
Reading Sample
User experience plays an important role when creating and conceptualizing
applications. In this reading sample, we’ll discuss some of the most widely
used SAPUI5 application patterns and their attributes. We’ll begin by
looking at the different layouts and floorplans that can be implemented,
then provide steps for running these applications in SAP Fiori Launchpad.

Christiane Goebels, Denise Nepraunig, Thilo Seidel

SAPUI5: The Comprehensive Guide
672 Pages, 2016, $79.95
ISBN 978-1-4932-1320-7

 www.sap-press.com/3980

First-hand knowledge.

The Authors

Index

Contents

“Application Patterns and Examples”

http://www.sap-press.com/3980

347

Chapter 8

Application development in general must close the gap between technolog-
ical feasibility and the best possible support for a given usage scenario.
Therefore, we must not only know about technology but also have a deep
understanding of user requirements and constraints. In this chapter, we’ll
approach the topic of application patterns from both design and technical
perspectives.

8 Application Patterns and Examples

Application development with SAPUI5 benefits from the well-defined design pat-
terns and overall application concepts found in the SAP Fiori design guidelines,
available at https://experience.sap.com/fiori-design/. From a design perspective, this
information provides clear guidance on how to structure your content, define usage
patterns, and define interaction flows, allowing you to concentrate on your specific
scenario implementation, building on top of best practices. From an application
developer’s point of view, SAPUI5 supports the implementation of these guidelines
by providing controls and the right APIs that are built based on the overall design
requirements.

Although it’s been said that good user experience can never be achieved simply
by technology alone, technical aspects and decisions do play an important role.
As previously stated, SAP Fiori design concepts and SAPUI5 grew up together.
While SAP Fiori emphasized the implementation of small, single-purpose applica-
tions, SAPUI5 served as the tailored technology for these application.

For us, this means that we should always try to build individual and focused
applications. For example, in a scenario in which our users can create, approve,
and analyze leave requests, we should create three applications.

In this chapter, we’ll explore general application concepts and patterns found in
SAPUI5. We’ll start with general application layouts, then dig deeper and explore
more detailed floorplans. Finally, we’ll look into specific application types and
explore shared application features. We’ll always start from a design perspective
and build knowledge for use cases and underlying assumptions. Then, we’ll start

Application Patterns and Examples8

348

to explore technical assets like controls that are provided by SAPUI5 and that ease
the implementation of these design patterns.

In the final section of this chapter, you’ll learn how SAP Fiori Launchpad serves as
the central access point for SAPUI5 applications in many scenarios and will gain
some hands-on experience with its developer features.

8.1 Layouts

Laying out applications generally happens at different levels. Think of a grid used
to cut the screen into pieces that will later be assigned individual content. This
concept is common in web development.

When building full-blown applications, you might still use a grid-based approach.
However, you should first think about the general cut of your application, mean-
ing the overall number of content areas you’ll need to leverage to enrich user
experience and to streamline the tasks your users will have to complete using the
application you build. Therefore, the first decision you make should be simply
whether you want to build a full-screen or split-screen application. Differentiating
between full-screen and split-screen options might seem like a no-brainer at first
glance, but we’ll discuss these difference to a greater extent in this section. The
choice isn’t as simple as it may seem initially.

These applications can be derived from the task, sequence of usage, and target
group of your application. This first decision will ultimately help you understand
the underlying usage scenario of your application in greater detail. We’ll outline
the important questions to ask when choosing a layout in this section, and then
we’ll build example implementations using SAPUI5 controls. To begin, we’ll use
a simple application skeleton that can be generated from a template in the SAP
Web IDE.

The generation of templates in the SAP Web IDE is covered in Appendix D of this
book. Please look up the general wizard functionality there. What we want to
generate now is the SAPUI5 Application template (see Figure 8.1).

This template provides the right folder structure and all the files needed to build
our first prototypes. Most of it should look familiar from the previous examples
in the book. We use this template frequently to test new controls or even to test

Layouts 8.1

349

complex patterns isolated from the actual project we’re working on. With some
small changes, it can also serve as a base for application development.

Figure 8.1 SAPUI5 Template in Template Wizard

Let’s first look into the Main.view.xml file in the view folder of the project. This
is defined as the rootView in manifest.json and will therefore be loaded at appli-
cation startup (see Listing 8.1).

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<App>
<pages>

<Page title="{i18n>title}">
<content></content>

</Page>
</pages>

</App>
</mvc:View>

Listing 8.1 Initial Main.view.xml

The app control serves as a root control for the template application. However, it
already has a sap.m.Page element prefilled in its pages aggregation. In application
development, we use routing in SAPUI5 to display individual views and can
therefore delete the page and all its content. In addition, we’ll add an ID to the
root control that we can use later in the routing configuration (see Listing 8.2).

Application Patterns and Examples8

350

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<App id="rootControl"/>

</mvc:View>

Listing 8.2 Main.view.xml: Adapted

We still need to set up some basic routing configuration to enable the dynamic
display of content in the root control. For this, we’ll add a routing block into the
sap.ui5 namespace in manifest.json (see Listing 8.3). This block should hold the
ID of the root control and some generic settings, such as controlAggregation and
the path to the root view. Refer back to Chapter 4 for more details.

"sap.ui5": {
"_version": "1.1.0",
"rootView": {

"viewName": "my.app.view.Main",
"type": "XML"

},
"routing": {

"config": {
"routerClass": "sap.m.routing.Router",
"controlId": "rootControl",
"controlAggregation" : "pages",
"viewPath": "my.app.view",
"viewType": "XML",
"async": true

}
},

Listing 8.3 Basic Routing Configuration

Although the SAPUI5 controls from the sap.m library we will use come with built-
in support for different form factors, like mobile and desktop devices, we still
have to tell the toolkit for what device it should optimize the display. This will
happen dynamically based on what the sap.ui.Device API has identified. To
enable this functionality, we’ll add the check shown in Listing 8.4 to the onInit
event of the main controller.

onInit : function() {
var sContentDensityClass = "";
if (jQuery(document.body).hasClass("sapUiSizeCozy") || jQuery(documen

t.body).hasClass("sapUiSizeCompact")) {
sContentDensityClass = "";

Layouts 8.1

351

} else if (!Device.support.touch) {
sContentDensityClass = "sapUiSizeCompact";

} else {
sContentDensityClass = "sapUiSizeCozy";

}
this.getView().addStyleClass(sContentDensityClass);

}

Listing 8.4 Content Density Check in Main.controller.js

Finally, we’ll add a configuration for the creation of a sap.ui.model.odata.v2.
ODataModel instance that uses an SAP NetWeaver demo OData service provided
by SAP as dataSource into manifest.json. We’ll use this model later to display real
data when building the floorplans and example applications. For now, it will be
created silently without any effect.

{
"sap.app" : {
"dataSources": {

"mainService": {
"uri": "/destinations/ES4/sap/opu/odata/IWBEP/GWSAMPLE_BASIC/",
"type": "OData",
"settings": {

"odataVersion": "2.0"
}

}
}

..},
"sap.ui5":{
"models": {

"": {
"dataSource": "mainService",
"settings": {

"metadataUrlParams": {
"sap-documentation": "heading, quickinfo"

}
}

}
}

}
}

Listing 8.5 Excerpt from manifest.json with OData Model Creation

The result should now look like Figure 8.2: a simple, letterboxed sap.ui.core.
UIComponent display that’s still unspectacular. However, with this foundation in

Application Patterns and Examples8

352

place, we’re well prepared to later implement specific layouts and floorplans and
then start the real application development.

Figure 8.2 Application Starter Template Display

In the following two subsections, we’ll look at guidelines for creating both a full-
screen and a split-screen layout.

8.1.1 Full-Screen Layout: sap.m.App

Naturally, full-screen apps make use of the entire screen. You can still decide if
you want to have your app in a letterboxed display or not (see Section 8.3.4 for
details), but the main characteristic of a full-screen layout from a programming
point of view is that it contains a single content area.

The term content area might need some explanation. Just think of one, single-pur-
pose area on your screen. This could be a list of items that is displayed, for exam-
ple, or details about a specific item. This will become clearer when you learn
more about the split-screen layout in Section 8.1.2.

For the full-screen layout, it’s important to understand that there should be only
one purpose per screen (like the display of object details), although this could still
mean that you mix information from different data sources and even use differ-
ent types of display. This can include charts, textual information, and even a list
of related items. Therefore, a full-screen layout is clearly purpose-oriented and
has nothing to do with data origin or media.

Layouts 8.1

353

The following are some guiding questions you should ask yourself when using a
full-screen layout:

� Do I want to display a high number of facets related to a single entity with min-
imal navigation?

� Does the content require maximal space (e.g., charts or images)?

� Do I want to display a list in combination with complex filtering options?

Technically, a full-screen layout uses the sap.m.App control as a root control.
Based on the routing configuration, different views can be placed into its pages
aggregation. Because the sap.m.App control inherits from sap.m.NavContainer,
transitions are fully supported, and routing-specific events can be attached and
handled based on the existing API.

Pay attention to responsive behavior for full-screen applications. Later, you’ll see
that the control used as a root control for the split-screen layout introduces some
responsiveness out of the box. This is not the case for the app control, however,
because of the single content area. That’s why we will have to take care of
enabling responsive behavior directly for the full-screen layout. Luckily, SAPUI5
provides controls that include the necessary intelligence to handle different form
factors, which is why we’ll use pages from sap.m.semantic when building appli-
cations. For this example, we’ll use sap.m.semantic.FullscreenPage, which pro-
vides overflow handling for header and footer areas in the full-screen layout.
We’ll revisit headers and foots in Section 8.3.5.

Let’s now enhance the starter application by adding a first view and additional
routing configuration so that it can serve as a first, simple, full-screen-layout
application (see Listing 8.6 and Listing 8.7). This results in a simple full-screen
display as in Figure 8.3.

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:FullscreenPage title="Fullscreen">
<!-- Enough space for your content here -->

</semantic:FullscreenPage>
</mvc:View>

Listing 8.6 webapp/view/Home.view.xml

Application Patterns and Examples8

354

"routing": {
"config": {

"controlId": "rootControl",
"controlAggregation" : "pages",
"viewPath": "my.app.view",
"viewType": "XML"

},
"routes": [{

"name" : "home",
"pattern": "",
"target": ["home"]

}],
"targets": {

"home": {
"viewName": "Home"

}
}

},

Listing 8.7 Simple Full-Screen Routing Configuration in manifest.json

Figure 8.3 Simple Full-Screen Layout

Layouts 8.1

355

This is obviously not rocket science: You could easily build upon this foundation
with what you’ve learned in this book already and extend this view now with
controls and content.

Now, let`s look at what floorplans, defined by the SAP Fiori design guidelines,
make use of the full-screen layout:

� Initial page
Single object display based on user input (search, barcode scanning).

� Worklist
See Section 8.2.1.

� List report
Multi-object display with extended filtering/sorting capabilities.

8.1.2 Split Screen Layout: sap.m.SplitApp

Now, let’s turn our attention to the split-screen layout in SAPUI5. A split screen
consists of at least two content areas displayed side by side. However, this does
not mean that the two areas are separate from each other; in fact, both content
areas need to be orchestrated such that they’re dependent on each other. One fre-
quently used and well-established floorplan in SAP Fiori is the master-detail pat-
tern. The selection in the master list determines the display of details of the
selected item in the object view. We will look into this pattern in more detail in
Section 8.2.2.

One use case that benefits the most from using a split-screen layout is one in
which you expect your application users to review a high number of items—for
example, in approval scenarios. In this case, you generally want to assure that
users do not have to execute a high number of back and forth navigations and
therefore want to display the list to select from next to the details to review, all on
one screen. Most of us use this pattern on a daily basis; for example, it’s a default
setting in most of the local email clients available.

The general build-up of a split-screen layout is similar to what you’ve already seen
for the full-screen layout in Section 8.1.1, with some slight modifications. We can
again make use of the application starter template we created in Section 8.1.

Application Patterns and Examples8

356

We’ll start by using a different root control and some other slight modifications
down the line. First, we’ll use the sap.m.SplitApp control in Main.view.xml (see
Listing 8.8).

<mvc:View
controllerName="my.app.controller.Main"
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<SplitApp id="rootControl"/>

</mvc:View>

Listing 8.8 Main.view.xml for Split-Screen Layout

The sap.m.SplitApp control is a pretty clever composite control that provides
two sap.m.NavContainer elements internally as hidden aggregations that can be
populated by making use of two public aggregations: masterPages and detail-
Pages. We can therefore use the routing configuration to handle the placement of
views into these aggregations and again use routing events if needed. The mas-
terPages and detailPages are derived from the internal navigation containers
that are wrapped and exposed by the sap.m.SplitApp control. Before we look
into the routing configuration in detail, let’s first create two views. For the split
screen with sap.m.SplitApp, we can use specific semantic page controls—one for
the masterPages aggregation (see Listing 8.9), and one for detailPages (see Lis-
ting 8.10).

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:MasterPage title="Master">

<!-- Enough space for your content here -->
</semantic:MasterPage>

</mvc:View>

Listing 8.9 Master.view.xml with sap.m.semantic.MasterPage

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:DatailPage title="Detail">

Layouts 8.1

357

<!-- Enough space for your content here -->
</semantic:DetailPage>

</mvc:View>

Listing 8.10 Detail.view.xml with sap.m.semantic.DetailPage

Now, let’s modify and enhance the existing routing configuration. We want to
ensure that both Master.view.xml and Detail.view.xml are displayed in the
respective aggregations of the root control when the application is started.

To achieve this, let’s quickly revisit what you learned in Chapter 4, Section 4.7
about how routing works in SAPUI5. The routing configuration is built up by con-
figuring the router globally in the config setting and can then be enriched for
specific routes and targets. In that sense, the configuration for targets is more spe-
cific than the one for routes, and configuration options can even be overridden.
For the current scenario, we’ll therefore have specific targets that define their
own aggregations to address the two content areas in sap.m.SplitApp accord-
ingly. Compared to the routing configuration for the full-screen layout, we’ll have
two additional targets for every route. Here, the sequence makes a difference.
This is because sap.m.SplitApp handles the display of views based on the current
screen size and therefore includes responsiveness across form factors out of the
box. Figure 8.4 shows that the control displays differently across device types.

Figure 8.4 Responsiveness of sap.m.SplitApp

You can influence this control behavior with the routing configuration. To do so,
define the targets per route in the right sequence with the target you want to have
displayed on a phone, on which only one content area will be displayed, for this

Phone Tablet (portrait) Tablet (landscape)

Application Patterns and Examples8

358

route in the array of targets. For the default route, with an empty hash, you’ll
most likely choose the master view. In that case, on a tablet in portrait mode,
you’ll see the details view and a button in the header; clicking on that button will
slide in the master view (see Listing 8.11).

