= PRESS ® Rheinwerk

First-hand knowledge. Publishing

Reading Sample

->set_course_for

hi
spaces!'P (the_future)-

This sample chapter describes how to use ABAP Unit for test-driven
development (TDD) when creating and changing custom programs
to make your changes with minimal risk to the business. This chap-
ter explains what TDD is and how to enable it via the ABAP Unit
framework.

gpaceghfp:;Warp_driVe->
5 engage(1))

“ABAP Unit and Test-Driven
Development”

Contents

) Discover the latest and greatest features in the ABAP universe
P Get acquainted with Core Data Services and ABAP Channels The Author
b Learn about the latest features of BRFplus, BOPF, SAPUI5,

and more

Paul Hardy

ABAP to the Future
801 Pages, 2016, $79.95

: ISBN 978-1-4932-1410-5
Paul Hardy s Rhemwerk
Publishing
: -E www.sap-press.com/4161

-
0
a
)
0
ﬂ
.
-
3
‘
L

https://www.sap-press.com/abap-to-the-future_4161/

Code without tests is bad code. It doesn't matter how well-written it is; it
doesn’t matter how pretty or object-oriented or well-encapsulated it is.
With tests, we can change the behavior of our code quickly and verifiably.
Without them, we really don't know if our code is getting better or worse.
—Michael Feathers, Working Effectively with Legacy Code

3 ABAP Unit and Test-Driven Development

Nothing is more important, during the process of creating and changing custom
programs, than figuring out how to make such changes with minimal risk to the
business. The way to do this is via test-driven development (TDD), and the tool to
use is ABAP Unit. This chapter explains what TDD is and how to enable it via the
ABAP Unit framework.

In the traditional development process, you write a new program or change an
existing one, and after you're finished you perform some basic tests, and then
you pass the program on to QA to do some proper testing. Often, there isn't
enough time, and this aspect of the software development lifecycle is brushed
over—with disastrous results. TDD, on the other hand, is the opposite of the tra-
ditional development process: You write your tests before creating or changing
the program. That turns the world on its head, which can make old-school devel-
opers' heads spin and send them running for the door, screaming at the top of
their lungs. However, if they can summon the courage to stay in the room and
learn about TDD, then they will be a lot better off.

The whole aim of creating your tests first is to make it so that, once the tests have
all been written, as you create —and more importantly change —your application,
you can follow the menu path PROGRAM « TEST « UNIT TEST at any given instant to
see a graphical display of what's currently working in your program and what's
either not yet created or broken (Figure 3.1). This way, when the time comes to
move the created or changed code into test, you can be confident that it's correct.

3 | ABAP Unit and Test-Driven Development

ABAP Unit: Resuft Display

\ (28 Message Type Aletts and Messages
Task/Program/Class/Method Statue | Fatal | Ciiical | Tolerable Type |Message
= @ 0 3 1 Citea Enor
0g Ciical Asseriion Eror
Enor

Bl Cilfical Asseri

= () YCL_MONSTER_SIMULATOR=========CF
~ @ LCL_TEST_CLASS

* [5] Info

~ Different Values:

- (@ MOCKING_FRAMEWORK_TEST

]
@
- @ LABORATORY_TEST (=]
=]
]
[m]

» @ RETURN_A_BOM_FOR_A_ MONSTER
- @ UT_04_DESIGN_28_DaY_STRENGTH

0
i
0
0
0
0
0

- Expected [1] Actual [b
- Test 'LCL_TEST_CLASS->RETURN_A_BOH_FOR_A_HONSTER' in Main Program 'YCL_MONSTER_SIHULATOR---------CP'|
- = Stack
+ Include: CYCL_MONSTER_SIHULATO
- Include: CYCL_MONSTER_SIHULATO

CCAU> Line: <190> (THEN_RESULTING_BOM_IS_CORREGT)
CCAU> Line: <67> (RETURN_A_BOM_FOR_A_MONSTER)

Figure 3.1 ABAP Unit Results Screen

Because that's a highly desirable outcome from everybody's perspective, this
chapter explains how to transform your existing code into test-driven code via
three main steps:

1. Eliminating dependencies in your existing programs
2. Implementing mock objects in your existing programs

3. Using ABAP Unit to write and implement test classes

Each step will be covered in detail. After that, some additional advice on how to
improve TDD via automated frameworks will be presented. Finally, the chapter
will conclude with a look at how to run large numbers of unit tests on different
data sets without having to hard-code them all.

The examples in this chapter deal with testing object-oriented (OO) code (i.e., meth-
ods), and most of the examples of ABAP Unit you will find in books or on the web will
also focus on OO programming. This doesn't mean that you can't test procedural pro-
grams; it's far easier to test an OO program, but it's not the end of the world to add unit
tests to a function module or a procedural program.

You most likely have huge monolithic procedural programs in your system that it would
be too difficult to rewrite in an OO fashion, because doing so would take a lot of time
and not provide any new functionality. In such cases, whenever you are called on to
maintain a section of that program—fixing a bug or adding new functionality—you can
make relatively minor changes to break up the dependencies as described in this chap-
ter, and then slowly add test methods to bring little islands of the program under test.
As time goes by, more and more islands of the program will have tests, making it more
and more stable, until one day the whole archipelago of the program will be covered.

160

Eliminating Dependencies

3.1 Eliminating Dependencies

In the US game show “Jeopardy!”, a contestant's answer must be in the form of a
question—like this:

Game show host: Something that stops you dead in your tracks when you want to
write a test.

Contestant: What is a dependency?

The contestant is correct. But to go into a little more detail, a dependency is what
you have when you want to do a test for your productive code but you can't—
because the productive code reads from the database or writes to the database or
accesses some external system or sends an email or needs some input from a user
or one of a million other things you cannot or do not want to do in the develop-
ment environment.

As an example, consider a monolithic SAP program that schedules feeding time at
the zoo and makes sure all the animals get the right amount and type of food.
Everything works fine. The keepers have some sort of mobile device that they can
query to see what animals need feeding next, and there's some sort of feedback
they have to give after feeding the animals. They want to keep track of the food
inventory, and so on; none of the details are important for this example.

All is well until one day when they get two pandas on loan from China, and the
programmer has to make some changes to accommodate their specific panda-type
needs (e.g., bamboo shoots) without messing up all the other animals. The pro-
grammer can do a unit test on the panda-specific changes he has made, but how
can he be sure that an unforeseen side effect will not starve the lions, causing
them to break out and eat all the birds and all the monkeys before breaking into
the insect house and crushing and eating the beehive?

Normally, there's no way to do it; there are just too many dependencies. The
program needs to read the system time, read the configuration details on what
animal gets fed when, read and write inventory levels, send messages to the zoo-
keepers, receive and process input from those same zookeepers, interface with
assorted external systems, and so on.

However, you really don't want to risk the existing system breaking, leading the
lions to dine on finch, chimps, and mushy bees, so how can we enable tests?

161

3 | ABAP Unit and Test-Driven Development

The first step is to break up the dependencies. In this section, you'll learn how to
do exactly that, a process that involves two basic steps:

1. Look at existing programs to identify sections of code that are dependencies
(and are thus candidates to be replaced by mock objects during a test).

2. Change your production code to separate out the concerns into smaller classes
that deal with each different type of dependency (we'll look at two ways of
doing so: one quick and dirty, the other slower and more time-intensive but
ultimately more rewarding).

3.1.1 Identifying Dependencies

Listing 3.1 shows an example of a common ABAP application. In this case, our
good old friend the baron (remember him from the Introduction?) doesn't want
any neighboring mad scientists building monsters and thus encroaching on his
market, so as soon as hears about such a competitor he drops a nuclear bomb on
him (as any good mad scientist would). Listing 3.1 illustrates this by first getting
the customizing settings for the missiles and making sure they're ready to fire,
then confirming with the operator that he really wants to fire the missile, then fir-
ing the missile, and finally printing out a statement saying that the missile was
fired. At almost every point in the code, you'll deal with something or somebody
external to the SAP system: the database, the operator (user), the missile firing
system, and the printer.

FORM fire_nuclear_missile.

* Read Database
CALL FUNCTION 'READ_CUSTOMIZING'.
* Query Missile Sensor
CALL FUNCTION 'GET_NUCLEAR_MISSILE_STATUS".

* Business Logic
IF something.
"We fire the missile here
ELSEIF something_else.
"We fire the missile there
ENDIF.

* Ask user if he wants to fire the missile
CALL FUNCTION 'POPUP_TO_CONFIRM".

* Business Logic
CASE user_answer.

162

Eliminating Dependencies

WHEN "Y',
"Off we go!
WHEN 'N"'.
RETURN.
WHEN OTHERS.
RETURN.
ENDCASE.

* Fire Missile
CALL FUNCTION 'TELL_PI_PROXY_TO_FIRE_MISSILE".

* Print Results
CALL FUNCTION '"PRINT_NUCLEAR_SMARTFORM'.

ENDFORM. "Fire Nuclear Missile
Listing 3.1 Common ABAP Application

In this code, you want to test two things:

» That you direct the missile to the correct target

» That if the user aborts halfway through, the missile does not actually fire
However, because of the way the routine is written, you can't do a meaningful
test unless the following points are true:

» You have an actual database with proper customizing data.

» You have a link to the sensor on the missile.

» You have a user to say yes or no.

» You actually fire the missile to see what happens (possibly resulting in the
world being destroyed).

» You have a printer hooked up.

These are all examples of dependencies. As long as they're part of your code, you
can't implement TDD.

Unfortunately, most ABAP code traditionally looks like the example in Listing
Section 3.1. Thus, when preparing an existing program to be unit tested, the first
thing to do is make a list of anything that is not pure business logic (i.e., calls to
the database, user input, calls to external systems, etc.), exactly as in the preced-
ing bullet list.

163

3 | ABAP Unit and Test-Driven Development

3.1.2 Breaking Up Dependencies Using Test Seams

There are two ways to break up dependencies—quick and dirty versus slow and
correctly. Often, the powers that be will force you into the quick and dirty
method, so in version 7.5 of ABAP, we now have test seams designed to make
such dependencies testable without major surgery on the existing program.

This approach only works on function groups and global classes. Old function
groups often have lots of dependencies mixed in with the business logic, but it is
horrifying if a global class gets into that state. If the code to be tested is in an exe-
cutable program or a module pool but can be quickly moved to such a construct
(function group/global class), then test seams are worth a try. If there's a lot of
effort involved, then you're better off jumping straight to Section 3.1.3 and doing
some serious rearranging of the code.

Warning: Houston, We Have a Problem

The TEST-SEAM concept should never be used in new programs, because it's a dirty
workaround that horrifies all serious programmers (they would say production code
should be unaware what parts of it are going to be tested) and is designed purely as an
interim measure to use while redesigning old, badly written programs.

In the example in this section, we've moved the whole program into a function
module so you can see how to use test seams. Inside the function module, each
dependency is surrounded by a test seam with a unique name describing the
dependency (Listing 3.2).

FORM fire_nuclear_missile.

TEST-SEAM read_database.
* Here the dependency is needing an actual database with real data
CALL FUNCTION 'ZREAD_MONSTER_CUSTOMIZING".
END-TEST-SEAM.

TEST-SEAM missile_sensor.
* Here the dependency is needing contact with an actual missile system
CALL FUNCTION 'ZGET_NUCLEAR_MISSILE_STATUS'.
END-TEST-SEAM.

Actual Business Logic (that you want to test)
You would want to test that the missile gets sent to the right place
i.e., gets dropped on your enemy, not on you
IF something.
"We fire the missile here

Xk X o X

164

Eliminating Dependencies

* ELSEIF something_else.
* "We fire the missile here
* ENDIF.

* Ask the user if they want to fire the missile
TEST-SEAM user_input.
DATA: user_answer TYPE char0l.
CALL FUNCTION 'POPUP_TO_CONFIRM'

EXPORTING
titlebar = 'Missile Confirmation'
text_question = 'Do you want to Taunch the missile?’
text_button_1 = 'Yes'
text_button_2 = 'No'

default_button = '2'
IMPORTING

answer = user_answer?2
EXCEPTIONS

text_not_found 1

OTHERS =2.

IF sy-subrc <> 0.
RETURN.
ENDIF.

END-TEST-SEAM.

* Some more business logic
* You would want to test that saying
* missile from firing
CASE user_answer.
WHEN "1".
"Off We Go! Bombs Away!
WHEN "2".
RETURN.
WHEN OTHERS.
RETURN.
ENDCASE.

no" prevented the

TEST-SEAM missile_interface.
* Here the dependency is needing an actual missile to fire
CALL FUNCTION 'ZTELL_PI_PROXY_TO_FIRE_MISSILE".
END-TEST-SEAM.

TEST-SEAM printer.
* Here the dependency is needing an actual printer
CALL FUNCTION 'ZPRINT_NUCLEAR_SMARTFORM".
END-TEST-SEAM.

ENDFORM. "fire_nuclear_missile

Listing 3.2 Surrounding Dependencies with Test Seams

165

3 | ABAP Unit and Test-Driven Development

Highlighting the dependencies in this way not only allows unit testing (as covered
in Section 3.3) but also says—in letters of fire a thousand miles high—that the
code is badly designed and needs changing, which, as mentioned earlier, you're
often not allowed to do because the powers that be wrongly think such changes
are “risky” when they are the exact reverse.

3.1.3 Breaking Up Dependencies Properly

The correct way (once they're identified) of breaking up dependencies—which
takes a lot of effort—is redesigning your program so that it adopts a separation of
concerns approach. This approach dictates that you have one class for database
access, one for the user interface layer, and one for talking to an external system;
that is, each class does one thing only and does it well. This is known as the single
responsibility principle. Designing an application this way enables you to change
the implementation of, say, your user interface layer without affecting anything
else. This type of breakup is vital for unit tests.

Warning: Houston, We Have a Problem

As an aside and a warning, I've seen a great example in which someone split out all the
database access into its own class, presumably following the separation of concerns
model. However, that person also made every single variable and method static—and
you can't subclass static methods. As a result, the end program still wasn't eligible for
unit testing.

To illustrate the separation of concerns approach, take database access as an
example. This means that you would go through your program looking for every
SELECT statement and extract them out in a method of a separate database access
class. Repeat the process for other functions of the programs, such as processing
user input, communicating with external systems, and anything else you can
identify as a dependency, each having one specific class that serves each such pur-
pose. (You may be wondering how to decide which functions need to be split into
their own class. Luckily, this is an iterative process; when you start writing tests
and the test fails because it does not really have access to proper database entries,
user input, or an external system, it will become clear what is a dependency and
thus needs to be isolated into its own class.)

166

Eliminating Dependencies | 34

The next step is to change the production code to make calls to methods of these
newly created classes. The end result will look like Listing 3.3.

FORM fire_nuclear_missile.

* Read Database
mo_database_access->read_customising().
mo_missile_interface->get_nuclear_missile_status().

* Business Logic
IF something.
"We fire the missile here
ELSEIF something_else.
"We fire the missile there
ENDIF.

* Ask user 1f they want to fire the missile
mo_user_interface->popup_to_confirm().

* Business Logic
CASE user_answer.
WHEN "Y',
"Off we go!
WHEN 'N'.
RETURN.
WHEN OTHERS.
RETURN.
ENDCASE.

* Fire Missile
mo_missile_interface->tell_pi_proxy_to_fire_missile().

* Print Results
mo_printer->print_nuclear_smartform()..

ENDFORM. "Fire Nuclear Missile
Listing 3.3 Calling Methods of Classes

Note that the functionality has not been changed at all; the only difference is that
the calls to various external systems (the dependencies) are now handled by
classes as opposed to functions or FORM routines. All that remains untouched is
the business logic.

With the dependencies successfully eliminated, you can now implement mock
objects.

167

3 | ABAP Unit and Test-Driven Development

3.2 Implementing Mock Objects

After you've isolated each dependency into its own class, you can change your
existing programs to take advantage of the ABAP Unit framework. There are two
steps to this:

1. Create mock objects that appear to do the same thing as real objects dealing
with database access and the like, but which are actually harmless duplicates
solely for use in unit tests.

2. Make sure that all the classes under tests (often a unit test will use several
classes, but there is always one main one that you are testing—the class under
test) are able to use these mock objects instead of the real objects, but only
when a test is underway. This is known as injection.

