® Rheinwerk

First-hand knowledge. Publishing

Browse the Book

E I —— This sample chapter demonstrates the techniques for using SQLScript
&IH poal i procedures for ABAP programs. It starts with the most important concept,
LIC WARIAELE: CRECCRE SRR L AMDEP, followed by the other development objects of the AMDP frame-
14 work. The end of this chapter briefly shows you an alternative to AMPD
and give some basic recommendations for using database procedures

O i.- : '-\rl',l

In ABAP programs.
EE;F'(:‘: 1 FTHHT “SQLScript in ABAP Programs”
[BLIC PROCEL e
: BEEIH.I:". :._: et RO e Contents
: . Index
SQLScript for SAP HANA @
g The Author

Learn $QLScript syntax and run your first routine
in the SQL console

Read and write to the SAP HANA database
BW/AHANA, and

NNWVH dVS 403} 3A1LAOSN0OS

Use SQLScript with ABAP, SAP

AP BW powered by SAP HANA Jorg Brandeis

SQLScript for SAP HANA

J6rg Brandeis & Rheinwerk 387 pages, 2nd, updated and revised edition 2021, $79.95
publishing ISBN978-1-4932-2139-4

E www.sap-press.com/5336

https://www.sap-press.com/sqlscript-for-sap-hana_5336/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2139

Chapter 8
SQLScript in ABAP Programs

To enable the use of SQLScript from within ABAP programs, various
options are available, for example, the ABAP-managed database proce-
dures (AMDP) framework or table functions. In this chapter, we’ll provide
you an overview of these techniques.

In previous chapters, you learned how to write effective SQLScript source
code. You can use various options to call this source code from within the
SAP NetWeaver ABAP platform. From the ABAP perspective, SQLScript basi-
cally is Native SQL, which is how all database-specific SQL dialects are
described. The opposite of Native SQLis Open SQL, which is part of the ABAP
programming language. Open SQL is database-independent and is trans-
lated into the corresponding Native SQL at runtime.

Consider Other Database Systems

If you use Native SQL in ABAP, the corresponding programs and classes are
restricted for use in a particular database system. To be compatible for
multiple database systems, you must develop along several tracks. Accord-
ingly, you should create different implementations for the various SQL
variants. In this chapter, we’ll focus on following a two-track approach in
our examples, using both techniques:

® SQLScript for SAP HANA databases
® Open SQL for all other databases

In the following section, you will learn the techniques for using SQLScript
procedures for ABAP programs. We'll start with the most important con-
cept, AMDP, followed by the other development objects of the AMDP
framework. And at the end of this chapter, we will briefly show you an alter-
native to AMPD and give some basic recommendations for using database
procedures in ABAP programs.

8.1 AMDP Procedures

From the point of view of an ABAP developer, an AMDP procedure is a
method of an ABAP class, which is implemented in the SQLScript

283

8 SQLScript in ABAP Programs

AMDP

programming language. Being a method solves several problems, such as
the following:

® The SQL procedure is called as a method call of an ABAP class. As aresult,
the procedure call is perfectly integrated in ABAP.

® The transport of the database procedure is performed using the ABAP
class rather than requiring several transport mechanisms that must be
kept in sync.

m Atthe time of development, the developer does not need direct access to
the SAP HANA database with the appropriate authorizations. Working
with the usual ABAP developer authorizations with the ABAP develop-
ment tools is sufficient.

In the following sections, the terms AMDP and AMDP procedure are used
interchangeably. If not explicitly mentioned, the information doesn’t refer
to AMDP functions.

Before we jump into using AMDP, however, we'll first provide you with an
initial introduction to some of the concepts of AMDP.

8.1.1 Introduction to AMDP

The term ABAP-managed database procedure (AMDP) stands for the frame-
work recommended by SAP for using SQLScript code in ABAP programs.
This concept serves as the basis for creating, managing, and calling data-
base procedures and functions. The basic idea behind AMDP is that the
source code of SAP HANA database objects can be wrapped in an imple-
mentation of methods of an ABAP class. The corresponding SAP HANA
database object is then generated from this implementation when
required.

Three different objects can be created with the AMDP framework:

®m AMDP procedures can be called like methods of an ABAP class. These pro-
cedures are implemented in SQLScript. The caller of the method doesn’t
know that the procedure is actually a database procedure.

m Core data services (CDS) table functions are AMDP functions that are
encapsulated by a CDS object and can therefore be called from ABAP or
Open SQL like a normal database view via a SELECT query.

® AMDP functions for AMDP methods can'’t be called directly from ABAP or
Open SQL. However, these functions can be used when implementing
other AMDP objects in SQLScript source code.

Table 8.1 compares the most important properties of the three objects.

284

AMDP Procedures

Like an ABAP Ina SELECT state- Not possible
method ment
In a static or In PUBLIC, static In a static or

instance method

method of a static

instance method

class
Inheritable Possible by case Not relevant, since
distinction only callable from
other AMDP meth-
ods
Read and write Read-only Read-only
When you define ~ When you define When you define
the method the CDS object the method

Any IMPORTING, Any scalar IMPORT- Any scalar IMPORT-

EXPORT, and ING and exactly ING and exactly

CHANGE one table-like one table-like
RETURNING param- RETURNING param-
eter eter

Table 8.1 Comparison of the Three AMDP Objects

AMDP Framework

With the release of SAP NetWeaver 7.4 Support Package Stack (SPS) 05,
AMDPs were introduced as a framework for managing and calling data-
base procedures in the SAP HANA database.

With the release of SAP NetWeaver 7.5, AMDP functions have been added
to this concept. Although these functions are technically not procedures,
but functions, the name AMDP is also used for them.

AMDP classes are classes that implement the interface IF AMDP MARKER
HDB and that contain at least one AMDP method.

AMDP methods can be either AMDP procedures or AMDP functions. AMDP
functions either implement a CDS table function, or AMDP functions are
available internally for other AMDP methods.

The AMDP framework provides ABAP developers with extensive options
for implementation according to the code-to-data paradigm. Direct access
to the SAP HANA database is not absolutely necessary since all develop-

285

[«]

Tools

8 SQLScript in ABAP Programs

Benefits of AMDP

Disadvantages

Alternatives

ment objects can be implemented via the ABAP development tools in the
Eclipse development environment. You can also use a debugger for the
SQLScript code in the AMDP methods. This AMDB debugger is described in
more detail in Chapter 11, Section 11.2.3.

If SAP HANA data models such as calculation views are modeled or if proce-
dures and functions are developed outside the AMDP framework, direct
database access with corresponding authorizations will be necessary. The
Eclipse plug-ins from SAP HANA Studio must also be installed.

When does using SQLScript in an ABAP program make sense? No general
answer exists for this question. Basically, the use of AMDPs makes sense
above all when significant performance improvements can be achieved,
which is particularly the case in the following scenarios:

m If using SQLScript prevents the transport of large amounts of data
between the database and SAP NetWeaver Application Server (AS).

m If the SQLScript procedure is programmed declaratively and can there-
fore be easily parallelized and optimized by the SAP HANA database.

m If transformations with routines are to be executed directly in the SAP
HANA database in SAP Business Warehouse (SAP BW). Data transfer pro-
cesses will be accelerated considerably, regardless of whether the previ-
ous ABAP code worked with database access or not.

But the use of AMDPs also has a few disadvantages. You must always con-
sider whether you want to accept these disadvantages for the expected per-
formance improvements. The following reasons, among others, speak
against the use of AMDPs:

®m The application developer must be proficient in several programming
languages. Sometimes, a well-implemented ABAP method is better than
a poorly implemented AMDP.

®m SAP GUI is not suitable for developing AMDPs.

® The application logic is distributed between the database server and SAP
NetWeaver Application Server (AS).

® Performance is not improved in all cases.
® AMDP developments can’t be used in other database systems. For a suit-

able procedure for parallel development, still leveraging the advantages
of SAP HANA with AMDPs, Section 8.1.5.

You should always evaluate the alternatives before using AMDPs, includ-
ing, for example, CDS views and the extended features of Open SQL of the
latest SAP NetWeaver releases. According to the SAP documentation (http://
s-prs.co/v533626), AMDPs should only be used if database-specific functions,
such as the SQL function for currency conversion, is required but not avail-

286

8.1

AMDP Procedures

able in Open SQL, or if the transport of large amounts of data between the
database server and SAP NetWeaver Application Server (AS) must be
avoided.

SPACE and the Empty Character String

In ABAP, a global constant SPACE, of length 1, contains exactly one blank
character. This constant is often used for selecting data, for example, in
the following WHERE clause:

WHERE recordmode = SPACE

In fact, however, the database doesn’t store the space character, but an
empty string of length 0. ABAP therefore does not distinguish between an
empty string and a single space character.

However, SQLScript does distinguish between these two strings. For use in
an ABAP system, SAP has introduced the ABAPVARCHAR mode. This mode
converts all string literals with exactly one blank character into an empty
string in SQLScript as well, as in the following query:

SELECT session context('ABAPVARCHARMODE') FROM DUMMY

Furthermore, you can test whether this mode is switched on. Since this
mode is controlled by the session variable ABAPVARCHAR, you can also turn
this mod on and off in the code, as shown in Listing 8.1.

DO BEGIN
SET 'ABAPVARCHARMODE' = 'true';
SELECT length(' '),
>N || "<=" FROM dummy;

SET 'ABAPVARCHARMODE' = 'false’;
SELECT length(' '),
U]t] <= FROM dummy;
END;

Listing 8.1 Testing the ABAP VARCHAR mode

The result depends on the mode set. If you really need exactly one space as
a string in SQLScript, use the expression CHAR(32).

8.1.2 Creating AMDP Procedures

You can create an AMDP method only in a global class, which implements
the marker interface IF_AMDP MARKER HDB. The interface itself has no meth-
ods; it serves exclusively to mark AMDP classes.

287

[+]

IF_AMDP_MARKER_
HDB

8 SQLScript in ABAP Programs

Restrictions on the
method signature

An AMDP class can include both normal ABAP methods and AMDP meth-
ods. Whether a method is implemented as AMDP is not specified in the
method declaration. Listing 8.2 shows an example.

CLASS zcl amdp demo DEFINITION
PUBLIC
CREATE PUBLIC .

