=7 PRESS

SANJjnNng O3 O ANV AWV

First-hand knowledge.

ABAP’ to the Future

Discover the latest and greatest features in the ABAP universe

Learn about the ABAP RESTful application programming model,
core data services, abapGit, SAPUIS, and more

Explore new development environments and test frameworks

Paul Hardy c Rheinwerk
Publishing

® Rheinwerk

Publishing

Reading Sample

This sample chapter walks through the new language features introduced in
ABAP 7.4 and above. These new features are divided into the following cat-
egories: creating data, string processing, calling functions, conditional logic,
internal tables, object-oriented (OO) programming, and search helps (plus
one final catch-all category for topics that don’t fit into any of the previous
ones). For each new features, examples are provided.

“New Language Features in ABAP”

Contents

% Index

9 The Authors

Paul Hardy

ABAP to the Future

877 pages | 11/2021 | $89.95 | ISBN 978-1-4932-2156-1
¥ www.sap-press.com/5360

http://www.sap-press.com/5360?utm_source=AWS&utm_medium=referral&utm_campaign=Browse+the+Book&utm_content=2156

Chapter3
New Language Features in ABAP

“It’s a beautiful thing, the destruction of words. Of course the great
wastage is in the verbs and adjectives, but there are hundreds of nouns
that can be got rid of as well.”

—George Orwell, 1984

New features, new goodies . .. could this be described as a programmer’s idea of heaven?
In the early 80s, when I was still a teenager, my parents bought me a BBC Micro-
computer to replace my ZX81. Even then, my primary interest was programming, not
playing games, and what I liked most about my new toy was the broad range of com-
mands that were then available to me in the BBC’s version of BASIC (e.g., constructs
such as REPEAT UNTIL). Even now, many years later, [feel exactly the same when some-
thing new and exciting is added to the ABAP language.

As time has gone by, more commands and constructs have been added to ABAP and
(until the advent of SAP BTP, ABAP environment) nothing has been taken away, to
ensure backward compatibility—and the rate of change seems to be accelerating vio-
lently. A fair number of changes were made as a result of the introduction of SAP
NetWeaver 7.02, but this is nothing compared to the cascade of changes that came with
version 7.4 and continued in versions 7.5 and beyond. This proves beyond a doubt that
ABAP is not a dead language—which was a fear of many people in 2001, when there was
talk (from the very top of SAP) about replacing ABAP with Java.

The quote at the beginning of the chapter, from George Orwell’s novel 1984, is about the
destruction of words. The character working on the Newspeak language says to the
main character, Winston Smith, that the ruling party is hell-bent on destroying exist-
ing words, as opposed to creating new ones. The idea that began with ABAP 7.4 is, in
some ways, the same: many of the 7.4 changes allow you to achieve the exact same
tasks as before, but with half the code or less. For example, in Newspeak, “that was won-
derful, fantastic, the best thing ever” becomes “++good.” In ABAP, CONCATANATE this that
INTO the other SEPARATED BY ' ' becomes the other = this &% ' ' && that.

Of course, it’s not all about destroying words; releases 7.4 and up add a lot of brand-new
functionality as well. This chapter will focus on the large number of new features that
have been introduced into ABAP in the latest releases. These features are divided into
the following categories, based on their general area of functionality: creating data, string
processing, calling functions, conditional logic, internal tables, object-oriented (OO)

3 New Language Features in ABAP

programming, and search helps (plus one final catch-all category for topics that don’t
fit into any of the previous ones).

ABAP Versions

In the same way that George Orwell’s characters were trying to get rid of words, SAP is
increasing the number—at least when it comes to having multiple names for the latest
ABAP version. This started with ABAP 7.53, which was also known as 1809 (as it was
released in September 2018).

The idea was that thereafter a new version of ABAP would be released on average
every three months (which has been the case)—so, 1812, 1903, 1906 and so on. At time
of writing, the latest version is 2108.

You get two types of periodic announcements of new ABAP versions, both with very
similar naming conventions:

= Announcements concerning SAP BTP, ABAP environment (ABAP in the cloud), which
come out quarterly and have names like 2012 (for December 2020)

= Announcements concerning the ABAP platform for SAP S/4HANA (ABAP on-prem-
ise), which come out annually and which used to be named 1909 after the year and
month of release, but now have names like 2020 (meaning it was released at the
end of 2020)

Each SAP S/4HANA on-premise ABAP version also has an internal SAP number like 7.53
(1809), or 7.54 (1909), or 7.55 (2020). In SAP presentations, the two numbers are used
interchangeably—often on successive slides.

Version 7.53/ABAP 1809 strips away the last vestiges of platform-independence. That
version of ABAP only works with an SAP HANA database, which in turn only works with
a Linux operating system.

If you are in an SAP BTP, ABAP environment system, to see what version you're on, in
ADT click the project on the left-hand side that represents the cloud system, then at the
bottom-right-hand side select the Properties tab. You'll see something like Figure 3.1.

System info

Database:

Operating System: Linux, Yersion: 5.4.0-77-

rmation for application server GxaOb2ald_

HDB, Release: 2.00.055.0, Mame: HO0/00, Server: cacacd3d-e543 f29-2990 54, Schema: SAPABAP, Library: SOLDBC 2.08.022.16271352674

generic

Server: Machine Type: x86_64, SAP System ID: 390, IP Address: 10,11.42,13, Mode Mame: TaBdalad-c202-4979-9ah(-Gaalefh75feh, Unicade System: True
Kernel: Release: 785, Patch Level: 14, Compilation Date: Linux GRU SLES-12 x86_64 ¢c8.2.1 use-pr2 10820 Aug 21 2027 00:54:17, Kind: opt

Software Companent Release Support Package Support Package Level Description

/DMO/SAP 100 n'a 0000 generated software component

DWACORE TES n/a 0000 DATA Warehouse

SAP_BASIS TES SAPK-TESO3INSAPBASIS 0003 SAP Basis Component

SAP_CLOUD TEs SAPK-TES03INSAPCLOUD - 0003 SAP Cloud Component

Figure 3.1 Displaying SAP BTP ABAP Version

In this example, the ABAP release is both 7.85 and 2108 at once (they’re the same thing).

146

3.1 Declaring and Creating Variables

3.1 Declaring and Creating Variables

Recently, SAP jumped up onto the rooftops and shouted through a megaphone that
with ABAP 7.5 there’s a new data type, int8, which handles really big numbers (i.e., num-
bers that are 18 digits long, plus or minus). [presume that’s what’s meant by big data;
I had always wondered. Perhaps you need such big integers to record the number of
SAP product name changes per year.

Coming down from the roof, one of the main differences between ABAP and other
languages is that in ABAP we’ve been taught to declare all our variables at the start of
the program—for example, in TOP INCLUDE. Other languages declare them just before
they’re used, and such variables tend to be more local in scope—for example, within
a loop. Despite the official ABAP programming guidelines, many ABAP programmers
have taken to declaring variables just before they're used for the first time, for the
purposes of making the program more readable by humans and hence easier to
change.

The good news is that as time goes on, changes in the ABAP language make this unoffi-
cial practice more and more acceptable. This section will discuss several features that
contribute to this shift.

3.1.1 Omitting Data Type Declarations

One reason ABAP 7.4 has made it less important to declare variables at the start of your
routine or method is that the need for the majority of data declarations has melted
away. The compiler knows what data type it wants (it has to know to be able to perform
a syntax check), so why not let it decide the data type of your variable? In the examples
ahead, you'll see how letting the compiler decide the data type—instead of declaring it
yourself—can save you several lines of code. For example, here is a piece of code declar-
ing a data type:

DATA: monster instructions TYPE string.
monster instructions = 'Jump up and down and howl'.

Without the data type declaration, you can simplify this to just the following:

DATA(monster instructions) = "Jump up and down and howl'.

Similarly, the following piece of code also declares a data type:

DATA: number of monsters TYPE i.
number of monsters = LINES(monster table)

And again, you can simplify this:

DATA(number of monsters) = LINES(monster table).

147

3 New Language Features in ABAP

As you can see, this system has the potential to dramatically reduce the number of lines
in your programs. You'll see various examples of such inline declarations throughout
this chapter because they have applications in many different areas of ABAP program-
ming.

You Aren’t My Type

If you're creating a domain in ABAP versions 1909 and up, you'll see when using
help that there are now 37 different data types available, as opposed to the 31 that
were there previously. Six native SAP HANA data types have been added. Practically,
that means you can (for example) create a timestamp data element using built in-type
UTCLONG as opposed to having to use domain TZNTSTMPL.

3.1.2 Creating Objects Using NEW

In the Java programming language, the NEW command is used to create instances of
objects (they say that everything in Java is an object). For example, MonsterFred = NEW
(Monster) inJava creates an instance called Fred of the class Monster. In the same way
that the ABAP runtime environment has been shamelessly stealing features from
Eclipse, now the ABAP language is stealing keywords from Java—so you now have a NEW
command as well.

Previously, you'd use the following code:

DATA: monster TYPE REF TO zcl monster.

CREATE OBJECT monster EXPORTING name = 'FRED'.

Now, you’ll be able use just the following line:

DATA(monster2) = NEW zcl monster(name = 'FRED').

Asyou can see, this halves the number of lines of code you need. More importantly, the
debate about whether you declare the variables at the start of a routine (per the official
ABAP guidelines) or just before the variable (to aid humans who might be reading the

code) is no longer relevant. You have the type of the variable right in your face at the
instant the variable is created.

3.1.3 Filling Structures and Internal Tables while Creating Them Using VALUE

No doubt you're familiar with the following common statement:

DATA: monster name TYPE string VALUE 'FRED'.

In this statement, you create a variable and give it an initial value, which can then be
changed later. In the past, the ability to change initial values has only been available for

148

3.1 Declaring and Creating Variables

elementary data types. However, as of 7.4, the VALUE statement has come of age, and you
now can define the initial values for structures and internal tables.

Listing 3.1 contains a pre-7.4 example of querying a database. In this example, you cre-
ate a selection table to be used in a SQL query, but you're only interested in laboratories
in which monsters will be created. But because you can’t use the VALUE statement, you
have to fill up one or more work areas and then append them to the selection table.

DATA:
monster type range TYPE ztt bc coseltab,
monster type selection option LIKE LINE OF monster type range.

monster type selection option-field = 'EVILNESS'.

monster type selection option-option = 'EQ'.

monster type selection option-sign = 'I'.

monster type selection option-low = '"EVIL'."Evil Monster

APPEND monster type selection option TO monster type range.

monster type selection option-field = 'EVILNESS'.

monster type selection option-option = "EQ'.
monster type selection option-sign = 'I'.
monster type selection option-low = 'VERY'."Very Evil Monster

APPEND monster type selection option TO monster type range.

DATA(monster)
DATA(monster headers) =
monster->retrieve headers by attribute(monster type range).

NEW zcl 4 monster model().

Listing 3.1 Database Query without VALUE

However, as of 7.4, you can use the VALUE statement and thus achieve the same effect
with fewer lines of code (see Listing 3.2).

DATA(monster headers) =
NEW zcl 4 monster model()->retrieve headers by attribute(
VALUE ztt bc_coseltab(

(field = 'EVILNESS')

(option = "EQ')

(sign ="'I')

(low = "EVIL') "Evil Monster

(low = '"VERY')))."Very Evil Monster

Listing 3.2 Database Query with VALUE
You've avoided the need for an intermediate internal table (MONSTER TYPE RANGE) and

avoided the need to define a work area to build up the lines of that intermediate table,
and the result is code that shows what’s going on clearly.

149

3 New Language Features in ABAP

In general, you hard-code the values of lines of internal tables when building up test
data for unit tests, as shown in Listing 3.3.

mt_test configuration[] = VALUE m_tt configuration(

(variable name = 'Monster Model' count = 1 possible value = "BTNK')

(variable name = 'Monster Model' count = 2 possible value = 'KLKL')

(variable name = 'Monster Model' count = 3 possible value = 'ISDD')

(variable name = 'Evilness' count = 1 possible value = "EVIL')

(variable name = 'Evilness' count = 2 possible value = 'VERY')).

Listing 3.3 Using VALUE to Fill Multiple Lines of Internal Table

Listing 3.3 demonstrates this concept for an internal table, but you can also use this
construct to fill structures, and there are three other important points to note about
the VALUE keyword in that context:

m Iffilling an existing structure, as opposed to creating a new one, the data structure is
blanked out before being filled.

m Ifyou were formerly filling a structure with 100 lines of code, assigning a value to a
structure element one at a time, you had to skip over each line manually in the
debugger. If you fill them all at once with a VALUE statement, there’s only one line for
the debugger to skip over.

