
Reading Sample
User experience plays an important role when creating and conceptualizing 
applications. In this reading sample, we’ll discuss some of the most widely 
used SAPUI5 application patterns and their attributes. We’ll begin by 
looking at the different layouts and floorplans that can be implemented, 
then provide steps for running these applications in SAP Fiori Launchpad.

Christiane Goebels, Denise Nepraunig, Thilo Seidel

SAPUI5: The Comprehensive Guide
672 Pages, 2016, $79.95 
ISBN 978-1-4932-1320-7

 www.sap-press.com/3980

First-hand knowledge.

The Authors

Index

Contents

“Application Patterns and Examples”

http://www.sap-press.com/3980


347

Chapter 8 

Application development in general must close the gap between technolog-
ical feasibility and the best possible support for a given usage scenario. 
Therefore, we must not only know about technology but also have a deep 
understanding of user requirements and constraints. In this chapter, we’ll 
approach the topic of application patterns from both design and technical 
perspectives.

8 Application Patterns and Examples

Application development with SAPUI5 benefits from the well-defined design pat-
terns and overall application concepts found in the SAP Fiori design guidelines,
available at https://experience.sap.com/fiori-design/. From a design perspective, this
information provides clear guidance on how to structure your content, define usage
patterns, and define interaction flows, allowing you to concentrate on your specific
scenario implementation, building on top of best practices. From an application
developer’s point of view, SAPUI5 supports the implementation of these guidelines
by providing controls and the right APIs that are built based on the overall design
requirements.

Although it’s been said that good user experience can never be achieved simply
by technology alone, technical aspects and decisions do play an important role.
As previously stated, SAP Fiori design concepts and SAPUI5 grew up together.
While SAP Fiori emphasized the implementation of small, single-purpose applica-
tions, SAPUI5 served as the tailored technology for these application.

For us, this means that we should always try to build individual and focused
applications. For example, in a scenario in which our users can create, approve,
and analyze leave requests, we should create three applications.

In this chapter, we’ll explore general application concepts and patterns found in
SAPUI5. We’ll start with general application layouts, then dig deeper and explore
more detailed floorplans. Finally, we’ll look into specific application types and
explore shared application features. We’ll always start from a design perspective
and build knowledge for use cases and underlying assumptions. Then, we’ll start
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to explore technical assets like controls that are provided by SAPUI5 and that ease
the implementation of these design patterns.

In the final section of this chapter, you’ll learn how SAP Fiori Launchpad serves as
the central access point for SAPUI5 applications in many scenarios and will gain
some hands-on experience with its developer features.

8.1 Layouts

Laying out applications generally happens at different levels. Think of a grid used
to cut the screen into pieces that will later be assigned individual content. This
concept is common in web development.

When building full-blown applications, you might still use a grid-based approach.
However, you should first think about the general cut of your application, mean-
ing the overall number of content areas you’ll need to leverage to enrich user
experience and to streamline the tasks your users will have to complete using the
application you build. Therefore, the first decision you make should be simply
whether you want to build a full-screen or split-screen application. Differentiating
between full-screen and split-screen options might seem like a no-brainer at first
glance, but we’ll discuss these difference to a greater extent in this section. The
choice isn’t as simple as it may seem initially.

These applications can be derived from the task, sequence of usage, and target
group of your application. This first decision will ultimately help you understand
the underlying usage scenario of your application in greater detail. We’ll outline
the important questions to ask when choosing a layout in this section, and then
we’ll build example implementations using SAPUI5 controls. To begin, we’ll use
a simple application skeleton that can be generated from a template in the SAP
Web IDE.

The generation of templates in the SAP Web IDE is covered in Appendix D of this
book. Please look up the general wizard functionality there. What we want to
generate now is the SAPUI5 Application template (see Figure 8.1).

This template provides the right folder structure and all the files needed to build
our first prototypes. Most of it should look familiar from the previous examples
in the book. We use this template frequently to test new controls or even to test
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complex patterns isolated from the actual project we’re working on. With some
small changes, it can also serve as a base for application development.

Figure 8.1  SAPUI5 Template in Template Wizard

Let’s first look into the Main.view.xml file in the view folder of the project. This
is defined as the rootView in manifest.json and will therefore be loaded at appli-
cation startup (see Listing 8.1).

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<App>
<pages>

<Page title="{i18n>title}">
<content></content>

</Page>
</pages>

</App>
</mvc:View>

Listing 8.1  Initial Main.view.xml

The app control serves as a root control for the template application. However, it
already has a sap.m.Page element prefilled in its pages aggregation. In application
development, we use routing in SAPUI5 to display individual views and can
therefore delete the page and all its content. In addition, we’ll add an ID to the
root control that we can use later in the routing configuration (see Listing 8.2).
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<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<App id="rootControl"/>

</mvc:View>

Listing 8.2  Main.view.xml: Adapted

We still need to set up some basic routing configuration to enable the dynamic
display of content in the root control. For this, we’ll add a routing block into the
sap.ui5 namespace in manifest.json (see Listing 8.3). This block should hold the
ID of the root control and some generic settings, such as controlAggregation and
the path to the root view. Refer back to Chapter 4 for more details.

"sap.ui5": {
"_version": "1.1.0",
"rootView": {

"viewName": "my.app.view.Main",
"type": "XML"

},
"routing": {

"config": {
"routerClass": "sap.m.routing.Router",
"controlId": "rootControl",
"controlAggregation" : "pages",
"viewPath": "my.app.view",
"viewType": "XML",
"async": true

}
},

Listing 8.3  Basic Routing Configuration

Although the SAPUI5 controls from the sap.m library we will use come with built-
in support for different form factors, like mobile and desktop devices, we still
have to tell the toolkit for what device it should optimize the display. This will
happen dynamically based on what the sap.ui.Device API has identified. To
enable this functionality, we’ll add the check shown in Listing 8.4 to the onInit
event of the main controller.

onInit : function() {
var sContentDensityClass = "";
if (jQuery(document.body).hasClass("sapUiSizeCozy") || jQuery(documen

t.body).hasClass("sapUiSizeCompact")) {
sContentDensityClass = "";
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} else if (!Device.support.touch) {
sContentDensityClass = "sapUiSizeCompact";

} else {
sContentDensityClass = "sapUiSizeCozy";

}
this.getView().addStyleClass(sContentDensityClass);

}

Listing 8.4  Content Density Check in Main.controller.js

Finally, we’ll add a configuration for the creation of a sap.ui.model.odata.v2.
ODataModel instance that uses an SAP NetWeaver demo OData service provided
by SAP as dataSource into manifest.json. We’ll use this model later to display real
data when building the floorplans and example applications. For now, it will be
created silently without any effect.

{
"sap.app" : {
"dataSources": {

"mainService": {
"uri": "/destinations/ES4/sap/opu/odata/IWBEP/GWSAMPLE_BASIC/",
"type": "OData",
"settings": {

"odataVersion": "2.0"
}

}
}

..},
"sap.ui5":{
"models": {

"": {
"dataSource": "mainService",
"settings": {

"metadataUrlParams": {
"sap-documentation": "heading, quickinfo"

}
}

}
}

}
}

Listing 8.5  Excerpt from manifest.json with OData Model Creation

The result should now look like Figure 8.2: a simple, letterboxed sap.ui.core.
UIComponent display that’s still unspectacular. However, with this foundation in
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place, we’re well prepared to later implement specific layouts and floorplans and
then start the real application development.

Figure 8.2  Application Starter Template Display

In the following two subsections, we’ll look at guidelines for creating both a full-
screen and a split-screen layout.

8.1.1 Full-Screen Layout: sap.m.App

Naturally, full-screen apps make use of the entire screen. You can still decide if
you want to have your app in a letterboxed display or not (see Section 8.3.4 for
details), but the main characteristic of a full-screen layout from a programming
point of view is that it contains a single content area.

The term content area might need some explanation. Just think of one, single-pur-
pose area on your screen. This could be a list of items that is displayed, for exam-
ple, or details about a specific item. This will become clearer when you learn
more about the split-screen layout in Section 8.1.2.

For the full-screen layout, it’s important to understand that there should be only
one purpose per screen (like the display of object details), although this could still
mean that you mix information from different data sources and even use differ-
ent types of display. This can include charts, textual information, and even a list
of related items. Therefore, a full-screen layout is clearly purpose-oriented and
has nothing to do with data origin or media.
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The following are some guiding questions you should ask yourself when using a
full-screen layout:

� Do I want to display a high number of facets related to a single entity with min-
imal navigation?

� Does the content require maximal space (e.g., charts or images)?

� Do I want to display a list in combination with complex filtering options?

Technically, a full-screen layout uses the sap.m.App control as a root control.
Based on the routing configuration, different views can be placed into its pages
aggregation. Because the sap.m.App control inherits from sap.m.NavContainer,
transitions are fully supported, and routing-specific events can be attached and
handled based on the existing API.

Pay attention to responsive behavior for full-screen applications. Later, you’ll see
that the control used as a root control for the split-screen layout introduces some
responsiveness out of the box. This is not the case for the app control, however,
because of the single content area. That’s why we will have to take care of
enabling responsive behavior directly for the full-screen layout. Luckily, SAPUI5
provides controls that include the necessary intelligence to handle different form
factors, which is why we’ll use pages from sap.m.semantic when building appli-
cations. For this example, we’ll use sap.m.semantic.FullscreenPage, which pro-
vides overflow handling for header and footer areas in the full-screen layout.
We’ll revisit headers and foots in Section 8.3.5.

Let’s now enhance the starter application by adding a first view and additional
routing configuration so that it can serve as a first, simple, full-screen-layout
application (see Listing 8.6 and Listing 8.7). This results in a simple full-screen
display as in Figure 8.3.

