Wissen, wie's geht.

Hans-Peter Habelitz

rED

U JAVA ARRAY

RUNTIME

ANIMATION

WRAPPER CLASS

W Javaio

USER INTERFACE
‘l ' ‘

‘ammieren lernen
it Java

—>

CONTAINER CUP

P

|

Programmieren lermen mit Java

LOOK & FEEL CUP PLUGIN PLUGIN HIERARCHY CUP
. Keine
Vorkenntnisse
. erforderlich

SYNTAX CUP GARBAGE COLLECTOR

Hns-Pefey JAVA BASICS

» Vom ersten Programm bis zur fertigen Anwendung

itvi ispi J fgaben
» Mit vielen Beispielen und Ubungsau. .
» Inkl. Objektorientierung, windowBuilder, Datenbanken u.v.m

Inkl. Java Standard Editionmin Computing
ram

— 3. aktualisierte Auflage c Rheinwerk
’

- Beispielprog
== und allen pielp

® Rheinwerk

Computing

Leseprobe

Hans-Peter Habelitz zeigt Ihnen, dass der Einstieg in die Programmierung
von Java leicht gelingen kann. Er macht Sie in dieser Leseprobe mit den
Grundlagen vertraut. AufSerdem kénnen Sie einen Blick in das vollstandi-
ge Inhalts- und Stichwortverzeichnis des Buches werfen.

»Grundbausteine eines Java-Programmsc«
»Klassen und Objekte«

Inhaltsverzeichnis

% Index

9 Der Autor

Leseprobe weiterempfehlen

Hans-Peter Habelitz
Programmieren lernen mit Java

537 Seiten, broschiert, mit DVD, 3. Auflage 2015
19,90 Euro, ISBN 978-3-8362-3517-4

-E www.rheinwerk-verlag.de/3776

mailto:?body=Leseproben-Empfehlung: �Programmieren lernen mit Java�, Rheinwerk Verlag, http://gxmedia.galileo-press.de/leseproben/3776/leseprobe_rheinwerk_programmieren_lernen_java.pdf&subject=Leseprobe: �Programmieren lernen mit Java�
https://www.rheinwerk-verlag.de/programmieren-lernen-mit-java_3776/?GPP=lpn

Kapitel 2
Grundbausteine eines
Java-Programms

Der grofse Weg ist sehr einfach, aber die Menschen lieben die Umwege.
(Laotse, Tao Te King, libers. Zensho W. Kopp)

Im vorigen Kapitel haben Sie bereits Java-Programme erstellt. Dabei waren die Quell-
texte vorgegeben, weil Sie zundchst die grundlegenden Arbeitsablaufe und die Werk-
zeuge, die dafiir bendtigt werden, kennenlernen sollten. In diesem Kapitel stehen nun
die Sprachelemente von Java im Mittelpunkt.

2.1 Bezeichner und Schliisselworter

Bezeichner sind Namen flr Elemente, die im Programm verwendet werden. Sie sind
nicht von Java vorgegeben, sondern werden vom Programmierer, also von lhnen, als
Namen fir die Elemente festgelegt, die Sie verwenden mochten. Bezeichner konnen aus
beliebig vielen Zeichen und Ziffern bestehen, miissen aber immer mit einem Buchsta-
ben beginnen. Zu den Buchstaben gehoren auch Wahrungszeichen (wie z. B. das Dollar-
zeichen $) und Sonderzeichen wie der Unterstrich . Gro3- und Kleinschreibung werden
unterschieden. Das heifdt, dass zahl ein anderer Bezeichner ist als Zahl. Bezeichner kon-
nen frei gewahlt werden, dirfen aber nicht mit Schliisselwortern der Sprache und den
Literalen true, false und null Ubereinstimmen, die in Java eine bereits festgelegte
Bedeutung haben.

Am Beispiel der Ubungsaufgabe 2 des vorigen Kapitels konnen Sie leicht nachvollzie-
hen, an welchen Stellen im Quellcode Bezeichner und Schliisselworter verwendet
werden:

/* Kreisberechnung: Fiir einen Kreis werden der Umfang und der
* Fldcheninhalt berechnet.

* Der Kreisradius wird beim Programmstart als Parameter

* Ubergeben.

*/

60

2.1 Bezeichner und Schliisselworter

public class Kreisberechnung2 {
public static void main(String[] args) {
double radius;
double umfang, inhalt;
radius = Double.parseDouble(args[0]);
umfang = 2.0 * 3.1415926 * radius;
inhalt = 3.1415926 * radius * radius;
System.out.print("Unfang: ");
System.out.println(umfang);
System.out.print("Flaeche: ");
System.out.println(inhalt);
}
h

Listing 2.1 Quellcode der Aufgabe 2 aus Kapitel 1

In Listing 2.1 werden als Bezeichner Kreisberechnung2 sowie radius, umfang und inhalt
verwendet.

Welche Bezeichner bereits als Schliisselworter vergeben sind, sehen Sie in Tabelle 2.1. Sie
listet die in Java reservierten Schliisselworter auf.

Schliisselworter von Java

abstract default if protected throws
assert do implements public transient
boolean double import return try
break else instanceof short void
byte enum int static volatile
case extends interface strictfp while
catch final long super

char finally native switch

class float new synchronized

const for package this

continue goto private throw

Tabelle 2.1 Schliisselworter in Java

61

2 Grundbausteine eines Java-Programms

Die Bedeutung jedes einzelnen Schlisselwortes soll im Augenblick nicht erldautert
werden. Die Erlauterungen werden dort folgen, wo die Schlisselworter eingesetzt
werden. Die Liste soll hier nur zeigen, welche Bezeichner Sie als Programmierer fir
eigene Zwecke nicht verwenden durfen.

In Listing 2.1 werden als Schliisselworter vor dem Klassenbezeichner Kreisberechnung?
z.B. public class verwendet, und vor den Bezeichnern radius, umfang und inhalt steht
das Schltsselwort double.

Die in Kapitel 1 erwdahnten Code Conventions enthalten auch Namenskonventionen
(Naming Conventions).

Namenskonventionen

» Bezeichner werden mit gemischter Gro3- und Kleinschreibung geschrieben. Grol3-
buchstaben dienen dem Trennen von Wortstammen, z. B. kreisRadius, mittlerer-
Wert.

» Variablennamen beginnen mit Kleinbuchstaben, z.B. meinKonto, anzahlZeichen.
Namen von Konstanten werden mit GroRBbuchstaben geschrieben. Einzelne Worter
werden durch den Unterstrich getrennt, z. B. MAX_WERT.

» Klassennamen beginnen mit einem GroBbuchstaben, z. B. ErstesBeispiel. Da Klas-
sennamen als Teil des Namens der Datei verwendet werden, die die Klasse im Byte-
code enthalt, unterliegen diese auch den Regeln des jeweiligen Betriebssystems.

Wie bereits erwdhnt wurde, handelt es sich bei den genannten Konventionen um frei-
willige Vereinbarungen, die keineswegs eingehalten werden miussen. Sie haben sich
aber in weiten Bereichen durchgesetzt und sind Zeichen professionellen Program-
mierens.

2.2 Kommentare

Kommentare im Quellcode sind Texte, die vom Compiler beim Ubersetzen nicht beach-
tet werden. Mit Kommentaren konnen Sie fiir sich selbst und fiir andere Leser Hinweise
in den Quellcode einfligen.

In Java konnen drei unterschiedliche Arten von Kommentaren verwendet werden:

> Einzeilige Kommentare
Sie beginnen mit // und enden automatisch mit dem Ende der Zeile.

Beispiel:

int anzahl; // z&hlt die gelesenen Zeichen

62

2.3 Variablen und Datentypen

» Mehrzeilige Kommentare
Sie beginnen mit /* und enden mit */. Da fiir das Ende des Kommentars eine Zei-
chenfolge eingegeben werden muss, kann sich der Kommentar tiber mehrere Zeilen
erstrecken.

Achtung: Der Kommentar darf die Zeichenfolge */ nicht enthalten, denn dadurch
wurde der Kommentar beendet.

Beispiel:

/* Dieser Kommentar ist etwas ldnger

und erstreckt sich Uber zwei Zeilen.

*/

Die Zeichenfolge /* und */ muss nicht am Zeilenanfang stehen. Der Kommentar
kann an beliebiger Stelle beginnen.

» Dokumentationskommentare
Sie beginnen mit /** und enden mit */ und konnen sich ebenfalls (iber mehrere Zei-
len erstrecken. Sie werden gesetzt, um vom JDK-Werkzeug javadoc automatisch eine
Programmdokumentation erstellen zu lassen.

Nach den Code Conventions sollte jedes Programm mit einem beschreibenden Kom-
mentar beginnen. Innerhalb des Programmtextes konnen weitere Kommentare einge-
fligt werden, um z. B. Aufgaben von Klassen, Methoden und Variablen zu erlautern.

2.3 Variablen und Datentypen

Sollen in einem Programm Daten zur Be- und Verarbeitung zur Verfiigung gestellt wer-
den, so werden Variablen als Behalter benotigt. Variablen konnen als Namen fiir einen
Speicherplatz im Hauptspeicher aufgefasst werden. An diesem Speicherplatz wird der
Wert der Variablen abgelegt. Der Wert kann dann im Laufe des Programmablaufs ausge-
lesen und verdndert werden. Wie grof3 dieser Speicherplatz ist und welche Art von
Daten darin abgelegt werden konnen, wird durch den Datentyp festgelegt. Durch die
begrenzte Grof3e des Speicherbereichs ist auch der Wertebereich der Variablen begrenzt
(siehe Abbildung 2.1).

Datentyp Name

int zahlil; Wert

Arbeitsspeicher

2387 |

Abbildung 2.1 Variablendefinition

63

2 Grundbausteine eines Java-Programms

Zur Deklaration geben Sie den Datentyp und — durch ein Leerzeichen getrennt — den
Namen der Variablen an. Abgeschlossen wird die Deklaration wie jede Anweisung durch
ein Semikolon:

Datentyp variablenname;

Werden mehrere Variablen des gleichen Typs benotigt, dann kann hinter dem Datentyp
auch eine Liste der Variablennamen folgen. Die Liste besteht aus den durch Kommata
getrennten Variablennamen:

Datentyp variablennamel, variablenname2, ...;

Merke

Eine Variablendeklaration besteht aus dem Datentyp, gefolgt von einem einzelnen
Variablenbezeichner oder einer durch Kommata getrennten Liste von Variablenbezeich-
nern. Sie wird durch ein Semikolon abgeschlossen.

Java kennt acht sogenannte primitive Datentypen, die Sie in Tabelle 2.2 aufgelistet

finden.
Datentyp | Verwendung GroRe | GroRBe | Wertebereich
in Byte | in Bit

boolean Wahrheitswert | 1 8 false, true

char Zeichen 2 16 0 bis 65.535

byte Ganzzahl 1 8 —128 bis 127

short Ganzzahl 2 16 —32768 bis 32.767

int Ganzzahl 4 32 —2.147.483.648 bis 2.147.483.647

long Ganzzahl 8 64 —9.223.372.036.854.775.808 bis
9.223.372.036.854.775.807

float Kommazahl 4 32 Betrag ca. 1,4 x 10~ bis 3,4 x 1038
(Genauigkeit ca. sieben Stellen)

double Kommazahl 8 64 Betrag ca. 4,9 x 10734 bis 1,7 x 10308
(Genauigkeit ca. 15 Stellen)

Tabelle 2.2 Primitive Datentypen

64

2.3 Variablen und Datentypen

Konkrete Werte wie die Zahlen 13, 28, 1.5 werden als Literale bezeichnet. Beachten Sie,
dass im Java-Quellcode die englische Notation gilt. Deshalb ist bei Kommazahlen der
Punkt als Dezimaltrennzeichen zu verwenden.

Merke +

Bevor eine Variable in einem Programm verwendet werden kann, muss sie deklariert
werden. Dabei werden der Datentyp und der Name (Bezeichner) festgelegt.

Als Dezimaltrennzeichen wird der Punkt verwendet.

2.3.1 Namenskonventionen fiir Variablen

Die Namenskonventionen machen zu Variablenbezeichnern folgende Aussagen:

» Variablennamen werden in gemischter Grof3-, Kleinschreibung geschrieben, begin-
nen aber immer mit einem Kleinbuchstaben, z. B. zah11, mittelwert, kleinsteZahl.

» Setzen sich Variablennamen aus mehreren Wortern zusammen, werden die internen
Worter mit Grofibuchstaben begonnen, z. B. groessterRadius, anzahlSpieler.

» Variablenbezeichner sollten kurz und dennoch aussagekraftig sein, z. B. ggT statt
groessterCGemeinsamerTeiler.

» Variablenbezeichner, die nur aus einem Buchstaben bestehen, sollten vermieden
werden. Sie sollten lediglich als kurzlebig verwendete Variablen, z. B. als Schleifen-
zdhler, eingesetzt werden.

Die Variablenbezeichner kurz und aussagekraftig zu halten, ist in der deutschen Spra-
che nicht immer ganz einfach. Viele Programmierer weichen deshalb oft auch bei Varia-
blenbezeichnern auf die englische Sprache aus.

Beispiele fiir Variablendeklarationen:

boolean gefunden;
char zeichen;

short s1, s2, s3, s4;
inti, j, k;

long grosseZahl;

float ePreis;

vV V. vV VvV v v v

double radius, umfang;

65

2 Grundbausteine eines Java-Programms

2.3.2 Wertzuweisung

Der Wert einer Variablen wird durch eine Wertzuweisung festgelegt. Die Wertzuweisung
ist ein Speichervorgang, fiir den der Operator = verwendet wird. Dabei wird der Wert des
Ausdrucks, der rechts vom Gleichheitszeichen steht, in der Variablen gespeichert, die
links vom Gleichheitszeichen steht.

Durch die Wertzuweisung

zahll = 1234;

wird entsprechend in der Variablen zahll der Wert 1234 gespeichert (sieche Abbildung
2.2). Dabei wird immer der urspriingliche Wert der Variablen durch den neuen Wert
uberschrieben (siehe Abbildung 2.3).

int zahll; wert

Arbeitsspeicher

2387 |

\ﬂ_/
4 Byte

Abbildung 2.2 Variable vor der Wertzuweisung

int zahll; \wert der Variablen

Arbeitsspeicher

1234 |

%/_/
4 Byte

Abbildung 2.3 Variable nach der Wertzuweisung
Eine Wertzuweisung kann auch mit der Definition verbunden werden:
int zahll = 1234;

Dadurch wird bei der Variablendefinition direkt auch der Wert definiert, der in der
Variablen gespeichert sein soll. Diese erste Zuweisung eines Wertes an eine Variable
wird Initialisierung genannt.

2.3.3 Die primitiven Datentypen im Einzelnen

In den folgenden Abschnitten werden die primitiven Datentypen nédher erlautert, bevor
Sie in einigen Beispielen den Umgang mit diesen Datentypen tiben konnen.

66

2.3 Variablen und Datentypen

»boolean«

Dieser Datentyp wird als Wahrheitswert bezeichnet. Er kann nur einen von zwei Werten
(Literalen) annehmen (true oder false). Er wird tiberall dort benétigt, wo Entscheidun-
gen zu treffen sind.

»char«

Der Zeichentyp char dient dazu, ein einzelnes Zeichen des Unicode-Zeichensatzes zu
speichern. Literale werden zwischen einfachen Anfithrungszeichen angegeben (z. B. 'a’
fir den Buchstaben a). Mithilfe sogenannter Escape-Sequenzen konnen auch Zeichen
mit einer ganz speziellen Bedeutung angegeben werden. Eine Escape-Sequenz beginnt
mit dem Backslash-Zeichen (\), dem das eigentliche Zeichen folgt. In der Zeichenfolge \t
z. B. wird durch das Backslash-Zeichen angegeben, dass der Buchstabe t nicht als einfa-
cher Buchstabe zu verstehen ist, sondern als ein Tabulatorzeichen. Tabelle 2.3 gibt einen
Uberblick tber die wichtigsten Escape-Sequenzen.

Escape-Sequenz Bedeutung

\b Backspace

\t Tabulator

\n Neue Zeile (Newline)

\f Seitenvorschub (Formfeed)

\r Wagenricklauf (Carriage return)
\" Doppeltes Anfiihrungszeichen "
\' Einfaches Anflihrungszeichen '
\\ Backslash \

Tabelle 2.3 Escape-Sequenzen

Hinweis fuir OS X-User +

Den Backslash (\) erreichen Sie auf der Mac-Tastatur mit der Tastenkombination

(o] +[ant] + (7).

nbyte«, »short«, »int« und »long«

Die Ganzzahlentypen sind vorzeichenbehaftet. Das heif3t, sie kdnnen positiv oder nega-
tiv sein. Wie in der Mathematik tblich, muss bei positiven Zahlenwerten das Vorzei-

67

2 Grundbausteine eines Java-Programms

chen nicht angegeben werden. Negative Werte erhalten wie gewohnt das vorangestellte
negative Vorzeichen. Die vier unterschiedlichen Datentypen fiir ganze Zahlen unter-
scheiden sich lediglich durch den Wertebereich. Wie Sie Tabelle 2.2 entnehmen kénnen,
lassen sich im Datentyp byte nur Zahlenwerte von 128 bis 127 speichern. Fur groflere
Zahlenwerte miussen Sie auf einen der drei ubrigen Ganzzahltypen ausweichen. Je gro-
BBer der Wertebereich eines Datentyps ist, desto mehr Speicherplatz wird durch ihn
belegt. Bei den heute verfiigbaren SpeichergrofRen spielt das Argument, dass man durch
eine geschickte Wahl der Datentypen Speicherplatz einsparen kann, nicht mehr eine so
grof3e Rolle. Sie sollten deshalb den Standardtyp int fiir ganze Zahlen verwenden und
nur dann davon abweichen, wenn Sie sicher sind, dass der Wertebereich nicht ausreicht
oder auf jeden Fall unnotig grofd gewahlt ist.

»float« und »double«

Zur Speicherung von Kommazahlen stehen FlieSkommazahlentypen zur Verfigung.
Wie bei den ganzzahligen Datentypen unterscheiden sich diese beiden Typen durch den
Wertebereich (siehe Tabelle 2.2), den die zu speichernden Zahlenwerte umfassen kon-
nen. Zusdtzlich unterscheiden sich die beiden Datentypen durch die Genauigkeit. In ei-
nem float konnen die Zahlenwerte auf circa sieben Nachkommastellen genau
gespeichert werden. Der Datentyp double ermoglicht eine Genauigkeit von circa 15
Nachkommastellen. Als Standardtyp sollten Sie double verwenden. Literale von Flief3-
kommazahlen werden in dezimaler Form geschrieben. Sie konnen aus einem Vorkom-
mateil, einem Dezimalpunkt, einem Nachkommateil, einem Exponenten und einem
Suffix bestehen. Es muss mindestens der Dezimalpunkt, der Exponent oder das Suffix
vorhanden sein, damit das Literal von einer ganzen Zahl unterschieden werden kann.
Wird ein Dezimalpunkt verwendet, so muss vor oder nach dem Dezimalpunkt eine Zif-
fernfolge stehen. Dem Vorkommateil und dem Exponenten kann ein Vorzeichen (+
oder -) vorangestellt werden. Der Exponent wird durch ein e oder E eingeleitet und steht
fiir »mal 10 hoch dem Exponenten« (x 10FxPonent) ‘Wwird kein optionales Suffix angege-
ben, wird das Literal als double interpretiert. Mit dem Suffix f oder F wird das Literal aus-
druicklich zum float, mit dem Suffix d oder D wird es ausdriicklich zum double erklart.

Beispiele fiir giiltige Flieff}kommaliterale:

2.5 .3 -4. -1.3e5 56.234f

2.3.4 Praxisbeispiel 1zu Variablen

Die folgenden Darstellungen sollen helfen, die theorielastigen Ausfithrungen zu Varia-
blen und Datentypen verstandlicher zu machen. Wir erstellen dafiir ein Java-Projekt mit
dem Namen JavaUebung0O2. Legen Sie also in der Arbeitsumgebung neben dem Ordner
JavaUebungOl einen zweiten Ordner mit dem Namen JavaUebungO2 an.

68

2.3 Variablen und Datentypen

Im Projekt JavaUebungO2 legen Sie zundchst eine Klasse mit dem Namen Variablenl an.
Dazu erstellen Sie eine neue Textdatei mit dem Namen Variablenl, in der Sie die gleich-
namige Klasse mit ihrer main-Methode anlegen:

public class Variablenl {
public static void main(String[] args) {

In der main-Methode dieser Klasse sollen die folgenden Variablen deklariert werden:

bZahl als byte
sZahl als short
iZahlals int
1Zah1 als long
fZahl als float
dZahl als double

bestanden als boolean

vV V. vV vV vV v v VY

zeichen als char

Das konnen Sie bereits selbst. Vergleichen Sie Thr Ergebnis mit Listing 2.2.

Nun sollen Sie den Variablen die in Tabelle 2.4 vorgegebenen Werte zuweisen. Verglei-
chen Sie Ihr Ergebnis wieder mit Listing 2.2.

Variable Wert

bZahl 28

sZahl —18453

izahl 4356576
17ahl 345236577970
fZahl 437456678
dzahl 3645.564782
bestanden true

zeichen %

Tabelle 2.4 Wertzuweisungen

Wir wollen nun aber noch einen Schritt weitergehen und die Variablen mit der Anwei-
sung System.out.println bzw. System.out.print in der Konsole ausgeben. Dabei sollen

69

2 Grundbausteine eines Java-Programms

in jeweils einer Zeile der Name der Variablen und der Wert der Variablen, z. B. nach fol-
gendem Muster, stehen:

bzahl = 28

Sie haben die Anweisung System.out.print bzw. println bereits in den ersten Ubungs-
aufgaben verwendet. Die genauere Bedeutung der drei durch Punkte getrennten
Bezeichner werden Sie in Kapitel 5, »Klassen und Objekte«, und Kapitel 6, »Mit Klassen
und Objekten arbeiten«, erfahren. Wie in Abschnitt 1.3.2, »Wie sind Java-Programme
aufgebaut?«, erlautert wurde, unterscheiden sich print und println lediglich dadurch,
dass println nach der Ausgabe noch einen Zeilenvorschub erzeugt. Dadurch stehen die
folgenden Ausgaben in einer neuen Zeile. In den ersten Programmbeispielen wurden
die beiden Methoden verwendet, um konstante Texte (Literale) auszugeben. Solche
Text-Literale (Stringliterale) erkennen Sie daran, dass sie zwischen Anfiihrungszeichen
stehen. Das folgende Beispiel stammt aus dem Hallo-Welt-Programm:

System.out.println("Hallo Welt!");

Die beiden print-Anweisungen sind sehr flexibel und kénnen nicht nur Texte ausge-
ben. Ubergeben Sie in der Klammer einen Variablennamen, so wird von der print-
Anweisung der Wert der Variablen ausgegeben. Damit konnen Sie diese Methoden sehr
gut nutzen, um zu priifen, ob Wertzuweisungen an Variablen erfolgreich ausgefiihrt
wurden.