® When filling a structure with VALUE, you need one set of brackets at the start; when
filling a table, you need two sets of brackets because you need each row to be
enclosed in brackets.

3.1.4 Filling Internal Tables from Other Tables Using FOR

How well I remember starting to program when I was fourteen, with the good old ZX81.
The BASIC language I programmed in then had constructs like FOR x = 1 TO 10, which
meant you were going to loop 10 times, with the variable X increasing by one each time.
Well, the FOR command has now arrived in the ABAP world; let’s look at what it’s all
about.

You read about the VALUE statement in the last section; you can use it to fill an internal
table, as shown in Listing 3.4.

DATA(table of monsters) = VALUE z4tt monster header(
(name = 'JIMMY' monster number = 1)
(name = 'ROLF' monster number = 2)).

Listing 3.4 Fill Internal Table Using Hard Coding
That’s great as an example, but in real life you fill internal tables either from the data-

base or from other internal tables; almost never do you fill them with hard-coded val-
ues. Prior to 7.4, you could only fill one internal table from another table if the two

150

3.1 Declaring and Creating Variables

tables had identical column structures, and you had to add all the lines of one table to
another, as follows:

APPEND LINES OF green monsters TO all monsters.

Fortunately, thanks to the FOR command introduced in ABAP 7.4, you can now do this
in a much more elegant way: the tables can have different columns, and you can limit
what'’s transferred based upon conditional logic. Using the VALUE and FOR keywords, this
will look like Listing 3.5.

SELECT *
FROM z4t monster head
INTO TABLE @DATA(all monsters).

DATA(neurotic monsters) = VALUE z4tt monster header(
FOR monster details IN all monsters WHERE (sanity percentage < 20)
(name = monster details-name
monster number = monster details-monster number)).

Listing 3.5 Filling Internal Tables from Other Tables

3.1.5 Creating Short-Lived Variables Using LET

ABAP 7.4 also allows you to declare variables with short lifespans via the LET statement.
These variables only exist while creating data using constructor expressions. (A con-
structor expression is a mechanism to apply assorted logic when creating a variable,
such as an internal table. This is similar to the sort of logic you would find inside a con-
structor of an OO class, and VALUE is an example of a constructor expression.)

To illustrate the use of LET statements, say that you have a table of deadly weapons, and
you want to arm some monsters. You're not particularly concerned about which mon-
ster gets which weapon, so long as each monster gets one. Listing 3.6 shows some code
that creates some very short-lived local variables. The DATE = USER addition translates an
internal SAP date into the format in the user settings (e.g., MM/DD/YYYY).

SELECT *
FROM z4t monster head
INTO TABLE @DATA(all monsters).

DATA(iterator) = NEW lcl weapon iterator().

DO lines(all monsters[]) TIMES.
DATA(arming description) = CONV string(
LET weapon_name = iterator->get next weapon()
monster name = all monsters[sy-index]-name
date string

151

3 New Language Features in ABAP

|{ sy-datum } DATE = USER|
IN |[{ 'Monster'(018) } { monster name } { 'was issued a'(019) } | 8&
|{ weapon name } { 'on'(020) } { date string }|).
MESSACE arming description TYPE 'I'.
ENDDO.

Listing 3.6 Creating Short-Lived Variables

Note

In real life, you would store the description in some sort of internal table. However, the
focus here is on the LET statement.

In this example, the first variable gets the description of the next weapon in a list of
weapons via a functional method call. Then, you read a line of the internal table of
monsters—the syntax here may puzzle you, but it will be covered later in Section 3.5—
and finally you fill a string variable with the system date, formatted in a human-
friendly manner.

You can now use those variables you've just declared to fill up the result string. Thanks
tothe LET statement, after the statement is over those variables (weapon_name, etc.) don’t
exist any longer, as opposed to being accessible from anywhere inside the routine like
regular variables.

Field Symbols

You can also declare field symbols, as well as variables. The type of the variable or field
symbol is dynamically determined by looking at the value being passed into it.

3.1.6 Enumerations

As we know, certain variables can only have a certain range of values: a day variable can
only have values from 1 to 7, a Boolean variable can only be TRUE or FALSE, and a mon-
ster’s brain size can only be NORMAL, SMALL, or MICRO. In each case, any other value just
wouldn’t make sense.

How we handle this normally is by having the data element that represents the concept
point to a domain with a fixed set of values. Then UI technology like SAP GUI gives an
error message if the user tries to enter any other value.

Inside programs, though, we’re sunk. There’s nothing to stop you from putting a mean-
ingless value like P into a variable typed as ABAP_BOOL or putting 9 into an integer meant
to represent a day or putting BIG into a monster brain size variable.

Moreover, a variable might be so specific to your application that there’s no domain in
the DDIC, but you still want to limit the possible values the variable can hold at runtime.

152

3.1 Declaring and Creating Variables

In the past, you did this by declaring several constants with the possible values, but else-
where in the code nothing stopped values other than the constants being assigned to the
variable.

Other languages, like Java, have had the concept of enumerations to solve these sorts of
problems for years, and with release 7.51 this concept comes to the ABAP language as well.

Simply put, an enumeration is a place in your code where you list the possible values a
semantic concept (like monster brain size) can have. Listing 3.7 shows how to define an
enumeration; in essence, it's an extension of the existing TYPE construct.

TYPES: BEGIN OF ENUM monster brain size,
normal,
small,
micro,

END OF ENUM monster brain size.

DATA: brain size TYPE monster brain size.

Listing 3.7 Basic Enumeration

Normally, you declare the TYPE of a variable to be either an elementary type like an inte-
ger or a data element (with the underlying type derived from the associated domain).
In Listing 3.7, you type the variable based on the enumeration. In this case, the TYPE of
the variable will be an integer.

“Why an integer?” I hear you ask. Well, what’s happened under the hood is that three
constants have been declared:

® NORMAL = 0O
m SMALL =1
= MICRO = 2

Now if you try something like this:
brain size = 4
You'll get a syntax error—or indeed a runtime error (which you can catch with excep-

tion class CX_SY CONVERSION NO ENUM VALUE) if the source value is only determined at
runtime. Instead, programmers are forced to write something like the following:

brain size = normal.

This also forces the code to look more like plain English, so you're improving stability
and readability at the same time.

The spooky thing is that if you pass the constant into a text field like a string, it magi-
cally transforms from an integer like O to the text string NORMAL—that is, the name of
the constant.

153

3 New Language Features in ABAP

At this point, you might be saying that this example isn’t very realistic. You're correct:
monster brain size isn’t an integer, it’s a 10-character field. Of course it is; that goes
without saying.

An enumeration doesn’t have to be an integer. You can define it as a different sort of
data type, as in Listing 3.8, in which we wanted a 10-character field but ran into a syntax
error as soon as the field length was above eight characters. The reason for this is that,
as of yet, enumerations aren’t really like domains; you're not supposed to be interested
in the actual value of the constant an enumeration value represents, just its name.

TYPES:
brain size TYPE c LENGTH 8,
BEGIN OF ENUM monster brain size BASE TYPE brain size,
normal VALUE IS INITIAL,
small VALUE 'SMALL',
micro VALUE 'MICRO',
END OF ENUM monster brain size.

DATA(brain size) = NEW monster brain size(small).

Listing 3.8 Noninteger Enumeration

You might be asking why NORMAL has no value: it's because one of the values has to be
initial, so usually the default value gets that honor.

Now let’s take this to the next level (of code readability) and define the enumeration as
not a set of constants, but a structure of constants, as in Listing 3.9.

TYPES: BEGIN OF ENUM monster brain size
STRUCTURE brain sizes,
normal,
small,
micro,
END OF ENUM monster brain size
STRUCTURE brain sizes.

DATA(brain size) = brain sizes-small.

Listing 3.9 Enumeration with Structure

As mentioned, at the moment, domains and enumerations are two totally unrelated
things, despite both appearing to do the same job, but in the future we’re likely to get
automatic linking with actual DDIC domains.

We're also promised an even better sort of constant: one that gets its value dynamically
assigned at runtime but has an immutable value once created. If and when that hap-
pens, I'll dance around the room with joy.

154

3.2 String Processing

3.1.7 New Mathematical Operators

As mentioned earlier, after 7.52, the naming for ABAP releases changed, and they also
come out alot faster because of SAP BTP, ABAP environment. The release in September
2018 was called 1809, for example, and two months later 1811 was released.

The 1811 release “stole” a concept from other languages like Java called assignment oper-
ators. It’s designed to make the code more compact.

The following three statements all perform the exact same task; the last one is the new
construct:

ADD 3 TO number
number = number + 3
number += 3

This is a fine example of a new tool that makes the coding shorter but less readable.
Everyone would be able to guess what the first two lines of code above did, but you
would need specialized knowledge to know what += did.

You use the same sort of pattern for other mathematical operators; for example, to
divide a number by three, you use number /= 3.

3.2 String Processing

The English comedy trio The Goodies once sang:

String, string, string, string, everybody loves string,
String for your pants, string for your vest!
Everybody knows—string is best!

If you're anything like me, you may spend half your life calling the CONVERSION EXIT
ALPHA INPUT and CONVERSION EXIT ALPHA OUTPUT functions to add and remove leading
zeroes from document numbers such as delivery numbers. For example, you might
remove the zeroes when showing messages to the user, but then then add them back
before you read the database (see Listing 3.10).

DATA: monster number TYPE z4de monster number VALUE '0000000001'.

"Remove Leading Zeroes ready for Output to User
CALL FUNCTION 'CONVERSION EXIT ALPHA OUTPUT'
EXPORTING
input = monster number
IMPORTING
output = monster number.

message_container->add message text only(

155

3 New Language Features in ABAP

EXPORTING
iv_msg_type = /iwbep/if message container=>gcs message type-error
iv_msg text = |Monster No { monster number } | &8

|does not want to be deleted|).

"Add back leading zeroes in case you need to read database
CALL FUNCTION 'CONVERSION EXIT ALPHA INPUT'
EXPORTING
input = monster number
IMPORTING
output = monster number.

Listing 3.10 Removing and Adding Leading Zeroes by Function Call

In ABAP 7.4, this type of action can be taken in a more compact manner by using the
ALPHA formatting option, which does the exact same thing as the two function modules
used in Listing 3.10. To remove the leading zeroes in 7.4, you can write code such as that
in Listing 3.11.

DATA: monster number TYPE z4de monster number VALUE '0000000001'.

message _container->add message text only(
EXPORTING
iv_msg_type = /iwbep/if message container=>gcs message type-error
iv_msg text = |[Monster No { monster number ALPHA = OUT }
does not want to be deleted|).

Listing 3.11 Removing Leading Zeroes via Formatting Option

When using the method shown in Listing 3.11, the monster number variable is totally
unchanged. Only the output to the end user is affected, so you can read the database
straightaway if you so desire.

3.3 Calling Functions

You often have to jump through hoops to play around with the variables in your pro-
grams before you can call other methods or functions. Luckily for you, this only gets
easier over time. This section will discuss the new ABAP functionalities that make call-
ing functions much easier than it has been in the past.

3.3.1 Avoiding Type Mismatch Dumps when Calling Functions

It can drive you up the wall when you've declared a variable that you want to either
pass into or get back from a method of a function module and the variable type doesn’t

156

3.3 Calling Functions

match the expected parameter type. With a method, you get a syntax error; with a
function module, you get a short dump at runtime. To be safe, you have to keep jump-
ing in and out of the function module signature to see how the variables were typed.
This process is tedious, so it’s led to people creating custom patterns, in which you
enter a function module name, the signature is read, and then a whole list of variables
is declared with the same type as all the function parameters. Well, half of the problem
has now gone away, because if the sole purpose of a variable is to receive a value from
a method or function, then the variable can be declared inline and the type read from
the parameter definition.

To see this new functionality, look at Listing 3.12. This is an example of what most peo-
ple have always done: declare some local variables to be passed into a method, cross
your fingers, and hope you've declared the variable the same way as the input parame-
ter. If not, you get a syntax error.

DATA: changes to be made TYPE /bobf/t frw modification,
actual changes made TYPE REF TO /bobf/if tra change,
bottle of messages TYPE REF TO /bobf/if frw message.

DATA(bopf service manager) =
/bobf/cl tra serv mgr factory=>get service manager(
zif 4 monster c=>sc_bo key).