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:FullscreenPage title="Fullscreen">
<!-- Enough space for your content here -->

</semantic:FullscreenPage>
</mvc:View>

Listing 8.6  webapp/view/Home.view.xml
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"routing": {
"config": {

"controlId": "rootControl",
"controlAggregation" : "pages",
"viewPath": "my.app.view",
"viewType": "XML"

},
"routes": [{

"name" : "home",
"pattern": "",
"target": ["home"]

}],
"targets": {

"home": {
"viewName": "Home"

}
}

},

Listing 8.7  Simple Full-Screen Routing Configuration in manifest.json

Figure 8.3  Simple Full-Screen Layout
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This is obviously not rocket science: You could easily build upon this foundation
with what you’ve learned in this book already and extend this view now with
controls and content.

Now, let`s look at what floorplans, defined by the SAP Fiori design guidelines,
make use of the full-screen layout:

� Initial page
Single object display based on user input (search, barcode scanning).

� Worklist
See Section 8.2.1.

� List report
Multi-object display with extended filtering/sorting capabilities.

8.1.2 Split Screen Layout: sap.m.SplitApp

Now, let’s turn our attention to the split-screen layout in SAPUI5. A split screen
consists of at least two content areas displayed side by side. However, this does
not mean that the two areas are separate from each other; in fact, both content
areas need to be orchestrated such that they’re dependent on each other. One fre-
quently used and well-established floorplan in SAP Fiori is the master-detail pat-
tern. The selection in the master list determines the display of details of the
selected item in the object view. We will look into this pattern in more detail in
Section 8.2.2.

One use case that benefits the most from using a split-screen layout is one in
which you expect your application users to review a high number of items—for
example, in approval scenarios. In this case, you generally want to assure that
users do not have to execute a high number of back and forth navigations and
therefore want to display the list to select from next to the details to review, all on
one screen. Most of us use this pattern on a daily basis; for example, it’s a default
setting in most of the local email clients available.

The general build-up of a split-screen layout is similar to what you’ve already seen
for the full-screen layout in Section 8.1.1, with some slight modifications. We can
again make use of the application starter template we created in Section 8.1.
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We’ll start by using a different root control and some other slight modifications
down the line. First, we’ll use the sap.m.SplitApp control in Main.view.xml (see
Listing 8.8).

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<SplitApp id="rootControl"/>

</mvc:View>

Listing 8.8  Main.view.xml for Split-Screen Layout

The sap.m.SplitApp control is a pretty clever composite control that provides
two sap.m.NavContainer elements internally as hidden aggregations that can be
populated by making use of two public aggregations: masterPages and detail-
Pages. We can therefore use the routing configuration to handle the placement of
views into these aggregations and again use routing events if needed. The mas-
terPages and detailPages are derived from the internal navigation containers
that are wrapped and exposed by the sap.m.SplitApp control. Before we look
into the routing configuration in detail, let’s first create two views. For the split
screen with sap.m.SplitApp, we can use specific semantic page controls—one for
the masterPages aggregation (see Listing 8.9), and one for detailPages (see Lis-
ting 8.10).

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:MasterPage title="Master">

<!-- Enough space for your content here -->
</semantic:MasterPage>

</mvc:View>

Listing 8.9  Master.view.xml with sap.m.semantic.MasterPage

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:DatailPage title="Detail">
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<!-- Enough space for your content here -->
</semantic:DetailPage>

</mvc:View>

Listing 8.10  Detail.view.xml with sap.m.semantic.DetailPage

Now, let’s modify and enhance the existing routing configuration. We want to
ensure that both Master.view.xml and Detail.view.xml are displayed in the
respective aggregations of the root control when the application is started.

To achieve this, let’s quickly revisit what you learned in Chapter 4, Section 4.7
about how routing works in SAPUI5. The routing configuration is built up by con-
figuring the router globally in the config setting and can then be enriched for
specific routes and targets. In that sense, the configuration for targets is more spe-
cific than the one for routes, and configuration options can even be overridden.
For the current scenario, we’ll therefore have specific targets that define their
own aggregations to address the two content areas in sap.m.SplitApp accord-
ingly. Compared to the routing configuration for the full-screen layout, we’ll have
two additional targets for every route. Here, the sequence makes a difference.
This is because sap.m.SplitApp handles the display of views based on the current
screen size and therefore includes responsiveness across form factors out of the
box. Figure 8.4 shows that the control displays differently across device types.

Figure 8.4  Responsiveness of sap.m.SplitApp

You can influence this control behavior with the routing configuration. To do so,
define the targets per route in the right sequence with the target you want to have
displayed on a phone, on which only one content area will be displayed, for this

Phone Tablet (portrait) Tablet (landscape)



Application Patterns and Examples8

358

route in the array of targets. For the default route, with an empty hash, you’ll
most likely choose the master view. In that case, on a tablet in portrait mode,
you’ll see the details view and a button in the header; clicking on that button will
slide in the master view (see Listing 8.11).

"routing": {
"config": {

"controlId": "rootControl",
"viewPath": "my.app.view",
"viewType": "XML"

},
"routes" : [

{
"pattern" : "",
"name" : "main",
"target" : ["detail", "master"]

}
],
"targets" : {

"master" : {
"viewName" : "Master",
"controlAggregation" : "masterPages"

},
"detail" : {

"viewName" : "Detail",
"controlAggregation" : "detailPages"

}
}

},

Listing 8.11  Routing Configuration in manifest.json

sap.m.SplitAppModes

In addition to its default behavior, sap.m.SplitApp offers four different modes for han-
dling the masterPages aggregation display on mobile devices. The mode property can
be set either as static on the declaration of the control in the XML or as dynamic in Java-
Script using the default setter. The modes include the following:

� ShowHideMode (default)
Master hidden in portrait mode

� StretchCompressMode
Master in a compressed version in portrait mode

� PopoverMode
Master shown in a popover in portrait mode
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� HideMode
Master initially hidden in portrait and landscape

In SAPUI5, there are several controls that can be used to create an application
with more than one content area. Most of these examples are part of the
sap.ui.layout library:

� sap.ui.layout.Splitter

� sap.ui.layout.DynamicSideContent

� sap.ui.layout.ResponsiveSplitter

In this section, we walked through the split-screen layout. In the next section,
we’ll use the skeleton layouts of our full- and split-screen layouts in floorplans.

8.2 Floorplans

In this section, we’ll take the layout skeletons we built in Section 8.1 and extend
them to match their respective floorplans with all the needed functionality. We’ll
actually take this one step further and build two applications that we can later use
in Section 8.4 to integrate into SAP Fiori Launchpad and make use of some of the
features the launchpad provides for cross-application navigation.

In Section 8.2.1, we’ll build a worklist that displays data from SalesOrder enti-
tySet in a demo service. Because each SalesOrder item is associated with a spe-
cific BusinessPartner in the service, we’ll also build a business partner address
book in Section 8.2.2 using the master-detail layout.

Note

In the following sections, we outline the most important features and cornerstones of
SAPUI5 application development. Because application development with SAPUI5 could
easily fill more than a single chapter, we’ll only give examples of certain application pat-
terns here. We’ll also describe some shared application features in Section 8.3. Here is
a list of application best practices that should be followed but could not be described or
used in the scope of this chapter:

� Usage of i18n texts
Do not use hard-coded strings in XML or JavaScript to be displayed in the view.
Always use texts that can be translated centrally.
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� Usage of fixed IDs for controls
Always add a fixed ID to all controls that are not used as templates in aggregations.

8.2.1 Worklist

In this section, we’ll take the full-screen layout we created in Section 8.1.1 and
extend the coding to match the worklist floorplan. The worklist floorplan can be
used for all applications that should display a number of work items. Work items
are items that need to be processed by the user. For example, stock management
is a use case in which users have to ensure a balanced stock level and can trigger
actions on individual items. Applications should display the most relevant infor-
mation in a list of all items on the first screen, allow users to review more detailed
information per item on a second screen, and generally offer processing options.
If we stay with the stock management use case, these processing options could
include reordering or discontinuing items. The SAPUI5 Demo Kit includes a tuto-
rial covering how to build this use case.

We’ll now lay the foundation for a worklist by creating the views and adding the
essential controls.

Worklist Table

The actual worklist is technically a responsive table (sap.m.Table). We’ll add the
table to the Home.view.xml file created in Section 8.1, but will rename it to Work-
list.view.xml. The user should be offered additional options to limit or refine the
results displayed in the worklist. This can be achieved by using filters, search, or
sorting capabilities, which can be triggered by controls displayed via sap.m.Tool-
bar. sap.m.Toolbar can be added to the headerToolbar aggregation of the respon-
sive table.

For a nice display, we’ll also add a responsive-margin-css class provided by
SAPUI5 and bind it to SaleOrderSet in the OData service. To have a minimal foot-
print on the screen, we’ll also show some bound properties via sap.m.Column-
ListItem and add a custom action to the table using sap.m.Button.

The simple version shown in Listing 8.12 leads to the display shown in Figure 8.5.
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Note

Custom actions on the worklist are an optional way to provide direct access to com-
monly used functionality for the user. You can decide to add the actions directly on the
list based on whether the information available initially justifies an action to be trig-
gered. Another option is to require actions to be performed initially in every case.

<Table
id="table"
class="sapUiResponsiveMargin"
width="auto"
items="{
path : '/SalesOrderSet'

}">
<headerToolbar>
<Toolbar>

<Title
Id="title"
text="Manage Sales Orders"/>

<ToolbarSpacer/>
<SearchField
width="auto"/>

<OverflowToolbarButton icon="sap-icon://filter"/>
<OverflowToolbarButton icon="sap-icon://sort"/>

</Toolbar>
</headerToolbar>
<columns>
<Column>

<Text text="Customer"/>
</Column>
<Column>

<Text text="Net Amount"/>
</Column>
<Column/>

</columns>
<items>
<ColumnListItem vAlign="Middle">

<cells>
<Link text="{CustomerName}"/>
<Text text="{NetAmount}"/>
<Button text="Create Incoive"/>

</cells>
</ColumnListItem>

</items>
</Table>

Listing 8.12  sap.m.Table as Worklist



Application Patterns and Examples8

362

Figure 8.5  Simple Worklist Page

Now, let`s add two more things to the application in this step: an item count in
the list indicated next to the table title and search functionality.

