This sample chapter introduces the SAP S/4HANA deployment options—on-premise, public cloud, and private cloud—and outlines their strengths and weaknesses to help you choose the right deployment model and the right cloud/cloud service providers.

Axel Baumgartl, Dmitry Chaadaev, Nga-Sze Choi, Mark Dudgeon, Asidhara Lahiri, Bert Meijerink, Andrew Worsley-Tonks, Devraj Bardhan

SAP S/4HANA

449 Pages, 2017, $69.95
ISBN 978-1-4932-1400-6
www.sap-press.com/4153
Contents

Foreword from Nancy Thomas ... 15
Foreword from Markus Schwarz ... 17
Preface ... 19

1 The Digital Transformation: An Introduction 25
1.1 Defining the Digital Transformation ... 26
1.2 Digital Transformation: A Business Perspective 29
1.3 Digital Transformation: A Technical Perspective 37
1.3.1 Cloud Computing and Services 37
1.3.2 Mobile Solutions and User Experience 39
1.3.3 Internet of Things and Big Data .. 39
1.3.4 Data Insights and Cognitive Computing 41
1.4 Summary ... 44

2 SAP S/4HANA and the Digital Enterprise 45
2.1 Evolution of Enterprise Resource Planning Solutions 45
2.2 Business Value Scenarios ... 53
2.2.1 Customer Centricity and Experience 56
2.2.2 Customer Insight and Improved Decision Making 63
2.2.3 Digitally Enabled Supply Chain ... 68
2.3 Architecture at a Glance ... 73
2.4 Summary ... 77

3 SAP S/4HANA Finance ... 79
3.1 IBM Chief Financial Officer Surveys ... 79
3.2 SAP S/4HANA Finance Benefits .. 84
3.2.1 Integration of Information .. 85
3.2.2 Enterprise Cost Reductions .. 89
3.2.3 Measuring Business Performance 90
3.2.4 Optimize Planning, Budgeting, and Forecasting 92
3.2.5 Continuous Finance Process Improvements 93
3.2.6 Provide Inputs to Enterprise Strategy 94
3.2.7 Develop Talent in the Finance Organization 97
3.3 Key Functionalities ... 99
 3.3.1 Universal Journal .. 99
 3.3.2 SAP Material Ledger ... 103
 3.3.3 New Asset Accounting .. 107
 3.3.4 SAP Cash Management ... 108
 3.3.5 SAP BPC for S/4HANA Finance ... 112
 3.3.6 Profitability Analysis .. 112
 3.3.7 Central Finance .. 118
 3.3.8 Real-Time Data and Soft Close .. 121
 3.4 Maturity and Release Restrictions ... 123
 3.5 Business Case .. 127
 3.6 Future Outlook .. 129
 3.7 Summary ... 131

4 SAP S/4HANA Materials Management and Operations 133
 4.1 IBM Chief Supply Chain Officer Survey Findings 134
 4.2 Addressing Logistics Pain Points ... 138
 4.2.1 Lack of Supply Chain Visibility 139
 4.2.2 Increasing Volatility in Demand and Supply 140
 4.2.3 Increased Complexity .. 142
 4.2.4 Lack of Collaboration ... 143
 4.2.5 Lack of Customer-Friendly Interface 144
 4.3 Key Functionalities ... 144
 4.3.1 Manufacturing .. 146
 4.3.2 Supply Chain ... 153
 4.3.3 Sourcing and Procurement .. 155
 4.3.4 Sales .. 173
 4.4 Business Case ... 178
 4.4.1 SAP S/4HANA: The Digital Core 178
 4.4.2 Manufacturing ... 180
 4.4.3 Supply Chain Management .. 181
 4.4.4 Sourcing and Procurement .. 183
 4.4.5 Sales .. 184
 4.4.6 Summary of SAP S/4HANA Key Benefits for Logistics 186
 4.5 Future Outlook ... 188
 4.5.1 Manufacturing ... 188
 4.5.2 Supply Chain ... 189
 4.5.3 Sales .. 189
 4.5.4 Sourcing and Procurement .. 190
 4.6 Summary ... 191

5 SAP S/4HANA and the SAP Landscape ... 193
 5.1 Sourcing and Procurement: SAP Ariba 194
 5.1.1 Sourcing and Contracts .. 194
 5.1.2 Requests and Purchases .. 196
 5.1.3 Invoices and Payments ... 197
 5.1.4 SAP Ariba and SAP S/4HANA ... 199
 5.2 Contingent Workforce Management: SAP Fieldglass 200
 5.2.1 Vendor Management System ... 201
 5.2.2 SAP Fieldglass and SAP S/4HANA 203
 5.3 Travel and Expense Management: Concur 203
 5.3.1 Spend Management ... 204
 5.3.2 Concur and SAP S/4HANA .. 205
 5.4 Human Resources: SAP SuccessFactors 205
 5.4.1 Employee Data .. 206
 5.4.2 Talent Management .. 206
 5.4.3 SAP SuccessFactors and SAP S/4HANA 208
 5.5 Customer Relationship Management: SAP Hybris 211
 5.5.1 Commerce ... 212
 5.5.2 Marketing .. 213
 5.5.3 Billing ... 215
 5.5.4 Sales and Service .. 217
 5.5.5 SAP Hybris and SAP S/4HANA .. 218
 5.6 SAP Master Data Governance ... 218
 5.7 SAP S/4HANA Embedded Analytics 220
 5.8 Summary ... 222

6 SAP S/4HANA Architecture .. 225
 6.1 Typical Issues in Information Technology Landscapes 225
 6.2 The Journey from SAP ERP to SAP S/4HANA 227
 6.2.1 The Evolution of SAP S/4HANA 227
 6.2.2 SAP S/4HANA as the Digital Core 232
 6.2.3 The Road Map to SAP S/4HANA and Innovations 234
 6.3 SAP HANA Platform .. 237
 6.3.1 SAP HANA Database .. 238
 6.3.2 Virtualization ... 241
 6.3.3 Scalability .. 245
 6.3.4 Recoverability ... 246
 6.3.5 SAP HANA Operations ... 253
 6.3.6 SAP HANA Logical Deployment Options 258
 6.3.7 SAP HANA Platform Services ... 261
This chapter introduces the SAP S/4HANA deployment options—on-premise, public cloud, private cloud—and outlines their relative merits and demerits to help you choose the right deployment model and the right cloud/cloud service providers.

8 Deployment Options

In Chapter 2, we briefly introduced the different versions of SAP S/4HANA. In this chapter, we’ll take a closer look at the different deployments options. As of the November 2015 SAP S/4HANA release, there are two main options:

- SAP S/4HANA, deployed on-premise (often called the on-premise edition)
- SAP S/4HANA Cloud

There are further variants of SAP S/4HANA Cloud, including those released in August 2016. For the on-premise version of SAP S/4HANA, there are various options to deploy the solution. This chapter discusses each of the deployment options available as of September 2016.