When talking about mock objects, the terms stub and mock are often used interchange-
ably; technically, though, there is a difference. If you're testing how your class affects an
external system, then the fake external system is a mock, and if you're testing how the
fake external system affects your class, then the fake external system is a stub. (Either
way, the point is that you use a fake external system for testing.)

Before jumping into creating mock objects and injection, let's first take a quick
look at test injection, introduced with test seams. This is not how you should
implement mock objects, but you should see it in action at least once before dis-
missing it.

3.2.1 Test Injection for Test Seams

Test injection for test seams is the poor man's version of implementing mock
objects. Instead of replacing entire routines with a duplicate inside a mock class,
you flag sections (one or more lines of code) inside of such routines as shown in
Section 3.1.2 so they can be replaced with different code during a test. In other
words, you have the option to surround sections of production code with test
seams. When the program runs in production, the actual code within the test
seam is executed. When running a test, you define some bogus code that runs
instead, the format of which is as shown in Listing 3.4.

168

Implementing Mock Objects | 3.2

METHOD fire_nuclear_missile."Test Method

TEST-INJECTION read_database.
* Set assorted variables, as if you had read them from the
* actual database

END-TEST-INJECTION.

TEST-INJECTION user_input.
user_answer = "1".
END-TEST-INJECTION.

PERFORM fire_nuclear_missile.

ENDMETHOD.
Listing 3.4 Test Injections for Test Seams

This works fine; a test injection can be empty and so no code is executed during
the test, so no database data is read, no missile is fired, and all is well.

This is all well and good but don’t do it; it's more trouble than it's worth, and if
proper programmers catch you, they'll make you stand in the corner with a dunce
cap on your head. Instead, proceed according to the next section.

3.2.2 Creating Mock Objects

For testing purposes, what you actually want is to define mock classes and mock
objects. Mock classes are classes that run in the development environment. They
don't really try to read and write to the database, send emails, fire nuclear mis-
siles, and so on, but they test the business logic nonetheless. Mock objects follow
the same principles as regular objects; that is, in the same way that a monster
object is an instance of the real monster class, a mock monster object is an
instance of a mock monster class.

This is where the basic features of OO programming come into play: subclasses
and interfaces. To continue the previous example (about firing nuclear missiles),
you'll next create a subclass of the database access class that doesn't actually read
the database but instead redefines the database access methods to return hard-
coded values based upon the values passed in. In Listing 3.5, you'll see some pos-
sible redefined implementations of methods in mock subclasses that could
replace the real classes in the example.

METHOD read_customising. "mock database implementation

* IMPORTING input_value

169

3 | ABAP Unit and Test-Driven Development

* EXPORTING export_vlaue

CASE input_value.
WHEN one_value.
export_value = something.
WHEN another_value.
export_value = something_else.
WHEN OTHERS.
export_value = something_else_again.
ENDCASE.
ENDMETHOD. "read customising mock database implementation

ENDMETHOD. "mock user interface implementation

METHOD fire_missile. "Mock External Interface Implementation
* Don't do ANYTHING - it's just a test

ENDMETHOD. "Fire Missile - Mock Ext Interface - Implementation

Listing 3.5 Mock Method Redefinitions of Assorted Real Methods

In this example, you create subclasses of your database access class, your user
interface class, and your external system interface class. Then, you redefine the
methods in the subclasses such that they either do nothing at all or return some
hard-coded values.

Object-Oriented Recommendation

In order to follow one of the core OO recommendations—to favor composition over
inheritance—you should create an interface that's used by your real database access
class and also have the mock class be a subclass that implements that interface. In the
latter case, before ABAP 7.4, you'd have to create blank implementations for the meth-
ods you are not going to use, and that could be viewed as extra effort. Nevertheless,
interfaces are a really Good Thing and actually save you effort in the long run. Once you
read books like Head First Design Patterns (see the Recommended Reading box at the
end of the chapter), you'll wonder how you ever lived without building up class defini-
tions using interfaces.

170

Implementing Mock Objects

3.2.3 Proper Injection

Usually, classes in your program make use of smaller classes that perform special-
ized functions. The normal way to set this up is to have those helper classes as pri-
vate instance variables of the main class, as shown in Listing 3.6.

CLASS Tcl_monster_simulator DEFINITION.

PRIVATE SECTION.
DATA:
"Helper class for database access
mo_pers_layer TYPE REF TO zcl_monster_pers_layer,
"Helper class for logging
mo_Tlogger TYPE REF TO zcl_logger.

ENDCLASS.
Listing 3.6 Helper Classes as Private Instance Variables of Main Class
These variables are then set up during construction of the object instance, as
shown in Listing 3.7.
METHOD constructor.
CREATE OBJECT mo_logger.

CREATE OBJECT mo_pers_layer

EXPORTING
io_logger = mo_logger " Logging Class
id_valid_on = sy-datum. " Validaty Date
ENDMETHOD. "constructor

Listing 3.7 Variables Set Up during Construction of Object Instance

However, as you can see, this design does not include any mock objects, which
means that you have no chance to run unit tests against the class. To solve this
problem, you need a way to get the mock objects you created earlier inside the
class under test. The best time to do this is when an instance of the class under
test is being created.

When creating an instance of the class under test, you use a technique called con-
structor injection to make the code use the mock objects so that it behaves differ-
ently than it would when running productively. With this technique, you still
have private instance variables of the database access classes (for example), but

171

3 | ABAP Unit and Test-Driven Development

now you make these into optional import parameters of the constructor. The con-
structor definition and implementation now looks like the code in Listing 3.8.

PUBLIC SECTION.
METHODS: constructor IMPORTING
io_pers_layer TYPE REF TO zcl_monster_pers_Tlayer OPTIONAL
io_logger TYPE REF TO zcl_logger OPTIONAL.

METHOD constructor. "Implementation

IF io_logger IS SUPPLIED.
mo_logger = io_logger.
ELSE.
CREATE OBJECT mo_logger.
ENDIF.

IF io_pers_layer IS SUPPLIED.
mo_pers_layer = io_pers_layer.

ELSE.
CREATE OBJECT mo_pers_layer
EXPORTING
io_logger = mo_logger " Logging Class
id_valid_on = sy-datum. " Validity Date
ENDIF.

ENDMETHOD. "constructor implementation
Listing 3.8 Constructor Definition and Implementation

The whole idea here is that the constructor has optional parameters for the vari-
ous classes. The main class needs these parameters in order to read the database,
write to a log, or communicate with any other external party that's needed. When
running a unit test, you pass in (inject) mock objects into the constructor that sim-
ply pass back hard-coded values of some sort or don't do anything at all. (In the
real production code, you don't pass anything into the optional parameters of the
constructor, so the real objects that do real work are created.)

Arguments Against Constructor Injection

Some people have complained that the whole idea of constructor injection is horrible,
because a program can pass in other database access subclasses when executing the
code for real outside of the testing framework. However, | disagree with that argument,
because constructor injection can give you benefits outside of unit testing.

As an example, consider a case in which a program usually reads the entire monster-
making configuration from the database—unless you're performing unit testing, when

172

Writing and Implementing Unit Tests | 3.3

you pass in a fake object that gives hard-coded values. Now, say a requirement comes
in that the users want to change some of the configuration values on screen and run a
what-if analysis before saving the changes. One way to do that is to have a subclass that
uses the internal tables in memory as opposed to the ones in the database, and you pass
that class into the constructor when running your simulator program in what-if mode.

At this point, you now have mock objects and a way to pass them into your pro-
gram. This means that you're ready to write the unit tests.

3.3 Writing and Implementing Unit Tests

At last, the time has come to talk about actually writing the test classes and how
to use the ABAP Unit framework. In this section, you'll walk through this process,
which involves two main steps:

1. Set up the definition of a test class. The definition section of a class, as always,
is concerned with the what, as in, “What should a test class do?" This is covered
in Section 3.3.1.

2. Implement a test class. Once you know what a test class is supposed to do, you
can go into the detail of how it's achieved technically. This is covered in Section
3.3.2.

Executable Specifications

Some people in the IT world like to call unit tests executable specifications, because they
involve the process of taking the specification document, breaking it down into tests,
and then, when the program is finished, executing these tests. If they pass, then you are
proving beyond doubt that the finished program agrees with the specification. If you
can't break the specification into tests, then it means that the specification is not clear
enough to turn into a program. (Actually, most specifications | get fall into that cate-
gory. But to be fair to the business analysts, there is only so much that you can write on
the back of a post-it note.)

3.3.1 Defining Test Classes

There are several things you need to define in a test class, and the following sub-
sections will go through them one by one. Broadly, the main steps in defining
your test class are as follows:

173

3 | ABAP Unit and Test-Driven Development

. Enable testing of private methods.

. Establish the general settings for a test class definition.
. Declare data definitions.

. Set up unit tests.

. Define the actual test methods.

A U A W N =

. Implement helper methods.

Start the ball rolling by creating a test class. Start with a global Z class that you've
defined, and open it in change mode via SE24 or SE8O0. In this global class, follow
the menu option GOTO « LOCAL DEFINITIONS « IMPLEMENTATIONS * LOCAL TEST
CLAss.

Enabling Testing of Private Methods

To begin, enable testing of private methods. The initial screen shows just a blank
page with a single comment, starting with use this source file. In Listing 3.9,
you add not only the normal definition line but also a line about FRIENDS; this is
the line that enables you to test the private methods of your main class. In the fol-
lowing example, the global class you'll be testing is the monster simulator, and
the only way you can test its private methods is if you make it friends with the
test class.

" yse this source file for your ABAP unit test classes
CLASS Tcl_test_class DEFINITION DEFERRED.

"Need to make the class under test "friends" with the test class
"in order to enable testing for private methods
CLASS Zzcl_monster_simulator DEFINITION LOCAL FRIENDS Icl_test_class.

Listing 3.9 Defining Test Class

A lot of people say that testing private classes is evil and that you should only test
the methods the outside world can see. However, over the course of time so
many bugs have been found in any method at all, be it public or private, that you
should have the option to test anything you feel like.

General Settings for a Test Class Definition

Once you've created the class, it's time to establish the general settings for the
class, as shown in Listing 3.10.

174

Writing and Implementing Unit Tests | 3.3

CLASS Tcl_test_class DEFINITION FOR TESTING
RISK LEVEL HARMLESS
DURATION SHORT
FINAL.

Listing 3.10 Test Class General Settings

Let's take this one line at a time. In the first line, you tell the system this is a test
class and thus should be invoked whenever you're in your program and select the
UNIT TEST option from whichever tool you're in (the menu path is subtly different
depending on which transaction you are in).

Now, you come to RISK LEVEL. For each system, you can assign the maximum per-
mitted risk level. Although unit tests never run in production, it's possible for
them to run in QA or development. By defining a risk level, you could, for exam-
ple, make it so that tests with a DANGEROUS risk level can't run in QA but can run
in development. (Leaving aside that I feel unit tests should only be run in devel-
opment, how could a unit test be dangerous? I can only presume it's dangerous if
it really does alter the state of the database or fire a nuclear missile. Try as I might,
I can't think why I would want a test that was dangerous. Tests are supposed to
stop my real program being dangerous, not make things worse. Therefore, I
always set this value to HARMLESS, which is what the tests I write are.)

Next is DURATION—how long you think the test will take to run. This is intended
to mirror the TIME OUT dump you get in the real system when a program goes into
an endless loop or does a full table scan on the biggest table in the database. You
can set up the expected time periods in a configuration transaction.

How long should those time periods be? Well, I'll tell you how long I think a unit
test should take to run: It should be so fast that a human cannot even think of a
time period so small. The whole point of unit tests is that you can have a massive
amount of them and not be afraid to run the whole lot after you've changed even
one line of code. It's like the syntax check; most developers run that all the time,
but they wouldn't if it took ten minutes. Hopefully, the only reason a unit test
would take a minute or more to run is if it actually did read the database or pro-
cess a gigantic internal table in an inefficient way. If you are worried about the
method under test going into an endless loop or about having to process a really
huge internal table—sequencing a human genome or something—then you could
set the DURATION to LONG, and it would fail due to a time out. Thus far, though, I
have never found a reason to set it to anything other than SHORT.

175

3 | ABAP Unit and Test-Driven Development

Declaring Data Definitions

Continuing with the definition of your test class, you've now come to the data
declarations. The first and most important variable you declare will be a variable
to hold an instance of the class under test (a main class from the application
you're testing various parts of).

This class, in accordance with good OO design principles, will be composed of
smaller classes that perform specific jobs, such as talking to the database. In this
example, when the application runs in real life, you want to read the database and
output a log of the calculations for the user to see. In a unit test, you want to do
neither. Luckily, your application will be designed to use the injection process
described in Section 3.2.3 to take in a database layer and a logger as constructor
parameters, so you can pass in mock objects that will pretend to handle interac-
tions with the database and logging mechanism. As you're going to be passing in
such mock objects to a constructor, you need to declare instance variables based
on those mock classes (Listing 3.11).

PUBLIC SECTION.

PRIVATE SECTION.
DATA: mo_class_under_test TYPE REF TO zcl_monster_simulator,
mo_mock_pers_layer TYPE REF TO zcl_mock_pers_layer,
mo_Tlogger TYPE REF TO zcl_mock_Tlogger.

Listing 3.11 Defining Mock Classes for Injecting into Test Class

In Listing 3.8, you saw how in the constructor in production, the class would cre-
ate the real classes, but during a unit test mock classes are passed into the con-
structor of the class under test by the SETUP method, which runs at the start of
each test method.

The full list of the data definitions in the test class are shown in Listing 3.12. In
addition to the mock classes, there are some global (to a class instance) variables
for things such as the input data and the result. It's good to set things up this way
because passing parameters in and out of test methods can distract someone look-
ing at the code (e.g., a business expert) from making sure that the names of the
test methods reflect what's supposed to be tested.

PRIVATE SECTION.

DATA: mo_class_under_test TYPE REF TO zcl_monster_simulator,

mo_mock_pers_layer TYPE REF TO zcl_mock_monster_pers_layer,
mo_mock_logger TYPE REF TO zcl_mock_logger,

176

Writing and Implementing Unit Tests | 3.3
ms_input_data TYPE zvcs_monster_input_data,
mt_bom_data TYPE ztt_monster_items,
md_creator TYPE zde_monster_creator_name.

Listing 3.12 Variables for Test Class Definition

After defining the data, you now need to say what methods are going to be in the
test class.

Defining the SETUP Method

The first method to define is always the SETUP method, which resets the system
state so that every test method behaves as if it were the first test method to be
run. Therefore, any of those evil global variables knocking about must either be
cleared or set to a certain value, and the class under test must be created anew.
This is to avoid the so-called temporal coupling, in which the result of one test
could be influenced by the result of another test. That situation would cause tests
to pass and fail seemingly at random, and you wouldn't know if you were coming
or going.

This method can't have any parameters—you'll get an error if you try to give it
any—because it must perform the exact same task each time it runs and importing
parameters might change its behavior. The code for defining the SETUP method is
very simple:

METHODS: setup,

Defining the Test Methods

After defining the SETUP method, you'll move onto defining the actual test meth-
ods. At this stage, you haven't actually written any production code (i.e., the code
that will run in the real application), and all you have is the specification. There-
fore, next you're going to create some method definitions with names that will be
recognizable to the person who wrote the specification (Listing 3.13). The FOR
TESTING addition after the method definition says that this method will be run
every time you want to run automated tests against your application.

return_a_bom_for_a_monster FOR TESTING
make_the_monster_sing FOR TESTING
make_the_monster_dance FOR TESTING
make_the_monster_go_to_france FOR TESTING

Listing 3.13 Unit Test Methods

177

3 | ABAP Unit and Test-Driven Development

These are the aims of the program to be written (sometimes these are called use
cases); you want to be sure the application can perform every one of these func-
tions and perform them without errors. This is why you need unit tests.

Implementing Helper Methods

The last step in defining the test class is to implement helper methods (i.e., meth-
ods in your test class definition without the FOR TESTING addition). These are nor-
mal private methods that are called by the test methods.