"Change Data in Memory

bopf service manager->modify(

EXPORTING it modification = changes to be made

IMPORTING eo_change = actual changes made
€0_message = bottle of messages).

Listing 3.12 Declaring Variables with (Hopefully) Same Types as Method Parameters

With ABAP 7.4, however, you can accomplish the same thing by declaring the variables
returned from the method not at the start of the routine but rather at the instant their
values are filled by the method, as shown in Listing 3.13.

DATA: changes to be made TYPE /bobf/t frw modification.
DATA(bopf service manager) =

/bobf/cl tra serv mgr factory=>get service manager(
zif 4 monster c=>sc_bo key).

"Change Data in Memory

bopf service manager->modify(
EXPORTING it modification = changes to be made

157

3 New Language Features in ABAP

IMPORTING eo_change
eo_message

DATA(actual changes made)
DATA(bottle of messages)).

Listing 3.13 Using Inline Declarations to Avoid Possible Type Mismatches

This latter approach has several advantages:

® There are fewer lines of code.

® You can’t possibly get a type mismatch error or dump.

m If you change the signature definition, then the result variable adapts itself accord-
ingly.

Therefore, this approach is more compact and hopefully easier to read (and thus main-
tain), safer, more resistant to change, and all in all less fragile.

This approach comes into its own when creating object instances using factory meth-
ods; the factory will return a different subclass of the base object depending on assorted
logic, but the calling program shouldn’t care. For example, the pre-7.4 code would look
as follows:

DATA: monster TYPE REF TO zcl green monster.
monster = zcl laboratory=>build new monster().

Post 7.4, the code would look as follows:

DATA(monster) = zcl laboratory=>build new monster().

Later in this book, you'll see that in frameworks such as Web Dynpro (Chapter 12) and
the Business Object Processing Framework (BOPF; Chapter 8), you're regularly creating
lots of objects with complicated data types. Not having to declare really complicated
variable types before the call to fill up such variables with values cleans up a lot of the
boilerplate code and allows you to concentrate on what’s really important.

3.3.2 Using Constructor Operators to Convert Strings

Often, one routine consists largely of a call to several smaller routines (such as FORM rou-
tines, function modules, and methods). The problem with this is that sometimes the
result of one routine has to have its type converted before it can be passed into another
routine (e.g.,, the period from a standard SAP ERP Financials function tends to be two
characters long, but if you want to pass that period into a controlling function, then it
needs to be three characters long).

Another even more common example is that often you have a variable that is a string,
or maybe NUMC4, and you want to pass that variable into a function that only accepts
input of a certain type (say, CHAR60). You can’t pass the variable directly; you have to
move it into a helper variable, as shown in Listing 3.14.

158

3.3 Calling Functions

DATA: helper TYPE c LENGTH 60,
castle number TYPE n LENGTH 4 VALUE '0001'.

helper = castle number.

"In the below the EXTENSION ID is CHAR60
DATA(message bottle) = CAST if amc_message producer pcp(
cl amc_channel manager=>create message producer(
i application id = 'ZAMC 4 MONSTERS'
i channel id = '/monsters’
i channel extension id = helper)).

Listing 3.14 Moving Variable into Helper Variable

In ABAP 7.4, however, this can be simplified by use of a specific type of constructor
operator, CONV, the job of which is to convert values from one type to another. In List-
ing 3.15, the CONV function reads the target data type from the IMPORTING parameter defi-
nition and then converts the string (or whatever) into the type the parameter is
expecting. Once again, this is shorter, safer, and more adaptive.

DATA: castle number TYPE n LENGTH 4 VALUE '0001'.

"In the below the EXTENSION ID is CHAR60
DATA(message bottle) = CAST if amc_message producer pcp(
cl amc_channel manager=>create message producer(
i application id = 'ZAMC 4 MONSTERS'
i channel id = '/monsters’
i channel extension id = CONV #(castle number))).

Listing 3.15 Converting String with Constructor Variable

3.3.3 Functions Expecting TYPE REF TO DATA

When you import parameters of functions or methods, a specific type of parameter is
usually required. But in some situations you don’t know the variable type until run-
time. In such cases, the only way to achieve what you want is to use dynamic pro-
gramming.

In cases in which you don’t know the exact data type until runtime, often the import-
ing parameter of the method is typed as TYPE REF TO DATA. This is what happens, for
example, when you call methods that build up a dynamic signature to pass into a
dynamically defined method. BOPF, which you will read about later in the book, uses
this mechanism all the time. You also may have used parameters that declared TYPE REF
TODATAwhen you needed to store an arbitrary number of values of different data types
in alog along with their descriptions.

159

3 New Language Features in ABAP

In pre-7.4 ABAP, you would do something along the lines of the code in Listing 3.16 to
satisfy the requirement of a method that expects to receive a parameter of the TYPE REF
TO DATA type.

DATA: bopf monster header records TYPE z4tt monster header,
header record reference TYPE REF TO data.

LOOP AT bopf monster header records INTO DATA(bopf monster header record).
"Before 7.4
CREATE DATA header record reference LIKE bopf monster header record.
GET REFERENCE OF bopf monster header record INTO header record reference.

"After 7.4
header record reference = REF #(bopf monster header record).

"IS DATA is type REF TO DATA

io modify->update(
iv_node = is ctx-node key
iv_key = bopf monster header record-key
is data = header record reference).

ENDLOOP.

Listing 3.16 Filling TYPE REF TO DATA Parameter

As you can see in Listing 3.16, now you can get rid of most of the code and still achieve
the same thing by using the constructor operator REF and the hash (#) symbol. Because
the runtime system knows the data type of VALUE, the REF# function can read this and
create the data object, which is then passed into the method that expects a TYPE REF TO
DATA object to be passed in.

3.4 Conditional Logic

By now, it won’t come as a shock that again I'm going to mention the ZX81. The lan-
guage it used back in 1981 was able to handle statements like IF (A+B) > (C+D) THEN...
Later, in 1999, when I started programming in ABAP, I missed this ability. Luckily, with
the advent of ABAP 7.02, which I first had access to in 2012, I was once again able to do
this sort of thing. (It might have taken 31 years for them to work out how to do this, but
it was worth the wait.)

In ABAP 7.40, the IF/THEN and CASE constructs you know and love keep on getting easier.
The next sections will explain how.

160

3.4 Conditional Logic

3.4.1 Omitting ABAP_TRUE

When functional methods were introduced to ABAP, part of the idea was that this
would make the code read a bit more like English. Over the years, the consensus among
ABAP programmers both inside and outside of SAP was that if you were creating a
method that returned a value saying whether or not something is true, then the return-
ing parameters should be typed as ABAP_BOOL.

For example, the ZCL_MONSTER->IS SCARY method should return ABAP_TRUE if the mon-
ster is in fact scary but ABAP_FALSE if it’s not quite as monstrous as it should be. So far, so
good. However, as Listing 3.17 shows, something’s rotten in the state of Denmark.

DATA(monster) =
zcl monster model=>get instance('0000000001").

IF monster->is scary() = abap true.
MESSAGE 'Oh No! Send for the Fire Brigade!' TYPE 'I'.
ENDIF.

Listing 3.177 ABAP_TRUE

Why do you need the = ABAP_TRUE at the end? It doesn’t make the sentence any more
readable, just longer. As any English teacher will tell you, adding words that do not
change the sentence’s meaning to a sentence only makes you sound long-winded. The
answer is that you had to do this because otherwise the syntax check would fail.

As of release 7.4 (SP 8), however, you can now do just what you would expect and omit
ABAP_TRUE, as shown in Listing 3.18.

DATA(monster) =
zcl monster model=>get instance('0000000001").

IF monster->is scary().
MESSAGE 'Oh No! Send for the Fire Brigade!' TYPE 'I'.
ENDIF.

Listing 3.18 Omitting ABAP_TRUE

In Listing 3.18, what’s happening from a technical point of view is that if you don’t spec-
ify anything after a functional method, the compiler evaluates it as IS_PRODUCTION() IS
NOT INITIAL. An ABAP TRUE value is really the letter X, so the result is not initial, and so
the statement is resolved as true.

Opinion is divided as to whether it is a Good Thing to have a true Boolean data type in
a programming language. SAP says no, and the creators of every other programming
language ever invented in the history of the universe say yes. This is why there are
workarounds like this in ABAP.

161

3 New Language Features in ABAP

3.4 Conditional Logic

That said, you have to be really careful when using this syntax; it only makes sense
when the functional method is passing back a parameter typed as ABAP_BOOL. As an
example, consider the code in Listing 3.19.

DATA(monster) = NEW zcl monster model().

IF monster->wants to blow up world().
DATA(massive atom bomb) = NEW 1cl atom bomb().
massive_atom bomb->explode().

ENDIF.

Listing 3.19 IF Statement without Proper Check

If the functional method in Listing 3.19 returns a string and that string is NO NO! Do not
blow up the world, whatever you do, do not blow up the world, then the result is NOT INITIAL
and thus evaluated as true, and so it’s curtains for all of us.

3.4.2 Using XSDBOOL as a Workaround for BOOLC

Another common situation with respect to Boolean logic (or the lack thereof) within
ABAP is a case in which you want to send a TRUE/FALSE value to a method or get such a
value back from a functional method. In ABAP, you can’t just say something like the fol-
lowing:

RF_IS A MONSTER = (STRENGTH > 100 AND SANITY < 20)

But in some programming languages, you can do precisely that (can you guess which
computer could do that in 1981?). Again, we have a workaround in the form of the built-
in BOOLC function (see Listing 3.20).

* Do some groovy things

* Get some results

* Postconditions

zcl dbc=>ensure(that = 'A result table is returned'
which is true if = boolc(rt result[] IS NOT INITIAL)).

Listing 3.20 BOOLC

In Listing 3.20, you pass in a TRUE/FALSE value based on whether an internal table has
any entries. This works fine.

But what if you want to test for a negative using this method? Say, for example, that
you want to pass into the IF_TRUE parameter a TRUE/FALSE value that’s true if the table is
empty. If you use the previous technique using BOOLC, then things start going horribly
wrong. This can be demonstrated by running the code in Listing 3.21.

162

DATA: empty table TYPE STANDARD TABLE OF ztmonster header.

IF boolc(empty table[] IS NOT INITIAL) = abap false.
WRITE:/ 'This table is empty'.
ELSE.
WRITE:/ 'This table is as full as full can be'.
ENDIF.
IF boolc(1 = 2) = abap false.
WRITE:/ "1 does not equal 2'.
ELSE.
WRITE:/ "1 equals 2, and the world is made of snow'.
ENDIF.

Listing 3.21 Testing for Negative

When you run this code, the output is as follows:
1. This table is as full as full can be.

2. lequals 2, and the world is made of snow.

Oh, dear! The reason for this outcome is a fundamental design flaw in the built-in func-
tion BOOLC. Instead of returning a one-character field defined in the same way as ABAP_
BOOL, it returns a string. If the string is an X (TRUE), then all is well —but in ABAP, compar-
ing a string of one blank character with the blank character inside ABAP_FALSE means
that the comparison fails, even though the values are identical.

Therefore, given that a real Boolean variable is out of the question for whatever reason,
a new workaround is needed. Fixing BOOLC so that it returns an ABAP_BOOL value would
have been too easy, so in ABAP 7.4 a newly created built-in function was added, called
XSDBOOL, which does the same thing as BOOLC but returns an ABAP_BOOL type parameter.
You can see an example of its use in Listing 3.22. The function was not invented for this
purpose, but it works, and that’s all that matters.

* Then do the same using XSDBOOL.
IF xsdbool(empty table[] IS NOT INITIAL) = abap false.
WRITE:/ 'This table is empty'.
ELSE.
WRITE:/ 'This table is as full as full can be'.
ENDIF.
IF xsdbool(1 = 2) = abap_false.
WRITE:/ "1 does not equal 2'.
ELSE.
WRITE:/ '1 equals 2, and the world is made of snow'.
ENDIF.

Listing 3.22 Using XSDBOOL for Correct Logic Test Results

163

3 New Language Features in ABAP

When you run this code, the output is as follows:

1. This table is empty.

2. 1does not equal 2.

Even better: if you use the wrong one (BOOLC) in ABAP in Eclipse, you get a warning that
tells you to use XSDBOOL instead.

3.4.3 The SWITCH Statement as a Replacement for CASE

How many times have you seen code like that in Listing 3.23? Here you're getting one
value and using a CASE statement to translate that value. The problem is that you need
to keep mentioning what variable you're filling in every branch of your CASE statement.