To choose the SAP S/4HANA version and deployment that is best for your organization, it’s important to know about these options so you can optimize the overall IT landscape, minimize the initial costs of the SAP S/4HANA deployment, and have a balanced cost structure throughout the lifecycle of the landscape.

Before we go deep into the options and highlight the advantages and disadvantages of each option, let’s take a quick look at the cloud concepts and why they are important today. This will help you interpret the different terms correctly when we discuss the deployment options for the cloud.

8.1 Cloud Concepts

We’ll refer to the Cloud Computing Reference Architecture (currently at CCRA 4.0) published by IBM to help us navigate through the common adoption patterns for cloud. Figure 8.1 gives the overview of this reference architecture.
Expanding on the concepts introduced in Chapter 1, Section 1.3.1, we find the following:

- **Infrastructure-as-a-service (IaaS)**
 IaaS is an offering by which IT landscapes can be hosted in the cloud using the computational resources such as servers as well as storage and networks owned by the service providers. The customers can get their requisite quantity of infrastructure provisioned very fast and on-demand. Typically, there are web-based user interfaces (UIs) where customers can put in their requirements and self-provision the infrastructure. API access to the infrastructure may also be offered as an option. Simply speaking, this service provides the place to run the customer’s applications. For example, many customers’ IT landscapes use IBM data centers.

- **Platform-as-a-service (PaaS)**
 PaaS includes a composable and integrated application development platform that allows you to model multilayer application infrastructure (middleware)

- **Software-as-a-service (SaaS)**
 SaaS is the software that is owned, delivered, and managed remotely by one or more providers. The software provider delivers standard software based on a set of common code and data definitions. This software has components that are configurable to suit customers’ requirements and typically will have some enhancement points and some APIs to connect with other solutions. The software is provisioned for the contracted customers at any time on a pay-for-use basis or as a subscription based on usage metrics. There are several SaaS solutions today, including SAP SuccessFactors, Concur, and the SAP S/4HANA Cloud, public option.

- **Business-process-as-a-service (BPaaS)**
 Gartner defines BPaaS as “the delivery of business process outsourcing (BPO) services that are sourced from the cloud and constructed for multitenancy.” These services are often automated and include human intervention, which is catered to by a shared pool of human resources. The pricing models are consumption-based or subscription-based commercial terms. As a cloud service, the BPaaS model is accessed via web-based interfaces.

After choosing to put their infrastructure on the cloud, customers need to choose whether they want a private cloud, a public cloud, or a hybrid option:

- **Private cloud**
 The cloud infrastructure provides options for scalability, flexibility, provisioning, automation, and monitoring but is dedicated for a particular customer. The cloud vendor provides the infrastructure dedicated to the customer either on client premises or in the cloud vendor’s data center, but it’s dedicated to the specific customer and behind the company’s firewall.

- **Public cloud**
 The cloud computing services are provided outside the organization via the Internet whereby the IT resources are available and accessible through the Internet in the public domain.
Hybrid cloud
This is a combination of some of the options, for example, private cloud and public cloud deployments or a public cloud and on-premise deployments linked together. There are several use cases for the hybrid cloud scenario. There are also variants in the IaaS space with different kinds of management services on top of the infrastructure. More details about the types of service are covered in Section 8.2.1 and Section 8.3 of this chapter.

8.2 SAP S/4HANA Versions
SAP S/4HANA Enterprise Management is available in two major flavors: on-premise and cloud. From a functionality perspective, there are some divisions in the different versions available for the cloud version, such as the SAP S/4HANA Marketing Cloud or the SAP S/4HANA Project Services Cloud, but we’ll be focusing on the SAP S/4HANA Enterprise Management Cloud in this section, which covers scenarios from logistics, financials, and project management.

Let’s now dive into the SAP S/4HANA, on-premise edition, before moving on to SAP S/4HANA Cloud and the hybrid of the two. In the following section, we’ll provide criteria for choosing between your different deployment options.

8.2.1 SAP S/4HANA, Deployed On-Premise
The SAP S/4HANA, on-premise edition, is the entire SAP ERP scope with simplifications in several core areas. This has already been covered in earlier chapters, including an overview in Chapter 2, and discussion of finance (FI) and logistics functionality in Chapter 3 and Chapter 4, respectively. For the on-premise edition, the release cycle for new functionality is on an annual basis and can be deployed on-premise or on cloud with the IaaS model.

The first decision for the client is to choose the right SAP S/4HANA product version: on-premise SAP S/4HANA or SAP S/4HANA Cloud. When making this decision, the client should consider the following primary aspects:

Licensing model
The SAP S/4HANA, on-premise edition, follows the traditional licensing model. For SAP S/4HANA Cloud, the pricing follows subscription-based licensing, per the SaaS model.

Range of functionality
So far, the on-premise version has the complete set of functions from SAP Business Suite/SAP ERP, although not all of them use simplified code or the SAP Fiori frontend. SAP S/4HANA Cloud covers specific business processes for marketing line of business (LoB) and the professional services industry, while SAP S/4HANA Enterprise Management covers scenarios for a digital core, including FI, Controlling (CO), Procurement, Sales and Distribution (SD), Manufacturing, Plant Maintenance (PM), Project System (PS), and SAP Project Lifecycle Management (PLM). The scope of functions for SAP S/4HANA Cloud will be enhanced on a quarterly basis.

Therefore, a customer who needs the full-blown SAP ERP functionality for its business beyond what is provided by SAP S/4HANA Cloud needs to opt for the on-premise version or wait for SAP S/4HANA Cloud to reach the state where it can cater to these functionalities.

Standardization versus flexibility
The on-premise version provides complete flexibility to do any customization to the standard solution, as is required by the customer’s business processes. SAP S/4HANA Cloud, on the other hand, provides limited ability for customization. Thus, this edition is suited to those organizations that have the strategy to adopt standardized processes. Thus, they can adhere to the functionalities provided by SAP S/4HANA Cloud.

IT strategy in terms of usage of SaaS
The IT strategy for some of the major organizations is to adopt a SaaS model for all their IT solutions, even their ERP solutions. This might potentially drive them to adopt SAP S/4HANA on-premise if the first premise in terms of functionality is met.

Infrastructure and operations
For the on-premise edition, the client has complete control of the infrastructure, deployment, and maintenance schedule. For SAP S/4HANA Cloud, SAP provides the system and any service-level agreements around the nonfunctional requirement. They also have to test the delta functions every quarter for a fixed number of days before the updates are applied. Thus, the customer has no control over accepting the versions upgrade. This has some advantage in terms of less maintenance, but companies need to plan for the resource and effort for this continuous testing every quarter.

