This sample chapter describes how to plan and organize your data migration project with discussion of the different types of migration projects and the project phases necessary for each. It also gives in-depth coverage of the data migration work packages and the tools you can use to establish which business objects to migrate and to determine the duration of your migration project.

“Plan and Organize Your Data Migration Projects”

Contents

Index

The Authors

Frank Densborn, Frank Finkbohner, Johann Gradl, Michael Roth, and Michael Willinger

Data Migration with SAP

563 Pages, 2016, $79.95

www.sap-press.com/4019
Structured and well-organized data migration projects are more successful than unstructured projects. Your level of success depends on defining and planning the necessary work packages and recognizing the required effort and resources from the beginning.

3 Plan and Organize Your Data Migration Projects

In Chapter 1, we introduced the business basics of data migration projects. This chapter explains how to plan and organize your data migration projects. In the first section, we briefly define the different types of data migration projects. Subsequently, we describe the different phases of a data migration project and how they are integrated into the phases of an implementation project. In the third section, you’ll find out which tasks will appear in each data migration phase and how to schedule these tasks into work packages. Finally, we give you some advice how to determine data migration objects and calculate the required effort.

3.1 Types of Data Migration Projects

All data migration projects deal with the question of how to get data from one system to another system, but we can differentiate the different types of data migration projects based on a few points, as described in the following subsections.

3.1.1 Initial Load (Green Field)

In initial load projects, also known as green field projects, you migrate the data into a newly implemented SAP system. The data for such projects comes from different source systems, which is normal for a data migration project.
3.1.2 Upgrading an Existing System (Brown Field)

By upgrading existing systems, called brown field projects, an already productive SAP system will be extended with new data for existing or new business processes. There can also be different source systems to load the data from.

3.1.3 Phased Roll-Out

A phased roll-out project is a combination of an initial load and upgrading an existing system project. This kind of data migration project is often used if an IT landscape is restructured. This is typically for mergers and acquisitions, system centralizing, or roll-out of an SAP system to local or international subsidiaries. Such projects are projected for longer periods, often years. Upgrading existing SAP systems demands well-organized project management to plan the duration and quality of the data migration. A phased roll-out allows for cost-cutting and an increase in quality that build on one another over the years. However, you also need to build additional interfaces to connect your still existing systems to the new SAP system landscape.

3.1.4 Big Bang

A big bang implementation is a phased roll-out in one single phase. This will normally be used if the numbers of subsidiaries is small or they are using the same business processes with no or minimal changes to the parent company’s processes. The risk to fail of such big bang implementations is higher than with a phased roll-out. You therefore need to plan and test the go-live of the SAP system more accurately. With the big bang method, the whole company is changing its system landscape and processes overnight. If the data quality or something else fails, the whole company’s production system will fail.

3.1.5 System Optimization

If processes or organizational structures of a SAP production system must be moved completely to another SAP system, you’ll have to use special legal conform techniques and services. These services and techniques are called system optimizations or system landscape optimizations. The most common use cases for a system optimization is selling certain subsidiaries or parts of your company to another company or acquiring other companies. In the first case, you want to carve out processes and organizational structures and their data off your SAP production system. In the second case, you want to include additional processes and organizational structures into your SAP production system. Because both the source and target systems are SAP systems, the data migration can be done on a database table level most of the time. This method is very fast and allows historical data to be transferred. However, these kinds of system optimizations are often subject to accountability based on financial audits and the countries’ generally accepted accounting principles. You should therefore make use of services offered by certificated special service providers such as SAP’s System Landscape Optimization (SLO).

3.1.6 Cloud Migration

Cloud migration is the process of migrating all or certain parts of your system into a public cloud provided as software-as-a-service (SaaS) and not private cloud or hosted cloud models. A data migration into such an SAP cloud system such as SAP Cloud for Customer, SAP SuccessFactors, or SAP S/4HANA cloud edition differs from a data migration to an on-premise SAP Business Suite system. For cloud solutions, SAP offers tools and prebuilt content to migrate your data. You can generate Microsoft Excel/XML files with these tools, fill them with your data, and load them into your cloud system.

For some cloud solutions, it’s possible to directly connect to your SAP source system using these tools to extract your data. You don’t have access to the cloud backend system. Well-known tools and interfaces such as the Legacy System Migration Workbench (LSMW) or batch input can’t be used anymore. Due to the limited customizing effort and prebuilt content, the effort to implement the data load procedures will be lower. You have to provide the files in the correct format and maintain the value mapping.
3.2 Phases of Data Migration Projects

ASAP
To plan and organize SAP implementation projects, you can use different implementation methods. One of the most commonly used implementation methods is ASAP. ASAP is used to implement SAP products faster, based on a standardized method. Data migration project phases are different from the general implementation project phases. In this section, we’ll explain the different data migration project phases and how these phases will be included into the standard project phases of ASAP.

The ASAP implementation method consists of five phases:

1. Project preparation
2. Business blueprint
3. Realization (including tests)
4. Final preparation
5. Go-live and support

Seven data migration phases
As described in Chapter 1, the best way to include the data migration tasks in an implementation project is to set up the data migration as a subproject. There are seven data migration phases, which differ from the standard ASAP implementation phases:

1. Data analysis
2. Mapping
3. Implementation
4. Data migration tests
5. Data validation
6. Data cleansing
7. Productive load and support

Figure 3.1 illustrates the different data migration phases.

In contrast to classical ASAP phases, data migration phases aren’t strictly sequential. They are repetitive, and can overlap with ASAP and other data migration phases. Results of subsequent phases influence previous phases. This is necessary, as it allows you to react to errors and flaws in a flexible way. You’ll often detect such flaws in the business blueprint when you load real data into the customized test systems. The business blueprint, data analysis, and mapping must be adopted to correct such flaws. The next sections go into more detail of the different data migration phases.
3.2.1 Data Analysis
The data analysis phase is normally started in parallel with the business blueprint (BBP) phase; however, you don’t have to start the data analysis phase with the BBP. You can start with analyzing the data at the halfway point of the BBP. The advantage of doing so is that most business processes to be implemented are known and designed at this stage, so it’s easier to identify the data migration objects and the leading source systems from which to extract the migration objects.

Business Object vs. Migration Object

In this chapter, we’re talking about business objects and migration objects, as described here:
- A business object represents a single object to be used to model a business process. It’s a semantic entity to represent the smallest logical unit to take part in a business scenario, for example, material, customer, purchase order, and so on.
- A migration object represents an entity of a business object that is used to migrate the data of a business object, for example, basic material data from system A, material sales data from system B, and so on.

The relationship between business object and migration object is 1:N. There can be many migration objects for one business object but only one business object per migration object.

3.2.2 Mapping
After identifying the data migration objects, you can start with the mapping phase. The mapping phase overlaps with the data analyzing phase. You should start the mapping as soon as possible—don’t wait until the analysis is completely finished. A good starting point is when the first master data objects are identified and the BBP for the business processes to maintain these objects are mostly finished.

The BBP documents include rules and notes to build conversion rules. The mapping phase can persist into the data migration test phase. The results of the first data migration test often have a deep impact on the mapping and the conversion rules.

3.2.3 Implementation
You can also start the implementation phase and first functional tests early, during the realization phase of the project. The best starting point for the implementation phase is when the bigger part of your conversion rules have been defined. You then can start extracting the data and testing your conversion rules by loading that data into your target test system.

3.2.4 Data Migration Tests
Tests are the most important thing in each data migration. You must start with the first functional tests as soon as possible. Testing is essential. The more complex a data migration is and the more target systems, source systems, data migration objects, and conversion rules that are involved, the more crucial tests will be.

Tests can’t be replaced by something else, besides more tests! You have to test the whole data migration process and the go-live itself by doing a dress rehearsal at least once before your go-live. Experience has shown that one test isn’t sufficient. Having at least two productive data load tests into an SAP system, which is technically the same as the target system, under go-live conditions, will have a positive impact on your data quality and your ability to adhere to the timetable.

Tests Reduce Costs

The higher the number of tests, the higher the data quality, the less the rework that must be done in the target systems shortly before or after go-live, and the less the total costs will be.

3.2.5 Data Validation
Validating your migrated data is indispensable for the quality of your business process in your target system. Master data and transaction data of superior quality is the basis for perfect working business processes. In some industries, such as pharmacy, validations are mandatory and must be precisely documented. For example, without appropriate validation
of all migrated data in your target system and a well-documented data migration process, you’ll never pass the FDA audit. Without a Certificate of FDA Registration, you’re not allowed to sell pharmaceutical products or medical devices on the US market. More about U.S. Food and Drug Administration and Regulations and the Assessments of SAP Products can be found here: http://scn.sap.com/docs/DOC-7854. Don’t disregard the data validation phase.

You should start defining your validation rules when you start defining your conversion rules. Rapid Data Migration with SAP Data Services includes predefined validation rules, which help you validate your data. An automatic validation enables you to cleanse your source data by examining the results of the validation and determining erroneous data records and conversion rules.

More information can be found in Chapter 8, Section 8.3.3 and Section 8.3.6. You should plan your data validation phase during the integration tests and after the productive load phase at an early stage.

3.2.6 Data Cleansing

Data cleansing is one of the most underestimated tasks within a data migration project. If possible, data cleansing should be done in the source system. Under certain circumstances, it may also be possible to do this within your data migration tool. For example, SAP Data Services has a number of built-in data quality procedures and transforms to do deduplication, address cleansing, gender code detection by name, and other useful procedures. Methodic errors in source data records can be converted into clean transfer data by using tailor-made conversion rules.