Item Count in Table Title

Here, we need to update the displayed item count number whenever the binding
of the responsive table is updated. Luckily, this event exists on the table control,
and we can simply attach to it by adding updateFinished="onTableUpdateFin-
ished" to the control constructor in the view. We can then implement the han-
dler function on the controller, as shown in Listing 8.13. Here, we can receive the
total count of items available on the backend based on the current filter as a
parameter from the argument of the callback. With this information, we can
update the title control.

To achieve a nice display, as shown in Figure 8.6, we need two numbers here. In
addition to the total number of items available in this collection, we also can display
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the number of items currently displayed on the screen. This makes sense if the
growing feature of the list is enabled and if your users most likely will have to deal
with a high number of items.

onTableUpdateFinished : function(oEvent) {
var sTitle = "Sales Orders",

oTable = this.getView().byId("table");
//catch cases where the backend is not supporting remote count
if(oTable.getBinding("items").isLengthFinal()) {

var iCount = oEvent.getParameter("total"),
iItems = oTable.getItems().length;

sTitle += " (" + iItems + "/" + iCount + ")";
}
this.getView().byId("title").setText(sTitle);

}

Listing 8.13  Event Handler Function to Set Number of Items

Figure 8.6  Item Count with Two Numbers

Handle Search Input and Filter the Table

Search capabilities give users the feeling of direct control over the displayed list.
To increase the effect of this capability even more, we’ll use the liveSearch event
that sap.m.SearchFiled provides and will pass a handler function to it by adding
liveChange="onSearch" to the constructor in the XML. Technically, we’ll use fil-
tering on the binding in this handler function. These work equally as well as sim-
ply implementing a predefined filter with the buttons directly.

In the handler function to be implemented on the controller (see Listing 8.14),
we’ll receive the query string entered and instantiate a new sap.ui.model.Filter
object that will get this query string, a sap.ui.model.FilterOperator element of
choice and the property to be filtered against. Because it’s likely that application
users do not want to search on only one column, we’ll create a filter that will per-
form a search on several columns. The buildup is a little more complex, but it’s
really nothing more than wrapping several sap.ui.model.Filter objects into
one, which is later handed over to the filter function on the binding. For this
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filter function, we can also choose between the filter modes. In Figure 8.15, we’ll
set it to Application, which will come at the cost of an additional round-trip to
the server with every new filter request. This can be costly, especially when live
search is used, and might lead to a bad user experience, especially for applications
mostly used on mobile devices. The alternative method is to use Client, which
would trigger only local filtering. The result is shown in Figure 8.7.

onSearch : function(oEvent) {
var sSearchValue = oEvent.getSource().getValue(),
aFilters = [];
if(sSearchValue.length > 0) {

var oFilterName = new Filter("CustomerName", sap.ui.model.
FilterOperator.Contains, sSearchValue);

var oFilterID = new Filter("SalesOrderID", sap.ui.model.
FilterOperator.Contains, sSearchValue);

aFilters.push(new Filter({
filters : [oFilterID, oFilterName],
And : false}));

}
this.getView().byId("table").getBinding("items").filter(aFilters,

"Application");
}

Listing 8.14  Handler Function for Search Functionality

Figure 8.7  Search Handling in Worklist

Now that we’ve added the worklist table functionality for the worklist floorplan,
in the next section, we’ll provide functionality for navigation to the detail view.

Navigation and Detail View

In general, a worklist can offer two different types of navigation: Inner-application
navigation, triggered by clicking on one of the list items, which brings the user to
a second screen within the application that shows details for the selected item;
and cross-application navigation, which can jump to a second application. We’ll
look into cross-application navigation in more detail in Section 8.4. Jumping to
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an external website triggered by clicking a link can be a valid use case for a work-
list, but this functionality should not be seen as mandatory and should be imple-
mented based on user requirements.

Now, let’s build a simple second screen and set up the routing to ensure that nav-
igation within the application based on a click as well as deep links is possible.
We’ve covered how to do this in code multiple times up to this point throughout
the book. However, we’ll now perform these functions based on the Descriptor
Editor provided by the SAP Web IDE. This tool offers UI-based configuration of
the manifest.json file and opens by default when opening any manifest.json file
in the SAP Web IDE. Based on the work we’ve done already, when you open the
Descriptor Editor and click on the Routing tab, the Descriptor Editor should look
like Figure 8.8.

Figure 8.8  Descriptor Editor in SAP Web IDE
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First, let’s add a new route. To do so, click on the + button in the Routes section,
and a new route will appear. Change the name for the new route; let’s call it
salesOrder. Because we want to have deep link capabilities for the new route,
we’ll also define a pattern here. Any string would work here, but we suggest mak-
ing the link transparent to the user and calling it SalesOrder/{SalesOrderID}.
The identifier in curly brackets now will be used to identify the distinct sales
order to be displayed and handed over to the navigation step. This route now
needs a target.

Note

The number of identifiers used in application patterns is determined by the number of
identifiers defined in the metadata for the specific entity set. Otherwise, single entities
cannot be addressed correctly.

In the Manage Targets section (refer to Figure 8.8), click on + and a popup will
open (see Figure 8.9) in which you can define the name for the new target. Let’s
call it salesOrder.

Figure 8.9  Add Target

This target is created instantly, so we can configure it now. Here, all we have to
do is define the View Name (SalesOrder) and we’re done. Finally, we need to
associate this target with the route. To do so, click on + in line with the route; a
popup will open, and you can select salesOrder (see Figure 8.10).

Figure 8.10  Target Assignment in the Descriptor Editor
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Now, save the changes and run the application with a hash like so: #SalesOrder/
4711. You’ll see an error in the console indicating that SalesOrder.view.xml could
not be loaded, which tells us that we did everything correctly and have to create
the view now.

We’ve performed similar tasks related to navigation in previous chapters (see
Chapter 4), so we don’t want to repeat the individual steps here; instead, try to
implement it on your own. When doing so, please keep in mind to separate con-
cerns. The navigation step in particular may tempt you to build a close interaction
between the two controllers. Use the router here to abstract the interaction by
calling the navTo function on one controller and attaching two patternMatched
events on the other controller. The complete code can be found in the Git repos-
itory that accompanies this book. Here’s a brief outline of the steps to follow:

1. Create a new view called SalesOrder.view.xml in the view folder, and add some
controls and relative binding. Don’t forget to add Back button handling.

2. Attach the patternMatched event in the controller for this view and bind the
view to the SalesOrderID in the hash. Ensure that the metadata is already
loaded (use metadataLoaded promise on the OData Model; see Listing 8.15).

this.getOwnerComponent().getRouter().getRoute("salesOrder").attachPa
tternMatched(function(oEvent) {

var that = this;
var sSalesOrderID =

oEvent.getParameter("arguments").SalesOrderID;
this.getView().getModel().metadataLoaded().then(function(){
var sObjectPath =

that.getView().getModel().createKey("SalesOrderSet", {
SalesOrderID : sSalesOrderID

});
that.getView().bindElement({

path : "/" + sObjectPath,
parameters : {

expand : "ToLineItems"
}

});
});

}.bind(this));

Listing 8.15  Handling Binding on the SalesOrder.controller.js

3. Implement a press handler function that triggers navigation when an item in
the worklist is clicked on.
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Figure 8.11 shows how the final result looks like, based on the coding in the Git
repository. Still, there are lots of variations possible, and the service we’re using
allows for displaying lots of related and additional information. For example, you
could display the list of products associated in the sales orders here, the geo infor-
mation of the supplier, and much more.

Figure 8.11  Worklist and SalesOrder Views

8.2.2 Master-Detail

In this section, we’ll extend the split-screen layout we built in Section 8.1.2 and
extend it to a master-detail floorplan. The master-detail floorplan, because of its
different dependent content areas, is complex to implement, and its details and
pitfalls could fill an entire book on its own. Therefore, we’ll only explore its com-
plexity and learn how to overcome some trouble areas of the master-detail floor-
plan—just enough to get a better understanding of SAPUI5 application develop-
ment for this complex pattern overall. If you want to build a master-detail
application in one of your projects, we highly recommend using the template
available in the SAP Web IDE. The SAP Web IDE covers best practice implemen-
tation for all these little, but sometimes annoying details.

Before we dive deeper into the technical details for this floorplan, let’s first dis-
cuss valid use cases in which master-detail should be your floorplan of choice.
The buildup is pretty simple: We always have a list in the master section that dis-
plays a set of items. Based on what’s selected in this list, a detail area provides
more relevant information for the selected item. If you think of software you use
on a daily basis, you’ll find some examples of master-detail floorplans in action.

Worklist.view.xml SalesOrder.view.xml
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Think of email clients, local as well as web-based: Most of them have a list of
emails on the left showing the most important information, and when one email
is selected, the entire email text appears in a bigger content area on the right. Or,
if you’re an iPad user, you can see the master-detail pattern at work in your
device settings.

From these examples, we can derive some golden rules for deciding when to use
master-detail floorplans in applications. First, master-detail is helpful in cases that
require minimal navigation, such as when you want your application users to be
able to quickly switch between different business objects while always keeping
the overview of the complete set of objects available.

However, this makes only sense if the amount of data displayed on the details
screen is easy to consume. In the email client, the email content displayed upon
selection is something a user can handle. The user clicks on an email stub and sees
the entire email displayed. This pattern would simply not work if not only this
email but six other related emails were displayed at once. This means that we
should only use the master-detail floorplan if the amount of data to be displayed on
the details side is strongly related to the content to be displayed on the master list.

