dennoch aussagekräftig sein, z. B. ggT statt

groessterGemeinsamerTeiler.

� Variablenbezeichner, die nur aus einem Buchstaben bestehen, sollten vermieden

werden. Sie sollten lediglich als kurzlebig verwendete Variablen, z. B. als Schleifen-

zähler, eingesetzt werden.

Die Variablenbezeichner kurz und aussagekräftig zu halten, ist in der deutschen Spra-

che nicht immer ganz einfach. Viele Programmierer weichen deshalb oft auch bei Varia-

blenbezeichnern auf die englische Sprache aus.

Beispiele für Variablendeklarationen:

� boolean gefunden;

� char zeichen;

� short s1, s2, s3, s4;

� int i, j, k;

� long grosseZahl;

� float ePreis;

� double radius, umfang;

2 Grundbausteine eines Java-Programms

66

2.3.2 Wertzuweisung

Der Wert einer Variablen wird durch eine Wertzuweisung festgelegt. Die Wertzuweisung

ist ein Speichervorgang, für den der Operator = verwendet wird. Dabei wird der Wert des

Ausdrucks, der rechts vom Gleichheitszeichen steht, in der Variablen gespeichert, die

links vom Gleichheitszeichen steht.

Durch die Wertzuweisung

zahl1 = 1234;

wird entsprechend in der Variablen zahl1 der Wert 1234 gespeichert (siehe Abbildung

2.2). Dabei wird immer der ursprüngliche Wert der Variablen durch den neuen Wert

überschrieben (siehe Abbildung 2.3).

Abbildung 2.2 Variable vor der Wertzuweisung

Abbildung 2.3 Variable nach der Wertzuweisung

Eine Wertzuweisung kann auch mit der Definition verbunden werden:

int zahl1 = 1234;

Dadurch wird bei der Variablendefinition direkt auch der Wert definiert, der in der

Variablen gespeichert sein soll. Diese erste Zuweisung eines Wertes an eine Variable

wird Initialisierung genannt.

2.3.3 Die primitiven Datentypen im Einzelnen

In den folgenden Abschnitten werden die primitiven Datentypen näher erläutert, bevor

Sie in einigen Beispielen den Umgang mit diesen Datentypen üben können.

2387

Wert

Arbeitsspeicher

int zahl1;

4 Byte

1234

Wert der Variablen

Arbeitsspeicher

4 Byte

int zahl1;

2.3 Variablen und Datentypen

67

»boolean«

Dieser Datentyp wird als Wahrheitswert bezeichnet. Er kann nur einen von zwei Werten

(Literalen) annehmen (true oder false). Er wird überall dort benötigt, wo Entscheidun-

gen zu treffen sind.

»char«

Der Zeichentyp char dient dazu, ein einzelnes Zeichen des Unicode-Zeichensatzes zu

speichern. Literale werden zwischen einfachen Anführungszeichen angegeben (z. B. 'a'

für den Buchstaben a). Mithilfe sogenannter Escape-Sequenzen können auch Zeichen

mit einer ganz speziellen Bedeutung angegeben werden. Eine Escape-Sequenz beginnt

mit dem Backslash-Zeichen (\), dem das eigentliche Zeichen folgt. In der Zeichenfolge \t

z. B. wird durch das Backslash-Zeichen angegeben, dass der Buchstabe t nicht als einfa-

cher Buchstabe zu verstehen ist, sondern als ein Tabulatorzeichen. Tabelle 2.3 gibt einen

Überblick über die wichtigsten Escape-Sequenzen.

Hinweis für OS X-User

Den Backslash (\) erreichen Sie auf der Mac-Tastatur mit der Tastenkombination

(ª) + (alt) + (7).

»byte«, »short«, »int« und »long«

Die Ganzzahlentypen sind vorzeichenbehaftet. Das heißt, sie können positiv oder nega-

tiv sein. Wie in der Mathematik üblich, muss bei positiven Zahlenwerten das Vorzei-

Escape-Sequenz Bedeutung

\b Backspace

\t Tabulator

\n Neue Zeile (Newline)

\f Seitenvorschub (Formfeed)

\r Wagenrücklauf (Carriage return)

\" Doppeltes Anführungszeichen "

\' Einfaches Anführungszeichen '

\\ Backslash \

Tabelle 2.3 Escape-Sequenzen

2 Grundbausteine eines Java-Programms

68

chen nicht angegeben werden. Negative Werte erhalten wie gewohnt das vorangestellte

negative Vorzeichen. Die vier unterschiedlichen Datentypen für ganze Zahlen unter-

scheiden sich lediglich durch den Wertebereich. Wie Sie Tabelle 2.2 entnehmen können,

lassen sich im Datentyp byte nur Zahlenwerte von –128 bis 127 speichern. Für größere

Zahlenwerte müssen Sie auf einen der drei übrigen Ganzzahltypen ausweichen. Je grö-

ßer der Wertebereich eines Datentyps ist, desto mehr Speicherplatz wird durch ihn

belegt. Bei den heute verfügbaren Speichergrößen spielt das Argument, dass man durch

eine geschickte Wahl der Datentypen Speicherplatz einsparen kann, nicht mehr eine so

große Rolle. Sie sollten deshalb den Standardtyp int für ganze Zahlen verwenden und

nur dann davon abweichen, wenn Sie sicher sind, dass der Wertebereich nicht ausreicht

oder auf jeden Fall unnötig groß gewählt ist.

»float« und »double«

Zur Speicherung von Kommazahlen stehen Fließkommazahlentypen zur Verfügung.

Wie bei den ganzzahligen Datentypen unterscheiden sich diese beiden Typen durch den

Wertebereich (siehe Tabelle 2.2), den die zu speichernden Zahlenwerte umfassen kön-

nen. Zusätzlich unterscheiden sich die beiden Datentypen durch die Genauigkeit. In ei-

nem float können die Zahlenwerte auf circa sieben Nachkommastellen genau

gespeichert werden. Der Datentyp double ermöglicht eine Genauigkeit von circa 15

Nachkommastellen. Als Standardtyp sollten Sie double verwenden. Literale von Fließ-

kommazahlen werden in dezimaler Form geschrieben. Sie können aus einem Vorkom-

mateil, einem Dezimalpunkt, einem Nachkommateil, einem Exponenten und einem

Suffix bestehen. Es muss mindestens der Dezimalpunkt, der Exponent oder das Suffix

vorhanden sein, damit das Literal von einer ganzen Zahl unterschieden werden kann.

Wird ein Dezimalpunkt verwendet, so muss vor oder nach dem Dezimalpunkt eine Zif-

fernfolge stehen. Dem Vorkommateil und dem Exponenten kann ein Vorzeichen (+

oder –) vorangestellt werden. Der Exponent wird durch ein e oder E eingeleitet und steht

für »mal 10 hoch dem Exponenten« (× 10Exponent). Wird kein optionales Suffix angege-

ben, wird das Literal als double interpretiert. Mit dem Suffix f oder F wird das Literal aus-

drücklich zum float, mit dem Suffix d oder D wird es ausdrücklich zum double erklärt.

Beispiele für gültige Fließkommaliterale:

2.5 .3 -4. -1.3e5 56.234f

2.3.4 Praxisbeispiel 1 zu Variablen

Die folgenden Darstellungen sollen helfen, die theorielastigen Ausführungen zu Varia-

blen und Datentypen verständlicher zu machen. Wir erstellen dafür ein Java-Projekt mit

dem Namen JavaUebung02. Legen Sie also in der Arbeitsumgebung neben dem Ordner

JavaUebung01 einen zweiten Ordner mit dem Namen JavaUebung02 an.

2.3 Variablen und Datentypen

69

Im Projekt JavaUebung02 legen Sie zunächst eine Klasse mit dem Namen Variablen1 an.

Dazu erstellen Sie eine neue Textdatei mit dem Namen Variablen1, in der Sie die gleich-

namige Klasse mit ihrer main-Methode anlegen:

public class Variablen1 {
public static void main(String[] args) {

In der main-Methode dieser Klasse sollen die folgenden Variablen deklariert werden:

� bZahl als byte

� sZahl als short

� iZahl als int

� lZahl als long

� fZahl als float

� dZahl als double

� bestanden als boolean

� zeichen als char

Das können Sie bereits selbst. Vergleichen Sie Ihr Ergebnis mit Listing 2.2.

Nun sollen Sie den Variablen die in Tabelle 2.4 vorgegebenen Werte zuweisen. Verglei-

chen Sie Ihr Ergebnis wieder mit Listing 2.2.

Wir wollen nun aber noch einen Schritt weitergehen und die Variablen mit der Anwei-

sung System.out.println bzw. System.out.print in der Konsole ausgeben. Dabei sollen

Variable Wert

bZahl 28

sZahl –18453

iZahl 4356576

lZahl 345236577970

fZahl 4.37456678

dZahl 3645.564782

bestanden true

zeichen %

Tabelle 2.4 Wertzuweisungen

2 Grundbausteine eines Java-Programms

70

in jeweils einer Zeile der Name der Variablen und der Wert der Variablen, z. B. nach fol-

gendem Muster, stehen:

bZahl = 28

Sie haben die Anweisung System.out.print bzw. println bereits in den ersten Übungs-

aufgaben verwendet. Die genauere Bedeutung der drei durch Punkte getrennten

Bezeichner werden Sie in Kapitel 5, »Klassen und Objekte«, und Kapitel 6, »Mit Klassen

und Objekten arbeiten«, erfahren. Wie in Abschnitt 1.3.2, »Wie sind Java-Programme

aufgebaut?«, erläutert wurde, unterscheiden sich print und println lediglich dadurch,

dass println nach der Ausgabe noch einen Zeilenvorschub erzeugt. Dadurch stehen die

folgenden Ausgaben in einer neuen Zeile. In den ersten Programmbeispielen wurden

die beiden Methoden verwendet, um konstante Texte (Literale) auszugeben. Solche

Text-Literale (Stringliterale) erkennen Sie daran, dass sie zwischen Anführungszeichen

stehen. Das folgende Beispiel stammt aus dem Hallo-Welt-Programm:

System.out.println("Hallo Welt!");

Die beiden print-Anweisungen sind sehr flexibel und können nicht nur Texte ausge-

ben. Übergeben Sie in der Klammer einen Variablennamen, so wird von der print-

Anweisung der Wert der Variablen ausgegeben. Damit können Sie diese Methoden sehr

gut nutzen, um zu prüfen, ob Wertzuweisungen an Variablen erfolgreich ausgeführt

wurden.

Zur Kontrolle der Wertzuweisungen ergänzen Sie jetzt noch die Ausgabeanweisungen

mit System.out.print bzw. System.out.println. Verwenden Sie für jede Variable einen

eigenen println-Befehl. Geben Sie jeweils zuerst mit print den Namen der Variable,

gefolgt von einem Gleichheitszeichen, aus. Für die folgende Ausgabe des Variablenwer-

tes verwenden Sie println, damit die folgende Ausgabe des nächsten Variablennamens

in einer neuen Zeile steht. Hier nun der vollständige Quelltext:

/* Programm zum Testen der Verwendung von Variablen
* Datum: 2011-11-30
* Hans-Peter Habelitz
*/

public class Variablen1 {
public static void main(String[] args) {

// Variablendeklarationen
byte bZahl;
short sZahl;

2.3 Variablen und Datentypen

71

int iZahl;
long lZahl;
float fZahl;
double dZahl;
boolean bestanden;
char zeichen;

// Wertzuweisungen
bZahl = 28;
sZahl = -18453;
iZahl = 4356576;
lZahl = 345236577970;
fZahl = 4.37456678;
dZahl = 3645.564782;
bestanden = true;
zeichen = '%';

// Ausgabe der Variablenwerte
System.out.print("bZahl=");
System.out.println(bZahl);
System.out.print("sZahl=");
System.out.println(sZahl);
System.out.print("iZahl=");
System.out.println(iZahl);
System.out.print("lZahl=");
System.out.println(lZahl);
System.out.print("fZahl=");
System.out.println(fZahl);
System.out.print("dZahl=");
System.out.println(dZahl);
System.out.print("bestanden=");
System.out.println(bestanden);
System.out.print("zeichen=");
System.out.println(zeichen);

}
}

Listing 2.2 Quelltext zu Aufgabe 1

Auch wenn Sie den Quelltext fehlerfrei von oben übernommen haben, werden Sie beim

Übersetzen die Fehlermeldung aus Abbildung 2.4 erhalten. Der Compiler meldet: inte-

ger number too large. Ein ganzzahliger Wert innerhalb des Quellcodes wird vom Java-

2 Grundbausteine eines Java-Programms

72

Compiler immer als int-Wert (Standard für ganzzahlige Zahlenwerte) interpretiert. Das

gilt auch, wenn wie hier auf der linken Seite der Wertzuweisung eine Variable vom Typ

long angegeben ist. Soll ein ganzzahliger Zahlenwert als long interpretiert werden, so

müssen Sie dies dem Compiler durch Anhängen des Buchstabens L (Klein- oder Groß-

buchstabe) anzeigen. Wegen der besseren Lesbarkeit sollte der Großbuchstabe verwen-

det werden, da der Kleinbuchstabe sehr leicht mit der Ziffer 1 (eins) verwechselt werden

kann:

lZahl = 345236577970L;

Abbildung 2.4 Fehlermeldung beim ersten Kompilieren

Ergänzen Sie also die Zahlenangabe entsprechend, und starten Sie die Übersetzung

erneut. Sie werden eine weitere Fehlermeldung erhalten (siehe Abbildung 2.5).

Abbildung 2.5 Fehlermeldung beim zweiten Übersetzungsversuch

Kommazahlen im Quellcode werden standardmäßig als double-Werte interpretiert. Der

Zahlenwert soll aber einer float-Variablen zugewiesen werden. Sie ahnen es wahr-

scheinlich schon: Der Zahlenwert muss durch Anhängen des Buchstabens f oder F aus-

drücklich als float-Typ kenntlich gemacht werden. Nach der Korrektur

fZahl = 4.37456678f;

ist der Übersetzungsvorgang erfolgreich, und das Programm sollte die in Abbildung 2.6

dargestellte Ausgabe zeigen.

2.3 Variablen und Datentypen

73

Abbildung 2.6 Ausgabe von Aufgabe 1

2.3.5 Häufiger Fehler bei der Variablendeklaration

Abbildung 2.6 zeigt die Ausgabe der println-Anweisungen aus Listing 2.2. Einen Fehler,

den Programmieranfänger häufig begehen, möchte ich an dieser Stelle ansprechen. Der

Quellcode ist fehlerbereinigt, denn der Compiler erzeugt keine Fehlermeldungen. Die

Ausgabeanweisungen werden ausgeführt und zeigen die Variablenwerte an. Program-

mieranfänger geben sich mit diesen Überprüfungen zufrieden und sehen die Aufgabe

als gelöst an. Das Testen eines als fertig angesehenen Programms ist eine der aufwen-

digsten Aufgaben beim Programmieren. Hier ist sehr große Sorgfalt geboten, d. h., dass

die Programmergebnisse sehr genau überprüft werden müssen. In unserem Beispiel, in

dem keinerlei Eingaben des Anwenders erfolgen, ist das noch relativ einfach. Ein

genauer Blick auf die ausgegebenen Werte zeigt aber auch hier, wie leicht Fehler überse-

hen werden.

Überprüfen Sie die Ausgabe der Variable fzahl, indem Sie den ausgegebenen Wert mit

dem zugewiesenen Wert vergleichen. Es wird offensichtlich ein etwas anderer Wert aus-

gegeben. Wo liegt die Ursache für diese Abweichung? Der zugewiesene Wert umfasst

acht Nachkommastellen. In Tabelle 2.2 sind als Genauigkeit für float-Werte – und als

solchen haben wir den Zahlenwert gekennzeichnet – sieben Nachkommastellen ange-

geben. Der Compiler war gezwungen, den Wert so anzupassen, dass er in den Speicher-

platz passt, der für eine float-Variable zur Verfügung steht. Bei dieser Anpassung wird

aber nicht ab- oder aufgerundet, sondern es entsteht ein abweichender Wert, der nur

schwer vorhersehbar ist. Solche Verfälschungen kommen immer dann vor, wenn Zah-

lenwerte in Variablen gespeichert werden, für die sie eigentlich zu groß sind. Sie sollten

deshalb die gültigen Wertebereiche für die gewählten Datentypen im Auge behalten.

Ich empfehle Ihnen, für Zahlenwerte die Standardtypen int und double zu verwenden.

Sie sind für die meisten Anwendungen ausreichend groß bemessen, und das Argu-

ment, dass man mit den Datentypen byte und short bzw. float für Kommawerte

Speicherplatz einsparen kann, spielt bei den heute zur Verfügung stehenden Speicher-

größen kaum noch eine Rolle. Wenn Sie noch einmal einen Blick auf die Fehlermel-

2 Grundbausteine eines Java-Programms

74

dung in Abbildung 2.5 werfen, werden Sie feststellen, dass die Fehlermeldung des

Compilers sehr präzise auf dieses Problem aufmerksam gemacht hat. Er hat dort ge-

meldet: possible loss of precision (möglicherweise droht ein Verlust an Genauigkeit).

Es lohnt sich also, bei jeder Fehlermeldung genau hinzuschauen, was der Compiler

meldet.

2.3.6 Praxisbeispiel 2 zu Variablen

Wir erstellen im Projekt JavaUebung02 eine Klasse mit dem Namen Variablen2. In der

main-Methode dieser Klasse sollen fünf Zeichen-Variablen mit den Namen z1, z2, z3, z4

und z5 deklariert werden. Die Variablen sollen mit den folgenden Werten der Tabelle 2.5

initialisiert und dann ausgegeben werden.

Die ersten drei Werte dürften keine Probleme verursachen, denn die Zeichen sind direkt

über die Tastatur erreichbar, und Sie können sie so eingeben:

char z1, z2, z3, z4, z5;
// Wertzuweisungen
z1 = 'a';
z2 = 'b';
z3 = 'A';

Listing 2.3 Wertzuweisungen bei »char«-Variablen

Wie aber erreichen Sie die letzten beiden Zeichen? Beachten Sie, dass das letzte Zeichen

tatsächlich als ein Zeichen zu verstehen ist, auch wenn Sie zunächst meinen könnten,

dass es sich um drei Zeichen (3, / und 4) handelt.

Um das Problem zu lösen, müssen Sie auf Unicode zurückgreifen. Grundsätzlich müs-

sen Zeichen, die am Bildschirm dargestellt oder von einem anderen Gerät, wie z. B.

Variable Wert

z1 a

z2 b

z3 A

z4 ©

z5 ¾

Tabelle 2.5 Variablen und ihre Werte in Aufgabe 2

2.3 Variablen und Datentypen

75

einem Drucker, ausgegeben werden sollen, digital codiert werden. Diese Codierung

besteht darin, dass jedem Zeichen, das dargestellt werden soll, ein Zahlenwert zugeord-

net wird. Diese Zahl als Dualzahl entspricht dann der digitalen Darstellung des Zeichens.

Neben dem ASCII-Code, dem ANSI-Code und vielen weiteren beschreibt der Unicode

eine mögliche Codierung. Da nun Java Unicode verwendet, sollten wir uns diesen Code

etwas genauer anschauen. Im Internet finden Sie eine Vielzahl von Seiten, die den Uni-

code in Tabellenform darstellen.

Unter der Adresse http://www.utf8-zeichentabelle.de finden Sie u. a. die Darstellung aus

Tabelle 2.6.

Unicode-Codeposition Zeichen Name

U+000A <control> Steuerzeichen Zeilenwechsel (New Line)

U+000D <control> Steuerzeichen Wagenrücklauf

U+0020 SPACE

U+0041 A LATIN CAPITAL LETTER A

U+0042 B LATIN CAPITAL LETTER B

U+0043 C LATIN CAPITAL LETTER C

U+0044 D LATIN CAPITAL LETTER D

U+0045 E LATIN CAPITAL LETTER E

U+0046 F LATIN CAPITAL LETTER F

U+00A9 © COPYRIGHT SIGN

U+00AE ® REGISTERED SIGN

U+00B2 ² SUPERSCRIPT TWO

U+00BD ½ VULGAR FRACTION ONE HALF

U+00BE ¾ VULGAR FRACTION THREE QUARTERS

U+00C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS

U+00D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS

U+00DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS

Tabelle 2.6 Auszug aus dem Unicode

2 Grundbausteine eines Java-Programms

76

Da Unicode mit über 110.000 Zeichen sehr umfangreich ist, ist in Tabelle 2.6 nur ein

Auszug dargestellt Die Tabelle beschränkt sich auf die deutschen Umlaute und einige

interessante Sonderzeichen. In der ersten Spalte steht die Nummer des jeweiligen Zei-

chens allerdings in hexadezimaler Schreibweise. Diese Schreibweise ist wesentlich

übersichtlicher und kürzer und wird deshalb in der Computertechnik als Kurzform für

Dualzahlen verwendet. Die Zeichen mit den Codes von 0 bis 31 sind Steuerzeichen, die

in einem Text quasi unsichtbar sind. Als Beispiel sind die beiden Steuerzeichen mit den

Codes 10 (U+000A) und 13 (U+000D) aufgeführt. Das Zeichen mit dem Code 10 ent-

spricht z. B. einem Zeilenvorschub. Das Zeichen mit dem Code 32 (U+0020) entspricht

der Leerstelle und erscheint in einem Text als Lücke zwischen zwei Wörtern. Wie hilft

uns nun diese Tabelle bei der Lösung unseres Problems aus Aufgabe 2?