PUBLIC SECTION.
INTERFACES if_amdp_marker_hdb.
TYPES gty tt countries TYPE TABLE OF tOO5t .
METHODS get countries

IMPORTING

VALUE(iv_langu) TYPE langu

EXPORTING

VALUE(et country) TYPE gty tt countries

CHANGING

VALUE(cv_subrc) TYPE sy-subrc.
ENDCLASS.

CLASS zcl amdp demo IMPLEMENTATION.
METHOD get countries
BY DATABASE PROCEDURE FOR HDB LANGUAGE SQLSCRIPT
USING too5t.

et country = select *
from t005t
where spras = :iv_langu;

SELECT CASE

WHEN COUNT(*) > 0
THEN 0
ELSE 4
END AS subrc

INTO cv_subrc

FROM :et country;

ENDMETHOD.
ENDCLASS.

Listing 8.2 Example of a Simple AMDP Method

An SQLScript procedure is generated at a later time from the source code of
an AMDP method. However, these database procedures are more restrictive

288

8.1

AMDP Procedures

with regard to parameters than ABAP methods. Accordingly, the following
restrictions must of course also apply to AMDP methods:

® First, all parameters must be completely typed. Generic data types such
as TYPE TABLE or REF TO DATA are not permitted.

® Since SQLScript doesn’t know any structures, only scalar data types and
table types may be used as parameters. The table types can only use sca-
lar data types in their row structure.

m All parameters must be transferred as value parameters (call by value);
you can'’t use any reference parameters (call by reference). The reason for
this restriction is obvious when you consider that the application server
is running on a different system than the database. Accordingly, no
shared memory area exists that both systems reference.

® You can only use IMPORTING, EXPORTING, and CHANGING parameters with
AMDP procedures. The use of RETURNING parameters is not possible.

® Only AMDP exception classes can be declared in the signature of the
method. These exception classes are the subclasses of CX AMDP_ERROR. If
these exception classes are declared, the caller of the AMDP method can
handle these exceptions. However, if not declared, these errors result in
adump.

AMDP procedures are developed in the SQLScript language, which is indi-
cated to the system by the addition BY DATABASE PROCEDURE FOR HDB LANGUAGE
SQLSCRIPT.

If an AMDP implementation only reads data, you can optionally specify the
addition OPTIONS READ-ONLY.

The optional addition USING enables you to tell an AMDP implementation
that you want to use the corresponding tables, views, AMDP functions, or
AMDP procedures from the default database schema of the SAP NetWeaver
system. Thus, you can use this name without having to explicitly specify
the relevant database schema in the SQLScript source code. The objects are
only separated by whitespaces and listed after the keyword USING. Note that
this code is still ABAP code. If, for example, you specify a table generated by
SAP BW from the generation namespace, /BIC/ or /BI0/, you do not need to
use any quotation marks, for example:

...USING /BIO/PPLANT.

If you access this table in SQLScript code, however, you must use special
notation, since the slash is not permitted in simple notation, as in the fol-
lowing:

SELECT ... FROM "/BIO/PPLANT".

289

Implementing
an AMDP

USING

8 SQLScript in ABAP Programs

USING for
AMDP objects

[»]

The use of AMDP procedures and functions is declared in the USING clause
via the name of the associated ABAP method using the notation CLASS=
>METHOD. Listing 8.3 contains an example of the keywords in the METHOD
clause of the method implementation. Everything after the period in line 5
up to the keyword ENDMETHOD is interpreted as SQLScript.

METHOD get countries
BY DATABASE PROCEDURE FOR HDB
LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING t005t.

<SQLScript-Code>
ENDMETHOD.

0~ Oy Ul B~ W

Listing 8.3 Keywords for Implementing an AMDP Method

A General Concept for a Specific Database

Basically, all instructions and declarations in connection with AMDP are
designed in such a way that AMDPs can be implemented in different data-
base systems and in different languages. Accordingly, the implementation
of AMDP methods also includes the mandatory entries FOR <databasesys-
tem> and LANGUAGE <querylanguage>.

However, to date (SAP NetWeaver 7.51), only implementations for the SAP
HANA database with the SQLScript language are possible. The language L
may only be used within SAP.

The other database systems under SAP NetWeaver each have their own
programming languages, such as Oracle’s PL/SQL language. However,
these languages can’t be used to implement AMDPs.

8.1.3 Generated Objects of an AMDP Method

An ABAP class serves as an envelope for the code of the AMDP procedure.
Some SAP HANA database objects are automatically generated from this
class. Figure 8.1 shows the objects generated by the procedure found in List-
ing 8.2.

Note that a table type, two procedures, a database table, and a view have
been generated for an AMDP method. Each object has its own special tasks,
which we’ll explain next.

290

8.1

AMDP Procedures

= Column Views
= EPM Models
=+ EPM Query Sources
= Functions
= Indexes
w [= Procedures - Filter: *ZCL*
w = Table Types - Filter: "ZCL™
= ZCL_AMDP_DEMO=>GET_COUNTRIES=> PODDDDEthyp
[:§ ZCL_AMDP_DEMO=>GET_COUNTRIES
¥ ZCL_AMDP_DEMO=> GET_COUNTRIES#sth2£20180301173138
= Sequences
= Synonyms
w = Tables - Filter: *ZCL*
i ZCL_AMDP_DEMO=x GET_COUNTRIES=>PODDDO#tFt£#20180301173139
[= Triggers
~ = Views - Filter; *ZCL*
f ZCL_AMDP_DEMO=>TO05T#covw

Figure 8.1 Generated Objects of an AMDP Procedure

The Generated AMDP Procedure

The procedure ZCL_AMDP _DEMO=>GET COUNTRIES contains the actual SQLScript
source code. However, the code has been slightly modified, as shown in
Listing 8.4.

CREATE PROCEDURE
"ZCL_AMDP_DEMO=>GET COUNTRIES"
(
IN "IV LANGU" NVARCHAR (000001),
OUT "EV_SUBRC" INTEGER,
IN "CT_COUNTRY__IN " "ZCL_AMDP_DEMO=>GET_COUNTRIES=>P00000#
ttyp”,
OUT "CT_COUNTRY" "ZCL_AMDP_DEMO=>GET_COUNTRIES=>P00000#ttyp"
)
LANCUACE sqglscript SQL SECURITY INVOKER
AS BEGIN
"CT_COUNTRY" = select * from :CT_COUNTRY__IN _ ;
BEGIN
1t countries = SELECT landl FROM :CT_COUNTRY;
et country = SELECT t5.%*
FROM "ZCL_AMDP_DEMO=>T005T#coww" AS t5
INNER JOIN :LT_COUNTRIES AS countries
ON t5.landl = countries.landl
WHERE t5.spras = :IV_LANGU;

SELECT CASE
WHEN COUNT(*) > 0

291

8 SQLScript in ABAP Programs

Parameter list

THEN O
ELSE 4
END AS subrc
INTO ev_subrc
FROM :CT_COUNTRY;
END;

END;

Listing 8.4 Source Code of Procedure ZCL_ AMDP_DEMO=>GET_COUNTRIES

The relevant passages in the source code are highlighted in bold type. First,
you'll see the parameter list. Notice that the CHANGING parameter CT_COUNTRY
occurs twice. This repetition occurs because, in SQLScript, an INOUT parame-
ter must have a scalar type. Thus, in addition to the OUT parameter CT_COUN-
TRY, the IN parameter CT_COUNTRY IN is created. In the first line after AS
BEGIN, the parameter CT_COUNTRY is filled with the contents of CT_COUNTRY
IN_, which simulates the behavior of a CHANGING parameter.

Table Types for the Table Parameters

In the parameter interface of an SQLScript procedure, all parameters must
be typed. In the case of table parameters, corresponding table types are cre-
ated for AMDP procedures. In our example, CT_COUNTRY is typed using the
generated table type ZCL_AMDP_DEMO=>GET COUNTRIES =>P00000%#ttyp.

USING Views

Each access to a table declared via USING is encapsulated by a view. In our
example, this view is the database view ZCL_AMDP_DEMO =>T005T#covw, which
replaces direct access to table T005T. The task of the view is to compensate
for any field sequences that differ between the ABAP Dictionary and the
database object.

Stub Procedure

In addition to the actual AMDP procedure, a second procedure is generated,
which is named according to the name pattern <AMDPprocedure>#stb2i#
<timestamp>. Accordingly, in our example, the procedure name is ZCL_AMDP
DEMO=>GET COUNTRIES#stb2#20180301173139.

This procedure serves as a stub for the call from SAP NetWeaver. The time-
stamp (Section 8.14) is used for versioning purposes in case the object
changes.

292

8.1

AMDP Procedures

The source code shown in Listing 8.5 involves only two parameters: IV
LANGU and EV_SUBRC. The CHANGING table parameter CT_COUNTRIES is not part of
the parameter definition of the procedure.

The return of the table CT_COUNTRIES is not carried out via an explicitly
defined table parameter but via the result set of the procedure. After the call
of the AMDP procedure, a SELECT query is executed to the table CT_COUN-
TRIES.

CREATE PROCEDURE
"ZCL AMDP_DEMO=>GET COUNTRIES#stb2#20180301173139"

(
IN "IV_LANGU" NVARCHAR (000001),

OUT "EV_SUBRC" INTEGER

)
LANGUAGE sqlscript SQL SECURITY INVOKER AS BEGIN

"CT_COUNTRY_IN_ " = SELECT * FROM "ZCL_AMDP DEMO=>GET COUNTRIES=
>P00000#tft#20180301173139" ;
CALL "ZCL_AMDP DEMO=>GET COUNTRIES" (
"CT COUNTRY IN " => :CT COUNTRY IN
"IV LANGU" => :IV_LANGU ,
"EV_SUBRC" => :EV SUBRC ,
"CT_COUNTRY" => :CT_COUNTRY
)s
SELECT * FROM :CT_COUNTRY;

END;

Listing 8.5 Source Code of the Stub Procedure

Input Tables as Global Temporary Tables

The values of table parameters are transferred into the stub procedure via
generated, global temporary tables. Before the actual AMDP procedure is
called, the table variables are initialized from the global temporary table. In
our example, CT_COUNTRIES is filled from the global temporary table in the
following way:

"CT_COUNTRY__IN " = SELECT * FROM "ZCL_AMDP_DEMO=>GET_COUNTRIES=>
P00000#tft#20180301173139"

Here again, a timestamp is part of the name.