"routing": {
"config": {

"controlId": "rootControl",
"viewPath": "my.app.view",
"viewType": "XML"

},
"routes" : [

{
"pattern" : "",
"name" : "main",
"target" : ["detail", "master"]

}
],
"targets" : {

"master" : {
"viewName" : "Master",
"controlAggregation" : "masterPages"

},
"detail" : {

"viewName" : "Detail",
"controlAggregation" : "detailPages"

}
}

},

Listing 8.11 Routing Configuration in manifest.json

sap.m.SplitAppModes

In addition to its default behavior, sap.m.SplitApp offers four different modes for han-
dling the masterPages aggregation display on mobile devices. The mode property can
be set either as static on the declaration of the control in the XML or as dynamic in Java-
Script using the default setter. The modes include the following:

� ShowHideMode (default)
Master hidden in portrait mode

� StretchCompressMode
Master in a compressed version in portrait mode

� PopoverMode
Master shown in a popover in portrait mode

Floorplans 8.2

359

� HideMode
Master initially hidden in portrait and landscape

In SAPUI5, there are several controls that can be used to create an application
with more than one content area. Most of these examples are part of the
sap.ui.layout library:

� sap.ui.layout.Splitter

� sap.ui.layout.DynamicSideContent

� sap.ui.layout.ResponsiveSplitter

In this section, we walked through the split-screen layout. In the next section,
we’ll use the skeleton layouts of our full- and split-screen layouts in floorplans.

8.2 Floorplans

In this section, we’ll take the layout skeletons we built in Section 8.1 and extend
them to match their respective floorplans with all the needed functionality. We’ll
actually take this one step further and build two applications that we can later use
in Section 8.4 to integrate into SAP Fiori Launchpad and make use of some of the
features the launchpad provides for cross-application navigation.

In Section 8.2.1, we’ll build a worklist that displays data from SalesOrder enti-
tySet in a demo service. Because each SalesOrder item is associated with a spe-
cific BusinessPartner in the service, we’ll also build a business partner address
book in Section 8.2.2 using the master-detail layout.

Note

In the following sections, we outline the most important features and cornerstones of
SAPUI5 application development. Because application development with SAPUI5 could
easily fill more than a single chapter, we’ll only give examples of certain application pat-
terns here. We’ll also describe some shared application features in Section 8.3. Here is
a list of application best practices that should be followed but could not be described or
used in the scope of this chapter:

� Usage of i18n texts
Do not use hard-coded strings in XML or JavaScript to be displayed in the view.
Always use texts that can be translated centrally.

Application Patterns and Examples8

360

� Usage of fixed IDs for controls
Always add a fixed ID to all controls that are not used as templates in aggregations.

8.2.1 Worklist

In this section, we’ll take the full-screen layout we created in Section 8.1.1 and
extend the coding to match the worklist floorplan. The worklist floorplan can be
used for all applications that should display a number of work items. Work items
are items that need to be processed by the user. For example, stock management
is a use case in which users have to ensure a balanced stock level and can trigger
actions on individual items. Applications should display the most relevant infor-
mation in a list of all items on the first screen, allow users to review more detailed
information per item on a second screen, and generally offer processing options.
If we stay with the stock management use case, these processing options could
include reordering or discontinuing items. The SAPUI5 Demo Kit includes a tuto-
rial covering how to build this use case.

We’ll now lay the foundation for a worklist by creating the views and adding the
essential controls.

Worklist Table

The actual worklist is technically a responsive table (sap.m.Table). We’ll add the
table to the Home.view.xml file created in Section 8.1, but will rename it to Work-
list.view.xml. The user should be offered additional options to limit or refine the
results displayed in the worklist. This can be achieved by using filters, search, or
sorting capabilities, which can be triggered by controls displayed via sap.m.Tool-
bar. sap.m.Toolbar can be added to the headerToolbar aggregation of the respon-
sive table.

For a nice display, we’ll also add a responsive-margin-css class provided by
SAPUI5 and bind it to SaleOrderSet in the OData service. To have a minimal foot-
print on the screen, we’ll also show some bound properties via sap.m.Column-
ListItem and add a custom action to the table using sap.m.Button.

The simple version shown in Listing 8.12 leads to the display shown in Figure 8.5.

Floorplans 8.2

361

Note

Custom actions on the worklist are an optional way to provide direct access to com-
monly used functionality for the user. You can decide to add the actions directly on the
list based on whether the information available initially justifies an action to be trig-
gered. Another option is to require actions to be performed initially in every case.

<Table
id="table"
class="sapUiResponsiveMargin"
width="auto"
items="{
path : '/SalesOrderSet'

}">
<headerToolbar>
<Toolbar>

<Title
Id="title"
text="Manage Sales Orders"/>

<ToolbarSpacer/>
<SearchField
width="auto"/>

<OverflowToolbarButton icon="sap-icon://filter"/>
<OverflowToolbarButton icon="sap-icon://sort"/>

</Toolbar>
</headerToolbar>
<columns>
<Column>

<Text text="Customer"/>
</Column>
<Column>

<Text text="Net Amount"/>
</Column>
<Column/>

</columns>
<items>
<ColumnListItem vAlign="Middle">

<cells>
<Link text="{CustomerName}"/>
<Text text="{NetAmount}"/>
<Button text="Create Incoive"/>

</cells>
</ColumnListItem>

</items>
</Table>

Listing 8.12 sap.m.Table as Worklist

Application Patterns and Examples8

362

Figure 8.5 Simple Worklist Page

Now, let`s add two more things to the application in this step: an item count in
the list indicated next to the table title and search functionality.

Item Count in Table Title

Here, we need to update the displayed item count number whenever the binding
of the responsive table is updated. Luckily, this event exists on the table control,
and we can simply attach to it by adding updateFinished="onTableUpdateFin-
ished" to the control constructor in the view. We can then implement the han-
dler function on the controller, as shown in Listing 8.13. Here, we can receive the
total count of items available on the backend based on the current filter as a
parameter from the argument of the callback. With this information, we can
update the title control.

To achieve a nice display, as shown in Figure 8.6, we need two numbers here. In
addition to the total number of items available in this collection, we also can display

Floorplans 8.2

363

the number of items currently displayed on the screen. This makes sense if the
growing feature of the list is enabled and if your users most likely will have to deal
with a high number of items.

onTableUpdateFinished : function(oEvent) {
var sTitle = "Sales Orders",

oTable = this.getView().byId("table");
//catch cases where the backend is not supporting remote count
if(oTable.getBinding("items").isLengthFinal()) {

var iCount = oEvent.getParameter("total"),
iItems = oTable.getItems().length;

sTitle += " (" + iItems + "/" + iCount + ")";
}
this.getView().byId("title").setText(sTitle);

}

Listing 8.13 Event Handler Function to Set Number of Items

Figure 8.6 Item Count with Two Numbers

Handle Search Input and Filter the Table

Search capabilities give users the feeling of direct control over the displayed list.
To increase the effect of this capability even more, we’ll use the liveSearch event
that sap.m.SearchFiled provides and will pass a handler function to it by adding
liveChange="onSearch" to the constructor in the XML. Technically, we’ll use fil-
tering on the binding in this handler function. These work equally as well as sim-
ply implementing a predefined filter with the buttons directly.

In the handler function to be implemented on the controller (see Listing 8.14),
we’ll receive the query string entered and instantiate a new sap.ui.model.Filter
object that will get this query string, a sap.ui.model.FilterOperator element of
choice and the property to be filtered against. Because it’s likely that application
users do not want to search on only one column, we’ll create a filter that will per-
form a search on several columns. The buildup is a little more complex, but it’s
really nothing more than wrapping several sap.ui.model.Filter objects into
one, which is later handed over to the filter function on the binding. For this

Application Patterns and Examples8

364

filter function, we can also choose between the filter modes. In Figure 8.15, we’ll
set it to Application, which will come at the cost of an additional round-trip to
the server with every new filter request. This can be costly, especially when live
search is used, and might lead to a bad user experience, especially for applications
mostly used on mobile devices. The alternative method is to use Client, which
would trigger only local filtering. The result is shown in Figure 8.7.

onSearch : function(oEvent) {
var sSearchValue = oEvent.getSource().getValue(),
aFilters = [];
if(sSearchValue.length > 0) {

var oFilterName = new Filter("CustomerName", sap.ui.model.
FilterOperator.Contains, sSearchValue);

var oFilterID = new Filter("SalesOrderID", sap.ui.model.
FilterOperator.Contains, sSearchValue);

aFilters.push(new Filter({
filters : [oFilterID, oFilterName],
And : false}));

}
this.getView().byId("table").getBinding("items").filter(aFilters,

"Application");
}

Listing 8.14 Handler Function for Search Functionality

Figure 8.7 Search Handling in Worklist

Now that we’ve added the worklist table functionality for the worklist floorplan,
in the next section, we’ll provide functionality for navigation to the detail view.

Navigation and Detail View

In general, a worklist can offer two different types of navigation: Inner-application
navigation, triggered by clicking on one of the list items, which brings the user to
a second screen within the application that shows details for the selected item;
and cross-application navigation, which can jump to a second application. We’ll
look into cross-application navigation in more detail in Section 8.4. Jumping to

Floorplans 8.2

365

an external website triggered by clicking a link can be a valid use case for a work-
list, but this functionality should not be seen as mandatory and should be imple-
mented based on user requirements.

Now, let’s build a simple second screen and set up the routing to ensure that nav-
igation within the application based on a click as well as deep links is possible.
We’ve covered how to do this in code multiple times up to this point throughout
the book. However, we’ll now perform these functions based on the Descriptor
Editor provided by the SAP Web IDE. This tool offers UI-based configuration of
the manifest.json file and opens by default when opening any manifest.json file
in the SAP Web IDE. Based on the work we’ve done already, when you open the
Descriptor Editor and click on the Routing tab, the Descriptor Editor should look
like Figure 8.8.

Figure 8.8 Descriptor Editor in SAP Web IDE

Application Patterns and Examples8

366

First, let’s add a new route. To do so, click on the + button in the Routes section,
and a new route will appear. Change the name for the new route; let’s call it
salesOrder. Because we want to have deep link capabilities for the new route,
we’ll also define a pattern here. Any string would work here, but we suggest mak-
ing the link transparent to the user and calling it SalesOrder/{SalesOrderID}.
The identifier in curly brackets now will be used to identify the distinct sales
order to be displayed and handed over to the navigation step. This route now
needs a target.

Note

The number of identifiers used in application patterns is determined by the number of
identifiers defined in the metadata for the specific entity set. Otherwise, single entities
cannot be addressed correctly.

In the Manage Targets section (refer to Figure 8.8), click on + and a popup will
open (see Figure 8.9) in which you can define the name for the new target. Let’s
call it salesOrder.

Figure 8.9 Add Target

This target is created instantly, so we can configure it now. Here, all we have to
do is define the View Name (SalesOrder) and we’re done. Finally, we need to
associate this target with the route. To do so, click on + in line with the route; a
popup will open, and you can select salesOrder (see Figure 8.10).

Figure 8.10 Target Assignment in the Descriptor Editor

Floorplans 8.2

367

Now, save the changes and run the application with a hash like so: #SalesOrder/
4711. You’ll see an error in the console indicating that SalesOrder.view.xml could
not be loaded, which tells us that we did everything correctly and have to create
the view now.

We’ve performed similar tasks related to navigation in previous chapters (see
Chapter 4), so we don’t want to repeat the individual steps here; instead, try to
implement it on your own. When doing so, please keep in mind to separate con-
cerns. The navigation step in particular may tempt you to build a close interaction
between the two controllers. Use the router here to abstract the interaction by
calling the navTo function on one controller and attaching two patternMatched
events on the other controller. The complete code can be found in the Git repos-
itory that accompanies this book. Here’s a brief outline of the steps to follow:

1. Create a new view called SalesOrder.view.xml in the view folder, and add some
controls and relative binding. Don’t forget to add Back button handling.

2. Attach the patternMatched event in the controller for this view and bind the
view to the SalesOrderID in the hash. Ensure that the metadata is already
loaded (use metadataLoaded promise on the OData Model; see Listing 8.15).

this.getOwnerComponent().getRouter().getRoute("salesOrder").attachPa
tternMatched(function(oEvent) {

var that = this;
var sSalesOrderID =

oEvent.getParameter("arguments").SalesOrderID;
this.getView().getModel().metadataLoaded().then(function(){
var sObjectPath =

that.getView().getModel().createKey("SalesOrderSet", {
SalesOrderID : sSalesOrderID

});
that.getView().bindElement({

path : "/" + sObjectPath,
parameters : {

expand : "ToLineItems"
}

});
});

}.bind(this));

Listing 8.15 Handling Binding on the SalesOrder.controller.js

3. Implement a press handler function that triggers navigation when an item in
the worklist is clicked on.

Application Patterns and Examples8

368

Figure 8.11 shows how the final result looks like, based on the coding in the Git
repository. Still, there are lots of variations possible, and the service we’re using
allows for displaying lots of related and additional information. For example, you
could display the list of products associated in the sales orders here, the geo infor-
mation of the supplier, and much more.

Figure 8.11 Worklist and SalesOrder Views

8.2.2 Master-Detail

In this section, we’ll extend the split-screen layout we built in Section 8.1.2 and
extend it to a master-detail floorplan. The master-detail floorplan, because of its
different dependent content areas, is complex to implement, and its details and
pitfalls could fill an entire book on its own. Therefore, we’ll only explore its com-
plexity and learn how to overcome some trouble areas of the master-detail floor-
plan—just enough to get a better understanding of SAPUI5 application develop-
ment for this complex pattern overall. If you want to build a master-detail
application in one of your projects, we highly recommend using the template
available in the SAP Web IDE. The SAP Web IDE covers best practice implemen-
tation for all these little, but sometimes annoying details.

Before we dive deeper into the technical details for this floorplan, let’s first dis-
cuss valid use cases in which master-detail should be your floorplan of choice.
The buildup is pretty simple: We always have a list in the master section that dis-
plays a set of items. Based on what’s selected in this list, a detail area provides
more relevant information for the selected item. If you think of software you use
on a daily basis, you’ll find some examples of master-detail floorplans in action.

Worklist.view.xml SalesOrder.view.xml

Floorplans 8.2

369

Think of email clients, local as well as web-based: Most of them have a list of
emails on the left showing the most important information, and when one email
is selected, the entire email text appears in a bigger content area on the right. Or,
if you’re an iPad user, you can see the master-detail pattern at work in your
device settings.

From these examples, we can derive some golden rules for deciding when to use
master-detail floorplans in applications. First, master-detail is helpful in cases that
require minimal navigation, such as when you want your application users to be
able to quickly switch between different business objects while always keeping
the overview of the complete set of objects available.

However, this makes only sense if the amount of data displayed on the details
screen is easy to consume. In the email client, the email content displayed upon
selection is something a user can handle. The user clicks on an email stub and sees
the entire email displayed. This pattern would simply not work if not only this
email but six other related emails were displayed at once. This means that we
should only use the master-detail floorplan if the amount of data to be displayed on
the details side is strongly related to the content to be displayed on the master list.

Master List

Now, let’s move into some hands-on work with the master-detail floorplan by
creating the master list. We’ll start by creating the controllers for the master view
and the detail view, then we’ll register them in the view, and then add the files to
the controller folder. (We created the application skeleton with a sap.m.SplitApp
control and basic routing that displays the empty master and detail pages in Sec-
tion 8.1.)