Zur Kontrolle der Wertzuweisungen ergianzen Sie jetzt noch die Ausgabeanweisungen
mit System.out.print bzw. System.out.println. Verwenden Sie fiir jede Variable einen
eigenen println-Befehl. Geben Sie jeweils zuerst mit print den Namen der Variable,
gefolgt von einem Gleichheitszeichen, aus. Fur die folgende Ausgabe des Variablenwer-
tes verwenden Sie println, damit die folgende Ausgabe des ndchsten Variablennamens
in einer neuen Zeile steht. Hier nun der vollstindige Quelltext:

/* Programm zum Testen der Verwendung von Variablen
* Datum: 2011-11-30
* Hans-Peter Habelitz

*/

public class Variablenl {
public static void main(String[] args) {

// Variablendeklarationen

byte bZahl;
short szZahl;

70

2.3 Variablen und Datentypen

int iZahl;

long 1Zahl;

float fZahl;
double dZahl;
boolean bestanden;
char zeichen;

// Wertzuweisungen
bZahl = 28;

sZahl = -18453;
iZahl = 4356576;
17ahl = 345236577970;
fZahl = 4.37456678;
dZahl = 3645.564782;
bestanden = true;
zeichen = '%";

// Ausgabe der Variablenwerte
System.out.print("bzahl=");
System.out.println(bZahl);
System.out.print("szahl=");
System.out.println(szahl);
System.out.print("izahl=");
System.out.println(izZahl);
System.out.print("17ahl=");
System.out.println(1zahl);
System.out.print("fzahl=");
System.out.println(fZahl);
System.out.print("dzahl=");
System.out.println(dzahl);
System.out.print("bestanden=");
System.out.println(bestanden);
System.out.print("zeichen=");
System.out.println(zeichen);
}
¥

Listing 2.2 Quelltext zu Aufgabe 1
Auch wenn Sie den Quelltext fehlerfrei von oben iibernommen haben, werden Sie beim

Ubersetzen die Fehlermeldung aus Abbildung 2.4 erhalten. Der Compiler meldet: inte-
ger number too large. Ein ganzzahliger Wert innerhalb des Quellcodes wird vom Java-

I

2 Grundbausteine eines Java-Programms

Compiler immer als int-Wert (Standard flir ganzzahlige Zahlenwerte) interpretiert. Das
gilt auch, wenn wie hier auf der linken Seite der Wertzuweisung eine Variable vom Typ
long angegeben ist. Soll ein ganzzahliger Zahlenwert als long interpretiert werden, so
miissen Sie dies dem Compiler durch Anhéngen des Buchstabens L (Klein- oder Grof3-
buchstabe) anzeigen. Wegen der besseren Lesbarkeit sollte der Grofibuchstabe verwen-
det werden, da der Kleinbuchstabe sehr leicht mit der Ziffer 1 (eins) verwechselt werden
kann:

17ahl = 345236577970L;

BN Eingabeaufforderung = [1]

H:“\Java‘\ProgrammesJavalebungB2 >javac Variahlenl. java
Uariablenl.java:23: error: integer numbher too large: 345236577978
1Zahl = 345236577970;

i error

H:“JavasProgrammesJavalebungB2 >

Abbildung 2.4 Fehlermeldung beim ersten Kompilieren

Ergdnzen Sie also die Zahlenangabe entsprechend, und starten Sie die Ubersetzung
erneut. Sie werden eine weitere Fehlermeldung erhalten (siehe Abbildung 2.5).

BN Eingabeaufforderung

H:“Java‘\Programme~JavallebungB2 >javac Uariablenl. java
Uariablenl. java:23: error: integer number too large: 345236577978
1Zahl = 3452365779708;

s

1l error

H:“Java“\Programme~JavallebungB2 > javac Uariabhleni. java
prop: possible loss of precision

Wariablenl. java:24: er
fZahl = 4.37456678;

required: float
found: double

Eerror

:sJavasProgrammesJavalebungB2 >

Abbildung 2.5 Fehlermeldung beim zweiten Ubersetzungsversuch

Kommazahlen im Quellcode werden standardmafiig als double-Werte interpretiert. Der
Zahlenwert soll aber einer float-Variablen zugewiesen werden. Sie ahnen es wahr-
scheinlich schon: Der Zahlenwert muss durch Anhangen des Buchstabens f oder F aus-
drucklich als float-Typ kenntlich gemacht werden. Nach der Korrektur

fZahl = 4.37456678f;

ist der Ubersetzungsvorgang erfolgreich, und das Programm sollte die in Abbildung 2.6
dargestellte Ausgabe zeigen.

72

2.3 Variablen und Datentypen

BN Eingabeaufforderung = [B S

H:~JavasProgrammesJavallebungB2>java Uariableni
hZahl=28

lsZahl=—18453

iZahl=4356576

1Zahl1=345236577978

f Zahl=4.3745666

dZahl=3645.564782

(hestanden=true

=eichen=x

H:“JavasProgramme“sJavalebungB2 >

Abbildung 2.6 Ausgabe von Aufgabe 1

2.3.5 Haufiger Fehler bei der Variablendeklaration

Abbildung 2.6 zeigt die Ausgabe der println-Anweisungen aus Listing 2.2. Einen Fehler,
den Programmieranfanger haufig begehen, mochte ich an dieser Stelle ansprechen. Der
Quellcode ist fehlerbereinigt, denn der Compiler erzeugt keine Fehlermeldungen. Die
Ausgabeanweisungen werden ausgefiihrt und zeigen die Variablenwerte an. Program-
mieranfinger geben sich mit diesen Uberprifungen zufrieden und sehen die Aufgabe
als gelost an. Das Testen eines als fertig angesehenen Programms ist eine der aufwen-
digsten Aufgaben beim Programmieren. Hier ist sehr grof3e Sorgfalt geboten, d. h., dass
die Programmergebnisse sehr genau tiberpriift werden miissen. In unserem Beispiel, in
dem keinerlei Eingaben des Anwenders erfolgen, ist das noch relativ einfach. Ein
genauer Blick auf die ausgegebenen Werte zeigt aber auch hier, wie leicht Fehler tiberse-
hen werden.

Uberpriifen Sie die Ausgabe der Variable fzahl, indem Sie den ausgegebenen Wert mit
dem zugewiesenen Wert vergleichen. Es wird offensichtlich ein etwas anderer Wert aus-
gegeben. Wo liegt die Ursache fiir diese Abweichung? Der zugewiesene Wert umfasst
acht Nachkommastellen. In Tabelle 2.2 sind als Genauigkeit fir float-Werte — und als
solchen haben wir den Zahlenwert gekennzeichnet - sieben Nachkommastellen ange-
geben. Der Compiler war gezwungen, den Wert so anzupassen, dass er in den Speicher-
platz passt, der fur eine float-Variable zur Verfligung steht. Bei dieser Anpassung wird
aber nicht ab- oder aufgerundet, sondern es entsteht ein abweichender Wert, der nur
schwer vorhersehbar ist. Solche Verfalschungen kommen immer dann vor, wenn Zah-
lenwerte in Variablen gespeichert werden, fiir die sie eigentlich zu grof? sind. Sie sollten
deshalb die giiltigen Wertebereiche fiir die gewahlten Datentypen im Auge behalten.

Ich empfehle Ihnen, fiir Zahlenwerte die Standardtypen int und double zu verwenden.
Sie sind fiir die meisten Anwendungen ausreichend grofd bemessen, und das Argu-
ment, dass man mit den Datentypen byte und short bzw. float flir Kommawerte
Speicherplatz einsparen kann, spielt bei den heute zur Verfligung stehenden Speicher-
groflen kaum noch eine Rolle. Wenn Sie noch einmal einen Blick auf die Fehlermel-

73

2 Grundbausteine eines Java-Programms

dung in Abbildung 2.5 werfen, werden Sie feststellen, dass die Fehlermeldung des
Compilers sehr prazise auf dieses Problem aufmerksam gemacht hat. Er hat dort ge-
meldet: possible loss of precision (moglicherweise droht ein Verlust an Genauigkeit).
Es lohnt sich also, bei jeder Fehlermeldung genau hinzuschauen, was der Compiler
meldet.

2.3.6 Praxisbeispiel 2 zu Variablen

Wir erstellen im Projekt JavaUebungO2 eine Klasse mit dem Namen Variablen2. In der
main-Methode dieser Klasse sollen fiinf Zeichen-Variablen mit den Namen z1, z2, z3, z4
und z5 deklariert werden. Die Variablen sollen mit den folgenden Werten der Tabelle 2.5
initialisiert und dann ausgegeben werden.

Variable Wert
z1 a
z2 b
z3 A
z4 @)
z5 %

Tabelle 2.5 Variablen und ihre Werte in Aufgabe 2

Die ersten drei Werte duirften keine Probleme verursachen, denn die Zeichen sind direkt
uber die Tastatur erreichbar, und Sie konnen sie so eingeben:

char z1, z2, z3, z4, z5;
// Wertzuweisungen

z1 = "a’;
72 ='b";
z3 = 'A";

Listing 2.3 Wertzuweisungen bei »char«-Variablen

Wie aber erreichen Sie die letzten beiden Zeichen? Beachten Sie, dass das letzte Zeichen
tatsachlich als ein Zeichen zu verstehen ist, auch wenn Sie zundchst meinen konnten,
dass es sich um drei Zeichen (3, / und 4) handelt.

Um das Problem zu l6sen, missen Sie auf Unicode zuruckgreifen. Grundsatzlich mus-
sen Zeichen, die am Bildschirm dargestellt oder von einem anderen Gerat, wie z. B.

74

2.3 Variablen und Datentypen

einem Drucker, ausgegeben werden sollen, digital codiert werden. Diese Codierung
besteht darin, dass jedem Zeichen, das dargestellt werden soll, ein Zahlenwert zugeord-
net wird. Diese Zahl als Dualzahl entspricht dann der digitalen Darstellung des Zeichens.
Neben dem ASCII-Code, dem ANSI-Code und vielen weiteren beschreibt der Unicode
eine mogliche Codierung. Da nun Java Unicode verwendet, sollten wir uns diesen Code
etwas genauer anschauen. Im Internet finden Sie eine Vielzahl von Seiten, die den Uni-
code in Tabellenform darstellen.

Unter der Adresse http://www.utf8-zeichentabelle.de finden Sie u. a. die Darstellung aus
Tabelle 2.6.

Unicode-Codeposition | Zeichen | Name

U+000A <control> Steuerzeichen Zeilenwechsel (New Line)
U+000D <control> Steuerzeichen Wagenriicklauf
U+0020 SPACE

U+0041 A LATIN CAPITAL LETTER A

U+0042 B LATIN CAPITAL LETTER B

U+0043 C LATIN CAPITAL LETTER C

uU+0044 D LATIN CAPITAL LETTER D

U+0045 E LATIN CAPITAL LETTER E

U+0046 F LATIN CAPITAL LETTER F

U+00A9 © COPYRIGHT SIGN

U+00AE ® REGISTERED SIGN

U+00B2 2 SUPERSCRIPT TWO

U+00BD A VULGAR FRACTION ONE HALF

U+00BE % VULGAR FRACTION THREE QUARTERS
U+00C4 A LATIN CAPITAL LETTER A WITH DIAERESIS
U+00D6 0 LATIN CAPITAL LETTER O WITH DIAERESIS
U+00DC U LATIN CAPITAL LETTER U WITH DIAERESIS

Tabelle 2.6 Auszug aus dem Unicode

75

2 Grundbausteine eines Java-Programms

Unicode-Codeposition | Zeichen | Name

U+00DF R LATIN SMALL LETTER SHARP S

U+00E4 a LATIN SMALL LETTER A WITH DIAERESIS
U+00F6 0 LATIN SMALL LETTER A WITH DIAERESIS
U+00FC u LATIN SMALL LETTER A WITH DIAERESIS

Tabelle 2.6 Auszug aus dem Unicode (Forts.)

Da Unicode mit Uber 110.000 Zeichen sehr umfangreich ist, ist in Tabelle 2.6 nur ein
Auszug dargestellt Die Tabelle beschrankt sich auf die deutschen Umlaute und einige
interessante Sonderzeichen. In der ersten Spalte steht die Nummer des jeweiligen Zei-
chens allerdings in hexadezimaler Schreibweise. Diese Schreibweise ist wesentlich
ubersichtlicher und kiirzer und wird deshalb in der Computertechnik als Kurzform fiir
Dualzahlen verwendet. Die Zeichen mit den Codes von O bis 31 sind Steuerzeichen, die
in einem Text quasi unsichtbar sind. Als Beispiel sind die beiden Steuerzeichen mit den
Codes 10 (U+000A) und 13 (U+000D) aufgefiihrt. Das Zeichen mit dem Code 10 ent-
spricht z. B. einem Zeilenvorschub. Das Zeichen mit dem Code 32 (U+0020) entspricht
der Leerstelle und erscheint in einem Text als Liicke zwischen zwei Wortern. Wie hilft
uns nun diese Tabelle bei der Losung unseres Problems aus Aufgabe 2?

Auf der Computertastatur kann immer nur ein kleiner Teil des umfangreichen Zeichen-
codes untergebracht werden. Alle anderen Zeichen konnen Sie mithilfe des Zeichen-
codes ansprechen. Aus der Tabelle konnen Sie fiir das Zeichen © den Code OOA9 und fiir
das Zeichen % den Code OOBE entnehmen. In einer Wertzuweisung kann der Zeichenva-
riablen einfach der Zahlencode des betreffenden Zeichens zugewiesen werden. Sie kon-
nen dabei die dezimale Schreibweise z4 = 169; (fiir ©) ebenso wie die hexadezimale
Schreibweise z4 = 0x00a9; verwenden. Dem Java-Compiler wird durch 0x kenntlich
gemacht, dass die folgende Zeichenfolge als hexadezimale Zahl zu behandeln ist.

/* Programm zum Testen der Verwendung von Variablen
* Datum: 2011-11-30
* Hans-Peter Habelitz

*/

public class Variablen2 {
public static void main(String[] args) {

76

2.3 Variablen und Datentypen

// Variablendeklarationen
char z1, z2, z3, z4, z5;

// Wertzuweisungen

z1 = "'a’;
z2 = 'b';
z3 = 'AY

z4 = 169; // alternativ z4 = 0x00a9
z5 = 190; // alternativ z5 = Ox00be

// Ausgaben
System.out.print("z1: ");
System.out.println(zl);
System.out.print("z2: ");
System.out.println(z2);
System.out.print("z3: ");
System.out.println(z3);
System.out.print("z4: ");
System.out.println(z4);
System.out.print("z5: ");
System.out.println(z5);
}
¥

Listing 2.4 Quelltext zu Aufgabe 2

Das Programm wird Thnen wahrscheinlich die Ausgabe aus Abbildung 1.7 liefern.

BN Eingabeaufforderung = [B S

H:~JavasProgramme“JavalebungB2>_

Abbildung 2.7 Ausgabe des Programms »Variablen2«
Sie werden feststellen, dass die letzten beiden Zeichen, die tiber den Zeichencode ange-

sprochen wurden und Sonderzeichen anzeigen sollten, nicht die erwarteten Zeichen
sind.

77

2 Grundbausteine eines Java-Programms

+

Wichtiger Hinweis fiir Windows-Anwender

Sollten Sie einmal unerwartete Zeichenausgaben feststellen, so kann das daran liegen,
dass lhr Betriebssystem nicht den passenden Zeichensatz verwendet. Sie sollten dann
priifen, welche Codepage Ihr System verwendet, und diese eventuell umstellen. Win-
dows verwendet z.B. fir die Eingabeaufforderung als Uberbleibsel aus den frihen
Tagen der Microsoft-Betriebssysteme noch eine Codepage, die Sonderzeichen anders
als in der grafischen Oberflache — und damit auch anders als im Unicode beschrieben —
codiert. Mit dem Konsolenbefehl chcp (change codepage) ohne weitere Parameter kon-
nen Sie die aktuell von der Eingabeaufforderung verwendete Codepage anzeigen las-
sen. Wahrscheinlich wird hierbei die Codepage 850 angezeigt. Zwei Umstellungen sind
erforderlich, um die Eingabeaufforderung so einzustellen, dass sie den Unicode wie in
anderen Umgebungen korrekt anzeigt.

Mit dem Konsolenbefehl chcp 1252 stellen Sie zunachst die entsprechende Codepage
ein (siehe Abbildung 2.8).

BN Eingabeaufforderung |£|EI&J

H:~JavasProgrammesJavallebungB2 >java Uariahlen2
a

m| »

H:~Java“Programne s\ggu allebungB2 >chcp

Aktive Codepage: -

H:~JavasProgrammesJavallebungB2 >chcp 1252
Aktive Codepage: 1252.

H:~JavasProgrammnesJavallebungB2 >

Abbildung 2.8 Umstellen der verwendeten Codepage

Offnen Sie anschlieRend die EIGENSCHAFTEN der Eingabeaufforderung durch einen
Rechtsklick auf die Titelleiste der Eingabeaufforderung (siehe Abbildung 2.9).

BN Eingabeaufforderung |£|EI£‘J

Wiederherstellen '

H:“Java:ProgramnesJavalebungB@2>java Uaria Verschieben
GroBe dndern
Minimieren

Maximieren

H:“JavasProgramnesJavallebungB2 >chcp
Nktive Codepage: 858. SchlieBen

H:“~JavasProgramnesJavalebung®2>chcp 1252 Bearbeiten
fktive Codepage: 1252.

Standardwerte

H:“~Java:ProgramnesJavalebung®2 > _ "
Eigenschaften

Abbildung 2.9 Kontextmenii zum Offnen des »Eigenschaften«-Dialogs

78

2.3 Variablen und Datentypen

Im Dialog in Abbildung 2.10 stellen Sie die Schriftart auf eine der Alternativen zur Ras-

terschrift (z. B. Lucida) um.

BE¥ Eigenschaften von "Eingabeaufforderung” [&J

Optionen | Schriftat | Layout | Farben

Fenstervorschau Grole

Schriftart Zeichen fett

' Consolas
Iy

:Rasterschriﬂart

Ausgewahite Schriftart : Lucida Console
Jedes Zeichen ist:
7 Pixel breit
12 Pixel hoch

0K | Abbrechen |

Abbildung 2.10 Andern der Schriftart fur die Eingabeaufforderung

Nach diesen Umstellungen verhalt sich die Eingabeaufforderung so wie andere Umge-
bungen und zeigt auch die Unicodezeichen richtig an (siehe Abbildung 2.11).

B Eingabeaufforderung

~iablen2

ebun

allebun

/ariablen2

== <

m| s

Abbildung 2.11 Ausgabe von »Variablen2« nach den Umstellungen

2.3.7 Der Datentyp »String«

Sie werden sich fragen, wieso der Datentyp String bei den Datentypen nicht angespro-
chen wurde. Der Datentyp String gehort nicht zu den primitiven Datentypen. Er gehort

79

2 Grundbausteine eines Java-Programms

zu den Objekttypen, die wesentlich méchtiger sind und deshalb nicht mit wenigen Wor-
ten erschopfend behandelt werden konnen. Andererseits ist dieser Datentyp so elemen-
tar wichtig, dass man auch in einfachen Programmen kaum ohne ihn auskommt. An
dieser Stelle soll der Datentyp String deshalb zumindest so weit erlautert werden, dass
Sie ihn nutzen konnen. Eine ausfiihrlichere Beschreibung wird in Kapitel 7, »Grundle-
gende Klassen, folgen, sobald die Grundlagen zu Objekten behandelt sind.

Zum Speichern einzelner Zeichen stellt Java den primitiven Datentyp char zur Verfu-
gung. Ein ganzes Wort oder sogar ein ganzer Satz bildet eine Zeichenkette. Um eine sol-
che Zeichenkette in einer einzigen Variablen zu speichern, steht kein primitiver
Datentyp zur Verfligung. Er kann in einer Variablen vom Datentyp String gespeichert
werden. Konstante Zeichenketten (Literale) werden in Java zwischen Anfiihrungszei-
chen gesetzt. Eine Stringvariable wird wie jede Variable eines primitiven Datentyps mit

String variablenname;

deklariert bzw. mit

String variablenname = "Das ist der Wert der Variablen";

mit der Deklaration initialisiert.

Erinnern Sie sich noch an unser erstes Programmbeispiel, das Hallo-Welt-Programm?
Bereits dort haben wir den Datentyp String in Form eines Literals verwendet, als wir mit
der Anweisung System.out.println("HalloWelt!") eine Bildschirmausgabe in der Kon-
sole erzeugt haben. Dies unterstreicht die Bedeutung dieses Datentyps.

Die Ausgabe von Text mit System.out.print oder println ist ein wichtiges Element fiir
den Dialog zwischen Programm und Anwender. Das Programm zeigt dem Anwender so
die Ergebnisse seiner Arbeit an oder es gibt dem Anwender Hinweise zu erforderlichen
Eingabedaten.

2.3.8 Der Dialog mit dem Anwender

Programme stehen immer im Dialog mit dem Anwender — und wenn es sich dabei nur
um die Ausgabe von Fehlermeldungen handelt. Nahezu jedes Programm arbeitet nach
dem EVA-Prinzip (siehe Abbildung 2.12). Das Kiirzel EVA steht dabei fiir Eingabe—Verar-
beitung-Ausgabe. Es besagt, dass dem Programm zundchst tiber die Eingabe Daten zur
Verfiigung gestellt werden. Mit diesen Daten arbeitet das Programm in einer Verarbei-
tungsphase, um dann in der Ausgabe die berechneten Ergebnisse dem Anwender mit-
zuteilen.

80

2.3 Variablen und Datentypen

Eingabe |— Verarbeitung —— Ausgabe

Abbildung 2.12 Das EVA-Prinzip

Den Informationsfluss vom Programm zum Anwender haben wir bisher hauptsichlich
mit System.out.printlnbzw. System.out.print tiber die Konsole realisiert. Fiir die umge-
kehrte Richtung, d. h. zur Eingabe von Informationen vom Anwender zum Programm,
haben wir die Aufrufparameter verwendet (siehe Kapitel 1, Aufgabe 1, Projekt java-
UebungO1l, Uebergabe.java).

Fir den Fall, dass nach dem Programmstart das Programm dazu auffordern soll, Daten
einzugeben, haben wir die Methode JOptionPane.showInputDialog verwendet (siehe
Kapitel 1, Aufgabe 6, Projekt JavaUebungOl, Kreisberechnung4).

Wir verwenden bei diesem Programm zur Ausgabe nicht wie sonst die Konsole. Friiher,
als die Betriebssysteme noch keine grafischen Oberflachen verwendeten, waren Konso-
lenprogramme die einzige Moglichkeit, einen Dialog zwischen Anwendungsprogramm
und Anwender zu realisieren. Heute sind die Anwender gewohnt, mit grafischen Ober-
flachen zu arbeiten. Der Vollstandigkeit halber mochte ich Thnen aber das Einlesen von
Benutzereingaben als Konsolenanwendung nicht vorenthalten. Sie werden feststellen,
dass die Variante mit dem InputDialog sogar noch einfacher ist als diese primitiver
anmutende Version:

1: import java.io.BufferedReader;

2: import java.io.IOException;

3: import java.io.InputStreamReader;

4:

5: public class Kreisberechnung4Console {

6: public static void main(String[] args) throws IOException {

7: double radius, umfang, flaeche;

8: String einheit, eingabe;

9: BufferedReader eingabepuffer = new BufferedReader
(new InputStreamReader(System.in));

10: System.out.print("Geben Sie den Kreisradius ein: ");

11: eingabe = eingabepuffer.readline();

12: radius = Double.parseDouble(eingabe);

13: System.out.print("Geben Sie die Einheit ein: ");

14: eingabe = eingabepuffer.readline();

15: einheit = eingabe;

16: umfang = 2.0 * 3.1415926 * radius;

17: flaeche = 3.1415926 * radius * radius;

18: System.out.print("Unfang: ");

81

2 Grundbausteine eines Java-Programms

19: System.out.print(umfang);

20: System.out.println(" " + einheit);

21: System.out.print("Flaeche: ");

22: System.out.print(flaeche);

23: System.out.println(" " + einheit + "\u00Ob2');
24 }

25: }

Listing 2.5 »Kreisberechnung4« mit Tastatureingabe in der Konsole

Im Unterschied zu der Version aus Kapitel 1 werden mehrere import-Anweisungen (Zeile
1bis 3) verwendet, damit anstelle der JOptionPane-Komponente die Komponenten I0Ex-
ception, BufferedReader und StreamInputReader zur Verfligung stehen. Zur Vorbereitung
der Tastatureingabe wird in Zeile 9 als Zwischenspeicher eine zusatzliche Variable ein-
gabepuffer vom Typ BufferedReader (er wird in Kapitel 11, »Dateien«, ndher erldutert)
angelegt und gleichzeitig mit der Standardeingabe System.in (normalerweise ist das die
Tastatur) verbunden.

Nach diesen Vorarbeiten kann das eigentliche Einlesen der Tastatureingabe in Zeile 11
mit der Anweisung eingabepuffer.readlLine() erfolgen. Dieser Aufrufliefert als Ergebnis
eine Zeichenkette zuriick, die der Variablen eingabe zugewiesen wird. Unmittelbar
davor wird mit System.out.print eine Textzeile als Aufforderung ausgegeben. Ganz
gleich Uber welche Methode Sie Tastatureingaben programmieren, werden die Einga-
ben als Zeichen bzw. Zeichenketten zurtickgeliefert. Das bedeutet, dass in vielen Fallen,
in denen es sich bei den Eingaben um Zahlenwerte handelt, mit denen anschlief3end
gerechnet werden soll, diese Zeichenketten noch umgewandelt werden mussen. In
unserem Beispiel soll als erste Eingabe der Kreisradius eingegeben werden. Die Zeichen-
kette wird in Zeile 12 mit der Anweisung Double.parseDouble(eingabe) umgewandelt
und der Variablen radius zugewiesen.