293

Return of the table

8 SQLScript in ABAP Programs

Object lifecycles

8.1.4 Lifecycle of the Generated Objects

The lifecycle of the AMDP classes and methods is not identical to the lifecy-
cle of their corresponding SAP HANA objects. In the following sections,
we’ll describe the effects of various actions carried out in the SAP
NetWeaver Application Server (AS) on the corresponding SAP HANA
objects:

® Creating and activating an AMDP class
Creating and activating an AMDP class with an AMDP method doesn’t
generate any database objects. Thus, you can transport AMDP classes to
SAP NetWeaver systems without an SAP HANA database. If an SAP HANA
database is available as the central database system, the database objects
are temporarily created and immediately deleted again for the syntax
check.

®m Executing an AMDP method
Database objects, introduced in the previous section, are generated
during the first execution of the AMDP method. The timestamp in the
object’s name refers to the activation time of the class.

Even if a class contains several AMDP methods, only the objects for the
executed methods are generated.

® Repeated editing and activation of an AMDP class

The stub procedures for all AMDP procedures are deleted when the class
is reactivated. The same applies to all generated AMDP procedures that
have changed. The generated global temporary table will remain for the
time being.

The next time the program is executed, the objects are created again
with the new timestamp. Since global temporary tables are not deleted
immediately, some objects with different timestamps can still exist at
the same time.

® Deleting an AMDP class
The generated objects on SAP HANA are deleted upon the deletion of the
AMDRP class.

The late generation of SAP HANA objects means that transporting AMDP
classes in a mixed system landscape can run smoothly. Versioning of
changes is carried out using timestamps to ensure that the correct version
of a procedure is always called.

8.1.5 Two-Track Development

There are different reasons why you would want both an ABAP and an AMDP
implementation of a method. From a technical point of view, developing

294

8.1

AMDP Procedures

both is not a problem, since whether a method is written in SQLScript or
ABAP is only determined when the method is implemented and doesn’t
affect the definition of the method. In the following sections, we’ll look at a
few typical use cases where more than one implementation exists.

Clean Code: Separation of Concerns

The principle of the separation of concerns was formulated in 1974 by Eds-
ger W. Dijkstra. Under this principle, different tasks should also be per-
formed by different components in a system. In our case, separation of
concerns means that database access should not be mixed with other
application code. Instead, different classes should be created for each
aspect.

If you adhere to this principle, two-track development of AMDP and ABAP
implementations is also relatively simple. Classes for database access can
be easily exchanged.

Support of Different Database Systems

If the application needs to run on different database systems, you can have
one implementation in Open SQL and one in AMDP. Of course, you can also
create special implementations for each of the other databases.

Switching between the various implementations should take place auto-
matically at runtime. For this purpose, you can use the factory design pat-
tern. As shown in Figure 8.2, we’ll use a static factory method, GET INSTANCE,
to generate the instances. Based on the SY-DBSYS field, this method decides
which class implementation should be used.

ZCL_READ_XYZ

+ EXECUTE(): Table of data
+ GET_INSTANCE(): ZCL_READ_XYZ

Extends Extends

ZCL_READ_XYZ_AMDP ZCL_READ_XYZ_OsQlL

+ EXECUTE(): Table of data + EXECUTE(): Table of data

Figure 8.2 UML Diagram for Two Implementations of Database Access with a
Static Factor Method

295

[«]

Switching between
implementations

8 SQLScript in ABAP Programs

Refactoring

Listing 8.6 shows a simple implementation of the method GET_INSTANCE. Of
course, other database systems could also be considered.

METHOD get instance.

DATA 1v classname TYPE classname.
CASE sy-dbsys.
WHEN 'HDB".

1v_classname
WHEN OTHERS.
1v_classname
ENDCASE.

'ZCL_READ_XYZ_AMDP'.

'ZCL_READ XYZ 0SQL'.

CREATE OBJECT ro_instance TYPE (lv_classname).
ENDMETHOD.

Listing 8.6 Static Factory Method GET_INSTANCE in ABAP

Comparison between ABAP and AMDP

If you want to test the differences between the implementations in ABAP
and AMDP in runtime and result, inheritance is rather useful concept as in,
for example, the previous section where we leveraged inheritance from a
shared superclass. However, you'll need a suitable switch that allows you
the flexibility to select the relevant implementation. You can create these
switches, for example, by using entries in a Customizing table or by defin-
ing user parameters. These switches can then be queried in a corresponding
factory method.

Retroactive Implementation as AMDP

Let’s say you implemented a method in ABAP and later discover perfor-
mance problems; you can implement the method as an AMDP. To preserve
the original implementation for performance and result comparisons, cre-
ating a subclass is a good idea. The corresponding method is then imple-
mented as an AMDP in this subclass.

Due to restrictions on AMDPs regarding access to instance attributes and

parameters, this procedure must be taken into account when creating your

methods. Alternatively, you can carry out a refactoring, as shown in Figure

8.3, by following this approach:

1. Outsource the logic into a new method that meets the requirements of
an AMDP: no access to class and instance data, no RETURNING parameters,
no parameters with structures.

2. Create a subclass.

3. Redefine the corresponding method as an AMDP.

296

8.1

AMDP Procedures

MY_CLASS

+ METHOD_X()
AMDP_SUITABLE_METHOD_X()

MY_CLASS ?
Extends
+METHOD_X() ‘

MY_CLASS_AMDP

AMDP_SUITABLE_METHOD_X()

Figure 8.3 Outsourcing the Logic to an AMDP-Compatible Method and
Redefinition

To switch between the two versions of the class, you can use a factory
method again.

ABAP Unit Tests

A mock object is often used to insert data into a class to be tested in a unit
test. This object has the same external interface as a real object but provides
predefined data that is independent of the database state. Classes that con-
tain an AMDP can, for example, be replaced for unit tests by a local subclass
in which the AMDP method has been replaced by a corresponding ABAP
implementation. For such tests, you can use the dependency injection
design pattern.

Note that AMDP implementation is only possible in global classes. In local
classes, only an implementation in ABAP is allowed.

8.1.6 Using AMDP Procedures in Other AMDP Procedures

An AMDP method generates a corresponding database procedure the first
time it is executed (see also Section 8.1.4). This database procedure can of
course also be called directly in any SQLScript code, especially in other
AMDP procedures. Thus, a certain modularization of the programs is possi-
ble without direct development access to the database.

Listing 8.7 shows a simple example of calling an AMDP procedure in
another AMDP method. Note that a CHANGING parameter in the AMDP
method has the following two associated parameters in the corresponding
database table, as described in Section 8.1.3:

297

Only in global
classes

Example

8 SQLScript in ABAP Programs

8.1

AMDP Procedures

[+]

m (T PRICE
m (T PRICE IN

In this case, you must assign these parameters yourself in order to call the
procedure correctly.

Avoid CHANGING Table Parameters

In the database procedure, the CHANGING table parameters are imple-
mented in two parameters. As shown in Listing 8.7, the code needed for a
direct call of this procedure can look confusing to untrained readers
because the CT_PRICES IN parameter was not defined anywhere in the
ABAP class. If you use these two parameters instead, the code will be more
readable:

m TT PRICES forentering the table
®m FT PRICES forthe output of the table

If the generated procedures are only called using ABAP methods, whether
or not you use CHANGING table parameters doesn’t matter.

CLASS zcl amdp call DEFINITION PUBLIC.

PUBLIC SECTION.
TYPES: BEGIN OF ty s price,
item TYPE numc4,
net price TYPE wertv9,
gross price TYPE wertv9,
vat TYPE wertv9,
curr TYPE waers,
END OF ty s price.

TYPES ty t price TYPE STANDARD TABLE OF ty s price.
INTERFACES if amdp marker hdb.
METHODS calculate vat
IMPORTING
VALUE(iv vat) TYPE intl
CHANGING

VALUE(ct _price) TYPE ty t price.

METHODS calculate gross price
IMPORTING

298

VALUE(iv_vat) TYPE intl
CHANGING
VALUE(ct price) TYPE ty t price.

ENDCLASS.

CLASS zcl amdp call IMPLEMENTATION.
METHOD calculate gross price BY DATABASE PROCEDURE
FOR HDB LANGUAGE SQLSCRIPT
USING zcl _amdp_call=>calculate_vat.
CALL "ZCL_AMDP_CALL=>CALCULATE VAT"(

iv vat => :iv vat,
ct price => :ct price,
ct price_in_ => :ct_price);

ct price = SELECT item,
net price,
net price + vat as gross price,
vat,
curr,
FROM :ct price;
ENDMETHOD.

METHOD calculate vat BY DATABASE PROCEDURE
FOR HDB LANGUAGE SQLSCRIPT.

ct price = SELECT item,
net price,
gross price,
net price * :iv vat / 100 as vat,
curr,
FROM :ct price;

ENDMETHOD.

ENDCLASS.

Listing 8.7 Calling an AMDP Procedure from Another AMDP Method

All AMDP procedures used must be declared in an AMDP method via USING,
which ensures that the necessary database objects are generated as

required. Note that the class constructor of the AMDP classes used is called
before the method is executed.

299

USING

8 SQLScript in ABAP Programs

Implementation

[]

Interaction

8.2 (CDS Table Functions

A CDS table function is an AMDP function that provides table data and can
be consumed from ABAP in Open SQL, like a database view.

The implementation of a CDS table function is similar to an AMDP proce-
dure as a method of an ABAP class. A corresponding user-defined function
is then generated from this method in the SAP HANA database. Since user-
defined functions can’t be consumed directly in Open SQL, the AMDP func-
tions are encapsulated by a CDS object. An AMDP function can therefore
also be considered a programmed CDS view. The CDS object can then be
used normally, such as a database view, in Open SQL.

Core Data Services

The classic ABAP Dictionary manages database objects such as data types
(data elements, structures, table types); database tables; and views. The
definitions of these objects are stored and managed in a database-neutral
form in the associated database tables (DD*) at the ABAP application server
level. Depending on the database system used, the appropriate database
objects are then generated from the stored definition. The classic ABAP
Dictionary, which can be called via Transaction SET1, only allows the limited
use of the SQL options, especially for views.

CDS are a common concept that exists both directly in the SAP HANA data-
base and on the SAP NetWeaver AS ABAP. With CDS, database objects such
as views or table functions can be defined with the help of their own lan-
guage, which is based on the data definition language (DDL) of SQL. These
data models can be enriched with semantic information using annota-
tions.