In this section, we’ll first concentrate on the master list and extend Mas-
ter.view.xml (see Listing 8.16) with sap.m.List that we’ll bind to BusinessPart-
nerSet in the OData service. sap.m.List offers several modes for single or multi
select and some that affect general appearance. We’ll use sap.m.List as Single-
SelectMaster, the optimized mode for single selection on desktop devices. Indi-
vidual items in this list will be displayed using sap.m.ObjectListItem to show a
minimal set of details per item in a nice, card-like display. We’ll also add a search
field in the subHeader of the semantic page. (We covered search handling in Sec-
tion 8.2.1.) Listing 8.14 provides the binding and event handlers.

Application Patterns and Examples8

370

<semantic:subHeader>
<Bar id="headerBar">

<contentMiddle>
<SearchField id="searchField" search="onSearch"

width="100%"/>
</contentMiddle>

</Bar>
</semantic:subHeader>
</semantic:content>
<List
id="list"
selectionChange="onItemPressed"
mode="SingleSelectMaster"
growing="true"
growingScrollToLoad="true

items="{
path: '/BusinessPartnerSet'

}">
<items>

<ObjectListItem
title="{CompanyName}"
intro="{WebAddress}"/>

</items>
</List>
</semantic:content>

Listing 8.16 Master List with Binding and Event Handlers in Place

Object View

For Detail.view.xml, we’ll opt for a minimal display for now and will add
sap.m.ObjectHeader with one bound property, which we’ll bind later to the
model relative to the selected item. Doing this requires one simple line of code in
the content aggregation of sap.m.semantic.SemanticDetailPage: <ObjectHeader
title="{CompanyName}"/>.

Synchronize Master and Detail

Because we now have some basic content for our two content areas in place, we
need to orchestrate these two content areas in such a way that any selection in the
master view reflects the content that is displayed in the detail view. To do so, we
need to implement three features: handling of master list selections, full support
for deep links, and handling of the default route. Finally, we have to follow some
steps to ensure the master-detail floorplan can function for mobile scenarios as
well.

Floorplans 8.2

371

Note

For now, we’ll only address ideal cases. Error handling and “not found” handling scenar-
ios will be covered in Section 8.3.

Handling of Master List Selections

Currently, the application has a master list with data, but no visible details about
this data and no selectable content. In this section, we’ll add some depth to the
master list by providing details for its data upon selection. The first thing we want
to do is create a new route, called detail, which will use a pattern from which we
can extract the item ID later (see Listing 8.17). The targets we established previ-
ously can be reused; only the sequence is important. In Section 8.1.2, you learned
that the first target defined in routes that are used with sap.m.SplitApp is to be
displayed on mobile devices. It can be assumed that a user opening an application
with a deep link wants to see the details page and not the master page first, so
we’ll add the detail target first and the master target second into the array.

{
"name": "detail",
"pattern": "BusinessPartner/{BusinessPartnerID}",
"greedy": false,
"target": ["master", "detail"]

}

Listing 8.17 Master-Detail Route for Deep Links

We will now add the function (onItemPressed) to handle selections in Mas-
ter.controller.js (see Listing 8.18). We’ve done something similar several other
times in this book (see Chapter 4). One particular function of the selection-
Change event that we’re using now is that you get the list item that was pressed as
a parameter in the callback argument instead of calling oEvent.getTarget().
From this list item, we get the entity ID from the binding context and trigger nav-
igation to the detail route that gets this ID as a parameter.

onItemPressed : function(oEvent) {
var oItem = oEvent.getParameter("listItem");
var sID = oItem.getBindingContext().getProperty("BusinessPartnerID");
this.oRouter.navTo("detail", {
BusinessPartnerID : sID

}, false);
},

Listing 8.18 Handling of Press Event on Master List

Application Patterns and Examples8

372

We’ll now attach to the patternMatched event in the Detail.controller.js and bind
the view based on the parameter we just received (see Listing 8.19). Because
sap.ui.model.OData.V2.ODataModel offers some functionality to create the key
that can be used to bind the view (which is handy, especially for entity sets with
more than one key), we can use this function. You just have to be aware that the
actual key generated is dependent on the metadata.xml file already loaded and
processed. We can use a promise provided by sap.ui.model.OData.V2.OData-
Model here to secure this.

onInit : function() {
this.oRouter = this.getOwnerComponent().getRouter();
this.oRouter.getRoute("detail").attachPatternMatched(this.

onDetailRouteHit.bind(this));
},

onDetailRouteHit : function(oEvent) {
var sID = oEvent.getParameter("arguments").BusinessPartnerID;
this.getView().getModel().metadataLoaded().then(function(){

var sObjectPath =
this.getView().getModel().createKey("BusinessPartnerSet", {

BusinessPartnerID : sID
});
this.getView().bindElement({
path: "/" + sObjectPath,

});
}.bind(this)

}

Listing 8.19 Binding of Detail.view.xml Based on Navigation

Full Support for Deep Links

If you run what we have so far, it will appear as if nothing has changed. The master
list appears with all the items, and no details are displayed. However, once you
select an item in the list, the detail content area will be updated and will display
what we have bound to the list item. We can even see in the URL that the pattern
we defined before is filled, and the ID of the selected object is included there. If
you now click Refresh in the browser, the detail matching the browser is dis-
played, but the focus on the master list for the selected item is not set. Now, let’s
select any item again. It becomes even more obvious that we missed something if
we change the browser hash manually (e.g., from #/BusinessPartner/0100000000
to #/BusinessPartner/0100000004). The detail changes, but the selection on the
master list stays the same.

Floorplans 8.2

373

This is awkward for the user, but luckily we can fix this problem in the Mas-
ter.controller.js. Here, we’ll attach to the patternMatched event of the detail route
and handle it in a function we’ll call onDetailRouteHit. Because we’ll have to
handle different cases now and some exceptions, let’s build our example up step
by step. First, we’ll create the functions described previously, (patternMatched
and onDetailRouteHit) plus one additional function that we’ll use to search items
based on the key to review all the items the list (see Listing 8.20). The idea is now
to call selectAnItem once the detail route is hit in order to support a deep link.

onInit : function() {
// reuse variables
this.oList = this.byId("list");
this.oRouter = this.getOwnerComponent().getRouter();

this.oRouter.getRoute("detail").attachEvent("patternMatched",
this.onDetailRouteHit.bind(this));

},
onDetailRouteHit : function(oEvent) {
var sBusinessPartnerID =
oEvent.getParameter("arguments").BusinessPartnerID;
this.selectAnItem(sBusinessPartnerID);

}
selectAnItem : function(sBusinessPartnerID) {
var sKey = this.getView().getModel().
createKey("BusinessPartnerSet", {

BusinessPartnerID : sBusinessPartnerID
});
var oItems = this.oList.getItems();
oItems.some(function(oItem) {
if (oItem.getBindingContext() && oItem.getBindingContext().

getPath() === "/" + sKey) {
this.oList.setSelectedItem(oItem);
return;

}
}, this);

},

Listing 8.20 Handling Simple Deep Links: First Try

We should now expect that the deep links should work. However, when we start
the application to test it with a deep link (e.g., #/BusinessPartner/0100000000),
the deep link doesn’t work. An analysis with the (F12) tools in your browser and
adding a breakpoint to the selectAnItem function uncovers that when we call this
function, there are no items in the list yet (see Figure 8.12). This is rather inter-
esting and offers more insight into the lifecycle of routing itself. When the event

Application Patterns and Examples8

374

triggered, the list binding had not yet been resolved. Therefore, the list had no
items to select from.

Figure 8.12 Analysis of Item-Selection Failure

We’ll need to ensure that sap.m.List resolves its binding and that items are avail-
able to select from before the event is thrown. The easiest way to do this is to
hook into an event called updateFinished that we can attach to. This event is
thrown once the list binding update has completed. Therefore, we can be sure
that there are items in the list by that point:

this.oList.attachEventOnce("updateFinished", function() {
this.selectAnItem(sBusinessPartnerID);
}.bind(this));

With this change, the deep links should work. However, we’ll still run into issues
later when we want to handle errors or “not found” cases, because we do not
have this error as a status we can request at any time. We can solve this issue
using a JavaScript promise (see Listing 8.21). This becomes a little complex,
because we have to ensure two things now: First, that the view already has its
binding, for which we’ll use eventDelegate functionality to attach to an event of
the parent control; and second, that the dataRequest event can be used to iden-
tify error cases. Now, we also can react when no data could be loaded for any rea-
son. We’ll implement this later in Section 8.3.2. Add the code in Listing 8.21 to
the onInit method of Master.controller.js now.

Floorplans 8.2

375

var that = this;
this.oListBindingPromise = new Promise(
function(resolve, reject) {

that.getView().addEventDelegate({
onBeforeFirstShow: function() {
that.oList.getBinding("items").attachEventOnce("dataReceived",
function(oEvent) {
if(oEvent.getParameter("data")){

resolve();
} else {

reject();
}

}, this);
}.bind(that)

});
}
);

Listing 8.21 Promise to Decouple Navigation from Events

We now simply select an item programmatically once oListBindingPromise has
resolved. However, changing the hash manually does not change the selection.
We’ll need to add some more logic to the onDetailRouteHit function to get this
right.

We’ll now handle these three cases individually. First, we’ll handle the case in
which a user selects an item manually. In this case, we simply do nothing. In the
second case, the classical deep link scenario, we select an item once the binding
has resolved. For all other cases, mainly the manual hash change is handled here,
and we can simply select the item straight away (see Listing 8.22).

onDetailRouteHit : function(oEvent) {
var sBusinessPartnerID =
oEvent.getParameter("arguments").BusinessPartnerID;
var oSelectedItem = this.oList.getSelectedItem();
if (oSelectedItem && oSelectedItem.getBindingContext().
getProperty("BusinessPartnerID") === sBusinessPartnerID) {
return;

} else if (!oSelectedItem) {
this.oListBindingPromise.then(function() {

this.selectAnItem(sBusinessPartnerID);
}.bind(this));

} else {
this.selectAnItem(sBusinessPartnerID);

}
},

Listing 8.22 Optimized Detail Route Handling

Application Patterns and Examples8

376

Handling the Default Route: Empty Pattern

As a last step, we want to cover the empty pattern route. An empty pattern route
is hit whenever an application starts without a hash. In such a case, the current
application doesn’t display anything, which is not preferred; the preferred option
is to display the first list item details. In addition, we’ll also show that the first
item is selected. Most of the code in Listing 8.23 should make sense by now and
the function will be called once the master route was hit. Again, we have to
ensure that the promise is resolved before we can determine the first item and
trigger the navigation for the detail.

onMasterRouteHit : function() {
this.oListBindingPromise.then(function() {

var oItems = this.oList.getItems();
this.oList.setSelectedItem(oItems[0]);
this.oRouter.navTo("detail", {

BusinessPartnerID : oItems[0].getBindingContext().
getProperty("BusinessPartnerID")

});
}.bind(this));

},

Listing 8.23 Empty Pattern Route Handling

Support for Mobile Devices

For desktop devices and tablets in landscape mode, our application should work
fine. Still, we also have to plan for devices that do not offer enough real estate to
fit an entire master-detail layout on one screen. To do so, we’ll make use of
dynamic expressions in XML and the sap.ui.Device API that identifies device
type, touch support, and much more on application startup.

If you now run this application in device emulation mode in Google Chrome with
an empty hash, you’ll see that it instantly jumps to the detail screen for the first
item, which is not our intent. We want it to stay on the master list if the main
route is hit. The following simple return statement that only comes into play on
mobile devices in the function that handles the main route will fix this problem:

if(sap.ui.Device.system.phone){ return;}

If you rerun the application in Google Chrome now, you’ll land on the master list.
If you select an item in the master list, the navigation brings you to the detail
screen.

Floorplans 8.2

377

Everything seems to work, but from the detail screen there is no easy way to get
back to the master list page. We have to add a Back button to Detail.view.xml and
ensure that it will only be displayed on phones. Again, we’ll use the sap.ui.Device
API, this time as a dynamic expression directly in XML and based on the same path
we used previously in the return statement:

showNavButton="{= ${device>/system/phone}}"
navButtonPress="onNavButtonPressed"

We’ve also added the name of a handler function that will navigate back to the
master list; we’ll will implement this function in Detail.controller.js like this:

onNavButtonPressed : function(){
this.oRouter.navTo("master");
}

If you click on the Back button in the top left of the detail view now, you’re
returned to the master list. However, one slightly unfortunate detail is that the
last item selected is still selected in the master list. This makes no sense, because
we don’t have something that reflects the selection on the detail side of the
screen. We can suppress this selection in the list by using a different listMode.
We now have listMode set to SingleSelectMaster. We’ll also use another expres-
sion to set listMode to None on mobile devices, like so:

mode="{= ${device>/system/phone} ? 'None' : 'SingleSelectMaster'}"

This change will make some more changes necessary, because the listMode set to
None will also result in the selectionChange event no longer being thrown. So far,
we’ve used this event to handle clicks on list items. Now, we’ll have to add a
press handler for individual list items instead. It’s possible to handle clicks on
mobile devices differently from clicks on desktop devices by simply defining two
handler functions. However, in the case, the same function will work for both
types of devices. We also have to dynamically set the type of the list items to
Active on mobile devices to make the items clickable, like so:

type="{= ${device>/system/phone} ? 'Active' : 'Inactive'}"
press="onItemPressed"

We need to make one more adaption to the handler function. Because the selec-
tionChange event returns the list and the item as a parameter and the press event
on an individual item returns itself as the source of the event, we’ll have to cover
both cases in the handler:

Application Patterns and Examples8

378

var oItem = oEvent.getParameter("listItem") || oEvent.getSource();

One last feature we want to handle differently on mobile devices is the way the
user can refresh the master list. For desktop devices, we already display a Refresh

button in the Search field, but for touch-supported devices, we should to use a
pull-to-refresh feature to handle refreshing the master list. This feature is fairly
simple to add. On sap.m.SearchField, we can add a dynamic expression that will
set the showRefreshButton property for us:

showRefreshButton="{= !${device>/support/touch} }"

We’ll also add a sap.m.PullToRefresh control to the content aggregation of the
semantic page. Again, we’ll let a dynamic expression handle the visibility for us:

<PullToRefresh id="pullToRefresh"
refresh="onRefresh"
visible="{device>/support/touch}"/>

To make sap.m.PullToRefresh work, we have to do two more things:

1. Hide the control once the refresh is over (ideally in the updateFinished event
on the list), like so:

this.byId("pullToRefresh").hide();

2. Perform the actual refresh on the list binding (in the refresh event handler),
like so:

this.oList.getBinding("items").refresh();

Note

sap.m.PullToRefresh has to be used as the first element in the content aggregation of
the first sap.m.ScrollContainer on the page. Otherwise, you might experience severe
rendering issues that might break the usability of your application completely.

The control also could be used on nontouch devices, resulting in the display of a click-
able Refresh area.