Auf der Computertastatur kann immer nur ein kleiner Teil des umfangreichen Zeichen-

codes untergebracht werden. Alle anderen Zeichen können Sie mithilfe des Zeichen-

codes ansprechen. Aus der Tabelle können Sie für das Zeichen © den Code 00A9 und für

das Zeichen ¾ den Code 00BE entnehmen. In einer Wertzuweisung kann der Zeichenva-

riablen einfach der Zahlencode des betreffenden Zeichens zugewiesen werden. Sie kön-

nen dabei die dezimale Schreibweise z4 = 169; (für ©) ebenso wie die hexadezimale

Schreibweise z4 = 0x00a9; verwenden. Dem Java-Compiler wird durch 0x kenntlich

gemacht, dass die folgende Zeichenfolge als hexadezimale Zahl zu behandeln ist.

/* Programm zum Testen der Verwendung von Variablen
* Datum: 2011-11-30
* Hans-Peter Habelitz
*/

public class Variablen2 {
public static void main(String[] args) {

U+00DF ß LATIN SMALL LETTER SHARP S

U+00E4 ä LATIN SMALL LETTER A WITH DIAERESIS

U+00F6 ö LATIN SMALL LETTER A WITH DIAERESIS

U+00FC ü LATIN SMALL LETTER A WITH DIAERESIS

Unicode-Codeposition Zeichen Name

Tabelle 2.6 Auszug aus dem Unicode (Forts.)

2.3 Variablen und Datentypen

77

// Variablendeklarationen
char z1, z2, z3, z4, z5;

// Wertzuweisungen
z1 = 'a';
z2 = 'b';
z3 = 'A';
z4 = 169; // alternativ z4 = 0x00a9
z5 = 190; // alternativ z5 = 0x00be

// Ausgaben
System.out.print("z1: ");
System.out.println(z1);
System.out.print("z2: ");
System.out.println(z2);
System.out.print("z3: ");
System.out.println(z3);
System.out.print("z4: ");
System.out.println(z4);
System.out.print("z5: ");
System.out.println(z5);

}
}

Listing 2.4 Quelltext zu Aufgabe 2

Das Programm wird Ihnen wahrscheinlich die Ausgabe aus Abbildung 1.7 liefern.

Abbildung 2.7 Ausgabe des Programms »Variablen2«

Sie werden feststellen, dass die letzten beiden Zeichen, die über den Zeichencode ange-

sprochen wurden und Sonderzeichen anzeigen sollten, nicht die erwarteten Zeichen

sind.

2 Grundbausteine eines Java-Programms

78

Wichtiger Hinweis für Windows-Anwender

Sollten Sie einmal unerwartete Zeichenausgaben feststellen, so kann das daran liegen,

dass Ihr Betriebssystem nicht den passenden Zeichensatz verwendet. Sie sollten dann

prüfen, welche Codepage Ihr System verwendet, und diese eventuell umstellen. Win-

dows verwendet z. B. für die Eingabeaufforderung als Überbleibsel aus den frühen

Tagen der Microsoft-Betriebssysteme noch eine Codepage, die Sonderzeichen anders

als in der grafischen Oberfläche – und damit auch anders als im Unicode beschrieben –

codiert. Mit dem Konsolenbefehl chcp (change codepage) ohne weitere Parameter kön-

nen Sie die aktuell von der Eingabeaufforderung verwendete Codepage anzeigen las-

sen. Wahrscheinlich wird hierbei die Codepage 850 angezeigt. Zwei Umstellungen sind

erforderlich, um die Eingabeaufforderung so einzustellen, dass sie den Unicode wie in

anderen Umgebungen korrekt anzeigt.

Mit dem Konsolenbefehl chcp 1252 stellen Sie zunächst die entsprechende Codepage

ein (siehe Abbildung 2.8).

Abbildung 2.8 Umstellen der verwendeten Codepage

Öffnen Sie anschließend die Eigenschaften der Eingabeaufforderung durch einen

Rechtsklick auf die Titelleiste der Eingabeaufforderung (siehe Abbildung 2.9).

Abbildung 2.9 Kontextmenü zum Öffnen des »Eigenschaften«-Dialogs

2.3 Variablen und Datentypen

79

Im Dialog in Abbildung 2.10 stellen Sie die Schriftart auf eine der Alternativen zur Ras-

terschrift (z. B. Lucida) um.

Abbildung 2.10 Ändern der Schriftart für die Eingabeaufforderung

Nach diesen Umstellungen verhält sich die Eingabeaufforderung so wie andere Umge-

bungen und zeigt auch die Unicodezeichen richtig an (siehe Abbildung 2.11).

Abbildung 2.11 Ausgabe von »Variablen2« nach den Umstellungen

2.3.7 Der Datentyp »String«

Sie werden sich fragen, wieso der Datentyp String bei den Datentypen nicht angespro-

chen wurde. Der Datentyp String gehört nicht zu den primitiven Datentypen. Er gehört

2 Grundbausteine eines Java-Programms

80

zu den Objekttypen, die wesentlich mächtiger sind und deshalb nicht mit wenigen Wor-

ten erschöpfend behandelt werden können. Andererseits ist dieser Datentyp so elemen-

tar wichtig, dass man auch in einfachen Programmen kaum ohne ihn auskommt. An

dieser Stelle soll der Datentyp String deshalb zumindest so weit erläutert werden, dass

Sie ihn nutzen können. Eine ausführlichere Beschreibung wird in Kapitel 7, »Grundle-

gende Klassen«, folgen, sobald die Grundlagen zu Objekten behandelt sind.

Zum Speichern einzelner Zeichen stellt Java den primitiven Datentyp char zur Verfü-

gung. Ein ganzes Wort oder sogar ein ganzer Satz bildet eine Zeichenkette. Um eine sol-

che Zeichenkette in einer einzigen Variablen zu speichern, steht kein primitiver

Datentyp zur Verfügung. Er kann in einer Variablen vom Datentyp String gespeichert

werden. Konstante Zeichenketten (Literale) werden in Java zwischen Anführungszei-

chen gesetzt. Eine Stringvariable wird wie jede Variable eines primitiven Datentyps mit

String variablenname;

deklariert bzw. mit

String variablenname = "Das ist der Wert der Variablen";

mit der Deklaration initialisiert.

Erinnern Sie sich noch an unser erstes Programmbeispiel, das Hallo-Welt-Programm?

Bereits dort haben wir den Datentyp String in Form eines Literals verwendet, als wir mit

der Anweisung System.out.println("Hallo Welt!") eine Bildschirmausgabe in der Kon-

sole erzeugt haben. Dies unterstreicht die Bedeutung dieses Datentyps.

Die Ausgabe von Text mit System.out.print oder println ist ein wichtiges Element für

den Dialog zwischen Programm und Anwender. Das Programm zeigt dem Anwender so

die Ergebnisse seiner Arbeit an oder es gibt dem Anwender Hinweise zu erforderlichen

Eingabedaten.

2.3.8 Der Dialog mit dem Anwender

Programme stehen immer im Dialog mit dem Anwender – und wenn es sich dabei nur

um die Ausgabe von Fehlermeldungen handelt. Nahezu jedes Programm arbeitet nach

dem EVA-Prinzip (siehe Abbildung 2.12). Das Kürzel EVA steht dabei für Eingabe–Verar-

beitung–Ausgabe. Es besagt, dass dem Programm zunächst über die Eingabe Daten zur

Verfügung gestellt werden. Mit diesen Daten arbeitet das Programm in einer Verarbei-

tungsphase, um dann in der Ausgabe die berechneten Ergebnisse dem Anwender mit-

zuteilen.

2.3 Variablen und Datentypen

81

Abbildung 2.12 Das EVA-Prinzip

Den Informationsfluss vom Programm zum Anwender haben wir bisher hauptsächlich

mit System.out.println bzw. System.out.print über die Konsole realisiert. Für die umge-

kehrte Richtung, d. h. zur Eingabe von Informationen vom Anwender zum Programm,

haben wir die Aufrufparameter verwendet (siehe Kapitel 1, Aufgabe 1, Projekt Java-

Uebung01, Uebergabe.java).

Für den Fall, dass nach dem Programmstart das Programm dazu auffordern soll, Daten

einzugeben, haben wir die Methode JOptionPane.showInputDialog verwendet (siehe

Kapitel 1, Aufgabe 6, Projekt JavaUebung01, Kreisberechnung4).

Wir verwenden bei diesem Programm zur Ausgabe nicht wie sonst die Konsole. Früher,

als die Betriebssysteme noch keine grafischen Oberflächen verwendeten, waren Konso-

lenprogramme die einzige Möglichkeit, einen Dialog zwischen Anwendungsprogramm

und Anwender zu realisieren. Heute sind die Anwender gewohnt, mit grafischen Ober-

flächen zu arbeiten. Der Vollständigkeit halber möchte ich Ihnen aber das Einlesen von

Benutzereingaben als Konsolenanwendung nicht vorenthalten. Sie werden feststellen,

dass die Variante mit dem InputDialog sogar noch einfacher ist als diese primitiver

anmutende Version:

1: import java.io.BufferedReader;
2: import java.io.IOException;
3: import java.io.InputStreamReader;
4:
5: public class Kreisberechnung4Console {
6: public static void main(String[] args) throws IOException {
7: double radius, umfang, flaeche;
8: String einheit, eingabe;
9: BufferedReader eingabepuffer = new BufferedReader

(new InputStreamReader(System.in));
10: System.out.print("Geben Sie den Kreisradius ein: ");
11: eingabe = eingabepuffer.readLine();
12: radius = Double.parseDouble(eingabe);
13: System.out.print("Geben Sie die Einheit ein: ");
14: eingabe = eingabepuffer.readLine();
15: einheit = eingabe;
16: umfang = 2.0 * 3.1415926 * radius;
17: flaeche = 3.1415926 * radius * radius;
18: System.out.print("Umfang: ");

Eingabe Verarbeitung Ausgabe

2 Grundbausteine eines Java-Programms

82

19: System.out.print(umfang);
20: System.out.println(" " + einheit);
21: System.out.print("Flaeche: ");
22: System.out.print(flaeche);
23: System.out.println(" " + einheit + '\u00b2');
24: }
25: }

Listing 2.5 »Kreisberechnung4« mit Tastatureingabe in der Konsole

Im Unterschied zu der Version aus Kapitel 1 werden mehrere import-Anweisungen (Zeile

1 bis 3) verwendet, damit anstelle der JOptionPane-Komponente die Komponenten IOEx-

ception, BufferedReader und StreamInputReader zur Verfügung stehen. Zur Vorbereitung

der Tastatureingabe wird in Zeile 9 als Zwischenspeicher eine zusätzliche Variable ein-

gabepuffer vom Typ BufferedReader (er wird in Kapitel 11, »Dateien«, näher erläutert)

angelegt und gleichzeitig mit der Standardeingabe System.in (normalerweise ist das die

Tastatur) verbunden.

Nach diesen Vorarbeiten kann das eigentliche Einlesen der Tastatureingabe in Zeile 11

mit der Anweisung eingabepuffer.readLine() erfolgen. Dieser Aufruf liefert als Ergebnis

eine Zeichenkette zurück, die der Variablen eingabe zugewiesen wird. Unmittelbar

davor wird mit System.out.print eine Textzeile als Aufforderung ausgegeben. Ganz

gleich über welche Methode Sie Tastatureingaben programmieren, werden die Einga-

ben als Zeichen bzw. Zeichenketten zurückgeliefert. Das bedeutet, dass in vielen Fällen,

in denen es sich bei den Eingaben um Zahlenwerte handelt, mit denen anschließend

gerechnet werden soll, diese Zeichenketten noch umgewandelt werden müssen. In

unserem Beispiel soll als erste Eingabe der Kreisradius eingegeben werden. Die Zeichen-

kette wird in Zeile 12 mit der Anweisung Double.parseDouble(eingabe) umgewandelt

und der Variablen radius zugewiesen.

Abbildung 2.13 Eingabe mit »JOptionPane.showInputDialog«

Ein ganz wesentliches Vorhaben, das diesem Buch zugrunde liegt, besteht darin, Ihnen

möglichst frühzeitig die Erstellung von grafisch orientierten Programmen zu ermögli-

chen. Deshalb möchte ich hier bereits auf die Verwendung der Konsole gänzlich ver-

zichten und stattdessen das Programm aus Kapitel 1 so verändern, dass auch für die

2.3 Variablen und Datentypen

83

Ausgabe der Ergebnisse aus dem Paket javax.swing die Klasse JOptionPane verwendet

wird (siehe Abbildung 2.13). Die Methode showMessageDialog können Sie dazu verwen-

den, ein Meldungsfenster zur Ausgabe einer Information einzublenden.

1: import javax.swing.JOptionPane;
2:
3: public class Kreisberechnung4JOptionPane {
4: public static void main(String[] args) {
5: double radius, umfang, flaeche;
6: String einheit, eingabe;
7: eingabe = JOptionPane.showInputDialog(

"Geben Sie den Kreisradius ein: ");
8: radius = Double.parseDouble(eingabe);
9: eingabe = JOptionPane.showInputDialog(

"Geben Sie die Einheit ein: ");
10: einheit = eingabe;
11: umfang = 2.0 * 3.1415926 * radius;
12: flaeche = 3.1415926 * radius * radius;
13: JOptionPane.showMessageDialog(

null,"Umfang: " + umfang + " "
+ einheit + "\nFläche: " + flaeche + " "
+ einheit + '\u00b2');

14: }
15: }

Listing 2.6 »Kreisberechnung4« ohne Konsole

Die Methode showMessageDialog erwartet im Unterschied zu showInputDialog zwei durch

Komma getrennte Werte. Der erste Wert wird erst in komplexeren Programmen rele-

vant, die zur gleichen Zeit mehrere Programmfenster darstellen. Mit diesem Parameter

können Sie den Messagedialog dann einem anderen Fenster unterordnen. Wird wie hier

eine solche Unterordnung nicht benötigt, darf der Parameter aber nicht einfach wegfal-

len. Stattdessen wird der vordefinierte Wert null angegeben.

Der zweite Wert muss eine Zeichenkette sein. Sie stellt den Text dar, der als Hinweis aus-

gegeben wird. Das Beispiel zeigt sehr anschaulich, wie diese Zeichenkette mit dem

+-Operator aus mehreren Teilen zusammengesetzt werden kann. Beachten Sie, dass Zei-

chenkettenliterale in doppelte Anführungszeichen gesetzt werden, einzelne Zeichen

dagegen werden zwischen einfache Hochkommata gesetzt. Das Zeichen '\n' steht für

den Zeilenvorschub und '\u00b2' für die hochgestellte 2. Das Ergebnis dieser Bemühun-

gen sehen Sie in Abbildung 2.14.

2 Grundbausteine eines Java-Programms

84

Abbildung 2.14 Ausgabe mit »JOptionPane.showMessageDialog«

In Bezug auf die hochgestellte 2 ist Ihnen als aufmerksamem Leser vielleicht eine Dis-

krepanz zwischen der Version aus Kapitel 1 und der hier geänderten Version aufgefal-

len. In Kapitel 1 wurde für die hochgestellte 2 das Zeichenliteral '\u00fd' verwendet. Für

den Programmieranfänger wird diese Diskrepanz oft zu einem Stolperstein. Dabei gibt

es eine recht einfache Erklärung dafür. Sie haben zu Beginn dieses Kapitels erfahren,

dass Java den Unicode verwendet und deshalb eine sehr große Zahl unterschiedlicher

Zeichen darstellen kann. Genau genommen muss man sagen, dass Java eine sehr große

Zahl unterschiedlicher Zeichen codieren kann. Für die Darstellung ist aber die Umge-

bung verantwortlich, auf der das Java-Programm ausgeführt wird (siehe Abschnitt 2.3.6,

»Praxisbeispiel 2 zu Variablen«). Gespeichert wird das Zeichen immer als Zahlenwert.

In Kapitel 1 wurde das Programm in der Eingabeaufforderung von Windows gestartet.

Die Eingabeaufforderung verwendet zum Codieren und entsprechend auch zum Deco-

dieren standardmäßig den erweiterten ASCII-Code. Die Codes der Standardzeichen sind

im erweiterten ASCII-Code identisch mit den Codes im Unicode. Bei den Sonderzeichen

– und dazu gehört neben den deutschen Umlauten auch die hochgestellte 2 – gibt es

zwischen diesen beiden Codetabellen aber Abweichungen. Aus diesem Grund wurde in

Kapitel 1 die Codierung der hochgestellten 2 aus der ASCII-Code-Tabelle entnommen.

Wenn Sie Programme in einer Entwicklungsumgebung wie Eclipse starten, die eine

eigene Konsolendarstellung in einem Fenster verwendet, dann wird zur Decodierung

von Zeichen unter Windows der ANSI-Code verwendet. Dieser Code entspricht auch bei

den Sonderzeichen der Darstellung in Unicode. Deshalb konnten wir hier den Code für

die hochgestellte 2 aus der Unicode-Tabelle entnehmen. Da auch die deutschen

Umlaute der Darstellung in Unicode entsprechen, können auch diese viel unproblema-

tischer verwendet werden.

2.3.9 Übungsaufgaben

An dieser Stelle sollen Sie noch ein bisschen üben, um ein besseres Verständnis für die

Verwendung von Variablen zu entwickeln.

Aufgabe 1

Sind die folgenden Deklarationen korrekt und sinnvoll gewählt?

2.3 Variablen und Datentypen

85

1. int zahl_der_versuche;

2. char z1, z2, z3;

3. boolean ist_verheiratet;

4. float postleitzahl;

5. long kantenlaenge;

6. short byte;

7. int nummer, anzahl;

8. long telefonnummer; hausnummer;

9. nummer byte;

10. byte i, j;

11. boolean false;

12. double gehalt, abzuege;

13. boolean rund;

14. short long;

15. long laenge, breite, hoehe;

16. pi double;

17. char buchstabe, ziffer;

18. int summe/anzahl;

19. gebraucht boolean;

20. long zaehler, durchschnitt;

Aufgabe 2

Sind die folgenden Wertzuweisungen richtig und sinnvoll? Geben Sie bei Fehlern eine

Fehlerbeschreibung an!

1. int zahl_der_versuche = 15;

2. double gehalt = 2645.34€;

3. int hausnummer = 24;

4. char 'A' = buchstabe;

5. byte b = 324;

6. short z = 15;

7. boolean ist_verheiratet = false;

8. double laenge = breite = hoehe;

9. long postleitzahl = 02365;

2 Grundbausteine eines Java-Programms

86

10. float umfang = 64537.34756;

11. long zahl = –23456786;

12. double telefonnummer = 0176.46578675;

13. boolean true = ist_gerade_zahl;

14. short i = 31556;

15. char zeichen = '\u00B1';

16. byte x = –112;

17. char zeichen = 174;

18. long 385799 = lange_zahl;

19. float 1.zahl = 4567.23545f;

20. double verlust = 34567,45;

21. double zahl1 = –1.7e7;

22. char zeichen = '\t';

23. char trenner = '\x2f';

24. float m = .3f;

25. char hk = '\'';

26. double wert = -.e;

27. short zahl13 = 13f;

28. double zahl12 = 24;

Die Lösungen zu den Aufgaben 1 und 2 finden Sie in Anhang C, »Musterlösungen«.

2.4 Operatoren und Ausdrücke

Sie haben bereits einen Operator kennengelernt, ohne dass der Begriff Operator dafür

verwendet wurde. Sie haben mit dem Operator = Variablen Werte zugewiesen. Die Wert-

zuweisung ist ein Beispiel für eine Operation, die in einem Programm ausgeführt wird.

Für Operationen benötigen wir immer Operanden, mit denen eine Operation durchge-

führt wird, und Operatoren, die angeben, welche Operation durchgeführt werden soll.

Wir kennen z. B. arithmetische Operationen. Dabei dienen Zahlenwerte als Operanden

und Rechenzeichen als Operatoren.

In Java gibt es eine Vielzahl von Operatoren. Die wichtigsten Operatoren sind die arith-

metischen, logischen und Vergleichsoperatoren. Wie in der Mathematik können Sie

mithilfe von Operatoren Ausdrücke bilden. Jeder Ausdruck hat einen Wert, der sich nach

der Auswertung des Ausdrucks ergibt. Der Wert ergibt sich aus dem Typ der Operanden

2.4 Operatoren und Ausdrücke

87

und dem Operator, der auf die Operanden angewendet wird. Wenn in einem Ausdruck

mehrere Operatoren vorkommen, legen Prioritäten die Reihenfolge für die Anwendung

der Operatoren fest. Dies kennen Sie bereits aus der Mathematik, wenn in einem arith-

metischen Ausdruck mehrere Rechenoperationen vorzunehmen sind. Es gilt dann z. B.

die Regel, dass die Punktrechnungen vor den Strichrechnungen auszuführen sind.

2.4.1 Zuweisungsoperator und Cast-Operator

Bei der einfachen Zuweisung (=) wird der rechts stehende Ausdruck ausgewertet, und das

Ergebnis wird der links stehenden Variablen zugewiesen. Dabei müssen Sie darauf ach-

ten, dass der Typ des rechten Ausdrucks mit dem Typ der links stehenden Variablen

kompatibel ist. Das heißt, dass die Typen identisch sein müssen oder aber der Typ des

rechts stehenden Ausdrucks muss in den Typ der links stehenden Variablen umgewan-

delt werden können. Umwandlungen von einem »kleinen« in einen »größeren« Daten-

typ erfolgen automatisch, umgekehrt gilt das nicht. Umwandlungen von einem

»größeren« Datentyp in einen »kleinen« Datentyp müssen explizit erfolgen. Die Größe

eines Datentyps können Sie an dem von ihm benötigten Speicherplatz erkennen (siehe

Tabelle 2.2).