* Use adapter pattern to translate human readable CRUD
standard values to the BOPF equivalent
DATA: bopf edit mode TYPE /bobf/conf edit mode.

CASE id edit mode.
WHEN 'R"."Read
bopf edit mode = /bobf/if conf c=>sc_edit read only.
WHEN 'U"."Update
bopf edit mode = /bobf/if conf c=>sc edit exclusive.
WHEN OTHERS.
"Unexpected Situation
RAISE EXCEPTION TYPE zcx_4 monster exceptions.
ENDCASE.

Listing 3.23 Filling in Variable Using CASE Statement

As mentioned in the code, this is the adapter pattern, very common in OO program-
ming. In 7.4, this can be slightly simplified by using the new SWITCH constructor opera-
tor, as shown in Listing 3.24.

* Use adapter pattern to translate human readable CRUD

* standard values to the BOPF equivalent

DATA(bopf edit mode) =

SWITCH /bobf/conf edit mode(id edit mode

WHEN 'R' THEN /bobf/if conf c=>sc_edit read only "Read

WHEN "U' THEN /bobf/if conf c=>sc_edit exclusive "Update
ELSE THROW zcx_4 monster exceptions()). "Unexpected

Listing 3.24 Filling in Variable Using SWITCH Statement

As you can see from this example, the data definition for BOPF_EDIT MODE (/bobf/conf
edit_mode in this case) has moved into the body of the expression, thus dramatically

164

3.4 Conditional Logic

reducing the lines of code needed. In addition, Java fans will jump up and down with joy
to see that instead of the ABAP term RAISE EXCEPTION TYPE we now have the equivalent
Java term, THROW. The usage is identical, however; the compiler evaluates the keywords
RAISE EXCEPTION TYPE and THROW as if they were one and the same. As an added bonus,
this actually makes more grammatical sense, because THROW and CATCH go together bet-
ter than RAISE EXCEPTION TYPE and CATCH. (It's lucky that exception classes have to start
with CX; otherwise some witty programmer at SAP would create an exception class
called UP.)

It’s important to note that the values in the WHEN statements have to be constants, as in
the preceding example. If you put something like MONSTER->HEAD COUNT after the WHEN
statement, then the SWITCH statement as a whole explodes and gives an incorrect error
message saying “HEAD_COUNT” is unknown, when what it really means is that MON-
STER->HEAD _COUNT isn’t a constant. If you need a WHEN statement with variables, you have
to use the COND statement described in the next section.

To move away from monsters for a second, as painful as that is, here’s an example of
combing two new ABAP constructs together. Let’s say you wanted to merge some val-
ues of different lengths into a uniform format. In standard SAP, table VBPA is a good
example. It has customer (KUNNR) values, which are 10 characters long, and personnel
number (PERNR) values, which are eight characters long. In Listing 3.25, we fill new table
LT _VAKPA with the data from VBPA, except the KUNDE field will always come out as a 10-
character field no matter if a customer number or personnel number was in VBPA.

LOOP AT 1t vbpa ASSIGNING FIELD-SYMBOL(<ls vbpa>).
INSERT VALUE #(
vbeln = <1s vbpa>-vbeln
parvw = <ls vbpa>-parvw
SWITCH #(<ls_vbpa>-parvw
WHEN 'AG' OR 'WE' OR 'RG' OR 'RE’
THEN <1s vbpa>-kunnr
ELSE '00" &3 <ls vbpa>-pernr)
adrnr = <ls_vbpa>-adrnr)
INTO TABLE gt vakpa.

kunde

ENDLOOP.

Listing 3.25 Merging Two Formats Using SWITCH

3.4.4 The COND Statement as a Replacement for IF/ELSE

All throughout this book, you'll be reading about how resistance to change is bad.
Despite that, let’s admit it: Change can be annoying, especially when it affects your
code. One great example of this fact involves coding a CASE statement based on the
assumption that one value is derived from the value of another—before someone

165

3 New Language Features in ABAP

comes along and tells you that the rules have changed and the last value in the CASE
statement is only true if it’s a Tuesday. On Wednesday, the value becomes something
else.

CASE statements can only evaluate one variable at a time, so in the case of this example
you have to change the whole thing into an IF/ELSE construct. That’s not the end of civ-
ilization as we know it, but the more changes you have to make, the bigger the risk.

Say that you're really scared that the logic you've been given might change at some
point in the future, but nonetheless you start off with CASE, such as in the code in List-
ing 3.26, which is pre-7.4 code that evaluates the description of a monster’s sanity based
on a numeric value.

* Fill the Sanity Description
CASE cs_monster header-sanity percentage.
WHEN 5.
cs_monster header-sanity description = 'VERY SANE'.
WHEN 4.
cs_monster header-sanity description = 'SANE'.
WHEN 3.
cs_monster header-sanity description = 'SLIGHTLY MAD'.
WHEN 2.
cs_monster header-sanity description = 'VERY MAD'.
WHEN 1.
cs_monster header-sanity description
WHEN OTHERS.
cs_monster header-sanity description = 'RENAMES SAP PRODUCTS'.
ENDCASE.

"BONKERS" .

Listing 3.26 CASE Statement to Evaluate Monster Sanity

In 7.4, you can achieve the same thing, but you can do so in a more compact way by
using the COND constructor operator. This also means that you don’t have to keep spec-
ifying the target variable again and again (see Listing 3.27).

"Fill the Sanity Description

cs_monster header-sanity description =
COND #(

WHEN cs_monster header-sanity percentage
WHEN cs_monster header-sanity percentage
WHEN cs _monster header-sanity percentage
WHEN cs monster header-sanity percentage
WHEN cs_monster header-sanity percentage
ELSE 'RENAMES SAP PRODUCTS').

75 THEN 'VERY SANE'

50 THEN 'SANE'

25 THEN 'SLIGHTLY MAD'
12 THEN 'VERY MAD'

1 THEN 'BONKERS'

v VvV VvV VvV VvV

Listing 3.27 Using COND Constructor Operator

166

3.5 Internal Tables

That looks just like a CASE statement, and the only benefit of the change at this point is
that it’s a bit more compact. However, when the business decides that you need to take
the day into account when saying if a monster is bonkers or not, you can just change
part of the COND construct. In the pre-7.4 situation, you had to give up on the whole idea
of a CASE statement and rewrite everything as an IF/ELSE construct. The only change
needed to the COND logic is shown in Listing 3.28.

DATA: day TYPE charl0O VALUE 'Tuesday'."Lenny Henry!
* Fill the Sanity Description
cs_monster header-sanity description =
COND text30(
WHEN cs _monster header-sanity percentage = 5 THEN 'VERY SANE'
WHEN cs monster header-sanity percentage = 4 THEN 'SANE'
WHEN cs monster header-sanity percentage = 3 THEN 'SLIGHTLY MAD'
WHEN cs_monster header-sanity percentage = 2 THEN 'VERY MAD'
WHEN cs_monster header-sanity percentage = 1 AND

day = 'Tuesday' THEN 'HAVING AN OFF DAY'
WHEN cs monster header-sanity percentage = 1 THEN 'BONKERS'
ELSE 'RENAMES SAP PRODUCTS').

Listing 3.28 COND Constructor Operator with Updated Logic

3.5 Internal Tables

Internal tables are the bread and butter of programming in ABAP. A lot of other lan-
guages, like Java, can only dream of having such a thing; they have to deal with various
sorts of arrays and stacks and hash browns and what have you. In this section, you'll
learn about some new ABAP functionalities that relate to internal tables.

3.5.1 Table Work Areas

Some time ago, SAP decreed that header lines in internal tables were the work of the
devil. This was because the use of header lines led to the existence of two data objects
in your program with the exact same name, and this was viewed as confusing. For
example, it wouldn’t be uncommon to find a program in which you had an ITAB vari-
able that referred to the internal table as a whole and a work area called ITAB that
referred to the current line of the table being processed. Clearly, that’s wrong from an
academic point of view—but in real life, ABAP programmers were so used to the idea of
the header line that it was a hard habit to shake. This was especially true because you
had to explicitly declare a variable to act as the header line. For example:

DATA: monster record LIKE LINE OF monster table.

167

3 New Language Features in ABAP

The good news is that now you can avoid having to make that extra variable declara-
tion and still have two differently named variables, one for the table and one for the
work area. Listing 3.29 shows the syntax for reading into a work area and looping
through a table in release 7.4.

DATA: table of monsters
TYPE STANDARD TABLE OF z4t monster head.

READ TABLE table of monsters
WITH KEY color = 'RED'
INTO DATA(red monster details).

LOOP AT table of monsters INTO DATA(loopy monster details).
ENDLOOP.

Listing 3.29 Reading into Work Area and Looping through Table

In Section 3.1.1, you learned that from 7.4 onward you no longer need to perform a DATA
declaration for elementary data types. It’s exactly the same for the work areas, which
are of course structures. If you're looping into a work area called MONSTER_RECORD and
the work area structure doesn’t match the type of table TABLE_OF MONSTERS, you'll see a
syntax error.

Therefore, the compiler knows the type it wants—so why do you have to tell it that type
in an explicit data declaration? The answer is that now you don'’t, and this change will
remove all those extra data declaration lines you had to insert when everyone moved
away from header lines (if they ever did) and had to explicitly declare work areas instead.

It's always faster to loop into FIELD-SYMBOL rather than a work area even if you don’t
want to change any values. Happily, in the same way that you no longer need DATA dec-
larations for table work areas, you also no longer need FIELD-SYMBOL declarations for the
(common) situations in which you want to change the data in the work area while loop-
ing through an internal table. In release 7.4, if you want to use field symbols for the
work area, then the syntax is as shown in Listing 3.30.

READ TABLE table of monsters
WITH KEY color = 'RED'
ASSIGNING FIELD-SYMBOL(<red monster details>).

LOOP AT table of monsters ASSIGNING FIELD-SYMBOL(<loopy monster details>).
ENDLOOP.

Listing 3.30 Field Symbols for Work Area
One vitally important point to note is that if you declare a work area and then loop

through an internal area, after the loop is over the work area will be filled with the
value of the last row of the internal table that was processed. But if you loop through

168

3.5 Internal Tables

an internal table into a work area created via the DATA statement, then you might won-
der if the work area ceases to exist after you leave the loop.

From an academic point of view, not being able to access the work area outside of the
loop is a Good Thing, because the textbooks all say that variables should not exist out-
side their scope (the loop, in this case). Indeed, at SAP, this behavior is very much
desired. Unfortunately, the fact is that the variable does exist after you leave the loop.
SAP has got around this problem by publishing guidelines saying that if you access
such a variable outside of its scope, then you are very naughty, and the staff at SAP will
say “tut, tut” if they find out. (Personally, I'm not convinced that this dire threat will
have much effect, but I thought I'd let you know.)

3.5.2 Reading from a Table

If I told you that you would never have to use the READ TABLE statement again to get a
line out of an internal table, then perhaps the bottom would drop out of your world. In
fact, that’s exactly what happens in ABAP 7.4. You can remove the keywords altogether
and replace the English phrase READ TABLE with a more computer-like pair of square
brackets [].

Prior to ABAP 7.4, calling a line from an internal table would look like Listing 3.31.

DATA: monster name TYPE z4de monster name VALUE 'JIMMY',
table of monsters TYPE STANDARD TABLE OF z4t monster head,
monster details LIKE LINE OF table of monsters,
monster TYPE REF TO zif 4 monster model.

READ TABLE table of monsters INTO monster details
WITH KEY name = monster name.

monster = zcl 4 monster model=>get instance(monster details-monster
number).

Listing 3.31 Reading Line from Internal Table before 7.4

However, in ABAP 7.4 and up, this is simplified, as shown in Listing 3.32.

DATA(monster) = zcl 4 monster model=>get instance(
table of monsters[monster name]-monster number).

Listing 3.32 Reading Line from Internal Table after 7.40

Note

Some would say that making code less like English and more like machine code actu-
ally prevents clarity. For example, if after reading your internal table line you wanted to

169

3 New Language Features in ABAP

add it to a string and pass the string to a method, then you could go overboard using
punctuation marks in your code. The part where you read the internal table gets buried
in a morass of code, and someone reading the code might struggle to work out what’s
happening:

zcl bc output(|{ monster name }'s Monster Number is { monster table

[monster name]-monster number }|).

Many people have said the same thing about regular expressions: they get the job
done in a very small amount of code, but no one can understand that code.