You should also use the results of automatic validation to cleanse your data in the source system. The cleaner the data is in the source system, the cleaner your data will be in the target system and the better your processes will run.

Start your data cleansing tasks as early as possible. Ideally, there are already defined data cleansing processes running in the source system to permanently check and cleanse the data records. You should include these processes in your data migration project and should work closely with the responsible teams. Existing cleansing rules must be identified and compared to the defined conversion rules. The data quality results of the first data migration tests are important for further data cleansing activities.

The data cleansing phase must be completed with the last productive load test to assure that the results of the latest tests are taken into consideration for the go-live one by one.

3.2.7 Productive Load and Support

The productive load is the last and most critical phase within your data migration project. As mentioned before, the productive load must be planned and tested accurately. In addition to your normal migration tests, you should plan at least one, and we recommend two, dress rehearsals to test the complete migration process. The more you test, the better your results will be. There are a lot of things which must be taken into consideration that you normally don’t think about. Here are some examples:

- If you plan to work overnight or on the weekend, you have to align with your workers’ council, the related trade union, and your local authorities to follow the rules. For example, are warehousemen allowed to take stock at these special times?
- If you’ll work cross-country or intercontinentally, you have to check the local bank holidays, vacation periods, and other local rules up front. For example, you’re doing a data migration in a 24/7 mode, and you need your data at 10 am CET. The database you’re extracting the data from is located in a San Francisco data center. You then have to verify with your data center that someone is working at 1 am local time to extract your data.
- Many more items must be taken into consideration, such as the time your productive load will take, during which your IT system might be unavailable, or only partially available. Therefore, you have to plan your production and supply chains carefully, so you don’t have hundreds of trucks standing in line at your loading zone waiting to load or unload their supplies.
Support period

After the productive load, you also have to plan a support period during which your data migration staff is available after the go-live. This is to fix errors, bugs, and flaws due to false or not completely implemented conversion or extraction rules. Sometimes, restrictive rules may prevent data records from being loaded, which must be loaded. Don’t let the data migration staff go too early after the productive load. You might need them again.

3.3 Work Packages in Data Migration Projects

In this section, we’ll describe the work packages within a data migration project. We’ll also illustrate the sequence and dependencies of work packages.

In the data migration projects, you ask the same questions again and again:

- What are the necessary tasks?
- When will these tasks performed?
- Which phases are involved?
- What are the tasks’ sequences?
- Who can perform these tasks?
- How much is it?

When implementing a new software, the project tasks to perform are always the same and can therefore be included in an implementation method such as ASAP. Regarding data migration projects, you’ll notice recurrent tasks that follow a certain structure and can be organized and grouped into work packages.

SEAMAP

We refer to this method of organizing and grouping work packages as **SEAMAP**. SEAMAP is a German acronym for a phrase that can be approximately translated to **structure how to effectively group migration projects into work packages**. SEAMAP has been modeled over the years in customer projects and used to plan and estimate data migration projects. It’s a template for planning and organizing that can be individually adopted to your project.

However, as a basic rule, each data migration project can be grouped into around 20 work packages. Work package 14 (define and create test data load procedures) isn’t a classical data migration work package. It’s rarely used in long-lasting data migration projects to provide test data for business process tests by using data migration procedures, which is why we talk about 19 core packages plus 1 additional. You can read more about this in the section on work package 9 in Section 3.3.4.

An overview of all 20 work packages and their relationships is illustrated in Figure 3.2. Due to the size of that overview picture, you can also download it from the book’s web page. In the following subsections we have grouped work packages by function (corresponding to the phases of a data migration project), and as such, they will not appear in strict numerical order.

Figure 3.2 Overview of All 20 Data Migration Projects’ Work Packages
3.3.1 Data Analysis

In this section, we describe the four data analysis packages as well as work package 20 for identifying tools, which happens during the data analysis phase, and which is dependent on the results of the data analysis packages. Figure 3.3 illustrates an overview of the data analysis work packages (1-4).

![Figure 3.3 Work Packages of the Data Analysis Phase](image)

Work Package 1: Determine Business Objects to Migrate

The first work package of a data migration project is to determine the required business objects to migrate. As describe earlier, we distinguish between business objects and migration objects.

Work Package 2: Identify Source Data Systems

Late start: w/ WP 7
Buffer: 5 days
Late finish: mid of WP 7

Work Package 3: Historical Data

Late start: w/ WP 3
Buffer: 5 days
Late finish: mid of WP 7

Work Package 4: Determine Load Sequence

Late start: after WP 3
Buffer: 5 days
Late finish: before cut-over plan creation

Customer Master Data

From a business process perspective, the customer master is one single business object. From a data migration perspective, this business object can persist of multiple migration objects if it’s technically not possible to load its data as one single object.

The earliest possible starting point of this work package is to start at the same time as the BBP. However, it’s often better to start by determining the business objects at the second half of the BBP. The blueprint of the business processes must be completed to a certain extent before the relevant business objects will become clear. It makes sense to maintain a list of migration objects in parallel to the BBP with less effort. This will also simplify the following steps in your migration project. The migration objects can be identified and described based on this list. The basic information to collect in this list is described in Section 3.4.1.

The determination of migration objects is normally not finished at the end of the BBP. The data migration often identifies gaps in the BBP during the mapping and realization phases. These gaps may result in new business processes and also new business or migration objects, which no one kept in mind before.

Alternative Units of Measure for Material

An alternative unit of measure (UoM) is a UoM defined in the SAP system in addition to the base UoM of a material. Stocks are posted in the base UoM, for example, whereas the purchase orders might be in the alternative UoM.

Consider the following example: In a bigger data migration project, the BBP didn’t intend to have alternative UoMs for material master, neither implemented in, nor migrated to the SAP system. During the examination of the international subsidiaries’ system data, it turned out that hundreds of material master records in the several subsidiaries’ systems had completely different base UoMs stored for the same material.

For example, material A was stored with the UoM meters in the subsidiary for Europe, the Middle East, and Africa (EMEA); in inches in the United States; and in rolls in Asia. If there are no alternative UoMs implemented in the system, and the material master of EMEA will be migrated first with a base UoM of meter, the US stock with 400 inches will be stored as 400 meters, and the 20 rolls in Asia will be stored as 20 meters. This would have resulted in...
massive problems and costs if it wasn’t detected in time by the data migration team. As a consequence, the alternative UoM for material was added into the BBP, and the missing conversion factors from the base UoM units for these hundreds of materials were maintained in a separate Excel spreadsheet. This spreadsheet was then loaded as a separate migration object in addition to the main material master migration object.

Time frame

In general, the relevant migration object should be determined within the first half of the mapping phase. It shouldn’t take more than 10 days to identify all migration objects.

Work Package 2: Identify Source Data Systems

If the business processes and the business objects to migrate are determined, you can start to identify your source systems. The earliest date to start this work package is along with the start of the BBP, and the work package should be finished in the first half of the mapping phase. You must be clear on the systems to transfer your data from at an early stage. At first sight, this might look easy. However, in large companies with distributed systems and interfaces to exchange their data, it’s easier said than done. The zoo of systems, collected over years and decades, must often be structured and arranged first.

After that, you can start to determine source systems with the most reliable, the most current, and the highest quality data to use for the data migration. Determining the best source data system can be very complex on closer inspection. In such a case, you must be clear on the data stream in your network to identify the leading systems for your migration objects with the best quality to migrate. The leading system is often the system that is at the top node of an interface structure. However, it could also be that some specific data (e.g., address data) is more accurate or current in one of your subsystems.

Don’t forget to look at your target systems. Generally, the easiest case is to migrate into one system. If you have to migrate to multiple systems, for example, SAP ERP, SAP Customer Relationship Management (SAP CRM), and SAP Supply Chain Management (SAP SCM) systems, you should be aware of this fact as early as possible.

Normally, it doesn’t take longer than around 10 days to identify the source systems. In very complex networks, especially mergers and acquisitions, it might be difficult to identify or define one leading system with the best data quality. In such cases, it might take longer than 10 days.

Work Package 3: Historical Data

As described in Chapter 1, Section 1.2.3, it’s urgent to clarify whether the historical data needs to be migrated and the way it can be migrated to the target systems. We distinguish between the following historical data definitions:

- **Out of use/obsolete master data**
 This includes, for example, data from old vendors or customers, routings for products that aren’t produced anymore, assets that have been sold, organizational data of HR departments that are outsourced, and so on. It’s useless to migrate such master data into a target system.

- **Closed transaction data**
 This includes completed and invoiced orders, invoices, account movements, and so on. Although many want to migrate these kinds of data
Plan and Organize Your Data Migration Projects

Master data should only be migrated to a new system if it’s essential. The term obsolete indicates that this data is no longer used and often not up to date. This obsolete data uses memory unnecessarily and often causes problems during migration, for example, address data with antiquated or missing postal/ZIP codes. You can find more about this in Chapter 1, Section 1.2.1 and Section 1.2.2.

Identify Tools

Closed transaction data must always be considered critical. If you follow the generally accepted accounting principles (GAAP) that may differ from country to country, it’s forbidden to migrate closed accounting documents into another system. It’s only possible if no changes appear on the migrated documents and if they aren’t running through the newly implemented business processes, which only occurs if you migrate from one SAP system to another SAP system directly on the database level. To do this, there are only a few tools available, such as System Landscape Transformation or System Landscape Optimization (SLO), provided by a handful of companies, for example, SAP’s SLO consulting. We recommend that you always ask your auditor before trying to migrate closed transaction data.

Determine Load Sequence

This is also why SAP doesn’t offer data migration programs to migrate closed transactions. Before you insist on migrating historic data, you must familiarize yourself with the risks and the alternative solutions. The earliest starting point and the latest finish are the same as described in the previous work packages. Due to the many constraints, it’s possible to finish this work package within 10 days.