8.2.1 Creating a CDS Table Function
To create a CDS table function, two related objects must be created:

® The CDS table function is defined in a DDL source with the parameters
and the table type of the return table. This step implicitly defines the sig-
nature of the associated AMDP method.

®m The AMDP function is implemented in a method of a static ABAP class.
This step contains the SQLScript source code for the table function.

Figure 8.4 shows the interaction between a CDS table function and an
AMDP function.

300

8.2 (CDS Table Functions

|— IMPLEMENTED BY ... W

CDS Table Function AMDP Function

t FOR TABLE FUNCTION ... J

SAP NetWeaver
Application Server for ABAP

SAP HANA Generate

User-Defined Fields

- USING Views
Function

Figure 8.4 Objects Involved in a CDS Table Function

CDS Table Function

You can use a wizard to create CDS table functions from the ABAP develop- €DS table functions
ment tools of the Eclipse development environment. Start by clicking New - ~ Wizard

Other ABAP Repository Object in the context menu of the development

package and then choose Core Data Services « Data Definition in the follow-

ing dialog. Figure 8.5 shows the corresponding wizard. To create a CDS table

function, you must select the Define Table Function with Parameters tem-

plate.

The wizard then generates a basic structure of the corresponding source
code of the CDS table function, as shown in Listing 8.8.

@EndUserText.label: 'Example for a table function'
define table function Z CDS TF
with parameters parameter name : parameter type
returns {

client element name : abap.clnt;

element name : element type;

}

implemented by method class name=>method name;;

Listing 8.8 Basic Structure of the Definition of a CDS Table Function

301

8 SQLScript in ABAP Programs

= New Data Definition O X
Templates
Select ane of the available templates. '
Use the selected template
Define"v"iew # | |Defines the type signature of a client dependent CDS table
(5] Define View with Join function with imparting parameters, The table function is

=)) . implemented in the specified ABAP method.
(5] Define View with Association

(5] Define View with Parameters The table function can be used in Open S0L and as a data

Exten(l View source in other view definitions.
DeﬁneTabIe Function with Parameters v
@EndUserText.label: '${ddl source description}’ R

define table function ${ddl source name editable}
with parameters ${parameter name} : ${parameter type}
returns {

§{client element name} : abap.clnt;

N N, [Py USRI — I N, [PSey g S Spenup g S |

Figure 8.5 Wizard for Creating CDS Objects

In this section, we’ll describe only a rudimentary syntax for defining CDS
objects, which are not the focus of the book. For more information on CDS
objects, we recommend the SAP document “SAP HANA Core Data Services
(CDS) Reference,” at http://s-prs.co/v533627.

Components The definition of the CDS table function consists of the following compo-

nents:

® @EndUserText.label
This annotation contains the descriptive text for the CDS table function
previously specified in the wizard.

® define table function <CDS_entity>
This component indicates the start of the definition of the CDS table
function. The name of the CDS entity is in the same namespace as the
data types of the ABAP Dictionary. Therefore, a CDS entity must not have
the same name as, for example, a database table.

® with parameters <parameterlist>
If the CDS table function will have parameters, these parameters can be
defined in this component. The use of parameters is optional. The client
is often specified as a parameter, which will allow you to select data by
client in the function, as shown in Listing 8.10.

302

8.2 (CDS Table Functions

®m returns { <fieldlist> }
The field list defines the structure of the return table. If the CDS table
function is client-dependent, the first field must have the ABAP Dictio-
nary type CLNT. For example, you can use the data element MANDT.

® implemented by method <classname>=><methodname>
This component tells the CDS table function by which AMDP method the
implementation is performed. The CDS entity can be activated if the
associated method doesn’t exist yet.

AMDP Function

The actual implementation of the CDS table function occurs an AMDP
method in a static, global ABAP class, which requires the implementation of
the marker interface IF AMDP_MARKER HDB. Unlike AMDP procedures, AMDP
functions for CDS table functions are static methods. The parameters are
not defined individually in the method definition. Instead, you'll use the
addition FOR TABLE FUNCTION <CDS table function name> to establish the ref-
erence to the associated CDS table function. The parameters defined in the
CDS entity are then available in the function implementation.

The method implementation must be structured as shown in Listing 8.9.

METHOD <method name> BY DATABASE FUNCTION
FOR HDB LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
[USING <usages>].
<SQLScript-Code>
ENDMETHOD.

Listing 8.9 Structure of the Implementation of an AMDP Function for a CDS
Table Function

The additions in the METHOD statement are all mandatory except for the
USING specification. The use of USING in this context is similar as in AMDP
procedures.

Example of a CDS Table Function

For a functioning CDS table function, the definition of the CDS entity and
the implementation of the AMDP function belong together.

Listing 8.10 and Listing 8.11 contain some simple examples to show the
basics of CDS table functions using texts for countries read from table
TOOST. In practice, your CDS table functions will be used for much more
complex scenarios that utilize multiple features of the SAP HANA database
and SQLScript.

303

Definition

8 SQLScript in ABAP Programs

8.2 (CDS Table Functions

RETURN statement

Testing

@EndUserText.label: 'Country texts'
define table function z country text
with parameters
@Environment.systemField: #CLIENT mandt:mandt,
@Environment.systemField: #SYSTEM LANGUAGE sy langu:langu
returns {

mandt :mandt;

country:landl;

text:landx50;

}
implemented by method zjb_cl_country=>get country text;

Listing 8.10 Example of Defining a CDS Table Function

The client and language are taken from the system fields via the annotation
@Environment.systemField.

The implementation shown in Listing 8.11 consists of only a RETURN state-
ment, which returns the result of a SELECT query.

CLASS zjb cl country DEFINITION PUBLIC.
PUBLIC SECTION.
INTERFACES if amdp marker hdb.
CLASS-METHODS get country text
FOR TABLE FUNCTION z_country text.
ENDCLASS.

CLASS zjb cl country IMPLEMENTATION.
METHOD get country text BY DATABASE FUNCTION
FOR HDB LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING t005t.
RETURN SELECT mandt,
landl AS country,
landx50 AS text

FROM t005t
WHERE spras = :sy langu
AND mandt = :mandt;
ENDMETHOD.
ENDCLASS.

Listing 8.11 Example of Implementing a CDS Table Function

You can test the CDS table function using a simple ABAP program, as shown
in Listing 8.12.

304

REPORT zib_test .

SELECT *
FROM z_country text
INTO TABLE @DATA(1t country)
##tdb_feature mode[amdp table function].

cl demo_output=>display(1t country).

Listing 8.12 ABAP Program for Testing the CDS Table Function from the Example

Notice that the CDS table function can be read with a SELECT query, much
like a database table or a view.

Two-Track Implementation

You cannot create alternative implementations in ABAP or Open SQL for
CDS table functions. However, if your program needs to run on SAP HANA
as well as on other database systems, the caller of the CDS table function
must take care of an alternative implementation. To query at runtime
whether CDS table functions are available, you can use the CL ABAP
DBFEATURES class. As shown in Listing 8.13, this class can be queried for the
existence of the used feature AMDP_TABLE FUNCTION.

IF cl_abap_dbfeatures=>use features(

VALUE #((cl_abap_dbfeatures=>amdp_table function))).
* Implementation with CDS table function
ELSE.
* Alternative implementation without SAP HANA features
ENDIF.

Listing 8.13 Checking the Availability of CDS Table Functions
The syntax check also indicates with a warning that database-dependent

functions are used when querying CDS table functions. You can use the
following pragma to disable the warning, as shown in Listing 8.12.

##tdb feature mode[amdp table function]

This pragma signals to the syntax check that the developer is aware that
this query will lead to errors in other database systems.

8.2.2 Generated Objects of a CDS Table Function

As with AMDP procedures, database objects can also be generated in SAP
HANA for CDS table functions. First, a user-defined function is assigned the

305

[+]

User-defined
function

8 SQLScript in ABAP Programs

same name as the associated static method of the AMDP function, as
shown in Listing 8.14.

create function
"ZJB_CL_COUNTRY=>GET_COUNTRY_TEXT"

(
"MANDT" NVARCHAR (000003),
"SY_LANGU" NVARCHAR (000001)
)
returns table
(

"MANDT" NVARCHAR (000003) ,
"COUNTRY" NVARCHAR (000003) ,
"TEXT" NVARCHAR (000050)

)

language sqlscript sql security invoker as begin

RETURN SELECT mandt,
landl AS country,
landx50 AS text
FROM "ZJB_CL_COUNTRY=>TOO5T#covw"
WHERE spras = :SY_LANGU
AND mandt = :MANDT;

end;

Listing 8.14 Generated User-Defined Function for the AMDP Function

As with AMDP procedures, a view was also generated for the table specified
via USING.

8.2.3 Implicit Client Handling of CDS Table Functions

By default, the implicit client handling of CDS table functions is enabled.
Thus, the first field in the field list must be of dictionary type CLNT. Accord-
ingly, the developer must also ensure that this field is filled out correctly
with the source client of the data. In a SELECT query to the CDS table func-
tion, all data with other clients are then implicitly filtered out.

To improve performance, you should filter out the data of other clients in
the AMDP function. To create a filter, you'll define an input parameter for
the client, which is then automatically assigned the correct client via the
annotation @Environment.systemField: #CLIENT. The examples shown in
Listing 8.10 and Listing 8.11 illustrate the correct client handling.

306

8.3 AMDP Functions for AMDP Methods

1
Note the Client in the Join Condition []

As an ABAP developer, you may not be accustomed to taking the client into
account since this task is usually undertaken by Open SQL. In SQLScript,
however, the client is only an ordinary database field. Be sure you make
the correct selection yourself, in particular for join conditions. If you don’t
select the client in this situation, the cartesian product of the data is
formed over all existing clients.

If implicit client handling is not desired, you can disable it using the anno- Client independent
tation @ClientDependent: false. Nevertheless, you can still have the client as

a field in the return structure of the CDS table function and select it as for

any other field.

[+]

Use Implicit Client Handling If Possible

Application and Customizing data are typically client specific. Thus, you
should always use the implicit the client handling feature of the CDS table
function.