In real life, the most common usage of the new way of reading internal tales is to read
the first line of such a table as follows:

DATA(selected monster line) = selected monster lines[1].

What happens if such an expression can’t find the internal table line you're looking for?
The answer is not good news. An exception is raised, whereas you were probably ex-
pecting a blank (initial) value to be returned. SAP must have received a lot of com-
plaints about this, because as of 7.4 (SP 8) SAP delivered a workaround: if you add the
word OPTIONAL at the end of your query, then suddenly the system doesn’t care if no re-
cord is found, and an initial value of whatever data type you're looking for is returned.
This is exactly what would happen with a traditional READ TABLE xyz INTO work area abc
setup when the read failed and the work area had not yet been filled. An example of this
workaround is shown in Listing 3.33.

DATA(messagel) =
|{ monster name }{ '''s Monster Number is'(022) } | &&
|{ VALUE #(table of monsters[monster name]-monster number OPTIONAL) }|.

DATA(message2) =

|{ monster name }{ '''s Monster Number is'(022) } | &&
|{ VALUE #(table of monsters[monster name]-monster
number DEFAULT '9999999999') }|.

Listing 3.33 Reading Internal Table with OPTIONAL/DEFAULT

The addition of DEFAULT fills in a hard-coded value when the read fails. Then you can
check if the read failed by comparing the result with that hard-coded value in the same
way you would if SY-SUBRC was 4 when checking if a traditional read on an internal table
succeeded.

3.5.3 CORRESPONDING for Normal Internal Tables

You no doubt use the ABAP keyword MOVE-CORRESPONDING a lot, moving variable values
from one structure to another.

170

3.5 Internal Tables

What’s That Coming over the Hill? Is It a Problem?

In some standard SAP documentation, you're advised never to use MOVE-CORRESPONDING
at all, most likely to avoid the problem of moving strings into number fields, high-
lighted at the start of this section. However, if you do use it, then the functionality dis-
cussed here should be of help to you.

New in 7.4 is a constructor operator called CORRESPONDING without the word move in
front. This operator takes moving data between two internal tables to a whole new
level. Say that you have two internal tables full of monster-related data, but they're
defined with a different set of columns. What you want to do is copy over the fields
with the same names from one table to the other, with two exceptions:

® You don’t want to copy the EVILNESS value from one table to the other, even though
both tables have an EVILNESS column.

® You want to copy the column named MOST PEASANTS SCARED from one table into a
similar column called PEOPLE_SCARED in the second table.

Prior to 7.4, you would declare a bunch of helper variables to store the work areas of the
two tables and then loop through the first table, moving everything from one table to
another. You'd then perform some logic to deal with your exceptions (see Listing 3.34).

DATA: green monsters TYPE STANDARD TABLE OF z4t monster head,
blue monsters TYPE STANDARD TABLE OF z4t monster head.

FIELD-SYMBOLS:
<green monsters> LIKE LINE OF green monsters,
<blue monsters> LIKE LINE OF blue monsters.

LOOP AT green monsters ASSIGNING <green monsters>.
APPEND INITIAL LINE TO blue monsters
ASSICNING <blue monsters>.
MOVE-CORRESPONDING <green monsters> TO <blue monsters>.
CLEAR <blue monsters>-evilness.
<blue monsters>-early age strength =
<green monsters>-strength.
ENDLOOP.

Listing 3.34 Moving One Table to Another before 7.4

In release 7.4, you can use the constructor operator CORRESPONDING to do the exact same
thing, but this time you don’t have to declare the field symbols. You tell the CORRESPOND-
ING operator what the rules are, and it loops through the table for you while executing
those rules. Moreover, you don’t even need to define the target table; if you put # after
the CORRESPONDING operator, then it creates the target table with the same columns as

m

3 New Language Features in ABAP

3.5 Internal Tables

the source table, but without the EVILNESS column and with the SCARED column having
a different name but the same type as the source column, as shown in Listing 3.35.

green_monsters = CORRESPONDING #(

blue monsters

MAPPING people scared = most peasants scared
EXCEPT evilness).

Listing 3.35 Moving One Table to Anotherin 7.4

A common problem is that when you try to do use MOVE-CORRESPONDING into a hashed or
sorted table, then you get a dump because you can’t override the key fields. Using
CORRESPONDING and EXCEPT, you can prevent this problem—as shown in Listing 3.36, in
which you want to either add a new entry to an internal table or update an existing one.

"HASHED table
READ TABLE monster order items ASSICNING FIELD-SYMBOL(<order item>)
WITH TABLE KEY order number = id order number

order item = id item number.

IF sy-subrc = 0.
"Cannot over-write key fields of a Hashed Table
<order item> = CORRESPONDING #(BASE (<order item>) changed item
EXCEPT order number order item).
ELSE.
INSERT changed item INTO TABLE monster order items.
ENDIF.

Listing 3.36 Moving Corresponding Fields to Hashed Table

3.5.4 MOVE-CORRESPONDING for Internal Tables with Deep Structures

In ABAP, a deep structure is not a structure that thinks a lot and has a complex person-
ality but rather is a structure that—in addition to elementary data types, such as strings
and numbers—has internal tables. Listing 3.37 shows an example of a deep structure.
T RESULTS is defined as a table type, so you have an internal table in which each row has
a column that is itself an internal table.

TYPES: BEGIN OF 1 _typ monsters,
monster number TYPE z4de monster number,
monster name TYPE z4de monster name,
t items TYPE z4tt monster items,
END OF 1 typ monsters.
DATA: monster table TYPE STANDARD TABLE OF 1 typ monsters.

Listing 3.37 Deep Structure

172

SAP clearly has been thinking about what happens when you perform a MOVE-
CORRESPONDING maneuver between two slightly different structures that are both deep
but defined slightly differently. As you know, MOVE-CORRESPONDING compares the field
names of two structures, and if a field called RESULT is a string in one and a number in
another and the value is XYZ in the first structure, then trouble looms (i.e., a short
dump). Take this one step further: Say you have two internal tables in two deep struc-
tures with the same name but defined differently. What'’s going to happen when you
perform MOVE-CORRESPONDING?

The next examples examine what happens in release 7.02 when moving from one
structure to another and then expand to look at how the same process behaves in 7.4.
Spoiler: In 7.4, you can perform MOVE-CORRESPONDING between internal tables as a whole,
which wasn’t possible in lower versions.

Say that in Europe it’s important to keep track of something called an IBAN code for
each monster, which is meaningless anywhere else in the world, and in the United
States it’s important keep track of a LOCKBOX code for each monster, which likewise is
meaningless anywhere else in the world. Listing 3.38 sets up structures to store data for
each region and then tries to use MOVE-CORRESPONDING to move some European monster
data to the US equivalent.

TYPES: BEGIN OF 1 typ european monsters,
monster name TYPE string,
monster iban code TYPE string,

END OF 1 typ european monsters.

TYPES: 1 tt european monsters
TYPE HASHED TABLE OF 1 typ european monsters
WITH UNIQUE KEY monster name.

DATA: iban code record TYPE 1 typ european monsters.
TYPES: BEGIN OF 1 typ european results,

laboratory TYPE string,

t result TYPE 1 tt european monsters,

END OF 1 typ european results.

TYPES: 1 tt european results
TYPE STANDARD TABLE OF 1 typ european monsters.

DATA: european result TYPE 1 typ european results,
european_results TYPE 1 tt european results.

TYPES: BEGIN OF 1 typ us monsters,
monster name TYPE string,

173

3 New Language Features in ABAP

monster lockbox code TYPE string,
END OF 1 typ us monsters.

TYPES: 1 tt us monsters TYPE HASHED TABLE OF 1 typ us monsters
WITH UNIQUE KEY monster name.

TYPES: BEGIN OF 1 typ us results,
laboratory TYPE string,
t result TYPE 1 tt us monsters,
END OF 1 typ us results.

TYPES: 1 tt us results TYPE STANDARD TABLE OF 1 typ us results.

DATA: us result TYPE 1 typ us results,
us_results TYPE 1 tt us results.

european_result-laboratory = 'SECRET LABORATORY 51'.

iban code record-monster name = 'FRED'.

iban code record-monster iban code = 'AL47212110090000000235698741".
INSERT iban_code record INTO TABLE european result-t result.
MOVE-CORRESPONDING european result TO us result.

Listing 3.38 MOVE-CORRESPONDING Attempt

What do you think happens? In the US monster structure, the results table has the
LOCKBOX field filled with the IBAN code from the European equivalent because there’s a
T RESULT field in both the European and US structures.

Usually, this isn’t what you want. For identical tables, you can always get around this
using TABLE ONE[] = TABLE_TWO[], which changes the first table into an identical copy of
the second table. However, this doesn’t work in cases in which, say, you have a database
table with 10 fields and an internal table with those 10 fields plus five more fields with
text descriptions or calculated fields. Instead, you need to read the database table into
one internal table with just the 10 fields and loop through this first internal table, mov-
ing the corresponding elements to some sort of second output table, where you fill in
extra data, such as names for sales offices and the like and calculated fields.

Thus, instead of the code shown in Listing 3.39, you'd use the code shown in Listing 3.40.

LOOP AT european results ASSIGNING FIELD-SYMBOL(<european result>).
APPEND INITIAL LINE TO us results ASSIGNING FIELD-SYMBOL(<us result>).
MOVE-CORRESPONDING <european result> TO <us result>.

ENDLOOP.

Listing 3.39 Copying between Internal Tables with Different Structures before 7.4

174

3.5 Internal Tables

MOVE-CORRESPONDING european_results TO us results.

Listing 3.40 Copying between Internal Tables with Different Structuresin 7.4

This saves you a few lines of code and is wonderful for when the line structures of the
two tables are flat. However, it still doesn’t solve the problem for deep structures. As
you've seen, MOVE-CORRESPONDING on its own will dump the contents of an internal table
component, such as T_RESULT, into the identically named component in the target
structure. If T RESULT in the target has differently named columns, then all sorts of
bizarre results might ensue. To counteract this, SAP has come up with two new addi-
tions to MOVE-CORRESPONDING in release 7.4 (plus a combination of the two), as follows:

® MOVE-CORRESPONDING EXPANDING NESTED TABLES

In MOVE-CORRESPONDING EXPANDING NESTED TABLES, anything that might happen to be in
the target internal table already is deleted. Columns with simple values, like num-
bers, are copied to their identically named friends. But when it comes to complex
columns such as T_RESULT, only fields that have the same column name inside the
nested tables are copied. For example, MONSTER NAME is copied because there’s an
equivalently named column in the target, but MONSTER _IBAN CODE is not because
there’s no column with the same name, only the LOCKBOX.

= MOVE-CORRESPONDING KEEPING TARGET LINES
What happens in MOVE-CORRESPONDING KEEPING TARGET LINES is quite strange; if there’s
anything already in the target internal table, then it stays there. Then, at the end of
the target table, extra rows are added—which is what would happen if you just per-
formed MOVE - CORRESPONDING between the two tables. This is rather like APPEND LINES OF
tablel TO table2, except that the two tables have different structures and only iden-
tically named components come across.

® MOVE-CORRESPONDING EXPANDING NESTED TABLES KEEPING TARGET LINES
As might be imagined, MOVE-CORRESPONDING EXPANDING NESTED TABLES KEEPING TARGET
LINES performs both of the previous tasks at once. It acts like APPEND LINES OF tablel
TO table2, copying only identically named components to the new rows, but it’s also
a bit clever with any internal table components and only copies identically named
components within these structures.

3.5.5 Dynamic MOVE-CORRESPONDING

SAP can be like a dragon with two heads, each head telling you the opposite of the
other. In 7.4, the guidance was to not use MOVE-CORRESPONDING at all, but you were given
new tools with which to do so. In 7.5, this dichotomy becomes more extreme; on the
one hand, you're advised not to use dynamic programming (because it’s not allowed in
some SAP S/4HANA scenarios), and yet a new, dynamic MOVE-CORRESPONDING class is
given to you.

175

3 New Language Features in ABAP

In the examples in Section 3.5.3, you could hard-code the rules for mapping fields with
different names to be copied to one another—like the 12,000 different names SAP
gives to SY-MSCNO in different structures.

Now imagine that such a mapping from a really big structure to a smaller one can vary
depending on the conditions at runtime. That might seem a rather esoteric require-
ment, but you won'’t have to think too hard to find a real-life example; after all, the
monster examples are actually real problems people have to deal with, with the names
changed to protect the innocent.