The purpose of helper methods is to perform low-level tasks for one or more of
the actual test methods; in normal classes, public methods usually contain several
small private methods for the same reason. Helper methods usually fall into two
categories:

1. Helper methods that contain boilerplate code that you want to hide away
(because although you need this code to make the test work, it could be a dis-
traction to someone trying to understand the test)

2. Helper methods that call one or more ABAP statements for the sole purpose of
making the core test method read like plain English

Inside each unit test method (the methods that end with FOR TESTING), you will
have several helper methods with names that have come straight out of the spec-
ification. As an example, the specification document says that the main purpose
of the program is to return a bill of materials (BOM) for a monster, and you do
that by having the user enter various desired monster criteria, which are then
used to calculate the BOM according to certain rules.

Helper methods have names that adhere to a concept known as behavior-driven
development, the idea that tests should be managed by both business experts and
developers. When using behavior-driven development, the general recommenda-
tion is to start all the test methods with 1T SHOULD, with the 1T referring to the
application being tested (the class under test). Thus, you would have names such
as IT SHOULD FIRE A NUCLEAR MISSILE, such names coming straight out of the spec-
ification that describes what the program is supposed to achieve.

In ABAP, you are limited to thirty characters for names of methods, variables,
database tables, and so on—so you have to use abbreviations, which potentially
makes ABAP less readable than languages like Java. In Java, you would have

178

Writing and Implementing Unit Tests

really long test method names, like It Should Return a BOM for a Purple Monster,
but in ABAP you can't afford to add the extra characters of 1T SHOULD to the
method name. Instead, you can put the IT SHOULD in a comment line with dots
after it, padding the comment line out to thirty characters to make it really obvi-
ous what the maximum permitted length of the names of the test methods are.
You will then declare the test methods underneath the dotted line, being aware of
when you're running out of space for the name. An example is shown in Listing
3.14.

A o L L L L L L e e m i m oo oo *

* Specifications

A o o o e e o e o e e e e e e e e e e e e e e e m oo oo oo *
"IT SHOULD.o,

"User Acceptance Tests
return_a_bom_for_a_monster FOR TESTING,
make_the_monster_sing FOR TESTING
make_the_monster_dance FOR TESTING
make_the_monster_go_to_france FOR TESTING

Listing 3.14 Test Methods That Describe What an Application Should Do

Sometimes, these sorts of behavior-driven development unit tests are described as user
acceptance tests. Although there is no actual user involved, the reason for the terminol-
ogy is that this sort of test simulates the program exhibiting a behavior that the user
would expect when he performs a certain action within the program. Outside of SAP,
the testing framework called FitNesse describes itself as such an automated user accep-
tance testing framework.

You may also see behavior-driven development referred to as the assemble/act/assert
way of testing (which doesn't read as much like natural language, but it makes some
people very happy, because every word starts with the same letter).

Whatever you want to call these types of automated tests, they usually involve
several methods—and often several classes as well—all working together, as
shown in Listing 3.15.

CGIVEN. oo
given_monster_details_entered,

179

3 | ABAP Unit and Test-Driven Development

"WHEN. oo
when_bom_is_calculated,

"THEN. oo
then_resulting_bom_is_correct,

Listing 3.15 The GIVEN/WHEN/THEN Pattern for Unit Tests

As you can see in the preceding code, unit test methods that follow the behavior-
driven development approach have three parts:

1. GIVEN describes the state of the system just before the test to be run.
2. WHEN calls the actual production code you want to test.

3. THEN uses ASSERT methods to test the state of the system after the class under
test has been run.

Use Natural Language

A test method is supposed to be able to be viewed by business experts to see if the test
matches their specifications, so it has to read like natural language. Often, if business
experts see even one line of ABAP, their eyes glaze over and you've lost them for good.

3.3.2 Implementing Test Classes

Now that you've defined the test class, you can go ahead with the process of
implementing it. At the end of this step, you'll be able to show the business
expert who wrote the initial specification that you've made the specification into
a program that does what it says on the side of the box.

Given this, each implementation of a test method should look like it jumped
straight out of the pages of the specification and landed inside the ABAP Editor
(Listing 3.16).

METHOD return_a_bom_for_a_monster.
given_monster_details_entered().
when_bom_is_calculated().
then_resulting_bom_is_correct().

ENDMETHOD. "Return a BOM for a Monster (Test Class)
Listing 3.16 Implementation of Test Class

180

Writing and Implementing Unit Tests | 3.3

The steps for implementing the test classes are as follows:

1. Setting up the test

2. Preparing the test data

3. Calling the production code to be tested
4. Evaluating the test result

Step 1: Setting Up the Test

Our class under test has lots of small objects that need to be passed into it. For the
first example, you'll manually create all those small objects and pass them into
the constructor method of the class under test to get the general idea of construc-
tor injection. Later on, you'll find out how to reduce the amount of code needed
to do this.

As there's no guarantee about the order in which the test methods will run, you
want every test method to run as if it were the first test method run, to avoid tests
affecting each other. Therefore, when setting up the test, you create each object
instance anew and clear all the horrible global variables, as shown in Listing 3.17.

METHOD: setup.

A o e e e e e e e e e e e e e e e e - - *
* Called before every test
e *

CREATE OBJECT mo_mock_1logger.
CREATE OBJECT mo_mock_monster_pers_layer
EXPORTING
io_Tlogger = mo_logger
id_valid_on = sy-datum.

CREATE OBJECT mo_class_under_test
EXPORTING
id_creator = md_creator
io_pers_layer mo_mock_pers_layer
io_logger = mo_mock_Tlogger.

CLEAR: ms_input_data,
md_creator.

ENDMETHOD. "setup
Listing 3.17 Create Class under Test and Clear Global Variables

181

3 | ABAP Unit and Test-Driven Development

At this point, you can be sure that during the test you won't actually read the
database or output any sort of log, so you can proceed with the guts of the actual
tests, which can be divided into the three remaining steps: preparing the test
data, calling the production code to be tested, and evaluating the test result.

Step 2: Preparing the Test Data

You now want to create some test data to be used by the method being tested. In
real life, these values could come from user input or an external system. Here,
you'll just hard-code them (Listing 3.18). Such input data is often taken from real
problems that actually occurred in production; for example, a user might have
said, “When I created a monster using these values, everything broke down."
There could be a large number of values, which is why you hide away the details
of the data preparation in a separate method, to avoid distracting anybody read-
ing the main test method.

METHOD given_monster_details_entered.

ms_input_data-monster_strength = '"HIGH'.
ms_input_data-monster_brain_size = 'SMALL".
ms_input_data-monster_sanity = 0.

ms_input_data-monster_height_in_feet = 9.
md_creator = 'BARON FRANKENSTEIN'.

ENDMETHQOD. "Monster Details Entered - Implementation
Listing 3.18 Preparing Test Data by Simulating External Input

Step 3: Calling the Production Code to be Tested

The time has come to actually invoke the code to be tested; you're calling pre-
cisely one method (or other type of routine), into which you pass in your hard-
coded dummy values and (usually) get some sort of result back.

The important thing is that the routine being called doesn't know it's being called
from a test method; the business logic behaves exactly as it would in production,
with the exception that when it interacts with the database or another external
system it's really dealing with mock classes.

In this example, when you pass in the hard-coded input data, the real business
logic will be executed, and a list of monster components is passed back (Listing
3.19).

182

Writing and Implementing Unit Tests | 3.3

METHOD when_bom_is_calculated.

mo_class_under_test->simulate_monster_bom(
EXPORTING is_bom_input_data = ms_input_data
IMPORTING et_bom_data = mt_bom_data).

ENDMETHOD. "when_bom_is_calculated
Listing 3.19 Calling Production Code to be Tested

The method that calls the code to be tested should be very short—for example, a
call to a single function module or a method —for two reasons:

1. Clarity
Anyone reading the test code should be able to tell exactly what the input data
is, what routine processes this data, and what form the result data comes back
in. Calling several methods in a row distracts someone reading the code and
makes them have to spend extra time working out what's going on.

2. Ease of maintenance
You want to hide the implementation details of what's being tested from the
test method; this way, even if those implementation details change, the test
method doesn't need to change.

For example, in a procedural program, you might call two or three PERFORM state-
ments in a row when it would be better to call a single FORM routine—so that if
you were to add another FORM routine in the real program, you wouldn't have to
go and add it to the test method as well. With procedural programs, it would be
good to have a signature with the input and output values, but a lot of procedural
programs work by having all the data in global variables. Such a program can still
benefit from unit testing; it just requires more effort (possibly a lot more effort) in
setting up the test to make sure the global variables are in the correct state before
the test is run.

Step 4: Evaluating the Test Result
Once you have some results back, you'll want to see if they are correct or not.
There are generally two types of tests:

1. Absolutely basic tests
In Chapter 6, Section 6.3, you'll read about design by contract, which says what
a method absolutely needs before it can work and what it absolutely must do.

183

3 | ABAP Unit and Test-Driven Development

In their book The Pragmatic Programmer, Andrew Hunt and David Thomas state
that unit tests should test for method failures in terms of “contract violations";
for example, do you pass a negative number into a method to calculate a square
root of that number (which is silly) or pass a monster with no head into a
method to evaluate hat size (a more realistic example)?

2. Data validation tests

This is what most people would call the normal type of unit test in which you
have an expected result given a known set of inputs; for example, a method to
calculate the square root of sixteen should return four or (back in the real
world), when calling a method to supply monster hats, the HATS_RECIEVED
returning parameter should be seven when the MONSTER_HEADS importing
parameter is seven, as demonstrated in the famous movie Seven Heads for
Seven Monsters.

Next, you'll learn how to test for really basic failures, the standard way of evalu-
ating test results, and how you can enhance the standard framework when the
standard mechanism doesn't do everything you want. Finally, you'll see how to
achieve 100% test coverage.

Testing for Really Basic Failures

In Chapter 6, you'll see that each routine in a program has a “contract” with the
code that calls it, and there are only two ways of violating that contract: Either the
calling program is at fault because the input data is wrong (violated precondition)
or the routine itself is at fault because the data returned is wrong (violated post-
condition).

The idea is that this contract is used to define unit tests for the routine, and those
tests are used to verify that the routine is behaving correctly; two sides of the
same coin.

A failure of such a test indicates a really serious, fatal, end of the universe as we
know it type of bug, which needs to be addressed before dealing with minor (in
comparison) matters, like your program adding up one and one and getting three.
Listing 3.20 shows how to code such tests.

METHOD return_a_bom_for_a_monster.
TRY.

given_monster_details_entered().

184

Writing and Implementing Unit Tests | 3.3

when_bom_is_calculated().
then_resulting_bom_is_correct().

CATCH zcx_violated_precondition.

cl_abap_unit_assert=>fail('Violated Contract Precondition").
CATCH zcx_violated_postcondition.

cl_abap_unit_assert=>fail('Violated Contract Postcondition').
ENDTRY.

ENDMETHOD. "Return a BOM for a Monster (Test Class)
Listing 3.20 Unit Test to Check for Basic Errors

The structure in Listing 3.20 is totally generic. In TDD, you create the structure
before writing the actual code, so the nature of the pre- and postconditions will
only be determined later. In this example, the precondition could be that the
input data should be asking for sensible values, like wanting a murderous evil
monster as opposed to a cute fluffy one, and the postcondition should be that the
resulting monster is scary and not colored pink.

Evaluating Test Results in the Normal Way

Moving on to looking at return values, when you ran the test method that called
the production code, either you got a result back—table MT_BOM_DATA in the exam-
ple in Listing 3.21—or some sort of publicly accessible member variable of the
class under test was updated —a status variable, perhaps. Next, you'll want to run
one or more queries to see if the new state of the application is what you expect
it to be in the scenario you're testing. This is done by looking at one or more vari-
able values and performing an evaluation (called an assertion) to compare the
actual value with the expected value. If the two values don't match, then the test
fails, and you specify the error message to be shown to the person running the
test (Listing 3.21).

CTHEN. o
METHOD then_resulting_bom_is_correct.

DATA(bom_item_details) = mt_bom_datal 1 7.

cl_abap_unit_assert=>assert_equals(

act = bom_item_details-part_quantity

exp =1

msg = 'Monster has wrong number of Heads'
quit = if_aunit_constants=>no).

185

3 | ABAP Unit and Test-Driven Development

bom_item_details = mt_bom_datal 2 7.

cl_abap_unit_assert=>assert_equals(

act = bom_item_details-part_quantity
exp = 2

msg = 'Monster has wrong number of Arms'
quit = if_aunit_constants=>no).

bom_item_details = mt_bom_datal 3 1J.

cl_abap_unit_assert=>assert_equals(act = bom_item_details-part_

quantity
exp =1
msg = 'Monster has wrong number of Legs'

quit = if_aunit_constants=>no).

ENDMETHOD. "Then Resulting BOM is correct - Implementation
Listing 3.21 Using Assertions to Check If Test Passed

When evaluating the result, you use the standard CL_ABAP_UNIT_ASSERT class,
which can execute a broad range of tests, not just test for equality; for example,
you can test if a number is between five and ten. There's no need to go into all the
options here; it's easier if you just look at the class definition in SE24. (For a bit
more about ASSERT, see the box ahead.)

Multiple Evaluations (Assertions) in One Test Method

Many authors writing about TDD have stated that you should have only one ASSERT
statement per test. As an example, you shouldn't have a test method that tests that the
correct day of the week is calculated for a given date and at the same time tests whether
an error is raised if you don't supply a date. By using only one ASSERT statement per
test, it's easier for you to quickly drill down into what's going wrong.

| would change that rule slightly, so that you're only testing one outcome per test.
Although your test might need several ASSERT statements to make sure it's correct, the
fact that you are only testing one outcome will still make it easy to figure out what's
wrong. The default behavior in a unit test in ABAP, however, is to stop the test method
at the first failed assertion and not even execute subsequent assertions within the same
method. Every test method will be called, even if some fail—but only the first assertion
in each method will be checked.

You can avoid this problem by setting an input parameter. In Listing 3.21, there are
three assertions. By adding the following code, you can make the method continue with
subsequent assertions even if one fails:

quit = if_aunit_constants=>no

186

Writing and Implementing Unit Tests

Defining Custom Evaluations of Test Results

The methods supplied inside CL_ABAP_UNIT_ASSERT are fine in 99% of cases, but
note that there is an ASSERT_THAT option that lets you define your own type of test
on the result. Let's look at an example of the specialized assertion ASSERT_THAT in
action. First, create a local class that implements the interface needed when using
the ASSERT_THAT method (Listing 3.22).

CLASS Tcl_my_constraint DEFINITION.

PUBLIC SECTION.
INTERFACES if_constraint.

ENDCLASS. "lcl_my_constraint DEFINITION
Listing 3.22 ASSERT_THAT

You have to implement both methods in the interface (naturally); one performs
whatever tests you feel like on the data being passed in, and the other wants a
detailed message back saying what went wrong in the event of failure. In real life,
you would have a member variable to pass information from the check method to
the result method, but the example shown in Listing 3.23 just demonstrates the
basic principle.

CLASS Tcl_my_constraint IMPLEMENTATION.

METHOD if_constraint~is_valid.

K oo e e e oo *
* IMPORTING data_object TYPE data

* RETURNING result TYPE abap_bool

K o e — — - o *

* Local Variables
DATA: monster_description TYPE string.

monster_description = data_object.

result = abap_false.

CHECK monster_description CS "SCARY".
CHECK strlen(monster_description) GT 5.
CHECK monster_description NS "FLUFFY".

result = abap_true.

ENDMETHOD. "IF_CONSTRAINT~is_valid

187

3 | ABAP Unit and Test-Driven Development

METHOD if_constraint~get_description.

K e = *

* RETURNING result TYPE string_table

K o e o *
DATA(error_message) = 'Monster is not really that scary'.

APPEND error_message TO result.
ENDMETHOD. "IF_CONSTRAINT~get_description

ENDCLASS."My Constraint - Implementation
Listing 3.23 Implementation of a Custom Constraint Class

All that remains is to call the assertion in the THEN part of a test method, as shown
in Listing 3.24.

DATA(custom_constraint) = NEW Tcl_my_constraint().

cl_abap_unit_assert=>assert_that(exp = custom_constraint
act = scariness_description).

Listing 3.24 Call Assertion

As you can see, the only limit on what sort of evaluations you can run on the test
results is your own imagination.