Work Package 4: Determine Load Sequence

If all migration objects and source systems are identified, and the decision to migrate historical data is made, you can start to plan the load sequence of your migration objects. Because some migration objects are dependent on other migration objects, the load sequence should be finished as far as possible before the first functional tests. Without material master data and customer master data, you can’t migrate sales orders, for example.

The migration test plan and the cut-over plan are based on the load sequence. The latest finish of this work package should therefore be before you start to create the cut-over data migration plan.

Work Package 20: Identify Tools

After determining the migration objects and source systems, you can start to select and identify the tools for your data migration process. It’s very important to choose the correct data migration tools. If you choose the wrong tool at the beginning of your migration project, it may lead to high additional costs for training, maintenance, or licenses. Figure 3.4 illustrates an overview of the work packages and their dependencies.

As a basic rule, the following types of tools are used for data migration:

- Data cleansing tools
- Data load tools
- Data validation tools

There are various tools on the market. Some of them, called extraction, transformation, and loading (ETL) tools, cover all aspects of a data migration process.
Some of the standard built-in SAP products, for example, the LSMW (Chapter 6) or the Data Transfer Workbench (Chapter 5, Section 5.2), only cover a small part of the data migration requirements. Other tools, such as the ETL tool SAP Data Services (Chapter 8) cover a broader spectrum of data migration requirements. When choosing the tools, it’s important to check the compatibility with your source and target systems and to verify the availability of consulting experts who know how to use these tools.

Choosing the Wrong Tool

In a public sector’s SAP implementation project (planned to take more than five years, with hundreds of SAP consultants on board), the purchase process of the data migration tool called for offers across Europe. After allowing a very long deadline for offers, a small number of tools were shortlisted. Finally, the company decided on a specific tool and paid a lot of money for the tool’s licenses. The company also staffed additional consultants to train some internal staff. However, this tool wasn’t widespread on the market. The company couldn’t find any data migration consultant or specialists who were familiar with this specific tool, and additional funds to train external consultants weren’t available. The company finally used this tool only for a small aspect of the data migration process after wasting a lot of money.

You should request enough comparable proposals for different tools. Ask your vendor for reference customers and reference projects. Check the freelance portals and IT market job exchanges for specialist for specific tools that are available on your country’s market.

3.3.2 Data Cleansing

Data cleansing is a major component of a data migration project. The work packages involved and their dependencies are displayed in Figure 3.5.
Work Package 5: Analyze Data Cleansing Demand

If the bigger part of migration objects and source systems are determined, you can start to analyze the data cleansing demand. The effort should not exceed 5 to 10 days per system.

Work Package 6: Perform Data Cleansing

Performing a data cleansing can last days or months. The data cleansing itself must be finished last before the productive data migration into the target systems. The best point in time to finish is before you start the latest productive data migration test. The cleansed data can then be used for the data migration dress rehearsal.

Archiving

If you migrate your data into a productive system already in operation, it might be essential to remove already existent data in your target system. It’s not easy to delete data in SAP systems. In such cases, you should familiarize yourself with how SAP data records are archived.

[Ex] Load Material Master Records into a Productive System

In a phased roll-out project, material master records had to be migrated into a productive system already in operation. A huge number of the existent material master records were loaded in previous data migration projects using conversion rules that didn’t match the current data migration project’s conversion rules. The easiest way to get rid of these records was to delete them. Material master records used in transaction documents or in stock can’t be removed. After intensive investigations, it was decided to use the SAP archiving programs to remove them. Running the archiving programs in test mode allows the client to identify material master records used in transaction documents. By adding a small piece of program code into the related archiving program’s Business Add-In (BAdI) BAPI_NM_MATNR/IT_EX_BADI_NM_MATNR—ARCHIVE_MARA, it was possible to store the material numbers not used in any transaction documents and without any relationships to other objects into a customer’s Z table by running Program MMREO050N in test mode. In the second step, this Z table was used to archive the material master records stored in this table by calling Program MMREO050N in production mode and deleting these materials from the database tables.

Archiving might also be helpful if you want to remove erroneously loaded data records during the data migration tests.

3.3.3 Mapping

The mapping phase is the best point in time to determine the correct data migration technique for each migration object. The mapping and conversion rules should follow the migration object’s data structure provided by the selected data migration technique.

If you have a lot of organizational structures to map and migrate, an intermediate document (IDoc) is your best choice (see Chapter 5) to migrate your data. However, you shouldn’t exclude batch input as a data migration technique because some data migration scenarios are better suited to batch input. You can learn more about this in Chapter 11. Figure 3.6 provides an overview of the mapping phase packages and their dependencies.
Choosing the Best Technique for a Specific Purpose

The best way to map the material master is to use the IDoc type MATMAS06, the BAPI BAPI_MATERIAL_SAVEREPLICA, or the standard direct input Program RMDATIND. Using one of these solutions, it’s possible to load multiple organizational levels (company code, plant, sales organization, storage locations, etc.) with one single shot. All three solutions call the function module MATERIAL_MAINTAIN DARK to post the data. By using the IDoc or BAPI, it’s also possible to parallelize the execution into several work processes and to load more than one material at the same time. Using batch input, you have to create, maintain, and test recordings per material type and view, and you can’t load multiple organizational level structures (e.g. three plants and two sales organization structures) at the same time. Not using batch input will boost enormously the load time and the cost to implement and test. New custom views and fields are also easy to map with an IDoc or BAPI.

Customer master data and vendor master data can also be migrated smoothly using an IDoc if there are new customer views to integrate, and there are fewer than 5,000 master data records. You can also record a transaction instead of implementing a very complex extension of the DEBMAS or CREMAS IDoc type, especially if this extension can’t be reused in interfaces.

Work Package 7: Create Mapping and Conversion Rules

The earliest possible time to create the conversion rules is at the 80% finished point in the BBP. At this time, most conversion rules are known. You must start creating your rules at the latest when all migration objects are determined, and you must be finished before your last tests.

If possible, you can use existing mapping templates to map certain migration objects. The so-called paper based mapping can be made using a Microsoft Excel spreadsheet. Discuss the source structure and field mapping together with the person in charge at the customer and the source system’s IT staff, and note this down in the migration template. The Rapid Data Migration with SAP Data Services delivers such templates. Check Chapter 8, Section 8.3 (especially Section 8.3.1 and 8.3.4), for more on the topic of mapping templates.

Don’t Wait Too Long

In a certain data migration project, it took more than 10 months for the operating department to agree on how to define and assign purchasing groups to certain material master records and to define the related conversion rule. The rules and the customizing were delivered shortly before the last complete data migration test.

Take care to involve all important operating departments that need to deliver conversion rules into the data migration process.

The process of creating mapping and conversion rules is a very communicative process, which can’t be outsourced to any offshore party. To avoid mistakes and to promote understanding, the parties involved in this process must speak one business process language and, if possible, the same mother tongue.

Sometimes after the mapping and the first test, some problems appear that result in new data analysis with changed mapping and conversion rules. Conversion rules that seem definitively defined during the data
analysis phase might run into serious errors when mapped against real data and tested in the first function tests.

Quality of Address Data

Address data is often maintained without following existing maintenance instructions. Older legacy systems often provide too few or no fields on their entry screen to store address data such as mobile phone numbers, email addresses, web pages, and so on. Data entry employees therefore often store such data in unused fields. Many of these systems allow this because of missing field context checks.

If you then perform the first data extractions, you’ll discover that one employee entered the email address into the third address line, the second employee entered it in a comment field, and the third entered it in wherever there was enough space. You’ll also discover that no rules were followed regarding how to enter telephone numbers. Some entered them with the international dialing code, others entered it without, some entered with hyphens, and others used slashes between the regional dialing code and the number. You’ll discover a ton of incomparable address data that makes it hard to define automated rules to map the different source data fields to their target fields. Sometimes, you’ll also discover employees using their own databases and Microsoft Excel sheets to store their contacts address data. In the end, this will lead to new migration objects, mappings, and data cleansing activities.

Validation rules

The best time to start thinking about and writing down the validation rules is when you define the conversion rules. Rapid Data Migration with SAP Data Services (presented in Chapter 8, especially Section 8.3.6) contains prebuilt validation rules and procedures. With these rules, it’s possible to compare the extracted source data with the migrated data in the target system very easily.

Validation rules always have to be aligned and defined by or together with the client. The client is the only one responsible for validating the data in the target system. Only the client can decide if a data record is migrated correctly or incorrectly.

Implementation

After you’ve defined the first bunch of conversion rules, you can start to implement the data extraction and data migration procedures and...
using a recorded transaction or batch input, this will be a mandatory precondition. If the business process customizing isn’t finished, particularly with regard to a finished screen control, it will result in errors during the first function tests. For a recorded transaction, the recordings or related generated programs must be adopted continuously to the changing screen control. IDocs are normally resistant to a continuously changing screen control; they use internal function modules to verify and post the data to the database. But there are also IDoc types that are using batch input techniques to post the data, for example, DEBMAS and CREMAS. If you use such IDoc types, the screen control customizing must also be finished before you can start with the first tests. Compared to recorded transactions, you can start with the implementation using IDocs at any time.

Typically, data extraction and data migration programs are single-use programs. There are only used once to migrate the data and then never used again. Only when these programs are used for phased roll-outs are they possibly adopted for a longer period.