Beispiel:

byte byteZahl;
int intZahl;
float floatZahl;
double doubleZahl;

Nach diesen Deklarationen sind folgende Wertzuweisungen möglich:

byteZahl = 100; // keine Umwandlung erforderlich
intZahl = byteZahl; // Umwandlung von byte nach int
floatZahl = intZahl; // Umwandlung von int nach float
floatZahl = 23.345f; // keine Umwandlung erforderlich
doubleZahl = floatZahl; // Umwandlung von float nach double

Folgende Zuweisungen sind nicht möglich:

byteZahl = intZahl;
floatZahl = doubleZahl;

Sie erhalten bei diesen Zuweisungsversuchen den Fehlerhinweis »Type mismatch – can-

not convert from int to byte« bzw. »from double to float«. Ist eine Umwandlung mög-

2 Grundbausteine eines Java-Programms

88

lich, wird sie jeweils automatisch durchgeführt. Man nennt diese automatische

Umwandlung auch implizite Typumwandlung.

Neben der quasi automatisch ablaufenden impliziten Typumwandlung besteht auch

die Möglichkeit, Umwandlungen zu erzwingen. Eine »erzwungene« Typumwandlung

nennt man explizite Typumwandlung. Für eine solche Typumwandlung wird der Cast-

Operator eingesetzt. Der Ausdruck (type)a wandelt den Ausdruck a in einen Ausdruck

des Typs type um. Auch hierbei handelt es sich nicht um eine Wertzuweisung. Das

bedeutet, dass a selbst dabei nicht verändert wird.

Mithilfe des Cast-Operators können Sie durchaus auch »größere« in »kleinere« Daten-

typen umwandeln. Logischerweise gehen dabei in der Regel aber Informationen verlo-

ren. So wird z. B. beim Umwandeln eines double in einen int der Nachkommateil

abgeschnitten (nicht gerundet). Beim Umwandeln eines short-Ausdrucks in einen byte-

Ausdruck wird ein Byte abgeschnitten. Das bedeutet, dass ein Teil verloren geht, weil für

ihn in dem neuen Datentyp nicht genügend Speicherplatz zur Verfügung steht. Dabei

wird der zu speichernde Wert unter Umständen so verfälscht, dass nur schwer nachzu-

vollziehende Fehler entstehen.

Beispiel:

double x = 3.89;
int y;
y = (int) x; // y wird der Wert 3 zugewiesen

So kann der int-Variablen y der Wert der double-Variablen x zugewiesen werden. Wie

bereits erläutert, gehen dabei die Nachkommastellen verloren.

2.4.2 Vergleiche und Bedingungen

Relationale Operatoren vergleichen Ausdrücke anhand ihrer numerischen Werte mit-

einander. Als Ergebnis liefert ein solcher Vergleich einen Wert vom Typ boolean. Ver-

gleichsoperatoren werden vorwiegend zur Formulierung von Bedingungen verwendet.

Von solchen Bedingungen können Sie z. B. die Ausführung von Anweisungen abhängig

machen.

Operator Bedeutung Priorität

= einfache Zuweisung 13

Tabelle 2.7 Zuweisungsoperatoren

2.4 Operatoren und Ausdrücke

89

Fließkommazahlen sollten Sie nicht auf exakte Gleichheit oder Ungleichheit hin über-

prüfen, da Rundungsfehler oftmals eine exakte Gleichheit verhindern. Stattdessen soll-

ten Sie mit den Operatoren < oder > auf eine bestimmte Fehlertoleranz hin prüfen.

Beispiel:

boolean test;
test = (2.05-0.05) == 2.0;

Man sollte erwarten, dass der Klammerausdruck den Wert 2.0 ergibt. Der Vergleich des

Klammerausdrucks mithilfe des ==-Operators auf Gleichheit sollte also true ergeben.

Testen Sie das Resultat mit folgendem Quellcode:

public static void main(String[] args) {
double a = 2.05;
double b = 0.05;
System.out.println(a);
System.out.println(b);
System.out.println(a-b);
boolean test;
test = (2.05-0.05) == 2.0;
System.out.println(test);
System.out.println(2.05-0.05);
System.out.println(2.0);

}

Listing 2.7 Rundungsfehler beim Rechnen mit Fließkommawerten

Sie erhalten die in Abbildung 2.15 angezeigte Ausgabe in der Konsole.

Operator Bedeutung Priorität

< kleiner 5

<= kleiner oder gleich 5

> größer 5

>= größer oder gleich 5

== gleich 6

!= ungleich 6

Tabelle 2.8 Vergleichsoperatoren

2 Grundbausteine eines Java-Programms

90

Abbildung 2.15 Rundungsfehler beim Rechnen mit Fließkommazahlen

Solche Rundungsfehler sind keine Seltenheit. Sie sollten deshalb immer daran denken,

dass solche Fehler beim Rechnen mit Fließkommazahlen auftreten können. Nicht ohne

Grund wird für diese Datentypen immer eine maximale Genauigkeit angegeben.

2.4.3 Arithmetische Operatoren

Die arithmetischen Operatoren haben numerische Operanden und liefern auch nume-

rische Ergebnisse. Werden unterschiedliche Datentypen mit arithmetischen Operan-

den verknüpft, so erfolgt eine automatische Typumwandlung. Dabei wird grundsätzlich

der kleinere Typ in den größeren Typ umgewandelt. Für die Größe des Datentyps ist der

benötigte Speicherplatz entscheidend. Der Ergebnistyp entspricht dann immer dem

größeren Typ. Tabelle 2.9 zeigt die in Java verfügbaren arithmetischen Operatoren.

Operator Bedeutung Priorität

+ positives Vorzeichen 1

- negatives Vorzeichen 1

++ Inkrementierung 1

-- Dekrementierung 1

* Multiplikation 2

/ Division 2

% Modulo (Rest) 2

+ Addition 3

- Subtraktion 3

Tabelle 2.9 Arithmetische Operatoren von Java

2.4 Operatoren und Ausdrücke

91

Hinweis

Bei der Verknüpfung zweier Ganzzahlen ist auch das Ergebnis ganzzahlig. Bei der Divi-

sion ist dabei zu beachten, dass der Nachkommateil abgeschnitten wird. Es erfolgt

keine Rundung des Ergebnisses. Möchten Sie als Ergebnis den tatsächlichen Komma-

wert haben, so müssen Sie dafür sorgen, dass zumindest einer der Operanden eine

Kommazahl ist. Man schreibt z. B. statt 8/3 (das Ergebnis hätte den ganzzahligen

Wert 2) dann 8./3 oder 8/3., damit das Ergebnis zu einem Kommawert wird.

Der Inkrement- und der Dekrement-Operator können nur auf Variablen angewendet

werden. Sie erhöhen (inkrementieren) bzw. verringern (dekrementieren) den Wert

einer Variablen um eins. Man unterscheidet hierbei die Postfix- und die Präfixform. Bei

der Postfixform steht der Operator hinter der Variablen, bei der Präfixform steht er vor

der Variablen. Der Unterschied zwischen beiden wird nur relevant, wenn der Operator

innerhalb eines Ausdrucks verwendet wird. Beim Postfix wird die Variable erst nach

dem Zugriff in- bzw. dekrementiert. Beim Präfix wird bereits vor dem Zugriff herauf-

bzw. heruntergezählt. Dieser Sachverhalt wird an einem Beispiel verdeutlicht:

int a = 5;
System.out.println(a++);
System.out.print(a);

Hier wird das Inkrement von a als Postfix innerhalb der Ausgabeanweisung verwendet.

Deshalb greift der Ausgabebefehl noch auf das nicht inkrementierte a zu und gibt den

Wert 5 aus. Unmittelbar nach dem Zugriff durch System.out.println wird a dann um 1

erhöht. Dadurch wird beim nächsten Ausgabebefehl der Wert 6 ausgegeben.

int a = 5;
System.out.println(++a);
System.out.print(a);

Wählen Sie den Inkrementoperator als Präfix, so wird bereits vor dem ersten Zugriff mit

der print-Anweisung die Erhöhung vorgenommen, und Sie erhalten jedes Mal den Wert

6 als Ausgabe.

Der Modulo-Operator % berechnet den Rest, der bei einer Division entsteht. Im Allge-

meinen wird der Operator bei ganzzahligen Operatoren verwendet. So liefert 18% 5 als

Ergebnis 3, denn teilt man 18 ganzzahlig durch 5, so bleibt ein Rest von 3. Der Operator

kann in Java auch auf Kommazahlen angewendet werden. Damit liefert 12.6% 2.5 als

Ergebnis 0.1.

2 Grundbausteine eines Java-Programms

92

Ich möchte Sie an dieser Stelle noch auf eine Besonderheit des +-Operators hinweisen.

Sie besteht darin, dass der +-Operator auch Texte als Operanden akzeptiert. Als Ergebnis

entsteht dabei immer ein neuer Text. Werden zwei Texte mit dem +-Operator ver-

knüpft, wird als Ergebnis ein Text geliefert, der aus den beiden aneinandergehängten

Texten besteht. Wird der +-Operator zur Verknüpfung zweier Zahlenwerte verwendet,

so bezeichnen wir die Operation als Addition. Die Verknüpfung zweier Texte mit dem

+-Operator kann nicht als Addition bezeichnet werden, da sie keinen numerischen Wert

liefert. Sie wird stattdessen als Konkatenation (Verkettung) bezeichnet.

Im folgenden Beispiel werden die beiden Variablen nachname und vorname zu einer einzi-

gen Zeichenkette verkettet, die dann mit System.out.println in der Konsole ausgegeben

wird:

String nachname = "Habelitz";
String vorname = "Hans-Peter";
System.out.println(vorname + " " + nachname);

Listing 2.8 Verketten von Strings

Das Beispiel zeigt, dass die Konkatenation wie die arithmetische Addition beliebig oft

hintereinandergeschaltet werden kann. Hier wird das Stringliteral, das nur aus einem

Leerzeichen besteht, als Trennzeichen zwischen Vor- und Nachname gesetzt.

Wird ein Text mit einem numerischen Wert verknüpft, dann wandelt der Compiler den

numerischen Wert in einen Textwert um und setzt dann die beiden Texte zum Ergeb-

nistext zusammen.

Beispiel:

int a = 2;
System.out.println("Die Variable a hat den Wert " + a);

Die println-Anweisung gibt den folgenden Text aus:

Die Variable a hat den Wert 2.

2.4.4 Priorität

Bildet man Ausdrücke mit mehreren Operatoren, so bestimmt die Priorität die Reihen-

folge, in der die Operatoren angewendet werden. Die Prioritäten entsprechen der Rang-

folge, die von der Mathematik her bekannt ist. Mithilfe von runden Klammern kann die

Reihenfolge der Auswertung wie in der Mathematik beliebig verändert werden. Die

Klammern können dabei beliebig tief geschachtelt werden.

2.4 Operatoren und Ausdrücke

93

int a = 2;
int b = 3;
int c = 5;
int ergebnis = a+b*c;
System.out.print("a+b*c=");
System.out.println(ergebnis); // liefert 17
ergebnis = (a+b)*c;
System.out.print("(a+b)*c=");
System.out.println(ergebnis); // liefert 25

Listing 2.9 Klammern in Ausdrücken

Das Listing 2.9 kann kürzer formuliert werden, wenn Sie eine Ausgabezeile mit einer

einzigen System.out.println erzeugen:

int a = 2;
int b = 3;
int c = 5;
int ergebnis = a+b*c;
System.out.println("a+b*c=" + ergebnis);
ergebnis = (a+b)*c;
System.out.print("(a+b)*c=" + ergebnis);

Listing 2.10 Text und Zahlenwert wurden mit »+« verknüpft.

Sie können den Quellcode noch weiter verkürzen, indem Sie die Berechnung auch noch

in die System.out.println-Anweisung integrieren.

Aber Achtung! Komplexe Ausdrücke bergen die Gefahr, dass man den Überblick über

die Art und Weise verliert, wie der Compiler Ausdrücke auswertet. Testen Sie folgenden

Quellcode:

int a = 2;
int b = 3;
int c = 5;
System.out.println("a+b*c = " + a + b * c);
System.out.println("(a+b)*c = " + (a + b) * c);

Listing 2.11 Fehlerhafter Verkürzungsversuch

Das Programm liefert die in Abbildung 2.16 gezeigte Ausgabe.

2 Grundbausteine eines Java-Programms

94

Abbildung 2.16 Fehlerhafte Ergebnisausgabe

Das Programm scheint falsch zu rechnen! Weshalb liefert die erste Berechnung nicht

den Wert 17? Die Antwort gibt ein genaues Nachvollziehen der Vorgehensweise des

Compilers. Alle Informationen, die Sie dazu brauchen, haben Sie in diesem Kapitel

erhalten. Die Frage ist, wie wird der folgende Ausdruck vom Compiler ausgewertet?

"a+b*c = " + a + b * c

Der Ausdruck enthält drei Operatoren. Ein Blick auf die Prioritäten in Tabelle 2.9 bestä-

tigt, dass wie in der Mathematik die Multiplikation (Priorität 2) vor der Addition (Priori-

tät 3) auszuführen ist. Es gilt: Je kleiner der Zahlenwert der Priorität ist, desto höher ist

die Priorität der Operation. Zuerst wird also die Multiplikation b*c mit dem Ergebnis 15

ausgeführt. Bleiben noch zwei +-Operationen auszuführen. Da beide die gleiche Priori-

tät haben, werden die Operationen von links beginnend ausgeführt. Zuerst wird ent-

sprechend die Verknüpfung des Textes "a+b*c =" mit dem Zahlenwert der Variablen a (2)

als Konkatenation vorgenommen. Dabei entsteht wie oben erläutert der Textwert

"a+b*c = 2", der mit dem Ergebnis der Multiplikation (15) verknüpft wird. Es wird also

nochmals ein Text mit einem Zahlenwert verknüpft. Der Zahlenwert 15 wird in einen

Text umgewandelt, und die Verknüpfung der beiden Textelemente "a+b*c = 2" und "15"

liefert ganz konsequent als Ergebnis "a+b*c = 215". Wir lösen das Problem dadurch, dass

wir die gesamte numerische Berechnung in Klammern einschließen, damit auf jeden

Fall zuerst die komplette numerische Berechnung erfolgt, bevor das Zusammensetzen

des Ausgabetextes erfolgt:

int a = 2;
int b = 3;
int c = 5;
System.out.println("a+b*c = " + (a + b * c));
System.out.println("(a+b)*c = " + (a + b) * c);

Listing 2.12 Korrigierte Ergebnisausgabe mit Klammern

An diesem Beispiel sehen Sie, dass es für jedes auf den ersten Blick auch noch so merk-

würdige Programmergebnis einen nachvollziehbaren Grund gibt.

2.4 Operatoren und Ausdrücke

95

2.4.5 Logische Operatoren

Logische Operatoren verknüpfen Wahrheitswerte miteinander. In Java stehen die Ope-

ratoren UND, ODER, NICHT und Exklusives ODER zur Verfügung.

Der NICHT-Operator ! kehrt den logischen Operanden ins Gegenteil um. Hat a den Wert

true, so hat !a den Wert false. Hat a den Wert false, dann hat !a den Wert true.

Tabelle 2.11 zeigt die möglichen Verknüpfungen mit den Ergebnissen der übrigen Ope-

ratoren.

UND und ODER gibt es in zwei Varianten. Die kurze Auswertung (&& bzw. ||) führt dazu,

dass die Auswertung des Gesamtausdrucks abgebrochen wird, sobald das Ergebnis fest-

steht. Eine vollständige Auswertung (& bzw. |) bewirkt, dass grundsätzlich immer der

gesamte Ausdruck abgearbeitet wird. Im folgenden Beispiel wird der Unterschied

gezeigt:

Operator Bedeutung Priorität

! NICHT 1

& UND mit vollständiger Auswertung 7

^ Exklusives ODER (XOR) 8

| ODER mit vollständiger Auswertung 9

&& UND mit kurzer Auswertung 10

|| ODER mit kurzer Auswertung 11

Tabelle 2.10 Logische Operatoren

a b a & b
a && b

a ^ b a | b
a || b

true true true false true

true false false true true

false true false true true

false false false false false

Tabelle 2.11 Logische Verknüpfungen zweier Wahrheitswerte

2 Grundbausteine eines Java-Programms

96

int a = 1;
boolean x = true;
boolean y = false;
System.out.println(y && (++a == 2));
System.out.println("a = " + a);

Die verkürzte Auswertung der UND-Verknüpfung in der ersten System.out.println-

Anweisung sorgt dafür, dass der Klammerausdruck nicht mehr ausgewertet werden

muss. Da y den Wert false hat, kann das Ergebnis der Verknüpfung nur false lauten.

Dadurch, dass der Klammerausdruck nicht ausgewertet wird, entfällt auch das Inkre-

mentieren (++) von a. Die Variable a behält ihren Wert. Testen Sie die Anweisungsfolge

mit dem &-Operator für die vollständige Auswertung, und Sie werden feststellen, dass a

inkrementiert wird und entsprechend den Wert 2 annimmt.

2.4.6 Sonstige Operatoren

Sie haben bis hierher die wichtigsten Operatoren kennengelernt. Java stellt aber noch

einige weitere Operatoren zur Verfügung, die in einigen Situationen sehr hilfreich sein

können. Es handelt sich dabei um die Bit- und Bedingungsoperatoren. Da diese Operato-

ren seltener Anwendung finden und für den Einstieg in die Programmierung keine

große Bedeutung haben, werden sie hier nicht weiter behandelt.

Einen Operator möchte ich Ihnen aber noch vorstellen, weil Sie in fremden Java-Pro-

grammen durchaus öfter darauf stoßen werden. In Abschnitt 2.4.1, »Zuweisungsopera-

tor und Cast-Operator«, war von der einfachen Zuweisung die Rede. Diese Formulierung

hat bereits angedeutet, dass es neben der einfachen Zuweisung noch eine andere gibt.

Es handelt sich dabei um die kombinierte Zuweisung, die die Wertzuweisung mit einem

arithmetischen Operator oder einem der hier nicht behandelten Bitoperatoren kombi-

niert. Zum Beispiel bedeutet a += 1 das Gleiche wie a = a + 1, also wird a um 1 erhöht und

als neuer Wert der Variablen a wieder zugewiesen. Kurz gesagt: a wird um 1 erhöht.

a op= b entspricht der Schreibweise a = a op b. Dabei können Sie für op einen der in Tabelle

2.12 angegebenen arithmetischen oder bitweisen Operatoren einsetzen.

Operator Bedeutung Priorität

op= Kombinierte Zuweisung; op steht für *, /, %, +, –

oder einen Bitoperator

13

Tabelle 2.12 Kombinierte Zuweisung

2.5 Übungsaufgaben

97

2.5 Übungsaufgaben

Für die folgenden Aufgaben wird vorausgesetzt, dass die folgenden Variablen deklariert

wurden:

int a = 3;
int b = 5;
int c = 6;
double x = 1.5;
double y = 2.3;
int int_ergebnis;
double double_ergebnis;

Aufgabe 1

Welche Werte liefern die folgenden Ausdrücke rechts des =-Zeichens, und ist die Wert-

zuweisung möglich?

int_ergebnis = a * b + c;
int_ergebnis = c + a * b;
int_ergebnis = c - a * 3;
int_ergebnis = c / a;
int_ergebnis = c / b;
int_ergebnis = a + b / c;
double_ergebnis = c / b;
double_ergebnis = c + a / b;
double_ergebnis = x + y * b;
double_ergebnis = (x + y) * b;
double_ergebnis = y - x * b;

Aufgabe 2

Welche Ausgaben werden von folgendem Quellcode erzeugt?

System.out.println("b + c * 6 = " + b + c * 6);
System.out.println("b - c * 6 = " + b - c * 6);
System.out.println("(x * c - a) = " + (x * c - a));
System.out.println("x + c * 6 = " + x + c * 6);
System.out.println("y - c / a = " + (y - c / a));
System.out.println("b + a * x + y = " + b + a * x + y);
System.out.println("b + a * x * y = " + b + a * x * y);
System.out.println("b + a * x - y = " + b + a * x - y);

2 Grundbausteine eines Java-Programms

98

Aufgabe 3

Welche Ausgaben werden von folgendem Quellcode erzeugt?

System.out.println("a++: " + a++);
System.out.println("a: " + a);
System.out.println("++a: " + ++a);
System.out.println("a: " + a);
System.out.println("b + a--: " + b + a--);
System.out.println("a: " + a + " b: " + b);
System.out.println("b + a--: " + (b + a--));
System.out.println("a: " + a + " b: " + b);
System.out.println("b + --a: " + (b + --a));
System.out.println("a: " + a + " b: " + b);
System.out.println("a**: " + a**);

Aufgabe 4

Welche Ausgaben werden von folgendem Quellcode erzeugt?

System.out.println("c > b = " + c > b);
System.out.println("c > b = " + (c > b));
System.out.println("b < a = " + (b < a));
System.out.println("c == b = " + (c == b));
System.out.println("c > a < b = " + (c > a < b));
System.out.println("a = b = " + (a = b));
System.out.println("a = " + a + " b = " + b);
System.out.println("x > y = " + (x > y));
y = y + 0.1;
y = y + 0.1;
System.out.println("y == 2.5 = " + (y == 2.5));
System.out.println("y = " + y);
double z = 1.0;
z = z + 0.1;
z = z + 0.1;
System.out.println("z == 1.2 = " + (z == 1.2));
System.out.println("z = " + z);

Aufgabe 5

Welche Ausgaben werden durch folgende Ausgabebefehle erzeugt?