Eingabe M

Geben Sie den Kreisradius ein:
[10 |

[ok || Abbrechen |

Abbildung 2.13 Eingabe mit »JOptionPane.showInputDialog«

Ein ganz wesentliches Vorhaben, das diesem Buch zugrunde liegt, besteht darin, Ihnen
moglichst frihzeitig die Erstellung von grafisch orientierten Programmen zu ermogli-
chen. Deshalb mochte ich hier bereits auf die Verwendung der Konsole ganzlich ver-
zichten und stattdessen das Programm aus Kapitel 1 so verandern, dass auch fir die

82

2.3 Variablen und Datentypen

Ausgabe der Ergebnisse aus dem Paket javax.swing die Klasse JOptionPane verwendet
wird (siehe Abbildung 2.13). Die Methode showMessageDialog konnen Sie dazu verwen-
den, ein Meldungsfenster zur Ausgabe einer Information einzublenden.

import javax.swing.JOptionPane;

1
2
3 public class Kreisberechnung4JOptionPane {
4: public static void main(String[] args) {
5 double radius, umfang, flaeche;
6 String einheit, eingabe;
7 eingabe = JOptionPane.showInputDialog(

"Geben Sie den Kreisradius ein: ");

8: radius = Double.parseDouble(eingabe);
9 eingabe = JOptionPane.showInputDialog(
"Geben Sie die Einheit ein: ");
10: einheit = eingabe;
11: umfang = 2.0 * 3.1415926 * radius;
12: flaeche = 3.1415926 * radius * radius;
13: JOptionPane. showMessageDialog(
null,"Unfang: " + umfang + " "
+ einheit + "\nFldche: " + flaeche + " "
+ einheit + "\u00b2');
14: }
15: +

Listing 2.6 »Kreisberechnung4« ohne Konsole

Die Methode showMessageDialog erwartet im Unterschied zu showInputDialog zweidurch
Komma getrennte Werte. Der erste Wert wird erst in komplexeren Programmen rele-
vant, die zur gleichen Zeit mehrere Programmfenster darstellen. Mit diesem Parameter
konnen Sie den Messagedialog dann einem anderen Fenster unterordnen. Wird wie hier
eine solche Unterordnung nicht bendtigt, darf der Parameter aber nicht einfach wegfal-
len. Stattdessen wird der vordefinierte Wert null angegeben.

Der zweite Wert muss eine Zeichenkette sein. Sie stellt den Text dar, der als Hinweis aus-
gegeben wird. Das Beispiel zeigt sehr anschaulich, wie diese Zeichenkette mit dem
+-Operator aus mehreren Teilen zusammengesetzt werden kann. Beachten Sie, dass Zei-
chenkettenliterale in doppelte Anflihrungszeichen gesetzt werden, einzelne Zeichen
dagegen werden zwischen einfache Hochkommata gesetzt. Das Zeichen '\n' steht fir
den Zeilenvorschub und '\u0ob2' flir die hochgestellte 2. Das Ergebnis dieser Bemithun-
gen sehen Sie in Abbildung 2.14.

83

2 Grundbausteine eines Java-Programms

Meldung u

® Umfang: 62.831852 mm
Flache: 314.15926 mm?*

Abbildung 2.14 Ausgabe mit »JOptionPane.showMessageDialog«

In Bezug auf die hochgestellte 2 ist [hnen als aufmerksamem Leser vielleicht eine Dis-
krepanz zwischen der Version aus Kapitel 1 und der hier geanderten Version aufgefal-
len. In Kapitel 1 wurde fiir die hochgestellte 2 das Zeichenliteral '\u00fd' verwendet. Fiir
den Programmieranfanger wird diese Diskrepanz oft zu einem Stolperstein. Dabei gibt
es eine recht einfache Erklarung dafiir. Sie haben zu Beginn dieses Kapitels erfahren,
dass Java den Unicode verwendet und deshalb eine sehr grofle Zahl unterschiedlicher
Zeichen darstellen kann. Genau genommen muss man sagen, dass Java eine sehr grofde
Zahl unterschiedlicher Zeichen codieren kann. Fiir die Darstellung ist aber die Umge-
bung verantwortlich, auf der das Java-Programm ausgefiihrt wird (siehe Abschnitt 2.3.6,
»Praxisbeispiel 2 zu Variablen«). Gespeichert wird das Zeichen immer als Zahlenwert.

In Kapitel 1 wurde das Programm in der Eingabeaufforderung von Windows gestartet.
Die Eingabeaufforderung verwendet zum Codieren und entsprechend auch zum Deco-
dieren standardmafiig den erweiterten ASCII-Code. Die Codes der Standardzeichen sind
im erweiterten ASCII-Code identisch mit den Codes im Unicode. Bei den Sonderzeichen
—und dazu gehort neben den deutschen Umlauten auch die hochgestellte 2 — gibt es
zwischen diesen beiden Codetabellen aber Abweichungen. Aus diesem Grund wurde in
Kapitel 1 die Codierung der hochgestellten 2 aus der ASCII-Code-Tabelle entnommen.

Wenn Sie Programme in einer Entwicklungsumgebung wie Eclipse starten, die eine
eigene Konsolendarstellung in einem Fenster verwendet, dann wird zur Decodierung
von Zeichen unter Windows der ANSI-Code verwendet. Dieser Code entspricht auch bei
den Sonderzeichen der Darstellung in Unicode. Deshalb konnten wir hier den Code fiir
die hochgestellte 2 aus der Unicode-Tabelle entnehmen. Da auch die deutschen
Umlaute der Darstellung in Unicode entsprechen, konnen auch diese viel unproblema-
tischer verwendet werden.

23.9 Ubungsaufgaben

An dieser Stelle sollen Sie noch ein bisschen tiben, um ein besseres Verstandnis fiir die
Verwendung von Variablen zu entwickeln.

Aufgabe 1

Sind die folgenden Deklarationen korrekt und sinnvoll gewahlt?

84

2.3 Variablen und Datentypen

int zahl der versuche;
char z1, z2, z3;

boolean ist verheiratet;
float postleitzahl;

long kantenlaenge;

short byte;

int nummer, anzahl;

long telefonnummer; hausnummer;

© P N v s W e

nummer byte;

10. bytei, j;

11. boolean false;

12. double gehalt, abzuege;

13. boolean rund;

14. short long;

15. long laenge, breite, hoehe;
16. pidouble;

17. char buchstabe, ziffer;

18. int summe/anzahl;

19. gebraucht boolean;

20. long zaehler, durchschnitt;

Aufgabe 2

Sind die folgenden Wertzuweisungen richtig und sinnvoll? Geben Sie bei Fehlern eine
Fehlerbeschreibung an!

1. intzahl der versuche=15;

2. double gehalt = 2645.34¢;

3. int hausnummer = 24;

4. char 'A' = buchstabe;

5. byteb=324;

6. shortz=15;

7. booleanist verheiratet = false;
8. double laenge = breite = hoehe;

9

long postleitzahl = 02365;

85

2 Grundbausteine eines Java-Programms

10. float umfang = 64537.34756;

11. Iongzahl =-23456786;

12. double telefonnummer = 0176.46578675;
13. boolean true =1ist gerade zahl;
14. short i =31556;

15. char zeichen = "\uoOOB1"';

16. byte x=-112;

17. char zeichen =174;

18. long 385799 = lange zahl;

19. float 1.zahl =4567.235457;

20. double verlust = 34567,45;

21. double zahll =-1.7e7;

22. char zeichen="\t"';

23. char trenner = '\x2f';

24. floatm=.3f;

25. charhk="\"";

26. doublewert = -.¢e;

27. short zahl13 =13f;

28. double zahll2 = 24;

Die Losungen zu den Aufgaben 1und 2 finden Sie in Anhang C, »Musterlosungenc«.

2.4 Operatoren und Ausdriicke

Sie haben bereits einen Operator kennengelernt, ohne dass der Begriff Operator dafiir
verwendet wurde. Sie haben mit dem Operator = Variablen Werte zugewiesen. Die Wert-
zuweisung ist ein Beispiel fur eine Operation, die in einem Programm ausgefthrt wird.
Fiir Operationen bendtigen wir immer Operanden, mit denen eine Operation durchge-
fuhrt wird, und Operatoren, die angeben, welche Operation durchgefiihrt werden soll.
Wir kennen z. B. arithmetische Operationen. Dabei dienen Zahlenwerte als Operanden
und Rechenzeichen als Operatoren.

In Java gibt es eine Vielzahl von Operatoren. Die wichtigsten Operatoren sind die arith-
metischen, logischen und Vergleichsoperatoren. Wie in der Mathematik konnen Sie
mithilfe von Operatoren Ausdriicke bilden. Jeder Ausdruck hat einen Wert, der sich nach
der Auswertung des Ausdrucks ergibt. Der Wert ergibt sich aus dem Typ der Operanden

86

2.4 Operatoren und Ausdriicke

und dem Operator, der auf die Operanden angewendet wird. Wenn in einem Ausdruck
mehrere Operatoren vorkommen, legen Prioritdten die Reihenfolge fiir die Anwendung
der Operatoren fest. Dies kennen Sie bereits aus der Mathematik, wenn in einem arith-
metischen Ausdruck mehrere Rechenoperationen vorzunehmen sind. Es gilt dann z. B.
die Regel, dass die Punktrechnungen vor den Strichrechnungen auszufihren sind.

2.41 Zuweisungsoperator und Cast-Operator

Bei der einfachen Zuweisung (=) wird der rechts stehende Ausdruck ausgewertet, und das
Ergebnis wird der links stehenden Variablen zugewiesen. Dabei miissen Sie darauf ach-
ten, dass der Typ des rechten Ausdrucks mit dem Typ der links stehenden Variablen
kompatibel ist. Das heif3t, dass die Typen identisch sein missen oder aber der Typ des
rechts stehenden Ausdrucks muss in den Typ der links stehenden Variablen umgewan-
delt werden konnen. Umwandlungen von einem »kleinen« in einen »grofieren« Daten-
typ erfolgen automatisch, umgekehrt gilt das nicht. Umwandlungen von einem
»grofieren« Datentyp in einen »kleinen« Datentyp miissen explizit erfolgen. Die Grofie
eines Datentyps kdnnen Sie an dem von ihm bendtigten Speicherplatz erkennen (siehe
Tabelle 2.2).

Beispiel:
byte byteZahl;
int intzahl;

float floatZzahl;
double doubleZahl;

Nach diesen Deklarationen sind folgende Wertzuweisungen maoglich:

bytezahl = 100; // keine Umwandlung erforderlich
intZahl = byteZahl; // Umwandlung von byte nach int
floatzahl = intZahl; // Umwandlung von int nach float
floatZahl = 23.345f; // keine Umwandlung erforderlich

doublezahl = floatZahl; // Umwandlung von float nach double

Folgende Zuweisungen sind nicht moglich:

bytezahl = intZahl;
floatZahl = doubleZahl;

Sie erhalten bei diesen Zuweisungsversuchen den Fehlerhinweis »Type mismatch - can-
not convert from int to byte« bzw. »from double to float«. Ist eine Umwandlung mog-

87

2 Grundbausteine eines Java-Programms

lich, wird sie jeweils automatisch durchgefithrt. Man nennt diese automatische
Umwandlung auch implizite Typumwandlung.

Operator Bedeutung Prioritat

= einfache Zuweisung | 13

Tabelle 2.7 Zuweisungsoperatoren

Neben der quasi automatisch ablaufenden impliziten Typumwandlung besteht auch
die Moglichkeit, Umwandlungen zu erzwingen. Eine »erzwungene« Typumwandlung
nennt man explizite Typumwandlung. Fir eine solche Typumwandlung wird der Cast-
Operator eingesetzt. Der Ausdruck (type)a wandelt den Ausdruck a in einen Ausdruck
des Typs type um. Auch hierbei handelt es sich nicht um eine Wertzuweisung. Das
bedeutet, dass a selbst dabei nicht verandert wird.

Mithilfe des Cast-Operators konnen Sie durchaus auch »grofiere« in »kleinere« Daten-
typen umwandeln. Logischerweise gehen dabei in der Regel aber Informationen verlo-
ren. So wird z.B. beim Umwandeln eines double in einen int der Nachkommateil
abgeschnitten (nicht gerundet). Beim Umwandeln eines short-Ausdrucks in einen byte-
Ausdruck wird ein Byte abgeschnitten. Das bedeutet, dass ein Teil verloren geht, weil fir
ihn in dem neuen Datentyp nicht gentigend Speicherplatz zur Verfligung steht. Dabei
wird der zu speichernde Wert unter Umstanden so verfilscht, dass nur schwer nachzu-
vollziehende Fehler entstehen.

Beispiel:

double x = 3.89;
int y;
y = (int) x; // y wird der Wert 3 zugewiesen

So kann der int-Variablen y der Wert der double-Variablen x zugewiesen werden. Wie
bereits erlautert, gehen dabei die Nachkommastellen verloren.

2.4.2 Vergleiche und Bedingungen

Relationale Operatoren vergleichen Ausdriicke anhand ihrer numerischen Werte mit-
einander. Als Ergebnis liefert ein solcher Vergleich einen Wert vom Typ boolean. Ver-
gleichsoperatoren werden vorwiegend zur Formulierung von Bedingungen verwendet.
Von solchen Bedingungen konnen Sie z. B. die Ausfiihrung von Anweisungen abhangig
machen.

88

2.4 Operatoren und Ausdriicke

Operator Bedeutung Prioritat
< kleiner 5
<= kleiner oder gleich 5
> groler 5
y= groBer oder gleich 5
== gleich 6
I= ungleich 6

Tabelle 2.8 Vergleichsoperatoren

Flielkommazahlen sollten Sie nicht auf exakte Gleichheit oder Ungleichheit hin tiber-
priifen, da Rundungsfehler oftmals eine exakte Gleichheit verhindern. Stattdessen soll-
ten Sie mit den Operatoren < oder > auf eine bestimmte Fehlertoleranz hin prifen.

Beispiel:

boolean test;
test = (2.05-0.05) == 2.0;

Man sollte erwarten, dass der Klammerausdruck den Wert 2.0 ergibt. Der Vergleich des
Klammerausdrucks mithilfe des ==-Operators auf Gleichheit sollte also true ergeben.
Testen Sie das Resultat mit folgendem Quellcode:

public static void main(String[] args) {
double a = 2.05;
double b = 0.05;
System.out.println(a);
System.out.println(b);
System.out.println(a-b);
boolean test;
test = (2.05-0.05) == 2.0;
System.out.println(test);
System.out.println(2.05-0.05);
System.out.println(2.0);

}

Listing 2.7 Rundungsfehler beim Rechnen mit FlieRkommawerten

Sie erhalten die in Abbildung 2.15 angezeigte Ausgabe in der Konsole.

89

2 Grundbausteine eines Java-Programms

EH Eingabeaufforderung SRISE X

sJavasProgramme sJavallebungB2 > javac UVergleichstest. java

JavasProgrammesJavalebungB2 > java Uergleichstest
.85

A . A5
-999999999929992998

false
2.3999999999999993

H : “Java“sProgramme“JavalebungB2 >

Abbildung 2.15 Rundungsfehler beim Rechnen mit FlieRkommazahlen

Solche Rundungsfehler sind keine Seltenheit. Sie sollten deshalb immer daran denken,
dass solche Fehler beim Rechnen mit Fliefkommazahlen auftreten konnen. Nicht ohne
Grund wird fiir diese Datentypen immer eine maximale Genauigkeit angegeben.

2.4.3 Arithmetische Operatoren

Die arithmetischen Operatoren haben numerische Operanden und liefern auch nume-
rische Ergebnisse. Werden unterschiedliche Datentypen mit arithmetischen Operan-
den verkntipft, so erfolgt eine automatische Typumwandlung. Dabei wird grundsatzlich
der kleinere Typ in den grofleren Typ umgewandelt. Fiir die Grof8e des Datentyps ist der
benotigte Speicherplatz entscheidend. Der Ergebnistyp entspricht dann immer dem
grofBeren Typ. Tabelle 2.9 zeigt die in Java verfiigbaren arithmetischen Operatoren.

Operator Bedeutung Prioritat
+ positives Vorzeichen 1
= negatives Vorzeichen 1
++ Inkrementierung 1
== Dekrementierung 1
& Multiplikation 2
/ Division 2
% Modulo (Rest) 2
+ Addition 3
= Subtraktion 3

Tabelle 2.9 Arithmetische Operatoren von Java

90

2.4 Operatoren und Ausdriicke

Hinweis

Bei der Verknuipfung zweier Ganzzahlen ist auch das Ergebnis ganzzahlig. Bei der Divi-
sion ist dabei zu beachten, dass der Nachkommateil abgeschnitten wird. Es erfolgt
keine Rundung des Ergebnisses. Mochten Sie als Ergebnis den tatsachlichen Komma-
wert haben, so mussen Sie dafiir sorgen, dass zumindest einer der Operanden eine
Kommazahl ist. Man schreibt z.B. statt 8/3 (das Ergebnis hatte den ganzzahligen
Wert 2) dann 8./3 oder 8/3., damit das Ergebnis zu einem Kommawert wird.

Der Inkrement- und der Dekrement-Operator konnen nur auf Variablen angewendet
werden. Sie erhohen (inkrementieren) bzw. verringern (dekrementieren) den Wert
einer Variablen um eins. Man unterscheidet hierbei die Postfix- und die Prafixform. Bei
der Postfixform steht der Operator hinter der Variablen, bei der Prafixform steht er vor
der Variablen. Der Unterschied zwischen beiden wird nur relevant, wenn der Operator
innerhalb eines Ausdrucks verwendet wird. Beim Postfix wird die Variable erst nach
dem Zugriff in- bzw. dekrementiert. Beim Prafix wird bereits vor dem Zugriff herauf-
bzw. heruntergezahlt. Dieser Sachverhalt wird an einem Beispiel verdeutlicht:

int a = 5;
System.out.println(a++);
System.out.print(a);

Hier wird das Inkrement von a als Postfix innerhalb der Ausgabeanweisung verwendet.
Deshalb greift der Ausgabebefehl noch auf das nicht inkrementierte a zu und gibt den
Wert 5 aus. Unmittelbar nach dem Zugriff durch System.out.println wird a dann um1
erhoht. Dadurch wird beim niachsten Ausgabebefehl der Wert 6 ausgegeben.

int a = 5;
System.out.println(++a);
System.out.print(a);

Wahlen Sie den Inkrementoperator als Prafix, so wird bereits vor dem ersten Zugriff mit
der print-Anweisung die Erth6hung vorgenommen, und Sie erhalten jedes Mal den Wert
6 als Ausgabe.

Der Modulo-Operator % berechnet den Rest, der bei einer Division entsteht. Im Allge-
meinen wird der Operator bei ganzzahligen Operatoren verwendet. So liefert 18% 5 als
Ergebnis 3, denn teilt man 18 ganzzahlig durch 5, so bleibt ein Rest von 3. Der Operator
kann in Java auch auf Kommazahlen angewendet werden. Damit liefert 12.6% 2.5 als
Ergebnis 0.1.

91

+

2 Grundbausteine eines Java-Programms

Ich mochte Sie an dieser Stelle noch auf eine Besonderheit des +-Operators hinweisen.
Sie besteht darin, dass der +-Operator auch Texte als Operanden akzeptiert. Als Ergebnis
entsteht dabei immer ein neuer Text. Werden zwei Texte mit dem +-Operator ver-
knupft, wird als Ergebnis ein Text geliefert, der aus den beiden aneinandergehangten
Texten besteht. Wird der +-Operator zur Verknupfung zweier Zahlenwerte verwendet,
so bezeichnen wir die Operation als Addition. Die Verknupfung zweier Texte mit dem
+-Operator kann nicht als Addition bezeichnet werden, da sie keinen numerischen Wert
liefert. Sie wird stattdessen als Konkatenation (Verkettung) bezeichnet.

Im folgenden Beispiel werden die beiden Variablen nachname und vorname zu einer einzi-
gen Zeichenkette verkettet, die dann mit System.out.printlnin der Konsole ausgegeben
wird:

String nachname = "Habelitz";
String vorname = "Hans-Peter";

non

System.out.println(vorname + + nachname);

Listing 2.8 Verketten von Strings

Das Beispiel zeigt, dass die Konkatenation wie die arithmetische Addition beliebig oft
hintereinandergeschaltet werden kann. Hier wird das Stringliteral, das nur aus einem
Leerzeichen besteht, als Trennzeichen zwischen Vor- und Nachname gesetzt.

Wird ein Text mit einem numerischen Wert verkniipft, dann wandelt der Compiler den
numerischen Wert in einen Textwert um und setzt dann die beiden Texte zum Ergeb-
nistext zusammen.

Beispiel:

int a = 2;
System.out.printIn("Die Variable a hat den Wert

+a);

Die printIn-Anweisung gibt den folgenden Text aus:

Die Variable a hat den Wert 2.

2.4.4 Prioritat

Bildet man Ausdriicke mit mehreren Operatoren, so bestimmt die Prioritat die Reihen-
folge, in der die Operatoren angewendet werden. Die Prioritaten entsprechen der Rang-
folge, die von der Mathematik her bekannt ist. Mithilfe von runden Klammern kann die
Reihenfolge der Auswertung wie in der Mathematik beliebig verandert werden. Die
Klammern konnen dabei beliebig tief geschachtelt werden.

92

2.4 Operatoren und Ausdriicke

int a = 2;
int b = 3;
int ¢ = 5;

int ergebnis = at+b*c;
System.out.print("a+b*c=");
System.out.println(ergebnis); // liefert 17
ergebnis = (a+b)*c;
System.out.print("(a+b)*c=");
System.out.println(ergebnis); // liefert 25

Listing 2.9 Klammern in Ausdriicken

Das Listing 2.9 kann kurzer formuliert werden, wenn Sie eine Ausgabezeile mit einer
einzigen System.out.println erzeugen:

int a = 2;
int b = 3;
int ¢ = 5;

int ergebnis = at+b*c;
System.out.println("a+b*c='
ergebnis = (a+b)*c;

System.out.print("(a+b)*c=" + ergebnis);

+ ergebnis);

Listing 2.10 Text und Zahlenwert wurden mit »+« verknipft.

Sie konnen den Quellcode noch weiter verkiirzen, indem Sie die Berechnung auch noch
in die System.out.println-Anweisung integrieren.

Aber Achtung! Komplexe Ausdriicke bergen die Gefahr, dass man den Uberblick tiber
die Art und Weise verliert, wie der Compiler Ausdriicke auswertet. Testen Sie folgenden
Quellcode:

int a = 2;
int b = 3;
int ¢ = 5;
System.out.println("a+b*c = " + a + b * c);

System.out.println("(a+b)*c = " + (a + b) * ¢);

Listing 2.11 Fehlerhafter Verkiirzungsversuch

Das Programm liefert die in Abbildung 2.16 gezeigte Ausgabe.

93

2 Grundbausteine eines Java-Programms

Abbildung 2.16 Fehlerhafte Ergebnisausgabe

Das Programm scheint falsch zu rechnen! Weshalb liefert die erste Berechnung nicht
den Wert 17? Die Antwort gibt ein genaues Nachvollziehen der Vorgehensweise des
Compilers. Alle Informationen, die Sie dazu brauchen, haben Sie in diesem Kapitel
erhalten. Die Frage ist, wie wird der folgende Ausdruck vom Compiler ausgewertet?

n

"atbfc = "+ a+b *c

Der Ausdruck enthalt drei Operatoren. Ein Blick auf die Prioritdten in Tabelle 2.9 besta-
tigt, dass wie in der Mathematik die Multiplikation (Prioritét 2) vor der Addition (Priori-
tdt 3) auszuflhren ist. Es gilt: Je kleiner der Zahlenwert der Prioritét ist, desto hoher ist
die Prioritat der Operation. Zuerst wird also die Multiplikation b*c mit dem Ergebnis 15
ausgefuhrt. Bleiben noch zwei +-Operationen auszufiihren. Da beide die gleiche Priori-
tat haben, werden die Operationen von links beginnend ausgefiihrt. Zuerst wird ent-
sprechend die Verkniipfung des Textes "a+b*c =" mit dem Zahlenwert der Variablen a (2)
als Konkatenation vorgenommen. Dabei entsteht wie oben erldutert der Textwert
"at+b*c = 2", der mit dem Ergebnis der Multiplikation (15) verkniipft wird. Es wird also
nochmals ein Text mit einem Zahlenwert verkniipft. Der Zahlenwert 15 wird in einen
Text umgewandelt, und die Verkniipfung der beiden Textelemente "a+b*c = 2" und "15"
liefert ganz konsequent als Ergebnis "a+b*c = 215". Wir l6sen das Problem dadurch, dass
wir die gesamte numerische Berechnung in Klammern einschliefSen, damit auf jeden
Fall zuerst die komplette numerische Berechnung erfolgt, bevor das Zusammensetzen
des Ausgabetextes erfolgt:

int a = 2;
int b = 3;
int ¢ = 5;

[

System.out.println("a+b*c = " + (a + b * ¢));
System.out.println("(a+b)*c = " + (a + b) * c);

Listing 2.12 Korrigierte Ergebnisausgabe mit Klammern

An diesem Beispiel sehen Sie, dass es fiir jedes auf den ersten Blick auch noch so merk-
wilrdige Programmergebnis einen nachvollziehbaren Grund gibt.