8.3 AMDP Functions for AMDP Methods

If AMDP functions are only to be used in SQLScript source code by other
AMDP methods, defining an associated CDS table function is not necessary.
The definition and implementation of an AMDP function for AMDP meth-
ods differs in the following aspects:

® The AMDP method can be a static method or an instance method. There-
fore, the associated AMDP classes don’t have to be static.

® The method can also be declared in the private or protected visibility
area.

® The parameters of the method are defined when the method is defined.

® The addition FOR TABLE FUNCTION in the method definition is omitted.

8.3.1 AMDP Table Functions

AMDP table functions have been available in ABAP since SAP NetWeaver
7.40. They are defined with a fully typed, table-like RETURNING parameter. In
the implementation, the result table must then be returned with the RETURN
<table expression> statement.

307

8 SQLScript in ABAP Programs

8.3 AMDP Functions for AMDP Methods

AMDP functions Listing 8.15 contains an example using an AMDP table function in a differ-
indifferent ent AMDP method. The direct call of the method GET COUNTRY TEXT in an
AMDP methods s A p method of the class ZCL_AMDP_FUNC would not be possible.

CLASS zcl amdp func DEFINITION PUBLIC.

PUBLIC SECTION.
TYPES: BEGIN OF ty s country,
mandt TYPE mandt,
country TYPE landl,
text TYPE landx50,
END OF ty s country.
TYPES ty t country TYPE STANDARD TABLE OF ty s country
WITH DEFAULT KEY.

INTERFACES if amdp marker hdb.
METHODS test amdp table function
IMPORTING VALUE(iv_langu) TYPE langu
VALUE(iv_mandt) TYPE mandt
EXPORTING VALUE(et country) TYPE ty t country.

PRIVATE SECTION.
METHODS get_country_text
IMPORTING VALUE(iv_langu) TYPE langu
VALUE(iv_mandt) TYPE mandt
RETURNING VALUE(rt_country) TYPE ty t_country.
ENDCLASS.

CLASS zcl amdp func IMPLEMENTATION.

METHOD test amdp table function BY DATABASE PROCEDURE
FOR HDB LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING zcl amdp func=>get country text.
et country = select *
from "ZCL_AMDP_FUNC=>GET_COUNTRY TEXT"
(iv langu => :iv langu,
iv mandt => :iv mandt);
ENDMETHOD.

METHOD get country text BY DATABASE FUNCTION
FOR HDB LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY
USING t005t.

308

RETURN SELECT mandt,
landl AS country,
landx50 AS text
FROM t005t
WHERE spras = :iv_langu
AND mandt = :iv_mandt;

ENDMETHOD.

ENDCLASS.

Listing 8.15 Example of Using an AMDP Table Function in a Different AMDP
Method

8.3.2 Scalar AMDP Functions

With SAP_BASIS component release 753, scalar functions can also be imple-
mented in the AMDP framework. In the definition, these functions differ
only in the scalar return type of the function. In the implementation, the
result is then not returned with the RETURN statement, but the return
parameter is simply assigned.

We explored the structure of an AMDP function in connection with CDS
table functions earlier in Listing 8.9. For scalar AMDP functions, you can
also specify the DETERMINISTIC option after OPTIONS if the same output is
always generated for the same input. This step allows the results of the sca-
lar function to be buffered from the database.

Listing 8.16 shows an example of a scalar function that cleans up values for
InfoObjects that are not allowed in an SAP BW system. Note that, although
this function finds and replaces most characters disallowed in SAP BW sys-
tems, other characters may cause problems.

CLASS zjb bw tools amdp DEFINITION
PUBLIC
FINAL
CREATE PUBLIC .

PUBLIC SECTION.

INTERFACES if amdp marker hdb.

METHODS replace unallowed characters
IMPORTING VALUE(iv_input) TYPE rschavl6e0
RETURNING VALUE(rv output) TYPE rschavléO.

ENDCLASS.

CLASS zjb bw tools amdp IMPLEMENTATION.

309

8 SQLScript in ABAP Programs

[»]

Alternative
techniques

METHOD replace unallowed characters BY DATABASE FUNCTION
FOR HDB LANGUAGE SQLSCRIPT
OPTIONS READ-ONLY.

rv_output = CASE WHEN LEFT(:iv input, 1) = 'I"
THEN replace(iv_input ,'!" , '$")
WHEN :iv_input = '#'
THEN "'
ELSE :iv_input
END;

rv_output = replace regexpr('[[:cntrl:]]"
IN :rv_output WITH '');
rv_output = replace(:rv_output, nchar('0130'), '');
ENDMETHOD.
ENDCLASS.

Listing 8.16 Example of a Scalar AMDP Function

Performance of Scalar Functions

In general, scalar functions run the risk of having a negative impact on per-
formance. With the function shown in Listing 8.16, you can easily clean up
dozens of fields in a transformation routine in the SAP BW system. How-
ever, large amounts of data can quickly lead to performance problems.
Before using any scalar function, therefore, you should test them with
realistic data volumes to determine whether the scalar function is suffi-
ciently fast.

8.4 Alternatives to AMDP for Calling SQLScript Code from
ABAP Programs

With the AMDP framework, calling SQLScript can be elegantly integrated
into the ABAP language and Open SQL. A person reading an ABAP program
may not initially recognize that AMDP objects are actually hidden behind a
method call or a presumed table.

However, with alternative techniques, you can execute SQLScript state-
ments from ABAP programs. These techniques may be necessary if second-
ary database connections will be used and can be helpful when executing
dynamic SQL code.

However, you can call SQLScript code from ABAP without using AMDPs in
several alternative ways:

310

85

Recommendations

® ABAP Database Connectivity (ADBC)
ADBC is a class-based framework for running Native SQL. Individual SQL
statements, database connections, and result sets are represented as
ABAP objects. ADBC can be regarded as a successor to the static embed-
ding of Native SQL using the EXEC SQL statement in ABAP code. In more
than name only, the ADBC framework is reminiscent of the similarly
structured Java Database Connectivity (JDBC) from the Java world.

m EXEC SQL <Native SQL> ENDEXEC
This statement enables you to embed Native SQL statically into the ABAP
source code. However, SAP no longer recommends this approach.
Instead, ADBC is referenced for the use of Native SQL.

® CALL DATABASE PROCEDURE
This ABAP statement allows you to call any database procedure on SAP
HANA via an associated proxy object. However, SAP recommends using
AMDPs instead, as long as the procedure will be called via the primary
database connection.

8.5 Recommendations

In this chapter, you learned some ways to directly access the objects of an
SAP HANA database in your programs. Even if trying out these new tech-
niques is tempting, let’s pause a moment to review some final consider-
ations:

® If possible, you should continue to use Open SQL, as long as no signifi-
cant performance improvements are foreseeable. The ABAP language
has been extended in recent releases to include powerful functions, such
as the use of expressions and the option of combining multiple queries
via UNION. More complex queries can also be mapped using CDS views.

®m However, if, for performance reasons or other considerations, executing
SQLScript code directly from ABAP programs still seems necessary, the
techniques of the AMDP framework on the SAP HANA database are the
weapon of choice for executing static SQLScript code.

® If you need dynamic SQLScript code, ADBC is the right technique. How-
ever, dynamic SQL code is always problematic. On one hand, error analy-
sis is often more difficult, and on the other hand, you must guard against
security gaps and vulnerability to SQL injection attacks.

® [fyou're working with secondary database connections, you should con-
sider using a CALL DATABASE PROCEDURE statement. Further, the autono-
mous transactions we discussed in Chapter 6, Section 6.6.2, can also
solve some classic use cases for secondary database connections more
elegantly.

31

8 SQLScriptin ABAP Programs

Regardless of the technology used, the clean encapsulation of the database
access is always recommended in both AMDP and Open SQL. Only if you
bundle and encapsulate the database access in separate classes will you
have the necessary flexibility to carry out optimizations later without fear
of negative side effects.

8.6 Summary

Code execution on the SAP HANA database system can be extremely fast,
which you can effectively take advantage of with the concepts learned in
this chapter. With the AMDP framework, you have in your hands a tool that
allows you to easily create and call database procedures and functions. In
the next chapter, you'll learn how this framework is used by SAP BW to
implement transformation routines in SQLScript.

312

Contents

Introduction 15
1 SAPHANA 21
1.1 WhatIs SAP HANA? 22
1.11 SAPHANA: A Fast SQL Database 22
112 SAPHANA: An Application Server 26
113 SAPHANA: A Collection of Tools 27
1.2 System Architecture 29
121 SAP HANA Server Components 29
1.2.2 Databases and Tenants 30
1.3 Organizing Database Objects 32
131 Database Schemas 32
13.2 Database Catalogs 34
1.3.3 Contentand Repositories 35
1.4 Development Environments 36
141 SAP HANA Studio 37
1.42 SAP HANA Database Explorer 40
1.5 The SQL Console 44
1.6 Summary 47
2 Getting Started with SQLScript 49
2.1 sQL versus SQLScript 49
2.2 Basic Language Elements 53
221 Statements 53
222 Whitespace 54
223 Comments 54
224 literals 56
2.25 Identifiers 58
2.2.6 Accessto Local Variables and Parameters ... 59
2.2.7 System Variables 60
2.2.8 Reserved Words 61
2.29 Operators 61
2.2.10 Expressions 63

Contents

Contents

2211 PrediCatesrcrencceiisneseeeseesesaeesesssesesssesssssessesaseeens 65
2.2.12 Data TYPES . 66
2.213 The NULLValue ... 67
2214 The DUMMY TabIE ...icieceieeieneceeceieessesseecsasessenecnes 69
2.3 Modularization and Logical Containers 70
231 BlOCKS e, 72
232 Procedures 75
2.3.3 User-Defined Functions 83
234 User-Defined Librariescccc...... 87
2.4 Sample Program 89
241 RequUIremMents ..., 89
242 Requirements ANAlYSis ... encceneemessecsiseeseeenes 90
243 IMPIemMentation ... 91
244 Testing the Implementation 97
2.5 Summary 100
3 Declarative Programming in SQLScript 101
3.1 Table Variables 102
3.1.1 Declaring Table Variables 102
3.1.2 Using Table Variables 103
3.2 SELECT Statements 104
3.2.1 SELECT Clauses 105
3.2.2 Field List of SELECT Clausesccccuece.. 105
3.23 FROM Clauses 119
324 JOINS s 122
3.2.5 WHERE CoONditioNns ...occcoomeceeecerereeveireeciseneesecenneennes 130
326 WITH CIQUSES ...ouoemeeeieeciereeieceeeseeeseasessssesesessssessaseesaesnsanes 137
3.2.7 GROUPBY Clausesmwuene. 139
3.2.8 HAVING Clausesmenecuenn. 141
3.29 ORDERBY Clauses 142
3.210 SetTheory ... 143
3.2.11 Subqueries 145
3.212 AlIaS NAMES ... ceeeeccesaesessssesssssessesssesessseseseanas 146
3.3 Other Operators 148
3.3.1 Calculation Engine Plan Operators 148
3.3.2 MAP_MERGE Operatorcerneeneenn. 149
3.3.3 MAP_REDUCE Operator 150
3.4 Summary 151
8