8.3 Additional Application Features

Independent from any floorplan, the apps within certain layouts generally have
some qualities or features that are always needed. Application users take most of
these features for granted. We have to confess that if we put ourselves into the

Additional Application Features 8.3

379

position of application users—which we are, in fact, on a daily basis—we would
expect, for example, to be notified if something goes wrong in an app. Many of us
would associate this with some technical error—for example, when writing data
to the backend—whereas others may first think about some deep link that could
not be resolved as expected. Error handling and “not found” handling only form
the tip of the iceberg.

However, there is much more to be considered in application development in
general—not only ensuring that applications work as expected from a technical
perspective, but also ensuring that they provide the user with the best possible
support to fulfill daily routines.

In the following sections, we provide a quick rundown of technical and user
experience-related shared application qualities and how SAPUI5 offers support in
their implementation.

8.3.1 Not Found Handling

Error code 404 may be the only status code that even casual users understand.
Many websites and web apps tend to spit out this technical information on the
screen whenever the page a user wants to access is not available. Although there
has been a trend in recent years to enrich these “not found” pages with funny
designs, the numeric code seems never to disappear.

In this section, you’ll learn about “not found” handling within the master-detail
floorplan. Since version 1.28, SAPUI5 has provided a page to be displayed in not
found cases, which is sap.m.MessagePage; it should be used as a single control in
a view, like so:

<mvc:View xmlns:mvc="sap.ui.core.mvc" xmlns="sap.m">
<MessagePage/>
</mvc:View>

Figure 8.13 shows the default display of this page.

Admittedly, its design is very business-like, but it’s fit for its purpose. We’ll learn
how to tweak it a bit later, but first, let’s look at some use cases.

On websites, you will typically have only one notFound page that handles all links
that can’t be resolved. When using business applications, more precise feedback
for the user is desirable, and with a well-defined, single-purpose application, it’s

Application Patterns and Examples8

380

easy to narrow down cases to be handled. We’ll look at how to do so in the fol-
lowing subsections.

Figure 8.13 sap.m.MessagePage with Default Settings

BusinessPartnerNotFound Scenario

In routing with SAPUI5, you can define routes that have specific patterns that
should be reflected in the URL. That’s what we call a deep link.

Because these patterns often hold the ID that matches a specific data set that could
later be used to bind it to a view (for a master-detail example, see Listing 8.24),
we have to handle all those cases in which individual IDs can’t be found in the
database. The aim is to show a not found page that gives some details about what
went wrong and offers a link back to the application in a valid state whenever the
user enters the application with a deep link to a business partner that does not
exist.

{
"name": "detail",
"pattern": "BusinessPartner/{BusinessPartnerID}",
"greedy": false,
"target": ["master", "detail"]}

Listing 8.24 Route with ID in Pattern

Additional Application Features 8.3

381

Now, let’s define a target that should be displayed when a specific business partner
can’t be found. We’ll need a new view to handle these cases (see Listing 8.25). We’ll
reference a new view in the route and call it BusinessPartnerNotFound.view.xml.

"businessPartnerNotFound": {
"viewName": "BusinessPartnerNotFound",
"controlId": "rootControl",
"controlAggregation": "detailPages"

},

Listing 8.25 Target for ObjectNotFound Scenarios

We’ll create this view accordingly and also customize sap.m.MessagePage a little
to create a nice display (see Listing 8.26). Because the view will be displayed in
the detailPages aggregation, we again have to make sure that navigation back is
possible on mobile devices and must use an expression to show a button for such
navigation.

<mvc:View
controllerName="my.app.controller.Main"
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m">
<MessagePage
icon="sap-icon://doctor"
navButtonPress="backToHome"
showNavButton="{device>/system/phone}"
text="BusinessPartner not found"
title="Something went wrong">
<customDescription>

<Link text="click here to get back to main page"
press="backToHome"/>

</customDescription>
</MessagePage>

</mvc:View>

Listing 8.26 BusinessPartnerNotFound.view.xml

We’ll simplify a bit by using the existing Main.controller.js file to implement the
handler functions for not found cases. In a real application, it might make sense to
have an shared controller for these cases. For the back navigation, we’ll use the
same logic as in Section 8.2.2. To achieve this behavior and the resulting display,
shown in Figure 8.14, we have to add some logic to Detail.controller.js, in the
DetailRouteHit function. We’ll use events of the binding to implement the back
navigation and extend the call of bindElement with the change event. We’ll then

Application Patterns and Examples8

382

display the BusinessPartnerNotFound target whenever no bindingContext is set
on the view, indicating some error, as in Listing 8.27.

this.getView().bindElement({
path: "/" + sObjectPath,
events: {

change: function(){
var oView = this.getView();
if(!oView.getElementBinding().getBoundContext())){
this.oRouter.getTargets().display("businessPartnerNotFound");
}

}.bind(this)
}

});

Listing 8.27 Handling Business Partner Not Found Scenario

Figure 8.14 Business Partner Not Found Display

Additional Application Features 8.3

383

catchAll Scenario

The second situation we have to handle is generic not found cases, also referred
to as catchAll cases. These are cases in which the user has tried to enter the appli-
cation with a URL that does not match any pattern defined in the routing config-
uration. Luckily, this scenario is easier to implement than the previous scenario
because it’s not dependent on the application data from the backend. SAPUI5
routing provides a generic bypassed route for catchAll. The target(s) that should
be displayed in all these cases can simply be handed over to the config.bypassed
property in the routing configuration, as in Listing 8.28. The target that will be
declared for bypassed has to be created as well. This can be done as in Listing
8.25, but we recommend using a different target and view for generic cases. This
will help the user differentiate between the two situations.

"routing": {
"config": {
"bypassed": {

"target": ["notFound", "master"]
}

}
}

Listing 8.28 Bypassed Configuration for Generic notFound Cases

Finally, we need to handle existing selections on the master list. Imagine some-
one manipulating the hash manually to something that is not defined in any pat-
tern. The correct not found page will be displayed, but the selected item remains
the same. To handle this deselection, attach to the bypassed event routing pro-
vided, and release the selection on the master list (see Listing 8.29). The result
should then be as shown in Figure 8.15.

this.oRouter.attachEvent("bypassed", function() {
this.oList.removeSelections(true);

}.bind(this));

Listing 8.29 Handling of List Selections for Bypassed Cases

Application Patterns and Examples8

384

Figure 8.15 Customized sap.m.MessagePage for catchAll Cases

8.3.2 Error Handling

You’ve seen that not found cases and error cases have to be differentiated, and
now we’ll draw a clear line between them. In error cases, a technical error occurs
that leads to the application no longer being usable. This also means that the noti-
fication for the user should occur in a more disruptive way. Best practice would
be to make sure there is a clear indication that they should reload the application.
Therefore, we will use a modal dialog for notifying the user. SAPUI5 provides
sap.m.MessageBox as a convenient API that wraps sap.m.Dialog and additional

Additional Application Features 8.3

385

controls. We’ll handle two cases in the following subsections, but both will be
displayed in the same sap.m.MessageBox. Therefore, we’ll use a function to bring
up the notification and reuse it for both cases (see Listing 8.30). We’ll implement
this function in the Component.js file of our application. Please note that there
may be more than one error raised by the application. To ensure that there will be
only one sap.m.MessageBox displayed, we’ll use a simple flag that indicates that a
notification is already present.

_showServiceError: function(sDetails) {
if (this._bMessageOpen) {
return;

}
this._bMessageOpen = true;
MessageBox.error("An Error Occurred",
{

details: sDetails,
actions: [MessageBox.Action.CLOSE],
onClose: function() {
this._bMessageOpen = false;

}.bind(this)
}

);
}

Listing 8.30 Generic Error Notification Function

Error Response Specification

In SAP NetWeaver and SAP Gateway OData services, there is an SAP-specific response
protocol that ensures that all server messages are returned with predictable formatting.
This function is handled by sap.ui.model.odata.ODataMessageParser, and all mes-
sages can then be accessed through sap.ui.core.message.MessageManager. Because
these functions currently cover validation-related messages only, generic handling for
error messages cannot be described at this point in time; such handling might vary
based on your service implementation and other factors.

We’ll also disable the automatic closing of dialogs on the router target handler,
which could be controversial. However, because we will display dialogs and spe-
cific pages, and because it’s not possible to synchronize the two events (routing
and data requests), disabling automatic dialog closing is a valid option for most of
use cases. Disable automatic dialog closing as follows:

this.getRouter().getTargetHandler().setCloseDialogs(false);

Application Patterns and Examples8

386

Handling Metadata Errors

For SAPUI5 applications built on top of OData services, there will always be cases
in which a metadata call did not result in a success. Let’s handle such cases now.
We can simply attach to the metadataFailed event provided by sap.ui.model.
V2.ODataModel and display a message box showing details. Let’s also display the
generic not found page:

this.getModel().attachEvent("metadataFailed", function(oEvent) {
this._showServiceError(oEvent.getParameters().getResponse);
this.getRouter().getTargets().display("notFound");
}.bind(this));

Handling Service Errors

For service errors, we’ll need some more logic, although the overall pattern
remains the same. We’ll again attach to a model event—in this case, the request-
Failed event. However, because this event is thrown for cases we already han-
dled using the not found implementation, we’ll have to exclude such cases.
Therefore, we’ll make the following assumptions based on the error code the
event provides as part of the parameters: All 404 cases (not found) and all 400
cases (parsing error on the server) will not be handled by the error handling,
because they’re already covered by the not found handling, resulting in the han-
dler function in Listing 8.31.

this.getModel().attachRequestFailed(function(oEvent) {
var oParams = oEvent.getParameters();
if (oParams.response.statusCode !== "400" &&
oParams.response.statusCode !== "404") {

this.getRouter().getTargetHandler().setCloseDialogs(false);
this.getRouter().getTargets().display("notFound");
this._showServiceError(oParams.response);

}
}, this);

Listing 8.31 Handling Request Errors

8.3.3 Busy Handling

As a user, busy handling gives you the feeling that the hard work is done for you
by showing a busy indicator. Busy handling is not only the real work an applica-
tion is doing but also the responses you get in general regarding the state your
application is currently in. We bet there are more apps out there that fake actual

Additional Application Features 8.3

387

busy time just to display nice busy animations than you might imagine. The rea-
son for this may be that the screen flickers if the actual request only takes milli-
seconds, and the busy indicator will be shown and hidden again instantly. In
SAPUI5, there is a default busyIndicatorDelay property on all controls that
defaults to 500 milliseconds; we should keep it that way instead of delaying the
response artificially.

Busy handling is important for the perceived performance of an application, espe-
cially at startup. It’s good to assume your user has a slow Internet connection. A
busy indicator showing the user that there is some work being done behind the
scenes will keep him patient.

Handling the Metadata Call

As for error handling, we can differentiate two cases or, more precisely for this
section, two phases of loading data. First, the OData metadata.xml file is
requested. During this time, the application is not ready to work at all. We’ll
therefore set the outer view (Main.view.xml) as busy during this phase. The easi-
est way to do so is to set busy as the default behavior in the XML (busy="true")
for our root control, and later, when the metadata is loaded or loading failed, sim-
ply call setBusy(false), as in Listing 8.32.

// handling the good case
this.getOwnerComponent().getModel().metadataLoaded()
.then(function() {
oRootControl.setBusy(false);

});
// handling the bad case
this.getOwnerComponent().getModel().attachMetadataFailed(
function() {
oRootControl.setBusy(false);

});

Listing 8.32 Metadata Request: Busy Handling

Handling Calls on Individual Controls

While the metadata call is happening, individual requests are triggered only once
at application startup, but binding refresh will occur multiple. Therefore, we
should ensure that busy handling for these cases is in place.

For sap.m.List and sap.m.Table, busy handling is already implemented as a
default, so we don’t have to do anything for these controls. For all other controls,

Application Patterns and Examples8

388

we should use the appropriate events to manage busy handling. However, indi-
vidual requests are triggered only once at application startup, but binding refresh
will occur multiple. One rule of thumb for determining this information is to
have all controls bound against the same entity. If we look at the master-detail
example, this entity would be the entire detail page in the current state. However,
in real applications, you would most likely fill up the detail screen and may even
expand the displayed data to a related entity in the service. Possibilities for the
service we’ve been using in this example are shown in Figure 8.16. Now, let’s
assume we want to display a list of sales orders next to the business partner
details on the details page. In this case, we would handle the busy state for this
area within the screen separately from the sap.m.ObjectHeader element in which
we’re displaying the business partner details currently.

Figure 8.16 Related Entities to Business Partners

For handling the busy state, technically, we’d use binding events, as previously
stated. The most appropriate choice would be to set the control to busy once data
is requested and release the busy state once data is received by the control. An
example implementation for this setup can be found in Listing 8.33. Here, we’ve
implement the functions in the controller for the view that declares the controls
and added the handler functions to the controls at declaration in XML. The actual
implementation for this minimal example in master-detail is in Listing 8.34.

onDataRequested: function(oEvent) {
oEvent.getSource().setBusy(true);

},
onDataReceived: function(oEvent) {
oEvent.getSource().setBusy(false);

}

Listing 8.33 Generic Busy Handling

this.getView().bindElement({
path: "/" + sObjectPath,

Additional Application Features 8.3

389

events: {
change: function(){

if(!this.getView().getElementBinding().getBoundContext()){
this.oRouter.getTargets().display("businessPartnerNotFo

und");
}

}.bind(this),
dataRequested: function() {
this.getView().setBusy(true);

},
dataReceived: function() {

this.getView().setBusy(false);
}

}
});

Listing 8.34 Master Detail Busy Handling: Minimal Example

8.3.4 Letterboxing

Letterboxing is a term often associated with filming to ensure the original aspect
ratio when transferring video material across screens with different ratios. This is
achieved by using black bars, mostly displayed on the top and bottom of the
screen to narrow the actual screen and fill the spaces that aren’t covered by the
film itself.

In application development, letterboxing has become a good practice for all cases
when content is limited. Think of a simple master-detail application that only dis-
plays some details for a selected item. In such a case, it’s much easier to ensure
good design for the content on the screen if you can rely on a fixed content area,
even on big screens. In addition, your application users will gain a more focused
view.

The application examples we’ve presented so far have always run in sap.m.Shell,
which uses a letterboxed display for applications to center the content by default.
However, letterboxing can be disabled, because it’s reflected in a property called
appWidthLimited in the shell. This letterbox option provides a width of 1,280 px
reserved for the content, and the rest of the screen displays the default applica-
tion background. This background can be customized based on either the theme
used or settings in the shell itself.

In order to change the behavior as shown in Figure 8.17, configure the properties
on instantiation in sap.m.Shell, as shown in Listing 8.35.

Application Patterns and Examples8

390

Figure 8.17 Letterboxing and Custom Background on sap.m.Shell

Unfortunately, there is no Explored app example for the control. Additional
options include backgroundImage, backgroundRepeat, and backgroundOpacity.