Implementation approach and time lines
The implementation for SAP S/4HANA Cloud is much faster due to the
standardized process configurations, which include SAP Best Practices for implementation. Both new and existing SAP ERP customers need to only do data migration, which is aided by migration tools and templates for different data objects. Deep technical skills aren’t needed. For the on-premise implementation—both for the migration scenario and the new implementation scenario—the technical knowledge and skills are mandatory for the team because there will be customer-specific scenarios and considerable customization. The time lines for the SAP S/4HANA adoption are also longer.

Costs
Costs are affected by several factors, including the reduced implementation time lines. However, because SAP S/4HANA Cloud is a SaaS model, the product licensing costs and the infrastructure and operational costs decrease. Because SAP S/4HANA Cloud has fewer customization capabilities, it also has the advantage of less maintenance overhead. Apart from the licensing model, the infrastructure investment and maintenance overhead can also be tackled through an IaaS adopted for the on-premise edition.

There can be certain constraints as well in terms of SAP S/4HANA Cloud adoption. Following are the three main constraints:

- Regulatory compliance might compel the data to be on-premise, or the data might not be able to be taken outside the country, requiring in-country hosting of the data center.
- Organizations have security concerns about the data being in the cloud, in the public domain, beyond the organization’s firewall.
- The size of the database may be too large for the currently available cloud options for SAP HANA.

The second concern is gradually getting changed to certain precautionary steps the customer should take, and, of course, the cloud providers have to follow standard security processes to be certified for productive usage by customers. Apart from the standard security features related to user authorization and authentication, data security and privacy controls in SAP products are available irrespective of being on-premise or in the cloud. From a physical security perspective, SAP data centers comply with the latest telecommunications industry standards, such as ANSI/TIA/EIA-942 Tier III or higher.

The summary of what the SaaS, PaaS, and IaaS offerings mean for the customer is shown in Table 8.1.

Table 8.1 SaaS, PaaS, and IaaS Options Summary

<table>
<thead>
<tr>
<th>IaaS</th>
<th>PaaS</th>
<th>SaaS</th>
<th>Service Model</th>
<th>Control over Cloud Service</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Applications</td>
<td>SaaS: Consumed by end user, delivered through internet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No control over underlying platform and infrastructure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Operating system and middleware runtime</td>
<td>PaaS: Application deployed on managed services</td>
</tr>
<tr>
<td>Server, storage, and network</td>
<td>Server, storage, and network</td>
<td>Server, storage, and network</td>
<td>IaaS: Computing resources available at lowest infrastructure component level</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control over application deployed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Control over application-specific configuration on hosting environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No control over underlying infrastructure</td>
</tr>
</tbody>
</table>

After choosing the relevant product version, there are more decisions to be made. The on-premise version can be deployed on the cloud or on-premise with options for multiple deployment models (the terms were explained in greater detail in Chapter 6):

- **Multiple Components One System (MCOS)**
 In the same SAP HANA server, multiple SAP HANA databases along with the System ID (SID) can be configured (e.g., development and quality environments).

- **Multiple Components One Database (MCOD)**
 Multiple SAP components are running on the same SAP HANA database.

- **SAP HANA Multitenant Database Containers (MDC)**
 Multiple tenant databases are isolated in the same SAP HANA system.
Virtualization using smaller virtual machines (VMs)

Smaller VMs are used within the SAP HANA system, or logical partitioning (LPAR) is used.

Figure 8.2 shows the decision tree for choosing the SAP S/4HANA deployment.

![Diagram](image)

Figure 8.2 Decision Tree for SAP S/4HANA Deployment

There can even be a combination or a stacking option for these deployment models. Some options are provided by the specific hardware, including the processor. For example, IBM Power machines with its proprietary processors can provide an MDC on top of a VM (virtual machine).

The customer’s SAP HANA-related existing infrastructure setup, the database size requirements, and the nonfunctional requirements all affect the choice of deployment models for SAP S/4HANA. For example, your choice may be influenced by the following:

- If there are other applications that use the SAP HANA database, you might look at combining and sharing the infrastructure to minimize costs.
- If the database size is too large, then the resource sharing options won’t work out, at least for the productive environment. You might look at sharing the nonproductive environments, using one of the options (e.g., MDC/MCOD/ MCOS) and virtualization or a combination of these options. The restrictions for such deployment options must be adhered to, as explained in Chapter 6. For example, there are products that can be deployed as MCOD for production, as per the whitelist provided in SAP Note 1661202. These restrictions don’t apply if each application is deployed on its own tenant database, but they do apply to deployments inside a given tenant database (in a MDC scenario).

Note

There are additional SAP notes for the different deployment scenarios (e.g. SAP Notes 2096000, 1681092, 2248291) and the SAP HANA Master Guide should be referred to while deciding the right deployment option for a combination of applications (http://help.sap.com/hana/SAP_HANA_Master_Guide_en.pdf).

The deployment option can also be chosen based on SAP recommendations and considerations about the advantages and disadvantage of that option. For example, SAP recommends using MDC for all the MCOS scenarios where it fits and also for MCOD because MDC supports most of the MCOD scenarios. On the other hand, all the SAP HANA applications deployed using MDC will share the same SAP HANA database. As a result, any SAP HANA database upgrade will impact all the applications at the same time. In addition, the High Availability/Disaster Recovery (HA/DR) configuration will impact all the tenant databases because they are part of the same SAP HANA database.

Another example is that SAP supports multiple SAP HANA databases on the same system (the MCOS scenario), even for the production environment, but only for scale-up or single-host scenarios. For this option, sizing has to be done carefully, and proper volume testing is important before going live because contention for the system resources by the different components using the same system may lead to poor performance in production (see SAP Note 1681092). Your choice may also be influenced by the following:

- The underlying infrastructure from existing vendors and the scalability options for those hardware. Depending on their maximum available size, the workload can be virtualized so that proper resource sharing happens.
- Nonfunctional requirements (NFRs) play an important role on the choice of deployment model. Some examples are listed here:
 - Responsiveness: This may determine whether any cloud deployment is an option for the productive environment. For high responsiveness, on-premise is the preferred option.
HA/recovery time objective (RTO)/recovery point objective (RPO): Certain options are better from a HA requirement point of view. If cloud providers can’t cater to availability, say, more than 99.5%, or if such Service Level Agreements (SLAs) could have high cost impact, having the system on-premise might be the best choice. Another example of a cost-optimized HA option occurs when the system on which the secondary server is running can be shared with the nonproductive instances.