94

2.4 Operatoren und Ausdriicke

2.4.5 Logische Operatoren

Logische Operatoren verkniipfen Wahrheitswerte miteinander. In Java stehen die Ope-
ratoren UND, ODER, NICHT und Exklusives ODER zur Verfiigung.

Operator Bedeutung Prioritat
! NICHT 1

& UND mit vollstandiger Auswertung 7

A Exklusives ODER (XOR) 8

| ODER mit vollstandiger Auswertung 9

88 UND mit kurzer Auswertung 10

[ODER mit kurzer Auswertung 1

Tabelle 2.10 Logische Operatoren

Der NICHT-Operator ! kehrt den logischen Operanden ins Gegenteil um. Hat a den Wert
true, so hat !a den Wert false. Hat a den Wert false, dann hat !a den Wert true.

Tabelle 2.11 zeigt die moglichen Verkniipfungen mit den Ergebnissen der tibrigen Ope-
ratoren.

a b a&b a’“b alb
a&&b allb
true true true false true
true false false true true
false true false true true
false false false false false

Tabelle 2.11 Logische Verkniipfungen zweier Wahrheitswerte

UND und ODER gibt es in zwei Varianten. Die kurze Auswertung (88 bzw. | |) fihrt dazu,
dass die Auswertung des Gesamtausdrucks abgebrochen wird, sobald das Ergebnis fest-
steht. Eine vollstdndige Auswertung (& bzw. |) bewirkt, dass grundsatzlich immer der
gesamte Ausdruck abgearbeitet wird. Im folgenden Beispiel wird der Unterschied
gezeigt:

95

2 Grundbausteine eines Java-Programms

int a = 1;

boolean x = true;

boolean y = false;
System.out.println(y 88 (++a == 2));
System.out.printIn("a = " + a);

Die verkirzte Auswertung der UND-Verkniuipfung in der ersten System.out.println-
Anweisung sorgt daftir, dass der Klammerausdruck nicht mehr ausgewertet werden
muss. Da y den Wert false hat, kann das Ergebnis der Verkniipfung nur false lauten.
Dadurch, dass der Klammerausdruck nicht ausgewertet wird, entfallt auch das Inkre-
mentieren (++) von a. Die Variable a behdlt ihren Wert. Testen Sie die Anweisungsfolge
mit dem &-Operator fiir die vollstandige Auswertung, und Sie werden feststellen, dass a
inkrementiert wird und entsprechend den Wert 2 annimmt.

2.4.6 Sonstige Operatoren

Sie haben bis hierher die wichtigsten Operatoren kennengelernt. Java stellt aber noch
einige weitere Operatoren zur Verfligung, die in einigen Situationen sehr hilfreich sein
konnen. Es handelt sich dabei um die Bit- und Bedingungsoperatoren. Da diese Operato-
ren seltener Anwendung finden und fiir den Einstieg in die Programmierung keine
grofle Bedeutung haben, werden sie hier nicht weiter behandelt.

Einen Operator mochte ich Thnen aber noch vorstellen, weil Sie in fremden Java-Pro-
grammen durchaus ofter darauf stofien werden. In Abschnitt 2.4.1, »Zuweisungsopera-
tor und Cast-Operator«, war von der einfachen Zuweisung die Rede. Diese Formulierung
hat bereits angedeutet, dass es neben der einfachen Zuweisung noch eine andere gibt.
Es handelt sich dabei um die kombinierte Zuweisung, die die Wertzuweisung mit einem
arithmetischen Operator oder einem der hier nicht behandelten Bitoperatoren kombi-
niert. Zum Beispiel bedeutet a += 1 das Gleiche wie a = a + 1, also wird a um 1 erh6ht und
als neuer Wert der Variablen a wieder zugewiesen. Kurz gesagt: a wird um 1 erhoht.

Operator Bedeutung Prioritat

op= Kombinierte Zuweisung; op steht fiir *, /, %, +, — 13
oder einen Bitoperator

Tabelle 2.12 Kombinierte Zuweisung

aop=b entspricht der Schreibweise a = a op b. Dabei konnen Sie fiir op einen der in Tabelle
2.12 angegebenen arithmetischen oder bitweisen Operatoren einsetzen.

96

2.5 Ubungsaufgaben

2.5 Ubungsaufgaben

Fir die folgenden Aufgaben wird vorausgesetzt, dass die folgenden Variablen deklariert
wurden:

int a = 3;

int b = 5;

int ¢ = 6;

double x = 1.5;

double y = 2.3;

int int ergebnis;
double double ergebnis;

Aufgabe 1

Welche Werte liefern die folgenden Ausdrticke rechts des =-Zeichens, und ist die Wert-
zuweisung moglich?

int ergebnis = a * b + c;
int ergebnis = ¢ + a * b;
int ergebnis = c - a * 3;
int ergebnis = ¢ / a;

int ergebnis = ¢ / b;

int ergebnis = a + b / c;
double ergebnis = ¢ / b;
double ergebnis = c + a / b;
double ergebnis = x +y * b;
double ergebnis = (x +y) * b;
double ergebnis =y - x * b;

Aufgabe 2

Welche Ausgaben werden von folgendem Quellcode erzeugt?

n

+cte="4+b+c*o6);

-c*6="4b-c*6);
x*c-a)="+(x*c-a));

+Cc*f6="4+x+cC*6);

System.out.println("b
b
(
X
y-c/a="+(y-c/a);
b
b
b

(
System.out.println(
System.out.println(
System.out.println(
System.out.println(
(
(
(

n
n
n
n

n

System.out.println
System.out.println
System.out.println

+a *x “+b+a*rx+y);

+
<
1

n n

+a *x

*
<
I

+b+a*x*y);
tatx-y="4+b+a*x-y);

n

97

2 Grundbausteine eines Java-Programms

Aufgabe 3

Welche Ausgaben werden von folgendem Quellcode erzeugt?

System.out.println("
System.out.println("a:
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.printIn("
System.out.println("

a:
b
a:
b
a:
b
a:

Aufgabe 4

+

+

+

Flotol

at+:

++3:

"+ att);
)
"+ ++a);
"t a);
a--: "+ b+ a-);
! “hr "+ b);
a4 (b +am));

"+a+ " b " +b);

a4 (b +--a));

“+a+ " b "+ b);

e am);

Welche Ausgaben werden von folgendem Quellcode erzeugt?

n

System.out.println(
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.println("
System.out.println(
System.out.println("
y =y +0.1;

y =y +0.1;
System.out.printIn("y
System.out.printIn("y
double z = 1.0;

z =17+ 0.1;

z =17+ 0.1;
System.out.println("z
System.out.println("z

n

C
C
b
¢
C
a
a
X

Aufgabe 5

Welche Ausgaben werden durch folgende Ausgabebefehle erzeugt?

98

+C>b);
="+ (c>b));

="+ (b<a));
b ="+ (c==b));

<b="4+(c>ac<bh));
="+ (@=0b));
+a+"b="+b);
SRRCERIE

=2.5="1+ (y == 2.5));
e y);

1.2 ="+ (z == 1.2));

"+ z);

boolean b_wert;

b wert =
System.
System.
cout.println(!b wert);

System
b wert

System.

b wert

System.

b wert

System.

a = 3;
b wert

System.

a=3;
b wert

System.
System.

b wert

System.

b wert

System.

b wert

System.
System.

c = 6;
b wert

System.
System.

b wert

System.

System
c =6;
b wert

System.

a==c¢;
out.println("a == b = " + (a == ¢));
out.println(b wert);

=a==Db2& c>b;
out.println("a == b & ¢ > b = " + b_wert);
=b < c8& at+ == 4,
out.println("b < ¢ & a++ == 4 = " + b wert);
=b < c8 ++ta == 5;

out.println("b < ¢ & ++a == 5 = " + b wert);
=b<cd +ra == 4;
out.println("b < ¢ & ++a == 4 = " + b wert);

=a>b&& c++ == 6;

out.println("a > b 8& c++ == 6 = " + b wert);

out.println("c = " + ¢);

= ly > x;

out.println("ly > x = " + ly > x);
=y > x);

out.println("!(y > x) =" + I(y > x));

=a>b& ctt == 6;
out.println("a > b & c++ == 6 = " + b _wert);

out.println("c = " + ¢);

=a<b || ct+ == 6;

out.println("a < b || c++ == 6 = " + b wert);
out.println("c = " + ¢);

=a<b | c+t == 6;

out.println("a < b | c++ == 6 = " + b wert);
cout.printIn("c = " + c);

=a>b | ct;

out.println("a > b | c++ = " + b wert);

2.5 Ubungsaufgaben

Die Musterlosungen zu den Aufgaben 1bis 5 finden Sie in Anhang C, »Musterlosungenc.

929

2 Grundbausteine eines Java-Programms

2.6 Ausblick

In diesem Kapitel haben Sie wesentliche Sprachelemente von Java kennengelernt. Sie
kennen die einfachen Datentypen und die Operatoren, die auf diese Datentypen ange-
wendet werden konnen. Sie haben mit Ausdriicken in eigenen Programmen gearbeitet
und wissen jetzt, wie Java diese Ausdriicke auswertet.

Im folgenden Kapitel werden Sie erfahren, welche Sprachmittel Java zur Verfliigung
stellt, um den Programmablauf zu steuern. Sie werden Kontrollstrukturen kennen-
lernen, mit deren Hilfe Sie dafiir sorgen konnen, dass Programmteile nur unter be-
stimmten Bedingungen ausgefiihrt werden. Auch das mehrfache Wiederholen von
Programmteilen ist ein wesentliches Instrument fiir die Erstellung leistungsfahiger
Programme.

Sie werden dariiber hinaus einiges tiber die Giltigkeitsbereiche von definierten Varia-
blen und tber mogliche Namenskonflikte erfahren.

100

Kapitel 5
Klassen und Objekte

Sich den Objekten in der Breite gleichstellen, heifst lernen;
die Objekte in ihrer Tiefe auffassen, heift erfinden.
(Johann Wolfgang von Goethe, 1749—1832)

Ein wesentliches Merkmal der Programmiersprache Java ist ihre Objektorientierung.
Auch andere moderne Programmiersprachen — wie Delphi, C++, C# oder Visual Basic -
sind objektorientiert. Die Objektorientierung ist heute aus der Programmierung nicht
mehr wegzudenken. Hier soll zundchst geklart werden, wodurch sich dieses Merkmal
auszeichnet.

5.1 Struktur von Java-Programmen

Im Zusammenhang mit der objektorientierten Programmierung haben Begriffe wie
Klasse, Objekt, Attribut, Methode, Vererbung und Interface eine besondere Bedeutung.

5.1.1 Klassen

Die bisher verwendeten Datentypen byte, short, int, long, float, double, char und
boolean sind in Java vordefiniert. Sie werden auch als primitive Typen bezeichnet. Sie
erfordern einen sehr geringen Aufwand fir Compiler und Interpreter und bringen
damit Geschwindigkeitsvorteile. Sie reprasentieren einfache Werte (Zahlenwerte oder
Zeichen) und bendétigen nur wenig Speicherplatz. Deshalb wurde in Java nicht wie in
einigen anderen objektorientierten Programmiersprachen (z. B. Smalltalk) komplett
auf sie verzichtet. Klassen definieren neue Typen, die Sie als Programmierer komplett
an die eigenen Bediirfnisse zuschneiden konnen. Sie sind wesentlich leistungsfahiger
als primitive Typen, denn sie konnen nicht nur einen, sondern auch eine Vielzahl von
Werten speichern, die ihren Zustand als Eigenschaften beschreiben. Zusatzlich konnen
sie auf Botschaften reagieren und selbst aktiv werden.

156

5.1 Struktur von Java-Programmen

Anmerkung

Neue Typen kénnen auch mit alteren, nicht objektorientierten Programmiersprachen
gebildet werden. Diese Typen beschranken sich dann aber darauf, mehrere, auch unter-
schiedliche primitive Typen zu einem grofReren Verbund zusammenzufassen. Eine
Klasse im Sinne der objektorientierten Programmierung geht weit dartiber hinaus.

Wir wollen uns nicht lange mit grauer Theorie aufhalten, sondern definieren gleich mal
eine eigene Klasse, und zwar einen Zahlentyp, den es in der Programmiersprache Java
ebenso wenig wie in vielen anderen Programmiersprachen gibt. An diesem Beispiel
werden wir dann einige Besonderheiten der Objektorientierung kennenlernen.

Der neue Zahlentyp, den wir erzeugen, soll einen Bruch darstellen. Ein Bruch besteht
aus einem Zahler und einem Nenner, die beide ganzzahlig sind. Da Zahler und Nenner
durch ihren Zahlenwert komplett beschrieben sind, konnen wir fiir die Erzeugung ent-
sprechend auf den primitiven Datentyp int flir die Bestandteile unseres neuen Typs
zurlckgreifen. Wie eine Variable miissen wir den neuen Typ mit einem eindeutigen
Namen (Bezeichner) ausstatten. Es hat sich eingebiirgert, als Typnamen englische
Begriffe zu verwenden und den ersten Buchstaben immer grof3zuschreiben. Wir wei-
chen von dieser Vereinbarung insofern ab, als wir statt des englischen Ausdrucks den
deutschen Ausdruck »Bruch« verwenden.

Allgemein besteht eine Klassendefinition aus folgender Konstruktion:

class Bezeichner {
. Einzelheiten der Definition ...

}

Listing 5.1 Allgemeine Beschreibung einer Klassendefinition

Entsprechend sieht die Klassendefinition unseres Typs folgendermafien aus:

class Bruch {
int zaehler;
int nenner;

¥
Listing 5.2 Definition der Klasse »Bruch«

157

Lo

5 Klassen und Objekte

+ Merke

Eine Klasse beschreibt den Aufbau eines komplexen Datentyps. Eine Klasse wird durch
Eigenschaften (Datenelemente oder Attribute) und ihre Fdhigkeiten (Methoden)
beschrieben.

5.1.2 Attribute

Unsere Klasse Bruch besteht aus zwei Datenelementen. Wie Sie in Listing 5.2 sehen, wer-
den diese Datenelemente wie Variablen definiert. In unserem Fall sind beide Daten-
elemente vom primitiven Typ int.

‘+ Merke

Fir Attribute konnen Sie sowohl primitive Datentypen als auch Klassen verwenden.

Attribute sind fester Bestandteil einer Klasse und werden deshalb innerhalb der Klas-
sendefinition festgelegt. Die Schreibweise unterscheidet sich nicht von der Definition
der bisher verwendeten lokalen Variablen. Die Attribute miissen innerhalb einer Klasse
eindeutig benannt sein. Es gelten die bekannten Regeln fiir die Vergabe von Bezeich-
nern (siehe Abschnitt 2.1, »Bezeichner und Schliisselworter«). Es werden in der Regel
kleingeschriebene englische Substantive verwendet.

Unsere Klasse Bruch kann als neuer Typ angesehen werden, der gleichberechtigt neben
den primitiven Typen short, int, double usw. steht. Im Unterschied zu den primitiven
Typen besteht Bruch aus mehreren Bestandteilen, die einzeln angesprochen werden
konnen.

Typen, die mehrere Bestandteile haben, werden auch Referenztypen genannt. Ein grof3er
Vorteil einer Klasse besteht darin, dass ihre Bestandteile untrennbar miteinander ver-
bunden sind. In unserem Beispiel sind Zahler und Nenner in der Klasse Bruch zusam-
mengefasst. Der Zugriff auf die einzelnen Bestandteile ist nur tiber die Klasse, zu der sie
gehoren, moglich.

5.1.3 Packages

Jedes Java-Programm ist selbst immer als eine Klasse realisiert. Wie in Abschnitt 1.3.2,
»Wie sind Java-Programme aufgebaut?«, erlautert wurde, besteht das gesamte Pro-
gramm im einfachsten Fall aus dieser einen Klasse. Dass eine einzige Klasse ausreicht,
ist aber sehr selten der Fall. Normalerweise werden in einem Programm mehrere Klas-
sen verwendet. In der Regel wird jede einzelne Klasse in einer eigenen Quellcodedatei

158

5.1 Struktur von Java-Programmen

definiert. Daraus folgt, dass ein Java-Programm dann aus mehreren Quellcodedateien
bestehen kann.

Merke

Packages dienen dazu, mehrere logisch zusammengehérige Klassen zusammenzufas-
sen und damit die Verwaltung gréRerer Programme zu vereinfachen.

In einer einzelnen Quellcodedatei konnen zwar theoretisch mehrere Klassen definiert
werden, aber spitestens beim Kompilieren erstellt der Java-Compiler fiir jede Klasse
eine eigene Bytecodedatei. Es macht deshalb durchaus Sinn, bereits beim Erstellen des
Quellcodes darauf zu achten, dass in einer Quellcodedatei auch nur eine Klasse defi-
niert wird.

Klassen miissen nur innerhalb eines Packages eindeutige Namen haben. Gleichnamige
Klassen in anderen Packages erzeugen keine Namenskonflikte. Das erleichtert die Na-
mensgebung fir Klassen sehr. Da in ein Programm mehrere Packages eingebunden
werden konnen, schrankt diese Namensgleichheit die Verwendbarkeit aber keines-
wegs ein.

Wenn wir davon ausgehen, dass jede Klasse in einer Datei abgelegt wird und ein Package
mehrere Klassen organisatorisch zusammenfasst, dann sind Packages sehr gut mit Ord-
nern innerhalb des Dateisystems vergleichbar. Sie werden auch entsprechend in gleich-
namigen Ordnern angelegt. Sie konnen auch wie Ordner geschachtelt werden. Dadurch
wird eine hierarchische Struktur mit Packages und Subpackages erzeugt (siehe Abbil-
dung 5.1).

fahrzeug

triebwerk karosserie

!—‘—\

motor getriebe

Abbildung 5.1 Beispiel flir geschachtelte Packages

Zur Verdeutlichung erstellen wir als neues Projekt JavaUebungO5. In diesem Projekt
legen Sie als neue Klasse (FILE « NEw « CLASS) die Definition unserer Klasse Bruch an.

Solange Sie wie bisher das Textfeld PACKAGE leer lassen, weist Eclipse Sie darauf hin,
dass es nicht gutgeheifien wird, das default package zu verwenden (siehe Abbildung 5.2).

159

L

5 Klassen und Objekte

= New Java Class

Java Class
& The use of the default package is discouraged.

Source folder: Javallebung05/src Browse...
Package: (default) Browse...

Enclosing type: ‘ | | Browse... |
MName: Bruch
Modifiers: @ public () default private protected

abstract [“]final [static

Superclass: javalang.Object Browse...

Interfaces: Add...

| Remove |

Which method stubs would you like to create?
public static void main(String[] args)

Abbildung 5.2 Erstellen der Klasse »Bruch«

= Java —Java-l.l-ebungﬂifslduchu 05/Bruch,java -

File Edit Run Source Mavigate Search Project Refactor Window Help
Ci~HE& B8 Bid $-0-
Fr-eoro-

[# Package Explorer &3 =0

h.java i

package uebungB5;

]}
4
q

52 Javallebung0l public class Bruch {
E Javallebung02
= Javallebungl3 ¥
1 Javalebungld
=] Javallebung(5

2 src

3 uebung05
[J] Bruch.java
=i, JRE System Library [JavaSE-1.7

Abbildung 5.3 Projektansicht im Package Explorer

Sie sollten sich diesen Einwurf von Eclipse zu Herzen nehmen und fur das Package
einen Namen angeben. Auch diese Namenseingabe wird von Eclipse Uuberwacht. Wenn
Sie z. B. den Package-Namen mit einem GrofSbuchstaben beginnen, erscheint der Hin-
weis, dass Package-Namen mit einem Kleinbuchstaben beginnen sollten. Fir die
Bezeichnung von Packages gelten die gleichen Regeln wie fiir Variablen und Klassen.
Nennen Sie das Package uebungO5. Sie sollten diesmal auf die Erstellung der main-
Methode verzichten, denn die Klasse Bruch soll kein eigenstindiges Programm sein,
sondern lediglich eine Klasse, die in einem Programm verwendet werden kann.

160

5.1 Struktur von Java-Programmen

Wie Sie in Abbildung 5.3 sehen, wird die Quellcodedatei der Klasse Bruch im Package
uebungO5 eingeordnet. Die im Quellcode erforderliche Anweisung package uebung05;
wird von Eclipse automatisch eingetragen.

Ergidnzen Sie den Quellcode um die Definition der Attribute:

package uebung05;

class Bruch {
int zaehler;
int nenner;

¥
Listing 5.3 Definition der Klasse »Bruch«

Diese Quellcodedatei kann nicht als Anwendung gestartet werden. Was sollte sie auch
ausfiihren? Beim Versuch, die Datei als Java-Anwendung zu starten, werden Sie feststel-
len, dass Eclipse im Menii RUN As keine Option JAVA APPLICATION anbietet und dass
beim Versuch, direkt mit RUN zu starten, nur eine Fehlermeldung erscheint (siehe
Abbildung 5.4).

= Launch Error u

@ Selection does not contain a main type

Abbildung 5.4 Fehlermeldung beim Versuch, die Klasse »Bruch« als Anwendung zu starten

Die Klasse Bruch selbst ist kein Programm, sondern eine Klasse, die in einem Programm
verwendet werden kann. Man kann die Klasse Bruch mit einem Datentyp wie int verglei-
chen. Auch der Datentyp int ist keine Anwendung, die ausgefiihrt werden kann, son-
dern ein Element, das von einer Anwendung zur Speicherung von Informationen
verwendet wird. Um die Klasse Bruch zu testen, miissen Sie eine Anwendung erstellen,
die diese Klasse verwendet.

Innerhalb des Projekts JavaUebungO5 erstellen Sie eine neue Klasse mit dem Namen
Bruchtestl (siehe Abbildung 5.5). Achten Sie dabei darauf, dass als Package-Name
uebungO5 eingetragen ist. Diesen Eintrag nimmt Eclipse automatisch vor, wenn Sie im
Package Explorer das Package selbst oder einen dem Package untergeordneten Eintrag
markiert haben. Sie konnen den Eintrag aber auch von Hand vornehmen. Zusatzlich
konnen Sie sich die Arbeit erleichtern, indem Sie unter der Frage WHICH METHOD
STUBS WOULD YOU LIKE TO CREATE? das Hakchen vor dem Eintrag PUBLIC STATIC VOID

161

5 Klassen und Objekte

MAIN(STRING[]| ARGS) setzen. Diese Methode macht eine Klasse zu einem ausfiihrbaren
Programm. Haben Sie die Absicht, eine als Programm ausfiihrbare Klasse zu erstellen,
dann missen Sie diese main-Methode erstellen. Sie bildet den Startpunkt des Pro-
grammablaufs. Der Java-Interpreter sucht beim Aufruf in der ihm tbergebenen Binar-
datei nach der Methode mit dem Namen main und beginnt dort mit der Abarbeitung der
Anweisungen.

FETT e =)

Java Class
Create a new Java class.

Source folder: Javallebung05/src Browse...
Package: uebungl5 Browse...

Enclosing type: | ‘ Browse... |
Name: Bruchtestl
Modifiers: @) public () default private protected

[T abstract [final [static

Superclass: java.lang.Object Browse...

Interfaces: Add...

Remove

Which method stubs would you like to create?
public static void main(String[] args)

Abbildung 5.5 Erstellen der Anwendung »Bruchtestl«

Den von Eclipse erstellten Quellcode zeigt Abbildung 5.6.

[J] *Bruch.java |J| Brut
package uebung@5;

public class Bruchtestl {

a f’ﬂ(*
* fparam args
*/
=] public static void main(String[] args) {
// TODO Auto-generated method stub

¥

Abbildung 5.6 Von Eclipse erstellter Programmrahmen

Ersetzen Sie den markierten Kommentar, der Sie mit dem Hinweis ToDo auffordert,
hier die eigenen Ergdnzungen vorzunehmen, durch die folgenden Anweisungen:

162

5.2 Objekte

Bruch b = new Bruch();
b.zaehler = 3;

b.nenner = 4;
System.out.print("Bruch b =

n

+ b.zaehler + "/" + b.nenner);

Es wird eine Variable vom Typ Bruch definiert. Eine solche Variable, die als Typ eine
Klasse verwendet, wird Objekt genannt. Ihr wird der Wert % zugewiesen, und schlief3lich
wird die Variable zur Kontrolle mit System.out.print ausgegeben. Der folgende
Abschnitt erldutert, wie sich die Verwendung einer Klasse von der Verwendung eines
primitiven Datentyps unterscheidet.