In certain circumstances, it might be easier and cheaper to manually migrate data:

- The number of data records to migrate is small and can be handled manually by a small team.
- The effort and costs to manually create the data in the target system(s) is smaller than the effort and the costs to create and test the data extraction and migrations programs. You must also take the number of tests where this data is required into consideration.

If there is a relatively small amount of uncomplex data to migrate, you can think about using an employee training to let training participants manually create the data in the target system. Please note that these employees must also be trained in the SAP’s data entry processes. If you are running out of time and the effort to implement a migration program is higher than the effort to manually create the data, this may be an option. An assistant’s wage rate to manually migrate the data is often much lower than those of a developer to create a program. Don’t forget to validate the manually created data!

You must critically assess the need to use continuous interfaces to load the data. A continuous interface can be used if the target system isn’t the leading system but is instead a subordinated system within an integrated network, and the system is continuously loaded with data via that interface. During an initial load, a huge number of data records will be transferred via this interface into the target system. The huge amount of data records of an initial load will be many times higher than the regular daily load via this interface. This will generally result in an interface capacity overload and delayed schedules. If you plan to initially load a target system via a continuous interface, you’ll have to take all resultant risks into consideration that endanger your go-live. Sometimes it’s better to use an extra data migration program to initially load your data. You can probably reuse the programs you’re already using to load test data into your systems to be used for the business process function tests (see the section on work package 14 in Section 3.3.5).

Work Package 8: Create/Adopt Data Migration Procedures

Depending on the data migration technique and the chosen data migration tool, this work package is the most time-consuming package. Start as early as possible to implement the conversion rules. You should use existing integrated validation and check rules of your data migration tool to improve your data quality and to detect erroneous date records and conversion rules.

You must assume that at the beginning of your data migration project, your source data won’t have the quality to run your mapping and conversion rules without any errors. Verify and check your source data during the data conversion and make proactive checks to determine errors. By continuously verifying and adopting the mapping and conversion rules, you’ll gradually increase the data quality of your migrated data into the target system.

Use Function Modules to Check

If you’re familiar with ABAP and you use the LSMW, you can also insert existing internal check function modules into your field mapping. Each SAP system provides a lot of internally usable function modules to verify the correctness of
Postal/ZIP codes, bank accounts, bank keys, and so on. You can use these function modules within your field mapping to determine records with wrong values. Print these records and the related error messages into a log. Forward this to the respective operating department or your data cleansing team. They can verify and correct these incorrect records in the source system.

Work Package 9: Create/Adopt Data Extraction Procedures

Close collaboration

To create the extraction programs, it’s very important to work closely together with the system administrators of the source data system. These are often the sole persons who know these systems best and can extract the required data. If the source systems are based on nonstandard, self-developed software, it will be better to outsource these work packages to the related system administrators and developers of the source system.

3.3.5 Data Migration Tests

The work packages of the test phase, in addition to the data validation work packages, are the most valuable packages in a data migration project to ensure an acceptable data quality. Figure 3.8 displays the work packages of the test phase and their dependencies.

The results of the first function tests will be used to improve the mapping and conversion rules. Sometimes, the analysis of a data migration object can only be closed after the first tests of the mapped source data and their related conversion rules.

[Ex] **How to Handle Bad Legacy Data**

In an international HR master data migration project, the result of the first function test was that the conversion rules to migrate the employees’ private addresses were useless. The source data was partially outdated and in very bad condition; for example, postal codes were missing or in the wrong format, country codes and streets were missing, and telephone numbers were either missing or outdated. The data quality was so bad that it could only be solved with a major effort to manually correct the addresses after the data load. The client decided not to automatically migrate the private addresses.

The employees were told to maintain their private addresses again in the new system via an Employee Self-Service (ESS) after go-live, which severely reduced costs.

Work Package 10: Load Test Data

Work package 10 includes all activities to provide test data for all functional and implementation tests based on the data migration programs to test the business processes. This work package is distinct from the work package 15 (test complete data migration) in that the data is loaded only to test specific business processes by the BBP teams.

This is also the best time to perform time measurements and to record the duration of the different data migrations steps per migration object:
1. How long does it take to extract the data from the source system?
 For example, if the server is located in China and you have to access it from the US, the time to extract the data takes longer than sitting directly in front of the server.

2. How long does it take to transfer the data files to the target application server or a specific network folder?
 For example, it may take some minutes to send files greater than 500MB over a slow Internet connection to a far server.

3. How long does it take to read the data into the data migration tool?
 For example, it makes a difference if a very huge file is read from an application server, from an internal network folder, or from your frontend.

4. How long does it take to convert the data with the data migration tool?
 For example, converting 1.5 million consumption data records takes more time than converting 1000 customers, depending on the mapping and the validation rules.

5. How long does it take to make some prechecks of the converted data?
 For example, to check a list of 100 vendors takes less time than checking 5000 material records.

6. How long does it take to load/post the data into the target system?
 For example, depending on the migration technique, there could be substeps to create batch input sessions or IDocs, for example, before the real load process can be performed.

7. How long does it take to validate the data after loading?
 For example, it takes more time to validate 5000 customer data records manually than defining validation rules, implementing them in a tool and let the tool validate the data.

The earlier you get an overall picture of the data migration time, the better you’re able to plan your tests and the cut-over.

Only recording the load/post time of a migration object is often not sufficient. As a rule of thumb, the sole load/post time is around 15% of the entire object’s migration time, including data validation. You should calculate 75% of your migration time to validate the data after loading.

Work Package 11: Plan Test Landscape

It’s essential to have a sole data migration system or at least your own system client in the development and quality assurance system to create and test your data migration programs and procedures.

Rededicate a Migration System as an Integration Test System

In a big international logistics project, they set up a separate data migration system that was only used to test the data migration. It was connected to the development system. The customizing and workbench requests to get the latest changes, were queued and only imported on demand. It was also used to build up the system for the business process integration tests. After the complete data migration was tested, the system was rededicated to be the new integration test system. The existent integration test system was reinitialized and used for the next migration tests that took place in parallel with the current integration test. During the integration test, the loaded data was tested intensely by the implemented business processes. Detected errors, mapping, and conversion rule changes were immediately forwarded to the data migration team to correct and to be used within the new data migration tests. This procedure ensured that a fresh system was available for the next integration test based on the latest findings and corrections.

You should also make use of database snapshots or system backups during your data migration tests. After loading bigger migration objects, especially master data objects, you should create a backup of your system or a snapshot of your database. If you then discover massive errors after loading the object, just reset your system by restoring the backup or the snapshot. Database snapshots consume a lot of disk space. But in comparison to a normal backup, it saves a lot of time to restore a snapshot rather than restore a backup file. Taking and restoring a snapshot may take 30 minutes whereas a backup and restore may take hours.

Work Package 12: Implement Test Landscape

Thinking you can save money by implementing a low-cost test landscape is based on a false economy. You must make sure that your test system environment is very close to the later SAP production system environment. The best practice is to run the tests on an identical system environment. The more identical your test environment is to the productive
environment, the more exact your time measurement and cut-over plan will be. Even a slight difference in the environment can lead to very different results.

Modification Effects

Even one additional application server in an integrated system network can cause performance problems in the complete system network if there are errors in the operating system or if it isn’t set up correctly. And even the size of the internal memory has a much more significant impact on the load time than the number of CPUs. You’ll only figure this out, however, if you’ve planned enough time for testing.

Work Package 13: Create a Test Plan for Data Migration

If you determined the load sequence of your migration object and finished your first data migration programs, it’s time to create the test plans for the complete data migration process. To create a test plan, you also need to know the time measurement results of Work Package 10 (load test data). The load sequence and the time measurements are the basis of the test plan. The results of this test plan will seamlessly be integrated into the cut-over migration plan.

Work Package 14: Define and Create Test Data Load Procedures (Optional)

In big implementation projects that are planned over a longer period, it’s necessary to provide data for specific business process tests. The technical expertise for extracting and loading programs/procedures to provide the test data can be used as a basis for the real data migration programs. This work package is optional, and you’ll be rarely confronted with it in bigger implementation projects.

Interfaces

If the target system is a subordinated system, that is, not the leading system, continuous interfaces are often used to load data into that system. These interfaces might also be used to initially load the data into the target system. Developing such interfaces is often very extensive and time-consuming. To...
Before you start migrating your data, you have to create a cut-over migration plan, which will be later integrated into the big cut-over project plan. The best time to start creating the cut-over migration plan is when you determine the load sequence. However, you shouldn’t start until you’ve created your data migration test plans. The test plans are the basis for the cut-over migration plan. As a general rule, the migration plan is finished after the last tests are passed. The effort to create such a plan shouldn’t exceed more than five days. In phased roll-out projects, however, this could take longer due to the number of planned go-lives.

If you have a narrow time frame to perform the initial data migration, you should categorize your migration object according to go-live importance.

Some business objects are very stable and are rarely changed or extended for a longer period. You can therefore migrate these objects days or even weeks before your go-live into the target system. As a prerequisite, the needed customizing must already be imported into the target system. You then have to double maintain your data in the source and the target system and document every change. Migrating in a system already in operation includes a certain amount of risk, which must be evaluated beforehand.

Some migration objects don’t have to be available in the target system at go-live. You can migrate such migration objects after go-live but note that this will lead to a higher system load at migration time and that you load data into a system that is already in operation.

Work Package 17: Perform Productive Data Migration

This is one of the final work packages of a data migration project. The prerequisites are as follows:

- All data migration programs/procedures (extract and load) are finished.
- At minimum, one successful complete data migration test is passed.
- The cut-over plan, including the data migration load plan, is finished.

Generally, the data migration load plan rules the cut-over project plan; that is, the cut-over plan follows the lead of the migration load plan.