// not letterboxed
new sap.m.Shell({
appWidthLimited : false,
app: new sap.ui.core.ComponentContainer({
height : "100%",
name : "myCompany.myApp"

})
}).placeAt("content");

// custom background
new sap.m.Shell({
backgroundColor : "rgb(0,153,204)",
app: new sap.ui.core.ComponentContainer({
height : "100%",
name : "myCompany.myApp"

})
}).placeAt("content");

Listing 8.35 Appearance Configuration for sap.m.Shell

8.3.5 Headers and Footers

Headers and footers generally provide access to certain functionality for applica-
tions users. This functionality can impact entire content areas. For example, if
your application view contains a form, the button to save the form content to the
backend should be displayed in the footer. This also ensures applications have
focused content areas, so you’re not tempted to overload your screens.

In SAPUI5, headers and footers are mainly part of sap.m.Page or other related
controls. In this chapter, we’ve mainly used pages from sap.m.semantic, but we
haven’t yet looked into the main benefit they deliver: predefined buttons, so-
called actions that implement design guidelines like predefined icons, texts, tool-
tips, and even overflow handling (also clustering on the screen according to their

Custom Background Original Background Not Letterboxed

Additional Application Features 8.3

391

distinct usage). For example, the Back navigation button is left in the header, and
all actions related to collaboration (e.g., SendEmailAction) are hidden in an over-
flow and display upon clicking the Overflow Indicator button in a popover.
Certain actions like PositiveAction are displayed in the app, making use of
semantic colors. This highly improves development routines when designing
new screens and ensures minimal distraction from implementing underlying
functionality. Each action has a press handler that points to the controller for the
view and fires the matching function there, just like it’s always handled in
SAPUI5.

In addition, you can add custom content in the headers and footers of the seman-
tic pages, because they offer the customHeaderContent and customFooterContent
aggregations and a subHeader aggregation for ambitious projects. There is even a
customShareMenuContent aggregation that allows you to add custom actions into
the popover described previously.

Let’s now look at a sample sap.m.semantic.FullscreenPage installation with
some actions and custom content; this page could be used for a simple shopping
cart checkout page (Figure 8.18).

Figure 8.18 Header and Footer Options with Semantic Page

Application Patterns and Examples8

392

The XML to achieve this setup is pretty simple. You might have to get used to the
high number of aggregations that are used here, making the API a little superflu-
ous overall, but once you’ve adjusted to it, it works very well (see Listing 8.36).

<mvc:View
xmlns:html=http://www.w3.org/1999/xhtml
xmlns:mvc="sap.ui.core.mvc"
xmlns="sap.m"
xmlns:semantic="sap.m.semantic">
<semantic:FullscreenPage

title="Shopping Cart Checkout"
showNavButton="true">
<semantic:subHeader>

<Toolbar>
<ToolbarSpacer/>

<Text text="6 Items ready for checkout"/>
<ToolbarSpacer/>

</Toolbar>
</semantic:subHeader>
<semantic:sendEmailAction>

<semantic:SendEmailAction press="onSendMailPressed"/>
</semantic:sendEmailAction>
<semantic:printAction>

<semantic:PrintAction press="onPrintPressed"/>
</semantic:printAction>
<semantic:positiveAction>

<semantic:PositiveAction text="Checkout Cart" press=
"onCheckoutPressed"/>

</semantic:positiveAction>
<semantic:negativeAction>

<semantic:NegativeAction text="Discart Cart" press=
"onDiscartPressed"/>

</semantic:negativeAction>
<semantic:customShareMenuContent>

<OverflowToolbarButton icon="sap-icon://message-popup" text=
"send IM" press="onPress"/>

</semantic:customShareMenuContent>
</semantic:FullscreenPage>

</mvc:View>

Listing 8.36 XML Declaration for Header and Footer Options with Semantic Page

The additional application features described in the current section allow you to
control errors and wait times and to implement letterboxing and adjust headers
and footers.

In the next section, we’ll look at how to run apps in SAP Fiori Launchpad.

Running Apps in SAP Fiori Launchpad 8.4

393

8.4 Running Apps in SAP Fiori Launchpad

In this chapter, you’ve learned that building application families that distribute
functions across single-purpose-based apps is better than building one large,
monolithic, multipurpose app. We have successfully built at least the outline of
two small, single-purpose applications.

SAP Fiori Launchpad offers user management, application provisioning, naviga-
tion and integration of new applications, and maybe even third-party technolo-
gies. The launchpad’s main purpose is to provide access to several applications
and application types via one simple user interface. What sounds like a link list at
first is actually a challenge not only from a technological standpoint but also from
a user experience perspective. Just think of the challenge to support older tech-
nologies like Web GUI transactions as well as modern web applications like the
ones we build with SAPUI5.

For our SAPUI5 applications, SAP Fiori Launchpad offers tight integration,
because SAP Fiori Launchpad is itself based on SAPUI5 technology. SAP Fiori
Launchpad offers a lot of functionality, not only for application users but also for
application developers. Cross-application navigation from one application to
another and the ability to programmatically create bookmarks that reflect a cer-
tain application state are just two features that come to mind. It soon becomes
obvious that integration of at least a sandboxed SAP Fiori Launchpad early on
during implementation will pay off later.

In this section, we’ll start with the implementation of a simple standalone SAP
Fiori Launchpad sandbox demo application and then extend it to include more
than one application together in one sandboxed SAP Fiori Launchpad. From
there, we’ll add simple cross-application navigation using SAP Fiori Launchpad’s
API. Finally, we’ll try out productive usage when we deploy our app to SAP HCP
via the SAP Web IDE.

8.4.1 SAP Fiori Launchpad Sandbox

SAP Fiori Launchpad, when used productively, has several backend dependencies
that can’t be simulated in the context of single app development easily. That’s
why an SAP Fiori Launchpad sandbox is available that offers the most widely used
features with a minimal footprint but still allows for testing during development.
The display can be seen in Figure 8.19.

Application Patterns and Examples8

394

Figure 8.19 Generic SAP Fiori Launchpad Sandbox UI

There are several options to run your application in an SAP Fiori Launchpad sand-
box. It’s important to understand that within SAP Fiori Launchpad, you will not
need a dedicated HTML file per application anymore; you’ll simply register your
application to the sandbox itself.

In this section, we’ll look at running an application in a sandbox SAP Fiori
Launchpad via the SAP Web IDE and in a custom-built sandbox SAP Fiori Launch-
pad.

SAP Fiori Launchpad Sandbox Runner in SAP Web IDE

The most convenient option to run your application in the SAP Fiori Launchpad
sandbox is to use the built-in component runner provided by the SAP Web IDE.
This feature offers a simple SAP Fiori Launchpad sandbox in which you can

Running Apps in SAP Fiori Launchpad 8.4

395

currently run one application component at a time. To do so, right-click on Com-

ponent.js, and the context menu opens as shown in Figure 8.20; then select
Run � Run as � SAP Fiori Component on Sandbox, and your component will be
launched in a minimal sandbox, as shown Figure 8.19. Here, you can test that the
application still runs within SAP Fiori Launchpad. The scope of this option is still
limited, and integrations such as cross-application navigation are not supported.

Figure 8.20 Usage of SAP Fiori Launchpad Sandbox Component Runner

Custom-Built SAP Fiori Launchpad Sandbox: Experimental

To test cross-application features in the SAP Web IDE, you can bootstrap your
own sandbox. Note that this approach should be used for testing purposes only;
any productive usage is not encouraged. However, this is a simple way to avoid
deploying every change. Be sure to test early in the process directly in the work-
space.

To do create a custom sandbox, we’ll first create a new folder in our workspace.
In this folder, we’ll add a new HTLM file called FLPSandbox.html. In this file,
we’ll place a script block that will handle the SAPUI5 bootstrap as we did for all
runnable files before (see Listing 8.37). In addition, we’ll add some configuration
for the SAP Fiori Launchpad sandbox and load an additional bootstrap script. The
only important point to note here is to pay attention to the application’s property
block within the configuration. We’ll add more here to register the application
components to the sandbox in the next step.

<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="X-UA-Compatible" content="IE=edge" />

Application Patterns and Examples8

396

<meta charset="UTF-8">
<title>FLP Sandbox</title>
<script>

window["sap-ushell-config"] = {
defaultRenderer : "fiori2",
renderers: {
fiori2: {
componentData: {
config: {
search: "hidden"

}
}

}
},
applications: {};

</script>

<script src="../test-resources/sap/ushell/bootstrap/sandbox.js" id=
"sap-ushell-bootstrap"></script>
<!-- Bootstrap the UI5 core library -->
<script id="sap-ui-bootstrap"
src="../../resources/sap-ui-core.js"
data-sap-ui-libs="sap.m, sap.ushell, sap.collaboration"
data-sap-ui-theme="sap_bluecrystal"
data-sap-ui-compatVersion="edge">

</script>

<script>
sap.ui.getCore().attachInit(function() {
// initialize the ushell sandbox component
sap.ushell.Container.createRenderer().placeAt("content");
});

</script>
</head>

<body class="sapUiBody" id="content"/>
</html>

Listing 8.37 SAP Fiori Launchpad Sandbox Initialization

In the same folder, we’ll create a new folder for every app we want to run within
the custom SAP Fiori Launchpad sandbox and give each one a meaningful name.
Into these folders, we’ll copy the respective webapp folders of the applications we
want to run—for example, for the Sales Orders and Business Partners applications
we created in Section 8.2.

Let’s now register our applications to the sandbox. To do so, we’ll add a new key
referencing an object for every application to the applications settings block

Running Apps in SAP Fiori Launchpad 8.4

397

you’ve seen before. This key serves as the hash to be resolved by the SAP Fiori
Launchpad on navigation later. The settings for each application should be easy to
understand: We need to give the component a namespace, a type, and a relative
URL for where to find the component. The title can be chosen freely and will later
be displayed on a tile. The coding to add the Sales Orders and Business Partners
applications is found in Listing 8.38.

"SalesOrder-display": {
additionalInformation: "SAPUI5.Component=sales.order.app",
applicationType: "URL",
url: "./SalesOrders/webapp/",
title: "Sales Orders"

},
"BusinessPartner-display": {
additionalInformation: "SAPUI5.Component=business.partner.app",
applicationType: "URL",
url: "./BusinessPartners/webapp/",
title: "Business Partners"

}

Listing 8.38 Registering Applications to SAP Fiori Launchpad Sandbox

If you run the registered applications now, they should look like Figure 8.21. You
can test the application, and if you click on the individual tiles, the applications
should open and be displayed as we left them.

Figure 8.21 Custom SAP Fiori Launchpad Sandbox

Application Patterns and Examples8

398

8.4.2 Cross-Application Navigation

With the custom-built SAP Fiori Launchpad sandbox, we can now test the cross-
application navigation function as a simple feature example for what the SAP
Fiori Launchpad generally provides. When someone clicks on the link to one
business partner in the Sales Orders application worklist screen, the Business
Partner application should open with the chosen business partner selected.

Let’s first look at the Sales Order application that triggers the navigation. For this,
we’ll add a click handler to the link on the worklist table like so:

<Link text="{CustomerName}" press="onCustomerPressed"/>

The matching event handler (see Listing 8.39) in Worklist.controller.js should
then make use of the navigation service provided by SAP Fiori Launchpad and call
the toExternal function with some parameters. We’ll use the settings we just
made in Listing 8.38 (BusinessPartner-display) to identify the application
during navigation. We’ll also hand over the ID of the business partner we want to
navigate to as an additional parameter.

To retrieve the ID, we have to think outside the box a little. Because we can’t use
the ID of the SalesOrder we’re currently using, we have to retrieve the Business-
PartnerID to properly handle the navigation on the other app. Therefore, we’ll
add an expand parameter to the binding of the table—parameters : { expand :
'ToBusinessPartner'}—and add the ID of the BusinessPartner as custom data in
the link itself—data:id="{ToBusinessPartner/BusinessPartnerID}. Then, we
can retrieve the ID in the handler directly from the element itself (see Listing
8.39).

onCustomerPressed: function(oEvent) {
var BusinessParnterId = oEvent.getSource().data().id;
var oCrossAppNavigator =
sap.ushell.Container.getService("CrossApplicationNavigation");
oCrossAppNavigator.toExternal({
target: {

semanticObject: "BusinessPartner",
action: "display",
params: {
BusinessPartner : BusinessParnterId

}
}

});
}

Listing 8.39 Cross-Application Navigation Handler

Running Apps in SAP Fiori Launchpad 8.4

399

If you click on the Business Partner link in the Sales Order application now, nav-
igation to the Business Partners application is triggered and it hits the master
route. In the URL, the ID is visible as a parameter. We now only have to handle
the selection based on the parameter we handed over on the other side. To do so,
we’ll retrieve the ID as startupParamters on the instance of the application com-
ponent.

We’ll add additional logic to the resolving promise in the handler of the master
route that then checks for the existence of startup parameters and navigates to the
matching detail if startup parameters are available, as in Listing 8.40.

var aBusinessPartner = this.getOwnerComponent().getComponentData().
startupParameters.BusinessPartner;

var sId;
if (aBusinessPartner) {

sId = aBusinessPartner[0];
} else {

sId = this.oList.getItems().getBindingContext().
getProperty("BusinessPartnerID");

}
this.selectAnItem(sId);
this.oRouter.navTo("detail", {
BusinessPartnerID: sId

});

Listing 8.40 Handling Cross-Application Navigation in Target

8.4.3 Register and Run in Production

With all the pieces in place and working in the sandbox, we can deploy the two
applications straight out of the SAP Web IDE into SAP HCP. However, first we
have to locate each application in the root of our workspace again. Use the con-
text menu triggered by right-clicking on the application root folder and select
Deploy � Deploy to HANA Cloud Platform. First, we’ll deploy the Business
Partner application. In the popup (see Figure 8.22), you can set some details and
also see the application status and whether it’s already deployed. We do not need
to make any changes here; simply click Deploy. For more details on deploying
and managing application versions, see Appendix D.

After a while, you’ll see a success notification with a prominent button marked
Register to SAP Fiori Launchpad. Click on this button, and a dialog opens in
which you can perform all the needed steps to set up your application in SAP
Fiori Launchpad.

Application Patterns and Examples8

400

Figure 8.22 Application Deployment on SAP HCP

On the first screen (see Figure 8.23), we will mainly set up the navigation to this
application within the SAP Fiori Launchpad in the Intent settings; we defined
these settings in Listing 8.39 when we set up the cross application. We have to
use the same settings now again for the Semantic Object and the Action. Then,
click on Next.

Figure 8.23 Set Up Navigation within SAP Fiori Launchpad

Running Apps in SAP Fiori Launchpad 8.4

401

On the next screen (see Figure 8.24), we can set up the appearance of the tile for
this application in the SAP Fiori Launchpad. You can choose between two differ-
ent tile types (static and dynamic), define an icon, and set a title and subtitle to be
displayed. We’ll just change the title here and delete the placeholder for the sub-
title. Again, proceed by clicking on Next.

Figure 8.24 Set Up Tile Appearance within SAP Fiori Launchpad

In the last step (see Figure 8.25), we’ll finally assign this new tile that represents
the application and allows the user to open it to our launchpad. We can only
cover some basics here, so we don’t want to get into the details of these settings.
SAP Fiori Launchpad as an entry point to applications uses roles to provide
access, while the allocation of applications is done via catalogs. This means that a
business role like—for example, for procurement—has one or many catalogues
assigned. Each of these catalogues consists of a set of applications. An administra-
tor can then assign catalogues to a role, and each employee is assigned to a role as
well. This then defines what applications are to be part of their SAP Fiori Launch-
pad. Let’s keep the default settings and click on Next.