Achieving 100 Percent Test Coverage

When evaluating your results, you want to make sure that you've achieved 100%
test coverage. In the same way that the US army wants no man left behind, you
want no line of code to remain untested. That is, if you have an IF statement with
lots of ELSE clauses or a CASE statement with 10 different branches, then you want
your tests to ensure that every possible path is followed at some point during the
execution of the test classes to be sure that nothing ends in tears by causing an
error of some sort.

That's not as easy as it sounds. Aside from the fact that you need a lot of tests,
how can you be sure you haven't forgotten some branches? Luckily, there's tool
support for this. As of release 7.31 of ABAP, you can follow the menu path LocAL
TEST CLASSES * EXECUTE « EXECUTE TESTS WITH « CODE COVERAGE. As mentioned
earlier in the book, the same feature is available through ABAP in Eclipse.

188

Automating the Test Process

3.4 Automating the Test Process

In the example presented in this chapter, the code was deliberately simple in
order to highlight the basic principles without getting bogged down with unnec-
essary detail. However, in the real world programs are never simple. Even if they
start off simple, they keep growing and mutating, the ground of the original pur-
pose becoming buried under the ever-falling snow of new functionality.

If you think about what you've read above, you'll see that this can lead to quite a
large effort in writing the test code, in two areas:

1. Setting up the class under test via the SETUP method

Well-designed OO programs use lots of small reusable classes, and these often
need to be inserted into the main class during construction. The smaller classes
often need still smaller classes inserted into them during their construction,
and so on. In practical terms, this can mean a lot of lines of code to build up
your test class, passing in assorted mock doubles and elementary data parame-
ters, such as date, and organizational elements, such as plant or sales organiza-
tion.

2. Creating mock objects

Although you need mock objects to take the place of real objects during a test
in order to avoid actual database access and the like, it can take a good deal of
effort to create these and to write the logic inside them to return hard-coded
values. Even worse, if you're passing in constructor objects as interfaces as
opposed to actual classes (which all the OO experts recommend), then you
need to expend even more effort, because you have to create an implementa-
tion for every method in your mock object that uses the interface, including the
methods you're not interested in.

Luckily, there are solutions for both problems and ahead, you'll read about two
frameworks to solve those problems:

» A framework to automate dependency injection (which I created myself)

» A framework to automate creating mock objects (SAP standard)

Then, you'll see how to combine both techniques. The section will end with a
look at what to do when you have a really large number of situations to test for,
which is often the case.

189

3 | ABAP Unit and Test-Driven Development

Prior to ABAP 7.4 SPS 9, the only framework available to automate mock object cre-
ation was the open-source framework MockA (see Recommended Reading at the end of
the chapter).

Since then, SAP has introduced its own standard framework to fill that gap, which is
described in this chapter.

3.4.1 Automating Dependency Injection

Let's say, for the sake of example, that the main class under test needs two object
instances to be passed into it during construction, and one of those objects needs
some parameters itself. In other words, the main class has dependencies: The main
class depends on the fact that those object instances need to be created before it
itself can be created.

In real life, this could lead to dozens of lines of code in your SETUP method, cre-
ating objects all over the place. This is bad, because the more CREATE OBJECT state-
ments you have in your program, the less flexible it becomes. The logic goes as
follows: Creating an object via CREATE O0BJECT forces the resulting instance to be
of a specific class. Having objects of a specific class makes your program less resis-
tant to change. If your main class contains lots of little helper classes—as it
should—then you may need to have a great deal of CREATE OBJECT statements,
meaning that your program is full of rigid components.

This leads to two problems: First, you have to clutter up your code with a large
number of CREATE OBJECT statements. Second, those CREATE OBJECT statements
usually create instances of a hard-coded class type rather than a dynamically
determined subclass.

Now, you're always going to have to state the specific subclass you want some-
where. However, you'll see that it's possible to decouple this from the exact
instant you call the CREATE OBJECT statement and, as a beneficial by-product, have
fewer CREATE OBJECT statements in the first place.

The process of passing the objects a class needs to create itself is known as depen-
dency injection; you saw this at work in Section 3.2.3 when you manually passed
mock objects into a constructor method. Here, you seek to automate the process
by dynamically working out what objects (dependencies) an instance of the main

190

Automating the Test Process

class needs to create itself and by creating and passing those objects in all at once.
This will drastically reduce the amount of CREATE OBJECT statements—and
because you're going to be using a program to dynamically determine what
objects need to be created, that same program might as well also dynamically
determine what type (subclass) those created objects should be.

Listing 3.25 is an example of this approach; this code attempts to achieve the
same thing as the SETUP method in Listing 3.17, but with fewer CREATE OBJECT
statements. If you look at the definition of the SETUP method earlier in the chap-
ter, you'll see three CREATE OBJECT statements, and in each case the object you're
creating has to be defined by a DATA statement. (Some objects also need data
parameters that are elementary, my dear Watson.)

Listing 3.25 rewrites the same SETUP method, using a Z class created to use depen-
dency injection. Look at this like a newspaper: Look at the four high-level method
calls first (which represent the headlines), and then dive into the implementation
of each component method (representing the actual newspaper article) one at a
time.

First, set some values for elementary data parameters. Then, specify any sub-
classes you want to substitute for real classes. Finally, create an instance of the
class under test.

"Set values for any elementary parameters that the objects
"being created need
zcl_bc_injector=>during_construction(
for_parameter = "ID_CREATOR' wuse_value = md_creator),
for_parameter = 'ID_VALID_ON' use_value = sy-datum).

"We want to use a test double for the database object
zcl_bc_injector=>instead_of(

using_main_class "ZCL_MONSTER_SIM_PERS_LAYER'
use_sub_class = '"ZCL_MOCK_MONSTER_PERS_LAYER").

"Same deal for the Tlogger
zcl_bc_injector=>instead_of(
using_main_class = "ZCL_MONSTER_LOGGER"
use_sub_class = '"/CL_MOCK_LOGGER").

"Off we go!
zcl_bc_injector=>create_via_injection(
CHANGING co_object = mo_class_under_test).

Listing 3.25 SETUP Method Rewritten Using Z Statement

191

3 | ABAP Unit and Test-Driven Development

As you can see, when using this approach you don't need DATA statements to
declare the database access object or the logging object. In addition, you only
have one CREATE statement. This may not seem like much in this simple example,
but the advantage increases proportionally with the complexity of the class being
tested.

You can also use this same methodology if the importing parameter of the object con-
structor is an interface. You just pass the interface name in to the INSTEAD_OF method
rather than the main class name.

The first method called in Listing 3.25 is the DURING_CONSTRUCTION method. This
is shown in greater detail in Listing 3.26; it analyzes elementary parameters and
then does nothing fancier than adding entries to an internal table.

METHOD during_construction.
* Local Variables
DATA: dummy_string TYPE string {fHineeded,
data_element_name TYPE string,
parameter_value_information LIKE LINE OF mt_parameter_values.

parameter_value_information-identifier = for_parameter.
parameter_value_information-do_value = REF #(use_value).

CHECK sy-subrc = 0.

CALL METHOD cl_abap_structdescr=>describe_by_data_ref

EXPORTING
p_data_ref = parameter_value_information-do_value
RECEIVING
p_descr_ref = DATA(type_description)
EXCEPTIONS
reference_is_initial =1
OTHERS = 2.
IF sy-subrc <> 0.
RETURN.
ENDIF.
SPLIT type_description->absolute_name AT '=' INTO dummy_string data_

element_name.

parameter_value_information-rollname = data_element_name.

192

Automating the Test Process

INSERT parameter_value_information INTO TABLE mt_parameter_values.

ENDMETHOD.
Listing 3.26 DURING CONSTRUCTION Method

The next method called as part of the rewritten SETUP method is the INSTEAD_OF
method (Listing 3.27). This method takes in as parameters the subclasses you
want to create instead of a superclass, and that relation is stored in a hashed table.

METHOD instead_of.
* Local Variables
DATA: sub_class_to_use_info LIKE LINE OF mt_sub_classes_to_use,
created_objects_info LIKE LINE OF mt_created_objects.

sub_class_to_use_info-main_class = using_main_class.
sub_class_to_use_info-sub_class = use_sub_class.

"Add entry at the start, so it takes priority over previous
"similar entries
INSERT sub_class_to_use_info INTO mt_sub_classes_to_use INDEX 1.

"A specific object instance can be passed in, sometimes
"a generated instance created via a framework

CHECK with_specific_instance IS SUPPLIED.

CHECK with_specific_instance IS BOUND.

created_objects_info-clsname = use_sub_class.
created_objects_info-object = with_specific_instance.
INSERT created_objects_info INTO TABLE mt_created_objects.

ENDMETHOD.
Listing 3.27 INSTEAD_OF Method

The last part of the rewritten SETUP method is the CREATE_BY_INJECTION method
(Listing 3.28). This is written as close to plain English as possible so that the code
is more or less self-explanatory. In essence, you're passing the input values you
just stored into the constructor method when creating your class under test and
any smaller classes it requires.

METHOD create_via_injection.

* Local Variables
DATA: class_in_reference_details TYPE REF TO cl_abap_refdescr.

* Determine the class type of the reference object passed in

class_in_reference_details ?=
cl_abap_refdescr=>describe_by_data(co_object).

193

3 | ABAP Unit and Test-Driven Development

DATA(class_in_type_details) =
class_in_reference_details->get_referenced_type().
DATA(class_passed_in) =
class_in_type_details->get_relative_name().

"See if we need to create the real class, or a subclass
determine_class_to_create(

EXPORTING
id_class_passed_in = CONV #(class_passed_in)
io_class_in_type_details = class_in_type_details
IMPORTING
ed_class_type_to_create = DATA(class_type_to_create)

eo_class_to_create_type_detail DATA(class_to_create_type_detail)).
"Buffering causes unforseen results, so optional default "off"
IF mf_use_buffering = abap_true.
READ TABLE mt_created_objects INTO DATA(created_objects_info)
WITH TABLE KEY clsname = class_type_to_create.

IF sy-subrc = 0.
"We already have an instance of this class we can use
co_object 7= created_objects_info-object.
RETURN.
ENDIF.
ENDIF."Do we buffer created objects?

"See if the object we want to create has parameters, and if so, fill th
em up

fill_constructor_parameters(

EXPORTING io_class_to_create_type_detail =

class_to_create_type_detail " Class to Create Type Details
IMPORTING et_signature_values =
DATA(signature_value_table)). " Constructor Parameters

create_parameter_object(

EXPORTING id_class_type_to_create = class_type_to_create
it_signature_values = signature_value_table " Parameter Values
CHANGING co_object = co_object)." Created Object

ENDMETHOD.”Create by Injection
Listing 3.28 CREATE_BY_INJECTION Method
If you want to drill into this even more, you can download this code from

www.sap-press.com/4161 and run it in debug mode to see what's happening.

In summary, dependency injection provides a way to set up complicated classes
while using a lot less code, which will enable you to create test classes with less
effort.

194

Automating the Test Process | 3.4

Error Handling

There's virtually no error handling in the code just discussed (except for throwing fatal
exceptions when unexpected things occur). This could be a lot more elegant—but it's
the basic principle of automating dependency injection, not elegance, that's our current
focus.

3.4.2 Automating Mock Object Creation: Test Double Framework

Unit testing frameworks have been around for quite some time in other lan-
guages, such as Java and C++. ABAP has joined the club rather late in the day. One
advantage of this is that ABAP developers can look at problems other languages
encountered—and solved—some years ago, and if they find the same problem,
then they can implement the same sort of solution without having to reinvent the
wheel. Mock objects are a great example of this: Many different mock object
frameworks for Java were born to take a lot of the pain out of the process.

It wasn't until ABAP 7.4 that SAP created the ABAP Test Double Framework
(hereafter ATDF because that's not such a mouthful and because I don't think I
could get away with calling it the “mine’s a double” framework), which is the
equivalent of the mock object framework in all those other languages.

Good OO design recommends that virtually every class has its public signature
defined via an interface. This is known in academic circles as the Joe Dolce princi-
ple, and the reasons that this is a Good Thing are too many and too complicated
to go into here, but suffice it to say that this helps you follow the OO principle of
favoring composition over inheritance. The ATDF works by using classes for
which the public signature is defined via an interface.

For any given method, there are several generic behavior types that you would
expect and that you'll want to test and thus also want to mock. Earlier in the chap-
ter you saw some specific examples of these generic behaviors: either the correct
result for a given set of input data or a violation of the methods contract with the
calling program. The next two sections cover each case.

Verifying Correct Results

You can use the ATDF to verify correct results, as demonstrated in Listing 3.29. In
our example, the class to be mocked is ZCL_MONSTER_SIMULATOR, which imple-
ments interface ZIF_MONSTER_SIMULATOR. Listing 3.29 demonstrates a number of

195

ABAP Unit and Test-Driven Development

concepts; let's examine them one at a time before looking at the listing as a
whole.

First, you create the mock object instance, which is an instance of a (nonexistent)
class that implements the chosen interface. This dummy class has empty imple-
mentations for every method defined in the interface, as follows:

mock_monster_simulator ?= cl_abap_testdouble=>create(interface_name).

In our example, the method to be mocked is CALCULATE_SCARINESS. This may
seem odd, but the method name is not mentioned at the start of the process of
setting this up; you just state the result that you're expecting back from this yet-
unnamed method, as follows:

cl_abap_testdouble=>configure_call(mock_monster_simulator)-
>returning("REALLY SCARY').

Now is the time to overcomplicate things and say that, in this unit test, you expect
the method to be called once and once only. The previous line of code is modified
as follows:

cl_abap_testdouble=>configure_call(mock_monster_simulator)-
>returning("REALLY SCARY')->and_expect()->is_called_times(1).

The names of the standard methods make the code read almost like English,
which is a Good Thing.

Next, you set up the input data. As mentioned earlier in Listing 3.15, we have a
special helper method for this called GIVEN_MONSTER_DETAILS_ENTERED, which fills
in the values for the input structure, because there could be quite a few such val-
ues. Now, you can finally say (1) which method it is you want to mock, and (2)
what input values should give the result you just specified (i.e., ‘REALLY SCARY'), as
follows:

mock_monster_simulator->calculate_scariness(is_bom_input_data = ms_

input_data).

From now on, calls to methods of our mock instance will be indistinguishable
from calls to an instance of an actual class. To prove this, perform a real call to the
same method (that may seem pointless now, but just you wait and see) to fill a
variable with the scariness description, as follows:

scariness_description = mock_monster_simulator->calculate_
scariness(ms_input_data).

196

Automating the Test Process | 34

It's fairly obvious what the result is going to be, but the test method ends with
two assertions: one to see if the correct result has been returned and one to see if
the method was called once and only once as expected.

Listing 3.29 combines these various lines of code. When you put them all
together, what have you got? A lovely unit test!

METHOD mocking_framework_test.

* Local Variables

DATA: interface_name TYPE seoclsname
VALUE "ZIF_MONSTER_SIMULATOR",
mock_monster_simulator TYPE REF TO zif_monster_simulator,
scariness_description TYPE string.

"Create the Test Double Instance
mock_monster_simulator ?= cl_abap_testdouble=>create(interface_name).

"What result do we expect back from the called method?
cl_abap_testdouble=>configure_call(mock_monster_simulator)-
>returning('REALLY SCARY')->and_expect()->is_called_times(1).

"Prepare the simulated input details e.g. monster strength
given_monster_details_entered().

"Say what method we are mocking and the input values
mock_monster_simulator->calculate_scariness(is_bom_input_data = ms_
input_data).

"Invoke the production code to be tested
scariness_description = mock_monster_simulator->calculate_
scariness(ms_input_data).

"Was the correct value returned?
cl_abap_unit_assert=>assert_equals(
exp = 'REALLY SCARY'

act = scariness_description

msg 'Monster is not scary enough').

"Listen very carefully - was the method only called once?
cl_abap_testdouble=>verify_expectations(mock_monster_simulator).

ENDMETHOD. "Mocking Framework Test

Listing 3.29 Coding Unit Test without Needing Definitions and Implementations

As you can see, the ATDF does away with the need to create definitions and
implementations of the class you want to mock. You only need to focus on what
output values should be returned for what input values for what class. This

197

3 | ABAP Unit and Test-Driven Development

methodology uses ABAP's ability to generate temporary programs that live only
in memory and only exist as long as the mother program is running. In effect,
the framework writes the method definitions and implementations for you at
runtime.