3.3.7 Data Validation

An overview of the work packages and their dependencies in the data validation phase is shown in Figure 3.10.

There are two points in time in a data migration project to validate your migration object’s data:

- **Before the data migration**

 You validate your source data integrity and correctness before you load—sometimes even before you convert your data.
After the data migration
You validate your data integrity and correctness after you load with the data following the defined validation rules.

Both variants have their respective merits. If you validate before you load the data, you can prevent loading garbage into your system. If you validate after you load the data, you can check the migrated data after passing the conversion and the program logic of the program used to migrate the data. The big advantage of validating after loading is that you can use test tools such as the extended Computer Aided Test Tool (eCATT) to automatically run through complete business processes and check the correctness and data integrity of the loaded business object. You can also create SAP Queries based on the validation rules up front and transport them to the target system. This is an easy way to validate your data as fast as possible on formal aspects. The advantage of using validation tools and queries is that you can reuse them after go-live, for example, to test your processes installing service patches, SAP Notes, upgrades, and so on. You may also be able to use them for data cleansing processes in your new system. You only have to build them once and then can use them many times.

In principle, it often makes more sense to validate each business object after the load. You should proceed with loading dependent objects only after the validated business objects have been released. This process is very time-consuming, but it guarantees that your migrated data is compliant with your quality standards. Choosing to validate the target data is especially wise if there are very complex conversion rules used to convert the source data.

Validation Scheduling in a Customer Project
In a big pharmaceutical industry project, the data validation must be done following FDA rules. Due to the limited time frame to migrate the data, the company invented a 24/7 project plan to migrate and validate the data in several teams around-the-clock. After a migration object was loaded, the related staff members to validate the data were called to get to the company. They ran a three-shift operation to check and update the project plan and to control the complete project process. The three project plan teams worked in overlapping nine-hour shifts and controlled the schedule, corrected times, and called the staff to migrate or validate the data at least one hour before they had to perform their activities. It was therefore essential to perform a lot of tests to be able to document the estimated duration of the several data migration steps as accurately as possible. Without testing and documenting the times, scheduling different teams and staff, as well as remaining compliant with the standard operating procedures and the legal regulations, would have been impossible. They were rewarded for their intensive validating using this approach by a very smooth go-live and an extremely small number of erroneous data records that needed to be corrected after the migration; for example, only 20 of 32,000 loaded material master records had to be corrected manually after the validation.

Work Package 18: Define Validation Rules
Validation rules must always be created and defined together with the client’s staff. The mapping and conversion rules must be created first and can also be used as a base for the validation rules. Some tools and procedures to load data into systems, such as Rapid Data Migration with SAP Data Services (see Chapter 8), have predefined or built-in functions to validate migrated data.
Syntactical Checks

Tools often provide built-in functions to syntactically check loaded data for correctness in the following areas:

- Correct field length
- Correct and valid date and time formats and values
- Mandatory field checks
- Format check for number fields, and so on

You can find more about this Chapter 8, Section 8.3.6.

Semantical Checks

In addition to the syntactical tests, you should also perform semantical tests.

Semantical Checks

There is no way to prebuild semantical checks up front to check the correctness of the data contents. The checks are dependent on the context of the data and vary from project to project and object to object. Valid checks might include the following:

- Each customer of a specific sales district must be assigned to a certain sales group.
- Materials/products of a certain product group must be assigned to a specific purchasing group.
- Materials that overrun specific values (volume, weight, or dimensions) must be assigned to special storage bins.

Such checks must be individually defined per migration project. They can be automated by defining SQL queries (e.g., SAP Query) to a certain extent. If you intend to use such queries and checks after go-live to continuously check and improve your data quality, you should take tools such as SAP Information Steward into consideration. With the aid of such tools, you can define rules and thresholds to check and classify your data.

Work Package 19: Validate Data

As mentioned earlier, you can perform the data validation before or after the data load. If it’s done after the data load of an object, you should consider a successfully passed validation check as a prerequisite to loading other dependent objects. This improves your data quality and prevents issues when loading such dependent objects. It’s essential that the validation is done by the client itself and that all results are documented.

3.4 Planning and Effort Estimation

Now that you know the data migration work packages and their sequence and relationships, let’s discuss how to determine the business objects to migrate and how to estimate the duration of the overall data migration process. This section also provides some formulas and numbers given by some internal evaluations of former data migration projects.

3.4.1 Determine Business Objects to Migrate

To determine the business objects to migrate, you should record the following information about the business objects:

- Target SAP system (product, version, system ID).
- Name of the business object and a short description. To determine a meaningful object description, you can use the Transaction SAPTERM.
- Object type (master data, transaction data, customizing, other data).
- Dependency on other business objects to migrate.
- Number of records to load (volume).
- Estimated overall complexity of the business object (dependency on other business objects, complexity of the object's data structure, number of fields to migrate, number of conversion rules needed, complexity to implement the conversion rules, etc.) from 1 = less complexity to 10 = very complex.
- Dependency on other business objects to migrate.
- Number of records to load (volume).
Plan and Organize Your Data Migration Projects

- Source system (name, product, version, location).
- Major contact persons for the following:
 - Business object on customer/client site and in the implementation project.
 - The legacy or source system to extract the data.
 - Implementing the data migration in the target system.
- Name and product version of the tool(s) to do the following:
 - Extract the data.
 - Cleanse the data.
 - Convert the data.
 - Load the data.
 - Validate the data.
- Name and location of the related BBP or business process documents.

Store this information in a central table or spreadsheet (e.g., Microsoft Excel), and complete this with additional required object or status information. An example for such an object list is shown in Figure 3.11.

![Figure 3.11 Migration Object List Example Using a Microsoft Excel Template](image)

3.4.2 Estimate the Effort

If data migration projects are well-organized and planned, the data migration’s consulting effort to migrate should average out at 7 – 10% of the whole project’s consulting effort. If data migration projects are ill-prepared or poorly planned, the data migration’s consulting effort might exceed more than 30% of the overall consulting effort. The following numbers are based on internal evaluations of former data migration projects. They can serve as a rule but can vary from project to project.

- **Business blueprint (BBP)**
 During the BBP, the effort for the data migration project will be less. You should project between 2% and 5% of the overall data migration work packages’ effort for this phase.

- **Realization**
 The main effort for the data migration occurs during the realization phase, and is between 50% and 70% of the total data migration effort. Just for testing and test support, you should count on 30 – 40%.

- **Final preparation**
 After the first tests at final preparation to test the complete data migration process at go-live, the effort will decrease to approximately 10% of the total data migration effort.

- **Go-live and support**
 To perform the productive data migration and to support the project after the go-live, you should project between 5% and a maximum of 10% of the total data migration effort. It could be less, however, depending on the go-live preparation and the data validation outcome.

After determining the required work packages, you can start to estimate the project’s effort using an Excel spreadsheet. For some work packages, the effort can be calculated as a flat effort, for example, work package 16 (create cut-over data migration plan), work package 1 (determine business objects to migrate), work package 2 (identify source data systems), and so on. For some phases, especially the data analysis phase, you can roughly calculate the effort using a simple formula. The formulas in the following boxes have been used and verified in various data migration projects for years. While they vary from project to project, you can use them as a rough rule of thumb.
Data Analysis Phase

Formula to Estimate the Effort for the Data Analysis Phase

Estimate the complexity of the business object to migrate on a scale from 1 (less complexity) to 10 (very high complexity), and divide this number by 2. You can use the following example criteria to evaluate the complexity:

- Numbers of data sources (systems)
- Number of fields to map
- Number of conversion rules to implement
- Simple one-to-one conversions or additional program code requirements
- Number of records
- Quality of the source data and related conversion rules to correct wrong entries automatically

The calculated number is the effort in person days that will be used approximately for the data analysis phase work package 1 (determine business objects to migrate).

Data Mapping

Formula to Estimate the Effort for the Data Mapping

You can use the data analysis rule for the data mapping work package 7 (create mapping and conversion rules), too. Because of different data sources or complex data conversion rules, there may be more technical data migration objects for one business object. This may reduce the effort per migration object to determine the conversion rules and map the fields and structures because of the synergy effects and the learning curve for this object.

If, for example, the customer master data is loaded via IDoc from different source systems, the effort for the mapping and creating the conversion rules can be calculated for the first migration object using the formula. The effort for the further customer master data migration objects can be estimated up to a half or a quarter compared to the first object’s effort.

Implementation

For implementing the data extraction and data migration programs/procedures, there will be no such formula. The number of fields and structures to map and the number of conversion rules to implement are the crucial factors. Even the experience of the person implementing the rules and procedures might not be underestimated. While a very experienced data migration specialist needs, for example, one day to implement and test a specific data migration object, a less experienced person may need several days to do the same.

The effort to test and load the data into the target system depends on the time to load the data. It can be calculated more accurately after the first performed data load tests. To preestimate such numbers, you can resort to empirical values of other projects.

The effort to validate the data depends on the volume of records to validate and the complexity of the validation rules to perform. It can’t be calculated using a formula. You can decrease the effort if you use a tool to implement the validation rules to let them run automatically after the data load. Implementing is only done once, and then you just have to consider the run time of the automatic data validation procedure.

For data migration to SAP S/4HANA, cloud edition, some work packages can be excluded because of the given landscape, for example, work package 20 (identify tools) and work package 12 (implement test landscape). Some other work packages may be calculated with less effort than on usual SAP implementing projects because of the predefined data migration content, for example, work package 7 (create mapping and conversion rules) and work package 8 (create/adopt data migration procedures).