Figure 8.25 Assign Application to the SAP Fiori Launchpad

Application Patterns and Examples8

402

We’ll now perform the same tasks for the Sales Orders application. Based on your
settings, the final result should look like Figure 8.26. If all intents are set to match
our cross-application navigation settings, it should now be possible to perform
the navigation between the two apps as implemented in Section 8.4.2.

Figure 8.26 Application in SAP Fiori Launchpad at SAP HCP

8.5 SAP Fiori Reference Apps

So far, we’ve explored application development from different angles: In Section
8.2, we created application skeletons, and we refined them in Section 8.3. How-
ever, thus far we have not built full-blown applications but have only gained an
understanding of the different building blocks that matter in application develop-
ment.

In this section, we want to look at the SAP Fiori reference applications that can be
evaluated directly in the SAP Web IDE. Specifically, we’ll look at the Manage
Products and Shop apps.

All applications are built using best practices for SAP Fiori development. This
means they are component-based, come with an SAP Fiori sandbox set up, and
make use of controls from the sap.m library. However, note that these application
are built on SAPUI5 version 1.28, and therefore, for example, manifest.json isn’t
used. For the full list of applications available, see Figure 8.27. You can open this

SAP Fiori Reference Apps 8.5

403

wizard by clicking File in the menu bar, then New, and then Project from Sam-

ple Application.

Figure 8.27 SAP Fiori Reference Apps in SAP Web IDE

8.5.1 Manage Products App

The Manage Products application (see Figure 8.28) uses the master-detail floorplan.
The master list is implemented as in Section 8.2.2, but comes with additional
filtering, sorting, and grouping functionality. In the detail content area are
sap.m.ObjectHeader and two sap.m.Panel controls displaying different types of
data within static forms related to the selected item. Footer buttons are added
that allow you to switch from detail view to edit mode. You also can delete or
copy any selected item.

The Manage Products application is a good example of how to build an applica-
tion designed to change, add, or delete business objects. It makes good use of the
master-detail floorplan; you can quickly navigate between the different products.
In addition, the display on the details side is highly sorted and not overloaded.

From a coding perspective, you can see that several helper files are needed, most
of them dealing with CRUD operations. Because the coding is extensively docu-
mented using inline comments, we won’t go into details here.

Application Patterns and Examples8

404

Figure 8.28 Manage Products Reference Application

8.5.2 Shop App

The SAP Fiori reference Shop application is built on top of the worklist floorplan.
The scenario that is implemented here is a simple Shop application where a user
can browse different items and add them to a shopping cart. In Figure 8.29, you
can see that it looks familiar to what we created in Section 8.2.1.

In the worklist, an action is implemented where the user can add items to their
shopping cart straight out of the item list without browsing any details. One addi-
tional control that is used here to refine the items to be displayed is a
sap.ui.comp.smartfilterbar.SmartFilterBar. We will provide more details
about the capabilities of smart controls in SAPUI5 in Chapter 9.

The navigation in the Shop application has two additional views displaying the
items in the shopping cart as well a view that is used to place an order once the
user is ready to checkout.

Summary 8.6

405

Figure 8.29 Shop Reference Application

It is interesting to see how items are to be added to this cart. One might assume
that there is an additional model involved here. However, there is actually a func-
tion import on the OData model being used in this scenario. We have already
learned about this OData feature in Chapter 7. Here, OData can be used for add-
ing items to a shopping cart as well as for placing an order.

8.6 Summary

In this chapter, you’ve seen the complexity of application development first-
hand. SAPUI5 helps to build applications, and SAP Fiori Launchpad launches
applications into an environment that eases their orchestration and provisioning.
Beyond just looking at the technical aspects of application patterns, it’s important
not to forget the needs of your application users. Therefore, within this chapter
we spent some time on the general layout of applications, explained how to make
use of existing application floorplans, reviewed user experience best practices,
and outlined some of the most important nonfunctional application capabilities

Application Patterns and Examples8

406

every user expects. During this process, you built two application skeletons and
learned how all the technical concepts explained in the previous chapters can be
used in combination.

With this chapter, we’ve concluded the chapters on the pure basics in SAPUI5; in
the next chapter, we’ll look into more advanced concepts that build on top of
what you’ve learned so far.

7

Contents

Acknowledgments .. 15
Preface ... 17

PART I Introduction

1 SAPUI5 at a Glance ... 23

1.1 What It Is and Where to Get It .. 23
1.2 History and Evolution .. 24
1.3 Features .. 25

1.3.1 SAPUI5 Demo Kit ... 25
1.3.2 Model-View-Controller in SAPUI5 29
1.3.3 Cross-Browser Compatibility .. 29
1.3.4 Theming ... 31
1.3.5 Localization .. 32
1.3.6 Accessibility ... 33
1.3.7 Open Source in SAPUI5 .. 33

1.4 Use Cases .. 34
1.5 Product Comparison .. 37
1.6 SAPUI5 and OpenUI5 .. 38
1.7 Summary ... 39

2 Architecture ... 41

2.1 The Libraries .. 41
2.2 MVC Overview .. 44

2.2.1 MVC Interaction .. 44
2.2.2 View Instantiation and the Controller Lifecycle 45

2.3 Architecture of a Typical SAPUI5 Application 46
2.4 Class Hierarchy .. 49

2.4.1 Inheritance for Controls .. 50
2.4.2 Inheritance for Models ... 52

2.5 Summary ... 55

8

Contents

PART II SAPUI5 In Action—Building Apps

3 Hello, SAPUI5 World ... 59

3.1 Coding Guidelines ... 59
3.1.1 Global Variables ... 60
3.1.2 Private Object Members ... 61
3.1.3 Code Formatting .. 61
3.1.4 Variable Naming Conventions .. 62

3.2 Setup ... 63
3.2.1 Setting Up Your HTML Start Page 63
3.2.2 Bootstrapping SAPUI5 .. 64

3.3 Adding a Simple Control .. 66
3.4 Defining an Event Handler ... 68

3.4.1 Simple Event Handler ... 68
3.4.2 Using Event Information within an Event Handler 71

3.5 Complex Controls .. 73
3.5.1 Aggregations .. 73
3.5.2 Associations ... 75

3.6 Controls API .. 77
3.7 Layouts .. 78
3.8 Summary ... 84

4 Building MVC Applications ... 85

4.1 Models, Views, and Controllers ... 85
4.2 Structure ... 86

4.2.1 Application Overview ... 88
4.2.2 Building the First Page .. 90
4.2.3 Table Coding .. 94

4.3 Building a Simple View .. 95
4.3.1 Namespaces and Resource Path 97
4.3.2 Creating the Master JavaScript View 98
4.3.3 Creating the Master Controller ... 100
4.3.4 Creating a Detail View and Controller 104

4.4 View Types .. 109
4.4.1 XML Views ... 116
4.4.2 Transforming JavaScript Views into XML Views 117

4.5 Components .. 126
4.5.1 Creating the Component File .. 127
4.5.2 Adding a Shell Around the Component 130

Contents

9

4.5.3 Enhancing the Look of a Table .. 133
4.5.4 Component Metadata .. 134
4.5.5 Storing the Hard-Coded Model Data in

a Separate data.json File ... 134
4.6 Routing ... 137

4.6.1 Routing Configuration .. 138
4.6.2 Router Initialization .. 140
4.6.3 Adjusting the App View ... 141
4.6.4 Using Routing inside the Master Controller 141
4.6.5 Using Routing inside the Detail Controller 143

4.7 Application Descriptor ... 145
4.8 Summary ... 150

5 Models and Bindings .. 153

5.1 Using Models: A JSON Sample .. 153
5.1.1 Instantiation and Loading of Data 154
5.1.2 Accessing Model Values ... 156

5.2 Property Binding ... 162
5.2.1 Methods for Binding a Control’s Property 162
5.2.2 Using Data Types ... 166
5.2.3 Defining a Custom Data Type ... 171

5.3 Using Formatters ... 174
5.4 Aggregation Binding .. 183

5.4.1 bindAggregation .. 188
5.4.2 Using a Factory .. 189

5.5 Element Binding .. 195
5.6 Expression Binding and Calculated Fields 196

5.6.1 Calculated Fields .. 196
5.6.2 Expression Binding ... 199

5.7 Resource Models and Internationalization 200
5.7.1 File Location .. 200
5.7.2 File Naming Convention ... 201
5.7.3 Code Page .. 201
5.7.4 Using a Resource Model ... 202

5.8 View Models and the Device Model .. 206
5.8.1 Using View Models .. 207
5.8.2 Using the Device Model ... 212

5.9 Summary ... 214

10

Contents

6 CRUD Operations .. 217

6.1 What Is REST? What Is CRUD? .. 217
6.2 Connecting to REST Services .. 218

6.2.1 Configuring the Mock Service ... 220
6.2.2 Extending the JSON Model .. 223

6.3 Using CRUD Operations .. 225
6.3.1 Editing an Existing Entry ... 225
6.3.2 Creating a New Entry ... 235
6.3.3 Deleting an Entry ... 245

6.4 Sorting, Filtering, and Grouping in JSON Models 247
6.4.1 Sorting ... 248
6.4.2 Filtering ... 252
6.4.3 Grouping .. 259

6.5 Summary ... 262

7 Using OData .. 263

7.1 OData at a Glance ... 263
7.1.1 Northwind OData Service ... 264
7.1.2 Service Document .. 266
7.1.3 Service Metadata Document .. 267
7.1.4 Accessing Data ... 269

7.2 OData Model at a Glance .. 275
7.2.1 Service Metadata ... 277
7.2.2 Instantiating the OData Model in the SAP Web IDE 279

7.3 Reading Data ... 282
7.3.1 Reading Data Manually .. 282
7.3.2 Accessing Data via Data Binding 287
7.3.3 Best Practices ... 290
7.3.4 Displaying Additional Product Information 295
7.3.5 Displaying Navigation Properties 296

7.4 Filter, Sort, Expand, and Group .. 299
7.4.1 Filtering with $filter ... 299
7.4.2 Sorting with $orderby ... 305
7.4.3 Expanding with $expand .. 308
7.4.4 Grouping with group .. 312

7.5 Paging and Thresholds ... 313
7.6 Batch Mode ... 318
7.7 One-Way and Two-Way Bindings .. 320

7.7.1 One-Way Binding ... 320

Contents

11

7.7.2 Two-Way Binding .. 323
7.8 Writing Data ... 326

7.8.1 Creating an Entry ... 329
7.8.2 Updating an Entry .. 334
7.8.3 Deleting an Entry ... 336

7.9 Function Imports ... 337
7.10 Concurrency Control .. 341
7.11 Summary ... 344

8 Application Patterns and Examples .. 347

8.1 Layouts .. 348
8.1.1 Full-Screen Layout: sap.m.App ... 352
8.1.2 Split Screen Layout: sap.m.SplitApp 355

8.2 Floorplans ... 359
8.2.1 Worklist ... 360
8.2.2 Master-Detail ... 368

8.3 Additional Application Features ... 378
8.3.1 Not Found Handling ... 379
8.3.2 Error Handling .. 384
8.3.3 Busy Handling .. 386
8.3.4 Letterboxing ... 389
8.3.5 Headers and Footers .. 390

8.4 Running Apps in SAP Fiori Launchpad ... 393
8.4.1 SAP Fiori Launchpad Sandbox .. 393
8.4.2 Cross-Application Navigation ... 398
8.4.3 Register and Run in Production .. 399

8.5 SAP Fiori Reference Apps .. 402
8.5.1 Manage Products App .. 403
8.5.2 Shop App ... 404

8.6 Summary ... 405

9 Advanced Concepts ... 407

9.1 Writing Your Own Controls ... 407
9.1.1 SAPUI5 Control Structure ... 408
9.1.2 Implementing a Composite Control 414

9.2 Using Fragments .. 423
9.2.1 Creating Fragments .. 424
9.2.2 Embedding Fragments into Views 427
9.2.3 Using Dialogs in Fragments .. 432

12

Contents

9.3 SAP OData Annotations .. 435
9.3.1 Custom SAP OData 2.0 Annotations 435
9.3.2 OData 4.0 Annotations .. 438

9.4 Smart Controls ... 439
9.4.1 Smart Tables and Smart Filters Bar 445
9.4.2 Smart Form and Smart Fields with Value Help 448

9.5 Smart Templates .. 449
9.6 Summary ... 452

PART III Finishing Touches

10 Making Applications Enterprise-Grade 457

10.1 Theming .. 457
10.1.1 Manual Restyling .. 458
10.1.2 UI Theme Designer ... 462

10.2 Security ... 468
10.2.1 Input Validation ... 468
10.2.2 Cross-Site Scripting .. 468
10.2.3 URLs and Whitelist Filtering ... 469
10.2.4 frameOptions and Central Whitelisting 470

10.3 Performance .. 471
10.3.1 Bundling and Component Preload 472
10.3.2 Minification and Uglification .. 472

10.4 Accessibility ... 486
10.4.1 Importance of Inclusion and Accessibility 486
10.4.2 SAPUI5 Accessibility Features ... 490
10.4.3 Making Your Applications Accessible 493

10.5 Summary ... 495

11 Debugging and Testing Code .. 497

11.1 Debugging ... 498
11.1.1 Tricks to Know ... 498
11.1.2 Debugging Support Tools ... 501

11.2 Writing Unit Tests ... 507
11.2.1 Setting up a QUnit Test Page .. 509
11.2.2 Writing a Unit Test for a Custom Control 511
11.2.3 Unit Tests for Apps ... 516

11.3 One-Page Acceptance Tests ... 524
11.3.1 Architecture ... 524

Contents

13

11.3.2 OPA Test Structure ... 525
11.3.3 Writing waitFor Functions .. 526
11.3.4 Writing an OPA Test .. 531
11.3.5 Application Lifecycle Handling ... 536
11.3.6 Structuring Tests with Page Objects 537
11.3.7 Full Application Test Setup ... 538

11.4 Mocking Data: Using the Mock Server ... 542
11.4.1 Basic Instantiation and Configuration 543
11.4.2 Advanced Concepts and Configuration 544

11.5 Linting Code .. 547
11.6 Summary ... 550

12 Don’ts .. 551

12.1 Worst Practices ... 551
12.1.1 Getting Application Styling All Wrong 551
12.1.2 Ignoring General Rules in SAPUI5 Application

Development ... 555
12.1.3 Performance Breakers ... 556

12.2 How to Break your Apps during Updates 557
12.2.1 Using Private and Protected Methods or Properties

in SAPUI5 .. 558
12.2.2 Using Deprecated or Experimental APIs 558
12.2.3 Extend SAPUI5 Controls ... 559

12.3 Summary ... 559

Appendices ... 561

A IDE Setup .. 563
A.1 SAP Web IDE .. 563
A.2 WebStorm ... 579

B Accessing and Connecting to the Backend ... 589
B.1 Same-Origin Policy .. 589
B.2 Disable Web Security in Google Chrome 594
B.3 SAP HANA Cloud Platform Destinations .. 596