Note also that during the test a check is performed to see if the CALCULATE_
SCARINESS method was in fact called in the preceding code. Even if a mock
method doesn't do anything at all in a test situation, you still want to be sure that
it's been called.

Method Chaining

Listing 3.29 also uses method chaining, a feature we discussed in Chapter 2. Four meth-
ods in a row are called on CL_ABAP_TESTDOUBLE: CONFIGURE_CALL, RETURNING, AND_
EXPECT, and IS_CALLED_TIMES. Before release 7.02 of ABAP, you would have had to
use four lines here, create a helper variable on the first line, and use that variable on
each subsequent line.

Verifying Contract Violations

Sometimes you want to simulate the exception that's raised when a program
encounters nonsense data, for example: if the input data being passed in by the
calling program breaks the contract with the method being called.

In the running example used in this chapter, the CALCULATE_SCARINESS method
has a contract with the calling program such that if the input data structure is
totally blank, then there is no way the scariness can be calculated. This means that
the calling program is at fault and an exception should be raised. You want to per-
form a test to make sure that in such a situation an exception actually is raised.

Do so by substituting the RETURNING method in CONFIGURE_CALL with RAISE_
EXCEPTION, as shown in Listing 3.30.

METHOD mocking_exception_test.

* Local Variables

DATA: interface_name TYPE seoclsname
VALUE "ZIF_MONSTER_SIMULATOR",
mock_monster_simulator TYPE REF TO zif_monster_simulator,
scariness_description TYPE string.

"Create the Test Double Instance
mock_monster_simulator ?= cl_abap_testdouble=>create(interface_name).

198

Automating the Test Process | 3.4

"What result do we expect back from the called method?
DATA(lo_violation) = NEW zcx_violated_precondition_stat().
cl_abap_testdouble=>configure_call(mock_monster_simulator)->raise_
exception(lo_violation).

"Prepare the simulated input details e.g. monster strength
CLEAR ms_input_data.

"Say what method we are mocking and the input values

TRY.

mock_monster_simulator->calculate_scariness(is_bom_input_data = ms_
input_data).

"Invoke the production code to be tested
scariness_description = mock_monster_simulator->calculate_
scariness(ms_input_data).

CATCH zcx_violated_precondition_stat.
"A11 is well, we wanted the exception to be raised
RETURN.

ENDTRY.

"Was the correct value returned?
cl_abap_unit_assert=>fail(
msg = 'Expected Exception was not Raised').

ENDMETHOD. "Mocking Exception Test
Listing 3.30 Mocking Exception Using ATDF

Note that in order to mock an exception being raised, the exception being tested
for has to be declared in the signature of the method being mocked. Exception
classes inheriting from CX_NO_CHECK can't be mentioned in a method signature
and thus can't be simulated.

See the Recommended Reading box at the end of the chapter for a link to the offi-
cial blog detailing all the features of ATDF. There are more than I can go into here;
what's more, new features are going to be added with each new release, which is
wonderful news.

Alternatives to ATDF

Without this framework, the way to proceed is to create mock classes that are sub-
classes of the real class (e.g., ZCL_MOCK_DATABASE_LAYER), redefine some methods, and
put some hard-coded logic inside the redefined method to return certain values based
upon input values. You could also create a mock class that implements an interface—

199

3 | ABAP Unit and Test-Driven Development

but sometimes this is even more work, because in earlier versions of ABAP you need an
implementation for every method in the interface.

3.4.3 Combining Dependency Injection and the ABAP Test
Double Framework

It's quite possible that you didn't think the examples in the last section were the
greatest thing since sliced bread, because of course the tests were going to pass; it
was like adding up one and one and expecting two. The real value of ATDF comes
to light when you pass your generated mock object into a larger class being
tested. To demonstrate this, create a ZCL_MONSTER_LABORATORY class that takes the
SIMULATOR object as input and then uses a complex set of business logic to say
whether the monster is any good. That business logic is what we want to test.

To be more precise, the EVALUATE_MONSTER method of the LABORATORY object will
call the CALCULATE_SCARINESS method of the monster simulator instance, which
was passed into it at some point during processing. At that point, you want the
mocked up result to be returned to the CALCULATE_SCARINESS method, as opposed
to what the normal method would return in production.

The code in which the ZCL_MONSTER_LABORATORY class imports the SIMULATOR
object during one of its methods is shown in Listing 3.31. The first part of the
code is the same as in Listing 3.29 but with the mocked up simulator instance
“injected” into the laboratory object.

METHOD laboratory_test.
* Local Variables
DATA: interface_name TYPE seoclsname
VALUE "ZIF_MONSTER_SIMULATOR",
mock_monster_simulator TYPE REF TO zif_monster_simulator.

"Create the Test Double Instance
mock_monster_simulator ?= cl_abap_testdouble=>create(interface_name).

"What result do we expect back from the called method?
cl_abap_testdouble=>configure_call(mock_monster_simulator)-
>returning("REALLY SCARY')->and_expect()->is_called_times(1).

"Prepare the simulated input details e.g. monster strength
given_monster_details_entered().

"Say what method we are mocking and the input values

200

Automating the Test Process

mock_monster_simulator->calculate_scariness(is_bom_input_data = ms_
input_data).

* Now pass this mocked up simulator object into a class that
* expects a real object as an input.
DATA(laboratory) = NEW zcl_monster_Tlaboratory().

DATA(is_the_monster_ok) = laboratory->evaluate_monster(
is_bom_input_data = ms_input_data
io_simulator = mock_monster_simulator).

cl_abap_unit_assert=>assert_equals(

exp = abap_true

act = is_the_monster_ok

msg = 'Monster is just not good enough').

ENDMETHOD. "Laboratory Test
Listing 3.31 Passing In Mocked-Up Interface to Real Class

In Listing 3.31, large chunks of code that you would normally need have been
removed; you didn't need to code either a definition or an implementation for
the mock monster simulator class. Nonetheless, the end result is just as good as if
you'd gone down the longer route. The laboratory object neither knows nor cares
that what's been passed into it is not a real instance of a class, but instead a gen-
erated mock object.

Take this one step further: Pretend the monster simulator needs a whole raft of
objects that are a pain to set up (e.g., a complicated laboratory object needs a
monster creator object in its constructor, and a monster creator object needs a
specialty in its constructor), so you combine ATDF with the dependency injection
framework. In the injection framework class that's part of Listing 3.31, the
method FOR_THE has a parameter through which you can pass in the generated
object. You need this so that you can enable your ATDF-generated instance to be
used when creating the class under test using injection. This is shown in Listing
3.32.

Same set up code as before ... Then ...

* Create the complicated receiving object via injection

DATA: Taboratory TYPE REF TO zcl_complicated_Taboratory,
speciality TYPE zde_monster_type VALUE 'SCARY'.

"In unit tests, everything has to start in pristine condition
zcl_bc_injector=>reset().

201

ABAP Unit and Test-Driven Development

"A Monster Creator (e.g., the baron) needs a speciality
zcl_bc_injector=>during_construction(
for_parameter = "ID_SPECIALITY' wuse_value = speciality).

"A complicated laboratory needs a Monster Creator object but this will
be created automatically by the injector

"Pass in the instance of the simulator we have mocked up
zcl_bc_injector=>for_the(

interface_or_class = monster_simulator_interface
use_specific_instance = mock_monster_simulator).

"During injection the mocked up object gets passed in with
"all the other data we have set up
zcl_bc_injector=>create_via_injection(

CHANGING co_object = laboratory).

DATA(is_the_monster_ok) = Taboratory->evaluate_monster(ms_input_
data).

cl_abap_unit_assert=>assert_equals(

exp = abap_true

act = is_the_monster_ok

msg = 'Monster is just not good enough').

Listing 3.32 Combining ATDF with Dependency Injection

In Listing 3.32, you're passing in a generated object that will be used when the
injection class creates the class under test.

What the examples that culminate in Listing 3.32 show is that it's possible to
simplify the SETUP method dramatically when creating the class under test. You
can use ATDF to set up test doubles with a lot less effort and use injection to
avoid having to code long strings of CREATE OBJECT statements that pass the
results into each other before handing the end result into the class under test
when it's finally created. The two frameworks weren't created with the intention
of working together, but by a happy accident they fit together like the pieces of
a jigsaw puzzle.

3.4.4 Unit Tests with Massive Amounts of Data

In the United Kingdom, children can buy I-Spy books, in which they have to spot
various things. Once they've spotted them all, they send the completed list to Big
Chief I-Spy, who sends them a feather in return. If you were on the lookout for a
feather, you have may have spied that in all the preceding examples, regardless of

202

Automating the Test Process

method, hard-coded data was used. The rest of the book goes on and on about
how hard-coded values are the work of the devil, so there's some disparity here—
a circle that needs to be squared.

In most cases, you want to test your method with a wide variety of possible
inputs to make sure the correct result is returned in every case. One way to do
this is to code one unit test with one set of inputs to ensure it comes back with the
correct result, and then move the transport into test (or production) and wait for
people to tell you everything falls apart when you input a different set of results.
(Hopefully, you can see that might not be the ideal way to go about things.) It
would be so much better if you started off with a wide range of scenarios, ran
tests for all of them, made sure they all worked, and then moved the program to
test. Everyone would be a lot happier—especially you.

Getting a list of scenarios was easy: I went to the business users (Igor and his
hunchback mates) and asked for a list of a hundred sets of monster requirements
and their monster BOMs. Before I could say “Jack Robinson," I had a spreadsheet
in my hot little hands. Wonderful! Now, should I manually code one hundred dif-
ferent test methods, each with the same method call with a different set of inputs
followed by assertions with a different set of results? Doesn't sound like much
fun.

You could create a database table (but you might have to create different ones for
different programs) or store the test data in the standard ECATT automated tests
script system. My favorite solution to this problem, however, is an open-source
project created by a programmer called Alexander Tsybulsky and his colleagues,
who came up with a framework called the Mockup Loader, which lives on the
GitHub site and can be downloaded to your system via the link found in the Rec-
ommended Reading box at the end of this chapter.

Several times throughout this book, we'll refer to open-source ABAP projects, which
started life in the SAP Code Exchange section of the SAP Community Network website
but nowadays live on sites like GitHub. The obvious benefit is that these are free. Some
development departments have rules against installing such things, but | feel they're
just cutting off their nose to spite their face.

The important point to note is that these are not finished products, so installing them is
not like installing the sort of SAP add-on you pay for. It's highly likely you'll encounter
bugs and that the tool won't do 100% of what you want it to do. In both cases, |

203

3 | ABAP Unit and Test-Driven Development

strongly encourage you to fix the bug or add the new feature, and then update the
open-source project so that the whole SAP community benefits.

The very first open-source project you'll need to install is SAPlink so that you can down-
load any others you need easily. You can get SAPlink from www.saplink.org.

Before you begin, you should have the test data loaded inside the SAP develop-
ment system (where the tests will run, of course). That's much better than having
the test data on some sort of shared directory or, worse, on a developer's laptop.

The GitHub page for the Mockup Loader gives detailed instructions for storing a
spreadsheet inside the MIME repository, which allows you to store various files
(like spreadsheets) inside SAP. You can upload as many spreadsheets as you want:
one for input data, one for output data, or both in one sheet, as in the following
example. Even better—if you have different types of data, you can store each one
as a sheet inside the one big worksheet, keeping everything in the same place.

Once the test data in the spreadsheet is uploaded into SAP, the fun begins. Listing
3.33 demonstrates a test method that evaluates lots of test cases at once, without
any of the fancy things mentioned elsewhere in the chapter so as not to distract
from what's being demonstrated.

In this example, the idea is to loop through different sets of customer require-
ments to make sure the correct “component split” is returned. For now, you can
ignore SSATN and SSPDT and the percentage split; those elements will be
detailed in Chapter 8.

Start with a spreadsheet with five columns; the first three are customer require-
ments (e.g., what the customer desires in a monster) and the last two are result
columns (percentages of SSATN and SSPDT, respectively). At the start of the test
method, declare a structure that exactly matches the columns in the spreadsheet;
the spreadsheet has to have a header row that exactly matches the names of the
fields in this structure.

When you upload your spreadsheet to the MIME repository using Transaction
SMWO, you give the file a name. In the test method, you must also specify the fact
that this is a MIME object and the name of that object. You could specify FILE and
a directory path, but that would be uncool; you'd never be invited to parties
again.

204

Automating the Test Process

Then, create an instance of your mockup loader. If you spelled the name of the
MIME object incorrectly, this is where you'll find out in a hurry, due to a fatal
error message. Next, load the MIME object into an internal table based on the
structure you declared earlier. At this point, if the columns in the structure don't
match the columns in the spreadsheet, an exception is raised and the test fails.
This is good: Making sure the test data format is correct is just another step in get-
ting the unit tests to pass.

The rest is plain sailing: Loop through the test cases, call the method being tested
each time with the specific test case input data, and see if the result matches the
specific test case result data. As mentioned earlier, you can use the QUIT parame-
ter to determine if you want to see all the results at once or stop at the first failure;
the code in Listing 3.33 stops at the first failure.

METHOD mockup_Tloader.
* Local Variables
TYPES: BEGIN OF 1_typ_monster_test_data,
strength TYPE zde_monster_strength,
brain_size TYPE zde_monster_brain_size,

sanity TYPE zde_monster_sanity,
ssatn TYPE zde_component_type_percentage,
sspdt TYPE zde_component_type_percentage,

END OF 1_typ_monster_test_data.

* Need to specify the type of the table, to make sure
* correct tests are done on the data loaded from MIME
DATA test_cases_table TYPE TABLE OF 1_typ_monster_test_data.

"Name of Entry in SMWO
zcl_mockup_loader=>class_set_source(
i_type = 'MIME'
i_path "ZMONSTER_TEST_DATA").

TRY.
DATA(mockup_Tloader) = zcl_mockup_loader=>get_instance().
CATCH zcx_mockup_loader_error INTO DATA(Toader_exception).
cl_abap_unit_assert=>fail(loader_exception->get_text()).
ENDTRY .

TRY.
"Load test cases. The format is SPREADSHEET NAME/Sheet Name
mockup_loader->load_datal(
EXPORTING i_obj "MONSTER_TEST_DATA/monster_tests'
IMPORTING e_container = test_cases_table).

205

ABAP Unit and Test-Driven Development

CATCH zcx_mockup_loader_error INTO Toader_exception.
cl_abap_unit_assert=>fail(loader_exception->get_text()).
ENDTRY.

LOOP AT test_cases_table INTO DATA(test_case).
mo_class_under_test->get_component_split(

EXPORTING
id_strength = test_case-strength
id_brain_size = test_case-brain_size
id_sanity = test_case-sanity
IMPORTING
id_ssatn = DATA(actual_percentage_ssatn)
id_sspdt = DATA(actual_percentage_sspdt)).

cl_abap_unit_assert=>assert_equals(

exp = test_case-ssatn

act = actual_percentage_ssatn

msg [{ test_case-strength } + { test_case-brain_
size } + { test_case-sanity } gets incorrect SSATN %age|).

cl_abap_unit_assert=>assert_equals(

exp = test_case-sspdt

act = actual_percentage_sspdt

msg |{ test_case-strength } + { test_case-brain_
size } + { test_case-sanity } gets incorrect SSPDT %age|).

ENDLOOP."Test Cases

ENDMETHOD. "Mockup Loader
Listing 3.33 Test Method to Load Multiple Test Cases

Every so often, a new problem will arise in production; you'll just add a new line
to your spreadsheet, upload the changed version, and then fix the newly added
(broken) test.

This approach can be combined with everything else mentioned in this section.
For a nice (complicated) example, you could set up a bunch of mock objects with
fake expected behavior, pass them into the class under test using dependency
injection, and then run a bucket load of test cases using the mockup loaded. As
Snoopy would say, “You see how it all comes together?”