Figure 3.12 shows an example effort estimation using a Microsoft Excel spreadsheet.
3.5 Summary

You’ve now learned about the data migration phases and how they are integrated into the phases of a classical SAP implementation project. We’ve shown you how to organize your data migration projects by dividing the tasks into work packages and their dependencies. Using these work packages, you can see the big picture of complex data migration projects to plan and organize them, as well as better calculate the effort required. The procedures and formulas to calculate the effort, presented in the final section, are rough rules of thumb. We don’t warrant or represent that the given numbers and formulas are also valid for your projects.
2.3 Overview of Technical Procedures for Data Migration
 2.3.1 Batch Input ... 50
 2.3.2 Legacy System Migration Workbench 51
 2.3.3 SAP Data Services ... 51
 2.4 Summary ... 52

3 Plan and Organize Your Data Migration Projects 53
 3.1 Types of Data Migration Projects 53
 3.1.1 Initial Load (Green Field) 53
 3.1.2 Upgrading an Existing System (Brown Field) 54
 3.1.3 Phased Roll-Out .. 54
 3.1.4 Big Bang .. 54
 3.1.5 System Optimization 54
 3.2 Phases of Data Migration Projects 56
 3.2.1 Data Analysis .. 58
 3.2.2 Mapping .. 58
 3.2.3 Implementation ... 59
 3.2.4 Data Migration Tests 59
 3.2.5 Data Validation ... 59
 3.2.6 Data Cleansing ... 60
 3.2.7 Productive Load and Support 61
 3.3 Work Packages in Data Migration Projects 62
 3.3.1 Data Analysis .. 64
 3.3.2 Data Cleansing .. 71
 3.3.3 Mapping .. 73
 3.3.4 Implementation ... 76
 3.3.5 Data Migration Tests 80
 3.3.6 Productive Load and Support 85
 3.3.7 Data Validation ... 87
 3.4 Planning and Effort Estimation 91
 3.4.1 Determine Business Objects to Migrate 91
 3.4.2 Estimate the Effort 93
 3.5 Summary ... 96

4 Batch Input ... 97
 4.1 How Batch Input Works 98
 4.1.1 A Batch Input Session 98
 4.1.2 Processing a Batch Input Session 101
 4.1.3 Creating a Batch Input Session 104
 4.2 Standard Batch Input Programs 105
 4.2.1 Program RBIDE00: Customer Master 106
 4.2.2 Program RBIKRO0: Vendor Master 106
 4.2.3 Program RBISA00: General Ledger Account Master .. 107
 4.2.4 Program RBIBL00: Financial Documents 107
 4.2.5 Program RCSBIO10, RCSBIO20, RCSBIO30, RCSBIO40: Bill of Materials 107
 4.2.6 Program RM06BBIO: Purchase Requisitions 108
 4.2.7 Program RM07MKMB: Material Documents 108
 4.3 Batch Input Recording: General Approach 109
 4.3.1 Creating the Batch Input Recording 109
 4.3.2 Generating an ABAP Program from a Batch Input Recording 114
 4.3.3 Modifying the Generated ABAP Program 118
 4.3.4 Creating and Processing the Batch Input Session 126
 4.3.5 Call Transaction and Batch Input Session in Case of Error 128
 4.4 Summary ... 130

5 IDoc and ALE Distribution 131
 5.1 IDoc Basics ... 131
 5.1.1 IDoc as an Interface 132
 5.1.2 Using IDocs ... 132
 5.1.3 IDoc Customizing in SAP 136
 5.1.4 Optimizing IDoc Performance 138
 5.2 Data Transfer Workbench 142
 5.2.1 Basics .. 142
 5.2.2 Data Migration Using BAPIs 144
 5.2.3 Combining the Data Transfer Workbench and the LSMW 145
 5.2.4 Data Transfer Workbench Tools 146
 5.3 Summary ... 147
Contents

6 Legacy System Migration Workbench 149

6.1 Overview of the LSMW .. 149
6.2 Data Migration with the LSMW 152
6.2.1 Getting Started with the LSMW 153
6.2.2 User Guide: The Main Steps of Data Migration 158
6.2.3 Maintaining Object Attributes 159
6.2.4 Maintaining Source Structures 163
6.2.5 Maintaining Source Fields 164
6.2.6 Maintaining Structure Relations 170
6.2.7 Maintaining Field Mapping and Conversion Rules 173
6.2.8 Maintaining Fixed Values, Translations, and User-Defined Routines .. 185
6.2.9 Addendum: Files .. 193
6.2.10 Specifying Files .. 195
6.2.11 Using Wildcards in File Names 201
6.2.12 Assigning Files .. 202
6.2.13 Reading Data ... 203
6.2.14 Displaying Read Data .. 205
6.2.15 Converting Data ... 207
6.2.16 Displaying Converted Data 209
6.2.17 Importing Data .. 210
6.2.18 Object Overview .. 213
6.3 Recordings ... 215
6.3.1 Creating and Editing Recordings 217
6.3.2 Using a Recording ... 223
6.4 Long Texts ... 226
6.4.1 Long Texts in the SAP System 226
6.4.2 Target Structures and Field Mapping 227
6.4.3 Importing Long Texts .. 231
6.5 Transporting Projects .. 232
6.5.1 Creating a Change Request 232
6.5.2 Exporting Projects ... 233
6.5.3 Importing Projects ... 234
6.6 Preparations for Using IDoc Inbound Processing 234
6.7 Summary ... 237

7 Legacy System Migration Workbench for Experts 239

7.1 Advanced Functions .. 239
7.1.1 Layout and Processing Times 240
7.1.2 Global Variables .. 242
7.1.3 Global Functions ... 243
7.1.4 Reusable Rules: Naming Conventions 243
7.2 Advanced Applications .. 245
7.2.1 Determining the Transaction Code at Runtime 245
7.2.2 Skipping a Record .. 246
7.2.3 Skipping All Records of a Transaction 246
7.2.4 Duplicating a Record .. 246
7.2.5 Assigning Multiple Source Structures to a Target Structure .. 248
7.2.6 Assign a Random Number of Records to One Transaction ... 249
7.2.7 Error Messages in the Conversion Log 254
7.3 The LSMW Conversion Program 255
7.3.1 Activate Additional Process Steps 255
7.3.2 The Conversion Program’s Structure 256
7.4 User-Defined Routines and Advanced Tips 259
7.4.1 Initialize IDoc Structures with a Nodata Sign 259
7.4.2 Directly Modify Table Records Using the LSMW 259
7.4.3 Adding Selection Parameters to the LSMW Conversion Program ... 262
7.4.4 Assign Multiple Source Structures to One Target Structure with Substructures 267
7.4.5 Extend LSMW with an Advanced Conversion Log 274
7.4.6 Using Conversion Exits and Routines 281
7.5 Summary ... 287

8 Rapid Data Migration with SAP Data Services 289

8.1 SAP Data Services Overview 290
8.2 Rapid Data Migration Architecture 292
8.3 Rapid Data Migration Process 298
8.3.1 Data Migration Content 299
8.3.2 Connecting Source Systems 308
9 Data Migration in SAP Business ByDesign and SAP Cloud for Customer

9.1 Migration Templates
- **9.1.1 Structure and Elements of Migration Templates**
- **9.1.2 User Tips**
- **9.1.3 Field Formats**
- **9.1.4 Export Data from the Source System**
- **9.1.5 Filling Data into Migration Templates**
- **9.1.6 Alternative Options to Populate Migration Templates**
- **9.1.7 Data Cleansing**

9.2 Migration Tool
- **9.2.1 Navigation in SAP Business ByDesign**
- **9.2.2 Navigation in SAP Cloud for Customer**
- **9.2.3 Migration Tasks in the Implementation Project**
- **9.2.4 Prepare for Data Migration**
- **9.2.5 Migration Objects**
- **9.2.6 Migration Cockpit**

9.3 Migration Process Steps
- **9.3.1 Validate File**
- **9.3.2 Convert Values (Value Mapping)**
- **9.3.3 Simulate Import**
- **9.3.4 Import Data**

9.4 Migration of Accounting Transactional Data
- **9.4.1 Preparation in SAP Business ByDesign**
- **9.4.2 Preparation in the Source System**
- **9.4.3 Migration Unit**
- **9.4.4 Migration Templates in Accounting**
- **9.4.5 Accounting Migration: Main Steps**
- **9.4.6 Simulation of Single Files**
- **9.4.7 Posting Preview**
- **9.4.8 Cross-Check of Balances**
- **9.4.9 Acceptance of Imported Data**
- **9.4.10 Postprocessing**

9.5 Change Migration
- **9.5.1 Add New Records**
- **9.5.2 Enhance Existing Records**
- **9.5.3 Modify Existing Records**
- **9.5.4 Replace Existing Records**
- **9.5.5 Mass Data Maintenance**

9.6 Migration as a Subproject
- **9.6.1 Project Management**
- **9.6.2 Migration Tasks in Implementation Projects**
- **9.6.3 Test Strategy**

9.7 Tips and Tricks
- **9.7.1 Volume Performance by Parallelization**
- **9.7.2 Reconciliation of Migration Results**

9.8 Summary

10 Techniques for Avoiding Programming

10.1 Problem Area: Data Conversion

10.2 Techniques for Converting Data
- **10.2.1 Modifying Structures**
- **10.2.2 Modifying Field Contents**
<table>
<thead>
<tr>
<th>10.2.3</th>
<th>Using Microsoft Excel VLOOKUP Instead of Microsoft Access Database Join</th>
<th>499</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3</td>
<td>Summary</td>
<td>503</td>
</tr>
</tbody>
</table>