Disaster Recovery (DR): The option to have the DR set up in the cloud while the workload runs on-premise is a cost effective one. Alternatively, your cloud partner should be able to provide and maintain a DR solution, if the actual solution is also hosted on cloud.

For an organization that wants to use IaaS for the on-premise deployment of SAP S/4HANA, there are several options along with the management functions on top of these infrastructure services. The cloud vendors normally offer unmanaged IaaS, managed IaaS, or managed PaaS. The different type of services are shown in Figure 8.3.

8.2.2 SAP S/4HANA Cloud

This version of SAP S/4HANA is equivalent to a SaaS model and is maintained and operated by SAP in SAP’s infrastructure. SAP S/4HANA Cloud is again available in two flavors:

- Public version
- Private version

SAP S/4HANA Cloud, public option, has limited flexibility in terms of customization. It doesn’t allow modification of standard objects but allows limited extension. SAP S/4HANA Cloud, private option, allows a similar level of modification but more flexibility in terms of usage. For example, for the public version, the processes are only accessible through SAP Fiori apps. Thus, the challenge lies in the fact that functionalities available on simplified code without an SAP Fiori app won’t be available on the public cloud. However, for the private version of the same product, these other processes are accessible through SAP GUIs.

The snapshot of major processes available in SAP S/4HANA Cloud is covered in Chapter 2. Table 8.2 provides an overview for the different cloud editions; there are features and functions added an enhanced with each quarterly release. The 1608 version included line of business (LoB) solutions as part of SAP S/4HANA Enterprise Management Cloud.
Deployment Options

Note
More details regarding the features for each release can be found at http://help.sap.com/s4hana.

However, before we discuss the private and public cloud options in detail, let’s first take a look at some items you should consider before deciding if your landscape and your business are ready for SAP S/4HANA Cloud.

Initial Considerations
You may start by asking yourself the following questions:
- Are all types of workload cloud ready?
- How do we analyze the workload to check for cloud readiness?

There are methods to analyze the workload that cloud providers such as IBM or Microsoft can use to help organizations determine the feasibility. Some of the examples of the workload traits that determine their readiness for cloud adoption are shown in Table 8.3.

Table 8.2 Overview of SAP S/4HANA Cloud Features (Cont.)

<table>
<thead>
<tr>
<th>Features (Cont.)</th>
<th>SAP S/4HANA Enterprise Management Cloud</th>
<th>SAP S/4HANA Professional Services Cloud</th>
<th>SAP S/4HANA Marketing Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Countries supported</td>
<td>17 supported country versions</td>
<td>US, DE, AU, CA, CN, UK, HU, NL, SG, BE</td>
<td>Country independent</td>
</tr>
<tr>
<td>Languages</td>
<td>EN, DE, FR, ES, RU, CN, JA, PT, NL, HU</td>
<td>EN, DE, FR, ES, RU, CN, JA, PT, NL, HU</td>
<td>Country independent</td>
</tr>
<tr>
<td>Integrations</td>
<td>SAP Ariba, SAP Hybris, SAP Hybris Cloud for Customer, and SAP SuccessFactors</td>
<td>SAP Ariba and SAP SuccessFactors</td>
<td>SAP Hybris, SAP Hybris Cloud for Customer</td>
</tr>
</tbody>
</table>

Table 8.3 Workload Cloud Readiness Analysis Sample

<table>
<thead>
<tr>
<th>Not Ready for Cloud</th>
<th>Possibly Ready for Cloud</th>
<th>Ready for Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive data</td>
<td>Information intensive</td>
<td>Analytics</td>
</tr>
<tr>
<td>High degree of customization</td>
<td>Isolated workloads</td>
<td>Infrastructure storage</td>
</tr>
<tr>
<td>Not virtualized software</td>
<td>Mature workloads</td>
<td>Industry applications</td>
</tr>
<tr>
<td>Complex processes and transactions</td>
<td>Non-production systems</td>
<td>Disaster recovery</td>
</tr>
<tr>
<td>Regulatory constraints</td>
<td>Batch processing</td>
<td>Development, test, and training environments</td>
</tr>
<tr>
<td>Complex software licensing</td>
<td></td>
<td>Infrastructure compute</td>
</tr>
<tr>
<td>Tight integration with other on-premise systems</td>
<td></td>
<td>Business processes (e.g., CRM, HR, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Industry vertical application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Web hosted apps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collaboration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Office applications</td>
</tr>
</tbody>
</table>

What about cloud adoption for SAP ERP, which is, for many organizations, the core transactional system supporting mission-critical business processes? Enterprise software such as SAP ERP is often at the core of the organization’s business processes. Although these solutions don’t see the type of seasonal variability experienced by other solutions, such as e-commerce sites, there are still demands for periodic scalability (e.g., testing environment for a project duration). Many of the other business drivers also hold good for these ERP solutions. There are some additional factors as shown in Figure 8.4, which show how the standard non-differentiating processes can be moved to the cloud while differentiating solutions requiring heavy customization stays on-premise or in a private cloud. The other influencing factor is the regulatory compliance applicable for the organization, including country-specific rules.

The trend shows quite a move toward a hybrid adoption pattern for solutions such as SAP ERP. Before we discuss the hybrid model, however, we need to look at both the private and public cloud.
Private Cloud
The advantages of private cloud deployment are as follows:

- The same level of security is used as with on-premise because the environment is set up only for one customer and isn’t shared.
- While initial investment is required to build the infrastructure, the advantage is in the ability to effectively use that infrastructure (e.g., rapid provisioning, etc.) and reuse existing hardware.
- This is a good option especially for an IT landscape that has a large number of systems and requires high-volume transactions with close integration with other systems.
- A few partners, such as IBM and HP, offer services to build a private cloud environment.

From an SAP S/4HANA perspective, this is just different model, but the same rules apply as for on-premise. In addition, the private cloud needs to use SAP-supported hardware and supported virtualization techniques.

Public Cloud
The advantages of a public cloud deployment are as follows:

- Cost savings is one of the major advantages for the public cloud option. There’s no need to invest on infrastructure, and no upfront initial investment for capital expenditure (capex) is required; rather, it’s a pay-for-usage model.
- This is a good model for all customers (even startups or individuals) unless there are other concerns or constraints as mentioned earlier.
- Many public cloud offerings are available for SAP S/4HANA from SAP as well as partners such as IBM, Amazon Web Services (AWS), and Microsoft Azure.

From the SAP S/4HANA point of view, the cloud service needs to have official support status from SAP. From an overall perspective, however, the management requirement for the cloud infrastructure, the customer’s responsibility, and the cloud vendor’s responsibility should be clearly determined.