4 Data Types and Their Processing 153

4.1 Character Strings 153

411 Data Types for Character Strings 154

412 CONVEISIONS .o ssnsssnnnes 157

4.1.3 Character String Functionsc.cccccoveceneees 157

414 SQLSCRIPT_STRING Librarycmecsscceesseseenns 171

4.2 Date and Time 176

421 DatelInformation 176

422 Time Information 181

423 Combined Time and Date Informationccovevonecunnecne. 182

424 Processing Time and Date Values 182

425 Examples of Processing Time Valuesncnnennes 187

4.3 Numerical Data 189

431 Basic Arithmetic Operationscoccnnecuune. 191

432 Square Roots and EXPONENTSouccveereeceerseenmereeecrinennes 191

433 Logarithmsccnncenn. 192

4.3.4 Roundingor Trimming 192

4.3.5 Trigonometry 194

43.6 RANAOM NUMDETS ..oveeicrieeineeineciineeiseceesesssseessesessesssenees 194

437 Sign 194

438 Quantities and AMOUNTScocccvvcmecemnrenecereceinecereceeeerssennes 195

4.4 Binary Data Types 200
441 Conversion between Binary Data, Hexadecimal Data,

and Character STringsnecennerenne. 201

442 BitSand BYLES ... sesessee s ssaennes 202

4.5 Conversions between Data Types 204

4.6 Summary 205

5 Write Access to the Database 207

5.1 INSERT 208

51.1 Individual Data RECOrdScemcrnccrnecrieerenecrineeninees 208

5.1.2 Inserting Multiple Records Simultaneously ... 209

5.2 UPDATE 211

521 Simple UPDATE Statement 211

5.2.2 UPDATE Statement with Reference to Other Tables 212

Contents

Contents

5.3 UPSERT or REPLACE 213
5.3.1 Inserting or Updating Individual Data Records 213
5.3.2 Inserting or Updating Multiple Data Recordscccuucuuuueee 214
5.4 MERGEINTO 214
5.5 DELETE 217
5.6 TRUNCATE TABLE 217
5.7 Summary 217
6 Imperative Programming 219
6.1 Variables 219
6.1.1 Local Scalar Variablesmcencennecneciseceiennes 219
6.1.2 Local Table Variables 224
6.1.3 Session Variables 234
6.1.4 Temporary TabIES ... crecenceiecrseesiseesesecsesseeees 235
6.2 Flow Control Using IF and ELSE 236
6.3 Loops 239
6.3.1 FORLOOP ooerieemcceetmcceeiieseesecesiseseeasessssaseesssssesesssessssssessesssecees 239
6.3.2 WHILE LOOP ..o 240
6.3.3 Controlling Loop Passesccmeerneruene. 241
6.3.4 Exercise: Greatest COmmon DiViSOrceenecnccreceencnnne 242
6.4 Cursors 243
6.4.1 FOR Loop via a Cursor ... 243
6.4.2 Open, Read, and Close Explicitly .. 244
6.4.3 Updateable CUISOrS ... crnecneceseesnecsieesssseseenecees 246
6.5 Arrays 246
6.51 Generating an Arraycncrncennsennes 247
6.5.2 ACCeSSING The Arraycmecenernecnecerecesesiesessasscssanennes 247
6.5.3 Arrays as Local Variables ... 248
6.5.4 Splitting and Concatenating Arraysc.ccenecenneenns 249
6.5.5 Arrays and Table Columns ... 250
6.5.6 Bubble Sort Exercise 251
6.6 Transaction Control 253
6.6.1 Transactions 253
6.6.2 Autonomous Transactionsceccecereneenecmeninne 254
6.7 Executing Dynamic SQL 255
6.7.1 Parameters of Dynamic SQL 257
6.7.2 Input Parameters 258

10

6.8 Error Handling 260

6.8.1 What Are Exceptions? 26l

6.8.2 Triggering EXCeplions ... vcenecnereneeneeserisecneessenene 262

6.8.3 Catching EXCEPLIONS ... sisenees 262

6.9 Summary 266
7 Creating, Deleting, and Editing

Database Objects 267

7.1 Tables 268

7.11 Creating Database TabIescmernecrnscernerinecsisennes 268

7.1.2 Changing Database Tables w272

7.1.3 Deleting Database Tablesccomeronecrnncenerrrecrincnnes 273

7.2 Table Types 273

7.3 Views 274

7.4 Sequences 276

741 Increment ... 277

7.4.2 Limits 277

7.43 Behavior When Reaching the Limit 277

744 Resetting the SEQUENCE ... 278

7.4.5 Changing and Deleting a SEQUENCEcoeveemevenecereecererenecens 278

7.5 Triggers 278

7.51 Parameters ..., 280

7.5.2 PerRow or Per Statement 281

7.6 Summary 281

8 SQLScript in ABAP Programs 283

8.1 AMDP Procedures 283

811 Introduction t0 AMDPccoiimcremnerceereecemeseseesaeceenaenens 284

8.1.2 Creating AMDP ProCEAUIEScooccneeureerieerirecriseeriseeseeseenneees 287

8.1.3 Generated Objects of an AMDP Methodccoccccomeviuonccs 290

8.14 Lifecycle of the Generated Objects ... 294

8.1.5 Two-Track Development 294

8.1.6 Using AMDP Procedures in Other AMDP Procedures 297

8.2 (DS Table Functions 300

821 Creatinga CDS Table Function 300

n

Contents

Contents

8.2.2 Generated Objects of a CDS Table Function ... 305
8.2.3 Implicit Client Handling of CDS Table Functions 306
8.3 AMDP Functions for AMDP Methods 307
83.1 AMDP Table Functions 307
8.3.2 Scalar AMDP FUNCLIONS ..coveeceeeeireienecimeceieeisessseesssesesnecnes 309
8.4 Alternatives to AMDP for Calling SQLScript Code from
ABAP Programs 310
8.5 Recommendations 311
8.6 Summary 312
9 SQLScript in SAP Business Warehouse 313
9.1 Executing the Data Transfer Process in ABAP vs. SAP HANA 314
9.2 Transformation Routines as AMDP 318
9.21 Creating Transformation Routines in Eclipsecccccccccc. 318
9.2.2 Creating Transformation Routines in SAP GUI 319
9.3 Successive Transformations and Mixed Execution 320
9.4 Generated AMDP Classes 321
9.41 Signature of AMDP Methods 323
9.4.2 Assigning the Output Tables 325
9.43 Access to Data from Other Data Models 325
9.5 Individual Routines 328
9.5 1 STArt ROUTINES ..ot eeesiesssesssesone 329
9.5.2 ENA ROULINES .ot 329
9.53 Expert Routinesncrnecnnn. 330
9.5.4 Field ROULINES ..couiicrccricciecriceieceeeceiseieecsaecsisessseseerecnes 332
9.6 Error Processing and Error Stack 333
9.6.1 Processing Flow in the Data Transfer Processccc.cccuecce. 335
9.6.2 Example: Recognizing Incorrect Data in Table OUTTAB ... 336
9.6.3 Example: Finding Invalid Field Contents with Regular
EXPressions.c.ceeneeneerecresereecenns 337
9.7 Summary 337

12

10 Clean SQLScript Code 339
10.1 Code Readability 339
10.1.1 Formatting the Code ..., 340
10.1.2 Mnemonic Namescovenevenne. 341
10.1.3 Granularity of Procedures and Functions ... 342
10.1.4 Comments ... 345
10.1.5 Decomposing Complex Queries 347
10.1.6 Readable SQLScript Statements 351
10.2 Performance Recommendations 352
10.2.1 Reducing Data VOIUMESccovcreeeeerinecireeriseeiseerisseninnees 353
10.2.2 Avoid Switching between Row and Column Engines 353
10.2.3 Declarative QUErIescccocomrrernecrernserienennenens 353
10.2.4 Scalar Functions ... 353
10.3 Summary 354
11 Tests, Errors, and Performance Analysis 355
11.1 Testing SQLScript Code 356
1111 SQLCONSOIE ... cessseeseseeesesasesesssesensanens 356
11.1.2 Testing ABAP-Managed Database Procedure Methods ... 358
11.1.3 SQLSCRIPT_LOGGING LIbraryccncronccisecenens 359
11.1.4 End-User Test Framework in SQLSCriptcccoovvonereeuneccenens 361
11.2 Debugger for SQLScript 365
11.2.1 SQLScript Debugger in SAP HANA Studioccccconeeeeeenerrueenne. 366
11.2.2 ABAP-Managed Database Procedure Debugger in
the ABAP Development TOOISc.recrnecrinecrnecrinecrinens 369
11.2.3 Debugging in the SAP HANA Database Explorer 372
11.3 Performance Analysis 374
11.3.1 Runtime Measurement 374
11.3.2 Execution Plan ... 375
11.3.3 Plan Visualizerrnncccennns 377
11.3.4 SQL Analyzer of the SAP HANA Database Explorer 384
11.3.5 SQLScript Code ANAIYZErcvecvercreecrirecicciiseeeiseciasecninens 386
11.4 Summary 390
13

Contents

Appendices 391
A Data Model for Task Management 393
B List of Abbreviations 397
C The Author 399
Index 401