Master List

Now, let’s move into some hands-on work with the master-detail floorplan by
creating the master list. We’ll start by creating the controllers for the master view
and the detail view, then we’ll register them in the view, and then add the files to
the controller folder. (We created the application skeleton with a sap.m.SplitApp
control and basic routing that displays the empty master and detail pages in Sec-
tion 8.1.)

In this section, we’ll first concentrate on the master list and extend Mas-
ter.view.xml (see Listing 8.16) with sap.m.List that we’ll bind to BusinessPart-
nerSet in the OData service. sap.m.List offers several modes for single or multi
select and some that affect general appearance. We’ll use sap.m.List as Single-
SelectMaster, the optimized mode for single selection on desktop devices. Indi-
vidual items in this list will be displayed using sap.m.ObjectListItem to show a
minimal set of details per item in a nice, card-like display. We’ll also add a search
field in the subHeader of the semantic page. (We covered search handling in Sec-
tion 8.2.1.) Listing 8.14 provides the binding and event handlers.
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<semantic:subHeader>
<Bar id="headerBar">

<contentMiddle>
<SearchField id="searchField" search="onSearch"

width="100%"/>
</contentMiddle>

</Bar>
</semantic:subHeader>
</semantic:content>
<List
id="list"
selectionChange="onItemPressed"
mode="SingleSelectMaster"
growing="true"
growingScrollToLoad="true

items="{
path: '/BusinessPartnerSet'

}">
<items>

<ObjectListItem
title="{CompanyName}"
intro="{WebAddress}"/>

</items>
</List>
</semantic:content>

Listing 8.16  Master List with Binding and Event Handlers in Place

Object View

For Detail.view.xml, we’ll opt for a minimal display for now and will add
sap.m.ObjectHeader with one bound property, which we’ll bind later to the
model relative to the selected item. Doing this requires one simple line of code in
the content aggregation of sap.m.semantic.SemanticDetailPage: <ObjectHeader
title="{CompanyName}"/>.

Synchronize Master and Detail

Because we now have some basic content for our two content areas in place, we
need to orchestrate these two content areas in such a way that any selection in the
master view reflects the content that is displayed in the detail view. To do so, we
need to implement three features: handling of master list selections, full support
for deep links, and handling of the default route. Finally, we have to follow some
steps to ensure the master-detail floorplan can function for mobile scenarios as
well.
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Note

For now, we’ll only address ideal cases. Error handling and “not found” handling scenar-
ios will be covered in Section 8.3.

Handling of Master List Selections

Currently, the application has a master list with data, but no visible details about
this data and no selectable content. In this section, we’ll add some depth to the
master list by providing details for its data upon selection. The first thing we want
to do is create a new route, called detail, which will use a pattern from which we
can extract the item ID later (see Listing 8.17). The targets we established previ-
ously can be reused; only the sequence is important. In Section 8.1.2, you learned
that the first target defined in routes that are used with sap.m.SplitApp is to be
displayed on mobile devices. It can be assumed that a user opening an application
with a deep link wants to see the details page and not the master page first, so
we’ll add the detail target first and the master target second into the array.

{
"name": "detail",
"pattern": "BusinessPartner/{BusinessPartnerID}",
"greedy": false,
"target": ["master", "detail"]

}

Listing 8.17  Master-Detail Route for Deep Links

We will now add the function (onItemPressed) to handle selections in Mas-
ter.controller.js (see Listing 8.18). We’ve done something similar several other
times in this book (see Chapter 4). One particular function of the selection-
Change event that we’re using now is that you get the list item that was pressed as
a parameter in the callback argument instead of calling oEvent.getTarget().
From this list item, we get the entity ID from the binding context and trigger nav-
igation to the detail route that gets this ID as a parameter.

onItemPressed : function(oEvent) {
var oItem = oEvent.getParameter("listItem");
var sID = oItem.getBindingContext().getProperty("BusinessPartnerID");
this.oRouter.navTo("detail", {
BusinessPartnerID : sID

}, false);
},

Listing 8.18  Handling of Press Event on Master List
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We’ll now attach to the patternMatched event in the Detail.controller.js and bind
the view based on the parameter we just received (see Listing 8.19). Because
sap.ui.model.OData.V2.ODataModel offers some functionality to create the key
that can be used to bind the view (which is handy, especially for entity sets with
more than one key), we can use this function. You just have to be aware that the
actual key generated is dependent on the metadata.xml file already loaded and
processed. We can use a promise provided by sap.ui.model.OData.V2.OData-
Model here to secure this.

onInit : function() {
this.oRouter = this.getOwnerComponent().getRouter();
this.oRouter.getRoute("detail").attachPatternMatched(this.

onDetailRouteHit.bind(this));
},

onDetailRouteHit : function(oEvent) {
var sID = oEvent.getParameter("arguments").BusinessPartnerID;
this.getView().getModel().metadataLoaded().then(function(){

var sObjectPath =
this.getView().getModel().createKey("BusinessPartnerSet", {

BusinessPartnerID : sID
});
this.getView().bindElement({
path: "/" + sObjectPath,

});
}.bind(this)

}

Listing 8.19  Binding of Detail.view.xml Based on Navigation

Full Support for Deep Links

If you run what we have so far, it will appear as if nothing has changed. The master
list appears with all the items, and no details are displayed. However, once you
select an item in the list, the detail content area will be updated and will display
what we have bound to the list item. We can even see in the URL that the pattern
we defined before is filled, and the ID of the selected object is included there. If
you now click Refresh in the browser, the detail matching the browser is dis-
played, but the focus on the master list for the selected item is not set. Now, let’s
select any item again. It becomes even more obvious that we missed something if
we change the browser hash manually (e.g., from #/BusinessPartner/0100000000
to #/BusinessPartner/0100000004). The detail changes, but the selection on the
master list stays the same.
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This is awkward for the user, but luckily we can fix this problem in the Mas-
ter.controller.js. Here, we’ll attach to the patternMatched event of the detail route
and handle it in a function we’ll call onDetailRouteHit. Because we’ll have to
handle different cases now and some exceptions, let’s build our example up step
by step. First, we’ll create the functions described previously, (patternMatched
and onDetailRouteHit) plus one additional function that we’ll use to search items
based on the key to review all the items the list (see Listing 8.20). The idea is now
to call selectAnItem once the detail route is hit in order to support a deep link.

onInit : function() {
// reuse variables
this.oList = this.byId("list");
this.oRouter = this.getOwnerComponent().getRouter();

this.oRouter.getRoute("detail").attachEvent("patternMatched",
this.onDetailRouteHit.bind(this));

},
onDetailRouteHit : function(oEvent) {
var sBusinessPartnerID =
oEvent.getParameter("arguments").BusinessPartnerID;
this.selectAnItem(sBusinessPartnerID);

}
selectAnItem : function(sBusinessPartnerID) {
var sKey = this.getView().getModel().
createKey("BusinessPartnerSet", {

BusinessPartnerID : sBusinessPartnerID
});
var oItems = this.oList.getItems();
oItems.some(function(oItem) {
if (oItem.getBindingContext() && oItem.getBindingContext().

getPath() === "/" + sKey) {
this.oList.setSelectedItem(oItem);
return;

}
}, this);

},

Listing 8.20  Handling Simple Deep Links: First Try

We should now expect that the deep links should work. However, when we start
the application to test it with a deep link (e.g., #/BusinessPartner/0100000000),
the deep link doesn’t work. An analysis with the (F12) tools in your browser and
adding a breakpoint to the selectAnItem function uncovers that when we call this
function, there are no items in the list yet (see Figure 8.12). This is rather inter-
esting and offers more insight into the lifecycle of routing itself. When the event
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triggered, the list binding had not yet been resolved. Therefore, the list had no
items to select from.

Figure 8.12  Analysis of Item-Selection Failure

We’ll need to ensure that sap.m.List resolves its binding and that items are avail-
able to select from before the event is thrown. The easiest way to do this is to
hook into an event called updateFinished that we can attach to. This event is
thrown once the list binding update has completed. Therefore, we can be sure
that there are items in the list by that point:

this.oList.attachEventOnce("updateFinished", function() {
this.selectAnItem(sBusinessPartnerID);
}.bind(this));

With this change, the deep links should work. However, we’ll still run into issues
later when we want to handle errors or “not found” cases, because we do not
have this error as a status we can request at any time. We can solve this issue
using a JavaScript promise (see Listing 8.21). This becomes a little complex,
because we have to ensure two things now: First, that the view already has its
binding, for which we’ll use eventDelegate functionality to attach to an event of
the parent control; and second, that the dataRequest event can be used to iden-
tify error cases. Now, we also can react when no data could be loaded for any rea-
son. We’ll implement this later in Section 8.3.2. Add the code in Listing 8.21 to
the onInit method of Master.controller.js now.
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var that = this;
this.oListBindingPromise = new Promise(
function(resolve, reject) {

that.getView().addEventDelegate({
onBeforeFirstShow: function() {
that.oList.getBinding("items").attachEventOnce("dataReceived",
function(oEvent) {
if(oEvent.getParameter("data")){

resolve();
} else {

reject();
}

}, this);
}.bind(that)

});
}
);

Listing 8.21  Promise to Decouple Navigation from Events

We now simply select an item programmatically once oListBindingPromise has
resolved. However, changing the hash manually does not change the selection.
We’ll need to add some more logic to the onDetailRouteHit function to get this
right.