8.2.3 Hybrid Model
As mentioned earlier, all workloads aren’t the right fit for the cloud. More often than not, organizations have to take a middle path and choose a hybrid model to optimize the cost and time benefits versus other considerations. In addition, while an organization can have a road map to take all the applications to cloud, this can be a multiyear journey.

For SAP S/4HANA adoption for cloud, some organizations want to have the non-production on the cloud but the production on-premise. For some others, they want their SAP Business Warehouse (SAP BW) on the SAP HANA system in the cloud but want their SAP S/4HANA either on-premise or on a private cloud because critical business processes may have responsiveness requirements that need a data center in a physically closer location or may require a high-bandwidth connectivity. This will have a cost implication and may act as a deterrent to be on the cloud. Figure 8.5 shows examples of the different scenarios where the
environments of an SAP solution can be deployed all on-premise, on the cloud, or using a hybrid model.

There can be several other use cases for hybrid cloud scenarios. The following list is a representative set and not exhaustive:

- Integration of legacy and new landscape
- Have the systems of engagement on the cloud while the system of record remains on premise, for example, SAP Fiori or SAP Gateway on SAP HANA Cloud Platform, which connects to a backend SAP S/4HANA, on-premise
- Offload the variable load, for example, a testing server or an upgrade project requiring a parallel landscape to the cloud
- For a IT landscape with multiple SAP instances, the smaller instances (which should be closer to standard SAP solutions) can move to SAP S/4HANA Cloud, while larger ones with more customization can be on-premise. There can be several such combinations of the two-tier ERP landscape, including the possibility to combine SAP S/4HANA solutions and non-SAP HANA SAP ERP solutions.

8.3 Cloud Vendor

The IT division of an organization that is adopting SAP S/4HANA needs to have an overall understanding of the business requirements. This understanding will lead to choosing the type of cloud adoption (private, public, or hybrid with cloud and on-premise) and the SAP HANA-based products that need to be deployed together with SAP S/4HANA, now or in the near future. These decisions will give the IT department an idea of what to look for in the cloud vendor. A single service provider might offer a business-centric SLA that is flexible, simple, and cost effective, with an ability to respond to growth opportunities. Some of the major factors that must be kept in mind while choosing the cloud vendor are as follows:

- **Security, privacy, and compliance**
 Infrastructure should meet industry compliance like ISO 20000, 270001 and 9001, TIA Tire III, SOC1 (SSAE-16), and PCI DSS compliant. You should feel confident that you can trust the cloud provider with your data.

- **Global presence**
 Look for data centers and network points of presence (POP) of the cloud vendor across the globe for full control over data sovereignty and to minimise latency.

- **Scalability**
 A more scalable environment designed specifically for enterprise use with the ability to help better secure client customized images and instances. Robust portfolio of time-tested, enterprise-class solutions including software, hardware and services.

- **Reliability and high-availability**
 Infrastructure should have redundancy and reliability built in, meaning that you are protected from the most common causes of application outage.

- **Support and service**
 You should find out what support and services are before selecting a vendor. If you need extra support and services from vendors in order to make sure the enterprise technology solutions run well, this should be taken into consideration.

- **Cost effective**
 Cloud services as OPEX makes infrastructure costs more predictable and offers
organizations better cost control. Look for cost effective, always-on instances, with the flexibility to spin up more as and when need.

 Thought leadership
The cloud vendor should architect and provide offerings based on IT Infrastructure Library (ITIL) best practices and industry-leading migration services to facilitate client transformation to cloud. The vendor should have expertise and best practices managing and operating security-rich enterprise data centers around the world.

There are some additional aspects that can be considered as well. Accelerators will help provide the required instances faster. For example, SAP HANA Enterprise Cloud, SAP’s private cloud solution, has APIs and other integration adapters that help connect with on-premise SAP systems. SAP also has System Landscape Optimization (SLO) services for data migration to the cloud.

IBM has startup bundles/packages for SAP S/4HANA that enable clients to quickly get SAP HANA proof of concept (PoC) and test environments up and running in the IBM Cloud. Setting up the PoC instance can be done quickly, in as little as three days. SAP also provides PoC environments on their public cloud for an SAP S/4HANA trial or demo through the SAP Cloud Application Library (sap.cal.com).

8.4 Integration
The IT landscape with SAP HANA is typically a hybrid one, with some components on the cloud, possibly some cloud-based SaaS solutions, and some on-premise components. There might be different deployment options for the different environments as well. Business processes can run between the SAP S/4HANA core and other solutions such as the SaaS-based SAP SuccessFactors, SAP Hybris, SAP Hybris Cloud for Customer, and so on.

Thus, one of the challenges in this kind of environment is the integration aspect. Depending on the use case, multiple integration technology requirements might be in use. The different integration scenarios in a typical hybrid cloud landscape are shown in Figure 8.6.

For SAP S/4HANA Cloud, the required customer integration scenarios are deployed, configured, and activated in the cloud instances provisioned by SAP, or SAP provides self-configuration UIs so customers can configure the solution. The content is integrated with SAP cloud solutions such as SAP SuccessFactors Employee Central, SAP Ariba, SAP Hybris Marketing, SAP Jam, and SAP Financial Services Network, as well as third-party integration with Vertex for tax calculation. If there is a requirement to build new integration scenarios, SAP HANA Cloud Platform provides the extension platform for SAP S/4HANA where new capabilities of integration can be created using the whitelisted APIs.

SAP S/4HANA, on premise edition, hosted on-premise or on a cloud platform such as the SAP HANA Enterprise Cloud, can be integrated with SAP’s cloud solutions through standard integration content delivered by SAP either through SAP Process Orchestration (SAP PO) or SAP HANA Cloud Integration. SAP HANA Cloud Integration is SAP’s cloud integration middleware and is a SaaS product. Any other integration tool provided by a third party can also be used if they have the right kind of connectors for on-premise-to-cloud and cloud-to-cloud integration. For example, Dell Boomi can connect to several SaaS products like SAP SuccessFactors...
or Salesforce to SAP. Prior to SAP S/4HANA 1511, the integration components required for the S/4HANA system had to be installed as add-ons. SAP S/4HANA 1610 contains the integration components for many of the cloud solutions like SAP Ariba and Concur.

Web Services or OData services enabled through SAP Gateway can also be used for integration. Some of the integration can be using Rest API calls from S/4HANA to the cloud solutions like Concur so that both for getting data from that solution or into the solution, is initiated from S/4HANA. For data movements, SAP Data Services, SAP Landscape Transformation (SAP LT), or SAP HANA smart data integration (SDI) can be used.

8.5 Summary

In this chapter, we talked about the cloud imperatives and how they are applied to the SAP environment. We covered the various deployment options for the two different editions or flavors of the SAP S/4HANA product.