14

Index

A Anonymous blocks ... 70,102
ANSTSQL standardcoooccceecvvenrcvvveeninnns 50
ABAP 67 APPLY_FILTER 259
date format 180 Arithmetic Operators. ... 61
unit test 297 Array
ABAP Database Connectivity access
(ABDC) 311 as local variable
ABAP development tools 36,38 concatenate and split
ABAP Dictionary 300 generate
ABAP_ALPHANUM() ooovvvvccccecccnccencrerennns 157 table and
ABAP_LOWER() FIT TN 212720 (Ve €| R ___— 250-251
ABAP_UPPER() 159 ASBEGIN 80, 84
ABAP-managed database procedure ASCII 154,170
(AMDP) 21,55, 70, 284, 296 character set 53
ABAP 296 ASIN() 194
classes 321 Assigning an output table 325
2 (21 1T o[- GO 369,372 Asterisk 107
field routine 332 ATAN() 194
framework 285 ATAN2() 194
function ... 284,300,307 Authorization control ... 33
implementing a procedure ... 289 Automatic number assignment 270
in ABDP procedure ... Autonomous transaction ... 254
method AVG 113
objects
Procedureeeeereeennnne B
PROCEDURE method
recommendations ... Basic arithmetic operations 191
retroactive implementation BEGIN
routines AUTONOMOUS TRANSACTION ... 254
testing the method block 72
tools Best practices 339
ABS() BETWEEN 132
ACOS() Binary data 202
ADD_*() Binary data type ... 200

ADD_MONTHS_LAST()
ADD_MONTHS()
ADD_WORKDAYS()
Advanced DataStore objects
(aDSOs)
Aggregate expression ...
Aggregate functions
Alias
Alias name
Alignment
Alpha conversion ...
ALPHANUM
ALTER TABLE
Amount

.. 190

Binary floating-point number .
201

BINTOHEX()
BINTONHEX() 201
BINTOSTR() 201
BITCOUNT() 204
BITSET() 202
BITUNSET/() 202
Blank characters 54
Blank line 340
BLOB 200
Blocks 72
anonymous 74
comment 55
BREAK statement .. 241

401

Index

Breakpoint 370
Bring Your Own Language (BYOL) 26
Bubble sort algorithm ... 251
C

Calculation engine

Calculation engine functions

(CE functions)cceeeeevversrnnnes 148, 387
Calendar week 186
CALL 81
CALL DATABASE PROCEDURE 311
CARDINALITY() 246
CASCADE 273
CASE eXPIessionscoeennecrnneens 108

searched 109

simple 108
CAST() 204
CEIL() 193
CHANGING table parameters 298
CHAR()

Character Stringc.cenernecens
data type
function

literals

search within
Client capability
Client concept
Client handling
CLOB
COALESCE function ...
Code Analyzer

Code Inspector

Code optimization
Code pushdown

Code-to-data paradigm

Colon

Column alias

Column definition
Column engine

Column list

Column list UPSERTccoooeeveirrrierinne

Column name

Column sequence
Column store
Column update

Column-based storage

Commented out
Comments

Commercial rounding

COMMIT

CompositeProvider
Compression

402

CONCAT() 158
array 249
Concatenation 158
Constants 88
Constraint 269
CONTAINS 135
Content folder 35
CONTINUE 241
Control character ... 337
Conversion
data type 204
explicit 204
implicit 204
permissible 204
CONVERT_CURRENCY() oeeerveeverevmmeenee 198
CONVERT_UNIT() ooueveeeememmmeseeeeeessmssnnes 195
Core data services (CDS) ..coovveerrrvermrrrernnees 21
client 306
objects of a table function ... 305
table function 284,300-301, 303
view 300
Correlation nameccoocccomeceneces 107,352
COS() 194
COSH() 194
Cosine 194
COT() 194
COUNT 112-113
CPU load 24
CREATE FUNCTION ..ot 83
CREATE TABLE
CREATE TABLE AS
CREATE TABLE LIKE
Critical path
Cross-join
CUITENCY CONVETSIONovvvueureerciannreenees 198

CURRENT_DATE
CURRENT LINE NUMBER ..
CURRENT_OBJECT_NAME
CURRENT_OBJECT_SCHEMA
CURRENT_TIME
CURRENT TIMESTAMP ...
CURRENT_UTCDATE ...

CURRENT_UTCTIME
CURRENT_UTCTIMESTAMP ...
CYCLE parameter

D

Data control language (DCL)cccouweeeeen. 50
Data definition language (DDL) ... 50, 267
Data flow graph 101

Data manipulation language (DML) ... 50

Index

Data model Deviating fiscal year ... 187
data 394 Dictionary compression ... 23
example 393 DISTINCT 105
installation 395 DO BEGIN 74
table 393 Don't Repeat Yourself (DRY)
task management ... 393 principle 71

Data preview 358 DROP TABLE 273

Data provisioning server ... 30 DUMMY table 69

Data transfer intermediate storage ... 333 Dynamic SQLccccoovueereenvcrcernnencs 255,387

Data transfer process ... 315,320
execute 314 E
processing flow 335

Data types 66,153 Eclipse 37,318,380
composite 66 debugger 366
convert 157,204 installation 38
primitive 66 Empty date 177
scalar 66 EMPTY Parameter ...

Data volume 353 Empty result

Database END
catalog 34,273 aANONYMous bIOCR ...ccvveveerevrrvrssrissces
different systems oecceuneceens 295 block
objects 32,267 functions
schema 32 Endroutine
search 135 End-of-line commentooommmmemnenes
status 253 End-user test framework ...
write access 207 Engine

DATE 176 Equivalent join

Date formats 177 Error code

DATS 180 Error handlingccooeeerneeeveceeenes

DATS fields 180 EITOr PIrOCESSING ..ocvverrereerreerersessssssssssssss

DAYNAME() 187 Error stack

DAYOFYEAR() 187 ERRORTAB

Deadlock 255 Error-tolerant S€archeeeeeeeeee

Debug mode 372 ESCape eXPIreSSIONwerrerrereerressssssen

Debuggingcc...... 356,365-366,373 ESCAPE_DOUBLE_QUOTES ...ccccooesrrmrne 259
data preview 358 ESCAPE_SINGLE QUOTES . 259
external 368 Euclidean algorithm ... 242
in SAP HANA Studio vevverveseenn. 368 Evaluation sequence of operators ... 62
procedure 367 EXCEPT 145

Decimal floating-point number 190 Exceptions 261

Declarative programmingc........ 101 forwarding 265

DECLARE in procedures 264
CONDITION trigger 262
CURSOR EXEC 256

Decomposition EXEC SQL 311

DEFAULT DECLARE EXECUTE IMMEDIATE ... 257

DEFAULT parameter ... Execution plan ... 375, 378, 380, 386

DEFAULT SCHEMA EXISTS 133

DELETE EXISTS predicateceeennna. 236

Delta merge operation ... 25 Expert routine 330

Delta storage 25 EXPLAIN PLAN 376

DETERMINISTIC 84 Explanatory COmments ... 346

Development environments 36-37 Exponent 191

403

Index

Expressions 63,106 |
context 64
Extended store Server ..., 30 Identifiers
EXTRACT() 185 IF
IF statement
F IF_ AMDP_MARKER HDB
Imperative programming
FETCH INTO 244 Imperative statements
Field list 105-106 Implicit client handling
Field routine 332 Implicit date conversion
First in, first out (FIFO)ccoocovrverrrrrnens 143 IN

Fiscal year
Fixed-point number
Floating-point literal
Floating-point number ...

Inbound projection ...
Inclusive time
Increment
Index server

FLOOR() Index-based access ... 224-225
Flow control Infinite loop 241
FOR loop Initial value, variable ... 220
FORMAT functionocnnecenneens In-memory 23
Formatting INNEer joinvenccnennnns 114,124,144
Formatting strings ... Input parameter, dynamic SQL 258
FROM clause Input parameters ... 275
UPDATE INSERT 99, 208, 226
Full outer join Insert-only approach ... 24
Function call in the field list Integer 189
Functions Integer eXpression ... 225
Fuzzy search INTERSECT 144
Intersection 144
G Interval 132
INTO clause 220
Generation namespaces INTO clause EXECwcvvemnrcrvevniiinennes 257
Generic programming .. IS [NOT] NULL 135
Geodata IS_EMPTY 231
Global temporary table (GTT)c....... 235 IS _SQL_INJECTION_SAVE ... 259
Granularity ISCLOSED 245
Graph engine ISOWEEK() 186
Graph processingcoccenecerneenen:
Greatest common divisor ... J
GROUP BY clause
Grouping sets Join 122
condition 124
H type 123
Join engine 376
Hamming distance ... 169
HAMMING_DISTANCE() ..covvevvveeeveeeeennnnns 169 L
HAVING clause
Header comments LAG
Help procedures LANGUAGE
Hexadecimal representation 202 LANGUAGE SQLSCRIPT
HEXTOBIN() 201 LAST DAY(\uOO3cdate\>)
Hungarian notation ... 342 Lateral joins
LCASE()
404

Index

LEAD N
Left outer join
LEFT() Name server 29
LENGTHY() Naming 341
Lexical element Naming conventions ... 342
LIKE Native SQL 283
LIKE_REGEXPR NCHAR() 170
LIMIT NCLOB 157
Limit NDIVO() 191
Line break Nest eXpressionseerevsnns 114
Linear dimension ..., Nested CASE eXpressions ... 96
Linguistic search ... NEXT DAY(\u0O3cdate\>) ... 184
List of statementsccoecemeeereerrncernecns Node grouping 379
Literals Non-equivalent join ... 125
LN() Non-permitted characterscccce. 337
LOB NOT EXISTS 145
Local table variablec.ccomcnnerinecnen. NOT NULL 269
Local temporary table . NOT NULL DECLARE ... 220
Local variable NOTFOUND 245
LOCALTOUTC() 187 NOW() 183
LOCATE_REGEXPR() .ecovrivvrrrecrrns 163,165 NULL valueoooooervcce. 67-68, 269, 328
LOCATE() 165 in aggregate functions ... 114
LOG() 192 NULLS FIRST 142
Logarithm 192 NULLS LAST 142
Logging 254 NUMDET Of TOWS oovevvvvvvveeeemmmmsssssseesseeneees 231
Logical containerocnennn. 219 Numerical data 189
Logical operators 62 Numerical literal 56
Loop pass 241 NVARCHAR 154
Loops 233,239
LOWER() 159 0O
LPAD() 167
LTRIM() 168 OCCURRENCES REGEXPR() ... 163,166
OData 27
M OFFSET 105
OLAP engine 376
Map merge 149 ON 124
MapReduce method ... 150 OPEN CURSOR 244
Material nNUMDbDEToovereeeerreeenes 168 Open SQL 67,283
MAX 113 OpenUI5 27
MAXVALUE 277 Operator 61
MEMBER OF ... 134,248 Operator eXpressions ... 108
MEMBER_AT() 248 Operator list 382
MERGE INTO 214 OPTIONS READ-ONLY ...oovoveerrveerereeeennen. 289
MIN 113 ORDERBY 117,142
MINVALUE 277 ORDINALITY 250
U0 (IO N (CIUTI o) ¢ R —— 320 Orphaned AMDP Classes ... 319
MOD() 191 Outsourcing compleXity ... 343
MONTHNAME() oo 187 OUTTAB 325,336
Multicontainer database 31 Overlapping 223
Multitenant database containers
(MDCs) 31