11 Assessment of Data Migration Techniques 505

<table>
<thead>
<tr>
<th>11.1</th>
<th>Use Cases</th>
<th>505</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2</td>
<td>Advantages and Disadvantages of the Procedures</td>
<td>506</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Batch Input</td>
<td>506</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Legacy System Migration Workbench</td>
<td>509</td>
</tr>
<tr>
<td>11.2.3</td>
<td>SAP Data Services</td>
<td>510</td>
</tr>
<tr>
<td>11.3</td>
<td>Reasons for Favoring a Certain Procedure</td>
<td>511</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Complexity of the Migration Task</td>
<td>511</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Quality of the Legacy Data</td>
<td>512</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Data Volume</td>
<td>512</td>
</tr>
<tr>
<td>11.3.4</td>
<td>The Importance of Data Security</td>
<td>513</td>
</tr>
<tr>
<td>11.3.5</td>
<td>Reusability</td>
<td>513</td>
</tr>
<tr>
<td>11.3.6</td>
<td>Restrictions</td>
<td>514</td>
</tr>
<tr>
<td>11.3.7</td>
<td>User-Friendliness</td>
<td>515</td>
</tr>
<tr>
<td>11.4</td>
<td>Summary</td>
<td>515</td>
</tr>
</tbody>
</table>

12 Advanced Topics and SAP S/4HANA ... 517

<table>
<thead>
<tr>
<th>12.1</th>
<th>Data Migration between SAP Systems or within an SAP System</th>
<th>517</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.1</td>
<td>SAP Landscape Transformation</td>
<td>518</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Using the Data Browser to Extract Records</td>
<td>523</td>
</tr>
<tr>
<td>12.2</td>
<td>Database Migration</td>
<td>527</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Basics</td>
<td>528</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Rapid Database Migration</td>
<td>528</td>
</tr>
<tr>
<td>12.3</td>
<td>Migration Paths to SAP S/4HANA</td>
<td>533</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Migrating Data to SAP S/4HANA</td>
<td>533</td>
</tr>
<tr>
<td>12.3.2</td>
<td>SAP Activate</td>
<td>537</td>
</tr>
<tr>
<td>12.3.3</td>
<td>SAP S/4HANA Cloud Editions</td>
<td>540</td>
</tr>
<tr>
<td>12.3.4</td>
<td>SAP S/4HANA, On-Premise Edition</td>
<td>543</td>
</tr>
<tr>
<td>12.3.5</td>
<td>Integrating Your Data with SAP S/4HANA, Cloud Marketing Edition</td>
<td>546</td>
</tr>
<tr>
<td>12.4</td>
<td>Summary</td>
<td>548</td>
</tr>
</tbody>
</table>

The Authors .. 549

Index .. 553

A

- ABAP, 246, 508
- ABAP commands, 266
- ABAP conversion program, 249, 257
- ABAP Dictionary, 98
- ABAP Editor, 184, 192, 255
- ABAP includes, 266
- ABAP program, 118
- ABAP statement, 246
- ABAP Workbench, 510
- Absolute amount, 494
- Account determination group assignments, 382
- Account type, 34, 38
- Accounting data, 371
- Analysis in production systems, 264
- Authorization concept, 157
- Authorization in production systems, 264
- Authorization profile, 157
- Auto field mapping, 179

B

- Background processing, 138
- Backup, 83
- Backup and restore, 40
- BAdI, 72
- Balance sheet account, 30
- Balance sheet item, 30
- Balances, 26
- Balances preview, 446
- BAPI, 97, 144–145, 150, 291, 489, 491, 509, 512–513, 520
- BAPI_MATERIAL_SAVEREPLICA, 74
- Batch input, 18, 50, 73, 78, 145, 150, 161, 506
- background processing, 127
- include bdcexcl1, 117
- interface, 506
- PERFORM bdc_dynpro, 116
- PERFORM bdc_field, 116
- PERFORM bdc_transaction, 117
- PERFORM close_group, 117
- PERFORM open_group, 116
- processing, 97
- program, 508
- recording, 104, 109–110, 112, 509, 514
- Batch input session, 98, 104, 127, 506, 509, 514
- blocked, 103
- blocking and releasing, 104
- deleting, 104
- display errors only, 101, 127
- error, 103
- in background, 103
- in process, 103

21 CFR Part 11

- 503
- 24/7 project plan, 89
Batch input session (Cont.)
in the background, 101
lock date, 126
new, 103
nodata indicator, 126
process in foreground, 101, 127
processed, 103
processing automatically, 103
retained, 102
user, 126
Batch mode, 281
BDCDATA, 98
Best practices, 295
Big bang, 54
Bills of material (BOM), 40, 107
Business blueprint (BBP), 58, 65
Business data object, 44
Business document (BDoc), 134
Business object, 44, 46, 58, 359
Business objects to migrate, 91
Business partner relationships, 382
Business process, 41
Business process integration test, 83
Business reporting, 298

Call transaction, 117, 128
Carve out, 519
Central Management Console (CMC), 292
Change history, 519
Change migration, 452
change records, 460
new records, 453
Change request, 232
Charts of account, 27
Check tables, 345, 511
Checkbox structure, 185
Cleansing rule, 61
Cloud, 55
Collective view, 404
Comment, 280
Company code, 137, 244
Compliance, 503

Data
analysis, 58, 64, 93
cleansing, 60-61, 71, 291, 298, 372
configuration tool, 69
conversion, 46, 151, 209, 483, 509
converting, 46
correction, 452
editor, 386–387, 394, 404, 467–468
equations, 420
exporting, 45
extracting, 45
format, 313
importing, 48
load tool, 69, 337
loading, 48
loss, 462
mapping, 290
migration demo, 355
migration object, 44, 154
migration technique, 79
migration test, 58-59
migration test plan, 85
migration tests, 80
migration tool, 79
normalization, 291
object, 44, 150, 243, 489, 509
profiling, 291, 297
quality, 60-61, 80, 297, 352, 512
reading, 45
records, 337
security, 39, 513
transfer, 44
transformation, 46
transforming, 46
type, 310
uploading, 45
validation, 59, 80, 87, 291, 355, 400
validation tool, 69
volume, 28, 512
Data Browser, 518
Data Dictionary, 282
Data Migration Server (DMS), 542
Data Services → SAP Data Services
Data Transfer Library, 146
Data Transfer Workbench, 70, 142, 146, 152, 513
eror handling, 144
run, 143
Data type and format validation, 333
Data validation, 400
semantic check, 90
syntactical check, 89
Data variety, 474
Database
table, 259, 321
Database migration, 527
package, 529
rapid database migration, 528
Database Migration Option of SUM
DMO, 531–532
Database server, 506
Datatstore, 308
Date format, 367, 489
Date value, 489
DDMMYY, 47
Debit posting, 38
Decimal marker, 367
Decimal point, 491
Default values, 47
Define and create test data load procedures, 84
Define validation rules, 89
Defining the dataset, 25
Delta file, 444
Determine business objects to migrate, 64
Determine load sequence, 69, 86
Dialog processing, 110, 506
Direct function call, 134
Direct input, 45, 150, 161, 509, 513
Direct input session, 211
Document number changes, 252
Document type, 34
Dormant data, 25–26
Drag and drop, 52
Dress rehearsal, 476
Duplicating a record, 246
Dynpros, 97, 112

Concatenation, 184
Configure Your Solution, 539
Continuous interface, 79
Conversion, 46, 514
Conversion exit, 282, 284
Conversion log, 254, 274
Conversion log message, 278
Conversion routine, 284
Conversion rule, 51, 153, 173, 509
Conversion status, 409
Conversion tasks, 51
Convert text to columns wizard, 493
Converted data, 274
Converting data, 150
Converting legacy data, 483
Converting numbers, 494
Core Interface, 67
Country code, 334, 407
Create cut-over data migration plan, 69, 86
Create test plan for data migration, 84
Create/adopt data extraction procedures, 80
Create/adopt data migration procedures, 79
Credit posting, 38
CRM Middleware, 67
Cross-check of balances, 446
Cross-system company code, 136
CSV file, 388, 467
Currency field, 367
Currency format, 493
Cursor position, 123
Custom function, 348
Customer hierarchies, 455
Customer master, 106, 246
Customer-specific extension fields, 379
Customizing, 24, 35
Cut-over plan, 69
Cut-over project plan, 86
Customer code, 137, 244