When deciding on the flavor of SAP S/4HANA, especially the cloud deployment, you must keep in mind how it relates to the greater scheme of the IT landscape and IT strategy, as well as how it relates to the other SAP HANA products already in the landscape or in the adoption road map. Migration services to facilitate client transformation to the cloud also need to be considered to migrate current landscapes seamlessly on the cloud space. There are many variables to consider when choosing the right deployment strategy, but this should ideally be looked at from a business perspective as well as an IT perspective to achieve immediate and long-term business goals.

In Chapter 9, we will take a look at the options for adopting SAP S/4HANA, from all-new implementations to migration approaches.
Index

A
ABAP, 100, 411
ABAP Test Cockpit, 326
ABAP Workbench, 278
Account-based CO-PA, 103, 112–113, 116, 401
Accounts Payable (AP), 129, 172, 401
Accounts Receivable (AR), 129, 401
Accounts receivable manager, 66
Adobe Document Server, 172
Adobe Forms, 172
Adoption scenario, 374, 394
Adoption strategy, 237
Advanced analytics, 35, 373
Aggregate table, 89, 267
Agile implementation method, 356
ALE technologies, 219
Analytical app, 266, 268
Analytics, 135, 232, 381
Application enablement, 287
Application layer, 266
Application Lifecycle Management (ALM), 225, 396
Application programming interfaces (APIs), 210
Application services, 261
Archiving, 342
ASAP methodology, 354
Asset Accounting, 107, 331
Asset management, 406
Asynchronous, 252
Atomicity consistency isolation durability (ACID) transactions, 262
Auctions, 195
Audit logging, 265
Authentication, 264
Available-to-Promise (ATP), 50, 141, 147, 181–182
advanced, 177

B
Backup and recovery, 247
BAdI, 118
Bain & Company, 34
Bank Account Management, 109
Bank Accounting (FI-BL), 108
Bank automation, 199
Banking industry, 32
challenges, 33
Batch data communication (BDC), 325
Batch job, 226
Batch processing, 122
Big data, 30, 39, 41, 68, 193, 309, 375–376, 381
Billing, 216
Brownfield implementation, 345
Build SAP Like a Factory, 255
Building block, 366
Bundles, 215
Business Function Library, 267
Business model, 26, 379
traditional, 27
Business partner, 173, 184
Business performance, 90, 95
Business process, 135, 381
Business Process Model and Notation (BPMN), 371
Business Rule Framework plus (BRF+), 172
Business rules, 119
Business scenario recommendations report, 55, 311
Business value, 53
Business-process-as-a-service (BPaaS), 38, 291
Business-to-business (B2B), 211, 213
payments, 198
users, 279
Business-to-consumer (B2C), 211, 213, 376
users, 279
Capacity planning, 146, 148
Capacity requirements, 89
Career development planning, 208
Case study, 397, 402, 407, 409, 412
Cash flow analysis, 90
Cash Operations, 110
Catalog, 196
Catalog management, 196
Central Finance, 118, 129, 220, 311, 399, 401
Central Journal, 118, 128, 400
Change management, 413
Classical extensibility, 276, 278, 427
Cleansing, 342
Cloud adoption, 300
Cloud computing, 30, 37, 375, 394
Cloud computing reference architecture, 289
Cloud extension, 282
Cloud readiness, 300
Cloud solution build, 282
Cloud vendor, 305
Cloud-first strategy, 47
Cluster Manager, 252
Code Inspector, 325–326, 329
Code optimization, 315, 326
Code pushdown, 177
Code remediation, 325
Columnar table, 88
Columnar structure, 241
Columnar storage, 238, 414
Column partition, 241
Columnar storage, 238, 404
Columnar structure, 241
Columnar table, 88
Compliance, 204
Component business model (CBM), 394
Compressed data, 239
Concur, 64, 159, 233
Concur Data Insights, 204
Concur Expense, 203–204, 424
Concur Invoice, 203–204, 424
Concur Travel, 203, 424
Consolidation, 220, 398
Contingent workforce management, 200, 424
Contract lifecycle management, 196
Contract management, 168, 196
Contract repository, 196
Contract worklists, 183
Contracts, 215
Core Data Service (CDS) view, 76, 227, 232, 267, 314
ABAP-based, 227
Core processes, 187
Cost Center Accounting, 92
Cost component, 114
Cost of goods sold (COGS), 101
posting, 114
Cost optimization, 34
Costing-based CO-PA, 112–113
Costs, 236
Country regulatory templates, 205
CPU utilization, 261
Create Optimal Orders for Shipment app, 152
CSCO, 134
pain points, 138
Current mode of operations (CMO), 373, 386, 388, 390, 396, 431
Custom code, 332
Custom code migration worklist, 324
Customer centricity, 30, 56
Customer collaboration, 136, 143
Customer engagement, 213
Customer expectations, 140
Customer insight, 63
Customer journey, 213
Customer orders, 185
Customer relationship management, 211
Customer ticketing system, 212
Customer vendor integration (CVI), 173
Cutover, 362
Data lifecycle management, 271
Data migration, 355
Data migration strategy, 314
Data model, 225
Data redundancy, 158, 410
Data replication, 280
Data selection, 238
Data synchronization, 212
Data volume, 237
Data Volume Management (DVM), 347
work center, 348
Database hint, 328
Database layer, 266
Database Migration Option (DMO), 321
Software Update Manager (SUM), 318
Database Shared Library (DBSL), 252
Database size, 296
Days payable outstanding (DPO), 198, 405
Days sales outstanding (DSO), 198
Decentralized SAP EWM, 162
Decision Wizard, 201
Delivery request (notification), 162
Delivery schedules, 151
Dell Boomi, 257
Delta shipping, 252
Deployment path, 309
Depooling/declustering, 328–329
Depreciation posting, 107–108
Design thinking, 39, 395
Device personalization, 217
DevOps, 380
Digital backbone, 63
Digital boardroom, 131
Digital core, 193, 232, 375, 378
Digital strategy, 36
Digital transformation, 25, 27, 44, 54, 134, 136, 193, 373–374, 377, 392, 408
business perspective, 29
definition, 27
objectives, 36
technical perspective, 37
Disaster recovery, 298
Discontinuation, 148
Discount management, 198
Discrete Industry Mill Products (DIMP), 76
Drilldowns, 67
Drivers, 373, 389
Dunn & Bradstreet (D&B), 167
Dynamic data tiering, 272
Dynamic tiering, 263
Economist Group, 40
Electronic data interchange (EDI), 338
Embedded analytics, 414
Employee data, 206
Enable phase, 384, 388
Encryption, 265
End-of-life (EOL), 235
End-user training, 362
Engage phase, 384, 386
Envision phase, 384, 387
Evaluate phase, 384, 387, 395
Exception handling, 172
Execute phase, 384
Expected goods receipt (EGR), 161
Expert configuration, 368–369
Extension strategy, 274
Fact sheet app, 266, 268
Feature Package Stack (FPS), 322
Financial architecture, 398
Financial Closing app, 123
Financial Closing Cockpit, 94
Financial reporting, 122–123, 400, 403
Financial standards, 413
Financial statement, 90
FinTech companies, 33
First free currency, 126
Fit/gap workshop, 360, 365
Foreign trade/customs, 175, 186
Freight order management (FOM), 165
Functional core, 145
Future mode of operations (FMO), 373, 386, 388, 396
Future-proofing, 235
Gartner, 37, 43
Gartner pace layered application strategy, 43
Geospatial processing, 286
Global benefits, 206
Global currency, 126
Global master data, 398
Google, 27
Governance, 237, 398
Graph engine modeling, 286
Greenfield implementation, 234, 344, 388