405

Index

P Random numbers ... 194
Readability
Parameterization ... 90 READSSQLDATA ...
Parameters 120 RECORD
dynamic SQL 257 RECORD_COUNT ...veeicireeerrriinniseeen
example 90 Recursive calls
generic 78 Redundant comments ... 346
named 81 Regular expressions ... 161, 337
trigger 280 groups 163
view 275 Relational operators ... 62
Parentheses 62,351 REPLACE 213
PARTITION BY 117 REPLACE REGEXPR() eovrvereerrnnes 163, 166
Performance 352 REPLACE() 166
Performance analysis ... 355,374 Repository 35
Performance trace ... 383 Request 315
Personal schema 33 Requirements analysis ... 90
Phonetic code 169 Reserved words 61
Placeholders 131 RESIGNAL 265
Plan operator 375 RESTART 278
Plan Visualizer (PlanViz) 350,356,377 RESTRICT 273
call 377 Return values 95
views 380 RETURNS 84
POWER() 191 Reuse 71
Pragmas 362 Right outer join 126
Predicates 65,236 RIGHT() 160
Predictive analytics ... 28 ROLLBACK 217,253
Pretty printer 341 ROUND() 192
PRIMARY KEY 269 Rounding 192
Primary Key ...cooooeeeveeeeereeeennns 207,214,269 Row engine 376
Procedures 70,75 ROW STOre ... 23,270,353
call 80 ROWCOUNT 60, 245
create 75 ROWS clause 118
parameter list 76 RPAD() 167
properties 79 RTRIM() 168
Public schema 33 Runtime measurement 374
Public synonym 35 Runtime platform
Q S
Quantity 195 Sample program 89
Quantity conversion ... 195,197 SAP Adaptive Server Enterprise
QUARTER() 187 (SAP ASE) 50
Queries 104 SAP Business Application Studio ... 36,42
insert from 209 SAP Business Technology Platform
Query decomposition 347-348 (SAP BTP) 42
Query result, dynamic SQLcceerereen 257 SAP Business Warehouse (SAP BW) 59,
Question mark 82 313, 347
Quotation marks 58 query
transformation
R transformation routine371
SAP BW modeling tools ...
RAND SECURE() eovovvoseveeesssveerssssseeenes 194 SAP BW/4HANA
RAND() 194 transformation ...

406

Index

SAP Fiori apps 27
SAP HANA 21
database 22
deployment infrastructure ... 41
introduction 22
performance 317
perspectives 39
Server COMpPONENTSceeoveeseenenens 29
system architecture ... 29

system schema
SAP HANA automated predictive

library 28
SAP HANA database explorer 36,40,

384,389

debugger 372

user interface 43
SAP HANA deployment infrastructure

(HDI)

container 27

server 29
SAP HANA smart data integration 30
SAP HANA Studiocoevveervrrrrerrerrenes 36-37

database connNection ... 39

debugger 366
SAP HANA Web-Based Development

Workbench 36
SAP HANA XS 26, 29
SAP HANA XSA ..o 26, 29
SAP HANA, express editionc..... 29
SAP HANA, streaming analytics

option 30
SAP Landscape Transformation

schema 34
SAP NetWeaver schemacccoceerveenreneee 33
SAP Web IDE 36, 40
SAPUI5 27
Savepoint 23
Scalar AMDP 309
Scalar parametersceenecenns 324
Scalar queries 64, 66
Scalar session variablesccccoovuuen... 234
Scalar user-defined functions 86
Search 28
SEARCH 0perator ... 232
SEARCH table operator ... 230
SECONDDATE 182
SECURITY MODE functionsc...... 84
SELECT clause 105
SELECT INTO 221
SELECT query 104
SELECT statementccccooeeuveennee. 101, 104

UPSERT 214

Self-join 116,122
Semantic search 28
Semicolon 53
Separation of cONCerns ... 295
SEQUENCE ..., 270,276,278

change 278

delete 278

reset 278
Sequence of Operators ... 62
Sequences 267
SERIES_ GENERATE_DATEoccooooonern. 150
Session variables ... 234
SET clause 211
Set operations 143
SHINE demo 59
SHORTTEXT 156
Sign 194
SIGN() 194
SIGNAL 262
Simple notation 58
SIN() 194
Single container databaseccccoueee... 31
SINH() 194
Sinus 194
Size category 93
Sorted table variables ... 232
SOUNDEX() 169
Source code 389
Special characterscronnerenes 58
Special notation 58
Splitting Stringscccomeeeeoneecreennecrrinens 171
SQL 49

security 80
SQL Analyzer 384
SQL cONSOle e 43-44, 356

getting started 46

user interface 45
SQL Editor 45,47
SQL functions 102
SQL injection 259
SQL__PROCEDURE__SOURCE__

RECORD 324
SQL_ERROR_CODEccoummrrvrrrnnnne 60, 262
SQL_ERROR_MESSAGE ... 60, 262
SQLSCRIPT_LOGGING library . . 359
SQLSCRIPT STRING libraryccee 171
SQRT() 191
Square root 191
Start routine 329
Statement 53
Streaming ClUSteTcoovveeeeonnecerrreenenene 30

407

Index

String
operators 62
padding 167
replace variable ... 166
similarity 169
trimming 167
STRING_AGG 113
Structure COMMENtscooceevveneriennnns 346
Stub procedure
SUBARRAY()
SUDQUETY cvvveereierceeereceneonne
correlated
in field lists

SUBSTR_AFTER()
SUBSTR_BEFORE()
SUBSTR_REGEXPR()
SUBSTRING()
Subtracting sets ...

Successive transformations 320
SUM 112-113

System database 31

System variable 60

T

Table 268
alias 147
change 272
convert to Stringcccceonecennn. 174
copy 271
create With SQL .o 271
definition 268
delete 273
expressions 119
global temporary ... 293
local variable 224
PATAMELET ... 66, 292
tables used 383
temporary 270
type 269, 273

Table variables ... 66,102,210
declare 102
use 103

Tabs 54

TAN() 194

TANH() 194

Task management

Temporary table

Tenant

Tenant database

Test cases

Test data

408

Test library 364
modularization ..., 363
Test procedures 363
Test-driven development ... 356
Testing 94,97,355-356
TEXT 157
Text mining 28
TIME 176,181
Time information ... 181
Time zone 187
Timeline 382
TIMESTAMP 182
TO_DATE() functionccveemmmsseeeeee 178
TO_NVARCHAR ... 157,178
TO_TIME() 181
TO_VARCHAR 178
TO_VARCHAR() ooovreeceveereerssecccrrennns 157,181
TOP 105
Transaction context .. 217
Transaction control .. 253
Transaction log 23
Transaction RSAL ... 319
Transformation 314
0N SAP HANA ..., 316
routine 318-319
Transport 322
Triggers 267,278
limit reproduction ... 280
per row 281
per statementoneiieceinenns 281
Trigonometry 194
TRIM_ARRAY() 249
TRIM() 168
Troubleshooting ... 355
TRUNCATE TABLE 217
U
UCASE() 159
UDF_SORT 2 238
UDF_SORT 3 238
UMINUS() 194
Unicode 154
UNICODE() 170
Uniform terms 342
UNION 143
UNIQUE 269
UNNEST() 250
UPDATE 211
reference to other tables .. 212
table operator .. 228
UPPER() 159
UPSERT 213

Index

User-defined functions 43,83,344 VERTICAL UNION ...ccccovveucmmmmccrrverennsnnens 332
call and use 85 274
create 83 274
implementation ... 223
properties
sample application ...
sample program flow
scalar 373

User-defined libraries 186

User-defined table types 186

USING WHEN MATCHED ... 216
view WHERE clause 127
WADP FOULINEG .o 217

UTC 214

UTCTOLOCAL) WHERE conditionc..coooeeeeesieenees 130

130

VvV with multiple values ... 130

240

Value 54
constant 111 Window functions 115-116,118

VARBINARY 200 WITH clauseccoovceeeeverrerreennnnnnes 137-138

VARCHAR 154 WITH ENCRYPTIONcoooevrrreererrrreenens 80

Variables 219 WITH ORDINALITY .ooveeeeeeeeeeeieieens 250
local scalar 219 WITH PRIMARY KEYoooorerreereereerae 213
scalar 111
unnecessary 387
visibility 223

409

=7 PRESS

First-hand knowledge.

® Rheinwerk

Publishing

E LiErEres
e L
LIC VARIABLE: CHe &=

Learn SQLScript syntax and run your first routine
in the SQL

Read and w the SAP HANA database

AP, SAP BW/4HANA, and
SAP BW powered by SAP HANA

Use SQLScr

J6rg Brandeis & Rheinwerk
Publishing

Jorg Brandeis

SQLScript for SAP HANA

387 pages, 2nd, updated and revised edition 2021, $69.95
ISBN 978-1-4932-2139-4

E www.sap-press.com/5336

P Jorg Brandeis is the managing director of Brandeis Consulting
" GmbH in Mannheim, which offers training and consulting for

! SAP BW/4HANA, SAP HANA and SQLScript. Until mid-2015, Mr.
"‘ Brandeis worked as head of development at zetVisions AG in
Heidelberg, where he was responsible for the development and
architecture of the SAP NetWeaver-based products zetVisions CIM and SPoT
In this role, he worked extensively with agile development methods and clean
code.

We hope you have enjoyed this reading sample. You may recommend
or pass it on to others, but only in its entirety, including all pages. This
reading sample and all its parts are protected by copyright law. All usa-
ge and exploitation rights are reserved by the author and the publisher.

https://www.sap-press.com/sqlscript-for-sap-hana_5336/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2139