206

Summary

3.5 Summary

Mountain climbers will tell you that their pastime is not easy, but it's all worth it
once you've achieved the incredibly difficult task of climbing the mountain and
are standing on the summit, on top of the world, able to see for miles. It may not
seem similar on the surface, but unit testing is like that. It's not easy at all—quite
the reverse—but once you've enabled your existing programs with full test cov-
erage and you create all new programs using this methodology, then you too sud-
denly have a much-improved view.

Quite simply, you can make any changes you want to—radical changes—intro-
duce new technology, totally refactor (redesign) the innards of the program, any-
thing at all, and after you change even one line of code you can follow the menu
path TesT « UNIT TEST and know within seconds if you've broken any existing
functions. This is not to be sneezed at. It is in fact the Holy Grail of programming.

One question that hasn't come up yet is this: What if someone else comes along
and changes your program by adding a new feature, but accidently breaks some-
thing else and doesn't bother to run the unit tests, and thus doesn't realize that
he's broken something? Clearly, you somehow need to embed the automated
unit tests into the whole change control procedure. Conveniently, this leads
nicely to the subject of the next chapter: ABAP Test Cockpit.

> Head First Design Patterns
Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra, O'Reilly Media, 2004

» Behavior-Driven Development
http://dannorth.net/introducing-bdd (Dan North)

» The Art of Unit Testing
http://artofunittesting.com (Roy Osherove)

» The Pragmatic Programmer
https://en.wikipedia.org/wiki/The_Pragmatic_Programmer (Andrew Hunt and David
Thomas, The Pragmatic Bookshelf, 1999)

» Dependency Injection
http://scn.sap.com/community/abap/blog/2013/08/28/dependency-injection-for-
abap (Jack Stewart)

» mockA
http://uwekunath.wordpress.com/2013/10/16/mocka-released-a-new-abap-mock-
ing-framework (Uwe Kunath)

207

3 | ABAP Unit and Test-Driven Development

» ABAP Test Double Framework
http://scn.sap.com/docs/DOC-61154 (Parjul Meyana)
» Mockup Loader

http://scn.sap.com/community/abap/blog/2015/11/12/unit-testing-mockup-loader-
for-abap (Alexander Tsybulsky)

208

Contents

[(=AY oY {c E TR 19
ACKNOWIEAGMENTS ..ottt s 21
[N o Yo IV Lot o) o NN TP 23

1 ABAP in Eclipse

1.1 Installation ... 35
1.1.1 Installing Eclipsecccooviiiiiiiiii 36
1.1.2 Installing SAP-Specific Add-Onscccoccoiiiiiiiiiciins 38
1.1.3 Connecting Eclipse to a Backend SAP System 40
1.2 Features ... 41
1.2.1 Working on Multiple Objects at the Same Time 45
1.2.2 Bookmarkingcccoiiiiiiiiiiii 47
1.2.3 Creating a Method from the Calling Codec.c.... 49
1.2.4 Extracting a Methodcccooiiiiiiiii 54
1.2.5 Deleting Unused Variablesc.ccccooiiniiiiniiiiniiicniieen, 58
1.2.6 Creating Instance Attributes and Method Parameters 59
1.2.7 Creating Class CONStrUCtOrsc.cccovvvieniuicniiiiiieesieee 60
1.2.8 Creating Structures ..o, 61
1.2.9 Creating Data Elementsccccviiiiiiiiniiinicec 63
1.2.10 Handling an EXCeptionccccoeriiiiiiiiniiiiieeiiee e 63
1.2.11 Changing Package Assignmentccccccviiiiieiniiinnennnen, 65
1.2.12 Getting New IDE Features Automaticallyccccocoe. 65
1.3 Testing and Troubleshootingccccoviiiiiiiiiiiie 69
1.3.1 Unit Testing Code Coveragecccooeeviiiiiiiiniccnieee 69
1.3.2 Debugging ...ccooooiiiiii 72
1.3.3 Runtime Analysiscccoiiiiiiiii e 75
1.3.4 Dynamic Log Pointsc.ccciiiii, 77
1.4 Customization Options with User-Defined Plug-Ins 79
1.4 UMAP L 81
142 ODBO ot 87
1.5 SUMMANY oo 87

New Language Features in ABAP 7.4 and 7.5

2.1 Database ACCESScoceiiuiiiiiiiiiii ittt 20
211 New Commands in OpenSQLccccoceiniiiiiiiiiiciiieciiees 20

Contents

10

2.2

2.3

2.4

25

2.6

2.1.2 Creating While Readingccoooiiiiiiiiiiiii e 95
2.1.3 Buffering Improvementscccccooiiiiiiiiiiie e 96
2.1.4 InnerJoin Improvementscccccociii 98
215 UNION e 100
2.1.6 Code Completion in SELECT Statementsccccceevneenns 101
2.1.7 Filling a Database Table with Summarized Data 101
Declaring and Creating Variables ... 102
2.2.1 Omitting the Declaration of TYPE POOL Statements 103
2.2.2 Omitting Data Type Declarationscccccceeeriincininnnen. 104
2.2.3 Creating Objects Using NEWcccoooiiiiiiiiiiiiiic e, 105
2.2.4 Filling Structures and Internal Tables While Creating

Them Using VALUE ..o 106
2.2.5 Filling Internal Tables from Other Tables Using FOR 107
2.2.6 Creating Short-Lived Variables Using LETccccccoeenienne 108
SEriNG ProCessing ... 109
2.3.1 New String Features in Release 7.02cccceevviiiveininnen. 109
2.3.2 New String Features in Release 7.4cccovevviiiieincnnnen. 110
Calling FUNCLIONS ..viiiiiiiiiiie e 111
241 Method Chainingccccooviiiiiiiiii e 111
2.4.2 Avoiding Type Mismatch Dumps When Calling

Functions ... 112
2.4.3 Using Constructor Operators to Convert Strings 114
2.4.4 Functions That Expect TYPE REF TO DATAccceeniens 115
Conditional LOZICcocuiiiiiiiiiiii e 116
2.5.1 Using Functional Methods in Logical Expressions 116
252 Omitting ABAP_TRUE ..., 117
2.5.3 Using XSDBOOL as a Workaround for BOOLC 119
254 The SWITCH Statement as a Replacement for CASE 120
2,55 The COND Statement as a Replacement for IF/ELSE 122
Internal Tablescooiiiiiii 124
2.6.1 Using Secondary Keys to Access the Same Internal Table

in Different Waysccccoiiiiiiiiiiic e 124
2.6.2 Table Work Areascccooiiiiiiiiiiii e 127
2.6.3 Reading fromaTablecccooiiiiiiniiiiiii 128
2.6.4 CORRESPONDING for Normal Internal Tables 130
2.6.5 MOVE-CORRESPONDING for Internal Tables with

Deep Structures ... 131
2.6.6 Dynamic MOVE-CORRESPONDINGccccooiiiiiiinnns 135
2.6.7 New Functions for Common Internal Table Tasks 137
2.6.8 Internal Table Queries with REDUCEccceoiieninn, 139

2.7

2.8

2.9

3.1

3.2

3.3

3.4

3.5

Contents
2.6.9 Grouping Internal Tablesccocooiiiiiiiiii, 140
2.6.10 Extracting One Table from Anotherccccccviiiininnn, 143
Object-Oriented Programmingcccccoviiiiiiciiiieie e 145
2.7.1 Upcasting/Downcasting with CASTcocceiiiiiiiiiiinines 146
2.7.2 Finding the Subclass of an Object Instance 147
2.7.3 CHANGING and EXPORTING Parametersccccvurens 148
2.7.4 Changes to Interfacesccccooiiiiiiiiiiiiiiiiic e 149
Search HelPS oo 151
2.8.1 Predictive Search Helps ..o, 151
2.8.2 Search Help in SEBOccooeiiiiiiiiiiiiiieiiieee e 152
Unit Testing ... 153
2.9.1 Creating Test Doubles Relating to Interfaces 153
2.9.2 Coding Return Values from Test Doublesc..ccccvneenns 154
2.9.3 Creating Test Doubles Related to Complex Objects 155
SUIMIMATY L.oiiiiiiiiiiiiiii ittt e s s s e e sesseesseesseesneenes 156
Eliminating Dependenciescccoviiiiiiiiiiiiiiiieee e 161
3.1.1 Identifying Dependenciesccccceeviiciiiiiiniienec e 162
3.1.2 Breaking Up Dependencies Using Test Seams 164
3.1.3 Breaking Up Dependencies Properlyccccoeveiiniinnn. 166
Implementing Mock Objects ..o 168
3.2.1 Test Injection for Test SEamscccevciiiiiiiiniicniieeee 168
3.2.2 Creating Mock Objectsoccoiiiiiiiiiii 169
3.2.3 Proper Injectioncccccoiiiiiiii 171
Writing and Implementing Unit Testscccooviiiiiieiniicee, 173
3.3.1 Defining Test Classescocvveiiiieriiieniieiiieene e 173
3.3.2 Implementing Test Classescccccocviiiiiiiiiiiiiieciiiieeeee 180
Automating the Test Processcccccoviiiieiiiiiiiiiiiieece e 189
3.4.1 Automating Dependency Injectionccccccoeiiiiniiinennns 190
3.4.2 Automating Mock Object Creation: Test Double
Framework ... 195
3.4.3 Combining Dependency Injection and the ABAP
Test Double Framework ... 200
3.4.4 Unit Tests with Massive Amounts of Data 202
SUIMIMATY ..oiiiiiiiiiiiiiiiieet st eesbes s bese s seessbesssesseesseesseesneesnnnnes 207

"

Contents

Custom Code and ABAP Test Cockpit

4.1 Automatic Run of Unit Testscccoiiiiiiiiiinii e 211
4.2 MaSS ChECKS ..o 213
421 Setting Up Mass Checksccococoiiiiiiiiiiiiiciic e 214
4.2.2 Running Mass Checkscccccooiiiiiiiiiiiiiiii i, 216
4.2.3 Reviewing Mass Checkscccccooiiiiiiiiiiiii e, 220
4.2.4 Dismissing False Errorscccccoviiiiiiiiiiiiiiicin, 223
4.3 Recent Code Inspector Enhancementscccococviiiiiiiiniineennn, 227
4.3.1 Unsecure FOR ALL ENTRIES (12/5/2) ...c.cccoviiiiiiiiinnn. 228
4.3.2 SELECT * Analysis (14/9/2)cccooviiiiiiiiiiiiiiiiee 230
4.3.3 Improving FOR ALL ENTRIES (14/9/2)c..cccoviiiiiiininnnn. 232
4.3.4 SELECT with DELETE (14/9/2)cooviiiiiiiiiiiiiieeee 233

4.3.5 Check on Statements Following a SELECT without
ORDER BY (14/9/3) wooeiiiiiiiiiee et 234
4.3.6 SELECTs in Loops across Different Routines (14/9/3) 236
4.3.7 Syntax Check on Enhanced Programs (17/10/4) 237
4.3.8 SORT Statements inside Loops (18/11/5)cccccuvveerinnen. 239
4.3.9 Copy Current Table Row for LOOP AT (18/11/5) 241
4.3.10 Nested Sequential Accesses to Internal Tables (7.5) 243
4.3.11 Test Suspect Conversions (7.5)ccccovvirniieiiiiieenineen, 245
4.3.12 Technology-Specific Checks (7.02t0 7.5) ...cccevvvviineennnnn. 246
4.4 Custom Code Analyzer: Simplification Databasec...... 248
4.4.1 Preparationccoccciiiiiiii 248
4.4.2 USAZE ..oooiiiiiiiiiiiii e 249
4.43 Aftermath ... 251
4.5 SUMMANY .ot 252

ABAP Programming Model for SAP HANA

5.1 The Three Faces of Code Pushdownccccccoiiiiiiiiiiiiiiicnens 254
5.2 0PENSQL .o 256
5.3 CDS VIEWS .ooiiiiiiiiiiiii e 256
5.3.1 Creating a CDS View in Eclipsecccccocveiniiiieiiiiiieciieen, 258
5.3.2 Coding a CDS View in Eclipseccccocoiiiiniiiieiniiiiecnieen 261
5.3.3 Adding Authority Checks to a CDS Viewcccccceveiireenas 274
5.3.4 Reading a CDS View from an ABAP Program 276
5.4 ABAP Managed Database Proceduresccccccceeeriiiieiniiinenncnnnen. 279
5.4.1 Defining an AMDP in Eclipseccccooiiiiiiiiiiiiiicice 279
5.4.2 Implementing an ADMP in Eclipsecccccoiiiiiiiiinins 280
5.4.3 Calling an AMDP from an ABAP Programc.cc.... 285

12

55

5.6

5.7

Contents
5.4.4 Calling an AMDP from inside a CDS Viewcccoceveenne 285
Locating and Pushing Down Codeccooiiiiiiiiiiiiici, 288
5.5.1 Finding Custom Code that Needs to Be Pushed Down 289
5.5.2 Which Technique to Use to Push Code Down 291
5.5.3 EXAMPIE eiiiiiiiiiii i 292
SAP HANA-Specific Changes for ABAPcccoooiiiiiiiiiiiiieciees 298
5.6.1 Database Table Designcccccoeviiiiiiciiiiiiiiie e 299
5.6.2 Avoiding Database-Specific Featuresccccocveriirnnn. 303
5.6.3 Changes to Database SELECT Codingccccccvveviuiernnnennn 304
SUMMEANY oo 308

Exception Classes and Design by Contract

6.1

6.2

6.3

6.4

Types of Exception Classescccociiiiiiiiiiiciiciic e 313
6.1.1 Static Check (Local or Nearby Handling)ccccccoeeuneens 314
6.1.2 Dynamic Check (Local or Nearby Handling) 316
6.1.3 No Check (Remote Handling)ccccccomiiiiiiniiiiniiiieens 316
6.1.4 Deciding Which Type of Exception Class to Use 318
Designing Exception Classescccccceiiiiiiiiiiiniiiiiic i, 319
6.2.1 Creating the Exceptionc.ccccooiiiiiiiiiiiiiii, 320
6.2.2 Declaring the Exceptioncccccooiiiiiiiiiiiiiniieiiceeee 322
6.2.3 Raising the EXceptionccccooiiiiiiiiiiiiiiiiii e 323
6.2.4 Cleaning Up after the Exception Is Raisedc..cccueennee. 326
6.2.5 Error Handling with RETRY and RESUMEc..coceeene 328
Design by Contractcccoovviiiiiiiiiiic 332
6.3.1 Preconditions and Postconditionsc.cccceeviiiiiennnenn, 334
6.3.2 Class INvariantscccccooiiiiiiiiiieii e 336
SUMMEAIY oo 338

Business Object Processing Framework

7.1

7.2
7.3

Manually Defining a Business Objectccocceiiiiiiiiiiiiicies 342
7.1.1 Creating the Object ... 343
7.1.2 Creating a Header Nodeccccociiiiiiiiiiiiiiiie 345
7.1.3 Creating an Item Nodecccocoeiiiiiiiiiiiii 347
Generating a Business Object from a CDS Viewcccocceiininns 349
Using BOPF to Write a DYNPRO-Style Programccccocuvrnnnen. 352
7.3.1 Creating Model Classesccccccomiieriieriiiiiiiieniee e 353
7.3.2 Creating or Changing Objectsccccoviiiniiiniiiciie, 357
7.3.3 LoCking ODbjJeCtscccoviiiiiiiiiiiiieiii e 369
7.3.4 Performing Authority Checksccccooiiiiiiiiiiiii 370