We’ll now handle these three cases individually. First, we’ll handle the case in
which a user selects an item manually. In this case, we simply do nothing. In the
second case, the classical deep link scenario, we select an item once the binding
has resolved. For all other cases, mainly the manual hash change is handled here,
and we can simply select the item straight away (see Listing 8.22).

onDetailRouteHit : function(oEvent) {
var sBusinessPartnerID =
oEvent.getParameter("arguments").BusinessPartnerID;
var oSelectedItem = this.oList.getSelectedItem();
if (oSelectedItem && oSelectedItem.getBindingContext().
getProperty("BusinessPartnerID") === sBusinessPartnerID) {
return;

} else if (!oSelectedItem) {
this.oListBindingPromise.then(function() {

this.selectAnItem(sBusinessPartnerID);
}.bind(this));

} else {
this.selectAnItem(sBusinessPartnerID);

}
},

Listing 8.22  Optimized Detail Route Handling
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Handling the Default Route: Empty Pattern

As a last step, we want to cover the empty pattern route. An empty pattern route
is hit whenever an application starts without a hash. In such a case, the current
application doesn’t display anything, which is not preferred; the preferred option
is to display the first list item details. In addition, we’ll also show that the first
item is selected. Most of the code in Listing 8.23 should make sense by now and
the function will be called once the master route was hit. Again, we have to
ensure that the promise is resolved before we can determine the first item and
trigger the navigation for the detail.

onMasterRouteHit : function() {
this.oListBindingPromise.then(function() {

var oItems = this.oList.getItems();
this.oList.setSelectedItem(oItems[0]);
this.oRouter.navTo("detail", {

BusinessPartnerID : oItems[0].getBindingContext().
getProperty("BusinessPartnerID")

});
}.bind(this));

},

Listing 8.23  Empty Pattern Route Handling

Support for Mobile Devices

For desktop devices and tablets in landscape mode, our application should work
fine. Still, we also have to plan for devices that do not offer enough real estate to
fit an entire master-detail layout on one screen. To do so, we’ll make use of
dynamic expressions in XML and the sap.ui.Device API that identifies device
type, touch support, and much more on application startup.

If you now run this application in device emulation mode in Google Chrome with
an empty hash, you’ll see that it instantly jumps to the detail screen for the first
item, which is not our intent. We want it to stay on the master list if the main
route is hit. The following simple return statement that only comes into play on
mobile devices in the function that handles the main route will fix this problem:

if(sap.ui.Device.system.phone){ return;}

If you rerun the application in Google Chrome now, you’ll land on the master list.
If you select an item in the master list, the navigation brings you to the detail
screen.
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Everything seems to work, but from the detail screen there is no easy way to get
back to the master list page. We have to add a Back button to Detail.view.xml and
ensure that it will only be displayed on phones. Again, we’ll use the sap.ui.Device
API, this time as a dynamic expression directly in XML and based on the same path
we used previously in the return statement:

showNavButton="{= ${device>/system/phone}}"
navButtonPress="onNavButtonPressed"

We’ve also added the name of a handler function that will navigate back to the
master list; we’ll will implement this function in Detail.controller.js like this:

onNavButtonPressed : function(){
this.oRouter.navTo("master");
}

If you click on the Back button in the top left of the detail view now, you’re
returned to the master list. However, one slightly unfortunate detail is that the
last item selected is still selected in the master list. This makes no sense, because
we don’t have something that reflects the selection on the detail side of the
screen. We can suppress this selection in the list by using a different listMode.
We now have listMode set to SingleSelectMaster. We’ll also use another expres-
sion to set listMode to None on mobile devices, like so:

mode="{= ${device>/system/phone} ? 'None' : 'SingleSelectMaster'}"

This change will make some more changes necessary, because the listMode set to
None will also result in the selectionChange event no longer being thrown. So far,
we’ve used this event to handle clicks on list items. Now, we’ll have to add a
press handler for individual list items instead. It’s possible to handle clicks on
mobile devices differently from clicks on desktop devices by simply defining two
handler functions. However, in the case, the same function will work for both
types of devices. We also have to dynamically set the type of the list items to
Active on mobile devices to make the items clickable, like so:

type="{= ${device>/system/phone} ? 'Active' : 'Inactive'}"
press="onItemPressed"

We need to make one more adaption to the handler function. Because the selec-
tionChange event returns the list and the item as a parameter and the press event
on an individual item returns itself as the source of the event, we’ll have to cover
both cases in the handler:
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var oItem = oEvent.getParameter("listItem") || oEvent.getSource();

One last feature we want to handle differently on mobile devices is the way the
user can refresh the master list. For desktop devices, we already display a Refresh

button in the Search field, but for touch-supported devices, we should to use a
pull-to-refresh feature to handle refreshing the master list. This feature is fairly
simple to add. On sap.m.SearchField, we can add a dynamic expression that will
set the showRefreshButton property for us:

showRefreshButton="{= !${device>/support/touch} }"

We’ll also add a sap.m.PullToRefresh control to the content aggregation of the
semantic page. Again, we’ll let a dynamic expression handle the visibility for us:

<PullToRefresh id="pullToRefresh"
refresh="onRefresh"
visible="{device>/support/touch}"/>

To make sap.m.PullToRefresh work, we have to do two more things:

1. Hide the control once the refresh is over (ideally in the updateFinished event
on the list), like so:

this.byId("pullToRefresh").hide();

2. Perform the actual refresh on the list binding (in the refresh event handler),
like so:

this.oList.getBinding("items").refresh();

Note

sap.m.PullToRefresh has to be used as the first element in the content aggregation of
the first sap.m.ScrollContainer on the page. Otherwise, you might experience severe
rendering issues that might break the usability of your application completely.

The control also could be used on nontouch devices, resulting in the display of a click-
able Refresh area.

8.3 Additional Application Features

Independent from any floorplan, the apps within certain layouts generally have
some qualities or features that are always needed. Application users take most of
these features for granted. We have to confess that if we put ourselves into the
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position of application users—which we are, in fact, on a daily basis—we would
expect, for example, to be notified if something goes wrong in an app. Many of us
would associate this with some technical error—for example, when writing data
to the backend—whereas others may first think about some deep link that could
not be resolved as expected. Error handling and “not found” handling only form
the tip of the iceberg.

However, there is much more to be considered in application development in
general—not only ensuring that applications work as expected from a technical
perspective, but also ensuring that they provide the user with the best possible
support to fulfill daily routines.

In the following sections, we provide a quick rundown of technical and user
experience-related shared application qualities and how SAPUI5 offers support in
their implementation.

8.3.1 Not Found Handling

Error code 404 may be the only status code that even casual users understand.
Many websites and web apps tend to spit out this technical information on the
screen whenever the page a user wants to access is not available. Although there
has been a trend in recent years to enrich these “not found” pages with funny
designs, the numeric code seems never to disappear.

In this section, you’ll learn about “not found” handling within the master-detail
floorplan. Since version 1.28, SAPUI5 has provided a page to be displayed in not
found cases, which is sap.m.MessagePage; it should be used as a single control in
a view, like so:

<mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m">
<MessagePage/>
</mvc:View>

Figure 8.13 shows the default display of this page.

Admittedly, its design is very business-like, but it’s fit for its purpose. We’ll learn
how to tweak it a bit later, but first, let’s look at some use cases.

On websites, you will typically have only one notFound page that handles all links
that can’t be resolved. When using business applications, more precise feedback
for the user is desirable, and with a well-defined, single-purpose application, it’s
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easy to narrow down cases to be handled. We’ll look at how to do so in the fol-
lowing subsections.

Figure 8.13  sap.m.MessagePage with Default Settings

BusinessPartnerNotFound Scenario

In routing with SAPUI5, you can define routes that have specific patterns that
should be reflected in the URL. That’s what we call a deep link.

Because these patterns often hold the ID that matches a specific data set that could
later be used to bind it to a view (for a master-detail example, see Listing 8.24),
we have to handle all those cases in which individual IDs can’t be found in the
database. The aim is to show a not found page that gives some details about what
went wrong and offers a link back to the application in a valid state whenever the
user enters the application with a deep link to a business partner that does not
exist.

{
"name": "detail",
"pattern": "BusinessPartner/{BusinessPartnerID}",
"greedy": false,
"target": ["master", "detail"]}

Listing 8.24  Route with ID in Pattern
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Now, let’s define a target that should be displayed when a specific business partner
can’t be found. We’ll need a new view to handle these cases (see Listing 8.25). We’ll
reference a new view in the route and call it BusinessPartnerNotFound.view.xml.

"businessPartnerNotFound": {
"viewName": "BusinessPartnerNotFound",
"controlId": "rootControl",
"controlAggregation": "detailPages"

},

Listing 8.25  Target for ObjectNotFound Scenarios

We’ll create this view accordingly and also customize sap.m.MessagePage a little
to create a nice display (see Listing 8.26). Because the view will be displayed in
the detailPages aggregation, we again have to make sure that navigation back is
possible on mobile devices and must use an expression to show a button for such
navigation.

<mvc:View
controllerName="my.app.controller.Main"
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<MessagePage
icon="sap-icon://doctor"
navButtonPress="backToHome"
showNavButton="{device>/system/phone}"
text="BusinessPartner not found"
title="Something went wrong">
<customDescription>

<Link text="click here to get back to main page"
press="backToHome"/>

</customDescription>
</MessagePage>

</mvc:View>

Listing 8.26  BusinessPartnerNotFound.view.xml

We’ll simplify a bit by using the existing Main.controller.js file to implement the
handler functions for not found cases. In a real application, it might make sense to
have an shared controller for these cases. For the back navigation, we’ll use the
same logic as in Section 8.2.2. To achieve this behavior and the resulting display,
shown in Figure 8.14, we have to add some logic to Detail.controller.js, in the
DetailRouteHit function. We’ll use events of the binding to implement the back
navigation and extend the call of bindElement with the change event. We’ll then
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display the BusinessPartnerNotFound target whenever no bindingContext is set
on the view, indicating some error, as in Listing 8.27.

this.getView().bindElement({
path: "/" + sObjectPath,
events: {

change: function(){
var oView = this.getView();
if(!oView.getElementBinding().getBoundContext())){
this.oRouter.getTargets().display("businessPartnerNotFound");
}

}.bind(this)
}

});

Listing 8.27  Handling Business Partner Not Found Scenario

Figure 8.14  Business Partner Not Found Display
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catchAll Scenario

The second situation we have to handle is generic not found cases, also referred
to as catchAll cases. These are cases in which the user has tried to enter the appli-
cation with a URL that does not match any pattern defined in the routing config-
uration. Luckily, this scenario is easier to implement than the previous scenario
because it’s not dependent on the application data from the backend. SAPUI5
routing provides a generic bypassed route for catchAll. The target(s) that should
be displayed in all these cases can simply be handed over to the config.bypassed
property in the routing configuration, as in Listing 8.28. The target that will be
declared for bypassed has to be created as well. This can be done as in Listing
8.25, but we recommend using a different target and view for generic cases. This
will help the user differentiate between the two situations.