2.5 Übungsaufgaben

99

boolean b_wert;
b_wert = a == c;
System.out.println("a == b = " + (a == c));
System.out.println(b_wert);
System.out.println(!b_wert);
b_wert = a == b && c > b;
System.out.println("a == b && c > b = " + b_wert);
b_wert = b < c & a++ == 4;
System.out.println("b < c & a++ == 4 = " + b_wert);
b_wert = b < c & ++a == 5;
System.out.println("b < c & ++a == 5 = " + b_wert);
a = 3;
b_wert = b < c & ++a == 4;
System.out.println("b < c & ++a == 4 = " + b_wert);
a = 3;
b_wert = a > b && c++ == 6;
System.out.println("a > b && c++ == 6 = " + b_wert);
System.out.println("c = " + c);
b_wert = !y > x;
System.out.println("!y > x = " + !y > x);
b_wert = !(y > x);
System.out.println("!(y > x) = " + !(y > x));
b_wert = a > b & c++ == 6;
System.out.println("a > b & c++ == 6 = " + b_wert);
System.out.println("c = " + c);
c = 6;
b_wert = a < b || c++ == 6;
System.out.println("a < b || c++ == 6 = " + b_wert);
System.out.println("c = " + c);
b_wert = a < b | c++ == 6;
System.out.println("a < b | c++ == 6 = " + b_wert);
System.out.println("c = " + c);
c = 6;
b_wert = a > b | c++;
System.out.println("a > b | c++ = " + b_wert);

Die Musterlösungen zu den Aufgaben 1 bis 5 finden Sie in Anhang C, »Musterlösungen«.

2 Grundbausteine eines Java-Programms

100

2.6 Ausblick

In diesem Kapitel haben Sie wesentliche Sprachelemente von Java kennengelernt. Sie

kennen die einfachen Datentypen und die Operatoren, die auf diese Datentypen ange-

wendet werden können. Sie haben mit Ausdrücken in eigenen Programmen gearbeitet

und wissen jetzt, wie Java diese Ausdrücke auswertet.

Im folgenden Kapitel werden Sie erfahren, welche Sprachmittel Java zur Verfügung

stellt, um den Programmablauf zu steuern. Sie werden Kontrollstrukturen kennen-

lernen, mit deren Hilfe Sie dafür sorgen können, dass Programmteile nur unter be-

stimmten Bedingungen ausgeführt werden. Auch das mehrfache Wiederholen von

Programmteilen ist ein wesentliches Instrument für die Erstellung leistungsfähiger

Programme.

Sie werden darüber hinaus einiges über die Gültigkeitsbereiche von definierten Varia-

blen und über mögliche Namenskonflikte erfahren.

156

Kapitel 5

Klassen und Objekte

Sich den Objekten in der Breite gleichstellen, heißt lernen;

die Objekte in ihrer Tiefe auffassen, heißt erfinden.

(Johann Wolfgang von Goethe, 1749–1832)

Ein wesentliches Merkmal der Programmiersprache Java ist ihre Objektorientierung.

Auch andere moderne Programmiersprachen – wie Delphi, C++, C# oder Visual Basic –

sind objektorientiert. Die Objektorientierung ist heute aus der Programmierung nicht

mehr wegzudenken. Hier soll zunächst geklärt werden, wodurch sich dieses Merkmal

auszeichnet.

5.1 Struktur von Java-Programmen

Im Zusammenhang mit der objektorientierten Programmierung haben Begriffe wie

Klasse, Objekt, Attribut, Methode, Vererbung und Interface eine besondere Bedeutung.

5.1.1 Klassen

Die bisher verwendeten Datentypen byte, short, int, long, float, double, char und

boolean sind in Java vordefiniert. Sie werden auch als primitive Typen bezeichnet. Sie

erfordern einen sehr geringen Aufwand für Compiler und Interpreter und bringen

damit Geschwindigkeitsvorteile. Sie repräsentieren einfache Werte (Zahlenwerte oder

Zeichen) und benötigen nur wenig Speicherplatz. Deshalb wurde in Java nicht wie in

einigen anderen objektorientierten Programmiersprachen (z. B. Smalltalk) komplett

auf sie verzichtet. Klassen definieren neue Typen, die Sie als Programmierer komplett

an die eigenen Bedürfnisse zuschneiden können. Sie sind wesentlich leistungsfähiger

als primitive Typen, denn sie können nicht nur einen, sondern auch eine Vielzahl von

Werten speichern, die ihren Zustand als Eigenschaften beschreiben. Zusätzlich können

sie auf Botschaften reagieren und selbst aktiv werden.

5.1 Struktur von Java-Programmen

157

Anmerkung

Neue Typen können auch mit älteren, nicht objektorientierten Programmiersprachen

gebildet werden. Diese Typen beschränken sich dann aber darauf, mehrere, auch unter-

schiedliche primitive Typen zu einem größeren Verbund zusammenzufassen. Eine

Klasse im Sinne der objektorientierten Programmierung geht weit darüber hinaus.

Wir wollen uns nicht lange mit grauer Theorie aufhalten, sondern definieren gleich mal

eine eigene Klasse, und zwar einen Zahlentyp, den es in der Programmiersprache Java

ebenso wenig wie in vielen anderen Programmiersprachen gibt. An diesem Beispiel

werden wir dann einige Besonderheiten der Objektorientierung kennenlernen.

Der neue Zahlentyp, den wir erzeugen, soll einen Bruch darstellen. Ein Bruch besteht

aus einem Zähler und einem Nenner, die beide ganzzahlig sind. Da Zähler und Nenner

durch ihren Zahlenwert komplett beschrieben sind, können wir für die Erzeugung ent-

sprechend auf den primitiven Datentyp int für die Bestandteile unseres neuen Typs

zurückgreifen. Wie eine Variable müssen wir den neuen Typ mit einem eindeutigen

Namen (Bezeichner) ausstatten. Es hat sich eingebürgert, als Typnamen englische

Begriffe zu verwenden und den ersten Buchstaben immer großzuschreiben. Wir wei-

chen von dieser Vereinbarung insofern ab, als wir statt des englischen Ausdrucks den

deutschen Ausdruck »Bruch« verwenden.

Allgemein besteht eine Klassendefinition aus folgender Konstruktion:

class Bezeichner {
... Einzelheiten der Definition ...

}

Listing 5.1 Allgemeine Beschreibung einer Klassendefinition

Entsprechend sieht die Klassendefinition unseres Typs folgendermaßen aus:

class Bruch {
int zaehler;
int nenner;

}

Listing 5.2 Definition der Klasse »Bruch«

5 Klassen und Objekte

158

Merke

Eine Klasse beschreibt den Aufbau eines komplexen Datentyps. Eine Klasse wird durch

Eigenschaften (Datenelemente oder Attribute) und ihre Fähigkeiten (Methoden)

beschrieben.

5.1.2 Attribute

Unsere Klasse Bruch besteht aus zwei Datenelementen. Wie Sie in Listing 5.2 sehen, wer-

den diese Datenelemente wie Variablen definiert. In unserem Fall sind beide Daten-

elemente vom primitiven Typ int.

Merke

Für Attribute können Sie sowohl primitive Datentypen als auch Klassen verwenden.

Attribute sind fester Bestandteil einer Klasse und werden deshalb innerhalb der Klas-

sendefinition festgelegt. Die Schreibweise unterscheidet sich nicht von der Definition

der bisher verwendeten lokalen Variablen. Die Attribute müssen innerhalb einer Klasse

eindeutig benannt sein. Es gelten die bekannten Regeln für die Vergabe von Bezeich-

nern (siehe Abschnitt 2.1, »Bezeichner und Schlüsselwörter«). Es werden in der Regel

kleingeschriebene englische Substantive verwendet.

Unsere Klasse Bruch kann als neuer Typ angesehen werden, der gleichberechtigt neben

den primitiven Typen short, int, double usw. steht. Im Unterschied zu den primitiven

Typen besteht Bruch aus mehreren Bestandteilen, die einzeln angesprochen werden

können.

Typen, die mehrere Bestandteile haben, werden auch Referenztypen genannt. Ein großer

Vorteil einer Klasse besteht darin, dass ihre Bestandteile untrennbar miteinander ver-

bunden sind. In unserem Beispiel sind Zähler und Nenner in der Klasse Bruch zusam-

mengefasst. Der Zugriff auf die einzelnen Bestandteile ist nur über die Klasse, zu der sie

gehören, möglich.

5.1.3 Packages

Jedes Java-Programm ist selbst immer als eine Klasse realisiert. Wie in Abschnitt 1.3.2,

»Wie sind Java-Programme aufgebaut?«, erläutert wurde, besteht das gesamte Pro-

gramm im einfachsten Fall aus dieser einen Klasse. Dass eine einzige Klasse ausreicht,

ist aber sehr selten der Fall. Normalerweise werden in einem Programm mehrere Klas-

sen verwendet. In der Regel wird jede einzelne Klasse in einer eigenen Quellcodedatei

5.1 Struktur von Java-Programmen

159

definiert. Daraus folgt, dass ein Java-Programm dann aus mehreren Quellcodedateien

bestehen kann.

Merke

Packages dienen dazu, mehrere logisch zusammengehörige Klassen zusammenzufas-

sen und damit die Verwaltung größerer Programme zu vereinfachen.

In einer einzelnen Quellcodedatei können zwar theoretisch mehrere Klassen definiert

werden, aber spätestens beim Kompilieren erstellt der Java-Compiler für jede Klasse

eine eigene Bytecodedatei. Es macht deshalb durchaus Sinn, bereits beim Erstellen des

Quellcodes darauf zu achten, dass in einer Quellcodedatei auch nur eine Klasse defi-

niert wird.

Klassen müssen nur innerhalb eines Packages eindeutige Namen haben. Gleichnamige

Klassen in anderen Packages erzeugen keine Namenskonflikte. Das erleichtert die Na-

mensgebung für Klassen sehr. Da in ein Programm mehrere Packages eingebunden

werden können, schränkt diese Namensgleichheit die Verwendbarkeit aber keines-

wegs ein.

Wenn wir davon ausgehen, dass jede Klasse in einer Datei abgelegt wird und ein Package

mehrere Klassen organisatorisch zusammenfasst, dann sind Packages sehr gut mit Ord-

nern innerhalb des Dateisystems vergleichbar. Sie werden auch entsprechend in gleich-

namigen Ordnern angelegt. Sie können auch wie Ordner geschachtelt werden. Dadurch

wird eine hierarchische Struktur mit Packages und Subpackages erzeugt (siehe Abbil-

dung 5.1).

Abbildung 5.1 Beispiel für geschachtelte Packages

Zur Verdeutlichung erstellen wir als neues Projekt JavaUebung05. In diesem Projekt

legen Sie als neue Klasse (File • New • Class) die Definition unserer Klasse Bruch an.

Solange Sie wie bisher das Textfeld Package leer lassen, weist Eclipse Sie darauf hin,

dass es nicht gutgeheißen wird, das default package zu verwenden (siehe Abbildung 5.2).

fahrzeug

triebwerk karosserie

motor getriebe

5 Klassen und Objekte

160

Abbildung 5.2 Erstellen der Klasse »Bruch«

Abbildung 5.3 Projektansicht im Package Explorer

Sie sollten sich diesen Einwurf von Eclipse zu Herzen nehmen und für das Package

einen Namen angeben. Auch diese Namenseingabe wird von Eclipse überwacht. Wenn

Sie z. B. den Package-Namen mit einem Großbuchstaben beginnen, erscheint der Hin-

weis, dass Package-Namen mit einem Kleinbuchstaben beginnen sollten. Für die

Bezeichnung von Packages gelten die gleichen Regeln wie für Variablen und Klassen.

Nennen Sie das Package uebung05. Sie sollten diesmal auf die Erstellung der main-

Methode verzichten, denn die Klasse Bruch soll kein eigenständiges Programm sein,

sondern lediglich eine Klasse, die in einem Programm verwendet werden kann.

5.1 Struktur von Java-Programmen

161

Wie Sie in Abbildung 5.3 sehen, wird die Quellcodedatei der Klasse Bruch im Package

uebung05 eingeordnet. Die im Quellcode erforderliche Anweisung package uebung05;

wird von Eclipse automatisch eingetragen.

Ergänzen Sie den Quellcode um die Definition der Attribute:

package uebung05;
class Bruch {

int zaehler;
int nenner;

}

Listing 5.3 Definition der Klasse »Bruch«

Diese Quellcodedatei kann nicht als Anwendung gestartet werden. Was sollte sie auch

ausführen? Beim Versuch, die Datei als Java-Anwendung zu starten, werden Sie feststel-

len, dass Eclipse im Menü Run As keine Option Java Application anbietet und dass

beim Versuch, direkt mit Run zu starten, nur eine Fehlermeldung erscheint (siehe

Abbildung 5.4).

Abbildung 5.4 Fehlermeldung beim Versuch, die Klasse »Bruch« als Anwendung zu starten

Die Klasse Bruch selbst ist kein Programm, sondern eine Klasse, die in einem Programm

verwendet werden kann. Man kann die Klasse Bruch mit einem Datentyp wie int verglei-

chen. Auch der Datentyp int ist keine Anwendung, die ausgeführt werden kann, son-

dern ein Element, das von einer Anwendung zur Speicherung von Informationen

verwendet wird. Um die Klasse Bruch zu testen, müssen Sie eine Anwendung erstellen,

die diese Klasse verwendet.

Innerhalb des Projekts JavaUebung05 erstellen Sie eine neue Klasse mit dem Namen

Bruchtest1 (siehe Abbildung 5.5). Achten Sie dabei darauf, dass als Package-Name

uebung05 eingetragen ist. Diesen Eintrag nimmt Eclipse automatisch vor, wenn Sie im

Package Explorer das Package selbst oder einen dem Package untergeordneten Eintrag

markiert haben. Sie können den Eintrag aber auch von Hand vornehmen. Zusätzlich

können Sie sich die Arbeit erleichtern, indem Sie unter der Frage Which method

stubs would you like to create? das Häkchen vor dem Eintrag public static void

5 Klassen und Objekte

162

main(string[] args) setzen. Diese Methode macht eine Klasse zu einem ausführbaren

Programm. Haben Sie die Absicht, eine als Programm ausführbare Klasse zu erstellen,

dann müssen Sie diese main-Methode erstellen. Sie bildet den Startpunkt des Pro-

grammablaufs. Der Java-Interpreter sucht beim Aufruf in der ihm übergebenen Binär-

datei nach der Methode mit dem Namen main und beginnt dort mit der Abarbeitung der

Anweisungen.

Abbildung 5.5 Erstellen der Anwendung »Bruchtest1«

Den von Eclipse erstellten Quellcode zeigt Abbildung 5.6.

Abbildung 5.6 Von Eclipse erstellter Programmrahmen

Ersetzen Sie den markierten Kommentar, der Sie mit dem Hinweis Todo auffordert,

hier die eigenen Ergänzungen vorzunehmen, durch die folgenden Anweisungen:

5.2 Objekte

163

Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 4;
System.out.print("Bruch b = " + b.zaehler + "/" + b.nenner);

Es wird eine Variable vom Typ Bruch definiert. Eine solche Variable, die als Typ eine

Klasse verwendet, wird Objekt genannt. Ihr wird der Wert ¾ zugewiesen, und schließlich

wird die Variable zur Kontrolle mit System.out.print ausgegeben. Der folgende

Abschnitt erläutert, wie sich die Verwendung einer Klasse von der Verwendung eines

primitiven Datentyps unterscheidet.

5.2 Objekte

Verwenden Sie primitive Typen, so reicht die Definition einer Variablen von diesem Typ

bereits aus, und Sie können diesen Variablen Daten zuweisen. Die Definition einer

Klasse darf nicht mit der Definition einer Variablen verwechselt werden. Mit der Defini-

tion einer Klasse ist nur festgelegt, wie eine später zu definierende Variable aufgebaut

ist. Man kann die Definition einer Klasse als Bauplan auffassen. Eine Variable, die nach

diesem Plan anschließend angelegt wird, nennt man Objekt, Instanz oder Exemplar der

Klasse.

Merke

Ein Objekt ist ein Exemplar (Instanz), das nach dem Bauplan einer Klassendefinition

erstellt wurde. Die Klasse stellt den Bauplan dar (siehe Abbildung 5.7). Das Objekt ist

eine Variable, die nach diesem Plan aufgebaut ist.

Abbildung 5.7 Bauplan der Klasse »Bruch«

Nach dem Bauplan der Klasse können beliebig viele Objekte (Instanzen) erzeugt wer-

den. Eine Instanz ist mit einer Variablen eines primitiven Typs vergleichbar, weist aber

in der Handhabung deutliche Unterschiede auf. Wie in Kapitel 2, »Grundbausteine eines

Java-Programms«, beschrieben, wird z. B. mit

int zahl1;

Bruch

zaehler

nenner

5 Klassen und Objekte

164

eine Variable definiert. Damit ist im Arbeitsspeicher unmittelbar auch Speicherplatz

verfügbar, auf den über den Bezeichner zugegriffen werden kann.

Die Verwendung einer Klasse stellt sich nicht ganz so einfach dar. Nach der Erstellung

eines Bauplans durch die oben beschriebene Definition steht der neue Typ zur Ver-

fügung. Damit kann eine Variable dieses Typs mit der folgenden Anweisung definiert

werden:

Bruch b;

Abbildung 5.8 Definition einer Variablen vom Typ »Bruch«

Wie Abbildung 5.8 zeigt, ist mit dieser Anweisung nur ein Bezeichner definiert, der in

der Lage ist, auf eine Instanz der Klasse Bruch zu verweisen. Man nennt sie deshalb auch

Referenzvariable. Im Gegensatz zu den bisher verwendeten Typen ist damit aber im

Hauptspeicher noch kein Platz für die einzelnen Attribute zaehler und nenner reserviert.

Auch die Adresse, an der sich die Instanz befindet, steht noch nicht fest. Es existiert im

Hauptspeicher noch keine Instanz. Die Variable b hat zu diesem Zeitpunkt den vordefi-

nierten Wert null. Dieser Wert beschreibt sehr gut, dass die Variable noch keine Instanz

referenziert. So kann z. B. in einer if-Anweisung

if (b != null) ...

überprüft werden, ob sich hinter einem Bezeichner tatsächlich schon eine Instanz einer

Klasse verbirgt. Nur wenn die Bedingung (b != null) den Wert true zurückliefert, exis-

tiert bereits eine Instanz der Klasse Bruch, und nur dann kann auch auf die Attribute die-

ser Instanz zugegriffen werden.

Eine neue Instanz der Klasse Bruch erzeugen Sie mit dem Operator new (siehe Abbil-

dung 5.9):

new Bruch();

Wie Sie aus Abbildung 5.9 entnehmen können, fehlt hier die Verbindung zu einem

Bezeichner, über den Sie auf das Objekt zugreifen können. Deshalb werden in der Regel

Arbeitsspeicher

Bruch b;

5.2 Objekte

165

die beiden Anweisungen Bruch b; und new Bruch(); zu einer Anweisung der Form Bruch

b = new Bruch(); verbunden (siehe Abbildung 5.10).

Abbildung 5.9 Erzeugen einer Instanz des Typs »Bruch«

Abbildung 5.10 Erzeugen einer Variablen als Instanz der Klasse »Bruch«

Nun besteht über den Bezeichner b eine Verbindung zu dem für das Objekt im Speicher

reservierten Speicherbereich, und Sie können auf das Objekt zugreifen.

5.2.1 Zugriff auf die Attribute (Datenelemente)

Die Instanz einer Klasse enthält die in der Klassendefinition festgelegten Attribute. In

unserem Beispiel sind dies die Attribute zaehler und nenner. Diese Datenelemente kön-

nen einzeln angesprochen werden. Die Syntax für den Elementzugriff lautet:

variable.elementname

In unserem Beispiel mit der Referenzvariablen b können Sie auf den Zähler des Bruchs

mit b.zaehler und auf den Nenner mit b.nenner zugreifen. Somit können Sie mit den

Wertzuweisungen

b.zaehler = 3;
b.nenner = 4;

der Variablen b den Wert ¾ zuweisen. Damit stellt sich ein Blick in den Hauptspeicher so

dar wie in Abbildung 5.11.

Arbeitsspeicher

new Bruch();

zaehler nenner

Bruch

Arbeitsspeicher

Bruch b = new Bruch();

zaehler nenner

Bruch

5 Klassen und Objekte

166

Abbildung 5.11 Variable »b« nach der Wertzuweisung

Merke

Die Attribute eines Objekts werden über den Objektnamen angesprochen. Auf den

Objektnamen folgt, durch einen Punkt getrennt, der Name des Attributs. Diese Zugriffs-

möglichkeit (von außen) kann und soll sogar vom Programmierer unterbunden werden

(siehe Abschnitt 6.2.2, »Datenkapselung«). Sie wird hier nur der Vollständigkeit halber

beschrieben.

Mit den Attributen eines Objekts können Sie in gleicher Weise operieren wie mit loka-

len Variablen des gleichen Typs. Dementsprechend sind z. B. die folgenden Operationen

möglich:

b.zaehler++; // Inkrementierung des Zählers
if (b.nenner != 0) //Prüfen, ob der Nenner ungleich null ist

An der Schreibweise mit dem Punkt zwischen Objektbezeichner und Datenelementbe-

zeichner können Sie erkennen, dass hier mit dem Attribut eines Objekts und nicht mit

einer lokalen Variablen gearbeitet wird.

5.2.2 Wertzuweisungen bei Objekten

Eine häufige Fehlerquelle beim Umgang mit Objekten besteht darin, dass Wertzuwei-

sungen falsch vorgenommen werden. Objekte sind Referenztypen. Bei solchen Typen

hat eine Wertzuweisung andere Folgen als bei den primitiven Typen. Die Zusammen-

hänge sollen hier an Beispielen deutlich gemacht werden.