13

Contents

7.3.5 Setting Display Text Using Determinationsc......... 371
7.3.6 Disabling Certain Commands Using Validations 384
7.3.7 Checking Data Integrity Using Validations 386
7.3.8 Responding to User Input via Actionscccccceeerinenn. 392
7.3.9 Saving to the Databasec.ccccoooiiniiiiiiiiiii 404
7.3.10 Tracking Changes in BOPF Objectsccccovciviviiieniiennn 411
7.4 Custom Enhancementscccociiiiiiiiiiiiiiie e 420
7.4.1 Enhancing Standard SAP Objectsccccocoveviiiiniicniienn, 420
7.4.2 Using a Custom Interface (Wrapper)c.ccccoovveniieniiennnn. 423
7.5 SUMMANY L 425
BRFplus
8.1 The Historic Location of RUIESccceviiiiiiiiiiiiiie e 430
8.1.1 Rulesin People's Headsccccoiiiiiiiiiiiiiii e 430
8.1.2 Rules in Customizing Tablesccccooiiiiiiiiiins 432
8.1.3 Rules in ABAPooiiiiiiiiie e 434
8.2 Creating Rules in BRFplus: Basic Exampleccccociiiiiicninennnn 435
8.2.1 Creating a BRFplus Applicationccccooiiiiiiiniiinins 435
8.2.2 Adding Rule LOZICccooiiiiiiiiiiiiii 444
8.2.3 BRFplus Rules in ABAPcciiiiiiiiiiiieeiice e 456
8.3 Creating Rules in BRFplus: Complicated Exampleccccccuennen. 458
8.4 SIMUIALIONS ..oiiiiiiiiii i 465
8.5 SAP Business Workflow Integrationc.cccooviniiiiiiiiniicnieen, 467
8.6 Options for Enhancementscccocooiiiiiiiiiiiiic e 472
8.6.1 Procedure EXPresSioNnsc.ccoouiueieeiiieeeeniiieeaniieeeesiieenns 472
8.6.2 Application EXitScccccoiiiiiiiiiiiiii e 473
8.6.3 Custom Frontendsccccoeiiiiiiiiiiiiici e 473
8.6.4 Custom EXtensions ..., 474
8.7 SAP HANA Rules Frameworkccccocceiiiiiiiiiiieciiiecrce e 474
8.8 SUMMANY ... 475

ALV SALV Reporting Framework

9.1

9.2

14

Getting Started ... 480
9.1.1 Defining a SALV-Specific (Concrete) Classcccceeeenns 481
9.1.2 Coding a Program to Call a Reportcccceviiiiniiicninenns 482
Designing a Report Interfacecccoviiiiiiiiiiiiiii 484
9.2.1 Report Flow Step 1: Creating a Container

(Generic/Opional)oooioiiiiiieei e 486
9.2.2 Report Flow Step 2: Initializing a Report (Generic) 487

9.3

9.4

9.5
9.6
9.7

Contents

9.2.3 Report Flow Step 3: Making Application-Specific
Changes (Specific) ..o 494
9.2.4 Report Flow Step 4: Displaying the Report (Generic) 507
Adding Custom Command Icons with Programming 512

9.3.1 Creating a Method to Automatically Create a Container ... 514
9.3.2 Changing ZCL_BC_VIEW_SALV_TABLE to Fill the

Container ... 514
9.3.3 Changing the INITIALIZE Methodcccccoviiiniicnninnnn, 516
9.3.4 Adding the Custom Commands to the Toolbar 517
9.3.5 Sending User Commands from the Calling Program 518
Editing Datac.oooiiiiiiiii e 519
9.4.1 Creating a Custom Class to Hold the Standard SALV

Model Classcocoiiiiiiiiiii 520
9.4.2 Changing the Initialization Method of

ZCL_BC_VIEW_SALV_TABLE ... 521
9.4.3 Adding a Method to Retrieve the Underlying

Grid ODJECt ...oviiiiiiie 525
9.4.4 Changing the Calling Programccccccoviiieiiiiceniiiieens 527
9.4.5 Coding User Command Handlingc.ccoccooiiininn 528
Handling Large Internal Tables with CL_SALV_GUI_TABLE_IDA 531
Open-Source Fast ALV Grid Object ... 534
SUMMANY it 535

10 ABAP2XLSX and Beyond

10.1

10.2

10.3

THhE BaSICS ..o 539
10.1.1 How XLSX Files Are Storedcccooviiiiiiiiiiiiiicc 539
10.1.2 Downloading ABAP2XLSXccciiiiiiiiiiiiiieeiiiiie e 541
10.1.3 Creating XLSX Files Using ABAPcccccoveiiiiiiiiiiiicee 541
Enhancing Custom Reports with ABAP2XLSXccccooveiriiiiieinnnnnen. 546
10.2.1 Converting an ALV Object to an Excel Object 546
10.2.2 Changing Number and Text Formatscccccoociieennnn. 548
10.2.3 Establishing Printer Settingsccccccoviiiinniiiiiiniic, 551
10.2.4 Using Conditional Formattingccccocoeiniiicinniiccnn, 554
10.2.5 Creating Spreadsheets with Multiple Worksheets 563
10.2.6 Using Graphs and Pie Chartsccccooiiiiiiiiiiiii 565
10.2.7 Embedding Macroscccceioiiiiiiiiiciii e 568
10.2.8 Emailing the Result ... 574
10.2.9 Adding Hyperlinks to SAP Transactionsc.cc...... 577
Tips and TriCKSooiiii e 582

10.3.1 Using the Enhancement Framework for Your Own Fixes ... 583

15

Contents

10.4

10.5

10.3.2 Creating a Reusable Custom Framework 585
Beyond Spreadsheets: Microsoft Word Documents 586
10.4.1 Installing the Toolccoooiiiiiiiiiiii 587
10.4.2 Creating a Templatecccoccoiiiiiiiiiii 588
10.4.3 Filling the Templatecccoeiiiiiiiiiii 589
SUMMANY ittt 596

11.1 The Model-View-Controller Conceptcccoveiiiiiieiiniiiiciiiiieens 600
11T MOEl i 601
110,20 VIBW i neeees 603
1113 Controller ..o 606

11.2 Building the WDA Applicationccccooiiiiiiiiiiceee 607
11.2.1 Creating a Web Dynpro Componentccccceevceeinenn 609
11.2.2 Declaring Data Structures for the Controller 611
11.2.3 Establishing View Settingsccccooiiiiiiiiiiiii 613
11.2.4 Defining the Windowsccccccoiiiiiiiiiiiiiiie 623
11.2.5 Navigating between Views inside the Window 624
11.2.6 Enabling the Application to be Calledcccoei 627

11.3 Coding the WDA Applicationcccovviiiniiiniiiiice e 628
11.3.1 Linking the Controller to the Modelccoooiinn 629
11.3.2 Selecting Monster Recordsccccceevuieiiiiiiiiieniieiee 629
11.3.3 Navigating to the Single-Record Viewccccocveriienn. 635

11.4 Using Floorplan Manager to Create WDA Applications 639
11.4.1 Creating an Application Using Floorplan Manager 640
11.4.2 Integrating BOPF with Floorplan Managerc......... 651

115 SUMMATY oo 656

12 SAPUI5

121 Architecture ..o 661
12.1.1 Frontend: What SAPUIS Is ... 662
12.1.2 Backend: What SAP Gateway IScccoviiiiiiniiciiieee 663

12.2 Prerequisitesccccciiiiiiiiiiii 664
12.2.1 Requirements in SAP ... 664
12.2.2 Requirements on Your Local Machinec..ccccccoiinennns 665

12.3 Backend Tasks: Creating the Model Manually Using
SAP GatewWayooooiiiiiiiiiii 665
12.3.1 Configurationcccieviiiiiiiiiiic e 666
12.3.2 COAING viiiiiiiii i 680

16

Contents

12.4 Backend Tasks: Automatically Generating the Model 691
12.4.1 BOPF/SAP Gateway Integrationccoooii, 691
12.4.2 CDS View/SAP Gateway Integration 694

12.5 Frontend Tasks: Creating the View and Controller Using SAPUI5 ... 699
12571 First SEEPS oovviiiiiii 699
12.5.2 VIBW i 702
12.5.3 Controllerccciiiiiiiiiiccc 715
12.5.4 Testing Your Applicationccccocoiiiiiiniiiiiiice e 721

12.6 Generating SAPUI5 Applications from SAP Web IDE Templates 723
12.7 Generating SAPUI5 Applications from the BUILD Tool 728
12.8 Adding Elements with OpenUI5cccooiiiiiiiiii e 737
12.9 Importing SAPUI5 Applications to SAP ERPcoccvieiiiiinennnn. 741
12.9.1 Storing the Application in Releases Lower Than 7.31 742
12.9.2 Storing the Application in Releases 7.31 and Above 744
12.9.3 Testing the SAPUI5 Application from within SAP ERP 745

12.10 SAPUIS5 vS. SAP FiOri ..ouiiiiiii 747
T2.717 SUMMATY oo 748

13 ABAP Channels

13.1

13.2

13.3

13.4
13.5

GENEral CONCEPL .uvriiiiiiiiii et 752
13.1.1 ABAP Messaging Channelscccccciiviiiiniiiiniiciiiee, 753
13.1.2 ABAP Push Channelscccccoiiiiiiiiii 754
ABAP Messaging Channels: SAP GUI Exampleccccocoveiniicninnes 755
13.2.1 Coding the Sending Applicationc.cccociviiiiniicninnn 758
13.2.2 Coding the Receiving Applicationcccceviiviicniinnn 764
13.2.3 Watching the Applications Communicatecc...c.... 768
ABAP Push Channels: SAPUI5 Exampleccccoooeeiiiiiiciiiiineeen, 771
13.3.1 Coding the Receiving (Backend) Components 772
13.3.2 Coding the Sending (Frontend) Application 780
Internet of Things Relevancec.ccooviiiiiniiiiiiicc 782
SUIMIMAIY L.oiiiiiiiiiiiiiii it es e ee s b sesseesnresneenes 783

A CONCIUSTON e 785
B The AULNOT oo 789
[FgTe 13 TP 791

7

Index

A

ABAP
constructs, 47
development system, 45
event mechanism, 509
Quick Assist, 53
ABAP 7.02, 103, 109, 111, 116, 124
ABAP 7.31, 188
ABAP 7.4, 93, 110, 116, 129, 149, 153
new features, 89
recommended reading, 157
ABAP 7.5, 53, 89, 94
ABAP Channels, 751
general concept, 752
ABAP Extended Program Check, 222, 238
ABAP in Eclipse — SAP NetWeaver
Development Tools for ABAP (ADT)
ABAP Managed Database Procedures (ADMP),
254, 257, 279
Eclipse, 281
ABAP Messaging Channels, 752, 753, 756
coding the receiving application, 764
coding the sending application, 758
example, 768
framework, 761
SAP GUI, 755
warning, 758
ABAP Push Channels, 752, 754, 771
coding the sending application, 780
SAPUI5, 771
ABAP Test Cockpit (ATC), 33, 145, 209, 210,
289, 290, 305
recommended reading, 252
SAP HANA, 211
ABAP Test Double Framework (ATDF), 195,
197, 200
ABAP to Word, 589
ABAP Unit, 159, 211
ABAP Workbench, 33, 34, 52, 72, 429, 681
ABAP_TRUE, 117, 118

ABAP2XLSX, 537
conditional formatting, 554
download, 541
email, 574
enhancement framework, 583
enhancing custom reports, 546
example programs, 545
hyperlinks, 577, 579
macros, 568
multiple worksheets, 563
printer settings, 551
recommended reading, 597
templates, 571
testing, 558
Access condition parameter, 276
Adapter pattern, 425, 510
Agile development, 729
Alias, 266
ALPHA formatting option, 111
ALV, 546
application, 756
function modules, 507
grid, 607
interface, 761
list program, 317
report, 251, 420, 697, 751
SALV, 477
screen, 706
Annotation, 62, 262, 349, 696
ANSI-standard SQL, 282
Application model, 488
Application settings, 437
Application-defined function, 493
Artifacts, 47
Assemble/act/assert test, 179
ASSERT, 186, 334
Association, 261, 654
Asterisks, 99
Authority checks, 275, 371

79

Index

Behavior-driven development, 178, 207

Big Data, 102

Bill of materials (BOM), 343

BOOLC, 119

Boolean logic, 119

Boolean variable, 120

BOPF, 33, 114, 247, 341, 342, 634
action validations, 399
actions, 392, 395
and FPM, 651
authority checks, 370
callback subclass, 416
change document subnode, 415
configuration class, 365
create header node, 345
create item node, 347
create model classes, 353
create object, 343
creating an action, 393
creating/changing objects, 357
CRUD, 405
custom enhancements, 420
custom queries, 358, 359
delegated objects, 414
determinations, 371
locking objects, 369
object, 692
read object, 378
recommended reading, 425
testing, 419
tracking changes, 411
validations, 384, 386
wrappers, 423

BOR object, 667

BRFpluS, 384, 427, 435, 441
call in ABAP, 456
create application, 435
decision table, 461
decision tables, 449
decision trees, 444, 448
enhancements, 472
example, 458
recommended reading, 476
rule logic, 444

792

BRFplus (Cont.)
SAP Business Workflow, 467
simulations, 465
BSP (business server pages), 247
BSP application, 728
Buffering, 96
BUILD, 730
monkey logo, 729
tool, 728
Ul Editor, 733
Business object, 358, 422
CDS views, 349
manual definition, 342
Business rule management system (BRMS),
427, 444
Business rules, 427, 430
ABAP, 434
BRFplus, 435
customizing tables, 432
Business rules framework (BRF), 427

C

Calling code, 49
Calling program, 318, 481
Cardinality, 269
CASE, 92, 116, 120, 121, 148, 266
CASE statement, 256, 266
CDS views, 63, 247, 254, 256, 259, 350, 372,

534, 694, 698, 723

buffering, 263

building, 258

definition, 273

extend view, 273

open, 295

parameters, 273
Change document, 416
Changing parameter, 148, 489
Channel extension, 761
CHECK, 376, 380, 389
Check method, 187
CHECK_DELTA, 376, 378, 389
CL_SALV_TABLE, 95, 479, 481
Class invariants, 336
Class under test, 168, 189

Class-based exception, 322, 325
CLEANUP, 326, 327
Clover, 71
Code generator, 630
Code Inspector, 209, 211, 216, 231, 236, 305
new features, 227
Code pushdown, 254, 289, 298
AMDP, 296
CDS views, 295
locating code, 291
OpenSQL, 294
techniques, 291
Combined structure, 348
Complex objects, 155
Component, 607
Component configuration, 647
Component controller, 629
COMPONENTCONTROLLER, 638
Composition root, 350
Conceptual thinking, 367
COND, 122
Conditional formatting, 559
object, 561
Conditional logic, 107, 116
Configuration table, 418
Consistency validation, 403
Constructor injection, 171
arguments against, 172
Constructor operator, 114, 123, 131
Container, 469, 513
Contract violation, 198, 533
CORRESPONDING, 130
Coverage Analyzer, 226
Cross-origin resource sharing (CORS),
683, 722
CRUD, 360, 404, 680, 681, 694
Custom code, 254
Custom Code Management Cockpit, 250
Customer requirements, 438, 450
Customizing settings, 162
Customizing table, 432
CX_DYNAMIC_CHECK, 316
CX_NO_CHECK, 318
CX_STATIC_CHECK, 314, 315

D

Data changed event, 511
Data declaration, 111, 127
Data definition, 176
Data dictionary, 62
Data element, creation, 63
Data provider class, 681
Data type declaration, 104
Data validation test, 184
Data values, 372
Database access, 90
Database access class, 170
Database layer, 255
DCL (Data Control Language), 274
DDIC, 359
configuration table, 454
data element, 445
field, 670
objects, 347
structure, 440, 611, 668
table, 263, 671
DDL, 258, 262, 267, 295
definition, 285, 696
source, 287
Debugger, 73
Debugging, 142
Decision logic, 427
Decision table, 449, 463
Decision tree, 444
Delegated object, 413
Dependencies, 160, 163, 190, 224
breaking up, 164, 166
eliminating, 161
identifying, 162
Dependency injection, 190, 194
Dependency inversion, 376
Design by contract, 183, 311, 332, 335,
500, 533
class invariants, 336
postconditions, 334
preconditions, 334
Design mode, 704
Design Patterns
Elements of Resuable Object-Oriented
Software, 342

Index

793

Index

Determination, 378

Determination pattern, 373

Dialog box, 719

Direct SQL read, 308

Domain, 445

Downcast, 146

Draft document, 411

Dropdown menu creation, 739

Duplicate code, 54

Dynamic check, 316

Dynamic exception, 316

Dynamic log point, 77, 79

DYNPRO, 246, 342, 352, 478, 599, 604, 623
UI framework, 352

DYNPRO Screen Painter, 615, 617

E

Early Watch reports, 209
Eclipse, 33, 43, 258, 351
AMDP, 281
and SAP HANA, 258
and SAPUI5, 699
bookmarking, 47
CDS view, 261
class constructors, 60
connect to backend system, 40
create attributes, 59
create parameters, 59
debugging, 72
extract method, 54
Extract Method Wizard, 58, 65
features, 41, 65
help, 66
installation, 35
Luna release, 67
multiple objects, 45
plug-ins, 79
prerequisites, 35
Quick Assist, 52
recommended reading, 88
refactoring, 59
release cycle, 33, 45
runtime analysis, 75
SAP add-ons, 38