In the next example, as always, the task is building a monster. The configuration table
has about 24 different sorts of criminal brains you could use to fill the inside of the
monster’s head. You want to narrow this down to the four best selections, defined at
runtime, which are passed into a smaller structure for further processing.

Both structures start with the monster number and name. The larger structure has a
list of fields describing the serial numbers of the various brains available, and the
smaller structure has fields in the format BEST BRAIN XX.

You want to move the identically named fields from the big structure to the small
structure and then determine dynamically which of the possible brains from the con-
figuration structure to move to the smaller structure. You'll achieve this by filling a
mapping table prescribing which values to copy between differently named fields, call-
ing two methods from CL_ABAP_CORRESPONDING to create a mapping object, and then exe-
cuting the mapping itself, as shown in Listing 3.41.

DATA: mapping record TYPE cl abap corresponding=>mapping info,
mapping table TYPE cl abap corresponding=>mapping table.

mapping record-level = 0.
mapping record-kind = cl abap corresponding=>mapping component.

mapping record-dstname = 'BEST BRAIN O1'.

IF is customer requirements-brain size desired = 'NORM'."Normal Brain
mapping record-srcname = 'BIGGEST BRAIN'.
ELSE.
mapping record-srcname
ENDIF.

"SMALLEST BRAIN'.

APPEND mapping record TO mapping table.
mapping record-dstname = 'BEST BRAIN 02'.

IF is customer requirements-usage desired = 'MORT'."Mortgage Salesman
mapping record-srcname = 'EVILEST BRAIN'.

176

3.5 Internal Tables

ELSEIF is customer requirements-usage desired = 'MORI'."Morris Dancer
mapping record-srcname = 'WEIRDEST BRAIN'.
ENDIF.

APPEND mapping record TO mapping table.
TRY.

DATA(dynamic_mapper) =
cl abap_corresponding=>create(

source = is possible brains
destination = rs_best brains
mapping = mapping_table).

dynamic_mapper->execute(
EXPORTING source = 1s possible brains
CHANGING destination = rs best brains).

CATCH cx_corr dyn error ##NO HANDLER."In real life you need one
"Raise a Fatal Error Message
RETURN.
ENDTRY.

Listing 3.41 Dynamic MOVE-CORRESPONDING Usage

You can also use the EXCEPT option as an input to the KIND parameter in a mapping
record to stop certain identically named fields being moved; the LEVEL parameter is used
when mapping deep structures. In the preceding example, you could have achieved the
same thing using direct assignment with fewer lines of code, but this approach only
becomes advantageous when you have really complicated structures with loads of
fields. Traditionally, this sort of task has been handled using field symbols; I imagine
SAP feels that using this new class makes the code easier to read.

3.5.6 New Functions for Common Internal Table Tasks

When working in ABAP code, there are cases in which you want to know exactly in what
line of an internal table the data you're interested in lives. To find this information in
pre-7.4 ABAP, you would have written code that declared a helper variable to store the
row number of the target record, read the table for no other purpose than to find that
row number, and then transferred the system variable that contained the result of the
table read into your helper variable, as shown in Listing 3.42.

DATA:
start row TYPE sy-tabix,
table of monsters TYPE STANDARD TABLE OF z4t monster head,

177

3 New Language Features in ABAP

monster number TYPE z4de monster number VALUE '0000000001'.

READ TABLE table of monsters
WITH KEY monster number = monster number
TRANSPORTING NO FIELDS.

IF sy-subrc = 0.
start row = sy-tabix.
ENDIF.

Listing 3.42 Reading Internal Table to Get Row Number in 7.02

You see the logic in Listing 3.42 a lot when processing nested loops on standard tables—
you follow such code with LOOP AT table of monsters FROM start row—but also in a myr-
iad of other use cases. In any event, in release 7.4 this can be simplified by using the
built-in function LINE_INDEX, which does the exact same task but without the need to
look at the values of SY-SUBRC and SY-TABIX. This new approach is shown in Listing 3.43.

DATA(start row) =
line index(table of monsters[monster number = monster number]).

LOOP AT table of monsters FROM start row

ASSIGNING FIELD-SYMBOL(<monster details>).
"Do Something

ENDLOOP.

Listing 3.43 LINE_INDEX

Throughout this chapter, one aim has been to get rid of helper variables. Because LINE
INDEX is a built-in function, it can be used at operand positions, thus negating the need
for the helper variable START ROW. When looping at an internal table from the row for-
merly stored in START_ROW instead, use the code shown in Listing 3.44.

LOOP AT table of monsters
FROM line index(table of monsters[monster number = monster number])
ASSICNING FIELD-SYMBOL(<monster details>).
"Do Something

ENDLOOP.

Listing 3.44 Built-In Function LINE_INDEX at Operand Position
This new built-in function also has a friend: LINE_EXISTS. Say you want to see if an inter-
nal table already has an entry for the monster at hand. If it does, then you want to mod-

ify the existing entry; if not, then you want to add a new entry. The way this was done
prior to 7.4 was to first read the internal table to see if there was an existing entry for the

178

3.5 Internal Tables

monster. If there was no existing entry, then SY-SUBRC would not be zero. You'd react to
that by adding a new entry to the table for your monster, as shown in Listing 3.45.

READ TABLE table of monsters ASSIGNING <monster details>
WITH KEY monster number = monster number.

IF sy-subrc NE O.
APPEND INITIAL LINE TO table of monsters
ASSICNING <monster details>.

ENDIF.

ADD 1 TO <monster details>-sanity percentage.

Listing 3.45 Checking If Internal Table Line Exists before 7.4

By adding the new built-in function LINE_EXISTS, the code can be changed as shown in
Listing 3.46.

IF line exists(table of monsters[monster number = monster number]).
READ TABLE table of monsters ASSIGNING FIELD-SYMBOL(<monster details>)
WITH KEY monster number = monster number.

ELSE.

APPEND INITIAL LINE TO table of monsters
ASSICNING <monster details>.
ENDIF.

Listing 3.46 Checking If Internal Table Line Exists in 7.4

“Why is that better?” I hear you cry. For one thing, it makes it more obvious what you're
trying to achieve. In addition, using LINE EXISTS instead of SY-SUBRC is more reliable;
SY-SUBRC can be dodgy because you never know when someone is going to have the
bright idea of inserting some code between your READ statement and the IF statement
that evaluates SY-SUBRC. If you use LINE_EXISTS to have the table read and the evalua-
tion all bundled up in the one statement, as in Listing 3.47, then this means that no one
can break the statement with a well-intentioned change.

IF line exists(table of monsters[monster number = monster number]).
"Do Something
ENDIF.

Listing 3.47 Code All in One Line, with No Reliance on SY-SUBRC

3.5.7 Internal Table Queries with REDUCE

In Section 3.1.4, you learned a new way to create internal tables by using a FOR loop. After
you've filled up your internal tables, though, you often want to query them. Say, for
example, that you want to know how many really mad monsters you have. As of 7.4,

179

3 New Language Features in ABAP

you can do this by using a constructor operator called REDUCE, which contains logic to
process an internal table and return a single result.

Functional Programming

The REDUCE statement is a watered-down copy of the identically named statement in
JavaScript, which is a language that uses functional programming. ABAP uses impera-
tive programming, so these sorts of functional constructs are a brand-new, foreign
invasion into ABAP.

In the example in Listing 3.48, you'll first say what variable you want created and what
type that variable is going to be, then set an initial value for your result variable, and
finally loop over the table, performing assorted logic. That sounds really complicated,
but, as you'll see, the code is not.

DATA: neurotic_monsters TYPE STANDARD TABLE OF z4t monster head.

K e *
* Fill up NEUROTIC MONSTERS table, then..
K e *

DATA(mad monsters count) = REDUCE sy-tabix(

INIT result = 0

FOR monster details IN neurotic monsters

NEXT result = result +

zcl 4 bc utilities=>add 1 if true(

zcl 4 monster model=>is mad(monster details-monster number))).

Listing 3.48 How Many Really Mad Monsters?

The SY-TABIX element after the REDUCE statement defines the type of the variable being
created, MAD_MONSTER COUNT. It also defines the type of the temporary variable after the
INIT statement, which is going to be the result; both MAD_ MONSTER COUNT and RESULT have
the type SY-TABIX. You then loop over your internal table NEUROTIC MONSTERS into a
dynamically created work area called MONSTER DETAILS, and every time your IS IT MAD
method comes back with a value of 1 for the monster being processed, you increase the
count of the RESULT variable. After the FOR loop is finished, the value of RESULT is copied
into MAD_MONSTER COUNT.

A common use case is where you have a table of (say) 10 monster numbers, and you
have to pass that out to an external system as a comma-delimited string. You reduce
the table into one big string with the monster numbers separated by commas.

Two negative aspects of the REDUCE statement are that (a) it can be really difficult to
understand what’s going on and (b), even more importantly, you can’t debug the FOR/
NEXT loop inside it; the entire statement is processed in one hit.

180

3.5 Internal Tables

FOR/NEXT Variations and Their Gotchas

In both VALUE statements and REDUCE statements you can have FOR/NEXT loops, and
they come in three flavors:

m IN for looping over internal tables, as you just saw.

® WHILE a logical expression is true, which is rather like the WHILE/ENDWHILE in tradi-
tional ABAP. If the logical expression is never true, there will be no loops.

® UNTIL a logical expression is true. There is no equivalent of this in traditional ABAP,
though this construct exists in many other languages. There will be always at least
one loop, and if the logical condition is never true, there will be an endless loop,
just as in a DO/ENDO loop with no exit mechanism, so you have to watch out for that.

The requirement is this: “I want to fill a table of monsters numbers. The first row will
have the value 1, and each subsequent row will have a value one higher than the last.
When the value gets to 11, do not add that value to the table and stop processing.” In a
FOR/NEXT loop, that comes out as follows:

monster no table = VALUE #(FOR m no = 1 THEN m no + 1 UNTIL m no = 11
(mno)).

That is quite confusing for the reader. The assignment directly after the FOR statement
sets the value of the first row. The assignment after the THEN statement says we are
going to start looping, adding 1to the number each time. The assignment after the UNTIL
statement says we are going to stop once the value reaches 11. The final (M NO) at the
end is saying add the current value of the variable to the table during each loop pass.

Just to confuse matters even more, the UNTIL variant automatically increases the loop
counter whether you want to or not. As an example, the following two statements are
functionally identical. They both fill an internal table with the numbers 1to 10. In effect,
if the THEN statement is missing, then it gets magically added at runtime:

1 UNTIL mno = 11 (mno)).
1 THEN m no + 1 UNTIL m no = 11

monster no tablel
monster no table2
(mno)).

The WHILE variation does not have such an automatic “hidden” increment, so the fol-
lowing two statements are not functionally identical. The first does nothing at all
(there is no THEN statement, so there is no loop), and the second fills an internal table
with the numbers 1to 10:

VALUE #(FOR m_no
VALUE #(FOR m_no

VALUE #(FOR m_no
VALUE #(FOR m_no

1 WHILE m no < 11 (mno)).
1 THEN m no + 1 WHILE m no < 11

monster no table 3
monster no table 4

(mno)).

3.5.8 Grouping Internal Tables

You're most likely familiar with the GROUP BY addition you can add to a database SELECT
statement, which condenses similar records into a single row. In the past, when you

181

3 New Language Features in ABAP

3.5 Internal Tables

wanted something similar to an internal table, you'd use the COLLECT statement or the
very dodgy AT NEW statement, which didn’t work particularly well in a lot of circum-
stances. In fact, the AT NEW statement was so unpredictable that it was wiser to avoid it
altogether and use other means to process related chunks from your internal table.

To be specific, if you said AT NEWMONSTER in a loop, you would expect the code within that
block to execute when the monster changed. However, it sometimes wouldn’t execute,
depending on how the table was sorted or if Jupiter was in alignment with Neptune or
if the chicken had jumped up and down three times at midnight and laid three addled

eges.
To avoid your program having to depend on such astrological or chicken-related fac-

tors, ABAP 7.4 announced good news: a GROUP BY option has been added to looping at
internal tables.

To understand what this means, let’s look at an example. Say that you have a huge table
of monsters. There are monsters of various types: some mad, some not. You only want
to process one combination of monster type/madness at a time. Somehow, you need
to aggregate such records, do something with the result, and move on to the next com-
bination. To do so, you need some sort of nested loop processing.