Gehen wir zunächst von zwei Variablen des primitiven Typs int aus. Die Anweisung

int zahl1 = 2387;

Arbeitsspeicher

Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 4;

zaehler nenner

Bruch

3 4

b

5.2 Objekte

167

hat zur Folge, dass im Hauptspeicher eine Variable zahl1 mit dem Wert 2387 angelegt

wird (siehe Abbildung 5.12).

Abbildung 5.12 Anlegen einer »int«-Variablen

Folgt als weitere Anweisung

int zahl2 = zahl1;

wird eine weitere Variable mit dem gleichen Inhalt angelegt (siehe Abbildung 5.13).

Abbildung 5.13 Erstellen einer Kopie der Integer-Variablen

Es existieren anschließend zwei Variablen mit unterschiedlichen Bezeichnern, die beide

den gleichen Wert haben. Ändern Sie mit

zahl1 = 46;

den Inhalt von zahl1, so hat dies keinen Einfluss auf den Inhalt von zahl2 (siehe Abbil-

dung 5.14).

Abbildung 5.14 Wertzuweisung an die erste Variable

Das scheint so weit ganz selbstverständlich und sollte keine Schwierigkeiten bereiten.

Wenn Sie nun aber mit Referenzvariablen wie bei den Objekten arbeiten, ergeben sich

davon abweichende Verhältnisse.

Arbeitsspeicher

2387

zahl1
Wert der Variablen

Arbeitsspeicher

2387

zahl1

2387

zahl2

Arbeitsspeicher

46

zahl1

2387

zahl2

5 Klassen und Objekte

168

Angenommen, Sie definieren ähnlich wie oben eine Variable, weisen dieser einen Wert

zu und definieren anschließend eine zweite Variable, der Sie den Wert der ersten zuwei-

sen, nur dass Sie jetzt Objekte statt primitiver Typen verwenden. Sie lassen z. B. die fol-

genden Anweisungen ausführen:

Bruch a = new Bruch(); // a als Bruch definiert
a.zaehler = 3; // dem Bruch den Wert ¾ zuweisen
a.nenner = 4;
Bruch b = a; // b als Bruch mit dem Wert von a

Abbildung 5.15 Wertzuweisung bei Objekten

Wie Sie Abbildung 5.15 entnehmen können, existiert jetzt kein zweites Objekt mit glei-

chem Zähler und Nenner wie beim ersten, sondern es existiert lediglich ein zweiter

Bezeichner, der aber auf das identische Objekt im Hauptspeicher verweist. Dieses Ver-

halten hat jetzt aber weitreichende Folgen. Zum Beispiel werden durch das Verändern

von Zähler und Nenner des zweiten Objekts

b.zaehler = 5;
b.nenner = 8;

zugleich auch der Zähler und der Nenner des ersten Objekts verändert, denn es handelt

sich ja eigentlich immer nur um ein einziges Objekt, auf das Sie mithilfe von zwei unter-

schiedlichen Bezeichnern zugreifen können. Man nennt dieses Verhalten auch Aliasing,

denn ein und dasselbe Objekt besitzt dadurch einen Alias-Bezeichner.

Abbildung 5.16 Auswirkung der Wertzuweisung an ein Objekt

Arbeitsspeicher

3

a

4

a.zaehler a.nenner

b
b.zaehler b.nenner

Arbeitsspeicher

5

a

8

a.zaehler a.nenner

b
b.zaehler b.nenner

5.2 Objekte

169

Dieses Aliasing wirkt sich jetzt auch auf Vergleiche von Objekten aus. Vergleicht man

z. B. in einer if-Anweisung die beiden Brüche a und b mit

if (a == b) ...

so liefert der Vergleich nur dann true als Ergebnis zurück, wenn es sich tatsächlich um

ein und dasselbe Objekt mit zwei unterschiedlichen Bezeichnern handelt (siehe Abbil-

dung 5.16). Im folgenden Beispiel werden zwei unterschiedliche Objekte erzeugt, deren

Zähler und Nenner identisch sind. Vergleichen Sie diese beiden Objekte aber, so liefert

der Vergleich immer false zurück, auch wenn sie vom gespeicherten Wert her eigent-

lich gleich sind (siehe Abbildung 5.17):

Bruch a = new Bruch(); // a als Bruch definieren
a.zaehler = 3; // dem Bruch den Wert ¾ zuweisen
a.nenner = 4;
Bruch b = new Bruch(); // b als zweiten Bruch definieren
b.zaehler = a.zaehler; // b den Wert von a zuweisen
b.nenner = a.nenner;
if (a == b) ... // liefert false zurück

Abbildung 5.17 Echte Kopie eines Objekts

Was sich hier zunächst als etwas problematisch darstellt, ist in der Praxis überhaupt

nicht problematisch. Java vermeidet aus Gründen der Performance und des Speicher-

platzbedarfs, bei jeder Wertzuweisung eine komplette Kopie eines Objekts anzulegen.

In den wenigen Fällen, in denen Sie tatsächlich eine exakte Kopie eines Objekts benöti-

gen, gehen Sie dann in der zuletzt beschriebenen Form vor.

5.2.3 Gültigkeitsbereich und Lebensdauer

Auch was den Gültigkeitsbereich und die Lebensdauer betrifft, gibt es Unterschiede zwi-

schen lokalen Variablen und den Datenelementen eines Objekts. Wie bereits bei der

Behandlung der lokalen Variablen bemerkt, gelten diese nur innerhalb des Blocks, in

dem sie definiert wurden. Die Attribute eines Objekts haben dagegen unabhängig von

der Stelle, an der sie definiert wurden, innerhalb der gesamten Klasse Gültigkeit.

Arbeitsspeicher

3

a

4

a.zaehler a.nenner

3

b
b.zaehler b.nenner

4

5 Klassen und Objekte

170

Die Lebensdauer von lokalen Variablen beginnt in dem Augenblick, in dem das Pro-

gramm die Stelle ihrer Definition erreicht, und sie endet mit dem Verlassen des Blocks,

innerhalb dessen die Definition erfolgte.

Beispiel:

if (x > 10) {
Bruch b = new Bruch();
b.zaehler = 2;
b.nenner = 3;

}
System.out.println(b.zaehler);

Listing 5.4 Zugriffsversuch nach Ablauf der Lebensdauer

Der Bruch b wird nur erzeugt, wenn x größer als 10 ist. Aber auch in diesem Fall erfolgt

die Erzeugung des Bruchs b innerhalb des Blocks, der mit der geschweiften Klammer

nach der Bedingung (x > 10) beginnt. Die Lebensdauer endet somit mit der schließen-

den Klammer. Danach ist kein Zugriff mehr auf b möglich. Die System.out.println-

Anweisung wird entsprechend eine Fehlermeldung verursachen.

Die Attribute eines Objekts existieren immer so lange, wie das Objekt selbst existiert.

Erzeugt wird ein Objekt mit der new-Anweisung. Damit ist das auch der Zeitpunkt, zu

dem die Attribute des Objekts entstehen. Die Lebensdauer des Objekts endet automa-

tisch, sobald es im Programm keine Referenz mehr auf das Objekt gibt. Wann genau das

passiert, kann nicht eindeutig vorhergesagt werden, denn darüber entscheidet das Lauf-

zeitsystem. Man kann aber sagen, dass es spätestens dann passiert, wenn keine Zugriffs-

möglichkeit (Referenz) mehr besteht und der verfügbare Speicherplatz zur Neige geht.

5.3 Methoden

Eine Erweiterung, zu der es bei den primitiven Datentypen nichts Vergleichbares gibt,

sind die Methoden einer Klasse. Methoden können in Klassen neben den Datenelemen-

ten definiert werden. Sie beschreiben das Verhalten einer Klasse bzw. die Operationen,

die mit den Attributen der jeweiligen Klasse ausgeführt werden können. Im Vergleich

dazu beschreiben die Datenelemente einer Klasse den Aufbau und den Zustand einer

Instanz.

5.3 Methoden

171

5.3.1 Aufbau von Methoden

Eine Methode besteht aus dem Kopf, der quasi als Überschrift dient, und dem Rumpf.

Im Rumpf wird festgelegt, welche Vorgänge mit dem Aufruf der Methode ablaufen sol-

len. Im Kopf werden der Rückgabetyp, der Bezeichner der Methode und in runden

Klammern die Datentypen und Bezeichner von Übergabeparametern festgelegt. Im

Rumpf befinden sich Java-Anweisungen, die wie ein Programm abgearbeitet werden.

Der allgemeine Aufbau einer Methode hat die folgende Form:

Rückgabetyp Methodenname(Parametertyp Parameter1, ...)

Als erstes Beispiel definieren wir eine Methode, die dafür sorgt, dass ein Objekt der

Klasse Bruch in einem bestimmten Format ausgegeben wird.

void ausgeben() { // Kopf der Methode
System.out.print(zaehler + "/" + nenner); // Rumpf der Methode

}

Das im Kopf verwendete Schlüsselwort void ist bereits von der Zeile public static void

main(String[] args) bekannt. Methoden können Daten als Ergebnis zurückliefern. Von

welchem Datentyp das Ergebnis ist, müssen Sie bei der Methodendefinition vor dem

Methodennamen angeben. Liefert eine Methode kein Ergebnis zurück, müssen Sie als

Pseudodatentyp das Schlüsselwort void angeben. Es bedeutet so viel wie: Die Methode

liefert nichts zurück.

Der Rumpf der Methode besteht in diesem Beispiel aus einer einzigen Anweisung, kann

aber durchaus auch sehr komplex und umfangreich ausfallen. Die geschweiften Klam-

mern, die den Methodenrumpf einleiten und abschließen, müssen Sie immer verwen-

den, auch wenn wie hier nur eine einzige Anweisung im Methodenrumpf steht. Das ist

ein wesentlicher Unterschied zu den Kontrollstrukturen, wo die geschweiften Klam-

mern in einem solchen Fall auch wegfallen können.

5.3.2 Aufruf von Methoden

Abbildung 5.18 zeigt die um die Methode ausgeben() erweiterte Version der Klasse Bruch.

Im Programm Bruchtest wird die Ausgabe nicht mehr direkt über den Aufruf von Sys-

tem.out.print realisiert, sondern indirekt über den Aufruf der Methode ausgeben(). Es

handelt sich hierbei um eine Instanzmethode. So wie jede Instanz der Klasse Bruch über

ihre eigenen Attribute verfügt, so verfügt jede Instanz auch über ihre eigenen Instanz-

methoden. Sie sehen, dass der Zugriff auf eine Instanzmethode in gleicher Weise erfolgt

wie der Zugriff auf die Attribute eines Objekts. Sie geben hinter dem Objektbezeichner

5 Klassen und Objekte

172

mit Punkt getrennt den Methodennamen und in Klammern eventuell zu verwendende

Parameter an.

Abbildung 5.18 Methodenaufruf

Die Pfeile links zeigen, dass der Programmablauf immer mit der Methode main beginnt

und mit dem Erreichen vom Ende des Methodenrumpfes endet (d. h. mit der schließen-

den geschweiften Klammer).

Bei Erreichen der Anweisung new Bruch(); wird der erste Zugriff auf die Datei mit der

Definition der Klasse Bruch erforderlich 1. Mit dieser Anweisung wird die gesamte

Struktur der Klasse Bruch im Hauptspeicher angelegt und über den Variablennamen b

zugreifbar gemacht. Im Hauptspeicher entsteht quasi ein Abbild des Dateiinhalts. Wer-

den mehrere Objekte der gleichen Klasse mit new erzeugt, so werden die Methoden im

Hauptspeicher allerdings nur ein einziges Mal erzeugt. Alle Objekte verwenden dann

die gleiche Implementierung der Methoden. Danach wird die nächste Anweisung im

Programm abgearbeitet 2. In diesem Fall wird dem Zähler unseres Bruchs der Wert 3

und dem Nenner der Wert 4 zugewiesen.

Mit der Anweisung b.ausgeben(); wird nun auf das Abbild im Hauptspeicher zugegrif-

fen 3 und die Methode ausgeben() des Objekts Bruch abgearbeitet. In diesem Fall wird

also die Anweisung System.out.print ausgeführt. Nachdem das Ende des Methoden-

rumpfes erreicht wurde, wird mit der nächsten Anweisung im Programm fortgefahren

4. In unserem Fall ist damit das Ende des Methodenrumpfes von main erreicht, und das

Programm wird beendet.

Unser Beispiel zeigt nun auch, wie eine Methode benutzt wird. Wie beim Zugriff auf ein

Attribut eines Objekts richtet sich auch der Aufruf einer Methode immer an ein

bestimmtes Objekt einer Klasse. Ohne diese Zuordnung zu einer bestimmten Instanz

kann keine Methode aufgerufen werden. Die Syntax (Schreibweise) entspricht der beim

Zugriff auf ein Attribut. In der Form

variablenname.methodenname();

{

public class Bruchtest1 {

public static void main(String[] args)
{ Bruch b = new Bruch();

b.zaehler = 3;
b.nenner = 4;
b.ausgeben();

}
}

class Bruch {

int zaehler;
int nenner;

void ausgeben() {
 System.out.print(zaehler + "/" + nenner);
}

}

Start

Ende

1

2 3

4

5.3 Methoden

173

wird also zunächst der Variablenname und, mit einem Punkt abgetrennt, der Metho-

denname angegeben. In unserem Beispiel verwenden wir entsprechend b.ausgeben(),

um den Bruch mit dem Variablennamen b auszugeben.

Der Aufruf einer Methode erfolgt immer in drei Schritten:

� Der aufrufende Block wird unterbrochen.

� Der Methodenrumpf wird ausgeführt.

� Der aufrufende Block wird mit der Anweisung nach dem Aufruf fortgesetzt.

Ein Block kann so beliebig viele Aufrufe ein und derselben Methode beinhalten (siehe

Abbildung 5.19). Es wird dementsprechend beliebig oft unterbrochen, um immer wieder

den gleichen Anweisungsteil der Methode zu durchlaufen (zweiter Aufruf mit 5 und 6).

Abbildung 5.19 Mehrfacher Methodenaufruf

Der Methodenrumpf stellt in der gleichen Bedeutung, wie wir ihn bisher kennengelernt

haben, einen Block dar. Innerhalb dieses Blocks sind beliebige Anweisungen (damit

auch alle Kontrollstrukturen) zulässig. Es können auch lokale Variablen definiert wer-

den, die dann nur innerhalb des Methodenrumpfes gültig sind. Sie werden bei jedem

Methodenaufruf neu erzeugt und nach dem Aufruf wieder zerstört. Zur Erinnerung: Die

Datenelemente des Objekts werden mit der Ausführung der new-Anweisung erstellt. Sie

werden erst zerstört, wenn das Objekt insgesamt aus dem Speicher entfernt wird.

Wir erweitern unsere Definition nun um eine Methode, die es dem Bruch ermöglicht,

sich zu kürzen. Ein Bruch kann mit dem größten gemeinsamen Teiler (ggT) gekürzt wer-

den. Wir verwenden also unseren Algorithmus zur Berechnung des ggT nach Euklid,

den wir in Kapitel 3, »Kontrollstrukturen«, programmiert haben.

Unser Testprogramm ändern wir so ab, dass der Bruch zunächst den Wert 3/12 hat. Zur

Kontrolle wird der Bruch ungekürzt ausgegeben, dann wird er gekürzt und schließlich

noch einmal in gekürzter Form ausgegeben:

public class Bruchtest1 {

public static void main(String[] args)
 {

Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 4;
b.ausgeben();
b.nenner = 5;
b.ausgeben();

}
}

class Bruch {

int zaehler;
int nenner;

void ausgeben() {
System.out.print(zaehler + "/" + nenner);

}
}

Ende

Start

1

2 3

6

5 4

5 Klassen und Objekte

174

public static void main(String[] args) {
Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 12;
b.ausgeben();
System.out.print("\n Und nach dem Kürzen: ");
b.kuerzen();
b.ausgeben();

}

Listing 5.5 »main«-Methode von »Bruchtest1«

In der Klasse Bruch wird die folgende Methode zum Kürzen ergänzt:

void kuerzen() {
int m, n, r; // lokale Variablen
m = zaehler;
n = nenner;
r = m % n;
while (r > 0) {
m = n;
n = r;
r = m % n;

}
zaehler = zaehler / n; // in n steht jetzt der ggT
nenner = nenner / n;

}

Listing 5.6 Methode der Klasse »Bruch« zum Kürzen

Das Beispiel zeigt, dass beim Zugriff auf Datenelemente der Klasse (zaehler und nenner)

innerhalb eines Methodenrumpfes desselben Objekts keine ausführliche Schreibweise

für den Elementzugriff notwendig ist. Sie schreiben einfach zaehler, wenn Sie auf dieses

Element zugreifen wollen. Von außerhalb, d. h. von einem Anwendungsprogramm aus,

müssen Sie den Objektnamen mit angeben (b.zaehler). Sowohl Datenelemente als auch

Methoden stehen innerhalb einer Klasse ohne weitere Maßnahmen direkt zur Verfü-

gung. Dadurch ist es auch möglich, dass eine Methode eine andere Methode der Klasse

aufruft. Diesen Sachverhalt zeigt die folgende Erweiterung unserer Klasse Bruch. Wir

ergänzen eine weitere Methode, die einen Bruch gekürzt ausgibt:

5.3 Methoden

175

void gekuerztausgeben() {
kuerzen();
ausgeben();

}

Die Methode fällt dadurch, dass wir auf die bereits definierten Methoden kuerzen() und

ausgeben() zurückgreifen können, sehr kurz und übersichtlich aus. Im Testprogramm

können Sie die beiden Anweisungen

b.kuerzen();
b.ausgeben();

ersetzen durch die Anweisung:

b.gekuerztausgeben();

Wie das Beispiel zeigt, können Methoden auch aus anderen Methoden heraus aufgeru-

fen werden. Abbildung 5.20 verdeutlicht die Abläufe beim gegenseitigen Methodenauf-

ruf. Sie entsprechen den Abläufen, wie sie für den Aufruf einer Methode aus einer

Anwendung heraus bereits erläutert wurden.

Abbildung 5.20 Methodenaufruf aus einer Methode

// Definition der Klasse Bruch
class Bruch {
 int zaehler;
 int nenner;

void ausgeben() {
 System.out.print(zaehler + "/" + nenner);
}

void kuerzen() {
int m, n, r;

m = zaehler;
n = nenner;
r = m % n;
while (r > 0) {
 m = n;
 n = r;
 r = m % n;
}
zaehler /= n;
nenner /= n;

}

void gekuerztausgeben() {
 kuerzen();
 ausgeben();
}

}

3.1.4.

2.

5 Klassen und Objekte

176

5.3.3 Abgrenzung von Bezeichnern

Da innerhalb von Methoden neben den Datenelementen auch lokale Variablen verwen-

det werden können und beim Zugriff auf Datenelemente kein Objektname vorange-

stellt ist, kann im Quellcode nicht zwischen einem Zugriff auf eine lokale Variable und

einem Zugriff auf ein Datenelement unterschieden werden. Außerdem ist zu beachten,

dass Namen von lokalen Variablen und Datenelementen nicht kollidieren. Dadurch ist

es durchaus möglich, dass innerhalb einer Methode eine lokale Variable definiert wird,

die den gleichen Namen trägt wie ein im Objekt bereits definiertes Datenelement. Zum

Beispiel könnte, wie im unten stehenden Beispiel gezeigt, in der Methode ausgeben()

eine lokale Variable mit dem Namen zaehler definiert werden, ohne dass der Compiler

eine Fehlermeldung erzeugt.

void ausgeben() {
int zaehler = 0; // namensgleiche lokale Variable
System.out.print(zaehler + "/" + nenner);

}

Die Frage, die sich nun stellt, lautet: Worauf greift die Methode ausgeben() zurück?

Wenn Sie das Programm testen, werden Sie feststellen, dass mit b.ausgeben() für den

zaehler immer der Wert 0 ausgegeben wird. Das bedeutet, dass die in der Methode aus-

geben() definierte lokale Variable zaehler das gleichnamige Datenelement des Objekts

überdeckt. Dies gilt grundsätzlich bei Namensgleichheit von lokalen Variablen und

Datenelementen.

Damit Sie bei einer Überdeckung dennoch an das verdeckte Datenelement einer Klasse

bzw. eines Objekts herankommen, existiert in jeder Methode automatisch eine Variable

mit dem Namen this. Diese Variable wird als Selbstreferenz bezeichnet, weil sie immer

auf das eigene Objekt verweist. Das eigene Objekt ist dasjenige Objekt, innerhalb dessen

die Methode definiert wurde. In unserem Beispiel verweist this also auf die Klasse Bruch

bzw. das Objekt b. Wenn wir also in der Methode ausgeben() die System.out.print-

Anweisung folgendermaßen abändern

System.out.print(this.zaehler + "/" + nenner);

so wird der Wert des Datenelements zaehler korrekt mit dem Wert 3 ausgegeben.

Die hier erläuterte Anwendung zum Auflösen von Namenskollisionen ist aber nicht die

einzige Anwendung der Selbstreferenz this. Auf diese Anwendungen wird später noch

eingegangen.

5.4 Werte übergeben

177

5.4 Werte übergeben

Unsere bisher erstellten Methoden können ihre Arbeit verrichten, ohne dass sie dafür

zusätzliche Informationen benötigen, bzw. die Methode kann wie beim Kürzen selbst

ermitteln, mit welchem Wert (ggT) der Bruch gekürzt werden kann. In vielen Fällen sol-

len einer Methode beim Aufruf Informationen übergeben werden. Dadurch wird eine

Methode flexibler, weil sie, von unterschiedlichen Werten ausgehend, entsprechend

auch unterschiedliche Ergebnisse zurückliefern kann.