794

Eclipse (Cont.)
SDK, 79
unit tests, 69
unused variables, 58
Eiffel, 334, 336
Ellison, Larry, 253
ELSE clause, 266
Enhanced Syntax Check, 237
Enhancement Wizard, 422
Entities, 666
Entity set, 669
Error, 720
Error function, 720
Error handling, 323, 328, 680
method, 509
RESUME, 330
RETRY, 329
Excel, 537, 732
and ABAP, 541
and XML, 544
object creation, 542
_EXCEL_WRITER, 544
Exception, 311, 313, 690
examples, 311
raising, 313, 323
recommended reading, 339
Exception classes, 311, 313, 315, 389, 691
choosing type, 318
constructor, 321
creation, 320
declaring, 322
design, 319
types, 313
Exception handling, 313
Exception object, 313, 324
EXECUTE, 376, 382, 396
Export parameter, 148, 334
Expression type, 444
Extended syntax check, 59
External breakpoint, 688, 781

F

Factory method, 355
False errors, 223
Fast ALV Grid Object, 534

Feeder, 642

Field catalog, 505, 523

Field symbol, 137

File Explorer, 540

FILTER, 144

Filter structure, 358

FitNesse, 179

Flowchart, 431

FLUID tool, 656

FOR, 107

FOR ALL ENTRIES, 228, 232

Foreign key, 269

FORM routine, 44, 49

Formula node, 559

FPM, 33, 420, 599, 639
and BOPF, 651
floorplans, 639
GUIBBs, 642
Guided Activity Floorplan, 640
Overview Floorplan, 640
Quick Activity Floorplan, 640
recommended reading, 657
UIBBs, 642

Fragment, 702

Freestyle page, 734

Function, 437, 452

Function module, 323, 324, 325, 515
signature, 325

Functional method, 116

G

Gateway BOPF integration (GBI), 691
Generic method, 424
Generic User Interface Building Blocks
(GUIBB), 642, 651
GET_ENTITY_SET, 681, 687, 688
GitHub, 541
Global class, 69
God class, 481
GROUP BY, 140
GUID, 301, 345, 366, 422
key, 357
GuiXT, 748

Index

H

Hard-coded restrictions, 267
Hashed key, 125, 144

Hashed table, 126

Head First Design Patterns, 170
Helper class, 362

Helper methods, 178, 499
Helper variable, 112, 130
Hollywood Principle, 753

Host name, 722

Hotspot, 491

ICF, 578
IDocs, 663
IF/ELSE, 122
IF/THEN, 116
Importing parameters, 286
Importing table, 488
Inbound plug, 626
Index file, 746
Information/Warning/Error, 326
INITIALIZE, 493, 516
Injection, 168, 171
automation, 190
Inner joins, 98
Input parameter, 439
Integrated data access, 532
Internal tables, 124, 366
grouping, 140
new functions, 137
Internet of Things (IoT), 752, 782
Isolation policy, 753

J

Java, 33, 105, 659

Java EE perspective, 701

JavaScript, 659, 700
library, 662, 737

795

Index

JavaScript program, 46
Joe Dolce principle, 195

L

Layout data property, 619
Lead selection, 630, 636
LET, 108

LINE_EXISTS, 138

Local host, 721

Local variable, 284
Logging class, 60

Logical condition, 446, 454
Logical unit of work, 408
Loop, 242

M

Main header table, 300
Mapping object, 135
Mass checks, 213, 224
reviewing, 220
running, 216
setup, 214
Master data, 269
Message object, 390, 762
Message producer, 763
$metadata, 687
Method, 49, 53, 323
Method call, 56, 338
Method chaining, 111, 112, 198
Method definition, 486
Meyer, Bertrand, 336
Microsoft Excel, 537
Microsoft Open XML, 541
Microsoft Outlook, 670
MIME repository, 204, 571
Mock class, 169
Mock objects, 160, 168, 176, 189
Mockup Loader, 203, 204, 541
Model, 691
Maodel class, 342, 354, 360, 761
Model object, 83
Model provider class, 681
Module pool transaction, 610

796

MOVE-CORRESPONDING, 130, 131
dynamic, 135

MVC pattern, 247, 342, 352, 480, 494, 509,
600, 651, 662
controller, 480, 606
location of model, 601
model, 480, 495, 601
model as an assistance class, 602
model declared in the controller, 603
model inside the view, 602
view, 480, 603

N

NativeSQL, 90, 304

Nested sequential access, 243
NEW, 105

No check, 316

Node structure, 612

Nugget, 81

o

Obeo, 81, 87
Design Studio, 87
Object authorization class, 370
Object Linking and Embedding (OLE), 757
object_configuration, 356
Object-oriented programming (OOP), 49, 145,
169, 312, 324, 342, 424, 479, 480
OData, 663, 679
documentation, 685
service, 697
Open source, 538, 737
Open-closed principle, 285
OpenSQL, 90, 254, 255, 256, 267, 291, 304
new commands, 90
query, 91
OpenUl5, 737
open source, 737
ORDER BY, 234
Outbound plug, 625
Overlap check, 464
Overview page, 646

P

Pace layering, 354
Parameter ID, 758
Parent node, 348
Patterns, 113
PBO processing, 384
PCP, 762
Perspective, 79, 701
Postcondition, 335
Precondition, 335
PREPARE, 396
Private method, 56, 174
Procedural programming, 160
Procedure call, 472
Processing block, 142
Projects, 666
Prototype screen, 729
Proxy, 721

calls, 663

servlet, 722

settings, 722
Public method, 318
Push Channel Protocol (PCP), 760

Q

Query logic, 358

R

READ TABLE, 128

Read-only mode, 527

REDUCE, 139

Regular expressions, 129
Remote function call (RFC), 663
Report programming, 477
Report RS_AUCV_RUNNER, 212
REST, 663

Result method, 187

RETRIEVE DEFAULT PARAM, 395
Return parameter, 469

Return values, 154

RFC function module, 280

Root node, 373
Rules engines, 428
Ruleset, 441

S

SALV, 478, 479
add custom icons, 512
application-specific changes, 494
CL_SALV_GUI_TABLE_IDA, 531
concrete class, 481
create container, 486, 514
design report interface, 484
display report, 507
editing data, 519
event handling, 491
framework, 507
grids, 522
initialize report, 487
object editablitity, 520
recommended reading, 536
report, 502
SAP HANA, 534
with IDA, 532
SAP Business Suite, 248
SAP Business Workflow, 354, 467
SAP Code Exchange, 203
SAP Community Network (SCN), 34
SAP Decision Service Management, 429
SAP EarlyWatch Check, 751
SAP ERP, 746
SAP Fiori, 725, 747
SAP Gateway, 659, 663, 746
coding, 680
configuration, 666
create model, 665
create service, 673
creating entities, 667
creating services and classes, 672
data provider class, 681
error handling, 690
model provider class, 681
service, 693
Service Builder, 666
service implementation, 680
testing, 678

Index

797

Index

SAP GUI, 77, 151, 222, 477, 728, 753
embedded, 75
Screen Painter, 733
SAP HANA, 101, 211, 253, 475, 534, 662,
686, 758
ABAP table design, 299
AMDP, 257, 279
CDS views, 256, 257
code pushdown, 254, 288
database views, 255
database-specific features, 303
DDL, 258
Eclipse, 258
recommended reading, 309
redundant storage, 299
secondary indexes, 301
SELECT coding, 304
stored procedure, 279
SAP HANA Cloud Connector, 724
SAP HANA Cloud Platform, 735
SAP HANA Cloud Platform Cockpit, 725
SAP HANA Rules Framework, 474
SAP Logon Pad, 85
SAP Messaging Channels
activity scope, 760
receiver object, 766
subscriber object, 766
SAP NetWeaver Development Tools for ABAP
(ADT), 34, 695
SAP Process Integration (SAP PI), 347,
663, 765
SAP Push Channels
code for incoming messages, 774
coding receiving components, 772
testing the APC service, 778
SAP S/4HANA, 248, 251, 253
SAP Screen Personas, 748
SAP Solution Manager, 226
SAP Web IDE, 732, 748
cloud version, 724
menu, 728
templates, 723
SAPlink, 80, 541
SAPscript, 247, 589
SAPUI5, 33, 296, 349, 420, 475, 600, 659,
753,781
and Eclipse, 665, 699

798

SAPUI5 (Cont.)
architecture, 661
browser support, 679
buttons, 719
controller, 715
Developer Guide, 738
fragment XML file, 710
function for testing, 721
Sfunctions, 717, 718
HTML file, 703
importing applications, 741
JavaScript, 662
prerequisites, 664
recommended reading, 749
storing applications, 744
testing, 721, 745
view, 702
view and controller, 699
XML file, 704
Search helps, 151
predictive, 151
Sébastien Hermann, 587
SELECT, 234
SELECT *, 230
SELECT statement, 101, 256
Separation of concerns, 166, 210
Service adaptation definition language
(SADL), 695
Service Builder, 666
service_manager, 356
SET_COLUMN_ATTRIBUTES_METHOD, 497
SETUP, 177
Short dump, 64, 112, 113
SICF framework, 691
SICF service node, 682
Signature definition, 113
Simplification database, 249
Single responsibility principle, 166
Smart Forms, 587
Smart templates, 723
SNOTE, 249
Sort order, 506
SORT statement, 239
Sorted key, 144
Sorted table, 126
Source code view, 44
Source mode, 705

SPLASH — BUILD
SQL, 686

calculations, 93

queries, 92
SQL for the web, 686
SQL Monitor, 289
SQL Performance Tuning Worklist, 289, 290
SQL view, 262
SQL-92 standard, 91
SQLScript, 257, 279, 282, 283
Stateful, 773
Stateless, 773
Static check, 314
Static code check, 211, 228
Static method, 287, 765
Stored procedure, 255
String processing, 109
Structured variable, 397
Stub objects, 168
Subnodes, 349
SWITCH, 120
Syntax check, 314
System alias, 673
SY-TABIX, 140

T

Table join, 101

Table work areas, 127

TCP protocol, 783

Technical columns, 498

Template
customization, 726
views, 261
Word, 590

Test class, 173, 180
definition, 174

Test code, 189

Test data, 182

Test doubles, 153

Test injection, 168

Test methods, 177

Test seams, 164

Test value, 466

Test-driven development (TDD), 69, 70,
159, 185

Index

The Pragmatic Programmer, 184
Tooltip, 498, 504
Trace file, 76
Transaction, 627
(/BOBF/TEST_UI, 384
/BOBF/CONF_UI, 414
/BOBF/TEST_UI, 398
/IWFND/ERROR_LOG, 688
/IWFND/MAINT _SERVICE, 675, 677, 687
/SDF/CD_CCA, 226
ATC, 216, 217
BOB, 343, 358, 393
BOBF, 343
BOBF/TEST_UI, 419
BOBX, 343
BOPF_EWB, 421
FPM_WB, 641, 651
IWFND/MAINT_SERVICE, 698
MRRL, 101
RSSCD100, 420
SALV, 760
SAMC, 762
SAPC, 778
SAT, 75
SATC, 289
SCDO, 412
SCI, 209, 211
SE03, 65
SE11, 61, 151, 257, 265
SE24, 85, 146, 320, 321, 429, 672
SE37, 85, 429
SE38, 44
SE80, 33,41, 43,71, 75,152, 429, 609, 645
SEGW, 666, 674, 691
SICF, 80, 578, 672, 678, 679,772,778
SIMGH, 675
SLIN, 58
SLIN (ABAP Extended Program Check), 209
SM12, 370
SMWO0, 204
SQIM, 289
SRTCM, 307
ST05, 96, 276, 289
ST22, 321
SWLT, 289
SWo1, 667
XLST_TOOL, 81
transaction_manager, 356

799

Index

Transactional view, 349
Transient structure, 346, 372
Transport request, 56, 468
TRUE/FALSE, 119
TRY/CATCH/CLEANUP, 324
Type, 191

TYPE definition, 52

TYPE POOL, 103

TYPE REF TO DATA, 115

U

UMAP, 81
UML
diagram, 81
operation, 83
Underlying grid object, 525
UNION, 100
Unit testing, 71, 166, 173, 211
ABAP 7.4,153
automation, 189
executable specifications, 173
mockA, 190, 195, 207
recommended reading, 207
Usage Procedure Logging (UPL), 226
monitoring job, 226
User acceptance test (UAT), 179
User command handling, 528
User command routine, 761
User commands, 488
User exit, 473
User Interface Building Blocks (UIBB),
641, 651
freestyle, 642

Vv

Validation, 386
coding, 388
creation, 387
Validation logic, 401
VALUE, 106
Variables, 102
Variant configuration, 224
VBA (Visual Basic for Applications), 568

800

View, 622, 630

View controller, 607
Violated postcondition, 184
Violated precondition, 500

W

WDA
ALV grid, 599
application building, 607
calling application, 627
coding, 628
component controller, 606
create component, 609
data structures, 611
defining view, 619
graphical screen painter, 604
interface controller, 610
nodes, 613
PAI, 605
PBO, 605
recommended reading, 657
standard elements, 615
storing data, 604
view settings, 613
WDA — Web Dynpro ABAP
Web Dynpro ABAP, 33, 83, 114, 247,
473, 599
Web Dynpro Code Wizard, 629
WebSocket, 752, 754, 773, 774, 779
WHERE clause, 94, 270
Window controller, 607
Word, 595
Word macro, 591
Work area, 128, 241
Workflow, 468
Workflow Builder, 468, 471

X

XML, 540, 543, 700, 702
code, 558
files, 540
tree, 345

XSDBOOL, 119

z

Z aggregated storage table, 102
Z class, 43, 174, 356, 473, 522, 662, 694
Z enhancement, 238

Z field, 300

Z table, 104, 460
ZCL_BC_VIEW_SALV_TABLE, 514, 521
ZCX_NO_CHECK, 316

Index

801

® Rheinwerk

First-hand knowledge. Publishing

Paul Hardy joined Heidelberg Cement in the UK in
1990. For the first seven years, he worked as an ac-
countant. In 1997, a global SAP rollout came along; he
jumped on board and has never looked back since. He
has worked on country-specific SAP implementations
in the United Kingdom, Germany, Israel, and Australia.

. _>set_course_for
Shlp >sev_| o
spad (the_future)-

Spaw;lgip:;warp__drive»
s engage(”).

After starting off as a business analyst configuring the
good old IMG, Paul swiftly moved on to the wonderful world of ABAP
programming. After the initial run of data conversion programs, ALV
reports, interactive DYNPRO screens, and (urrggh) SAPscript forms, he
yearned for something more and since then has been eagerly investiga-
ting each new technology as it comes out. Particular areas of interest in
SAP are business workflow, B2B procurement (both point to point and
SAP Ariba-based), logistics execution, and variant configuration, along
Discover the latest and greatest features in the ABAP universe with virtually anything new that comes along.

Get acquainted with Core Data Services and ABAP Channels

Learn about the latest features of BRFplus, BOPF, SAPUIS, Paul can regularly be found blogging away on the SCN site and presen-
andmore ting at SAP conferences in Australia (Mastering SAP Technology and the
SAP Australian User Group annual conference). If you happen to ever be
at one of these conferences, Paul invites you to come and have a drink
with him at the networking event in the evening and to ask him the
most difficult questions you can think of (preferably SAP-related).

H
0
=,
3
0
ﬂ
g
4
C
‘
0

Paul Hardy & Rheinwerk
Publishing

Paul Hardy

ABAP to the Future

801 Pages, 2016, $79.95 We hope you have enjoyed this reading sample. You may recommend
ISBN 978-1-4932-1410-5 or pass it on to others, but only in its entirety, including all pages. This

reading sample and all its parts are protected by copyright law. All usage
-E www.sap-press.com/41 61 and exploitation rights are reserved by the author and the publisher.

https://www.sap-press.com/abap-to-the-future_4161/