5.2 Objekte

Verwenden Sie primitive Typen, so reicht die Definition einer Variablen von diesem Typ
bereits aus, und Sie konnen diesen Variablen Daten zuweisen. Die Definition einer
Klasse darf nicht mit der Definition einer Variablen verwechselt werden. Mit der Defini-
tion einer Klasse ist nur festgelegt, wie eine spater zu definierende Variable aufgebaut
ist. Man kann die Definition einer Klasse als Bauplan auffassen. Eine Variable, die nach
diesem Plan anschliefiend angelegt wird, nennt man Objekt, Instanz oder Exemplar der
Klasse.

Merke é

Ein Objekt ist ein Exemplar (Instanz), das nach dem Bauplan einer Klassendefinition
erstellt wurde. Die Klasse stellt den Bauplan dar (siehe Abbildung 5.7). Das Objekt ist
eine Variable, die nach diesem Plan aufgebaut ist.

nenner

Abbildung 5.7 Bauplan der Klasse »Bruch«

Nach dem Bauplan der Klasse kdnnen beliebig viele Objekte (Instanzen) erzeugt wer-
den. Eine Instanz ist mit einer Variablen eines primitiven Typs vergleichbar, weist aber
in der Handhabung deutliche Unterschiede auf. Wie in Kapitel 2, »Grundbausteine eines
Java-Programms, beschrieben, wird z. B. mit

int zahll;

163

5 Klassen und Objekte

eine Variable definiert. Damit ist im Arbeitsspeicher unmittelbar auch Speicherplatz
verfugbar, auf den tiber den Bezeichner zugegriffen werden kann.

Die Verwendung einer Klasse stellt sich nicht ganz so einfach dar. Nach der Erstellung
eines Bauplans durch die oben beschriebene Definition steht der neue Typ zur Ver-
fligung. Damit kann eine Variable dieses Typs mit der folgenden Anweisung definiert
werden:

Bruch b;

Bruch b;

Arbeitsspeicher / l \

Abbildung 5.8 Definition einer Variablen vom Typ »Bruch«

Wie Abbildung 5.8 zeigt, ist mit dieser Anweisung nur ein Bezeichner definiert, der in
der Lage ist, auf eine Instanz der Klasse Bruch zu verweisen. Man nennt sie deshalb auch
Referenzvariable. Im Gegensatz zu den bisher verwendeten Typen ist damit aber im
Hauptspeicher noch kein Platz fur die einzelnen Attribute zaehler und nenner reserviert.
Auch die Adresse, an der sich die Instanz befindet, steht noch nicht fest. Es existiert im
Hauptspeicher noch keine Instanz. Die Variable b hat zu diesem Zeitpunkt den vordefi-
nierten Wert null. Dieser Wert beschreibt sehr gut, dass die Variable noch keine Instanz
referenziert. So kann z. B. in einer if-Anweisung

if (b I=null) ...

uberprift werden, ob sich hinter einem Bezeichner tatsachlich schon eine Instanz einer
Klasse verbirgt. Nur wenn die Bedingung (b !=null) den Wert true zuriickliefert, exis-
tiert bereits eine Instanz der Klasse Bruch, und nur dann kann auch auf die Attribute die-
ser Instanz zugegriffen werden.

Eine neue Instanz der Klasse Bruch erzeugen Sie mit dem Operator new (sieche Abbil-
dung 5.9):

new Bruch();

Wie Sie aus Abbildung 5.9 entnehmen konnen, fehlt hier die Verbindung zu einem
Bezeichner, tiber den Sie auf das Objekt zugreifen konnen. Deshalb werden in der Regel

164

5.2 Objekte

die beiden Anweisungen Bruch b; und new Bruch(); zu einer Anweisung der Form Bruch
b = new Bruch(); verbunden (siehe Abbildung 5.10).

new Bruch();

i i zaehler nenner
Arbeitsspeicher

Bruch

Abbildung 5.9 Erzeugen einer Instanz des Typs »Bruch«

Bruch b = new Bruch();

zaehler nenner

'
Bruch

Arbeitsspeicher

Abbildung 5.10 Erzeugen einer Variablen als Instanz der Klasse »Bruch«

Nun besteht tiber den Bezeichner b eine Verbindung zu dem fiir das Objekt im Speicher
reservierten Speicherbereich, und Sie konnen auf das Objekt zugreifen.

5.2.1 Zugriff auf die Attribute (Datenelemente)

Die Instanz einer Klasse enthalt die in der Klassendefinition festgelegten Attribute. In
unserem Beispiel sind dies die Attribute zaehler und nenner. Diese Datenelemente kon-
nen einzeln angesprochen werden. Die Syntax fiir den Elementzugriff lautet:

variable.elementname

In unserem Beispiel mit der Referenzvariablen b konnen Sie auf den Zahler des Bruchs
mit b.zaehler und auf den Nenner mit b.nenner zugreifen. Somit kénnen Sie mit den
Wertzuweisungen

b.zaehler = 3;
b.nenner = 4;

der Variablen b den Wert % zuweisen. Damit stellt sich ein Blick in den Hauptspeicher so
dar wie in Abbildung 5.11.

165

5 Klassen und Objekte

>

Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 4;

. . zaehler nenner
Arbeitsspeicher

Bruch

Abbildung 5.11 Variable »b« nach der Wertzuweisung

Merke

Die Attribute eines Objekts werden liber den Objektnamen angesprochen. Auf den
Objektnamen folgt, durch einen Punkt getrennt, der Name des Attributs. Diese Zugriffs-
moglichkeit (von aulRen) kann und soll sogar vom Programmierer unterbunden werden
(siehe Abschnitt 6.2.2, »Datenkapselung«). Sie wird hier nur der Vollstandigkeit halber
beschrieben.

Mit den Attributen eines Objekts konnen Sie in gleicher Weise operieren wie mit loka-
len Variablen des gleichen Typs. Dementsprechend sind z. B. die folgenden Operationen
moglich:

b.zaehler++; // Inkrementierung des Zdhlers
if (b.nenner != 0) //Prifen, ob der Nenner ungleich null ist

An der Schreibweise mit dem Punkt zwischen Objektbezeichner und Datenelementbe-
zeichner konnen Sie erkennen, dass hier mit dem Attribut eines Objekts und nicht mit
einer lokalen Variablen gearbeitet wird.

5.2.2 Wertzuweisungen bei Objekten

Eine hdufige Fehlerquelle beim Umgang mit Objekten besteht darin, dass Wertzuwei-
sungen falsch vorgenommen werden. Objekte sind Referenztypen. Bei solchen Typen
hat eine Wertzuweisung andere Folgen als bei den primitiven Typen. Die Zusammen-
hange sollen hier an Beispielen deutlich gemacht werden.

Gehen wir zundchst von zwei Variablen des primitiven Typs int aus. Die Anweisung

int zahll = 2387;

166

5.2 Objekte

hat zur Folge, dass im Hauptspeicher eine Variable zahl1l mit dem Wert 2387 angelegt
wird (siehe Abbildung 5.12).

zahll
Wert der Variablen
Arbeitsspeicher \ /

2387 ‘

Abbildung 5.12 Anlegen einer »int«-Variablen
Folgt als weitere Anweisung
int zahl2 = zahli;

wird eine weitere Variable mit dem gleichen Inhalt angelegt (siehe Abbildung 5.13).

zahl1 zahl2

Arbeitsspeicher ¥

2387 2387

Abbildung 5.13 Erstellen einer Kopie der Integer-Variablen

Es existieren anschliefSend zwei Variablen mit unterschiedlichen Bezeichnern, die beide
den gleichen Wert haben. Andern Sie mit

zahll = 46;

den Inhalt von zahl1, so hat dies keinen Einfluss auf den Inhalt von zah12 (siehe Abbil-
dung 5.14).

zahl1 zah12

Arbeitsspeicher

46 2387

Abbildung 5.14 Wertzuweisung an die erste Variable
Das scheint so weit ganz selbstverstandlich und sollte keine Schwierigkeiten bereiten.

Wenn Sie nun aber mit Referenzvariablen wie bei den Objekten arbeiten, ergeben sich
davon abweichende Verhaltnisse.

167

5 Klassen und Objekte

Angenommen, Sie definieren dhnlich wie oben eine Variable, weisen dieser einen Wert
zu und definieren anschliefRend eine zweite Variable, der Sie den Wert der ersten zuwei-
sen, nur dass Sie jetzt Objekte statt primitiver Typen verwenden. Sie lassen z. B. die fol-
genden Anweisungen ausfihren:

Bruch a = new Bruch(); // a als Bruch definiert
a.zaehler = 3; // dem Bruch den Wert % zuweisen
a.nenner = 4;

Bruch b = a; // b als Bruch mit dem Wert von a

a.zaehler a.nenner
Arbeitsspeicher + +

s | 4|

i f

b.zaehler b.nenner

b

Abbildung 5.15 Wertzuweisung bei Objekten

Wie Sie Abbildung 5.15 entnehmen konnen, existiert jetzt kein zweites Objekt mit glei-
chem Zahler und Nenner wie beim ersten, sondern es existiert lediglich ein zweiter
Bezeichner, der aber auf das identische Objekt im Hauptspeicher verweist. Dieses Ver-
halten hat jetzt aber weitreichende Folgen. Zum Beispiel werden durch das Verandern
von Zahler und Nenner des zweiten Objekts

b.zaehler = 5;
b.nenner = 8;

zugleich auch der Zdhler und der Nenner des ersten Objekts verandert, denn es handelt
sich ja eigentlich immer nur um ein einziges Objekt, auf das Sie mithilfe von zwei unter-
schiedlichen Bezeichnern zugreifen konnen. Man nennt dieses Verhalten auch Aliasing,
denn ein und dasselbe Objekt besitzt dadurch einen Alias-Bezeichner.

a
L a.zaehler a.nenner

S |
s | 8 |

T f

b.zaehler b.nenner

Arbeitsspeicher J

b

Abbildung 5.16 Auswirkung der Wertzuweisung an ein Objekt

168

5.2 Objekte

Dieses Aliasing wirkt sich jetzt auch auf Vergleiche von Objekten aus. Vergleicht man
z.B.in einer if-Anweisung die beiden Briiche a und b mit

if (a ==b) ...

so liefert der Vergleich nur dann true als Ergebnis zurtick, wenn es sich tatsachlich um
ein und dasselbe Objekt mit zwei unterschiedlichen Bezeichnern handelt (siehe Abbil-
dung 5.16). Im folgenden Beispiel werden zwei unterschiedliche Objekte erzeugt, deren
Zahler und Nenner identisch sind. Vergleichen Sie diese beiden Objekte aber, so liefert
der Vergleich immer false zurtck, auch wenn sie vom gespeicherten Wert her eigent-
lich gleich sind (siehe Abbildung 5.17):

Bruch a = new Bruch(); // a als Bruch definieren
a.zaehler = 3; // dem Bruch den Wert % zuweisen

a.nenner = 4;

Bruch b = new Bruch(); // b als zweiten Bruch definieren
b.zaehler = a.zaehler; // b den Wert von a zuweisen
b.nenner = a.nenner;

if (a ==b) ... // liefert false zurlick

a b
a.zaehler a.nenner b.zaehler b.nenner
Arbeitsspeicher ¥

3 ‘ 4 3 ‘ 4 ‘

Abbildung 5.17 Echte Kopie eines Objekts

Was sich hier zunachst als etwas problematisch darstellt, ist in der Praxis uberhaupt
nicht problematisch. Java vermeidet aus Grinden der Performance und des Speicher-
platzbedarfs, bei jeder Wertzuweisung eine komplette Kopie eines Objekts anzulegen.
In den wenigen Fallen, in denen Sie tatsachlich eine exakte Kopie eines Objekts bendti-
gen, gehen Sie dann in der zuletzt beschriebenen Form vor.

5.2.3 Giiltigkeitsbereich und Lebensdauer

Auch was den Gltigkeitsbereich und die Lebensdauer betrifft, gibt es Unterschiede zwi-
schen lokalen Variablen und den Datenelementen eines Objekts. Wie bereits bei der
Behandlung der lokalen Variablen bemerkt, gelten diese nur innerhalb des Blocks, in
dem sie definiert wurden. Die Attribute eines Objekts haben dagegen unabhéngig von
der Stelle, an der sie definiert wurden, innerhalb der gesamten Klasse Gultigkeit.

169

5 Klassen und Objekte

Die Lebensdauer von lokalen Variablen beginnt in dem Augenblick, in dem das Pro-
gramm die Stelle ihrer Definition erreicht, und sie endet mit dem Verlassen des Blocks,
innerhalb dessen die Definition erfolgte.

Beispiel:

if (x > 10) {
Bruch b = new Bruch();
b.zaehler = 2;
b.nenner = 3;

¥
System.out.println(b.zaehler);

Listing 5.4 Zugriffsversuch nach Ablauf der Lebensdauer

Der Bruch b wird nur erzeugt, wenn x grofder als 10 ist. Aber auch in diesem Fall erfolgt
die Erzeugung des Bruchs b innerhalb des Blocks, der mit der geschweiften Klammer
nach der Bedingung (x > 10) beginnt. Die Lebensdauer endet somit mit der schliefden-
den Klammer. Danach ist kein Zugriff mehr auf b moglich. Die System.out.println-
Anweisung wird entsprechend eine Fehlermeldung verursachen.

Die Attribute eines Objekts existieren immer so lange, wie das Objekt selbst existiert.
Erzeugt wird ein Objekt mit der new-Anweisung. Damit ist das auch der Zeitpunkt, zu
dem die Attribute des Objekts entstehen. Die Lebensdauer des Objekts endet automa-
tisch, sobald es im Programm keine Referenz mehr auf das Objekt gibt. Wann genau das
passiert, kann nicht eindeutig vorhergesagt werden, denn dartiber entscheidet das Lauf-
zeitsystem. Man kann aber sagen, dass es spatestens dann passiert, wenn keine Zugriffs-
moglichkeit (Referenz) mehr besteht und der verfiigbare Speicherplatz zur Neige geht.

5.3 Methoden

Eine Erweiterung, zu der es bei den primitiven Datentypen nichts Vergleichbares gibt,
sind die Methoden einer Klasse. Methoden konnen in Klassen neben den Datenelemen-
ten definiert werden. Sie beschreiben das Verhalten einer Klasse bzw. die Operationen,
die mit den Attributen der jeweiligen Klasse ausgefiihrt werden kénnen. Im Vergleich
dazu beschreiben die Datenelemente einer Klasse den Aufbau und den Zustand einer
Instanz.

170

5.3 Methoden

5.3.1 Aufbau von Methoden

Eine Methode besteht aus dem Kopf, der quasi als Uberschrift dient, und dem Rumpf.
Im Rumpf wird festgelegt, welche Vorgidnge mit dem Aufruf der Methode ablaufen sol-
len. Im Kopf werden der Ruickgabetyp, der Bezeichner der Methode und in runden
Klammern die Datentypen und Bezeichner von Ubergabeparametern festgelegt. Im
Rumpf befinden sich Java-Anweisungen, die wie ein Programm abgearbeitet werden.

Der allgemeine Aufbau einer Methode hat die folgende Form:

Riickgabetyp Methodenname(Parametertyp Parameterl, ...)

Als erstes Beispiel definieren wir eine Methode, die dafiir sorgt, dass ein Objekt der
Klasse Bruch in einem bestimmten Format ausgegeben wird.

void ausgeben() { // Kopf der Methode
System.out.print(zaehler + "/" + nenner); // Rumpf der Methode

Das im Kopf verwendete Schliisselwort void ist bereits von der Zeile public static void
main(String[] args) bekannt. Methoden kdnnen Daten als Ergebnis zuriickliefern. Von
welchem Datentyp das Ergebnis ist, miissen Sie bei der Methodendefinition vor dem
Methodennamen angeben. Liefert eine Methode kein Ergebnis zurtick, mussen Sie als
Pseudodatentyp das Schliisselwort void angeben. Es bedeutet so viel wie: Die Methode
liefert nichts zuruck.

Der Rumpf der Methode besteht in diesem Beispiel aus einer einzigen Anweisung, kann
aber durchaus auch sehr komplex und umfangreich ausfallen. Die geschweiften Klam-
mern, die den Methodenrumpf einleiten und abschlief}en, miissen Sie immer verwen-
den, auch wenn wie hier nur eine einzige Anweisung im Methodenrumpf steht. Das ist
ein wesentlicher Unterschied zu den Kontrollstrukturen, wo die geschweiften Klam-
mern in einem solchen Fall auch wegfallen kénnen.

5.3.2 Aufruf von Methoden

Abbildung 5.18 zeigt die um die Methode ausgeben() erweiterte Version der Klasse Bruch.
Im Programm Bruchtest wird die Ausgabe nicht mehr direkt tiber den Aufruf von Sys-
tem.out.print realisiert, sondern indirekt tiber den Aufruf der Methode ausgeben(). Es
handelt sich hierbei um eine Instanzmethode. So wie jede Instanz der Klasse Bruch tiber
ihre eigenen Attribute verfiigt, so verfligt jede Instanz auch tiber ihre eigenen Instanz-
methoden. Sie sehen, dass der Zugriff auf eine Instanzmethode in gleicher Weise erfolgt
wie der Zugriff auf die Attribute eines Objekts. Sie geben hinter dem Objektbezeichner

7

5 Klassen und Objekte

mit Punkt getrennt den Methodennamen und in Klammern eventuell zu verwendende
Parameter an.

public class Bruchtestl { t—mclass Bruch {
Em» public static void main(String[] args) int zaehler;
{ Bruch b = new Bruch(); int nenner;
b.zaehler = ?; void ausgeben() {
b.nenner = 4; é> System.out.print(zaehler + "/" + nenner);
b.ausgeben(); l }
;- ‘ }

} 4gzom o

Abbildung 5.18 Methodenaufruf

Die Pfeile links zeigen, dass der Programmablauf immer mit der Methode main beginnt
und mit dem Erreichen vom Ende des Methodenrumpfes endet (d. h. mit der schliefRen-
den geschweiften Klammer).

Bei Erreichen der Anweisung new Bruch(); wird der erste Zugriff auf die Datei mit der
Definition der Klasse Bruch erforderlich @. Mit dieser Anweisung wird die gesamte
Struktur der Klasse Bruch im Hauptspeicher angelegt und tiber den Variablennamen b
zugreifbar gemacht. Im Hauptspeicher entsteht quasi ein Abbild des Dateiinhalts. Wer-
den mehrere Objekte der gleichen Klasse mit new erzeugt, so werden die Methoden im
Hauptspeicher allerdings nur ein einziges Mal erzeugt. Alle Objekte verwenden dann
die gleiche Implementierung der Methoden. Danach wird die nidchste Anweisung im
Programm abgearbeitet @. In diesem Fall wird dem Zdhler unseres Bruchs der Wert 3
und dem Nenner der Wert 4 zugewiesen.

Mit der Anweisung b.ausgeben(); wird nun auf das Abbild im Hauptspeicher zugegrif-
fen ® und die Methode ausgeben() des Objekts Bruch abgearbeitet. In diesem Fall wird
also die Anweisung System.out.print ausgefihrt. Nachdem das Ende des Methoden-
rumpfes erreicht wurde, wird mit der ndchsten Anweisung im Programm fortgefahren
0. In unserem Fall ist damit das Ende des Methodenrumpfes von main erreicht, und das
Programm wird beendet.

Unser Beispiel zeigt nun auch, wie eine Methode benutzt wird. Wie beim Zugriff auf ein
Attribut eines Objekts richtet sich auch der Aufruf einer Methode immer an ein
bestimmtes Objekt einer Klasse. Ohne diese Zuordnung zu einer bestimmten Instanz
kann keine Methode aufgerufen werden. Die Syntax (Schreibweise) entspricht der beim
Zugriff auf ein Attribut. In der Form

variablenname.methodenname();

172

5.3 Methoden

wird also zundchst der Variablenname und, mit einem Punkt abgetrennt, der Metho-
denname angegeben. In unserem Beispiel verwenden wir entsprechend b.ausgeben(),
um den Bruch mit dem Variablennamen b auszugeben.

Der Aufruf einer Methode erfolgt immer in drei Schritten:

» Der aufrufende Block wird unterbrochen.

» Der Methodenrumpf wird ausgefiihrt.

» Der aufrufende Block wird mit der Anweisung nach dem Aufruf fortgesetzt.

Ein Block kann so beliebig viele Aufrufe ein und derselben Methode beinhalten (siehe

Abbildung 5.19). Es wird dementsprechend beliebig oft unterbrochen, um immer wieder
den gleichen Anweisungsteil der Methode zu durchlaufen (zweiter Aufruf mit ® und).

public class Bruchtestl { — class Bruch {
m» public static void main(String[] args) int zaehler;
{ int nenner;

Bruch b = new Bruch();

b.zaehler = 3; void ausgeben() {

b.nenner = 4; é §>) System.out.print(zaehler + "/" + nenner);
b.ausgeben();

b.nenner = 5; «————— ! } Q 6

b.ausgeben(); J

}4:5:; ?

Abbildung 5.19 Mehrfacher Methodenaufruf

Der Methodenrumpf stellt in der gleichen Bedeutung, wie wir ihn bisher kennengelernt
haben, einen Block dar. Innerhalb dieses Blocks sind beliebige Anweisungen (damit
auch alle Kontrollstrukturen) zuldssig. Es konnen auch lokale Variablen definiert wer-
den, die dann nur innerhalb des Methodenrumpfes gultig sind. Sie werden bei jedem
Methodenaufruf neu erzeugt und nach dem Aufruf wieder zerstort. Zur Erinnerung: Die
Datenelemente des Objekts werden mit der Ausfithrung der new-Anweisung erstellt. Sie
werden erst zerstort, wenn das Objekt insgesamt aus dem Speicher entfernt wird.

Wir erweitern unsere Definition nun um eine Methode, die es dem Bruch ermoglicht,
sich zu kiirzen. Ein Bruch kann mit dem groften gemeinsamen Teiler (ggT) gekiirzt wer-
den. Wir verwenden also unseren Algorithmus zur Berechnung des ggT nach Euklid,
den wir in Kapitel 3, »Kontrollstrukturen«, programmiert haben.

Unser Testprogramm dndern wir so ab, dass der Bruch zunichst den Wert 3/, hat. Zur
Kontrolle wird der Bruch ungekiirzt ausgegeben, dann wird er gekiirzt und schlief3lich
noch einmal in gekiirzter Form ausgegeben:

173

5 Klassen und Objekte

public static void main(String[] args) {
Bruch b = new Bruch();
b.zaehler = 3;
b.nenner = 12;
b.ausgeben();
System.out.print("\n Und nach dem Kirzen: ");
b.kuerzen();
b.ausgeben();

}

Listing 5.5 »main«-Methode von »Bruchtestl«

In der Klasse Bruch wird die folgende Methode zum Kurzen erganzt:

void kuerzen() {
int m, n, r; // lokale Variablen
m = zaehler;
n = nenner;
r=mb%n;
while (r > 0) {
m=n;
n=r;
T=m%n;
¥
zaehler = zaehler / n; // in n steht jetzt der ggT
nenner = nenner / n;

}

Listing 5.6 Methode der Klasse »Bruch« zum Kiirzen

Das Beispiel zeigt, dass beim Zugriff auf Datenelemente der Klasse (zaehler und nenner)
innerhalb eines Methodenrumpfes desselben Objekts keine ausfiihrliche Schreibweise
flr den Elementzugriff notwendig ist. Sie schreiben einfach zaehler, wenn Sie auf dieses
Element zugreifen wollen. Von auf3erhalb, d. h. von einem Anwendungsprogramm aus,
miissen Sie den Objektnamen mit angeben (b.zaehler). Sowohl Datenelemente als auch
Methoden stehen innerhalb einer Klasse ohne weitere Mafinahmen direkt zur Verfi-
gung. Dadurch ist es auch moglich, dass eine Methode eine andere Methode der Klasse
aufruft. Diesen Sachverhalt zeigt die folgende Erweiterung unserer Klasse Bruch. Wir
ergidnzen eine weitere Methode, die einen Bruch gekiirzt ausgibt:

174

5.3 Methoden

void gekuerztausgeben() {
kuerzen();
ausgeben();

}

Die Methode fallt dadurch, dass wir auf die bereits definierten Methoden kuerzen() und
ausgeben() zuriickgreifen konnen, sehr kurz und tbersichtlich aus. Im Testprogramm
konnen Sie die beiden Anweisungen

b.kuerzen();
b.ausgeben();

ersetzen durch die Anweisung:

b.gekuerztausgeben();

Wie das Beispiel zeigt, konnen Methoden auch aus anderen Methoden heraus aufgeru-
fen werden. Abbildung 5.20 verdeutlicht die Abldufe beim gegenseitigen Methodenauf-
ruf. Sie entsprechen den Abldufen, wie sie fir den Aufruf einer Methode aus einer
Anwendung heraus bereits erlautert wurden.