Als Beispiel soll die Klasse Bruch um eine Methode erweitern() ergänzt werden. Beim

Erweitern eines Bruchs werden Zähler und Nenner mit dem gleichen Wert multipliziert.

Mit welchem Wert multipliziert wird, kann die Methode aber nicht selbst »wissen« oder

ermitteln. Den Wert legt der Anwender bzw. der Programmierer bei jedem Aufruf fest.

Das bedeutet, dass Sie der Methode beim Aufruf »sagen« müssen, mit welchem Wert

erweitert werden soll. Aber wie sag ich’s der Methode?

5.4.1 Methoden mit Parameter

Die Übergabeparameter sind die Lösung. Wir haben sie bei unseren bisherigen Beispie-

len nicht benötigt. Sie wurden aber im Zusammenhang mit der allgemeinen Schreib-

weise einer Methodendefinition schon erwähnt. Werden keine Übergabeparameter

verwendet, so bleibt die Klammer hinter dem Methodennamen leer. Wie bei einer

Variablendefinition können in der Klammer Platzhalter zur Übergabe an die Methode

eingetragen werden. In unserem Beispiel benötigen Sie einen ganzzahligen Wert, mit

dem erweitert werden soll. Angenommen, Sie wollen den Bruch mit dem Wert 4 erwei-

tern, dann müsste die Methode folgendermaßen aufgerufen werden:

b.erweitern(4);

Damit die Methode diese Information übernehmen kann, muss sie entsprechend einen

Behälter vorsehen, in den die Information passt. In unserem Fall benötigt die Methode

einen Behälter für die ganze Zahl, die in der Klammer übergeben wird. Entsprechend

sieht die Methodendefinition folgendermaßen aus:

void erweitern(int a) {
zaehler *= a;
nenner *= a;

}

Listing 5.7 Methodendefinition mit Übergabeparameter

5 Klassen und Objekte

178

Zur Erinnerung:

zaehler *= a; ist gleichbedeutend mit zaehler = zaehler * a;.

Abbildung 5.21 zeigt, wie beim Aufruf der Methode erweitern der in Klammern beim

Aufruf angegebene Zahlenwert in die int-Variable kopiert wird. Die in der Methodende-

finition in Klammern stehenden Variablen werden als Parameter bezeichnet. Die beim

Aufruf in Klammern stehenden Werte nennt man Argumente. Daher rührt übrigens

auch der Name args in der Methode main. Es handelt sich hierbei um den Namen der

Parameter, die als Argumente dem Hauptprogramm von der Kommandozeile überge-

ben werden.

Abbildung 5.21 Parameterübergabe beim Methodenaufruf

Der bei der Methodendefinition gewählte Name (hier a) spielt für den Aufruf keine

Rolle, denn der Bezeichner wird nur innerhalb der Methode verwendet.

Innerhalb der Klammern einer Methodendefinition können Sie auch mehrere Parame-

ter angeben. Sie werden dann als Liste mit durch Kommata getrennten Definitionen

angegeben:

void methodenname(typ1 name1, typ2 name2, ...)

Beim Aufruf werden dann auch die Argumente als durch Kommata getrennte Liste

angegeben. Dabei müssen Sie beachten, dass die Reihenfolge der Argumente bestimmt,

welcher Wert in welche Variable kopiert wird. Es wird der erste Wert in die erste Variable

kopiert usw. Entsprechend muss die Anzahl der Argumente identisch mit der Anzahl

der Parameter in der Definition sein. Es muss sich bei den Argumenten nicht um kon-

stante Werte handeln. Es können dort beliebige Ausdrücke stehen, die bei der Auswer-

tung zu einem Ergebnis führen, das zum Parametertyp passt. In unserem Beispiel

könnte z. B. auch ein zu berechnender Ausdruck stehen:

public class Bruchtest1 {
 public static void main(String[] args)
 {

Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 12;
b.ausgeben();
b.erweitern(4);
System.out.println();
b.ausgeben();

}
}

class Bruch {

int zaehler;
int nenner;

void ausgeben() {
 .
 .
 .
}

void erweitern(int a) {
 zaehler *= a;
 nenner *= a;
}

}

5.4 Werte übergeben

179

b.erweitern(6 - 2);

Damit würde das Ergebnis der Berechnung (also der Wert 4) an die Methode übergeben.

In Abschnitt 5.3.2 wurden die drei Schritte angegeben, in denen ein Methodenaufruf

abgewickelt wird. Diese drei Schritte gelten für Methodenaufrufe ohne Parameter. Wer-

den Parameter benutzt, dann werden auch mehr Schritte notwendig:

� Die Werte aller Argumente werden berechnet.

� Die Parameter werden angelegt.

� Die Argumentwerte werden an die Parameter übergeben.

� Der aufrufende Block wird unterbrochen

� Der Methodenrumpf wird abgearbeitet.

� Die Parameter werden wieder zerstört.

� Der aufrufende Block wird fortgesetzt.

5.4.2 Referenztypen als Parameter

Es können auch Referenztypen (d. h. also auch Objekte) als Parameter übergeben wer-

den. Als Beispiel soll hier eine Methode erstellt werden, die einen Bruch mit einem als

Parameter übergebenen Bruch multipliziert. Das Ergebnis bildet die neuen Werte für

Zähler und Nenner des Objekts, dessen Multiplikationsmethode aufgerufen wurde. Die

Methode mit dem Namen multipliziere kann folgendermaßen codiert werden:

void multipliziere(Bruch m) {
zaehler *= m.zaehler;
nenner *= m.nenner;

}

Listing 5.8 Methode mit einem Referenztyp als Parameter

Sie können bereits an der Codierung der Methode erkennen, dass hier kein neues

Objekt erstellt wird, denn es wird nirgendwo der Operator new eingesetzt. Somit stellt m

nur einen Alias für das beim Aufruf verwendete Argument dar. Der folgende Pro-

grammcode nutzt die Multiplikationsmethode (siehe Abbildung 5.22).

Das beim Aufruf der Methode verwendete Argument b wurde mit new erzeugt. Beim

Aufruf der Methode wird nur eine neue Referenz (ein neuer Verweis) auf das Argument

mit dem Namen m erzeugt. Das bedeutet, dass beim Zugriff auf m eigentlich immer auf

das »Original« b zugegriffen wird.

5 Klassen und Objekte

180

Abbildung 5.22 Referenztyp als Parameter

Sie sehen, dass bei der Verwendung von Referenzvariablen als Parametern keine Kopie

des Objekts, sondern eine Kopie der Referenz erstellt wird (siehe Abbildung 5.23).

Abbildung 5.23 Zugriff auf einen Referenztyp

Der Aufruf a.multipliziere(b); bewirkt, dass die Methode mit m als Referenz auf b abge-

arbeitet wird. Problematisch kann dieses Verhalten sein, wenn Sie in der Methode

schreibend auf die Parameter zugreifen. Ändern Sie z. B. mit der Anweisung m.zaehler =

34; den Wert des Zählers von m, dann haben Sie damit eigentlich den Wert von b.zaehler

geändert. Dies müssen Sie bei Schreibzugriffen auf Parameter beachten, die als Referenz

übergeben werden. Primitive Datentypen werden nicht als Referenz übergeben, son-

dern als echte Kopie. Damit wirken sich dort Schreibzugriffe nicht auf die Aufrufargu-

mente aus.

public class Bruchtest {
public static void main(String[] args) {

Bruch a = new Bruch();
a.zaehler = 3;
a.nenner = 4;
Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 12;
a.ausgeben();
a.multipliziere(b);
System.out.println();
a.ausgeben();

}
}

class Bruch {

int zaehler;
int nenner;

void ausgeben() {
 .
 .
 .
}

void multipliziere(Bruch m) {

zaehler *= m.zaehler;
nenner *= m.nenner;

}
}

Arbeitsspeicher

Bruch a;

a.zaehler a.nenner

3 4 ...

Arbeitsspeicher

Bruch b;

b.zaehler b.nenner

3 4 ...

a.multipliziere(b);

5.4 Werte übergeben

181

5.4.3 Überladen von Methoden

Innerhalb einer Klasse können mehrere Methoden mit gleichem Namen existieren. Das

kann aber nur funktionieren, wenn es ein eindeutiges Unterscheidungsmerkmal gibt.

Dieses Unterscheidungsmerkmal ist die Parameterliste. Wenn Sie eine Methode mit

einem Namen erstellen, der bereits für eine andere Methode verwendet wurde, dann

bezeichnet man das als Überladen einer Methode.

Dieses Überladen bietet sich immer an, wenn Sie mehrere Methoden für eine ähnliche

Funktion benötigen. Ein Beispiel für solche Methoden sind Methoden, die ein Objekt

auf einen definierten Anfangszustand, vergleichbar mit einer Initialisierung, setzen. So

können wir folgende beiden Methoden mit dem Namen setze definieren:

void setze(int z) {
zaehler = z;
nenner = 1;

}
void setze(int z, int n) {
zaehler = z;
nenner = n;

}

Listing 5.9 Beispiel für das Überladen einer Methode

Die erste Methode erwartet nur einen ganzzahligen Wert als Argument und übernimmt

diesen Wert als Zähler. Den Nenner setzt die Methode immer auf den Wert 1. Damit ent-

spricht der Wert, der übergeben wird, dem Gesamtwert des Bruchs.

Die zweite Methode erwartet zwei ganzzahlige Parameter, von denen der erste als Wert

für den Zähler und der zweite als Wert für den Nenner übernommen wird.

Bei der Auswahl einer überladenen Methode ist es für den Compiler nicht immer ein-

deutig, welche Methode zu wählen ist. Zum Beispiel kann es sein, dass durch die impli-

zite Typumwandlung mehrere Methoden geeignet wären. Eine Methode, die einen

double-Wert erwartet, kann auch mit einem int als Argument aufgerufen werden. Die

folgende Methode kann nur mit einem Integer-Wert als Argument aufgerufen werden:

void erweitern(int a) {
...

}

Der Aufruf a.erweitern(5); wäre gültig. Dagegen wäre der Aufruf a.erweitern(5.0);

ungültig.

5 Klassen und Objekte

182

Wurde die Parameterliste folgendermaßen definiert

void erweitern(double a) {
...

}

dann sind die beiden Aufrufe a.erweitern(5); und a.erweitern(5.0); gültig.

Es ist nun aber auch möglich, dass beide Methoden existieren:

void erweitern(int a) {
...

}

void erweitern(double a) {
...

}

Da sie sich in der Parameterliste unterscheiden, stellt das kein Problem dar. Es stellt sich

aber die Frage, welche der beiden Methoden tatsächlich vom Compiler ausgewählt wird,

wenn der für beide Methoden passende Aufruf a.erweitern(5); verwendet wird.

Lösung: Der Compiler geht bei der Overload-Resolution nach folgenden Regeln vor:

Zuerst werden alle passenden Methoden gesammelt; auch die Methoden, bei denen

eine implizite Typumwandlung erforderlich ist, werden dabei mit einbezogen. Bleibt

nur eine Methode übrig, wird diese ausgewählt. Passt überhaupt keine Methode, dann

ist der Aufruf fehlerhaft und wird nicht übersetzt. Passen mehrere Methoden, wird die-

jenige ausgewählt, die am besten passt. Passen mehrere Methoden gleich gut, dann ist

der Aufruf nicht eindeutig und wird nicht übersetzt. In unserem Beispiel passt die

Methode genauer, bei der keine Typumwandlung erforderlich ist.

5.5 Ergebnisse

Mit der Übergabe von Argumenten an die Parameter einer Methode teilen wir der

Methode mit, mit welchen Werten sie arbeiten soll. Es fließen Informationen von der

aufrufenden Anweisung an die Methode. Häufig soll auch eine Information von der

Methode zurück an die aufrufende Anweisung möglich sein. Zum Beispiel berechnet

die Methode aus den Parametern einen Ergebniswert, der dann an die aufrufende

Methode zurückgeliefert werden soll.

5.5 Ergebnisse

183

5.5.1 Methoden mit Ergebnisrückgabe

In unserer Klasse Bruch können wir z. B. eine Methode erstellen, die den Wert des Bruchs

als Dezimalzahl zurückliefern soll. Folgende Schritte sind dazu erforderlich:

� Vor dem Methodennamen wird anstelle von void der Typ des Ergebnisses angegeben.

� Im Rumpf der Methode steht eine return-Anweisung, die einen Ausdruck enthält, der

dem Typ des Ergebnisses entspricht.

Allgemein sieht der Aufbau einer Methode mit Ergebnisrückgabe folgendermaßen aus:

Datentyp methodenname(...) {
return ausdruck;

}

Listing 5.10 Allgemeiner Aufbau einer Methode mit Rückgabewert

Der Ausdruck hinter return gibt den Wert an, der von der Methode zurückgegeben wird.

Die oben als Beispiel genannte Methode kann dann folgendermaßen aussehen:

double dezimalwert() {
return (double) zaehler/nenner;

}

Listing 5.11 Methode zur Rückgabe des Wertes als Dezimalzahl

Der Name der Methode kann nun überall dort verwendet werden, wo ein double-Wert

stehen kann. Das heißt: In allen Ausdrücken und Anweisungen, die einen double-Wert

verarbeiten können, kann die Methode dezimalwert verwendet werden. Als Beispiel

wird hier die Ausgabe mit System.out.print gezeigt. Mit dieser Anweisung kann ein

double-Wert auf der Konsole ausgegeben werden.

System.out.print(a.dezimalwert());

Die print-Anweisung ruft die Methode dezimalwert auf, die keine Parameter benötigt.

Diese liefert als Ergebnis einen double-Wert zurück, der dann von der print-Anweisung

ausgegeben wird. Im folgenden Beispiel wird der Methodenaufruf in einer if-Anwei-

sung verwendet:

if (a.dezimalwert() < 3.5) {
...

}

Listing 5.12 Verwendung eines Methodenaufrufs in einer »if«-Anweisung

5 Klassen und Objekte

184

In einer Methode können auch mehrere return-Anweisungen stehen. Die nach der Pro-

grammlogik zuerst erreichte return-Anweisung entscheidet über den tatsächlich

zurückgelieferten Wert, denn mit dem Erreichen der ersten return-Anweisung kehrt der

Programmablauf zum Aufruf der Methode zurück.

Die folgende Methode signum liefert den Wert 1, wenn der Bruch einen Wert größer als 0

hat. Hat der Bruch einen Wert kleiner als 0, dann liefert sie den Wert –1 zurück, und

wenn der Bruch den Wert 0 hat, liefert auch die Methode den Wert 0 zurück.

int signum() {
if (this.dezimalwert() == 0) {
return 0;

}
if (this.dezimalwert() > 0) {
return 1;

}
return -1;

}

Listing 5.13 Methode »signum« der Klasse »Bruch«

Die dritte return-Anweisung wird nur erreicht, wenn keine der beiden if-Bedingungen

erfüllt ist. Dies bestätigt die oben gemachte Aussage, dass die Methode nur bis zum

Erreichen der ersten return-Anweisung abgearbeitet wird.

Als Programmierer müssen Sie sicherstellen, dass in jedem Fall eine return-Anweisung

erreicht wird. Falls Sie in der obigen signum-Methode die letzte return-Anweisung aus-

kommentieren, meldet Eclipse einen Fehler und weist darauf hin, dass diese Methode

einen int-Wert zurückliefern muss. Dies kann sie aber nur durch Erreichen einer ent-

sprechenden return-Anweisung.

Abbildung 5.24 Hinweis auf fehlende »return«-Anweisung

Abbildung 5.24 zeigt den Hinweis von Eclipse. Ein Klick auf das Fehlersymbol am linken

Rand des Editorfensters bringt die als Quick-Fix bezeichneten Vorschläge von Eclipse

zum Vorschein. Im linken Bereich werden in diesem Fall zwei Vorschläge gemacht. Sie

können eine return-Anweisung hinzufügen, oder Sie können als Rückgabewert void

5.6 Konstruktoren als spezielle Methoden

185

angeben und so auf jegliche Rückgabe verzichten. Natürlich macht hier nur der erste

Vorschlag richtig Sinn.

Je nachdem, welchen Vorschlag Sie markieren, wird im rechten Bereich angezeigt, wel-

che Änderungen im Quellcode erforderlich sind. Ein Doppelklick auf einen der beiden

Vorschläge bringt Eclipse dazu, den Eintrag im Quellcode vorzunehmen. Auch wenn die

Vorschläge selten zu 100 % passen, so stellt Eclipse mit Quick-Fix eine insgesamt sehr

komfortable Möglichkeit zur Fehlerkorrektur zur Verfügung. Es reichen als eigene

Änderungen meist geringfügige Anpassungen.

5.5.2 Methoden ohne Ergebnisrückgabe

Soll eine Methode kein Ergebnis zurückliefern, wird als Ergebnistyp der Ausdruck void

angegeben. Es handelt sich dabei um einen Pseudo-Typ, der so viel bedeutet wie

»nichts«. Wir haben solche Methoden bereits mehrmals verwendet. Sie können aus

einer solchen Methode an jeder Stelle mit einer return-Anweisung ohne Ergebnisaus-

druck, also mit folgender Anweisung zur aufrufenden Anweisung zurückkehren:

return;

Am Ende einer Methode ohne Ergebnisrückgabe kehrt der Programmablauf automa-

tisch zur aufrufenden Anweisung zurück. Sie müssen dort keine return-Anweisung ein-

fügen. Entsprechend kann bei einer solchen Methode die return-Anweisung komplett

fehlen. Sie wird am Ende der Methode quasi implizit ergänzt.

Beim Überladen von Methoden müssen Sie beachten, dass überladene Methoden sich

nicht ausschließlich durch den Ergebnistyp unterscheiden dürfen. Sie müssen sich also

zusätzlich noch in der Parameterliste unterscheiden. Da der Ergebnistyp beim Aufruf

nicht angegeben wird, könnte der Compiler nicht entscheiden, welche Methode ver-

wendet werden soll.

5.6 Konstruktoren als spezielle Methoden

Objekte werden mit dem new-Operator erzeugt. Nach dem Erzeugen eines Objekts sollte

es sich grundsätzlich in einem definierten Anfangszustand befinden. Der Zustand eines

Objekts unserer Klasse Bruch wird durch die Werte der Attribute zaehler und nenner

beschrieben. Wenn wir davon ausgehen, dass nach dem Erzeugen eines Objekts der

Klasse Bruch beide Attribute den Wert 0 haben, dann befindet sich unser Bruch in einem

Zustand, der in der Mathematik als ungültig angesehen wird. Um dies zu vermeiden,

5 Klassen und Objekte

186

können Sie nach der Erzeugung eines Objekts grundsätzlich zuerst den Wert mit der

Methode setze auf einen definierten Wert festlegen:

Bruch b = new Bruch();
b.setze(0);

Die Verwendung eines Konstruktors vereinfacht diese Vorgehensweise dadurch, dass er

die Aufgabe, das Objekt in einen definierten Anfangszustand zu versetzen, mit der

Erzeugung des Objekts zu einer einzigen Anweisung zusammenfasst. Ein Konstruktor

ist zunächst nichts anderes als eine Methode. Es gibt aber einige Besonderheiten, die

einen Konstruktor von einer gewöhnlichen Methode unterscheiden:

� Der Name eines Konstruktors entspricht immer exakt dem Namen der Klasse.

� Die Definition eines Konstruktors beginnt immer mit dem Namen, ohne vorange-

stelltes void oder eine andere Typangabe.

� Ein Konstruktor wird automatisch mit dem new-Operator aufgerufen.

Die letzte Aussage wirft die Frage auf, welcher Konstruktor in unseren Beispielprogram-

men aufgerufen wurde, denn bisher haben wir noch keinen Konstruktor definiert.

Wurde vom Programmierer kein Konstruktor definiert, so erzeugt der Compiler beim

Übersetzen der Klasse einen Default-Konstruktor, der keine weiteren Anweisungen

beinhaltet. Somit besitzt jede Klasse einen Konstruktor: entweder einen vom Program-

mierer definierten oder den Standardkonstruktor (Default-Konstruktor) mit leerer

Parameterliste und leerem Rumpf. Da der Konstruktor den gleichen Namen wie die

Klasse besitzt, heißt dieser z. B. für unsere Klasse Bruch

Bruch()

und genau diesen Konstruktor rufen wir mit der Zeile

Bruch b = new Bruch();

auf. Der Standardkonstruktor existiert also für jede Klasse, ohne dass wir ihn definieren

müssen. Anstelle des Default-Konstruktors können wir als Programmierer einen selbst

definierten Konstruktor erstellen, der das Objekt in einen definierten Anfangszustand

versetzt. Ein Konstruktor wird genauso definiert wie eine andere Methode. Es müssen

lediglich die oben genannten Besonderheiten beachtet werden. Entsprechend muss der

Name des Konstruktors dem Objektnamen entsprechen, und es wird kein Datentyp

bzw. kein void vorangestellt. Um den Bruch auf den Wert 0 vorzubesetzen, können wir

entsprechend folgenden Konstruktor definieren:

5.6 Konstruktoren als spezielle Methoden

187

Bruch() {
zaehler = 0;
nenner = 1;

}

Listing 5.14 Selbst definierter Konstruktor der Klasse »Bruch«

Der Nenner könnte ebenso gut auf einen anderen Wert ungleich 0 gesetzt werden. Ent-

scheidend ist, dass der zaehler auf 0 und der nenner auf einen Wert ungleich 0 gesetzt

wird. Damit hat der Bruch unmittelbar nach der Erzeugung mit

Bruch a = new Bruch();

den rechnerischen Wert 0. Wurde der Default-Konstruktor einmal überschrieben, wird

grundsätzlich der neue Konstruktor verwendet. Auch der neue Konstruktor heißt Stan-

dard- oder Default-Konstruktor, solange er eine leere Parameterliste verwendet.