C App Deployment ... 605
C.1 SAP HANA Cloud Platform .. 605
C.2 SAP Web IDE and SAP HANA Cloud Connector 615
C.3 ABAP Server .. 625
C.4 Other Web Servers .. 636

14

Contents

D Cheat Sheets .. 639
D.1 Starting the App .. 639
D.2 Referencing Elements .. 640
D.3 JSON Model .. 642
D.4 OData Model .. 643
D.5 Bindings .. 646
D.6 Coding Conventions .. 647
D.7 JSDoc .. 648
D.8 Controls Cheat Sheet ... 650

E Additional Resources ... 651
E.1 openSAP Courses ... 651
E.2 Documentation ... 651
E.3 Websites ... 652
E.4 Books/E-Bites .. 653
E.5 Communities ... 653
E.6 GitHub Repositories .. 654
E.7 JavaScript Playgrounds ... 654
E.8 Tools ... 655
E.9 Google Chrome Plugins ... 655

F The Authors ... 657

Index ... 659

659

Index

_onDisplay, 238
_onObjectMatched, 238
_onRouteMatched, 238
@sapUiDarkestBorder, 460
/UI5/UI5_REPOSITORY_LOAD, 625

deployment, 631
$expand, 308, 310, 311

XML view, 312
$filter, 299
$orderby, 305, 306

$top, 314
$skip, 314
$top, 314, 316

$orderby, 314
$skip, 315

A

ABAP
backend, 622
deployment, 627
repository, 626
server, 625

ABAP Workbench, 629
Absolute binding paths, 288, 290
Access-Control-Allow-Origin, 655
Accessibility, 33, 486

alternative texts and tooltips, 494
benefits, 489
colors, 495
correct labels, 494
features, 487, 490
keyboard handling, 492
legal regulations, 490
roles, 493
sizing, 495
titles, 495

Actions, 390, 530
addAggregationName, 74
addButton, 73
Additional resources, 651
Addressable, 437
addStyleClass, 552

Advanced concepts, 407
Advanced REST client, 655
Aggregation binding, 120, 183, 184, 200

factory, 189
Aggregations, 73, 77, 410, 541

add to control metadata, 410
adding children, 73
cardinality, 74
default, 185, 186, 411
hidden, 417
sorting, 248
table, 192

Allow-Control-Allow-Origin, 595
alt, 494
Analysis Path Framework (APF), 35
AnalyticalTable, 42
Angular, 37, 580
Annotations, 439

attributes, 437
entity types, 436
OData 2.0, 435
OData 4.0, 438
smart controls, 439
smart templates, 449

annotationsLoaded, 53
Anonymous function, 69
API, 409

classes, 54
controls, 77
deprecated and experimental, 558
documentation, 29
experimental, 558
OData model documentation, 54
SAP Fiori Launchpad, 393
sap.ui.Device, 350
whitelist filtering, 469

Application
accessibility, 493
architecture, 46
break, 557
directory structure, 49
features, 378
lifecycle handling, 536
Manage Products app, 403

660

Index

Application (Cont.)
migrate settings, 148
patterns, 347
project settings, 614
startup, 639
styling, 551
templates, 623
view, 141

Application Descriptor, 47, 88, 97, 145, 149,
150, 290, 572

AppModel, 223, 233, 236, 239, 243
Architecture, 41, 46
Array.prototype.splice, 246
Assertion types, 507
Associations, 73, 75, 77, 263, 268, 412
Asynchronous module definition (AMD), 101
Atom, 563
attachInit, 639, 640
Attributes

common annotations, 437

B

Backend
access and connection, 279, 589, 625
destination, 597
simple example, 590

bAdd, 258
Batch

mode, 318
request, 319
response, 319

batchRequestCompleted, 53
bindAggregation, 188, 189, 193, 646
bindElement, 144, 196, 209, 646
bindingContext, 209
bindingMode, 213
bindItems, 93
bindProperty, 53, 162, 164, 167, 174,

198, 647
bindView, 196
Body, 639
Bookmarking, 137, 393
Bootstrapping, 64, 395, 510, 639
Breakpoints, 504, 505
Bundling, 472

BusinessPartnerNotFound, 380
Busy handling, 386, 387

generic, 388
master-detail, 389
metadata call, 387
on individual controls, 387

busyIndicatorDelay, 387
Bypassed, 383

C

Calculated fields, 196, 197, 199
Cardinality, 73
catchAll, 383, 384
Chain functions, 539
Change handler, 419
Cheat sheets, 639
Class hierarchy, 49
Code completion, 563, 573, 580, 583, 586
Coding

conventions, 647
formatting, 61
guidelines, 59
setup, 63

Color palette, 457
Colors, 495, 552
Column headers, 250
CommonJS, 101
Complex controls, 73

aggregations, 73
associations, 75

Complex type, 328
Component preload, 111, 472, 483, 485
Component.js, 87, 136, 149, 291, 584
ComponentContainer, 47
componentLauncher, 533, 536
Components, 126

container, 129
conventions, 136
enhancing tables, 133
file, 127
metadata, 134
shell, 130

Composite controls, 414
constructor, 416
define dependencies, 415

Index

661

Composite controls (Cont.)
instantiate member controls, 416
methods and events, 418
renderer, 421
structure, metadata, and dependencies, 414

Concurrency control, 341
config, 139
console.log(), 61
Content area, 352
Content delivery network (CDN), 24, 630
Content density check, 351
Controller, 44, 85, 86

conventions, 109
detail, 104, 247
edit, 235
edit view, 232
formatter code, 175
lifecycle, 45
lifecycle methods, 143
master, 100
testing, 519

Controls, 25, 27, 72
aggregations, 410
API, 77
behavior, 413
binding, 162
cheat sheet, 650
child, 73
complex, 73
composite, 414
custom, 512
custom control unit tests, 511
DOM reference, 642
extend, 559
image control, 66
inheritance, 50
keyboard handling, 492
layout, 78
lifecycle methods, 413
localization, 32
metadata, 409
parents, 73
properties, 409
property binding settings, 163
renderer, 421
rendering, 413
responsiveness, 31

Controls (Cont.)
sap.m.Button, 28
settings, 162
simple, 66
skeleton, 408
structure, 408
using in app, 422
writing your own, 407

Core, 41
CORS, 592
Createable, 436
createContent, 99, 136
Cross Origin Resource Sharing (CORS), 225
Cross-application navigation, 364, 393, 398

handler, 398
targets, 399

Cross-browser compatibility, 29
Cross-Origin Resource Sharing (CORS), 591
Cross-site scripting (XSS), 468
CRUD, 263, 403, 518

creating a new entry, 235
delete entry, 245
editing an existing entry, 225
operations, 217, 225, 266

CSS, 551, 552
class, 79
custom, 459, 495

Custom data types, 171

D

Data
access, 269
access via data binding, 287
load, 154
navigation, 272
read, 282, 644
read manually, 282, 283
types, 166, 167
write, 326, 644

Data binding, 27, 93, 110, 153, 156, 431, 646
data access, 287
manual, 646
one-way and two-way, 320
retrieve information, 647

662

Index

Data types
custom, 171
definition, 173
exceptions, 168
functions, 168

Data.json, 134
data-sap-ui-libs, 66
data-sap-ui-theme, 65
Debugging, 109, 125, 497, 498

support tools, 501
YouTube tutorial, 500

Deep links, 371, 372, 373, 380
defaultSpan, 81
Deferred, 286
Deletable, 437
deleteEntry, 245
Dependencies, 49, 223, 520
Deployment, 605

ABAP server, 625
SAP HANA Cloud Connector, 615
SAP HANA Cloud Platform, 605
SAP Web IDE, 615

Descriptor Editor, 366
Desktop screen, 30
Destination, 279, 598, 601

es4 Demo Gateway, 602
new, 597
Northwind, 600
simple backend, 597

Detail controller, 104, 105, 107, 143
Detail view, 104, 105
detailPages, 356
Developer Guide, 72
Device model, 206, 212

binding, 214
implementation, 212
instantiate, 213

Device-agnostic framework, 29
Dialogs, 433
Directory, 49
div, 79
Documentation, 651
DOM

abstraction, 507
attribute, 63
elements, 553
manipulation, 33

E

Eclipse, 563
Element binding, 195
Elements

global, 640
ID, 640
inside a controller, 641
reference, 640

Embedded HTML, 110
Empty pattern route, 376
Enterprise-grade applications, 457
Entity

read, 271
types, 263

Entity sets, 264, 267
metadata, 268
read, 270

Entity types
common annotations, 436

Entry
delete, 336
update, 334

Error
cases, 384
handling, 379, 384
notification, 385
response, 385

Error handlers, 283
ESLint, 61, 548, 549, 550
Etag, 341, 342, 343
Event handler, 67, 68, 71, 369

simple, 68
Event listener, 110
Events, 71, 72, 412

listening, 643, 645
requestSent, 156

Expanding
categories, 310
entries, 308

Explored app, 27, 30, 390
Expression binding, 196, 199, 295
Ext.js, 38
Extending, 407

Index

663

F

Faceless components, 126, 127
Factory, 189, 429
Fake

individual responses, 547
timers, 518, 521
XMLHTTPRequests, 518

FakeRest, 220, 222
download, 221

Features, 25
Filtering, 252, 299, 363

adding and removing from binding, 258
applying and unsetting, 254
custom, 254
JSON model, 247
Master.controller.js, 304
Master.view.xml, 303
operations, 255
predefined operators, 255
smart filter, 446
smart tables, 443
unit price, 300

Floorplans, 359
Master-detail, 355, 368
Worklist, 360

fnTest, 253
Footers, 390, 391
formatOptions, 170
Formatter, 174, 178, 180, 182, 198

nonanonymously, 174
Formatting, 171, 174
formatValue, 168
Fragments, 407, 423, 425, 472

create, 424
definition, 425
display data, 426
embed in views, 427
lazy loading, 429, 434
simple form, 424
suffix, 424
using dialogs, 432, 433
XML views, 428

frameOptions, 470
Full-screen layout, 348, 352, 354

guidelines, 353
routing configuration, 354

Full-screen layout (Cont.)
Worklist, 360

Function imports, 337
controller, 340
view, 339

G

GET request, 219
getMetadata, 51
getObject, 53
getProperty, 77, 158, 161
Getters, 78, 643
Git repository, 605
GitHub, 220, 414, 654
Global variables, 60
Glup, 580
Google Chrome

Developer Tools, 159
developer tools, 499
disable web security, 594
plugins, 655

Grouping, 259, 312, 313
button, 261
initial, 260
smart tables, 443
user input, 260

Growing, 315, 316
growingScrollToLoad, 317
growingThreshold, 315, 317
growingTriggerText, 317
properties, 317

Grunt, 474, 580
global installation, 476
minification, 476
run, 483
setup, 475

Gruntfile.js, 476, 478, 479
grunt-openui5, 474, 480
Gulp, 474

H

Handling calls, 387
Headers, 390, 391
Hello, World!, 59

664

Index

HideMode, 359
Hierarchical structure, 160
HTML, 29, 95, 109

fragments, 424
starter page, 64
view, 115

HTTP requests, 474
Hungarian notation, 62, 647, 648

I

i18n, 359
i18n_de_AT.properties, 201
i18n_de.properties, 201
i18n_en_GB.properties, 201
i18n_en.properties, 201
i18n.properties, 201
Icons, 29
ID, 93, 126
IFrame, 470
Inclusion, 486
index.html, 85, 89
Inner-application navigation, 364
Input validation, 468
Integration, 538
Internal class styling, 553
Internationalization, 200

J

JavaDOC, 648
JavaScript, 29, 33, 59, 109, 653

aggregation binding, 184
coding guidelines, 648
fragments, 424
global variables, 60
master view, 98, 118
playgrounds, 654
promise, 374, 375
view, 96, 98, 99, 114
XML views, 117

JAWS, 487
JetBrains, 563, 579
Journeys, 539
jQuery, 33, 507

jQuery.sap.declare, 60
jQuery.sap.resources, 206
JSBin, 654
JSDoc, 648, 649
JSFiddle, 654
JSON, 29, 95, 109, 153, 154, 223

instantiating model, 154
models, 154, 247
sample applications, 157
sorting and filtering, 247
tools, 655
view, 115

JSON model, 223, 235
create, 642
getter and setter, 643
listening to events, 643

JSONView, 655

L

labelFor, 494
labelSpan, 230
Language, 205

determination, 205
determination fallback, 201

LATIN-1, 201
Layout, 78

controls, 78, 81
data, 81

Layouts, 348
full-screen layout, 352
sap.m.App, 352
sap.m.SplitApp, 355
split-screen layout, 355

Leave Request Management app, 35
Letterboxing, 131, 132, 389, 390
Libraries, 25, 41

sap.m, 42, 66, 73
sap.m.List, 317
sap.suite, 42
sap.ui.base, 50
sap.ui.commons, 43
sap.ui.comp, 42
sap.ui.core, 41, 42, 50
sap.ui.layout, 42, 192
sap.ui.richtexteditor, 43

Index

665

Libraries (Cont.)
sap.ui.suite, 43
sap.ui.table, 42
sap.ui.unified, 42
sap.ui.ux3, 43
sap.ui.vk, 43
sap.ushell, 42
sap.uxap, 43
sap.viz, 42

Lifecycle hooks, 45
Linting, 547
List binding, 166
Live value, 164
Load, 47
loadData, 155, 156, 158
Localization, 32
Logical

filtering, 301
operators, 300

M

Manage Products app, 403
ManagedObject, 51, 75, 77
manifest.json, 87, 612
Margin, 461
Massive online open courses (MooCs), 651
Master controller, 100

press handler, 108
Master JavaScript view, 98
Master list, 371, 383
Master page

create, 93
Master view, 103, 104, 106, 237

press handler, 107
Master.controller.js, 96
Master.view.js, 96, 100
Master-detail, 355, 368, 379

deep links, 372
default route, 376
master list, 369, 371
mobile devices, 376
Object View, 370

Master-Detail app, 464, 476, 477
masterPages, 356
Matchers, 528

Metadata, 409
call, 387
errors, 386
metadataLoaded, 53

Meteor, 580
Methods, 52
Microcontrollers, 475
Minification, 472, 473, 480

Grunt-based task runner, 474
SAP Web IDE, 485

Mobile, 31
Mock data, 221
Mock server, 440, 542, 544, 577

advanced concepts and configuration, 544
control options, 545
extend, 546
instantiation and configuration, 543
skeleton, 545

Mock service, 218, 220, 221, 222
Mocking data, 542

instantiation and configuration, 543
Mocks, 517, 518
Models, 29, 45, 85, 150, 153

accessing values, 156
binding control property to value, 162
inheritance, 52
instantiating and loading data, 154
node path, 161
usage, 153

Modularization, 97
Modules

dependent, 102
loading, 102

MVC, 29, 85
application, 88
components, 126
create data and model, 91
detail controller, 177
detail view, 177
first page, 90
folder structure, 87, 96
formatter, 178
hierarchical overview, 89
index.html, 89
structure, 86, 89