"routing": {
"config": {
"bypassed": {

"target": ["notFound", "master"]
}

}
}

Listing 8.28  Bypassed Configuration for Generic notFound Cases

Finally, we need to handle existing selections on the master list. Imagine some-
one manipulating the hash manually to something that is not defined in any pat-
tern. The correct not found page will be displayed, but the selected item remains
the same. To handle this deselection, attach to the bypassed event routing pro-
vided, and release the selection on the master list (see Listing 8.29). The result
should then be as shown in Figure 8.15.

this.oRouter.attachEvent("bypassed", function() {
this.oList.removeSelections(true);

}.bind(this));

Listing 8.29  Handling of List Selections for Bypassed Cases
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Figure 8.15  Customized sap.m.MessagePage for catchAll Cases

8.3.2 Error Handling

You’ve seen that not found cases and error cases have to be differentiated, and
now we’ll draw a clear line between them. In error cases, a technical error occurs
that leads to the application no longer being usable. This also means that the noti-
fication for the user should occur in a more disruptive way. Best practice would
be to make sure there is a clear indication that they should reload the application.
Therefore, we will use a modal dialog for notifying the user. SAPUI5 provides
sap.m.MessageBox as a convenient API that wraps sap.m.Dialog and additional
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controls. We’ll handle two cases in the following subsections, but both will be
displayed in the same sap.m.MessageBox. Therefore, we’ll use a function to bring
up the notification and reuse it for both cases (see Listing 8.30). We’ll implement
this function in the Component.js file of our application. Please note that there
may be more than one error raised by the application. To ensure that there will be
only one sap.m.MessageBox displayed, we’ll use a simple flag that indicates that a
notification is already present.

_showServiceError: function(sDetails) {
if (this._bMessageOpen) {
return;

}
this._bMessageOpen = true;
MessageBox.error("An Error Occurred",
{

details: sDetails,
actions: [MessageBox.Action.CLOSE],
onClose: function() {
this._bMessageOpen = false;

}.bind(this)
}

);
}

Listing 8.30  Generic Error Notification Function

Error Response Specification

In SAP NetWeaver and SAP Gateway OData services, there is an SAP-specific response
protocol that ensures that all server messages are returned with predictable formatting.
This function is handled by sap.ui.model.odata.ODataMessageParser, and all mes-
sages can then be accessed through sap.ui.core.message.MessageManager. Because
these functions currently cover validation-related messages only, generic handling for
error messages cannot be described at this point in time; such handling might vary
based on your service implementation and other factors.

We’ll also disable the automatic closing of dialogs on the router target handler,
which could be controversial. However, because we will display dialogs and spe-
cific pages, and because it’s not possible to synchronize the two events (routing
and data requests), disabling automatic dialog closing is a valid option for most of
use cases. Disable automatic dialog closing as follows:

this.getRouter().getTargetHandler().setCloseDialogs(false);
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Handling Metadata Errors

For SAPUI5 applications built on top of OData services, there will always be cases
in which a metadata call did not result in a success. Let’s handle such cases now.
We can simply attach to the metadataFailed event provided by sap.ui.model.
V2.ODataModel and display a message box showing details. Let’s also display the
generic not found page:

this.getModel().attachEvent("metadataFailed", function(oEvent) {
this._showServiceError(oEvent.getParameters().getResponse);
this.getRouter().getTargets().display("notFound");
}.bind(this));

Handling Service Errors

For service errors, we’ll need some more logic, although the overall pattern
remains the same. We’ll again attach to a model event—in this case, the request-
Failed event. However, because this event is thrown for cases we already han-
dled using the not found implementation, we’ll have to exclude such cases.
Therefore, we’ll make the following assumptions based on the error code the
event provides as part of the parameters: All 404 cases (not found) and all 400
cases (parsing error on the server) will not be handled by the error handling,
because they’re already covered by the not found handling, resulting in the han-
dler function in Listing 8.31.

this.getModel().attachRequestFailed(function(oEvent) {
var oParams = oEvent.getParameters();
if (oParams.response.statusCode !== "400" &&
oParams.response.statusCode !== "404") {

this.getRouter().getTargetHandler().setCloseDialogs(false);
this.getRouter().getTargets().display("notFound");
this._showServiceError(oParams.response);

}
}, this);

Listing 8.31  Handling Request Errors

8.3.3 Busy Handling

As a user, busy handling gives you the feeling that the hard work is done for you
by showing a busy indicator. Busy handling is not only the real work an applica-
tion is doing but also the responses you get in general regarding the state your
application is currently in. We bet there are more apps out there that fake actual

Additional Application Features 8.3

387

busy time just to display nice busy animations than you might imagine. The rea-
son for this may be that the screen flickers if the actual request only takes milli-
seconds, and the busy indicator will be shown and hidden again instantly. In
SAPUI5, there is a default busyIndicatorDelay property on all controls that
defaults to 500 milliseconds; we should keep it that way instead of delaying the
response artificially.

Busy handling is important for the perceived performance of an application, espe-
cially at startup. It’s good to assume your user has a slow Internet connection. A
busy indicator showing the user that there is some work being done behind the
scenes will keep him patient.

Handling the Metadata Call

As for error handling, we can differentiate two cases or, more precisely for this
section, two phases of loading data. First, the OData metadata.xml file is
requested. During this time, the application is not ready to work at all. We’ll
therefore set the outer view (Main.view.xml) as busy during this phase. The easi-
est way to do so is to set busy as the default behavior in the XML (busy="true")
for our root control, and later, when the metadata is loaded or loading failed, sim-
ply call setBusy(false), as in Listing 8.32.

// handling the good case
this.getOwnerComponent().getModel().metadataLoaded()
.then(function() {
oRootControl.setBusy(false);

});
// handling the bad case
this.getOwnerComponent().getModel().attachMetadataFailed(
function() {
oRootControl.setBusy(false);

});

Listing 8.32  Metadata Request: Busy Handling

Handling Calls on Individual Controls

While the metadata call is happening, individual requests are triggered only once
at application startup, but binding refresh will occur multiple. Therefore, we
should ensure that busy handling for these cases is in place.

For sap.m.List and sap.m.Table, busy handling is already implemented as a
default, so we don’t have to do anything for these controls. For all other controls,
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we should use the appropriate events to manage busy handling. However, indi-
vidual requests are triggered only once at application startup, but binding refresh
will occur multiple. One rule of thumb for determining this information is to
have all controls bound against the same entity. If we look at the master-detail
example, this entity would be the entire detail page in the current state. However,
in real applications, you would most likely fill up the detail screen and may even
expand the displayed data to a related entity in the service. Possibilities for the
service we’ve been using in this example are shown in Figure 8.16. Now, let’s
assume we want to display a list of sales orders next to the business partner
details on the details page. In this case, we would handle the busy state for this
area within the screen separately from the sap.m.ObjectHeader element in which
we’re displaying the business partner details currently.

Figure 8.16  Related Entities to Business Partners

For handling the busy state, technically, we’d use binding events, as previously
stated. The most appropriate choice would be to set the control to busy once data
is requested and release the busy state once data is received by the control. An
example implementation for this setup can be found in Listing 8.33. Here, we’ve
implement the functions in the controller for the view that declares the controls
and added the handler functions to the controls at declaration in XML. The actual
implementation for this minimal example in master-detail is in Listing 8.34.

onDataRequested: function(oEvent) {
oEvent.getSource().setBusy(true);

},
onDataReceived: function(oEvent) {
oEvent.getSource().setBusy(false);

}

Listing 8.33  Generic Busy Handling

this.getView().bindElement({
path: "/" + sObjectPath,
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events: {
change: function(){

if(!this.getView().getElementBinding().getBoundContext()){
this.oRouter.getTargets().display("businessPartnerNotFo

und");
}

}.bind(this),
dataRequested: function() {
this.getView().setBusy(true);

},
dataReceived: function() {

this.getView().setBusy(false);
}

}
});

Listing 8.34  Master Detail Busy Handling: Minimal Example

8.3.4 Letterboxing

Letterboxing is a term often associated with filming to ensure the original aspect
ratio when transferring video material across screens with different ratios. This is
achieved by using black bars, mostly displayed on the top and bottom of the
screen to narrow the actual screen and fill the spaces that aren’t covered by the
film itself.

In application development, letterboxing has become a good practice for all cases
when content is limited. Think of a simple master-detail application that only dis-
plays some details for a selected item. In such a case, it’s much easier to ensure
good design for the content on the screen if you can rely on a fixed content area,
even on big screens. In addition, your application users will gain a more focused
view.

The application examples we’ve presented so far have always run in sap.m.Shell,
which uses a letterboxed display for applications to center the content by default.
However, letterboxing can be disabled, because it’s reflected in a property called
appWidthLimited in the shell. This letterbox option provides a width of 1,280 px
reserved for the content, and the rest of the screen displays the default applica-
tion background. This background can be customized based on either the theme
used or settings in the shell itself.

In order to change the behavior as shown in Figure 8.17, configure the properties
on instantiation in sap.m.Shell, as shown in Listing 8.35.
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Figure 8.17  Letterboxing and Custom Background on sap.m.Shell

Unfortunately, there is no Explored app example for the control. Additional
options include backgroundImage, backgroundRepeat, and backgroundOpacity.