5.6.1 Konstruktoren mit Parametern

Es können beliebig weitere Konstruktoren mit Parametern definiert werden, so wie wir

es von den Methoden her kennen. Beim Erzeugen eines Objekts wird dann immer der

von der Parameterliste her passendste Konstruktor verwendet. Konstruktoren mit

Parameter heißen Custom-Konstruktoren (spezielle Konstruktoren).

Der folgende Konstruktor ist z. B. geeignet, um einen Bruch direkt beim Erzeugen auf

einen Wert ungleich 0 zu setzen:

Bruch (int z, int n) {
zaehler = z;
nenner = n;

}

Mit der Anweisung Bruch a = new Bruch(2, 3); wird der Wert des Bruchs bei der Erzeu-

gung direkt auf den Wert 2/3 gesetzt. Hier wird nun endgültig deutlich, dass hinter dem

new-Operator ein Methodenaufruf steht.

Im Zusammenhang mit Konstruktoren ist Ihnen vielleicht aufgefallen, dass die Attri-

bute eines Objekts nicht initialisiert werden. Vor dem Überschreiben des Default-Kon-

struktors unseres Bruchs trat kein Fehler auf. Würde man eine lokale Variable

verwenden, ohne dass ihr explizit ein Wert zugewiesen wird, würde das Programm

nicht übersetzt werden und der Fehler »The local variable may not have been initial-

ized« würde angezeigt werden. Werden hingegen Attribute (Datenelemente) eines

5 Klassen und Objekte

188

Objekts nicht initialisiert, werden Default-Werte verwendet. Welche das sind, hängt

vom jeweiligen Datentyp ab (siehe Tabelle 5.1).

Wurden die Attribute einer Klasse mit der Definition bereits initialisiert, so nehmen sie

diese Werte zeitlich bereits vor der Ausführung des Konstruktors an. Das bedeutet, dass

ein anschließender Konstruktoraufruf diese Werte wieder überschreibt.

5.6.2 Verketten von Konstruktoren

Die meisten Konstruktoren müssen mehr Aufgaben als die Initialisierung von Attribu-

ten erledigen. Diese Aufgabe könnten Sie, wie oben gezeigt, auch ohne Konstruktoren

durch explizite Initialisierungen realisieren. Oft finden in Konstruktoren bereits Über-

prüfungen statt, die in aufwendigen Kontrollstrukturen vorgenommen werden. Damit

Sie diese Abläufe nicht in jedem einzelnen Konstruktor codieren müssen, können Sie

Konstruktoren verketten. Bei der Verkettung erstellen Sie einen Konstruktor, der alle

allgemeingültigen Abläufe beinhaltet, und rufen dann in weiteren Konstruktoren

zuerst diesen Konstruktor auf, bevor Sie die zusätzlich zu erledigenden Abläufe hinzu-

fügen. Für den Aufruf eines Konstruktors innerhalb eines anderen Konstruktors brau-

chen Sie das Schlüsselwort this. This() dient dazu, einen Konstruktor der Superklasse

aufzurufen. Der folgende Quellcodeausschnitt zeigt diese Vorgehensweise am Beispiel

unserer Klasse Bruch:

// Definition der Klasse Bruch mit verketteten Konstruktoren
class Bruch {
int zaehler;
int nenner;
Bruch (int z, int n) {
int hz, hn, r;
if (n == 0) {

Datentyp Default-Wert

int 0

double 0.0

boolean false

char \u0000

Referenztypen null

Tabelle 5.1 Initialisierung von Attributen

5.6 Konstruktoren als spezielle Methoden

189

System.out.print("Fehler! Der Nenner darf nicht 0 sein!");
} else {

hz = z;
hn = n;
r = hz % hn;
while (r > 0) {
hz = hn;
hn = r;
r = hz % hn;

} // in hn steht jetzt der ggT
zaehler = z/hn;
nenner = n/hn;

}
}
Bruch() {
this(0, 1);

}

Bruch(int n) {
this(n, 1);

}
}

Listing 5.15 Definition der Klasse »Bruch« mit verketteten Konstruktoren

Es wird zuerst ein Konstruktor definiert, der zwei Parameter für Zähler und Nenner

erwartet. Die beiden Parameter werden zur Initialisierung des Bruchs verwendet. Der

Konstruktor übernimmt hier zusätzliche Aufgaben. Zuerst wird geprüft, ob der Nenner

0 ist. Da dies zu einem ungültigen Bruch führt, wird eine Fehlermeldung ausgegeben. Ist

der Nenner nicht 0, so ist der Bruch gültig. Es könnte aber sein, dass der Bruch noch

gekürzt werden kann. Deshalb wird zuerst der ggT berechnet und damit der gekürzte

Wert für Zähler und Nenner bestimmt. Initialisiert werden Zähler und Nenner dann mit

den gekürzten Werten.

Es folgt die Definition eines Konstruktors, der keinen Parameter erwartet. Er soll den

Bruch mit dem Wert Null (Zähler = 0 und Nenner = 1) initialisieren. Diese Aufgabe kann

aber der erste Konstruktor übernehmen. Er wird mit der Anweisung this(0, 1); aufge-

rufen.

Ebenso wird mit dem zweiten Konstruktor verfahren. Dieser erwartet einen Parameter

n und soll den Bruch mit dem ganzzahligen Wert des Parameters, also n/1, initialisieren.

Auch diese Aufgabe wird einfach an den ersten Konstruktor mit this(n, 1); übertragen.

5 Klassen und Objekte

190

Ein verketteter Konstruktoraufruf mit this muss immer als erste Anweisung im Kon-

struktorrumpf stehen. Anschließend können andere Anweisungen folgen, die nur für

diesen Konstruktor gelten.

5.7 Übungsaufgaben

Aufgabe 1

Erstellen Sie im Projekt JavaUebung05 im Package uebung05 eine Klasse mit dem

Namen Kreis. Die Klasse soll nur über ein Datenelement (Attribut) mit dem Namen

radius verfügen, in dem der Radius als Kommazahl festgehalten wird. Erstellen Sie

einen Konstruktor mit leerer Parameterliste, der den Radius mit dem Wert 0 initia-

lisiert, und einen Konstruktor, dem als Parameter eine Kommazahl zur Initialisierung

des Radius übergeben wird. Die Klasse soll über folgende Methoden verfügen:

double getRadius();
setRadius(double r);
double getUmfang();
double getFlaeche();

Erstellen Sie dazu ein Testprogramm mit dem Namen Kreistest, das mit einem JOption-

Pane.showInputDialog den Radius eines Kreises einliest und anschließend durch Aufruf

der drei Methoden den Radius, den Umfang und die Fläche des Kreises in der Konsole

(mit System.out.println) ausgibt.

Hinweis

Als Hilfestellung können Sie auf die Programme zur Kreisberechnung aus Kapitel 1, »Ein-

führung«, und Kapitel 2, »Grundbausteine eines Java-Programms«, zurückgreifen.

Aufgabe 2

Erstellen Sie im Projekt JavaUebung05 im Package uebung05 eine Klasse mit dem

Namen Rechteck. Die Klasse soll über die Attribute laenge und breite als double-Werte

verfügen. Erstellen Sie einen Konstruktor mit leerer Parameterliste, der die beiden

Kantenlängen jeweils mit dem Wert 0 initialisiert. Ein weiterer Konstruktor mit zwei

double-Parametern soll die beiden Kantenlängen mit den übergebenen Werten initiali-

sieren. Die Klasse soll zusätzlich über die folgenden Methoden verfügen:

5.7 Übungsaufgaben

191

setLaenge(double l);
setBreite(double b);
setSeiten(double l, double b);
double getLaenge();
double getBreite();
double getLangeSeite();
double getKurzeSeite();
double getDiagonale();
double getFlaeche();
double getUmfang();

Erstellen Sie ein Programm mit dem Namen Rechtecktest, das ein Objekt der Klasse

Rechteck verwendet. Länge und Breite des Rechtecks sollen mit JOptionPane.showInput-

Dialog eingegeben werden, und anschließend sollen die lange und die kurze Seite, die

Diagonale, die Fläche und der Umfang in der Konsole ausgegeben werden.

Aufgabe 3

Erstellen Sie in der Klasse Rechteck die Methode laengeAusgeben(), wie unten vorge-

geben. In der Methode wird eine lokale Variable mit dem gleichen Namen erstellt,

wie er schon für das Attribut der Länge verwendet wurde, und ihr wird der Wert 5,4

zugewiesen.

void laengeAusgeben() {
double laenge = 5.4;
System.out.println("Länge: " + laenge);

}

Listing 5.16 Methode zum Ausgeben der Länge

Frage: Wird die Variable als Fehler markiert, weil der Name schon für das Attribut ver-

wendet wurde?

Rufen Sie die Methode laengeAusgeben() als letzte Anweisung im Programm Rechteck-

test auf.

Frage: Welcher Wert wird ausgegeben? Ist es der Wert des Attributs, den Sie beim Pro-

grammstart eingeben, oder ist es immer der Wert der lokalen Variablen laenge (5,4)?

Aufgabe 4

Erweitern Sie die Klasse Rechteck um folgende Methoden:

5 Klassen und Objekte

192

void laengeVergroessern(double l)
void breiteVergroessern(double b)
void laengeVerkleinern(double l)
void breiteVerkleinern(double b)

Die beiden Methoden vergrößern bzw. verkleinern die Länge bzw. die Breite des Recht-

ecks um den als Argument übergebenen Wert.

Testen Sie die Methoden im Programm Rechtecktest, indem Sie die eingegebenen Werte

vor der Ausgabe vergrößern bzw. verkleinern.

Aufgabe 5

Erweitern Sie die Klasse Kreis um die folgenden Methoden:

void setUmfang(double u)
void setFlaeche(double f)

Die Methoden berechnen den Radius für einen Kreis mit dem übergebenen Umfang

bzw. der übergebenen Fläche und setzen das Attribut radius auf den berechneten Wert.

Aufgabe 6

Erstellen Sie im Projekt JavaUebung05 im Package uebung05 ein Programm mit dem

Namen Kreistabelle. Die Anwendung soll die Klasse Kreis verwenden und nach Eingabe

(JOptionPane.showInputDialog) eines Startwertes für den Radius und einer Radiuserhö-

hung eine 30-zeilige Tabelle mit Radius, Umfang und Fläche nach folgendem Muster

ausgeben:

Radius Umfang Fläche

5.0 31.41592653589793 78.53981633974483

10.0 62.83185307179586 314.1592653589793

15.0 94.24777960769379 706.8583470577034

20.0 125.66370614359172 1256.6370614359173

25.0 157.07963267948966 1963.4954084936207

30.0 188.49555921538757 2827.4333882308138

35.0 219.9114857512855 3848.4510006474966

Tabelle 5.2 Ausgabe des Programms Kreistabelle

5.7 Übungsaufgaben

193

Hinweis

Verwenden Sie als Trennzeichen zwischen den einzelnen Ausgabewerten einer Zeile

mehrere Tabulatorzeichen.

Aufgabe 7

Erstellen Sie im Projekt JavaUebung05 eine Klasse FlaechengleicherKreis als Anwen-

dungsprogramm, das ein Objekt der Klasse Rechteck und ein Objekt der Klasse Kreis ver-

wendet.

Zuerst sollen die Länge und die Breite eines Rechtecks eingelesen werden (mit JOption-

Pane.showInputDialog). Anschließend ist der Radius des Kreises so zu bestimmen, dass

er den gleichen Flächeninhalt wie das Rechteck hat.

Zur Kontrolle sollen die Länge, Breite und Fläche des Rechtecks und der Radius und die

Fläche des Kreises untereinander in der Konsole ausgegeben werden. Die Ausgabe des

Programms soll folgendermaßen aussehen:

Rechtecklänge: 10.0
Rechteckbreite: 20.0
Rechteckfläche: 200.0

Kreisradius: 7.978845608028654
Kreisfläche: 200.0

40.0 251.32741228718345 5026.548245743669

45.0 282.7433388230814 6361.725123519332

50.0 314.1592653589793 7853.981633974483

55.0 345.57519189487726 9503.317777109125

60.0 376.99111843077515 11309.733552923255

65.0 408.4070449666731 13273.228961416875

...

Radius Umfang Fläche

Tabelle 5.2 Ausgabe des Programms Kreistabelle (Forts.)

5 Klassen und Objekte

194

5.8 Ausblick

Sie kennen jetzt den für die moderne Programmierung so eminent wichtigen Begriff

der Objektorientierung. Sie können neue Klassen mit Attributen und Methoden defi-

nieren und nach diesem Bauplan Objekte für Ihre Programme erzeugen. Sie können

damit die zur Verfügung stehenden Datentypen gewissermaßen um eigene Typen

erweitern, die zudem wesentlich leistungsfähiger sind und besser an Ihre Bedürf-

nisse angepasst werden können. Sie können damit die Vorteile der Objektorientie-

rung nutzen.

Dadurch, dass Methoden zum Bestandteil der Klassen bzw. Objekte geworden sind,

ergibt sich eine zwangsläufig sinnvolle Zuordnung. Die Methoden befinden sich immer

dort, wo sie auch hingehören. Gerade in größeren Projekten ist es damit wesentlich ein-

facher, den Überblick zu behalten. Jedes Programm dient letztendlich dazu, Abläufe und

Gegenstände der Realität abzubilden. Objekte erhöhen die Nähe zur Realität, denn auch

in der Realität haben wir es mit Objekten zu tun, die sich durch Eigenschaften (Attri-

bute) und Fähigkeiten (Methoden) auszeichnen. Was liegt also näher, als diese Sicht-

weise auch in die Programmierung zu übernehmen? Nicht zuletzt vereinfacht die

Nutzung der Objektorientierung die Wiederverwendbarkeit einmal erstellten Pro-

grammcodes.

Sie haben bereits bei der Verwendung der Klasse JOptionPane feststellen können, dass es

mit wenig Programmcode möglich ist, sehr leistungsfähige Objekte in eigenen Pro-

grammen zu verwenden. Sie müssen nichts über den sicher sehr komplexen Pro-

grammcode wissen, mit dem die Komponenten programmiert wurden. Aber Sie

müssen diese Objekte einbinden und erzeugen können, indem Sie deren Konstruktoren

aufrufen, und Sie müssen sich über die verfügbaren Attribute und Methoden informie-

ren, damit Sie diese für Ihre eigenen Zwecke einsetzen können. Spätestens bei der

Erstellung von grafischen Oberflächen werden Sie davon reichlich Gebrauch machen.

Sie haben damit einen ganz wichtigen Schritt auf dem Weg, den Sie eingeschlagen

haben, hinter sich und sind damit gut vorbereitet, um die weiteren Kapitel erfolgreich

zu meistern und noch weitere Vorteile der Objektorientierung zu nutzen.

Auch das folgende Kapitel wird sich um die Objektorientierung drehen. Sie werden er-

fahren, wie Sie auf bestehende Klassen zurückgreifen und daraus neue Klassen ableiten

können. Sie können somit sehr effektiv auf bereits erstellte Funktionalitäten zurück-

greifen, um diese zu modifizieren und um neue Fähigkeiten zu erweitern.