The usual way to do this is to build a smaller table of all possible combinations found
within the main table, do an outer loop on that small table, and for each row of that
outer table do an inner loop on the main table, looking for records relating to the com-
bination in the outer loop. There are ways to do this well —for example, by making sure
the inner table is a SORTED table—but it’s still a lot of effort.

Fortunately, GROUP BY saves the day. Listing 3.49 demonstrates how applying the GROUP
BY construct when looping over an internal table lets you look at the aggregate records
for each combination one at a time, without having to go through the agony of nested
loops. On each pass through the table, you're handed the aggregated data on a plate.

* In this example we are trying to prove that bonkers

* monsters with bolts through their necks have more heads
* per monster on average compared to bonkers monsters who
* like to ice skate.

* This is most likely a 100% correlation with the business
* problem you are trying to solve at work right at this

* moment.

TYPES: tt monsters TYPE STANDARD TABLE OF z4t monster head
WITH DEFAULT KEY.

DATA: monster sub set TYPE tt monsters,
total heads TYPE 1.

182

DATA(table of monsters) = VALUE tt monsters(

(monster number = '1' model = 'BTNK' no_of heads = 3)
(monster number = '2" model = 'BTNK' no_of heads = 4)
(monster number = '3" model = 'BTNK' no_of heads = 2)
(monster number = '4' model = 'ISDD' no of heads = 1)
(monster number = '5' model = 'ISDD' no of heads = 1)

).

LOOP AT table of monsters ASSIGNING FIELD-SYMBOL(<monster details>)
GROUP BY (model = <monster details>-model

is it crackers =
zcl 4 monster model=>is mad(<monster details>-monster number))
ASSIGNING FIELD-SYMBOL(<monster group record>).

CHECK <monster group record>-is it crackers = abap_true.
CLEAR monster sub set.

LOOP AT GROUP <monster group record> ASSIGNING FIELD-SYMBOL(<bonkers monsters>).
monster sub set =

VALUE #(BASE monster sub set (<bonkers monsters>)).

ENDLOOP.

CLEAR total heads.

LOOP AT monster sub set ASSIGNING FIELD-SYMBOL(<sub set record>).
total heads = total heads + <sub set record>-no of heads.
ENDLOOP.

1

WRITE:/ 'Bonkers Monsters of Type',<monster group record>-model,' have ',
total heads,' heads'.

ENDLOOP.

Listing 3.49 GROUP BY

This is complicated and introduces a whole bunch of new concepts all at once, so we
need to step through the code bit by bit. Debugging it is the best way to see what is
going on.

First, the database read is simulated to fill a table of monsters with three “bolts through
neck” monsters and two ice skaters, each of which has one or more heads. The business
requirement is going to be an aggregated list of the total number of heads, summarized
by type of monster and excluding all monsters who are not mad.

183

3 New Language Features in ABAP

Next is the LOOP AT/GROUP BY construct. What happens here is that every line of the table
islooped through before moving onto to the line starting with CHECK. In debugging, you
can see thatthe IS IT MAD method is called five times, once for each row in the table. To
simplify matters, all the monsters are mad in this example.

Now, there’s some sort of invisible nebulous table with two rows, two columns long,
which has been built up by a procedure analogous to COLLECT. The first row says BTNK/X
and the second row says ISDD/X. This is the table of possible combinations, the table
that will be looped through into the <MONSTER_GROUP_RECORD> work area.

A check is performed to ensure we're dealing with a combination that involves mad
monsters. Once that’s determined, the time has come to create a table that’s a subset of
the main table, a subset that only includes monsters that match the current combina-
tion.

The processing block starting with LOOP AT GROUP performs this task. The individual
records from the main table that match the current combination are looped through
into the <BONKERS MONSTERS> work area. At this point, you could just add <BONKERS MON-
STERS>-PEOPLE_SCARED to the TOTAL SCARED variable, but to prove a point we're going to
build up a subset table.

First, we'll look at the line that reads as follows:

monster sub set = VALUE #(BASE monster sub set (<bonkers monsters>)).

This could be translated as “append to table MONSTER SUB SET the <BONKERS MONSTERS>
work area.”

Now we have a table containing a subset of the main table, and we loop through those
records, adding up the total number of heads of the current type of monster and out-
putting the result.

The result is two written lines saying that (1) the mad monsters with bolts through their
necks have nine heads in total and (2) the mad ice skating dead have two heads in total.

Note

As mentioned, we didn’t really need to create a subset table in this example, but it’s
there to show that it’s possible.

At this point, you might be thinking this looks just like a geometric loop—but the inner
loop is only processed once for each group of similar items that the outer loop finds.
Therefore, the runtime only increases in a linear fashion, which means that your pro-
gram isn’t going to get into the situation in which it will be fine for a small number of
records but will time out when there’s a lot of data.

184

3.5 Internal Tables

Tip

In the SQL version of GROUP BY, you can only use column names. Because the internal
table version of GROUP BY is processed wholly within ABAP, you can do all sorts of groovy
things in addition—comparisons, method calls, and the like—which is why the exam-
ple included a method call to IS IT MAD.

This takes quite a bit of experimentation before you get comfortable with it. The most
difficult part, as with all these new constructs, is marrying new abilities to real-world
problems. (Of course, some people might say that summarizing open items per cus-
tomer from an internal table filled with BSID values is more realistic than summarizing
head numbers of different types of monsters, but what do they know?)

3.5.9 Extracting One Table from Another

There are two new ways to extract one internal table from another that were intro-
duced with 7.4, and both use the constructor operator FILTER. The next subsection will
talk about using the FILTER operator first with conditional logic and then as a FOR ALL
ENTRIES operation on an internal table.

FILTER with Conditional Logic

To understand the process of extracting one table from another in ABAP 7.4, return to
the monsters example. Once again, you have a big table of all the monsters, and you
want to extract a smaller internal table with just the averagely mad monsters. Nor-
mally, you would just loop through the big table and append lines to your new table, as
shown in Listing 3.50.

DATA: "Source Table
all monsters
TYPE SORTED TABLE OF z4t monster head
WITH NON-UNIQUE KEY monster number
WITH NON-UNIQUE SORTED KEY bonkers ness
COMPONENTS sanity percentage,
"Target Table
averagely mad monsters TYPE STANDARD TABLE OF z4t monster head,
an_averagely mad monster LIKE LINE OF averagely mad monsters.

"Extract Source to Target

LOOP AT all monsters ASSIGNING FIELD-SYMBOL(<monster record>)
WHERE sanity percentage < 75.
CLEAR an_averagely mad monster.
MOVE-CORRESPONDING <monster record> TO an averagely mad monster.

185

3 New Language Features in ABAP

APPEND an_averagely mad monster TO averagely mad monsters.
ENDLOOP."ALl Monsters

Listing 3.50 Extracting One Table from Another before 7.4

As of ABAP 7.4 (SP 8), you can do the same thing by using the constructor operator
FILTER in the fashion shown in Listing 3.51.

DATA(averagely mad monsters) =
FILTER #(all monsters USING KEY bonkers ness
WHERE sanity percentage < CONV #(75)).

Listing 3.51 Extracting One Table from Another in 7.40

Therefore, in 7.4 you can do something you couldn’t do before—but there’s a caveat. The
problem is that the FILTER operation introduced in 7.4 only works if the large table has
either a hashed or sorted key. In the preceding example, ALL_MONSTERS has a sorted key
on sanity perecntage, so the caveat doesn’t apply. (If the internal table ALL_MONSTERS
didn’t have a hashed or sorted index, then it wouldn’t be such a huge problem; remem-
ber that ever since 7.02, internal tables can have several secondary keys, which can be
hashed or sorted.)

FILTER Used as FOR ALL ENTRIES on an Internal Table

When reading from the database into an internal table, if you don’t want all of your
data in one massive table or you can’t merge all the tables together by inner joins, the
solution has always been—since the year 2000 and still to this day—to perform FORALL
ENTRIES, as shown in Listing 3.52.

SELECT *

FROM z4t deliveries

INTO CORRESPONDING FIELDS OF TABLE monster deliveries
FOR ALL ENTRIES IN all monsters

WHERE monster number = all monsters-monster number.

Listing 3.52 FOR ALL ENTRIES during Database Read

If earlier in the program you already had read the entire monster deliveries table from
the database into an internal table for some reason and wanted to create a subset just
for the monsters currently in ALL_MONSTERS, then you could now run the equivalent of
FOR ALL ENTRIES, but on an internal table rather than the database (see Listing 3.53).

DATA(deliveries our monsters) =
FILTER #(monster deliveries IN all monsters
WHERE monster number = monster number).

Listing 3.53 FOR ALL ENTRIES on Internal Table

186

3.5 Internal Tables

Once again, the filter table (ALL_MONSTERS, in this case) must have a sorted or hashed key
that matches what we’re searching for (the monster number, in this case).

3.5.10 Virtual Sorting of Internal Tables

What in the world is virtual sorting? This feature (which arrived in ABAP 7.52) is going
to be quite difficult to get your head around. In fact, it could be described as a solution
looking for a problem. Nonetheless, even if I can’t think of a practical use for it, it’s more
than possible that you're currently sitting at work grappling with a seemingly insoluble
problem that it might just solve. It's almost impossible to explain without an example,
so let’s walk through one.

Say you have an existing report that’s displayed in the form of an ALV tree. The header
table contains a list of customer disputes, cases in which a customer has complained to
the baron that the monster didn’t scare the peasants enough and they want a partial
refund. In the early days, the baron used to respond by sending round a monster to kill
and eat the complaining customer, but this didn’t do much in the way of encouraging
repeat business, so these days he often raises credit notes for valid claims.

Thus, in the ALV dispute report, each dispute line can be expanded to show the credit
note raised against the dispute or an entry saying the dispute has been rejected. So
there are two internal tables, a header one for the disputes and an item one linking dis-
putes to credit notes. The two tables are the same size, but the data is split so that all col-
umns can be viewed on one screen without scrolling to the right. Everything had
worked fine for ages; everything in the garden was rosy.

Then last week the chief accountant came to Inga, the head developer. In this case, the
chief accountant told her that he was investigating some sort of fraud possibly being
perpetrated against the baron and needed an ABAP2XLSX export of the data in the dis-
pute report. All he needed was a list of the dispute details, sorted so that the ones relat-
ing to high-value credit notes were at the top.

This initially appeared to be a simple task (adding a spreadsheet export option to a
report is so easy), but the fact that there are two tables complicates matters. Should
Inga make it so that each table is on a separate worksheet? That would work, but then
the user would have to do some manual work to link the two together, thus rather
defeating the purpose of computer automation.

After mulling it over, Inga realized she wanted to keep the header table and the item
table exactly as they are—sorted by DISPUTE NUMBER—so that the report would look like
it always did. To do so, she would have to create a new table with the data from the dis-
pute plus the credit note value, sort that, and use it for export to a spreadsheet.

That isn’t actually too difficult, but just for giggles, let’s do it using virtual sorting. In
Listing 3.54, you'll see that there’s a new method of CL_ABAP_ITAB UTILITIES, into which
are passed references to the two source tables (they have to be the same size, and you

187

3 New Language Features in ABAP

3.6 Object-Oriented Programming

can pass in as many source tables as you want). For each table, you pass in the sort cri-
teria. Ascending is the default, as usual; there’s a parameter to be filled if you want the
sort to be descending.

DATA(dispute indexes) = cl abap itab utilities=>virtual sort(
im virtual source =

VALUE #(

(source = REF #(credit note table)

components =

VALUE #((name = 'credit value'

descending = abap true)))

(source = REF #(dispute table)

components =

VALUE #((name = 'dispute number'))))).

Listing 3.54 Virtual Sorting

The result, DISPUTE_INDEXES, is a table that’s one-column wide and contains what the
index numbers would have been had you actually created a new table with the col-
umns from both tables and then sorted it by value descending and dispute number
ascending.

Then a new table is declared for the purposes of output to Excel, and it gets filled using
the indexes, as demonstrated in Listing 3.55.

DATA top disputes TYPE STANDARD TABLE OF 1 typ disputes.

LOOP AT dispute indexes ASSIGNING FIELD-SYMBOL(<index>).
APPEND dispute table[<index>] TO top disputes.
ENDLOOP.

Listing 3.55 Using Virtual Sort Result

It’s possible to do the previous two steps in one big statement that’s so complicated
that no one could ever be expected to understand it—but we’re not going to demon-
strate that.

To my mind, this isn’t an easier way to achieve a task, just a different way. Nonetheless,
now you know about it, just in case it’s exactly the sort of thing you're looking for.