effort estimation, 93
Electronic data interchange (EDI), 132, 339
Employee data, 382
Endpoint URL, 357
Enhance existing records, 456
Enhanced mode migration, 457
Enhancement package, 530–531
Erroneous data records, 263, 313
Error, 128
Error analysis, 405, 419
Error file, 144
Error handling, 515
Error log, 402, 406
Error message, 254, 418
Estimate the effort, 94
Export data, 368
Exporting legacy data, 489
Extension field, 481
Extension fields, 393
Extract system, 290
Extraction program, 80
File, 44, 193
amount field, 204
assignment, 202
character set, 195
code page, 195
date value, 204
end-of-record indicator, 193
for converted data, 200
for read data, 200
format, 514
read authorization, 199
sequential, 194
table, 194
wildcards, 201
write authorization, 199
File upload, 385
errors, 386
Filling data, 369
Financial Accounting, 38
Financial documents, 107
Fixed values, 243
Form routines, 117
FTP server, 338
Function module, 212
MATERIAL_MAINTAIN_DARK, 74
General Ledger, 29
account, 30, 33
account master, 37
account postings, 35
accounting, 31
generally accepted accounting principles
GAAP, 68
Generated code, 272
GL account line item, 123
Global data, 266
Global variable
g_nodata, 260
Global variables, 240
Go-live, 61, 79, 88
Governance, 296
Guided configuration, 539
Historical data, 67, 519
Hit probability, 180
Hosted cloud, 55
HTTP messages, 358
Identifier fields, 411
Identify source data systems, 66
Identify tools, 69
Identify your source systems, 66
IDoc, 49, 73, 78, 97, 131, 134, 144, 150, 161, 234, 259, 291, 299, 301, 340, 449, 491, 509, 512
administrator, 136
creating an IDoc overview, 212
Customizing, 136
extensions, 133
format, 144
inbound, 340
inbound processing, 144, 234, 236
message types, 133
performance, 138
segment, 341
segments, 302
starting the IDoc creation, 212
starting the IDoc processing, 212
structure, 316
target structure, 306
type, 49
work item, 212
IDoc type MATMAS06, 74, 260
Implement test landscape, 83
implementation, 59, 76
implementation method, 56
implementation project, 56, 474
Import data, 424
Import run, 450
Import simulation, 415
best practices, 418
Import technique, 161
Import value conversion, 392
Importing data, 150
Inbound processing, 49
Income statement account, 26
Inconsistent values, 403, 405
Industry-Specific Migration Workbench (ISMW), 299
Information governance, 300
InfoTypes, 355
Initial load, 53, 79
Integration test, 83
Interface, 84
Internal table, 120
ISO codes, 46, 329
Iteration, 41
Job run, 326
Jobs, 299, 304
Join, 486
Key fields, 366
Key user authorization, 450
Landscape transformation, 536
Layout, 240
Layout structure, 252
Leading zeros, 495
Legacy data, 28, 142, 263, 297, 354, 543
Legacy data structure, 251
Legacy system, 149, 314, 354, 369, 497
Legacy System Migration Workbench → ISMW
Legacy values, 330
legal regulations, 89
Line functions, 397
Line items, 26, 30
Load box, 265
Load system, 290
Load test data, 81
Loading, 48
Local Object Library, 303
Local template files, 370
Logical file name, 201
Logical path, 201
Logical system, 136–137
Logical Unit of Work, 140, 144
Long text, 226, 418
flag, 226
Long texts, 262
Lookup value, 307
Loop, 122
LSMW, 47, 55, 70, 106, 145, 149, 173, 239, 487, 491, 493, 509, 512–513, 520
action log, 159
ALE/EDI Customizing, 212
assigning files, 202
attributes, 159
authorization concept, 157
authorization profiles, 157
conversion log extension, 255
conversion program, 255–257
conversion rule, 150, 225, 229
converting data, 207
default setting, 180
display variant, 180, 230
equal rank, 163
exporting projects, 233
field length, 166
field mapping, 225, 229, 267
field type, 166
fixed value, 183, 185–187
global data definitions, 241
global functions, 243
global variable, 242
identifying field value, 166
IDoc inbound processing, 234
import, 150
import technique, 159, 223, 228
importing data, 210
importing projects, 234
labels, 230
main steps, 158
my objects, 162
object, 228, 262
object attributes, 159, 228
object overview, 74, 159, 213

LSMW (Cont.)
object type, 159, 223, 228
owner, 162
periodic data transfer, 162
processing times, 230, 241
profile, 157
project, 154, 509
project documentation, 156
reading, 150
reading data, 203
recording, 215
recording function, 150
required target structures, 170
reusable rules, 243
selection parameters, 203
skip records, 246
source field, 164, 173, 228
source structure, 163, 202, 228, 485
specifying files, 195
structure relations, 229
subordinate, 163
subproject, 154, 509
system-dependent file name, 163
target field, 173
target structure, 485
technical field, 180
translation, 183, 186–187
translations, 185
user menu, 159
user-defined routine, 184–186

M
Manage Your Cloud Solution, 539
Mandatory fields, 318
Mandatory fields validation, 333
Manual maintenance, 168
Mapping, 37, 46, 58, 65, 73, 355
Mapping phase, 66, 73
Mapping sheets, 307
Mapping template, 74
Mapping templates, 316
Mapping, 407
Mass change, 398, 452
Mass data maintenance, 464
Mass data upload, 138
Mass uploads, 141

Master data, 16, 25, 378
example, 26
obsolete, 67–68
Master data migration, 118
Material documents, 108
Material master, 264
description, 272
Material valuation data, 453
Merge SAP systems, 519
Merging, 391
Message type, 162
Microsoft Access, 486
Migrate Your Data, 540
Migration, 43
work package, 62
Migration account, 29, 33
Migration cockpit, 383, 392, 396, 427, 443
Migration object, 58, 66, 250, 380, 456, 542
Migration posting date, 429, 431
Migration process steps, 399
Migration project, 542
Migration project plan, 472
Migration reconciliation account, 447
Migration services, 297, 325
Migration step
convert values, 407
Migration tasks, 376
Migration template, 360, 363
accounting, 439
copy data to, 370
error, 364
saving, 364
structure, 360
Migration test plan, 69
Migration unit, 434, 436
Migration Workbench, 518–519
Missing target values, 412
Modification
field contents, 484
Modify existing records, 460
Modify table records, 262
Modifying structures, 484
Multiple source structures, 248
MWB → Migration Workbench

N
Naming convention, 384
 Naming procedure, 244
Navigation screen, 207
Nodat sign, 271
Nodat sign, 271
Nonfatal errors, 405
Number format, 491

O
Object, 44
Object level, 432
ODA, 355, 357, 546
ODBC call, 257
ODBC protocol, 297
Offsetting posting, 111
Offshore, 75
On-premise, 55
On-premise application, 354
Open Database Connectivity (ODBC) protocol, 290
Open purchase orders, 381
Opening balance sheet, 30
Opening balance sheet account, 30
Optional entry field, 38
Organizational structures, 455
Organizational unit, 521

P
P&L account, 137
Paper-based mapping, 74
Partner, 162
Partner agreement, 162
Partner profile, 137
Perform data cleansing, 72
Perform productive data migration, 87
Phased roll-out, 54, 72, 78, 86, 264
Plan and organize data migration projects, 53
Plan test landscape, 83
Structured variable, 260
Subledger, 31
Subledger accounting, 30
Subordinate source structure, 249
Subroutine technique, 120
Suffix, 183
SUM, 50478
Software Update Manager (SWPM), 50478
Software Provisioning Manager (SWPM), 50478
System conversion, 535
System Landscape Optimization (SLO), 55, 68
System Landscape Transformation, 68
System optimization, 54

T
Table CEPC, 523
Table flag, 262
Table-like file, 44
Target data field, 252
Target environment, 315
Target field, 322
Target field name, 390
Target structure, 170
Target structure field, 260
TDMS Manager, 521
TDMS → Test Data Migration Server (TDMS), 521
Template download list, 379
Temporary user accounts, 473
Test complete data migration, 85
Test data, 143
Test Data Migration Server, 518, 521
data scrambling, 522
test environments, 475
test migration, 387, 430, 474
test phase, 80
test plan for data migration, 86
test run, 291
test system, 423
test Your Processes, 540
testing, 41
test file, 39, 44
test key, 227
thousand separator, 491

Throughput, 144
Transaction, 110, 135
AL11, 200
BD87, 342
EMIGALL, 299
FB01, 109, 118
FK01, 99
FS01, 216
SM35, 211
WE02, 342
WEO5, 342
WE19, 347
XD01, 246, 282
XD02, 246
Transaction code, 245
Transaction data, 16, 26, 29, 41, 378
closed, 67
easy, 27
Transaction Recorder, 113
Transaction recorder, 97, 104, 109, 215
Transaction RFC (RFC), 132
Transaction data, 411
Transfer (MOVE), 182
Transformation, 38, 46
Translation, 46–47, 497–498
Translation tables, 345
Translation type, 189
Translations, 243
Transport system, 232
type definition, 277

Unit of measure (UoM), 458
Unused source values, 412
Upgrading existing systems, 54
Upload, 48
User acceptance tests, 475
User administration, 472
User Menu button, 255
User profile, 489
User Training and Onboarding, 540
User-acceptance test, 85
User-defined routines, 243, 259, 275
User-friendliness, 515

V
Validate data, 90
Validation, 76
after load, 88
against lookup tables, 333
before load, 87
data errors, 405
enhancements, 350
log, 401
screen, 468
Value conversion, 410, 481
export and import, 392
import, 415
Value help, 266
Value mapping, 325, 331, 369, 412–414
Variables, 122
Vendor master, 106
View Solution Scope, 539
Visualization, 296
VLOOKUP, 501
Volume performance by parallelization, 477
Volume test, 476

W
Web Services, 291
Work center, 374
Work center views, 364
Work item, 212
Work package, 62
Workflow customizing, 136
Worklist, 408, 450

X
X FIELD, 185
XIF interface, 134

Y
YYYYMMDD, 47, 166

Z
ZIP files, 385
Frank Densborn is a product manager for SAP Rapid Deployment solutions in the technology area, focusing on data migration and cloud integration. He joined SAP in 2004 and has held various roles in development, education, support, and product management.

Frank Finkbohner joined SAP in 1999 as a development consultant, with a focus on planning and implementing legacy data migration. He is now the project manager for building rapid-deployment solutions in the areas of enterprise information management, data migration, and data loads.

Johann Gradl joined SAP in 1993 and was a driving force behind the development of the Legacy System Migration Workbench (LSMW), and subsequently became responsible for maintenance of SAP CRM.

Michael Roth joined SAP in 1994, where he worked in various positions in service and development. Today, he is a member of the Platinum Engineering Team for SAP Business ByDesign.

Michael Willinger works at SAP SE in the area of system landscape optimization, where he focuses on migration projects that go beyond the standard SAP ERP system.