// not letterboxed
new sap.m.Shell({
appWidthLimited : false,
app: new sap.ui.core.ComponentContainer({
height : "100%",
name : "myCompany.myApp"

})
}).placeAt("content");

// custom background
new sap.m.Shell({
backgroundColor : "rgb(0,153,204)",
app: new sap.ui.core.ComponentContainer({
height : "100%",
name : "myCompany.myApp"

})
}).placeAt("content");

Listing 8.35  Appearance Configuration for sap.m.Shell

8.3.5 Headers and Footers

Headers and footers generally provide access to certain functionality for applica-
tions users. This functionality can impact entire content areas. For example, if
your application view contains a form, the button to save the form content to the
backend should be displayed in the footer. This also ensures applications have
focused content areas, so you’re not tempted to overload your screens.

In SAPUI5, headers and footers are mainly part of sap.m.Page or other related
controls. In this chapter, we’ve mainly used pages from sap.m.semantic, but we
haven’t yet looked into the main benefit they deliver: predefined buttons, so-
called actions that implement design guidelines like predefined icons, texts, tool-
tips, and even overflow handling (also clustering on the screen according to their

Custom Background Original Background Not Letterboxed
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distinct usage). For example, the Back navigation button is left in the header, and
all actions related to collaboration (e.g., SendEmailAction) are hidden in an over-
flow and display upon clicking the Overflow Indicator button in a popover.
Certain actions like PositiveAction are displayed in the app, making use of
semantic colors. This highly improves development routines when designing
new screens and ensures minimal distraction from implementing underlying
functionality. Each action has a press handler that points to the controller for the
view and fires the matching function there, just like it’s always handled in
SAPUI5.

In addition, you can add custom content in the headers and footers of the seman-
tic pages, because they offer the customHeaderContent and customFooterContent
aggregations and a subHeader aggregation for ambitious projects. There is even a
customShareMenuContent aggregation that allows you to add custom actions into
the popover described previously.

Let’s now look at a sample sap.m.semantic.FullscreenPage installation with
some actions and custom content; this page could be used for a simple shopping
cart checkout page (Figure 8.18).

Figure 8.18  Header and Footer Options with Semantic Page
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The XML to achieve this setup is pretty simple. You might have to get used to the
high number of aggregations that are used here, making the API a little superflu-
ous overall, but once you’ve adjusted to it, it works very well (see Listing 8.36).

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:FullscreenPage

title="Shopping Cart Checkout"
showNavButton="true">
<semantic:subHeader>

<Toolbar>
<ToolbarSpacer/>

<Text text="6 Items ready for checkout"/>
<ToolbarSpacer/>

</Toolbar>
</semantic:subHeader>
<semantic:sendEmailAction>

<semantic:SendEmailAction press="onSendMailPressed"/>
</semantic:sendEmailAction>
<semantic:printAction>

<semantic:PrintAction press="onPrintPressed"/>
</semantic:printAction>
<semantic:positiveAction>

<semantic:PositiveAction text="Checkout Cart" press=
"onCheckoutPressed"/>

</semantic:positiveAction>
<semantic:negativeAction>

<semantic:NegativeAction text="Discart Cart" press=
"onDiscartPressed"/>

</semantic:negativeAction>
<semantic:customShareMenuContent>

<OverflowToolbarButton icon="sap-icon://message-popup" text=
"send IM" press="onPress"/>

</semantic:customShareMenuContent>
</semantic:FullscreenPage>

</mvc:View>

Listing 8.36  XML Declaration for Header and Footer Options with Semantic Page

The additional application features described in the current section allow you to
control errors and wait times and to implement letterboxing and adjust headers
and footers.

In the next section, we’ll look at how to run apps in SAP Fiori Launchpad.
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8.4 Running Apps in SAP Fiori Launchpad

In this chapter, you’ve learned that building application families that distribute
functions across single-purpose-based apps is better than building one large,
monolithic, multipurpose app. We have successfully built at least the outline of
two small, single-purpose applications.

SAP Fiori Launchpad offers user management, application provisioning, naviga-
tion and integration of new applications, and maybe even third-party technolo-
gies. The launchpad’s main purpose is to provide access to several applications
and application types via one simple user interface. What sounds like a link list at
first is actually a challenge not only from a technological standpoint but also from
a user experience perspective. Just think of the challenge to support older tech-
nologies like Web GUI transactions as well as modern web applications like the
ones we build with SAPUI5.

For our SAPUI5 applications, SAP Fiori Launchpad offers tight integration,
because SAP Fiori Launchpad is itself based on SAPUI5 technology. SAP Fiori
Launchpad offers a lot of functionality, not only for application users but also for
application developers. Cross-application navigation from one application to
another and the ability to programmatically create bookmarks that reflect a cer-
tain application state are just two features that come to mind. It soon becomes
obvious that integration of at least a sandboxed SAP Fiori Launchpad early on
during implementation will pay off later.

In this section, we’ll start with the implementation of a simple standalone SAP
Fiori Launchpad sandbox demo application and then extend it to include more
than one application together in one sandboxed SAP Fiori Launchpad. From
there, we’ll add simple cross-application navigation using SAP Fiori Launchpad’s
API. Finally, we’ll try out productive usage when we deploy our app to SAP HCP
via the SAP Web IDE.

8.4.1 SAP Fiori Launchpad Sandbox

SAP Fiori Launchpad, when used productively, has several backend dependencies
that can’t be simulated in the context of single app development easily. That’s
why an SAP Fiori Launchpad sandbox is available that offers the most widely used
features with a minimal footprint but still allows for testing during development.
The display can be seen in Figure 8.19.
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Figure 8.19  Generic SAP Fiori Launchpad Sandbox UI

There are several options to run your application in an SAP Fiori Launchpad sand-
box. It’s important to understand that within SAP Fiori Launchpad, you will not
need a dedicated HTML file per application anymore; you’ll simply register your
application to the sandbox itself.

In this section, we’ll look at running an application in a sandbox SAP Fiori
Launchpad via the SAP Web IDE and in a custom-built sandbox SAP Fiori Launch-
pad.

SAP Fiori Launchpad Sandbox Runner in SAP Web IDE

The most convenient option to run your application in the SAP Fiori Launchpad
sandbox is to use the built-in component runner provided by the SAP Web IDE.
This feature offers a simple SAP Fiori Launchpad sandbox in which you can
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currently run one application component at a time. To do so, right-click on Com-

ponent.js, and the context menu opens as shown in Figure 8.20; then select
Run � Run as � SAP Fiori Component on Sandbox, and your component will be
launched in a minimal sandbox, as shown Figure 8.19. Here, you can test that the
application still runs within SAP Fiori Launchpad. The scope of this option is still
limited, and integrations such as cross-application navigation are not supported.

Figure 8.20  Usage of SAP Fiori Launchpad Sandbox Component Runner

Custom-Built SAP Fiori Launchpad Sandbox: Experimental

To test cross-application features in the SAP Web IDE, you can bootstrap your
own sandbox. Note that this approach should be used for testing purposes only;
any productive usage is not encouraged. However, this is a simple way to avoid
deploying every change. Be sure to test early in the process directly in the work-
space.

To do create a custom sandbox, we’ll first create a new folder in our workspace.
In this folder, we’ll add a new HTLM file called FLPSandbox.html. In this file,
we’ll place a script block that will handle the SAPUI5 bootstrap as we did for all
runnable files before (see Listing 8.37). In addition, we’ll add some configuration
for the SAP Fiori Launchpad sandbox and load an additional bootstrap script. The
only important point to note here is to pay attention to the application’s property
block within the configuration. We’ll add more here to register the application
components to the sandbox in the next step.

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
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<meta charset="UTF-8">
<title>FLP Sandbox</title>
<script>

window["sap-ushell-config"] = {
defaultRenderer : "fiori2",
renderers: {
fiori2: {
componentData: {
config: {
search: "hidden"

}
}

}
},
applications: {};

</script>

<script src="../test-resources/sap/ushell/bootstrap/sandbox.js" id=
"sap-ushell-bootstrap"></script>
<!-- Bootstrap the UI5 core library -->
<script id="sap-ui-bootstrap"
src="../../resources/sap-ui-core.js"
data-sap-ui-libs="sap.m, sap.ushell, sap.collaboration"
data-sap-ui-theme="sap_bluecrystal"
data-sap-ui-compatVersion="edge">

</script>

<script>
sap.ui.getCore().attachInit(function() {
// initialize the ushell sandbox component
sap.ushell.Container.createRenderer().placeAt("content");
});

</script>
</head>

<body class="sapUiBody" id="content"/>
</html>

Listing 8.37  SAP Fiori Launchpad Sandbox Initialization

In the same folder, we’ll create a new folder for every app we want to run within
the custom SAP Fiori Launchpad sandbox and give each one a meaningful name.
Into these folders, we’ll copy the respective webapp folders of the applications we
want to run—for example, for the Sales Orders and Business Partners applications
we created in Section 8.2.

Let’s now register our applications to the sandbox. To do so, we’ll add a new key
referencing an object for every application to the applications settings block
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you’ve seen before. This key serves as the hash to be resolved by the SAP Fiori
Launchpad on navigation later. The settings for each application should be easy to
understand: We need to give the component a namespace, a type, and a relative
URL for where to find the component. The title can be chosen freely and will later
be displayed on a tile. The coding to add the Sales Orders and Business Partners
applications is found in Listing 8.38.

"SalesOrder-display": {
additionalInformation: "SAPUI5.Component=sales.order.app",
applicationType: "URL",
url: "./SalesOrders/webapp/",
title: "Sales Orders"

},
"BusinessPartner-display": {
additionalInformation: "SAPUI5.Component=business.partner.app",
applicationType: "URL",
url: "./BusinessPartners/webapp/",
title: "Business Partners"

}

Listing 8.38  Registering Applications to SAP Fiori Launchpad Sandbox

If you run the registered applications now, they should look like Figure 8.21. You
can test the application, and if you click on the individual tiles, the applications
should open and be displayed as we left them.