Hadoop, 262
HANA-tization, 315, 325–326
Hard close, 400
Hard freeze, 350
Hardware, 234
High availability (HA), 246, 298
High-tech industry, 31
Hub model, 219
Human capital management, 209
Hybrid adoption, 301
Hybrid cloud, 292, 303
Hypercarch, 362

IBM
2013 survey, 82
2015 survey, 83
chief financial officer surveys, 79
CSO survey, 134
Institute for Business Value, 28
IBM Ascend, 384
IBM Better Transformation framework, 384, 386, 389, 396
IBM C-Suite Studies, 378
IBM’s Watson Developer Cloud, 287
IBM-SAP Digital Transformation, 381
IDoc store, 264
IDoc, 173
IFRS 15, 176

In-app extensibility, 277, 281
In-app extension, 274
Index table, 89
Industry solutions, 233
InfoCube, 112
Infrastructure, 206, 297
Model company, 359
Initial investment, 302
In-memory columnar storage, 71
Insert updates, 239
Instance number, 251
Integration-as-a-service, 210
Intercompany reconciliation, 123, 398, 400
Interim modes of operation (IMO), 386, 396
Internal collaboration, 168, 213
Internal Orders, 92
International Federation of Robotics (IFR), 25
Internet of Everything (IoE), 41
Internet of Things (IoT), 25, 39–40, 63, 68, 83, 375–376
services, 283, 285
Interview, 390
Inventory, 411
Inventory data, 410
Inventory level, 182
Inventory Management (IM), 50, 68, 142, 156, 182
analytical app, 157
Inventory posting, 156
Inventory valuation, 182
Inventory valuation table, 105, 155
Invoice, 172
Invoice automation, 198
Invoice processing, 191, 197
Invoice reconciliation, 198
Invoicing, 194, 216

J2EE, 203

IPO
Key performance indicator (KPI), 169, 194, 247
Key user extensibility, 276

L
Landscape transformation, 309, 355
Learning management, 207
Legacy system, 362
Legacy System Migration Workbench (LSMW), 314
Licensing model, 292
Line of business (LoB), 409
solutions, 64, 193, 278
Liquidity forecast, 90
Liquidity Management, 110
Live replication mode, 251
Local currency, 126
Local ledgers, 399
Logical partitioning (LPar), 296
Logistics Information System (LIS), 77, 338
Logistics invoice verification (LIV), 172
Log-replay, 252
Long material number (LAMA), 76, 338

M
Maintenance Optimizer, 320
Maintenance planner, 320
Make-to-stock, 151
Managed extensibility, 276–277, 427
Manual purchase orders, 170
Manufacturing, 133, 146, 180, 188
Mapping concept, 219
Master data, 49
Material document, 154
Material flow, 149, 180
Material master data, 151
Material master record, 151
Material number, 150
Material requirements planning (MRP), 50, 149, 150, 410–411
MRP area, 151
MRP area level, 181
MRP run, 148, 180
Materials Management (MM), 70
Megatrend, 30
Message management services, 286
Metadata Framework (MDF), 206
Microsoft Silverlight UI, 165
Migration program, 124
Migration time lines, 332
Minimum viable product (MVP), 361
Mobile, 39, 373, 375
Model company, 359
Modeling tools, 135
Month-end close, 398, 403–404
MRP Cockpit, 140, 147, 180–181
MRP Dispatcher, 148
MRP Live, 147, 149
Multinationals, 397
Multiple Components One Database (MCOD), 258, 295, 426, 428
Multiple Components One System (MCOS), 258–259, 295, 426, 428
Multiple ERP systems, 402
Multiple valuation, 126
Multitenant architecture, 286
Multitenant Database Container (MDC), 258–259, 426, 428
mySAP ERP, 46

N
Native SQL, 327
Near Zero Downtime (NZDT), 349
Network, 244
New business models, 377
New implementation, 309, 311, 355
Nonfunctional requirement, 297
Nonuniform memory access (NUMA), 263
Notices, 197