// Definition der Klasse Bruch
class Bruch {

int zaehler;

int nenner;

void ausgeben() { -
System.out.print(zaehler + "/" + nenner);
—1

void kuerzen() { +———
int m, n, r;

m = zaehler;
n = nenner;
r=mb%n;
while (r > 0) {
m=n;
n=r;
rT=mb%n;

zaehler /= n;
nenner /= n;

void gekuerztausgeben() {

kuerzen();

ausgeben();

Abbildung 5.20 Methodenaufruf aus einer Methode

175

5 Klassen und Objekte

5.3.3 Abgrenzung von Bezeichnern

Dainnerhalb von Methoden neben den Datenelementen auch lokale Variablen verwen-
det werden konnen und beim Zugriff auf Datenelemente kein Objektname vorange-
stellt ist, kann im Quellcode nicht zwischen einem Zugriff auf eine lokale Variable und
einem Zugriff auf ein Datenelement unterschieden werden. Auf3erdem ist zu beachten,
dass Namen von lokalen Variablen und Datenelementen nicht kollidieren. Dadurch ist
es durchaus moglich, dass innerhalb einer Methode eine lokale Variable definiert wird,
die den gleichen Namen trigt wie ein im Objekt bereits definiertes Datenelement. Zum
Beispiel konnte, wie im unten stehenden Beispiel gezeigt, in der Methode ausgeben()
eine lokale Variable mit dem Namen zaehler definiert werden, ohne dass der Compiler
eine Fehlermeldung erzeugt.

void ausgeben() {
int zaehler = 0; // namensgleiche lokale Variable
System.out.print(zaehler + "/" + nenner);

}

Die Frage, die sich nun stellt, lautet: Worauf greift die Methode ausgeben() zurtick?

Wenn Sie das Programm testen, werden Sie feststellen, dass mit b.ausgeben() fiir den
zaehler immer der Wert O ausgegeben wird. Das bedeutet, dass die in der Methode aus-
geben() definierte lokale Variable zaehler das gleichnamige Datenelement des Objekts
uberdeckt. Dies gilt grundsatzlich bei Namensgleichheit von lokalen Variablen und
Datenelementen.

Damit Sie bei einer Uberdeckung dennoch an das verdeckte Datenelement einer Klasse
bzw. eines Objekts herankommen, existiert in jeder Methode automatisch eine Variable
mit dem Namen this. Diese Variable wird als Selbstreferenz bezeichnet, weil sie immer
auf das eigene Objekt verweist. Das eigene Objekt ist dasjenige Objekt, innerhalb dessen
die Methode definiert wurde. In unserem Beispiel verweist this also auf die Klasse Bruch
bzw. das Objekt b. Wenn wir also in der Methode ausgeben() die System.out.print-
Anweisung folgendermafien abandern

System.out.print(this.zaehler + "/" + nenner);

so wird der Wert des Datenelements zaehler korrekt mit dem Wert 3 ausgegeben.

Die hier erlauterte Anwendung zum Auflésen von Namenskollisionen ist aber nicht die
einzige Anwendung der Selbstreferenz this. Auf diese Anwendungen wird spéter noch
eingegangen.

176

5.4 Werte libergeben

5.4 Werte libergeben

Unsere bisher erstellten Methoden konnen ihre Arbeit verrichten, ohne dass sie dafur
zusatzliche Informationen bendtigen, bzw. die Methode kann wie beim Kiirzen selbst
ermitteln, mit welchem Wert (ggT) der Bruch gekiirzt werden kann. In vielen Fallen sol-
len einer Methode beim Aufruf Informationen Ubergeben werden. Dadurch wird eine
Methode flexibler, weil sie, von unterschiedlichen Werten ausgehend, entsprechend
auch unterschiedliche Ergebnisse zurtickliefern kann.

Als Beispiel soll die Klasse Bruch um eine Methode erweitern() erganzt werden. Beim
Erweitern eines Bruchs werden Zahler und Nenner mit dem gleichen Wert multipliziert.
Mit welchem Wert multipliziert wird, kann die Methode aber nicht selbst »wissen« oder
ermitteln. Den Wert legt der Anwender bzw. der Programmierer bei jedem Aufruf fest.
Das bedeutet, dass Sie der Methode beim Aufruf »sagen« miissen, mit welchem Wert
erweitert werden soll. Aber wie sag ich’s der Methode?

5.4.1 Methoden mit Parameter

Die Ubergabeparameter sind die Losung. Wir haben sie bei unseren bisherigen Beispie-
len nicht bendtigt. Sie wurden aber im Zusammenhang mit der allgemeinen Schreib-
weise einer Methodendefinition schon erwdhnt. Werden keine Ubergabeparameter
verwendet, so bleibt die Klammer hinter dem Methodennamen leer. Wie bei einer
Variablendefinition kénnen in der Klammer Platzhalter zur Ubergabe an die Methode
eingetragen werden. In unserem Beispiel bendtigen Sie einen ganzzahligen Wert, mit
dem erweitert werden soll. Angenommen, Sie wollen den Bruch mit dem Wert 4 erwei-
tern, dann musste die Methode folgendermafien aufgerufen werden:

b.erweitern(4);

Damit die Methode diese Information tibernehmen kann, muss sie entsprechend einen
Behalter vorsehen, in den die Information passt. In unserem Fall benotigt die Methode
einen Behalter fur die ganze Zahl, die in der Klammer tibergeben wird. Entsprechend
sieht die Methodendefinition folgendermafien aus:

void erweitern(int a) {
zaehler *= a;
nenner *= a;

¥
Listing 5.7 Methodendefinition mit Ubergabeparameter

177

5 Klassen und Objekte

Zur Erinnerung:
zaehler *= a; ist gleichbedeutend mit zaehler = zaehler * a;.

Abbildung 5.21 zeigt, wie beim Aufruf der Methode erweitern der in Klammern beim
Aufrufangegebene Zahlenwert in die int-Variable kopiert wird. Die in der Methodende-
finition in Klammern stehenden Variablen werden als Parameter bezeichnet. Die beim
Aufruf in Klammern stehenden Werte nennt man Argumente. Daher rithrt tibrigens
auch der Name args in der Methode main. Es handelt sich hierbei um den Namen der
Parameter, die als Argumente dem Hauptprogramm von der Kommandozeile tiberge-

ben werden.
public class Bruchtestl { class Bruch {
public static void main(String[] args)
{ int zaehler;
Bruch b = new Bruch(); int nenner;

b.zaehler = 3;
b.nenner = 12;
b.ausgeben();

b.erweitern(4);

void ausgeben() {

System.out.pfintln(); }
b.ausgeben()
»void erweitern(int a) {
} zaehler *= ga;
} nenner *= a;
} }

Abbildung 5.21 Parameteriibergabe beim Methodenaufruf

Der bei der Methodendefinition gewéhlte Name (hier a) spielt fiir den Aufruf keine
Rolle, denn der Bezeichner wird nur innerhalb der Methode verwendet.

Innerhalb der Klammern einer Methodendefinition konnen Sie auch mehrere Parame-
ter angeben. Sie werden dann als Liste mit durch Kommata getrennten Definitionen
angegeben:

void methodenname(typl namel, typ2 name2, ...)

Beim Aufruf werden dann auch die Argumente als durch Kommata getrennte Liste
angegeben. Dabei mussen Sie beachten, dass die Reihenfolge der Argumente bestimmt,
welcher Wert in welche Variable kopiert wird. Es wird der erste Wert in die erste Variable
kopiert usw. Entsprechend muss die Anzahl der Argumente identisch mit der Anzahl
der Parameter in der Definition sein. Es muss sich bei den Argumenten nicht um kon-
stante Werte handeln. Es konnen dort beliebige Ausdriicke stehen, die bei der Auswer-
tung zu einem Ergebnis fithren, das zum Parametertyp passt. In unserem Beispiel
konnte z. B. auch ein zu berechnender Ausdruck stehen:

178

5.4 Werte libergeben

b.erweitern(6 - 2);

Damit wiirde das Ergebnis der Berechnung (also der Wert 4) an die Methode tibergeben.

In Abschnitt 5.3.2 wurden die drei Schritte angegeben, in denen ein Methodenaufruf
abgewickelt wird. Diese drei Schritte gelten fiir Methodenaufrufe ohne Parameter. Wer-
den Parameter benutzt, dann werden auch mehr Schritte notwendig:

Die Werte aller Argumente werden berechnet.

Die Parameter werden angelegt.

Die Argumentwerte werden an die Parameter tibergeben.

Der aufrufende Block wird unterbrochen

Der Methodenrumpf wird abgearbeitet.

Die Parameter werden wieder zerstort.

vV V. v vV v v Y

Der aufrufende Block wird fortgesetzt.

5.4.2 Referenztypen als Parameter

Es koénnen auch Referenztypen (d. h. also auch Objekte) als Parameter ibergeben wer-
den. Als Beispiel soll hier eine Methode erstellt werden, die einen Bruch mit einem als
Parameter iibergebenen Bruch multipliziert. Das Ergebnis bildet die neuen Werte fiir
Zahler und Nenner des Objekts, dessen Multiplikationsmethode aufgerufen wurde. Die
Methode mit dem Namen multipliziere kann folgendermafien codiert werden:

void multipliziere(Bruch m) {
zaehler *= m.zaehler;
nenner *= m.nenner;

}

Listing 5.8 Methode mit einem Referenztyp als Parameter

Sie konnen bereits an der Codierung der Methode erkennen, dass hier kein neues
Obijekt erstellt wird, denn es wird nirgendwo der Operator new eingesetzt. Somit stellt m
nur einen Alias fir das beim Aufruf verwendete Argument dar. Der folgende Pro-
grammcode nutzt die Multiplikationsmethode (siehe Abbildung 5.22).

Das beim Aufruf der Methode verwendete Argument b wurde mit new erzeugt. Beim
Aufruf der Methode wird nur eine neue Referenz (ein neuer Verweis) auf das Argument
mit dem Namen m erzeugt. Das bedeutet, dass beim Zugriff auf m eigentlich immer auf
das »Original« b zugegriffen wird.

179

5 Klassen und Objekte

public class Bruchtest { class Bruch {
blic stati id main(Stri
public static void main(String[] args) { int zaehler;
Bruch a = new Bruch(); 80l mEmmETe
a.zaehler = 3; ’
a.nenner = 4;

void ausgeben() {

Bruch b = new Bruch();

b.zaehter =33
b.nenner = 12;
a.ausgeben();

a.multiplizierd
System.out.printn
a.ausgeben();

.

E);

» void multipliziere(Bruch m) {

zaehler *= m.zaehler;
nenner *= m.nenner;

Abbildung 5.22 Referenztyp als Parameter

Sie sehen, dass bei der Verwendung von Referenzvariablen als Parametern keine Kopie
des Objekts, sondern eine Kopie der Referenz erstellt wird (siehe Abbildung 5.23).

Bruch a;

a.zaehler a.nenner

Arbeitsspeicher

IN

3|

Bruch b;

b.zaehler b.nenner

Arbeitsspeicher

?

a.multipliziere(b);

N

s

Abbildung 5.23 Zugriff auf einen Referenztyp

Der Aufrufa.multipliziere(b); bewirkt, dass die Methode mit mals Referenz auf b abge-
arbeitet wird. Problematisch kann dieses Verhalten sein, wenn Sie in der Methode
schreibend auf die Parameter zugreifen. Andern Sie z. B. mit der Anweisung m.zaehler =
34; den Wert des Zdahlers von m, dann haben Sie damit eigentlich den Wert von b.zaehler
gedndert. Dies mussen Sie bei Schreibzugriffen auf Parameter beachten, die als Referenz
ubergeben werden. Primitive Datentypen werden nicht als Referenz tbergeben, son-
dern als echte Kopie. Damit wirken sich dort Schreibzugriffe nicht auf die Aufrufargu-
mente aus.

180

5.4 Werte libergeben

5.4.3 Uberladen von Methoden

Innerhalb einer Klasse konnen mehrere Methoden mit gleichem Namen existieren. Das
kann aber nur funktionieren, wenn es ein eindeutiges Unterscheidungsmerkmal gibt.
Dieses Unterscheidungsmerkmal ist die Parameterliste. Wenn Sie eine Methode mit
einem Namen erstellen, der bereits fiir eine andere Methode verwendet wurde, dann
bezeichnet man das als Uberladen einer Methode.

Dieses Uberladen bietet sich immer an, wenn Sie mehrere Methoden fiir eine dhnliche
Funktion benoétigen. Ein Beispiel fiir solche Methoden sind Methoden, die ein Objekt
auf einen definierten Anfangszustand, vergleichbar mit einer Initialisierung, setzen. So
konnen wir folgende beiden Methoden mit dem Namen setze definieren:

void setze(int z) {
zaehler = z;
nenner = 1;

}

void setze(int z, int n) {
zaehler = z;
nenner = n;

}

Listing 5.9 Beispiel fiir das Uberladen einer Methode

Die erste Methode erwartet nur einen ganzzahligen Wert als Argument und tibernimmt
diesen Wert als Zahler. Den Nenner setzt die Methode immer auf den Wert 1. Damit ent-
spricht der Wert, der ibergeben wird, dem Gesamtwert des Bruchs.

Die zweite Methode erwartet zwei ganzzahlige Parameter, von denen der erste als Wert
fir den Zahler und der zweite als Wert fiir den Nenner ibernommen wird.

Bei der Auswahl einer iberladenen Methode ist es fiir den Compiler nicht immer ein-
deutig, welche Methode zu wihlen ist. Zum Beispiel kann es sein, dass durch die impli-
zite Typumwandlung mehrere Methoden geeignet waren. Eine Methode, die einen
double-Wert erwartet, kann auch mit einem int als Argument aufgerufen werden. Die
folgende Methode kann nur mit einem Integer-Wert als Argument aufgerufen werden:

void erweitern(int a) {

Der Aufruf a.erweitern(5); wire giiltig. Dagegen wére der Aufruf a.erweitern(5.0);
ungultig.

181

5 Klassen und Objekte

Wurde die Parameterliste folgendermafien definiert

void erweitern(double a) {

dann sind die beiden Aufrufe a.erweitern(5); und a.erweitern(5.0); giltig.

Es ist nun aber auch moglich, dass beide Methoden existieren:

void erweitern(int a) {

void erweitern(double a) {

Da sie sich in der Parameterliste unterscheiden, stellt das kein Problem dar. Es stellt sich
aber die Frage, welche der beiden Methoden tatsachlich vom Compiler ausgewahlt wird,
wenn der flr beide Methoden passende Aufruf a.erweitern(5); verwendet wird.

Losung: Der Compiler geht bei der Overload-Resolution nach folgenden Regeln vor:
Zuerst werden alle passenden Methoden gesammelt; auch die Methoden, bei denen
eine implizite Typumwandlung erforderlich ist, werden dabei mit einbezogen. Bleibt
nur eine Methode ubrig, wird diese ausgewahlt. Passt iberhaupt keine Methode, dann
ist der Aufruf fehlerhaft und wird nicht tibersetzt. Passen mehrere Methoden, wird die-
jenige ausgewahlt, die am besten passt. Passen mehrere Methoden gleich gut, dann ist
der Aufruf nicht eindeutig und wird nicht tibersetzt. In unserem Beispiel passt die
Methode genauer, bei der keine Typumwandlung erforderlich ist.

5.5 Ergebnisse

Mit der Ubergabe von Argumenten an die Parameter einer Methode teilen wir der
Methode mit, mit welchen Werten sie arbeiten soll. Es fliefen Informationen von der
aufrufenden Anweisung an die Methode. Haufig soll auch eine Information von der
Methode zurtick an die aufrufende Anweisung moglich sein. Zum Beispiel berechnet
die Methode aus den Parametern einen Ergebniswert, der dann an die aufrufende
Methode zurtickgeliefert werden soll.

182

5.5 Ergebnisse

5.5.1 Methoden mit Ergebnisriickgabe

In unserer Klasse Bruch konnen wir z. B. eine Methode erstellen, die den Wert des Bruchs
als Dezimalzahl zurtickliefern soll. Folgende Schritte sind dazu erforderlich:

» Vor dem Methodennamen wird anstelle von void der Typ des Ergebnisses angegeben.
» Im Rumpfder Methode steht eine return-Anweisung, die einen Ausdruck enthalt, der

dem Typ des Ergebnisses entspricht.

Allgemein sieht der Aufbau einer Methode mit Ergebnisriickgabe folgendermafien aus:

Datentyp methodenname(...) {
return ausdruck;

¥
Listing 5.10 Allgemeiner Aufbau einer Methode mit Riickgabewert

Der Ausdruck hinter return gibt den Wert an, der von der Methode zurtickgegeben wird.
Die oben als Beispiel genannte Methode kann dann folgendermafien aussehen:

double dezimalwert() {
return (double) zaehler/nenner;

¥
Listing 5.11 Methode zur Riickgabe des Wertes als Dezimalzahl

Der Name der Methode kann nun tiberall dort verwendet werden, wo ein double-Wert
stehen kann. Das heif3t: In allen Ausdriicken und Anweisungen, die einen double-Wert
verarbeiten konnen, kann die Methode dezimalwert verwendet werden. Als Beispiel
wird hier die Ausgabe mit System.out.print gezeigt. Mit dieser Anweisung kann ein
double-Wert auf der Konsole ausgegeben werden.

System.out.print(a.dezimalwert());

Die print-Anweisung ruft die Methode dezimalwert auf, die keine Parameter bendtigt.
Diese liefert als Ergebnis einen double-Wert zurtick, der dann von der print-Anweisung
ausgegeben wird. Im folgenden Beispiel wird der Methodenaufruf in einer if-Anwei-
sung verwendet:

if (a.dezimalwert() < 3.5) {

}

Listing 5.12 Verwendung eines Methodenaufrufs in einer »if«-Anweisung

183

5 Klassen und Objekte

In einer Methode konnen auch mehrere return-Anweisungen stehen. Die nach der Pro-
grammlogik zuerst erreichte return-Anweisung entscheidet tber den tatsdchlich
zurlckgelieferten Wert, denn mit dem Erreichen der ersten return-Anweisung kehrt der
Programmablauf zum Aufruf der Methode zurtick.

Die folgende Methode signum liefert den Wert 1, wenn der Bruch einen Wert grofier als O
hat. Hat der Bruch einen Wert kleiner als O, dann liefert sie den Wert —1 zurtck, und
wenn der Bruch den Wert O hat, liefert auch die Methode den Wert O zurtick.

int signum() {
if (this.dezimalwert() == 0) {
return O,

¥
if (this.dezimalwert() > 0) {

return 1;

}
return -1;

¥
Listing 5.13 Methode »signum« der Klasse »Bruch«

Die dritte return-Anweisung wird nur erreicht, wenn keine der beiden if-Bedingungen
erfullt ist. Dies bestatigt die oben gemachte Aussage, dass die Methode nur bis zum
Erreichen der ersten return-Anweisung abgearbeitet wird.

Als Programmierer mussen Sie sicherstellen, dass in jedem Fall eine return-Anweisung
erreicht wird. Falls Sie in der obigen signum-Methode die letzte return-Anweisung aus-
kommentieren, meldet Eclipse einen Fehler und weist darauf hin, dass diese Methode
einen int-Wert zurlickliefern muss. Dies kann sie aber nur durch Erreichen einer ent-
sprechenden return-Anweisung.

& int {

@ Add return statement }
Change return type to 'void' // return -1;
return nenner;

i

Abbildung 5.24 Hinweis auf fehlende »return«-Anweisung

Abbildung 5.24 zeigt den Hinweis von Eclipse. Ein Klick auf das Fehlersymbol am linken
Rand des Editorfensters bringt die als Quick-Fix bezeichneten Vorschlage von Eclipse
zum Vorschein. Im linken Bereich werden in diesem Fall zwei Vorschldge gemacht. Sie
konnen eine return-Anweisung hinzufiigen, oder Sie konnen als Riickgabewert void

184

5.6 Konstruktoren als spezielle Methoden

angeben und so auf jegliche Riickgabe verzichten. Natiirlich macht hier nur der erste
Vorschlag richtig Sinn.

Je nachdem, welchen Vorschlag Sie markieren, wird im rechten Bereich angezeigt, wel-
che Anderungen im Quellcode erforderlich sind. Ein Doppelklick auf einen der beiden
Vorschlage bringt Eclipse dazu, den Eintrag im Quellcode vorzunehmen. Auch wenn die
Vorschlage selten zu 100 % passen, so stellt Eclipse mit Quick-Fix eine insgesamt sehr
komfortable Moglichkeit zur Fehlerkorrektur zur Verfigung. Es reichen als eigene
Anderungen meist geringfligige Anpassungen.

5.5.2 Methoden ohne Ergebnisriickgabe

Soll eine Methode kein Ergebnis zuriickliefern, wird als Ergebnistyp der Ausdruck void
angegeben. Es handelt sich dabei um einen Pseudo-Typ, der so viel bedeutet wie
»nichts«. Wir haben solche Methoden bereits mehrmals verwendet. Sie konnen aus
einer solchen Methode an jeder Stelle mit einer return-Anweisung ohne Ergebnisaus-
druck, also mit folgender Anweisung zur aufrufenden Anweisung zurtickkehren:

return;

Am Ende einer Methode ohne Ergebnisriickgabe kehrt der Programmablauf automa-
tisch zur aufrufenden Anweisung zuruck. Sie mussen dort keine return-Anweisung ein-
flgen. Entsprechend kann bei einer solchen Methode die return-Anweisung komplett
fehlen. Sie wird am Ende der Methode quasi implizit erganzt.

Beim Uberladen von Methoden miissen Sie beachten, dass Uiberladene Methoden sich
nicht ausschlief8lich durch den Ergebnistyp unterscheiden durfen. Sie miissen sich also
zusdtzlich noch in der Parameterliste unterscheiden. Da der Ergebnistyp beim Aufruf
nicht angegeben wird, konnte der Compiler nicht entscheiden, welche Methode ver-
wendet werden soll.

5.6 Konstruktoren als spezielle Methoden

Objekte werden mit dem new-Operator erzeugt. Nach dem Erzeugen eines Objekts sollte
es sich grundsatzlich in einem definierten Anfangszustand befinden. Der Zustand eines
Objekts unserer Klasse Bruch wird durch die Werte der Attribute zaehler und nenner
beschrieben. Wenn wir davon ausgehen, dass nach dem Erzeugen eines Objekts der
Klasse Bruch beide Attribute den Wert O haben, dann befindet sich unser Bruch in einem
Zustand, der in der Mathematik als ungiiltig angesehen wird. Um dies zu vermeiden,

185

5 Klassen und Objekte

konnen Sie nach der Erzeugung eines Objekts grundsatzlich zuerst den Wert mit der
Methode setze auf einen definierten Wert festlegen:

Bruch b = new Bruch();
b.setze(0);

Die Verwendung eines Konstruktors vereinfacht diese Vorgehensweise dadurch, dass er
die Aufgabe, das Objekt in einen definierten Anfangszustand zu versetzen, mit der
Erzeugung des Objekts zu einer einzigen Anweisung zusammenfasst. Ein Konstruktor
ist zunachst nichts anderes als eine Methode. Es gibt aber einige Besonderheiten, die
einen Konstruktor von einer gewohnlichen Methode unterscheiden:

» Der Name eines Konstruktors entspricht immer exakt dem Namen der Klasse.

» Die Definition eines Konstruktors beginnt immer mit dem Namen, ohne vorange-
stelltes void oder eine andere Typangabe.

> Ein Konstruktor wird automatisch mit dem new-Operator aufgerufen.

Die letzte Aussage wirft die Frage auf, welcher Konstruktor in unseren Beispielprogram-
men aufgerufen wurde, denn bisher haben wir noch keinen Konstruktor definiert.