Auf einen Blick

Auf einen Blick

1 Einführung ... 15

2 Grundbausteine eines Java-Programms .. 60

3 Kontrollstrukturen .. 101

4 Einführung in Eclipse .. 127

5 Klassen und Objekte ... 156

6 Mit Klassen und Objekten arbeiten .. 195

7 Grundlegende Klassen ... 223

8 Grafische Benutzeroberflächen .. 258

9 Fehlerbehandlung mit Exceptions ... 313

10 Containerklassen ... 329

11 Dateien .. 360

12 Zeichnen ... 412

13 Animationen und Threads .. 457

14 Tabellen und Datenbanken .. 482

5

Inhalt

Danksagung ... 14

1 Einführung 15

1.1 Was bedeutet Programmierung? .. 16

1.1.1 Von den Anfängen bis heute ... 16

1.1.2 Wozu überhaupt programmieren? ... 17

1.1.3 Hilfsmittel für den Programmentwurf .. 19

1.1.4 Von der Idee zum Programm .. 21

1.1.5 Arten von Programmiersprachen .. 25

1.2 Java ... 30

1.2.1 Entstehungsgeschichte von Java ... 31

1.2.2 Merkmale von Java ... 32

1.2.3 Installation von Java ... 35

1.3 Ein erstes Java-Programm .. 39

1.3.1 Vorbereiten der Arbeitsumgebung ... 39

1.3.2 Wie sind Java-Programme aufgebaut? .. 41

1.3.3 Schritt für Schritt zum ersten Programm ... 43

1.4 Übungsaufgaben .. 52

1.5 Ausblick ... 59

2 Grundbausteine eines Java-Programms 60

2.1 Bezeichner und Schlüsselwörter .. 60

2.2 Kommentare ... 62

2.3 Variablen und Datentypen ... 63

2.3.1 Namenskonventionen für Variablen .. 65

2.3.2 Wertzuweisung .. 66

2.3.3 Die primitiven Datentypen im Einzelnen .. 66

2.3.4 Praxisbeispiel 1 zu Variablen .. 68

Inhalt

6

2.3.5 Häufiger Fehler bei der Variablendeklaration .. 73

2.3.6 Praxisbeispiel 2 zu Variablen .. 74

2.3.7 Der Datentyp »String« .. 79

2.3.8 Der Dialog mit dem Anwender ... 80

2.3.9 Übungsaufgaben ... 84

2.4 Operatoren und Ausdrücke .. 86

2.4.1 Zuweisungsoperator und Cast-Operator ... 87

2.4.2 Vergleiche und Bedingungen ... 88

2.4.3 Arithmetische Operatoren .. 90

2.4.4 Priorität ... 92

2.4.5 Logische Operatoren ... 95

2.4.6 Sonstige Operatoren ... 96

2.5 Übungsaufgaben ... 97

2.6 Ausblick ... 100

3 Kontrollstrukturen 101

3.1 Anweisungsfolge (Sequenz) ... 101

3.2 Auswahlstrukturen (Selektionen) ... 102

3.2.1 Zweiseitige Auswahlstruktur (»if«-Anweisung) .. 103

3.2.2 Übungsaufgaben zur »if«-Anweisung .. 110

3.2.3 Mehrseitige Auswahlstruktur (»switch-case«-Anweisung) 111

3.2.4 Übungsaufgabe zur »switch-case«-Anweisung .. 115

3.3 Wiederholungsstrukturen (Schleifen oder Iterationen) .. 115

3.3.1 Die »while«-Schleife .. 116

3.3.2 Die »do«-Schleife ... 116

3.3.3 Die »for«-Schleife ... 117

3.3.4 Sprunganweisungen ... 118

3.3.5 Übungsaufgaben zu Schleifen .. 120

3.4 Auswirkungen auf Variablen ... 123

3.4.1 Gültigkeitsbereiche ... 123

3.4.2 Namenskonflikte .. 124

3.4.3 Lebensdauer .. 125

3.5 Ausblick ... 125

Inhalt

7

4 Einführung in Eclipse 127

4.1 Die Entwicklungsumgebung Eclipse .. 127

4.1.1 Installation von Eclipse .. 128

4.1.2 Eclipse starten .. 130

4.1.3 Ein bestehendes Projekt in Eclipse öffnen .. 132

4.2 Erste Schritte mit Eclipse ... 135

4.2.1 Ein neues Projekt erstellen ... 136

4.2.2 Programm eingeben und starten .. 138

4.3 Fehlersuche mit Eclipse .. 146

4.3.1 Fehlersuche ohne Hilfsmittel .. 147

4.3.2 Haltepunkte (Breakpoints) ... 150

4.4 Ausblick ... 155

5 Klassen und Objekte 156

5.1 Struktur von Java-Programmen .. 156

5.1.1 Klassen .. 156

5.1.2 Attribute ... 158

5.1.3 Packages ... 158

5.2 Objekte .. 163

5.2.1 Zugriff auf die Attribute (Datenelemente) ... 165

5.2.2 Wertzuweisungen bei Objekten .. 166

5.2.3 Gültigkeitsbereich und Lebensdauer .. 169

5.3 Methoden .. 170

5.3.1 Aufbau von Methoden .. 171

5.3.2 Aufruf von Methoden .. 171

5.3.3 Abgrenzung von Bezeichnern ... 176

5.4 Werte übergeben ... 177

5.4.1 Methoden mit Parameter ... 177

5.4.2 Referenztypen als Parameter .. 179

5.4.3 Überladen von Methoden .. 181

5.5 Ergebnisse .. 182

5.5.1 Methoden mit Ergebnisrückgabe .. 183

5.5.2 Methoden ohne Ergebnisrückgabe ... 185

Inhalt

8

5.6 Konstruktoren als spezielle Methoden ... 185

5.6.1 Konstruktoren mit Parametern ... 187

5.6.2 Verketten von Konstruktoren .. 188

5.7 Übungsaufgaben ... 190

5.8 Ausblick ... 194

6 Mit Klassen und Objekten arbeiten 195

6.1 Gemeinsame Nutzung .. 195

6.1.1 Statische Attribute .. 195

6.1.2 Statische Methoden .. 197

6.2 Zugriffsmechanismen ... 198

6.2.1 Unveränderliche Attribute .. 198

6.2.2 Datenkapselung ... 200

6.2.3 Getter- und Setter-Methoden ... 201

6.3 Beziehungen zwischen Klassen .. 203

6.3.1 Teil-Ganzes-Beziehung .. 204

6.3.2 Delegation .. 205

6.3.3 Abstammung ... 205

6.4 Vererbung ... 206

6.4.1 Schnittstelle und Implementierung .. 211

6.4.2 Objekte vergleichen .. 212

6.4.3 Abstrakte Klassen und Interfaces ... 214

6.5 Übungsaufgaben ... 215

6.6 Ausblick ... 222

7 Grundlegende Klassen 223

7.1 Die Klasse »String« ... 223

7.1.1 Erzeugen von Strings .. 223

7.1.2 Konkatenation von Strings ... 224

7.1.3 Stringlänge bestimmen und Strings vergleichen ... 227

7.1.4 Zeichen an einer bestimmten Position ermitteln ... 229

Inhalt

9

7.1.5 Umwandlung in Groß- und Kleinbuchstaben ... 229

7.1.6 Zahlen und Strings ineinander umwandeln .. 230

7.2 Die Klassen »StringBuffer« und »StringBuilder« ... 232

7.2.1 Erzeugen eines Objekts der Klasse »StringBuilder« ... 233

7.2.2 Mit »StringBuilder« arbeiten ... 234

7.3 Wrapper-Klassen .. 235

7.3.1 Erzeugen von Wrapper-Objekten .. 236

7.3.2 Rückgabe der Werte ... 237

7.3.3 Vereinfachter Umgang mit Wrapper-Klassen durch Autoboxing 239

7.4 Date & Time API .. 241

7.4.1 Technische Zeitangaben ... 242

7.4.2 Datum und Uhrzeit ... 250

7.5 Übungsaufgaben .. 254

7.6 Ausblick ... 256

8 Grafische Benutzeroberflächen 258

8.1 Einführung ... 258

8.1.1 JFC (Java Foundation Classes) und Swing ... 258

8.1.2 Grafische Oberflächen mit WindowBuilder ... 260

8.1.3 Erstes Beispielprogramm mit Programmfenster .. 265

8.2 Grundlegende Klassen und Methoden ... 274

8.2.1 JFrame, Dimension, Point und Rectangle .. 275

8.2.2 Festlegen und Abfrage der Größe einer Komponente (in Pixel) 275

8.2.3 Platzieren und Abfragen der Position einer Komponente 276

8.2.4 Randelemente eines Fensters ... 276

8.2.5 Veränderbarkeit der Größe eines Fensters ... 276

8.2.6 Sichtbarkeit von Komponenten ... 277

8.2.7 Löschen eines Fensters .. 277

8.2.8 Die Reaktion auf das Schließen des Fensters festlegen 277

8.2.9 Aussehen des Cursors festlegen .. 278

8.2.10 Container eines Frames ermitteln ... 278

8.2.11 Komponenten zu einem Container hinzufügen ... 279

8.3 Programmfenster mit weiteren Komponenten ... 279

8.3.1 Die Komponentenpalette ... 280

Inhalt

10

8.3.2 Standardkomponenten in einen Frame einbauen ... 281

8.3.3 Erstes Programm mit Label, TextField und Button ... 283

8.3.4 Label ... 286

8.3.5 TextField .. 287

8.3.6 Button .. 288

8.3.7 Ereignisbehandlung in aller Kürze ... 291

8.3.8 Programmierung der Umrechnung ... 293

8.3.9 Werte aus einem TextField übernehmen .. 293

8.3.10 Werte in ein TextField übertragen ... 294

8.3.11 Zahlenausgabe mit Formatierung ... 296

8.3.12 Maßnahmen zur Erhöhung des Bedienkomforts .. 298

8.4 Übungsaufgaben ... 305

8.5 Ausblick ... 311

9 Fehlerbehandlung mit Exceptions 313

9.1 Umgang mit Fehlern .. 313

9.1.1 Fehlerbehandlung ohne Exceptions .. 313

9.1.2 Exception als Reaktion auf Fehler .. 314

9.2 Mit Exceptions umgehen ... 316

9.2.1 Detailliertere Fehlermeldungen .. 318

9.2.2 Klassenhierarchie der Exceptions ... 320

9.3 Fortgeschrittene Ausnahmebehandlung ... 321

9.3.1 Interne Abläufe beim Eintreffen einer Exception ... 321

9.3.2 Benutzerdefinierte Exceptions .. 323

9.3.3 Selbst definierte Exception-Klassen .. 325

9.4 Übungsaufgaben ... 326

9.5 Ausblick ... 328

10 Containerklassen 329

10.1 Array .. 329

10.1.1 Array-Literale ... 336

10.1.2 Mehrdimensionale Arrays ... 336

Inhalt

11

10.1.3 Gezielter Zugriff auf Array-Elemente ... 338

10.1.4 Hilfen für den Umgang mit Arrays .. 341

10.1.5 Unflexible Array-Größe ... 342

10.2 »ArrayList« und »JList« .. 343

10.2.1 Die Klasse »ArrayList« .. 343

10.2.2 Die grafische Komponente »JList« ... 346

10.2.3 JList mit Scrollbalken ausstatten ... 350

10.2.4 Umgang mit markierten Einträgen ... 353

10.3 Übungsaufgaben .. 355

10.4 Ausblick ... 359

11 Dateien 360

11.1 Die Klasse »File« ... 360

11.1.1 Beispielanwendung mit der Klasse »File« ... 362

11.1.2 Verzeichnisauswahl mit Dialog .. 365

11.2 Ein- und Ausgaben in Java .. 368

11.2.1 Ein- und Ausgabeströme .. 369

11.2.2 Byteorientierte Datenströme .. 369

11.2.3 Zeichenorientierte Datenströme ... 372

11.3 Die API nutzen .. 376

11.3.1 Daten in eine Datei schreiben ... 376

11.3.2 Daten aus einer Datei lesen ... 379

11.3.3 Die Klasse »FilterWriter« .. 381

11.3.4 Die Klasse »FilterReader« .. 383

11.3.5 Textdatei verschlüsseln und entschlüsseln .. 385

11.4 Beispielanwendungen ... 389

11.4.1 Bilder in Labels und Buttons .. 389

11.4.2 Ein einfacher Bildbetrachter .. 395

11.4.3 Sounddatei abspielen .. 405

11.5 Übungsaufgaben .. 407

11.6 Ausblick ... 411

Inhalt

12

12 Zeichnen 412

12.1 In Komponenten zeichnen .. 412

12.1.1 Grundlagen der Grafikausgabe ... 412

12.1.2 Panel-Komponente mit verändertem Aussehen ... 414

12.1.3 Zeichnen in Standardkomponenten ... 419

12.2 Farben verwenden .. 439

12.2.1 Die Klasse »Color« .. 439

12.2.2 Ein Farbauswahldialog für den Anwender .. 442

12.3 Auswerten von Mausereignissen .. 443

12.3.1 Listener zur Erfassung von Mausereignissen ... 445

12.3.2 »MouseEvent« und »MouseWheelEvent« ... 447

12.3.3 Mauskoordinaten anzeigen ... 448

12.3.4 Die Maus als Zeichengerät ... 450

12.3.5 Die Klasse »Font« ... 453

12.4 Übungsaufgaben ... 454

12.5 Ausblick ... 456

13 Animationen und Threads 457

13.1 Multitasking und Multithreading ... 457

13.1.1 Was bedeutet Multitasking? .. 458

13.1.2 Was sind Threads? ... 458

13.2 Zeitlich gesteuerte Abläufe programmieren .. 459

13.2.1 Eine einfache Ampelsteuerung ... 459

13.2.2 Ampelsteuerung mit Thread .. 466

13.2.3 Gefahren bei der Nutzung von Threads ... 473

13.2.4 Bewegungsabläufe programmieren (Synchronisation) 474

13.3 Übungsaufgaben ... 478

13.4 Ausblick ... 481

Inhalt

13

14 Tabellen und Datenbanken 482

14.1 Die Klasse »JTable« .. 482

14.1.1 Tabelle mit konstanter Zellenzahl ... 483

14.1.2 Tabelle mit variabler Zeilen- und Spaltenzahl ... 493

14.1.3 Tabelle mit unterschiedlichen Datentypen .. 497

14.2 Datenbankzugriff ... 503

14.2.1 Datenbankzugriff mit JDBC ... 503

14.2.2 Aufbau der Datenbankverbindung ... 504

14.2.3 Datenbankabfrage .. 507

14.3 Übungsaufgaben .. 515

14.4 Ausblick ... 517

Anhang 519

A Inhalt der DVD ... 519

B Ein Programm mit Eclipse als ».jar«-File speichern ... 520

C Musterlösungen .. 523

D Literatur .. 531

Index ... 533

Index

533

Index

.class 32, 39

.java 39

.metadata 134

*7 (Star Seven) 31

A

AbsoluteLayout 281, 397

abstract 214

AbstractTableModel 483, 489

ActionListener 444

Adapter 445

addActionListener 292

addColumn 494

addListener 445

addRow 494

Algorithmus 18

Aliasing 168

Alphawert 440

Analytical Engine 16

Andreessen, Marc 32

Animation 457

Annotation 301

ANSI-Code 84

Anweisungsfolge 101

API 32

Applets 32

Application Programming

Interface � API

Argument 178

Array 329

Array-Literale 336

ASCII-Code 84

ASCII-Code-Tabelle 84

Assembler 25

Attribut 156, 158, 165

statisches 195

AudioSystem 407

Ausdrücke 86

Ausnahme 324

Auswahlstruktur 102

mehrseitige 111

zweiseitige 103

Auswertung

kurze 95

vollständige 95

Autoboxing 239

Automatische Umwand-

lung 88

AWT 264

B

Babbage, Charles 16

Backslash 360

BasicStroke 429

Basisklasse 206

Bedingung 103

Befehlsprompt 47

Benutzeraktionen 265, 291

Bezeichner 60, 62

Block 101, 123

boolean 67

BorderLayout 281, 389

break 113, 119

Breakpoints 150

BufferedImage 396

BufferedReader 82

ButtonGroup 419, 421

Bytecode 32, 39

C

Canvas 413

cap 429

catch 317

char 67

charAt 109

CheckBox 419

ChronoUnit 246

Clip 405

Cobol 30

Color 416, 439

Compiler 27

Component 265

Components 280

Container 265, 279

Containerklassen 329

Containers 280

continue 119

currentThread() 468

D

Dateien 360

Datenbanken 482

relationale 482

Datenelement 158, 165

Datenkapselung 200

Datentypen, primitive 64

Debuggen 150

Debugger 150

DecimalFormat 296

default 113

default package 134, 159

DefaultTableModel 494

Dekrement 91

Delphi 29

Device-Kontext 413

Dialog, modaler 443

disabledIcon 393

disabledSelectedIcon 393

DISPOSE_ON_CLOSE 273

DO_NOTHING_ON_CLOSE

273

do-Schleife 116

DOS-Kommando 47

Double.parseDouble 82, 106

draw 428

drawLine 416

Duke 31

Duration 246

E

Eclipse 30, 128

.classpath 134

.metadata 134

.project 134

Index

534

Eclipse (Forts.)

.settings 137

Code Assist 141

Code Completion 141

Codevervollständigung 141

Console-Ansicht 142

default package 134

formatieren 140

Formatter 139, 141

Java-Settings-Dialog 136

JRE System Library 134

main-Methode 139

New Java Class 138

Oberfläche 131

Open Perspektive 132

Package Explorer 132

Perspektiven 132

Preferences 139

Projekt öffnen 132

Run As 142

Run-Menü 142

Show View 143

starten 130

Startfenster 131

Syntax-Highlighting 141

Tutorials 131

Variables-Ansicht 154

Willkommensfenster 131

emacs 127

equals 227

Ereignisbehandlung 291

Ergebnisrückgabe 183

Ergebnistyp 90

Error 320

Escape-Sequenz 67

EVA-Prinzip 80

Exception 272, 313, 315

werfen 324

Exception-Handling 316

Exemplar 163

EXIT_ON_CLOSE 273

Exklusives ODER 95

F

false 60, 67

Farben 439

Fehlerbehandlung 313

Feld 329

File 360

FileNameExtensionFilter 404

fill 428

FilterReader 381

FilterWriter 381

final 198

fireTableDataChanged 490

First Person Inc. 31

Fließkommazahlentypen 68

Fokus 299

Form 265

Formular 265

for-Schleife 117

Fortran 29

Füllmuster 429

G

Ganzzahlentypen 67

Garbage Collector 335

getButton() 447

getClickCount() 447

getColumnClass 490

getColumnCount 489

getColumnName 490

getGraphics 426

getLocationOnScreen() 447

getName() 468

getPoint() 447

getPriority() 469

getRowCount 489

getScrollAmount() 448

getScrollType() 448

getSelected 421, 423

getSelectedFile() 367

Getter-Methode 201

getValueAt 489, 492

getWheelRotation() 448

getX() 447

getXOnScreen() 447

getY() 447

getYOnScreen() 447

Gosling, James 31

GradientPaint 429

Grafikausgabe 412

Graphics 397, 413

Graphics2D 427

Green Project 31

GUI 258, 265

GUI-Forms 265

Gültigkeitsbereich 123

H

Haltepunkte 150

HIDE_ON_CLOSE 273

horizontalTextPosition 391

HotJava 32

HSB-Modell 439

I

icon 393

iconImage 395

if-Anweisung 103

Image 396

ImageIcon 392

ImageIO 395

ImageIO.getReaderFormat-

Names() 395

ImageIO.getReaderMIME-

Types() 396

ImageIO.read() 396

Imperativer Ansatz 30

Implementierung 23, 211, 212

implements 215

Initialisierung 66

Inkrement 91

InputStream 368, 369

Instant 243

Instanz 163

Instanzenzähler 195

Interfaces 215

Internet Explorer 32

Interpreter 27

invalidate 414

isAltDown() 447

isCellEditable 490

isControlDown() 447

isInterrupted() 468

isMetaDown() 448

Index

535

isShiftDown() 447

Iterationen 115

J

JAmpelPanel 460

Java 15

Java 2D-API 427

Java Development Kit � JDK

Java Runtime Environment

� JRE

java.awt.Color 439

java.awt.geom 428

java.io 369

java.lang.Thread 467

javac.exe 37

Java-Swing-API 259

javax.imageio 395

javax.sound.sampled 405

javax.swing 107

javax.swing.ImageIcon 393

javax.swing.table.Table-

Model 489

JCheckBox 421, 422

JColorChooser 442

JDBC 503

Treiber 504

JDBC-ODBC-Bridge 504

JDK 32, 35

JFC 258

JFileChooser 365

JFrame 265

JList 346

joe 127

join 429

join() 469

JRadioButton 421, 422

JRE 32, 35

JRE System Library 134

JScrollPane 350

JTable 482

JTextPane 386

K

KeyEvent 301

Klasse 138, 156

abstrakte 214, 265

Klassen- und Interface-

namen 62

Kommentar 62

Dokumentations- 63

einzeiliger 62

mehrzeiliger 63

Komponentenpalette 280

Konkatenation 92, 224

Konstruktor 185

Custom- 187

Default- 186

verketten 188

Kontrollstrukturen 101, 156

Kreuzungspunkte 429

L

Lastenheft 21

Laufzeitfehler 313

Laufzeitumgebung 35

Launch Configuration 521

length 227

Linienart 429

Linienenden 429

LISP 30

Listener 291

Literale 60, 65

LocalDate 250

LocalDateTime 254

LocalTime 252

Logische Verknüpfungen 95

Look & Feel 289

Lovelace, Ada 16

M

main-Methode 139

MANIFEST.MF 520

Mausereignisse 443, 444

MAX_PRIORITY 468

Menu 280

META-INF 520

MIN_PRIORITY 468

Modal 443

Modifier 195

Modula 29

Modulo 91

MonthDay 252

mouseClicked 446

mouseDragged 446, 450

mouseEntered 446

MouseEvent 445, 447

mouseExited 446

MouseListener 445

MouseMotionListener 446

mouseMoved 446

mousePressed 446, 450

mouseReleased 446, 450

MouseWheelEvent 447, 448

mouseWheelMoved 446

Multitasking 457, 458

Multithreading 457

MySQL-Connector 504

MySQL-Datenbank 504

N

Namenskonventionen 62

Naming Conventions 62

Nassi-Shneiderman-

Struktogramm 19

Netscape Navigator 32

NICHT 95

NORM_PRIORITY 468

notify() 478

notifyAll() 478

null 60, 83

NumberFormatException

106

O

Oak 31

Object 492

Object Application Kernel

� Oak

Objekt 156, 163

Objektorientierung 156

Index

536

ODBC 503

ODER 95

open 405

Open Source 128

Operationen, arithme-

tische 86

Operatoren 66, 86

arithmetische 90

logische 95

relationale 88

Vergleichs- 89

Zuweisungs- 87, 88

Oracle 35

OutputStream 369

P

Package 158

Package Explorer 132

paint 413

paintBorder() 413

paintChildren() 413

paintComponent 397

paintComponent() 413

Paketsichtbarkeit 203

Panel 265, 276

PAP � Programmablaufplan

Parameter 178

Pascal 29

Perl 29

Perspektive 132

Debug- 151

default 132

PHP 29

Plattformunabhängigkeit 33

Plug-in 128, 260

Portierung 26

Postfix 91

Präfix 91

pressedIcon 393

PrintStream 368

Priorität 87, 90, 92

Produktdefinition 21

Programmablauf 101

Programmablaufplan 19, 101

Programmfenster 265

Programmierschnittstelle 32

Projekt 40

PROLOG 30

Prozess 458

Prozessor 26

Pseudo-Typ 185

Q

Quellcode 39

Quick-Fix 184

R

Radiobutton 419

RadioGroup 422

raw type 436

raw-Type 348

Reader 372

readLine() 82

Referenzvariable 164

Reihung 329

removeRow 497

repaint 414

Reparsing 286

requestFocus 299

return 183

RGB 416

RGB-Modell 439

rolloverIcon 394

rolloverSelectedIcon 394

run() 469

Rundungsfehler 89, 90

Runnable 467

Runnable .jar-Archiv 521

S

Schleifen 115

Schlüsselwörter 60

Schnittstelle 211

Schreibtischtest 150

Scope 123

Scrollbalken 346, 350

Selbstreferenz 176

selectAll 300

selected 423

selectedIcon 394

selectionMode 353

Selektion 102

Sequenz 101

setColor 416, 429

setDefaultCloseOperation

272

setFileFilter 404

setIcon 391, 392

setLocationRelativeTo 272

setPaint 429, 430

setPriority(int p) 469

setSelected 423

setStroke 429

Setter-Methode 202

setValueAt 490

shape 428

showDialog 442

showMessageDialog 83

showOpenDialog 366, 367

showSaveDialog 366

Slash 360

sleep(long m) 469

Sprunganweisungen 118

SQL 128, 482

static 195

Statische Methoden 197

Stream 368

byteorientiert 369

zeichenorientiert 369

StreamInputReader 82

Strichstärke 429

String 223

StringBuffer 232

StringBuilder 232

Stringlänge 227

Stringliterale 70

Struktogramm 101

Subklasse 206

Sun Microsystems 35

Superklasse 206

Swing 258

switch-case-Anweisung 111

synchronized 477

System.err 368

System.in 82, 368

System.out.print 69

System.out.println 69

Index

537

T

TableModel 483

Task 458

Tastatureingabe 82

Textkonsole 47

this 176

Thread 271, 457, 458

Thread() 468

Throwable 320

Toggle 394

toString 492

Transparenz 440

true 60, 67

try 317

try-catch 272

Typumwandlung 90

explizite 88

implizite 88

U

Überladen 181

UND 95

Unicode-Zeichensatz 67

update 414

V

valueOf 230

Variablen 63

Variablennamen 62

Vererbung 206

Vergleichsoperatoren 86

Verketten 224

Konstruktoren 188

Verkettung 92

Verschachtelung 109

von if-Anweisungen 111

verticalTextPosition 392

vi 127

Virtuelle Maschine � VM

Visual C# 29

Visual C++ 29

VM 32, 35

void 185

W

Wahrheitswert 67

wait() 478

WebRunner 32

Wertzuweisung 66

while-Schleife 116

Wiederholungsstruk-

turen 115

WindowBuilder 260

windowClosed 491

WindowListener 491

Windows 8 39

Wizards 265

Workbench 39, 40

Workspace 131

World Wide Web 30

Wrapper-Klassen 106, 235

Writer 372

Y

Year 252

YearMonth 252

yield() 469

Z

Zeichentyp 67

Hans-Peter Habelitz

Programmieren lernen mit Java
537 Seiten, broschiert, mit DVD, 3. Auflage 2015
19,90 Euro, ISBN 978-3-8362-3517-4

 www.rheinwerk-verlag.de/3776

Wir hoffen sehr, dass Ihnen diese Leseprobe gefallen hat. Sie dürfen sie ger-
ne empfehlen und weitergeben, allerdings nur vollständig mit allen Seiten.
Bitte beachten Sie, dass der Funktionsumfang dieser Leseprobe sowie ihre
Darstellung von der E-Book-Fassung des vorgestellten Buches abweichen
können. Diese Leseprobe ist in all ihren Teilen urheberrechtlich geschützt.
Alle Nutzungs- und Verwertungsrechte liegen beim Autor und beim Verlag.

Teilen Sie Ihre Leseerfahrung mit uns!

Hans-Peter Habelitz unterrichtet Informatik an einer
Berufsschule. Er hat schon vielen Einsteigern das Pro-
grammieren beigebracht. Sein Wissen über wirksamen
Unterricht hat er über 10 Jahre lang als Dozent für
Fachdidaktik der Informatik an angehende Lehrer wei-
tergegeben.

Wissen, wie’s geht.

https://www.rheinwerk-verlag.de/programmieren-lernen-mit-java_3776/?GPP=lpn
https://www.facebook.com/rheinwerkverlag
https://plus.google.com/118435207805510651040
http://twitter.com/rheinwerkverlag