Figure 8.21  Custom SAP Fiori Launchpad Sandbox
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8.4.2 Cross-Application Navigation

With the custom-built SAP Fiori Launchpad sandbox, we can now test the cross-
application navigation function as a simple feature example for what the SAP
Fiori Launchpad generally provides. When someone clicks on the link to one
business partner in the Sales Orders application worklist screen, the Business
Partner application should open with the chosen business partner selected.

Let’s first look at the Sales Order application that triggers the navigation. For this,
we’ll add a click handler to the link on the worklist table like so:

<Link text="{CustomerName}" press="onCustomerPressed"/>

The matching event handler (see Listing 8.39) in Worklist.controller.js should
then make use of the navigation service provided by SAP Fiori Launchpad and call
the toExternal function with some parameters. We’ll use the settings we just
made in Listing 8.38 (BusinessPartner-display) to identify the application
during navigation. We’ll also hand over the ID of the business partner we want to
navigate to as an additional parameter.

To retrieve the ID, we have to think outside the box a little. Because we can’t use
the ID of the SalesOrder we’re currently using, we have to retrieve the Business-
PartnerID to properly handle the navigation on the other app. Therefore, we’ll
add an expand parameter to the binding of the table—parameters : { expand :
'ToBusinessPartner'}—and add the ID of the BusinessPartner as custom data in
the link itself—data:id="{ToBusinessPartner/BusinessPartnerID}. Then, we
can retrieve the ID in the handler directly from the element itself (see Listing
8.39).

onCustomerPressed: function(oEvent) {
var BusinessParnterId = oEvent.getSource().data().id;
var oCrossAppNavigator =
sap.ushell.Container.getService("CrossApplicationNavigation");
oCrossAppNavigator.toExternal({
target: {

semanticObject: "BusinessPartner",
action: "display",
params: {
BusinessPartner : BusinessParnterId

}
}

});
}

Listing 8.39  Cross-Application Navigation Handler
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If you click on the Business Partner link in the Sales Order application now, nav-
igation to the Business Partners application is triggered and it hits the master
route. In the URL, the ID is visible as a parameter. We now only have to handle
the selection based on the parameter we handed over on the other side. To do so,
we’ll retrieve the ID as startupParamters on the instance of the application com-
ponent.

We’ll add additional logic to the resolving promise in the handler of the master
route that then checks for the existence of startup parameters and navigates to the
matching detail if startup parameters are available, as in Listing 8.40.

var aBusinessPartner = this.getOwnerComponent().getComponentData().
startupParameters.BusinessPartner;

var sId;
if (aBusinessPartner) {

sId = aBusinessPartner[0];
} else {

sId = this.oList.getItems().getBindingContext().
getProperty("BusinessPartnerID");

}
this.selectAnItem(sId);
this.oRouter.navTo("detail", {
BusinessPartnerID: sId

});

Listing 8.40  Handling Cross-Application Navigation in Target

8.4.3 Register and Run in Production

With all the pieces in place and working in the sandbox, we can deploy the two
applications straight out of the SAP Web IDE into SAP HCP. However, first we
have to locate each application in the root of our workspace again. Use the con-
text menu triggered by right-clicking on the application root folder and select
Deploy � Deploy to HANA Cloud Platform. First, we’ll deploy the Business
Partner application. In the popup (see Figure 8.22), you can set some details and
also see the application status and whether it’s already deployed. We do not need
to make any changes here; simply click Deploy. For more details on deploying
and managing application versions, see Appendix D.

After a while, you’ll see a success notification with a prominent button marked
Register to SAP Fiori Launchpad. Click on this button, and a dialog opens in
which you can perform all the needed steps to set up your application in SAP
Fiori Launchpad.
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Figure 8.22  Application Deployment on SAP HCP

On the first screen (see Figure 8.23), we will mainly set up the navigation to this
application within the SAP Fiori Launchpad in the Intent settings; we defined
these settings in Listing 8.39 when we set up the cross application. We have to
use the same settings now again for the Semantic Object and the Action. Then,
click on Next.

Figure 8.23  Set Up Navigation within SAP Fiori Launchpad
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On the next screen (see Figure 8.24), we can set up the appearance of the tile for
this application in the SAP Fiori Launchpad. You can choose between two differ-
ent tile types (static and dynamic), define an icon, and set a title and subtitle to be
displayed. We’ll just change the title here and delete the placeholder for the sub-
title. Again, proceed by clicking on Next.

Figure 8.24  Set Up Tile Appearance within SAP Fiori Launchpad

In the last step (see Figure 8.25), we’ll finally assign this new tile that represents
the application and allows the user to open it to our launchpad. We can only
cover some basics here, so we don’t want to get into the details of these settings.
SAP Fiori Launchpad as an entry point to applications uses roles to provide
access, while the allocation of applications is done via catalogs. This means that a
business role like—for example, for procurement—has one or many catalogues
assigned. Each of these catalogues consists of a set of applications. An administra-
tor can then assign catalogues to a role, and each employee is assigned to a role as
well. This then defines what applications are to be part of their SAP Fiori Launch-
pad. Let’s keep the default settings and click on Next.

Figure 8.25  Assign Application to the SAP Fiori Launchpad
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We’ll now perform the same tasks for the Sales Orders application. Based on your
settings, the final result should look like Figure 8.26. If all intents are set to match
our cross-application navigation settings, it should now be possible to perform
the navigation between the two apps as implemented in Section 8.4.2.

Figure 8.26  Application in SAP Fiori Launchpad at SAP HCP

8.5 SAP Fiori Reference Apps

So far, we’ve explored application development from different angles: In Section
8.2, we created application skeletons, and we refined them in Section 8.3. How-
ever, thus far we have not built full-blown applications but have only gained an
understanding of the different building blocks that matter in application develop-
ment.

In this section, we want to look at the SAP Fiori reference applications that can be
evaluated directly in the SAP Web IDE. Specifically, we’ll look at the Manage
Products and Shop apps.

All applications are built using best practices for SAP Fiori development. This
means they are component-based, come with an SAP Fiori sandbox set up, and
make use of controls from the sap.m library. However, note that these application
are built on SAPUI5 version 1.28, and therefore, for example, manifest.json isn’t
used. For the full list of applications available, see Figure 8.27. You can open this
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wizard by clicking File in the menu bar, then New, and then Project from Sam-

ple Application.

Figure 8.27  SAP Fiori Reference Apps in SAP Web IDE

8.5.1 Manage Products App

The Manage Products application (see Figure 8.28) uses the master-detail floorplan.
The master list is implemented as in Section 8.2.2, but comes with additional
filtering, sorting, and grouping functionality. In the detail content area are
sap.m.ObjectHeader and two sap.m.Panel controls displaying different types of
data within static forms related to the selected item. Footer buttons are added
that allow you to switch from detail view to edit mode. You also can delete or
copy any selected item.

The Manage Products application is a good example of how to build an applica-
tion designed to change, add, or delete business objects. It makes good use of the
master-detail floorplan; you can quickly navigate between the different products.
In addition, the display on the details side is highly sorted and not overloaded.

From a coding perspective, you can see that several helper files are needed, most
of them dealing with CRUD operations. Because the coding is extensively docu-
mented using inline comments, we won’t go into details here.
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Figure 8.28  Manage Products Reference Application

8.5.2 Shop App

The SAP Fiori reference Shop application is built on top of the worklist floorplan.
The scenario that is implemented here is a simple Shop application where a user
can browse different items and add them to a shopping cart. In Figure 8.29, you
can see that it looks familiar to what we created in Section 8.2.1.

In the worklist, an action is implemented where the user can add items to their
shopping cart straight out of the item list without browsing any details. One addi-
tional control that is used here to refine the items to be displayed is a
sap.ui.comp.smartfilterbar.SmartFilterBar. We will provide more details
about the capabilities of smart controls in SAPUI5 in Chapter 9.

The navigation in the Shop application has two additional views displaying the
items in the shopping cart as well a view that is used to place an order once the
user is ready to checkout.
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Figure 8.29  Shop Reference Application

It is interesting to see how items are to be added to this cart. One might assume
that there is an additional model involved here. However, there is actually a func-
tion import on the OData model being used in this scenario. We have already
learned about this OData feature in Chapter 7. Here, OData can be used for add-
ing items to a shopping cart as well as for placing an order.

8.6 Summary

In this chapter, you’ve seen the complexity of application development first-
hand. SAPUI5 helps to build applications, and SAP Fiori Launchpad launches
applications into an environment that eases their orchestration and provisioning.
Beyond just looking at the technical aspects of application patterns, it’s important
not to forget the needs of your application users. Therefore, within this chapter
we spent some time on the general layout of applications, explained how to make
use of existing application floorplans, reviewed user experience best practices,
and outlined some of the most important nonfunctional application capabilities
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every user expects. During this process, you built two application skeletons and
learned how all the technical concepts explained in the previous chapters can be
used in combination.

With this chapter, we’ve concluded the chapters on the pure basics in SAPUI5; in
the next chapter, we’ll look into more advanced concepts that build on top of
what you’ve learned so far.
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Smart form, 448

edit mode, 448
smart template, 450
value help, 448

Smart group, 448
Smart table, 440, 445, 447

add, hide, reorder, 442
dirty, 446
filtering, 443
grouping, 443
metadata, 441
personalization, 442
sorting, 443

Smart templates, 449, 451
develop apps, 449
openSAP, 452
smart form, 450
smart table, 450

Sorting, 305
aggregations, 248
buttons, 250
custom, 252
functions, 251
JSON model, 247
Master.view.xml, 306
multiple, 252
smart tables, 443
table items, 248

sPageId, 125
Spies, 517
Split-screen layout, 348, 355

Main.view.xml, 356
master-detail, 368

src, 65, 77, 639
StretchCompressMode, 358
String, 110

filtering, 301
Stubs, 517, 521
Sublime, 563

T

Tables
coding, 94
components, 133
create, 93
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