Wurde vom Programmierer kein Konstruktor definiert, so erzeugt der Compiler beim
Ubersetzen der Klasse einen Default-Konstruktor, der keine weiteren Anweisungen
beinhaltet. Somit besitzt jede Klasse einen Konstruktor: entweder einen vom Program-
mierer definierten oder den Standardkonstruktor (Default-Konstruktor) mit leerer
Parameterliste und leerem Rumpf. Da der Konstruktor den gleichen Namen wie die
Klasse besitzt, heifdt dieser z. B. fiir unsere Klasse Bruch

Bruch()

und genau diesen Konstruktor rufen wir mit der Zeile

Bruch b = new Bruch();

auf. Der Standardkonstruktor existiert also fiir jede Klasse, ohne dass wir ihn definieren
miissen. Anstelle des Default-Konstruktors konnen wir als Programmierer einen selbst
definierten Konstruktor erstellen, der das Objekt in einen definierten Anfangszustand
versetzt. Ein Konstruktor wird genauso definiert wie eine andere Methode. Es mussen
lediglich die oben genannten Besonderheiten beachtet werden. Entsprechend muss der
Name des Konstruktors dem Objektnamen entsprechen, und es wird kein Datentyp
bzw. kein void vorangestellt. Um den Bruch auf den Wert O vorzubesetzen, konnen wir
entsprechend folgenden Konstruktor definieren:

186

5.6 Konstruktoren als spezielle Methoden

Bruch() {
zaehler = 0;
nenner = 1;

¥

Listing 5.14 Selbst definierter Konstruktor der Klasse »Bruch«

Der Nenner konnte ebenso gut auf einen anderen Wert ungleich O gesetzt werden. Ent-
scheidend ist, dass der zaehler auf O und der nenner auf einen Wert ungleich O gesetzt
wird. Damit hat der Bruch unmittelbar nach der Erzeugung mit

Bruch a = new Bruch();

den rechnerischen Wert 0. Wurde der Default-Konstruktor einmal Giberschrieben, wird
grundsatzlich der neue Konstruktor verwendet. Auch der neue Konstruktor heif3t Stan-
dard- oder Default-Konstruktor, solange er eine leere Parameterliste verwendet.

5.6.1 Konstruktoren mit Parametern

Es konnen beliebig weitere Konstruktoren mit Parametern definiert werden, so wie wir
es von den Methoden her kennen. Beim Erzeugen eines Objekts wird dann immer der
von der Parameterliste her passendste Konstruktor verwendet. Konstruktoren mit
Parameter heifen Custom-Konstruktoren (spezielle Konstruktoren).

Der folgende Konstruktor ist z. B. geeignet, um einen Bruch direkt beim Erzeugen auf
einen Wert ungleich O zu setzen:

Bruch (int z, int n) {
zaehler = z;
nenner = n;

Mit der Anweisung Bruch a = new Bruch(2, 3); wird der Wert des Bruchs bei der Erzeu-
gung direkt auf den Wert ?/; gesetzt. Hier wird nun endgdltig deutlich, dass hinter dem
new-Operator ein Methodenaufruf steht.

Im Zusammenhang mit Konstruktoren ist IThnen vielleicht aufgefallen, dass die Attri-
bute eines Objekts nicht initialisiert werden. Vor dem Uberschreiben des Default-Kon-
struktors unseres Bruchs trat kein Fehler auf. Wirde man eine lokale Variable
verwenden, ohne dass ihr explizit ein Wert zugewiesen wird, wiirde das Programm
nicht tubersetzt werden und der Fehler »The local variable may not have been initial-
ized« wiirde angezeigt werden. Werden hingegen Attribute (Datenelemente) eines

187

5 Klassen und Objekte

Objekts nicht initialisiert, werden Default-Werte verwendet. Welche das sind, hangt
vom jeweiligen Datentyp ab (siehe Tabelle 5.1).

Datentyp Default-Wert
int 0

double 0.0

boolean false

char \u0000
Referenztypen null

Tabelle 5.1 Initialisierung von Attributen

Wurden die Attribute einer Klasse mit der Definition bereits initialisiert, so nehmen sie
diese Werte zeitlich bereits vor der Ausfithrung des Konstruktors an. Das bedeutet, dass
ein anschliefiender Konstruktoraufruf diese Werte wieder tiberschreibt.

5.6.2 Verketten von Konstruktoren

Die meisten Konstruktoren miissen mehr Aufgaben als die Initialisierung von Attribu-
ten erledigen. Diese Aufgabe konnten Sie, wie oben gezeigt, auch ohne Konstruktoren
durch explizite Initialisierungen realisieren. Oft finden in Konstruktoren bereits Uber-
prifungen statt, die in aufwendigen Kontrollstrukturen vorgenommen werden. Damit
Sie diese Ablaufe nicht in jedem einzelnen Konstruktor codieren mussen, konnen Sie
Konstruktoren verketten. Bei der Verkettung erstellen Sie einen Konstruktor, der alle
allgemeingultigen Abldufe beinhaltet, und rufen dann in weiteren Konstruktoren
zuerst diesen Konstruktor auf, bevor Sie die zusitzlich zu erledigenden Ablaufe hinzu-
flgen. Fir den Aufruf eines Konstruktors innerhalb eines anderen Konstruktors brau-
chen Sie das Schlisselwort this. This() dient dazu, einen Konstruktor der Superklasse
aufzurufen. Der folgende Quellcodeausschnitt zeigt diese Vorgehensweise am Beispiel
unserer Klasse Bruch:

// Definition der Klasse Bruch mit verketteten Konstruktoren
class Bruch {
int zaehler;
int nenner;
Bruch (int z, int n) {
int hz, hn, 1;
if (n==0) {

188

5.6 Konstruktoren als spezielle Methoden

System.out.print("Fehler! Der Nenner darf nicht O seinl!");
} else {
hz = z;
hn = n;
T =hz % hn;
while (r > 0) {
hz = hn;
hn = r;
T =hz % hn;
} // in hn steht jetzt der ggT
zaehler = z/hn;
nenner = n/hn;
¥
}
Bruch() {
this(0, 1);
}

Bruch(int n) {
this(n, 1);
}
¥

Listing 5.15 Definition der Klasse »Bruch« mit verketteten Konstruktoren

Es wird zuerst ein Konstruktor definiert, der zwei Parameter fur Zahler und Nenner
erwartet. Die beiden Parameter werden zur Initialisierung des Bruchs verwendet. Der
Konstruktor ibernimmt hier zusatzliche Aufgaben. Zuerst wird geprift, ob der Nenner
0 ist. Da dies zu einem ungtltigen Bruch fiihrt, wird eine Fehlermeldung ausgegeben. Ist
der Nenner nicht O, so ist der Bruch giiltig. Es konnte aber sein, dass der Bruch noch
gekurzt werden kann. Deshalb wird zuerst der ggT berechnet und damit der gekiirzte
Wert fiir Zahler und Nenner bestimmt. Initialisiert werden Zahler und Nenner dann mit
den gekirzten Werten.

Es folgt die Definition eines Konstruktors, der keinen Parameter erwartet. Er soll den
Bruch mit dem Wert Null (Zdhler = O und Nenner = 1) initialisieren. Diese Aufgabe kann
aber der erste Konstruktor tibernehmen. Er wird mit der Anweisung this(0, 1); aufge-
rufen.

Ebenso wird mit dem zweiten Konstruktor verfahren. Dieser erwartet einen Parameter
nund soll den Bruch mit dem ganzzahligen Wert des Parameters, also n/1, initialisieren.
Auch diese Aufgabe wird einfach an den ersten Konstruktor mit this(n, 1); Ubertragen.

189

5 Klassen und Objekte

Ein verketteter Konstruktoraufruf mit this muss immer als erste Anweisung im Kon-
struktorrumpf stehen. Anschlieflend konnen andere Anweisungen folgen, die nur fir
diesen Konstruktor gelten.

5.7 Ubungsaufgaben

Aufgabe 1

Erstellen Sie im Projekt JavaUebungO5 im Package uebungO5 eine Klasse mit dem
Namen Kreis. Die Klasse soll nur Gber ein Datenelement (Attribut) mit dem Namen
radius verfiigen, in dem der Radius als Kommazahl festgehalten wird. Erstellen Sie
einen Konstruktor mit leerer Parameterliste, der den Radius mit dem Wert O initia-
lisiert, und einen Konstruktor, dem als Parameter eine Kommazahl zur Initialisierung
des Radius tibergeben wird. Die Klasse soll iiber folgende Methoden verfligen:

double getRadius();
setRadius(double 1);
double getUmfang();
double getFlaeche();

Erstellen Sie dazu ein Testprogramm mit dem Namen Kreistest, das mit einem JOption-
Pane.showInputDialog den Radius eines Kreises einliest und anschliefiend durch Aufruf
der drei Methoden den Radius, den Umfang und die Fliche des Kreises in der Konsole
(mit System.out.println) ausgibt.

+ Hinweis
Als Hilfestellung konnen Sie auf die Programme zur Kreisberechnung aus Kapitel 1, »Ein-
flhrung«, und Kapitel 2, »Grundbausteine eines Java-Programms«, zuriickgreifen.

Aufgabe 2

Erstellen Sie im Projekt JavaUebungO5 im Package uebungO5 eine Klasse mit dem
Namen Rechteck. Die Klasse soll Giber die Attribute laenge und breite als double-Werte
verfiigen. Erstellen Sie einen Konstruktor mit leerer Parameterliste, der die beiden
Kantenldngen jeweils mit dem Wert O initialisiert. Ein weiterer Konstruktor mit zwei
double-Parametern soll die beiden Kantenlangen mit den uibergebenen Werten initiali-
sieren. Die Klasse soll zusitzlich Uber die folgenden Methoden verfiigen:

190

5.7 Ubungsaufgaben

setlaenge(double 1);
setBreite(double b);
setSeiten(double 1, double b);
double getlaenge();

double getBreite();

double getlangeSeite();

double getKurzeSeite();

double getDiagonale();

double getFlaeche();

double getUmfang();

Erstellen Sie ein Programm mit dem Namen Rechtecktest, das ein Objekt der Klasse
Rechteck verwendet. Lainge und Breite des Rechtecks sollen mit JOptionPane.showInput-
Dialog eingegeben werden, und anschliefiend sollen die lange und die kurze Seite, die
Diagonale, die Fliche und der Umfang in der Konsole ausgegeben werden.

Aufgabe 3

Erstellen Sie in der Klasse Rechteck die Methode laengeAusgeben(), wie unten vorge-
geben. In der Methode wird eine lokale Variable mit dem gleichen Namen erstellt,
wie er schon fiir das Attribut der Linge verwendet wurde, und ihr wird der Wert 5,4
zugewiesen.

void laengeAusgeben() {
double laenge = 5.4;
¢ "

System.out.println("Linge: " + laenge);

¥
Listing 5.16 Methode zum Ausgeben der Lange

Frage: Wird die Variable als Fehler markiert, weil der Name schon fiir das Attribut ver-
wendet wurde?

Rufen Sie die Methode laengeAusgeben() als letzte Anweisung im Programm Rechteck-
test auf.

Frage: Welcher Wert wird ausgegeben? Ist es der Wert des Attributs, den Sie beim Pro-
grammstart eingeben, oder ist es immer der Wert der lokalen Variablen laenge (5,4)?

Aufgabe 4

Erweitern Sie die Klasse Rechteck um folgende Methoden:

191

5 Klassen und Objekte

void laengeVergroessern(double 1)
void breiteVergroessern(double b)
void laengeVerkleinern(double 1)
void breiteVerkleinern(double b)

Die beiden Methoden vergrofiern bzw. verkleinern die Lange bzw. die Breite des Recht-
ecks um den als Argument tibergebenen Wert.

Testen Sie die Methoden im Programm Rechtecktest, indem Sie die eingegebenen Werte
vor der Ausgabe vergrofiern bzw. verkleinern.

Aufgabe 5

Erweitern Sie die Klasse Kreis um die folgenden Methoden:

void setUmfang(double u)
void setFlaeche(double)

Die Methoden berechnen den Radius fiir einen Kreis mit dem tbergebenen Umfang
bzw. der iibergebenen Flache und setzen das Attribut radius auf den berechneten Wert.

Aufgabe 6

Erstellen Sie im Projekt JavaUebungO5 im Package uebungO5 ein Programm mit dem
Namen Kreistabelle. Die Anwendung soll die Klasse Kreis verwenden und nach Eingabe
(JOptionPane.showInputDialog) eines Startwertes fiir den Radius und einer Radiuserho-
hung eine 30-zeilige Tabelle mit Radius, Umfang und Flache nach folgendem Muster

5.7

Ubungsaufgaben

Radius Umfang Flache

40.0 251.32741228718345 5026.548245743669
45.0 282.7433388230814 6361.725123519332
50.0 314.1592653589793 7853.981633974483
55.0 345.57519189487726 9503.317777109125
60.0 376.99111843077515 11309.733552923255
65.0 408.4070449666731 13273.228961416875

ausgeben:

Radius Umfang Flache

5.0 31.41592653589793 78.53981633974483

10.0 62.83185307179586 314.1592653589793

15.0 94.24777960769379 706.8583470577034

20.0 125.66370614359172 1256.6370614359173
25.0 157.07963267948966 1963.4954084936207
30.0 188.49555921538757 2827.4333882308138
35.0 219.9114857512855 3848.4510006474966

Tabelle 5.2 Ausgabe des Programms Kreistabelle

192

Tabelle 5.2 Ausgabe des Programms Kreistabelle (Forts.)

Hinweis +
Verwenden Sie als Trennzeichen zwischen den einzelnen Ausgabewerten einer Zeile
mehrere Tabulatorzeichen.

Aufgabe 7

Erstellen Sie im Projekt JavaUebungO5 eine Klasse FlaechengleicherKreis als Anwen-
dungsprogramm, das ein Objekt der Klasse Rechteck und ein Objekt der Klasse Kreis ver-
wendet.

Zuerst sollen die Lange und die Breite eines Rechtecks eingelesen werden (mit JOption-
Pane.showInputDialog). Anschliefend ist der Radius des Kreises so zu bestimmen, dass
er den gleichen Flicheninhalt wie das Rechteck hat.

Zur Kontrolle sollen die Lange, Breite und Flache des Rechtecks und der Radius und die
Flache des Kreises untereinander in der Konsole ausgegeben werden. Die Ausgabe des
Programms soll folgendermaf3en aussehen:

Rechteckldnge: 10.0
Rechteckbreite: 20.0
Rechteckflache: 200.0

Kreisradius: 7.978845608028654
Kreisfl&dche: 200.0

193

5 Klassen und Objekte

5.8 Ausblick

Sie kennen jetzt den fiir die moderne Programmierung so eminent wichtigen Begriff
der Objektorientierung. Sie konnen neue Klassen mit Attributen und Methoden defi-
nieren und nach diesem Bauplan Objekte fiir Thre Programme erzeugen. Sie kdnnen
damit die zur Verfiigung stehenden Datentypen gewissermaflen um eigene Typen
erweitern, die zudem wesentlich leistungsfahiger sind und besser an Ihre Bedurf-
nisse angepasst werden konnen. Sie konnen damit die Vorteile der Objektorientie-
rung nutzen.

Dadurch, dass Methoden zum Bestandteil der Klassen bzw. Objekte geworden sind,
ergibt sich eine zwangslaufig sinnvolle Zuordnung. Die Methoden befinden sich immer
dort, wo sie auch hingehoren. Gerade in grofieren Projekten ist es damit wesentlich ein-
facher, den Uberblick zu behalten. Jedes Programm dient letztendlich dazu, Abldaufe und
Gegenstande der Realitdt abzubilden. Objekte erhohen die Nahe zur Realitat, denn auch
in der Realitdt haben wir es mit Objekten zu tun, die sich durch Eigenschaften (Attri-
bute) und Féhigkeiten (Methoden) auszeichnen. Was liegt also néher, als diese Sicht-
weise auch in die Programmierung zu libernehmen? Nicht zuletzt vereinfacht die
Nutzung der Objektorientierung die Wiederverwendbarkeit einmal erstellten Pro-
grammecodes.

Sie haben bereits bei der Verwendung der Klasse JOptionPane feststellen kénnen, dass es
mit wenig Programmcode moglich ist, sehr leistungsfahige Objekte in eigenen Pro-
grammen zu verwenden. Sie mussen nichts iber den sicher sehr komplexen Pro-
grammcode wissen, mit dem die Komponenten programmiert wurden. Aber Sie
mussen diese Objekte einbinden und erzeugen konnen, indem Sie deren Konstruktoren
aufrufen, und Sie miissen sich iber die verfiigharen Attribute und Methoden informie-
ren, damit Sie diese fiir Thre eigenen Zwecke einsetzen konnen. Spatestens bei der
Erstellung von grafischen Oberflichen werden Sie davon reichlich Gebrauch machen.

Sie haben damit einen ganz wichtigen Schritt auf dem Weg, den Sie eingeschlagen
haben, hinter sich und sind damit gut vorbereitet, um die weiteren Kapitel erfolgreich
zu meistern und noch weitere Vorteile der Objektorientierung zu nutzen.

Auch das folgende Kapitel wird sich um die Objektorientierung drehen. Sie werden er-
fahren, wie Sie auf bestehende Klassen zurlickgreifen und daraus neue Klassen ableiten
konnen. Sie konnen somit sehr effektiv auf bereits erstellte Funktionalitaten zuriick-
greifen, um diese zu modifizieren und um neue Fahigkeiten zu erweitern.

194

Auf einen Blick

Auf einen Blick

1 EINFURTUNE ettt st 15
2 Grundbausteine eines Java-Programms ... 60
3 Kontrollstrukturen ... et seaae 101
4 EinfUhrung in ECliPSeoccovmerineinecnecinecinecnecsisecsisessesesseeens 127
5 Klassen und Objekte ... 156
6 Mit Klassen und Objekten arbeiten ..., 195
7 Grundlegende KIasSencinieneeneeneenennecesessseenns 223
8 Grafische Benutzeroberflachen ..., 258
9 Fehlerbehandlung mit EXCEPLIONS ..o 313
10 CoNtAINEIKIASSEN ...ttt 329
11 DA@IEN et 360
12 ZEICHNEN oottt 412
13 Animationen und Threads ... 457

14 Tabellen und Datenbankenccccooovvieieeeeeeeeeee. 482

Inhalt

Danksagung 14
1 Einfithrung 15
1.1 Was bedeutet Programmierung? 16
111 Vonden Anfangen bis heute 16
1.1.2 Wozu liberhaupt programmieren? 17
113 Hilfsmittel fir den Programmentwurf 19
114 Vonderldee zum Programm 21
115 Artenvon Programmiersprachen 25
12 Java 30
121 Entstehungsgeschichte von Java 31
122 Merkmalevon Java 32
123 Installation von Java 35
1.3 Einerstes Java-Programm 39
1.3.1 Vorbereiten der Arbeitsumgebung 39
132 Wiesind Java-Programme aufgebaut? 41
1.3.3 Schritt fir Schritt zum ersten Programm 43
1.4 Ubungsaufgaben 52
1.5 Ausblick 59
2 Grundbausteine eines Java-Programms 60
2.1 Bezeichner und Schliisselworter 60
2.2 Kommentare 62
2.3 Variablen und Datentypen 63
2.3.1 Namenskonventionen fir Variablen 65
232 Wertzuweisung 66
2.3.3 Die primitiven Datentypen im Einzelnen 66
2.3.4 Praxisbeispiel 1zu Variablen 68

Inhalt

2.3.5 Haufiger Fehler bei der Variablendeklaration ... 73
2.3.6 Praxisbeispiel 2 ZU Variablen ... eeseeseceeeeesecessesseeenes 74
23.7 DerDatentyp »STriNG« oo 79
2.3.8 Der Dialog mit dem Anwender 80
2.3.9 UDUNGSAUTGADEN oot sssessssssss s ssssssssssss s ssssssssssssssnns 84
2.4 Operatoren und Ausdriicke . 86
241 Zuweisungsoperator und Cast-Operator ..., 87
242 Vergleiche und Bedingungen ..., 88
243 Arithmetische Operatoren ... eseseesisseesesecseessesseees 90
244 PLIOMEAT oo 92
245 Logische Operatoren ... 95
246 SONSLIGE OPEratoren ... ssesssesssessssnes 96
2.5 UbUNGSAUFGADENooooiecoeoeeceeseessee s 97
2.6 AUSDIICK ...oooni e 100
3 Kontrollstrukturen 101
3.1 Anweisungsfolge (SEqQUENZ) ... 101
3.2 Auswahlistrukturen (Selektionen) ... 102
321 Zweiseitige Auswahlstruktur (»if<-ANWEISUNE) ovveeemreeeeeereeeeineeereniesseseens 103
3.2.2 Ubungsaufgaben zur »if«-ANWEISUNEGccrrrrrrrrrrreeveeensssrrnnn . 110
3.23 Mehrseitige Auswahlstruktur (»switch-case«-Anweisung)cooeeeerneeeens 111
3.24 Ubungsaufgabe zur »switch-Case«-ANWEISUNGcceuumeemmmmmmmmmssssssssssssssssns 115
3.3 Wiederholungsstrukturen (Schleifen oder Iterationen)cccccccccccccccvvns 115
331 Die »While«-SChIIfe ... 116
3.3.2 Die »do«-Schleife 116
3.3.3 Die »for«-Schleife 117
3.3.4 Sprunganweisungen 118
3.3.5 Ubungsaufgaben zu SChIBITENoorvcceeeeeeiseeeeeeesssseeeessesssssssss s 120
3.4 Auswirkungen auf Variablennenesesisnesssssissensees 123
341 Gultigkeitsbereiche ... 123
3.42 Namenskonflikte ..., . 124
343 LebenSdauer ... 125
3.5 AUSDIICK oot 125

4 Einfiihrungin Eclipse 127
4.1 Die Entwicklungsumgebung Eclipse ..., . 127
411 Installation von ECliPSe ... 128

412 EClipSe STarten ... 130

4.1.3 Ein bestehendes Projekt in Eclipse 6ffnen ... 132

4.2 Erste Schritte mit Eclipse 135
421 Einneues Projekt erstellen ... 136

422 Programm eingeben und Starten ... 138

4.3 Fehlersuche mit ECliPSe ...t esess s sssans 146
431 Fehlersuche ohne Hilfsmittel ... 147

4.3.2 Haltepunkte (Breakpoints)coueeeeennnn. . 150

B4 AUSDIICK ... sessssesss s . 155
5 Klassen und Objekte 156
5.1 Struktur von Java-Programmenccccce. 156
511 KIGSSEN e seeesecssisseseesssesessesesss s 156

512 AHHDULE oo 158

5.1.3 PACKAGES .ooreeereiicreiicceeiieeseesecceieseseesseeseiseseesaecssvineeees 158

5.2 ODBJEKEE ...t 163
5.2.1 Zugriff auf die Attribute (Datenelemente) ... 165

52.2 Wertzuweisungen bei Objekten ..., .. 166

5.2.3 Gultigkeitsbereich und LebDeNSAAUETcc.covcvvcvrnecrincernecenceineceneceeciessiecees 169

5.3 Methodenccreeeeeeeesssessssssssssssssssssssssssssssnssnnnns 170
531 Aufbau von Methoden ... seessesssesesesees 171

532 Aufruf von Methoden ... esesees 171

5.3.3 Abgrenzung von BezeiChNerncceseseseseeeeseseseeeeees 176

54 Werteiibergeben ... 177
541 Methoden mit Parameter 177

5.4.2 Referenztypen als Parameter 179

5.4.3 Uberladen vOn MEthOAEN ... 181

5.5 EFZEDNISSE ...ttt 182
5.5.1 Methoden mit Ergebnisrlickgabe ... 183

5.5.2 Methoden ohne Ergebnisriickgabe . 185

7

Inhalt

Inhalt

5.6 Konstruktoren als spezielle Methoden ..., 185
5.6.1 Konstruktoren mit Parametern 187
5.6.2 Verketten von Konstruktoren ... 188
5.7 UDUNGSAUFGADENoooocceeee s 190
5.8 AUSDIICKoooooiiecei i cesisse st 194
6 MitKlassen und Objekten arbeiten 195
6.1 Gemeinsame NULZUNE ... esiesssiesens 195
6.1.1 Statische AEHDULE ... 195
6.1.2 Statische Methoden ... essseseeeeecsenenas 197
6.2 Zugriffsmechanismen ... 198
6.2.1 Unveranderliche AtErbute ..., 198
6.2.2 Datenkapselungrncenneeinecrisennes 200
6.2.3 Getter- und Setter-Methoden ..., 201
6.3 Beziehungen zwischen KIassencrrmmnnccreineeseesisseesssssissessees 203
6.3.1 Teil-Ganzes-BezZiENUNEG ... eesseessese e 204
6.3.2 DeleGatioN ... 205
6.3.3 ADSTAMMUNG oottt ses 205
6.4 VEIEIDUNGoooiie et ssies s sessi e sessesses e 206
6.41 Schnittstelle und IMpleMENtIErUNE ..o seeeeees 211
6.4.2 Objekte vergleichen ... 212
6.4.3 Abstrakte Klassen und Interfaces ... 214
6.5 UbUNGSAUFGADENcccccoovvvveeceece s 215
6.6 AUSDIICKccoe e 222
7 Grundlegende Klassen 223
7.1 DieKlasse nSHrNGcccooiirieiieccccereeeesiesssseeeeesesessesessssseseesssseseees 223
711 Erzeugen von STrings ... 223
7.1.2 Konkatenation von STHNEScncceineesieceineeseecseeens 224
7.1.3 Stringlange bestimmen und Strings vergleichen ... 227
7.1.4 Zeichen an einer bestimmten Position ermitteln ..., 229
8