O
OData services, 270, 279
Onboarding, 207
One single system, 158
Omnichannel service, 217
Online Analytical Processing (OLAP), 54, 134, 145, 167, 225, 232, 262, 408
Online Transaction Processing (OLTP), 54, 134, 145, 167, 225, 232, 262, 408
On-premise extension, 282
Open Group Architecture Framework (TOGAF), 383, 385
OpenText integration, 284, 298
On-premise extension, 282
Open Group Architecture Framework (TOGAF), 383, 385
OpenText integration, 284, 298
Recovery time objective (RTO), 247, 252, 298
Recruiting management, 206
Recruiting marketing, 206
Product master data, 150
Product value data, 161
Product pricing, 146
Product Planning and Detailed Scheduling (PP/DS), 152, 412
Production planning, 176
Production variance, 117
Production version, 151
Profit and loss (P&L), 121
Profit Center Accounting, 92
Profitability Analysis (CO-PA), 92, 103, 112
Project stock, 161
Project execution, 90
Purchase order, 183
Purchase requisition, 413
Purchases, 194, 196
Purchasing contract, 151
Purchasing info record, 151
Quality check, 255
Quality Inspection Engine, 163
Quality management, 189
Quality services, 262
Query Browser, 233
Query Designer, 233
Quick Sizer, 313
Quota arrangement, 152
Quotations, 215
Redundant data, 165
Redundant data, 165
Regulatory compliance, 294, 301
Remote device management, 286
Replenishment, 152
Report R_S4_PRE_TRANSITION_CHECKS, 322, 345
Representational State Transfer (REST), 270
APIs, 270
Requests, 194, 196
Requests for information (RFI), 194–195
Requests for proposals (RFP), 194–195
Requests for quotation (RFQ), 168, 194–195
Requisitions, 201
Resource schedule, 152
Responsive user experience, 145
Responsiveness, 297
Revenue recognition, 117
RFx, 195, 201
Road map, 373
Road map creation, 391
Role management, 264
Role-based UI, 268
Role-based UI, 268
Row storage, 238
Run SAP Like a Factory, 255
Sales order fulfillment cockpit, 174, 185
Sales and Distribution (SD), 142, 217, 339
Credit Management, 189
SAP Administration Guide for the Implementation of SAP S/4HANA, 366
SAP Ariba, 57, 64, 184, 194, 203, 354, 394, 411
SAP Ariba Collaborative Supply Chain, 197
SAP Ariba Contract Management, 196
SAP Ariba Discount Professional, 198
SAP Ariba Invoice Management, 198
SAP Ariba Network, 139, 143, 171–172, 191, 195–196, 199
SAP Ariba Procurement Content, 199
SAP Ariba Spend Visibility, 195
SAP Ariba Spot Buy, 197
SAP AribaPay, 198–199
SAP BFC for S/4HANA Finance, 92, 95, 112, 131, 399
SAP Business Suite, 46, 282, 354
SAP Business Suite on SAP HANA, 227, 236, 403
SAP Business Warehouse (SAP BW), 77, 89, 227, 398, 403
SAP BusinessObjects Analysis, 121
SAP BusinessObjects Cloud, 285
SAP BusinessObjects Design Studio, 121
SAP BW on SAP HANA, 237, 303
SAP Cash Management, 90, 108, 124
SAP Cash Management powered by SAP HANA, 331
SAP Collections Management, 129
SAP Credit Management, 129, 175, 186, 339
SAP Crystal Reports, 95
SAP Customer Activity Repository (SAP CAR), 213
SAP Customer Relationship Management (SAP CRM), 217, 354, 385
SAP Data Services, 314
SAP DB Control Center, 254
SAP Dispute Management, 129
SAP EarlyWatch Alert, 255–256
SAP Enterprise Architecture Framework (EAP), 383
SAP ERP, 45, 73, 86, 318
SAP ERP Sales and Distribution (SD), 142, 217, 339
SAP Enterprise Architecture Framework (EAP), 383
SAP ERP Warehouse Management (WM), 157
Source list, 152
Source list entry, 152
Sourcing, 194
Sourcing and procurement, 133, 166, 168, 181, 183, 190
Special purpose ledger table, 100
Spend analysis, 195
Spot buy, 197
Stack XML, 320
Standard SAP code, 325
Standby host, 250
Stock, 180, 182
Stock level, 139, 410
Storage location MRP, 150
Strategic sourcing, 195
Subcontracting, 181
Subcontracting demand, 151
Subcontracting stock, 151
Succession planning, 208
Supplier activity management, 168
Supplier discovery, 195
Supplier evaluation, 167–168
Supplier Lifecycle and Performance Management, 167
Supplier portfolio management, 167
Supply alternatives, 180
Supply chain, 29, 133, 153, 189
Supply chain complexity, 142
Supply chain execution, 197
Supply chain management, 181
Supply chain routing, 165
Supply chain visibility, 135, 139
Supply chain volatility, 140
Support packs, 124
Synchronous, 252
Synchronous in-memory, 252
System conversion, 309, 315, 355
Table /SCWM/THUTYPE, 161
Table /SCWM/THUTYPE, 161
Table indices, 226
tailored data center integration (TDI), 243
talent management, 206, 210
technical assessment, 390
technical limitation, 339
technology drivers, 234
text analysis, 286
text analytics, 287
Third-party vendors in landscape, 397
throughput, 154
time-off management, 206
top-down distribution, 116
total cost of ownership (TCO), 226, 234, 393, 399, 403, 411
totals table, 89
transaction
AJRW, AIAB, 351
AS91, 351
KE28, 116
SM_Workcenter, 255
SOLAR_PROJECT_ADMIN, 370
SPA1, 325
SPDD, 325
Transaction usage, 61
Transaction app, 268
Transportation management, 165, 189
Travel expense, 199
Two-tier ERP landscape, 304
Unicode, 341
Unicode conversion, 318
Universal Journal, 87, 95, 99–100, 118, 125, 230, 337, 400
Unstructured data, 41
User experience (UX), 30, 39, 53, 204, 309, 376, 395, 400
design, 54
User interface (UI), 375
User management, 264
User provisioning, 266
User-friendly interface, 144
Valuation, 115
Vendor approvals, 202
Vendor collaboration, 181
Vendor Invoice Management (VIM), 172
Vendor management system (VMS), 200
Vertex, 233, 307
Virtual data model (VDM), 228, 232
Virtual machine (VM), 241, 296
Virtualization, 241
Virtualization options, 242
Visibility, 180
Volatility, 180
Visibility, 180
VPRS condition, 114
Waterfall implementation method, 356
Web services, 210
Whitelisted API, 277, 427
Workforce analytics, 208
Workforce planning, 209
Workshop, 313, 390
Write performance, 239
First-hand knowledge.

Axel Baumgartl is part of the Center for Digital Leadership at SAP, where he leads the area of asset and method development.

Dmitry Chaadaev is an SAP ERP Financials consultant and project manager for IBM Russia. He has more than 10 years of SAP project implementation and rollout experience in several industries.

Nga-Sze Choi is the SAP S/4HANA Logistics subject matter expert in the IBM Global Center of Competence.

Mark Dudgeon is the Global SAP CTO of IBM Global Business Services, SAP Service Line. He has more than 20 years of experience in architecture design and delivery for some of IBM’s largest SAP deployments.

Asidhara Lahiri is a SAP Executive Architect at the IBM India Client Innovation Centre and has designed and reviewed client architecture, defined IBM services, and grown IBM’s SAP HANA capability.

Bert Meijerink is the SAP S/4HANA Finance lead in the IBM SAP Global Center of Competence. He has more than 30 years of working experience in implementing financial systems worldwide and over 20 years of experience in designing and implementing SAP global templates.

Andrew Worsley-Tonks is the European SAP S/4HANA migration lead for IBM Global Business Services. He has extensive experience in complex SAP upgrade and migration projects, having led IBM’s upgrade initiatives in Europe for more than 4 years.

Devraj Bardhan is a senior architect with IBM Germany and has led several large SAP transformations projects, designing and implementing SAP global templates and growing IBM’s SAP HANA capability.

We hope you have enjoyed this reading sample. You may recommend or pass it on to others, but only in its entirety, including all pages. This reading sample and all its parts are protected by copyright law. All usage and exploitation rights are reserved by the author and the publisher.