666

Index

N

Nabisoft, 652
Namespaces, 97, 116, 422, 436, 554

define, 98
error, 585
methods, 60

Navigation properties, 263, 266, 268
back, 381
binding, 298
display, 296

navTo, 227
neo-app.json, 279
Network

request, 282
trace, 592
traffic, 104

Node.js, 474
advantages, 474
setup, 475

Northwind, 269
destination, 600

Not found handling, 379
npm, 580

O

Object header, 197
Object view, 370
ObjectNotFound, 381
Octotree, 656
OData, 52, 154, 155, 263, 653

2.0, 435
2.0 annotations, 435
4.0, 435
4.0 annotations, 438
accessing data, 269, 286
annotations, 435
best practices App.view.xml, 294
best practices Component.js, 292
best practices folder structure, 291
best practices index.html, 294
best practices manifest.json, 293
best practices master.view.xml, 294
class inheritance, 52
concurrency control, 341

OData (Cont.)
create model, 334
destination, 290
display, 266
expanding, 308
expression binding, 295
filtering, 299
function imports, 337
grouping, 312
model differences, 276
Northwind, 264, 267
one-way and two-way binding, 320
overview, 263
reading data, 282
SAP Web IDE, 279, 284
Shop app, 405
sorting, 305
update model, 336
write-enabled, 337
write-support, 327
writing data, 326

OData model
create, 643
listening to events, 645

ODBC, 264
onAfterRendering, 45, 51
onBeforeRendering, 46, 51
OneTab, 656
One-way binding, 153, 320, 321

controller, 322
onExit, 45
onInit, 45, 224, 257, 428, 641
onPress, 250
onPressImage, 71
onSave, 244
OPA5, 498, 524, 532

actions, 530
architecture, 524, 525
extend, 535
folder structure, 538
matchers, 528
mock server, 544
page objects, 538
test, 531
test structure, 525
waitFor, 527

Open source, 33

Index

667

OpenAjax, 60
openSAP, 651

smart templates, 452
OpenUI5, 23, 25, 38, 39, 439

CDN, 637
homepage, 652
openui5_preload, 474, 480
SDK, 580
Slack channel, 653
to-do app, 654

Optimistic concurrency, 341
implement, 341

Optimized network requests, 483
Origin, 589, 591
oTemplate, 95
Overflow, 391
Overstyling, 553, 554

P

Package.json, 480
Padding, 461
Page control, 226
Page objects, 537, 540, 541

shared, 542
Pageable, 437
Paging, 207, 313, 315
parseError, 169
parseValue, 168
patternMatched, 373
Payload, 331, 335

GET, 332
POST, 332

Performance, 471, 496
worst practices, 556

Pessimistic concurrency, 341
Phoenix, 24
Platform as a Service (PaaS), 563, 605
Plunker, 655
PopoverMode, 358
Postman, 326, 327, 655

create entry, 331
Press event, 69
Private methods, 558
Private object members, 61
Product information, 295

Project
settings, 614
types, 614

Property binding, 162
bindProperty, 164
control settings, 163
data types, 166
format options, 171
JSON model, 166

Protected methods, 558
Purchase Order app, 35

Q

Quality, 547
QUnit, 497, 498, 507, 508, 524, 525, 531,

534, 550
constructor outcome, 513
DOM structure, 535
test files, 511
test page, 509
test skeleton, 512
tests, 510

R

RadioButtonGroup, 73, 75
React, 37, 580
Relative binding paths, 289
Render manager, 42, 413, 492
Renderer, 421
Representational State Transfer (REST), 217
requestFailed, 234
requestSent, 53
RequireJS, 101
Resource

folder, 97
path, 97

Resource bundle, 200, 235
code page, 201
file locations, 200
file naming, 201

Resource model, 200
code page, 201
detail view, 204
instantiate, 203

668

Index

Resource model (Cont.)
usage, 202

Response headers, 591
CORS-enabled, 593

Responsive behavior, 353
REST, 217

connect to services, 218
service, 217
stateless, 217

RGB color, 461
Rich Internet Applications (RIA), 493
RichTextEditor, 43
rootView, 150
Routing, 27, 137, 139, 150, 366, 376

configuration, 138
detail controller, 143, 145
empy patterns, 376
handling, 376
initialization, 140
master controller, 141
pattern, 142

Routing configuration, 227, 349, 350,
357, 358

S

Same origin policy, 277, 279, 589
SAP Blue Crystal, 465
SAP Business Suite, 43
SAP Community Network, 564
SAP Community Network (SCN), 653
SAP Developers, 652
SAP Fiori, 34, 42, 95, 131, 347, 355, 452, 564

apps library, 652
demo cloud edition, 652
design guidelines, 347, 355, 650, 653
implementation and development, 653
Manage Products app, 402, 403
openSAP course, 651
reference apps, 402, 404, 652
SCN, 653
Shop app, 402, 404, 405

SAP Fiori Launchpad, 46, 97, 126, 359,
393, 555
assign application, 401
catalogs, 401

SAP Fiori Launchpad (Cont.)
cross-application navigation, 398
custom-built sandbox, 395
intialize sandbox, 396
navigation, 400
registration, 397
roles, 401
running apps, 393, 399
sandbox runner in SAP Web IDE, 394
sandbox UI, 394
static and dynamic tiles, 401
tile setup, 401

SAP Gateway, 653
SAP HANA Cloud Connector, 615

architecture, 616
deployment, 626
local access, 617
openSAP course, 620
settings, 616

SAP HANA Cloud Platform, 23, 59, 65,
280, 563
app deployment, 605
application log, 608
cockpit, 566, 567, 606
courses, 567
create an account, 564
create destination, 621
deploy custom theme, 467
deployment, 605, 610
destinations, 596
home page, 564
minification, 485
openSAP course, 651
resource consumption, 608
running an application, 607
same-origin policy, 590
SAP Fiori Launchpad, 393, 399
services, 568
UI Theme Designer, 462, 465

SAP HANA XS, 474
SAP HANA XS Advanced (XSA), 474
SAP S/4HANA, 95
SAP Service Marketplace, 23
SAP Smart Business cockpits, 34
SAP Technology Rapid Innovation

Group (RIG), 620

Index

669

SAP Web IDE, 59, 225, 279, 348, 563, 615
access, 567
app deployment, 605
application development, 570
backend access, 279
console output, 628
console view, 628
Descriptor Editor, 365
destination folder, 613
ESLint, 549
export application, 631
instantiating an OData model, 281
Layout Editor, 111
linting, 548
master-detail, 368
minification, 485
Northwind service, 283
same-origin policy, 590
SAP Fiori Launchpad sandbox, 394
SAP Fiori reference apps, 403
SAP HANA Cloud Connector, 619
SAP HCP destinations, 597
saving ZIP file, 632
SCN, 653
setup, 563
templates, 569, 570, 575
UI Theme Designer, 462, 466
welcome screen, 569
workspace, 572

sap.m, 116, 150
sap.m.App, 122, 352
sap.m.CheckBox, 51
sap.m.Checkbox, 253
sap.m.Dialog, 97, 433
sap.m.Input, 163
sap.m.Label, 494
sap.m.List, 374
sap.m.MessageBox, 384
sap.m.MessagePage, 380

catchAll, 384
sap.m.Page, 105
sap.m.PullToRefresh, 378
sap.m.semantic, 390
sap.m.Shell, 390
sap.m.SplitApp, 355, 369

responsiveness, 357
sap.m.SplitAppModes, 358

sap.m.Table, 88, 188, 360
sap.m.Text, 174
sap.ui, 150
sap.ui.base.EventProvider, 51, 53
sap.ui.base.ManagedObject, 165
sap.ui.base.Object, 50, 51, 53
sap.ui.core, 42
sap.ui.core.Component, 46
sap.ui.core.Control, 51
sap.ui.core.Element, 51
sap.ui.core.Fragment, 642
sap.ui.core.ManagedObject, 51
sap.ui.core.Model, 53
sap.ui.core.routing.Router, 47
sap.ui.define, 102
sap.ui.layout, 116
sap.ui.layout.form.SimpleForm, 229
sap.ui.layout.Grid, 78
sap.ui.layout.GridData, 81
sap.ui.model.FilterOperator, 301
sap.ui.model.odata.ODataModel, 276
sap.ui.model.odata.V2.ODataModel, 53
sap.ui.model.odata.v2.ODataModel, 276
sap.ui.model.SimpleType, 171, 172
sap.ui.model.Sorter, 261
sap.ui.model.type.Boolean, 167
sap.ui.model.type.Date, 167
sap.ui.model.type.DateTime, 167
sap.ui.model.type.Float, 167
sap.ui.model.type.Integer, 167
sap.ui.model.type.String, 167
sap.ui.model.type.Time, 167
sap.ui.namespace, 60
sap.ui.require, 102
sap.ui5, 150
SAPUI5, 23

architecture, 41
CDN, 629
data types, 167
features, 25
history, 24
libraries, 42
open source, 33
overview and access, 23
product comparison, 37
SCN, 653
use cases, 34

670

Index

SAPUI5 Demo Kit, 423, 459
SAPUI5 Diagnostics, 501, 502
SAPUI5 Flexibility Services, 444
SAPUI5 Technical Information, 501
sap-ui-theme, 457
Screen sizes, 30
Search handling, 364
Security, 468

central whitelisting, 470
frameOptions, 470
input validation, 468
SAPUI5 guidelines, 471
validate URLs, 469, 470
whitelist filtering, 469

Selectors, 554
Selenium, 524
Semicolon, 62
Sencha, 38
Service

document, 266
errors, 386
metadata, 277, 281
metadata document, 267
URL, 280

setAggregation, 417
setAggregationName, 74
setData, 154
setProperty, 77, 158
Setter, 643
Setters, 78
Shopping Cart app, 35
ShowHideMode, 358
Sight, 656
SimpleForm, 229, 298, 422

fragments, 424
sinon, 220, 221, 517, 519
Skipping, 315
sLocalPath, 244
Smart controls, 407, 439

information, 449
tutorials, 445

Smart field, 448
Smart filter, 445
Smart form, 448

edit mode, 448
smart template, 450
value help, 448

Smart group, 448
Smart table, 440, 445, 447

add, hide, reorder, 442
dirty, 446
filtering, 443
grouping, 443
metadata, 441
personalization, 442
sorting, 443

Smart templates, 449, 451
develop apps, 449
openSAP, 452
smart form, 450
smart table, 450

Sorting, 305
aggregations, 248
buttons, 250
custom, 252
functions, 251
JSON model, 247
Master.view.xml, 306
multiple, 252
smart tables, 443
table items, 248

sPageId, 125
Spies, 517
Split-screen layout, 348, 355

Main.view.xml, 356
master-detail, 368

src, 65, 77, 639
StretchCompressMode, 358
String, 110

filtering, 301
Stubs, 517, 521
Sublime, 563

T

Tables
coding, 94
components, 133
create, 93
header, 94
responsive margins, 133
rows, 95
sort and group, 260

Tablet screen, 30

Index

671

Targets, 140, 366
Task runner, 474
Templates, 95, 110, 349, 352, 623
Tern.js, 563
Testing, 497, 521, 522, 523

assets, 509
callback functions, 517
constructor outcome, 513
doubles, 517
full application setup, 538
page objects, 537
setters, 515
strategy pyramid, 497

Text directions, 555
Theming, 31, 457

base, 457
Base theme, 457
custom CSS, 459
High-Contrast Black, 459, 491, 495
manual restyling, 458
selection, 463
theme parameters, 460, 553
theme-dependent CSS classes, 460

Thresholds, 313, 315
Transaction

SE38, 632
SE80, 629, 635

Translate, 555
Tutorials, 27
Two-way binding, 153, 320, 323, 325

controller, 325
manifest.json, 323
view, 324

U

Uglification, 472, 473
UglifyJS, 473
UI components, 126
UI development toolkit for HTML5, 23
UI Theme Designer, 32, 420, 461, 462

deploying custom themes, 465
manipulating themes, 463
Quick mode, 464
SAP HANA Cloud Platform subscription, 462
SAP Web IDE, 466

UI Theme Designer (Cont.)
setup, 462

UI5 Inspector, 287, 501, 506, 655
UI5Con 2016, 654
unbindElement, 196
unbindProperty, 189
Undeclared variables, 61
Unit tests, 507, 577

apps, 516
custom controls, 511
results, 508
setters, 515

Untyped variant, 165
Updateable, 436
URL

patterns, 137
service-based, 270

V

validateValue, 168
Variables, naming conventions, 62
Vertical layout, 192
View model, 206, 207, 211

binding, 209
instantiate, 208
navigation functions, 211

Views, 29, 45, 85, 86
conventions, 117
create, 95
detail, 104
display mode, 430
embed fragments, 427
instantiation, 45
types, 96, 109

Virtual host, 620
Visibility, 552
Vocabularies, 441

W

waitFor, 526, 541
configuration, 531

Web Accessibility Initiative (WAI), 490, 652
Web security, 594
Web servers, 605, 636

672

Index

WebSockets, 474
WebStorm, 563, 579, 587

adding libraries, 582
create project, 581
setup, 587
version, 580

Whitelist filtering, 469
API, 469

Whitelisting, 470
service, 471

Work items, 360
Worklist, 360

detail view, 364
filtering, 363
item count, 362
navigation, 364
sap.m.Table, 361
search input, 363
table, 360

Worklist (Cont.)
views, 368

Worklist app, 574
configuration, 576
mock data, 577

Worldwide Web Consortium (W3C), 490
writeEscaped, 468

X

XML, 29, 95, 109, 392
fragments, 424
JavaScript views, 117
nodes, 271
tools, 655
views, 95, 110, 111, 114, 115, 116, 118, 428

XmlHTTPRequests, 222
XOData, 264, 328, 655

First-hand knowledge.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usage
and exploitation rights are reserved by the author and the publisher.

Christiane Goebels has been in web development ever
since starting her career at SAP in 2000. She led her
own internet agency from 2005 to 2010, and re-joined
SAP in 2012 as part of the central SAPUI5 development
team. She is an experienced speaker and has been giving
numerous trainings and talks on JavaScript and SAPUI5
at SAP and at international conferences.

Denise Nepraunig is a software developer at SAP in
Walldorf, Germany, where she creates SAPUI5 applica-
tions and was involved in the development of the SAP
Web IDE. She is an experienced speaker, SAPUI5 coach,
and SAP Mentor. She loves to explore new technologies,
and in her free time tinkers around with SAP HCP and
SAP HANA.

Thilo Seidel is the product owner of SAP Fiori Launch-
pad on the weekdays and an occasional hacker on the
weekends. He built his first web page back in 2002 and
instantly fell in love with the browser. He has taken on
various roles since then, including sales, designer thinker,
traveler, student, and project manager.

Christiane Goebels, Denise Nepraunig, Thilo Seidel

SAPUI5: The Comprehensive Guide
672 Pages, 2016, $79.95
ISBN 978-1-4932-1320-7

 www.sap-press.com/3980

http://sap-press.com/3980