7.1.5 Umwandlungin GroR- und Kleinbuchstaben ... 229
7.1.6 Zahlen und Strings ineinander umwandelnc...... . 230
7.2 DieKlassen »StringBuffer« und »StringBuilder« ..., . 232
7.2.1 Erzeugen eines Objekts der Klasse »StringBuilder« 233
722 Mit »StringBuilder« arbeiten ... creeesersessescessessenees 234
7.3 Wrapper-KIQSSEN ...t esses et sess s sess st sssanes 235
731 Erzeugen von Wrapper-Objekten 236
7.3.2 RUckgabe der Werte ... ssssssssosssssesssssones 237
7.3.3 Vereinfachter Umgang mit Wrapper-Klassen durch Autoboxing 239
7.4 Date & TIiMe APl ..., 241
741 Technische Zeitangabenrecesneeseneceesseseessseeseseseeeees 242
742 Datum und UNIzeit 250
7.5 Ubungsaufgabeneevveomssssisreeeessssssssone . 254
76 AUSDIICK ..oooomecceiieire s ssssssssess e sssssssesss s ssssnees . 256
8 Grafische Benutzeroberflachen 258
8.1 EINTURIUNG .o seseseess s esssssssss s sssssssss e 258
81.1 JFC (Java Foundation Classes) und SWiNgccooececeeeennn. 258
8.1.2 Grafische Oberflachen mit WindowBuilder ..., 260
8.1.3 Erstes Beispielprogramm mit Programmfenstercneconees 265
8.2 Grundlegende Klassen und Methoden ... 274
821 JFrame, Dimension, Point und Rectangle ..., 275
8.2.2 Festlegen und Abfrage der GréRRe einer Komponente (in Pixel)ccc........ 275
8.2.3 Platzieren und Abfragen der Position einer Komponentecccoucenevrnees 276
8.24 Randelemente eines Fensters 276
8.2.5 Veranderbarkeit der GroRe eines FENSErscrrnncrirneereeneceereneeenns 276
8.2.6 Sichtbarkeit von Komponentenneneeseceseninees 277
8.2.7 LOSChen €iNes FENSLErS ... sensseees 277
8.2.8 Die Reaktion auf das Schlielen des Fensters festlegenccomvecennecenn. 277
8.2.9 Aussehen des Cursors festlegen ... 278
8.2.10 Container eines Frames ermitteln ... 278
8.2.11 Komponenten zu einem Container hinZufligenccncennecenecenneennne 279
8.3 Programmfenster mit weiteren Komponenten ..., 279
8.3.1 Die KomponentenPaletteiniecieeeececeisecisessssessisessssesseees 280

Inhalt

Inhalt

8.3.2 Standardkomponenten in einen Frame einbauen
8.3.3 Erstes Programm mit Label, TextField und Button
8314 Label s
8.3.5 TEXEFIEIA oot 287
8.3.6 BUTTON oo 288
8.3.7 Ereignisbehandlungin aller KUrze 291
8.3.8 Programmierung der UmrechnNUNEccocccorrviineriiinncees 293
8.3.9 Werte aus einem TextField Gibernehmen ... 293
8.3.10 Wertein ein TextField Ubertragen ... ccnceneceneseenenes 294
8.3.11 Zahlenausgabe mit Formatierung 296
8.3.12 MaRnahmen zur Erhéhung des Bedienkomforts 298
8.4 UbUNGSAUFGADENoooooccooooceeoeeeeeeseeeee s 305
8.5 AUSDBIICK ... 311
9 Fehlerbehandlung mit Exceptions 313
9.1 UmGang Mit FERIEIN ... sssseeeseesssseeeessenes 313
9.1.1 Fehlerbehandlung ohne EXCEPLioNs ... 313
9.1.2 Exception als Reaktion auf Fehler ..., 314
9.2 Mit EXceptions UMEENen ... csesinseessssssssessssssessessees 316
9.2.1 Detailliertere FehlermeldUngen ... cenecieiseeiseceinssessecsieseeseees 318
9.2.2 Klassenhierarchie der Exceptions 320
9.3 Fortgeschrittene Ausnahmebehandlung ... 321
9.3.1 Interne Ablaufe beim Eintreffen einer EXCeptionncnnecnnecennenes 321
9.3.2 Benutzerdefinierte EXCEPLIONSovccemcrinecrinecriseninecrieesiseesesecsieeessseesseseesseees 323
9.3.3 Selbst definierte EXCeption-KIASSeNocoeennerinecineeiineeineceisseeeseceseseseeees 325
9.4 UbUNGSAUFGADENooooooccoooeeeeeeeesesee s sssssss s 326
9.5 AUSDBIICK ..o 328
10 Containerklassen 329
JOL AFTAY ..ot 329
1011 Array-LIterale o ecceecceeceeieecceeeeceieeseessecsesssecssssesesasecees 336
10.1.2 Mehrdimensionale Arrays ... 336

10

10.1.3 Gezielter Zugriff auf Array-Elemente ... 338

10.1.4 Hilfen fir den Umgang mit Arraysccereenncceeeneceee . 341

10.1.5 Unflexible Array-GroRe 342

10.2 »ArrayListe und »JListe ..o . 343
10.2.1 DieKlasse »ArrayList«cmneeineceneens 343

10.2.2 Die grafische Komponente »JLiST«cmcenerenerneinecinecsiseesesecsesesisseeeens 346

10.2.3 JList mit Scrollbalken ausstatten 350

10.2.4 Umgang mit markierten Eintragen 353

10.3 UbUNGSAUFGADENooooocoooeeeeceeess s 355
B4 AUSDIICKooooo i ssissse e 359
11 Dateien 360
11.1 Die Klasse »File« ... 360
11.11 Beispielanwendung mit der Klasse »File« 362

11.1.2 Verzeichnisauswahl mit Dialogccccmwremernnerrnecrnecrinecrnecrinennes .. 365

11.2 Ein- und Ausgaben in Javarnsenineeseesine . 368
11.21 Ein-und Ausgabestromecrenncceennee 369

11.2.2 Byteorientierte Datenstrome ..., 369

11.2.3 Zeichenorientierte Datenstrome 372

11.3 D@ APINULZEN ... ssissseessessesseessessasesssssesessssssesesssssssnes 376
11.3.1 Datenin eine Datei sSChreiben 376

11.3.2 Daten aus einer Datei [€Sen ... 379

11.3.3 Die Klasse »FilterWriter« 381

11.3.4 Die Klasse »FIilterREAUEI«c.ovwwceureiecireceireeineseresrisecsisessisee e ssesessessesseseesens 383

11.3.5 Textdatei verschlisseln und entschlisseln ... 385

11.4 Beispielanwendungen 389
11.4.1 Bilderin Labels und Buttons ..., . 389

11.4.2 Ein einfacher Bildbetrachter ..., . 395

11.4.3 Sounddatei abSPIEIEN ...ttt 405

11.5 Ubungsaufgabenomcemmsseeemsssssersssnoen . 407
F1.6 AUSDIICKooooo ettt 411
1

Inhalt

Inhalt

12 Zeichnen 412
12.1 In Komponenten zeichNen 412
12.1.1 Grundlagen der Grafikausgabe ... 412
12.1.2 Panel-Komponente mit verandertem Aussehen ... 414
12.1.3 Zeichnen in Standardkomponenten ... 419
12.2 Farben VEIrWENAENriiiineeeieiinneeesenseseeessssessesesssassessssssenesssssssnessssssesssessses 439
1221 DieKlasse »Color« 439
12.2.2 Ein Farbauswahldialog fur den Anwender 442
12.3 Auswerten von Mausereignissen ... 443
12.3.1 Listener zur Erfassung von MauSereignisSeneeereecrirsermeessenees 445
12.3.2 »MouseEvent« und »MouseWheelEvent« 447
12.3.3 Mauskoordinaten anzeigen ... 448
12.3.4 Die Maus als Zeichengeratrnecneeenneerneseeeeenennones 450
12.3.5 Die KIasse »FONT w....coiicieeeercireceiereeieceeiieceeiseseseesesssessesssec e sesasesenes 453
12,4 UbUNGSAUFGADENoooieeoeoeeeeeeeseessssss s 454
T2.5 AUSDIICK ...ooooe i essesse s ssse st 456
13 Animationen und Threads 457
13.1 Multitasking und Multithreading ..., 457
13.1.1 Was bedeutet MuUltitasking?cvceenecrinecennecnnecrneecinernonee 458
13.1.2 Was SiNd TRIEAAS?ceeeecreeeeceieereeiecseieeeeeeseseeasesesssesessssecsssssessesssessseseseees 458
13.2 Zeitlich gesteuerte Abldufe programmieren ... 459
13.2.1 Eine einfache AMpelSteUErUNGcccccovinrinecenerenecrecreeceenianee 459
13.2.2 Ampelsteuerung mit Threadcceenecenecennecnnecereeeenennnee 466
13.2.3 Gefahren bei der Nutzung von Threadsoccnecnecennecnnerineeenserinessnees 473
13.2.4 Bewegungsablaufe programmieren (Synchronisation) ... 474
13.3 UDUNGSAUFGADENoocoocccoooeeoeeeeesssseeee s ssssssss s s 478
1304 AUSDIICK ..o eeeeeesss e sesssssssss e sessessssae s 481
12

14 Tabellen und Datenbanken 482
14.1 Die KIasse »JTable ... ssessesesssssessessssssesnesssssssnns 482
1411 Tabelle mit konstanter Zellenzahl ... 483
14.1.2 Tabelle mit variabler Zeilen- und Spaltenzahl . 493
14.1.3 Tabelle mit unterschiedlichen Datentypen ..., . 497
14.2 Datenbankzu@riff ... sesieesessseonns . 503
1421 Datenbankzugriff Mit IDBCccocoimieinceeeineceeeseeeeesecessesesessssccssasesseeseees 503
14.2.2 Aufbau der Datenbankverbindungccvvcenervuuanee. . 504
14.2.3 Datenbankabfrage 507
14.3 UbUNGSAUFGADENoooooccoooeeeecee s 515
FA.4 AUSDIICK ..ot ssaessee s 517
Anhang 519
A Inhalt der DVDccooiiciineceeenreeeeeeessssseeeessseennees . 519
B Ein Programm mit Eclipse als ».jar«-File speichern 520
C Musterlésungen 523
D LIE@IALU «.ooooov s esssse s 531
TNA@X oottt 533

13

Inhalt

Index

.class 32,39
java 39
.metadata 134
*7 (Star Seven) 31

A

AbsoluteLayout 281, 397
abstract 214
AbstractTableModel 483,489
ActionListener 444
Adapter 445
addActionListener 292
addColumn 494
addListener 445
addRow 494
Algorithmus 18
Aliasing 168
Alphawert 440
Analytical Engine 16
Andreessen, Marc 32
Animation 457
Annotation 301
ANSI-Code 84
Anweisungsfolge 101
API 32
Applets 32
Application Programming
Interface — API
Argument 178
Array 329
Array-Literale 336
ASCII-Code 84
ASCII-Code-Tabelle 84
Assembler 25
Attribut 156, 158, 165
statisches 195
AudioSystem 407
Ausdriicke 86
Ausnahme 324
Auswahlstruktur 102
mehrseitige 111
zweiseitige 103

Auswertung
kurze 95
vollstidndige 95
Autoboxing 239
Automatische Umwand-
lung 88
AWT 264

Babbage, Charles 16
Backslash 360
BasicStroke 429
Basisklasse 206
Bedingung 103
Befehlsprompt 47
Benutzeraktionen 265,291
Bezeichner 60, 62
Block 101,123
boolean 67
BorderLayout 281,389
break 113,119
Breakpoints 150
BufferedImage 396
BufferedReader 82
ButtonGroup 419,421
Bytecode 32,39

C

Canvas 413
cap 429

catch 317
char 67
charAt 109
CheckBox 419
ChronoUnit 246
Clip 405

Cobol 30
Color 416,439
Compiler 27
Component 265
Components 280

Index

Container 265,279
Containerklassen 329
Containers 280
continue 119
currentThread() 468

D

Dateien 360
Datenbanken 482
relationale 482
Datenelement 158,165
Datenkapselung 200
Datentypen, primitive 64
Debuggen 150
Debugger 150
DecimalFormat 296
default 113
default package 134, 159
DefaultTableModel 494
Dekrement 91
Delphi 29
Device-Kontext 413
Dialog, modaler 443
disabledlcon 393
disabledSelectedlcon 393
DISPOSE_ON_CLOSE 273
DO _NOTHING_ON_CLOSE
273
do-Schleife 116
DOS-Kommando 47
Double.parseDouble 82,106
draw 428
drawLine 416
Duke 31
Duration 246

Eclipse 30,128
.classpath 134
.metadata 134
.project 134

533

Index

Eclipse (Forts.)

.settings 137

Code Assist 141

Code Completion 141
Codevervollstindigung 141
Console-Ansicht 142
default package 134
formatieren 140
Formatter 139,141
Java-Settings-Dialog 136
JRE System Library 134
main-Methode 139
New Java Class 138
Oberfldche 131

Open Perspektive 132
Package Explorer 132
Perspektiven 132
Preferences 139
Projekt 6ffnen 132
RunAs 142
Run-Menu 142

Show View 143
starten 130
Startfenster 131
Syntax-Highlighting 141
Tutorials 131
Variables-Ansicht 154
Willkommensfenster 131
emacs 127

equals 227
Ereignisbehandlung 291
Ergebnisriickgabe 183
Ergebnistyp 90

Error 320
Escape-Sequenz 67
EVA-Prinzip 80
Exception 272,313,315
werfen 324
Exception-Handling 316
Exemplar 163

EXIT _ON_CLOSE 273
Exklusives ODER 95

F
false 60, 67
Farben 439

534

Fehlerbehandlung 313
Feld 329

File 360
FileNameExtensionFilter 404
fill 428

FilterReader 381
FilterWriter 381

final 198
fireTableDataChanged 490
First Person Inc. 31
Flieffkommazahlentypen 68
Fokus 299

Form 265

Formular 265

for-Schleife 117

Fortran 29

Fiallmuster 429

G

Ganzzahlentypen 67
Garbage Collector 335
getButton() 447
getClickCount() 447
getColumnClass 490
getColumnCount 489
getColumnName 490
getGraphics 426
getLocationOnScreen() 447
getName() 468
getPoint() 447
getPriority() 469
getRowCount 489
getScrollAmount() 448
getScrollType() 448
getSelected 421,423
getSelectedFile() 367
Getter-Methode 201
getValueAt 489,492
getWheelRotation() 448
getX() 447
getXOnScreen() 447
getY() 447
getYOnScreen() 447
Gosling, James 31
GradientPaint 429
Grafikausgabe 412

Graphics 397,413
Graphics2D 427
Green Project 31
GUI 258,265
GUI-Forms 265
Gultigkeitsbereich 123

H

Haltepunkte 150
HIDE ON CLOSE 273
horizontalTextPosition 391
HotJava 32

HSB-Modell 439

icon 393

iconlmage 395
if-Anweisung 103
Image 396

Imagelcon 392
ImagelO 395
ImagelO.getReaderFormat-
Names() 395
ImagelO.getReaderMIME-
Types() 396
ImagelO.read() 396
Imperativer Ansatz 30
Implementierung 23,211,212
implements 215
Initialisierung 66
Inkrement 91
InputStream 368, 369
Instant 243

Instanz 163
Instanzenzahler 195
Interfaces 215
Internet Explorer 32
Interpreter 27
invalidate 414
isAltDown() 447
isCellEditable 490
isControlDown() 447
isInterrupted() 468
isMetaDown() 448

isShiftDown() 447
Iterationen 115

J

K

JAmpelPanel 460
Java 15
Java 2D-API 427
Java Development Kit — JDK
Java Runtime Environment
— JRE
java.awt.Color 439
java.awt.geom 428
javaio 369
java.lang.Thread 467
javac.exe 37
Java-Swing-API 259
javax.imageio 395
javax.sound.sampled 405
javax.swing 107
javax.swing.Imagelcon 393
javax.swing.table.Table-
Model 489
JCheckBox 421,422
JColorChooser 442
JDBC 503

Treiber 504
JDBC-ODBC-Bridge 504
JDK 32,35
JEC 258
JFileChooser 365
JFrame 265
JList 346
joe 127
join 429
join() 469
JRadioButton 421,422
JRE 32,35
JRE System Library 134
JScrollPane 350
JTable 482
JTextPane 386

KeyEvent 301

Klasse 138,156
abstrakte 214,265
Klassen- und Interface-
namen 62
Kommentar 62
Dokumentations- 63
einzeiliger 62
mehrzeiliger 63
Komponentenpalette 280
Konkatenation 92,224
Konstruktor 185
Custom- 187

Default- 186
verketten 188
Kontrollstrukturen 101, 156
Kreuzungspunkte 429

L

Lastenheft 21
Laufzeitfehler 313
Laufzeitumgebung 35
Launch Configuration 521
length 227

Linienart 429
Linienenden 429

LISP 30

Listener 291

Literale 60, 65

LocalDate 250
LocalDateTime 254
LocalTime 252

Logische Verkniipfungen 95
Look & Feel 289
Lovelace, Ada 16

M

main-Methode 139
MANIFEST.MF 520
Mausereignisse 443,444
MAX_ PRIORITY 468
Menu 280

META-INF 520

Index

MIN_PRIORITY 468
Modal 443

Modifier 195

Modula 29

Modulo 91

MonthDay 252
mouseClicked 446
mouseDragged 446,450
mouseEntered 446
MouseEvent 445,447
mouseExited 446
MouselListener 445
MouseMotionListener 446
mouseMoved 446
mousePressed 446,450
mouseReleased 446,450
MouseWheelEvent 447,448
mouseWheelMoved 446
Multitasking 457,458
Multithreading 457
MySQL-Connector 504
MySQL-Datenbank 504

N

Namenskonventionen 62
Naming Conventions 62
Nassi-Shneiderman-
Struktogramm 19
Netscape Navigator 32
NICHT 95
NORM_PRIORITY 468
notify() 478
notifyAll() 478
null 60, 83
NumberFormatException
106

(o)

Oak 31

Object 492

Object Application Kernel
— Oak

Objekt 156,163

Objektorientierung 156

535

Index

ODBC 503
ODER 95
open 405
Open Source 128
Operationen, arithme-
tische 86
Operatoren 66, 86
arithmetische 90
logische 95
relationale 88
Vergleichs- 89
Zuweisungs- 87,88
Oracle 35
OutputStream 369

P

Package 158

Package Explorer 132
paint 413
paintBorder() 413
paintChildren() 413
paintComponent 397
paintComponent() 413
Paketsichtbarkeit 203
Panel 265,276

PAP — Programmablaufplan
Parameter 178

Pascal 29
Perl 29
Perspektive 132
Debug- 151
default 132
PHP 29

Plattformunabhidngigkeit 33
Plug-in 128, 260
Portierung 26

Postfix 91

Prafix 91

pressedicon 393
PrintStream 368

Prioritat 87,90, 92
Produktdefinition 21
Programmablauf 101
Programmablaufplan 19,101
Programmfenster 265
Programmierschnittstelle 32

536

Projekt 40
PROLOG 30
Prozess 458
Prozessor 26
Pseudo-Typ 185

Q

Quellcode 39
Quick-Fix 184

R

Radiobutton 419
RadioGroup 422

raw type 436
raw-Type 348
Reader 372
readLine() 82
Referenzvariable 164
Reihung 329
removeRow 497
repaint 414
Reparsing 286
requestFocus 299
return 183

RGB 416
RGB-Modell 439
rolloverlcon 394
rolloverSelectedlcon 394
run() 469
Rundungsfehler 89,90
Runnable 467
Runnable jar-Archiv 521

S

Schleifen 115
Schlisselworter 60
Schnittstelle 211
Schreibtischtest 150
Scope 123
Scrollbalken 346, 350
Selbstreferenz 176
selectAll 300
selected 423

selectedIcon 394
selectionMode 353
Selektion 102
Sequenz 101
setColor 416,429
setDefaultCloseOperation
272
setFileFilter 404
setlcon 391,392
setLocationRelativeTo 272
setPaint 429, 430
setPriority(int p) 469
setSelected 423
setStroke 429
Setter-Methode 202
setValueAt 490
shape 428
showDialog 442
showMessageDialog 83
showOpenDialog 366,367
showSaveDialog 366
Slash 360
sleep(longm) 469
Sprunganweisungen 118
SQL 128,482
static 195
Statische Methoden 197
Stream 368
byteorientiert 369
zeichenorientiert 369
StreamInputReader 82
Strichstarke 429
String 223
StringBuffer 232
StringBuilder 232
Stringlange 227
Stringliterale 70
Struktogramm 101
Subklasse 206
Sun Microsystems 35
Superklasse 206
Swing 258
switch-case-Anweisung 111
synchronized 477
System.err 368
System.in 82, 368
System.out.print 69
System.out.println 69

T \)
TableModel 483 valueOf 230
Task 458 Variablen 63

Tastatureingabe 82
Textkonsole 47
this 176

Thread 271,457,458
Thread() 468
Throwable 320
Toggle 394
toString 492
Transparenz 440
true 60, 67

try 317

try-catch 272
Typumwandlung 90

Variablennamen 62
Vererbung 206
Vergleichsoperatoren 86
Verketten 224
Konstruktoren 188
Verkettung 92
Verschachtelung 109
von if-Anweisungen 111
verticalTextPosition 392
vi 127
Virtuelle Maschine — VM
Visual C# 29
Visual C++ 29

explizite 88 VM 32,35
implizite 88 void 185

U W

Uberladen 181 Wahrheitswert 67
UND 95 wait() 478
Unicode-Zeichensatz 67 WebRunner 32
update 414 Wertzuweisung 66

while-Schleife 116
Wiederholungsstruk-
turen 115
WindowBuilder 260
windowClosed 491
WindowListener 491
Windows 8 39
Wizards 265
Workbench 39, 40
Workspace 131
World Wide Web 30
Wrapper-Klassen 106, 235
Writer 372

Y

Year 252
YearMonth 252
yield() 469

y4

Zeichentyp 67

537

Index

® Rheinwerk

Wissen, wie's geht. Computing

Hans-Peter Habelitz

+®
=)

srammieren lernen
— mit Java

Ve

LOOK & FEEL CUP PLUGIN

Hans-Peter Habelitz unterrichtet Informatik an einer
Berufsschule. Er hat schon vielen Einsteigern das Pro-
grammieren beigebracht. Sein Wissen tber wirksamen
Unterricht hat er Gber 10 Jahre lang als Dozent fur
Fachdidaktik der Informatik an angehende Lehrer wei-
tergegeben.

PP

JAVA ARRAY

ANIMATION

WRAPPER CLASS

JAVA 10

USER INTERFACE

=

CONTAINER CUP

| P 4

PLUGIN HIERARCHY CUP

Programmieren lermen mit Java

Keine
Vorkenntnisse
erforderlich

JAVA BASICS SYNTAX CUP GARBAGE COLLECTOR

» Vom ersten Programm bis zur fertigen Anwendung

» Mit vielen Beispielen und Ubungsaufgaben

» Inkl. Objektorientierung, windowBuilder, Datenbanken u.v.m.

@ Rheinwerk

Inkl. Java Standard Edition 8 At
éM und allen Beispielprogrammen
RoM

Wir hoffen sehr, dass Ihnen diese Leseprobe gefallen hat. Sie diirfen sie ger-
ne empfehlen und weitergeben, allerdings nur vollstindig mit allen Seiten.
Bitte beachten Sie, dass der Funktionsumfang dieser Leseprobe sowie ihre
Darstellung von der E-Book-Fassung des vorgestellten Buches abweichen

Hans-Peter Habelitz konnen. Diese Leseprobe ist in all ihren Teilen urheberrechtlich geschiitzt.

Programmier en lernen mit Java Alle Nutzungs- und Verwertungsrechte liegen beim Autor und beim Verlag.
537 Seiten, broschiert, mit DVD, 3. Auflage 2015
19,90 Euro, ISBN 978-3-8362-3517-4 Teilen Sie Ihre Leseerfahrung mit uns!

-‘E www.rheinwerk-verlag.de/3776 § L

https://www.rheinwerk-verlag.de/programmieren-lernen-mit-java_3776/?GPP=lpn
https://www.facebook.com/rheinwerkverlag
https://plus.google.com/118435207805510651040
http://twitter.com/rheinwerkverlag