3.6 Object-Oriented Programming

SAP introduced the concept of OO programming in ABAP in the year 2000. Since then,
it's been the recommended method of programming. This section will describe the
new features of ABAP that relate to OO programming.

188

Before we jump in, I have a burning need to mention that in ABAP 7.5, Transaction SE24
(Maintain Class) has been changed so that the full width of the screen is used. This is
such a simple fix, but so useful, and long, long overdue. Maybe one day the same streak
of common sense will be applied to SE93, which is one of the most cramped screens
around—and, as of ABAP 7.55, still hasn’t been fixed!

3.6.1 Upcasting/Downcasting with CAST

In OO programming, a downcast is a process in which you turn a generic object, like a
monster, into a more specific object, like a green monster. An upcast is the reverse. This
functionality has been available in ABAP for a long time, but it gets a lot easier in 7.4.

To take a non-monster-related example for once, consider a situation in which you
need to get all the components of a specific dictionary structure. Listing 3.56 shows how
you would do this prior to ABAP 7.4. First, call a method of CL_ABAP_TYPEDESCR to get
metadata about a certain structure. But to get the list of components of that structure
into an internal table, you need an instance of CL_ABAP_STRUCTDESCR; this is a subclass of
CL_ABAP_TYPEDESCR. Thus you need to perform a downcast to convert the instance of the
parent class into an instance of the subclass.

DATA structure description TYPE REF TO cl abap structdescr.
structure description

?= cl_abap typedescr=>describe by name('Z4SP_MONSTER HEADER D').
DATA structure components TYPE abap_compdescr tab.
structure_components = structure description->components.

Listing 3.56 Components of Specific Dictionary Structure without CAST

In 7.4, you can do this all in one line by using the CAST constructor operator (see List-
ing 3.57).

DATA(structure components) = CAST cl abap structdescr(
cl abap_typedescr=>describe by name('Z4SP_MONSTER HEADER D'))->components.

Listing 3.57 Components of Specific Dictionary Structure with CAST

The code in Listing 3.56 and Listing 3.57 performs exactly the same function, but in the
latter case you no longer need the STRUCTURE_DESCRIPTION helper variable and you also
don’t need the line in which you define the STRUCTURE_COMPONENTS type.

3.6.2 Finding the Subclass of an Object Instance

In many other programming languages, it’s possible to work out, given an object refer-
ence, what precise subclass that instance is. Prior to 7.5, the ABAP team at SAP resisted
this, but after unceasing demand from the online SAP Community, SAP provided the
new IS _INSTANCE OF statement.

189

3 New Language Features in ABAP

Just to rain on SAP’s parade even more—and this is very cruel, considering that it only
added this new feature due to popular demand—some purists would say that any sub-
class should be able to impersonate its parent without any program knowing the differ-
ence, and thus a calling program wouldn’t need to know the exact subclass. However,
the ABAP world isn’t as pure as everyone would like, and sometimes knowing this
information is actually quite useful—as in the following example.

In Chapter 10 on ALV, there’s an example in which we try to get an ALV grid reference
and try one subclass after another until the assignment succeeds (which we repeat here
in Listing 3.58).

DATA: full screen adapter TYPE REF TO cl salv fullscreen adapter,

container adapter TYPE REF TO cl salv grid adapter.

TRY.
"Presume full screen mode (No Container)
"Fullscreen Adapter (Down Casting)
"Target FULL SCREEN ADAPTER = CL SALV FULLSCREEN ADAPTER
"CL_SALV_FULLSCREEN is a subclass of CL_SALV_ADAPTER
full screen adapter ?= io salv_adapter.
"Get the Grid
ro_alv grid = full screen adapter->get grid().

CATCH cx_sy move cast error.
"We must be in container mode
"CL_SALV_GRID ADAPTER is a subclass of CL_SALV_ADAPTER
container adapter ?= io salv_adapter.
ro alv grid = container adapter->get grid().

ENDTRY.

Listing 3.58 Trying to Find Subclass before 7.5

In 7.5, life becomes much easier, as shown in Listing 3.59. By using the IS _INSTANCE OF
construct, the purpose of the code becomes much clearer to the reader.

IF io salv_adapter IS INSTANCE OF cl salv fullscreen adapter.
full screen adapter ?= io salv_adapter.
ro_alv grid = full screen adapter->get grid().

ELSEIF io salv_adapter IS INSTANCE OF cl salv grid adapter.
container adapter ?= io salv_adapter.
ro_alv grid = container adapter->get grid().

ENDIF.

Listing 3.59 Trying to Find Subclassin 7.5
The same task can be achieved in a slightly different way by using the TYPE OF construct
in conjunction with CASE. In the code in Listing 3.60, the exact subclass is determined,

and the respective branch of the CASE statement ensures that the created instance has
the correct subclass by using another new construct: INTO DATA.

190

3.6 Object-Oriented Programming

CASE TYPE OF io salv_adapter.
WHEN TYPE cl salv fullscreen adapter
INTO DATA(full screen adapter2).
ro_alv grid = full screen adapter2->get grid().
WHEN TYPE cl salv grid adapter
INTO DATA(container adapter2).
ro_alv grid = container adapter2->get grid().
WHEN OTHERS.
RETURN.
ENDCASE.

Listing 3.60 Another Way to Find Subclass in 7.50

The way you have to write the code in examples such as the one in Listing 3.60 isn’t par-
ticularly clear; the phrase INTO DATA doesn’t read much like an English sentence and
thus could be confusing. Nonetheless, you need to know that the option is available.

3.6.3 CHANGING and EXPORTING Parameters

In ABAP, a functional method has until now been defined as a method with one return-
ing parameter and zero to many importing parameters, such as the following:

monster header = monster->get details(monster number).

Many ABAP programmers liked the fact that you could put the result variable at the
start rather than having to put that variable in an EXPORTING parameter. But they
wanted to be able to have CHANGING and EXPORTING parameters as well—that is, to have
their cake and eat it too.

In 7.40, SAP has waved its magic wand, and now you can have it both ways. An example
is shown in Listing 3.61.

* Local Variables

DATA: monster number TYPE zde monster number VALUE '0000000001',
something spurious TYPE string,
something unrelated TYPE string.

DATA(monster header record) = lcl monster=>get details(
EXPORTING id monster number = monster number
IMPORTING ed something spurious = something spurious
CHANGING cd something unrelated = something unrelated).

Listing 3.61 CHANGING and EXPORTING Parameters
There is no doubt that many people will be happy with this, but purists who are used to

other languages will be horrified. (Although I don’t feel quite that strongly, I can see
their point.) Good OO design leads you toward small methods that do one thing, and

191

3 New Language Features in ABAP

the one thing for functional methods is to output one result. If a functional method
suddenly starts giving you back all sorts of other exporting parameters and changes
something else, then the method is clearly doing more than one thing, and that’s prob-
ably bad design. (For example, there are methods designed to return four values of a
polynomial equation, and you could use the new design to put the first value in the
RETURNING parameter and the last three values in EXPORTING parameters, but that seems
a bit silly. You could just return a structure of four values instead.) Nonetheless,
because this is a new feature of 7.4 that you might occasionally find useful, it was
important to mention it here.

Fun Fact about Functional Methods

If you have a functional method that returns a structure, but you only want one field of
that structure, you can write the following code:

DATA(sanity) = lcl monster=>get details(monster number)-sanity percentage.

The result will be a sanity variable typed as Z4DE_MONSTER SANITY PERCENTAGE. This is
because both at compile time and at runtime, a call to a functional method is inter-
preted as a variable of whatever type it returns.

3.6.4 Changes to Interfaces

This section discusses how SAP has tried to take some of the pain out of your daily
usage of interfaces in OO programming in 7.4. As you know, an interface is a collection
of data declaration and method names and signatures. If a class implements any given
interface, then it has to redefine all the interface methods. This is all good, but prior to
7.4 the problem was that some standard interfaces had a really big list of methods, only
some of which were relevant, so you had to go through the irrelevant methods and
redefine them to have blank implementations.

As of 7.4, if you create an interface and think that some of the methods might not be
needed by all classes that implement the interface, then you can say so in the interface
definition, as shown in Listing 3.62.

INTERFACE scary behavior.
METHODS: scare small children,
sells mortgages DEFAULT FAIL,
hide under bed DEFAULT IGNORE,
is fire breather
DEFAULT IGNORE
RETURNING rf yes it is TYPE abap bool.
ENDINTERFACE. "Scary Behavior

Listing 3.62 Defining Interface with Optional Methods

192

3.7 Search Helps

This is an interface all monster classes should implement. Naturally, all monsters should
be able to scare children—so don’t put any additions after that method definition. This
means that each class implementing that interface is forced to redefine the method by
the syntax check. On the other hand, most monsters will not sell mortgages (just the
worst of the worst monsters), so don’t force all the classes to implement this method.
Because you've added DEFAULT FAIL, if a program using an instance of a monster that
implements this interface tries to make the monster sell mortgages, and the method
hasn’t been implemented, then a runtime error occurs (CX_SY DYN CALL ILLEGAL METHOD).

Similarly, don’t force all monster classes to hide under beds; obviously, the ones that
are a thousand feet tall have problems in this area. By adding DEFAULT IGNORE to the end
of the definition, we can make sure these classes aren’t forcibly implemented. If the
program tells such a monster to hide under the bed, then nothing will happen—just as
if a call had been made to an implemented method with no lines of code inside it.

In the same way, not all monsters breathe fire. For the ones that do, the IS FIRE
BREATHER method can be implemented to return ABAP_TRUE. If the method is not imple-
mented in any given monster class, then the DEFAULT ICNORE addition is used, and the
RETURN parameter will bring back an initial value, which in this case is ABAP_FALSE.

3.7 Search Helps

Search helps are one of the strengths of the SAP system. You can define one and attach
it to a data element, and then all throughout the system wherever that data element is
referenced, an dropdown of possible values is available instantly. In release 7.4,
things even have become slightly better, and this section will explain how.

3.7.1 Predictive Search Helps

If you've read anything in the IT media in the last few years, then you’ll be sick to death
of writers saying that business users now expect at work the same level of usability
they get in their spare time. At this point, you've probably seen children with iPads;
they swipe away at the screen, calling up this and that, already more adept at this than
many adults. If that’s the level of user-friendliness children are exposed to, then what
are they going to expect from enterprise software like SAP when they grow up and get
jobs? What would someone who had just left school expect from an SAP system they
were being shown how to use on their first day of work?

For one thing, they would expect that when they start typing something in a search
field—a customer or material name, for example—after a letter or two has been typed,
a dropdown box of potential candidates would appear for them to choose from. That’s
what happens on Google and many other websites, and you can see why recent stu-
dents would be shocked when this doesn’t happen on an SAP screen.

193

3 New Language Features in ABAP

The good news is that if your SAP system is 7.4 SP 3 or above and SAP GUI is 7.31 patch
level 5 or above, then you'll find that such predictive search helps are now possible in
SAP. Half of the functionality is in the backend, and half is in SAP GUI, which is why
you need both to be on the correct level. (In fact, you really need to be on 7.4 SP 6 for
this to work automatically; otherwise, you have to fluff around manually with the CL_
DSH DYNPRO_PROPERTIES class, as described in SAP Note 1861491.)

Assuming you're on the right version, open Transaction SE11 and go into the Search
Help option about halfway down the screen. There, you'll see the Data Collection area
(see Figure 3.2).

Elementary Help |Zr—1OI'-lr}TER New(Revised)
Short description |I‘;Ionslers Mansters Maonsters

Attributes Definition

Data Collection Dialog Behavior
Selection method) ZMONSTERS l’E‘]idl-:-g, type |D Display values immediately v
Text table Hat key

Enhanced Options

] Autosuggest in input fields

Search help exit | |

Multi-column full text search (database-specific)

r-Tolerant Full Text Search

Figure 3.2 Search Help Definition

In release 7.4, directly above the Search Help Exit box is a new box called Enhanced
Options, in which you have two checkboxes and an input field. The second checkbox
and the input field are to do with fuzzy text searches on an SAP HANA database and are
grayed out, but the first checkbox says Autosuggest in Input Fields.

If you select that checkbox, then your search help will magically start behaving differently—
not quite like Google, but a popup list of candidates will appear as the user types, which
is a step up from before.

3.7.2 Search Help in SE80

You may have noticed, and been bothered by, the fact that when you're in SE80 and
can’t remember the name of your program, you can’t just press and see the result
list. You have to press the dropdown arrow to the right of the input field, which pre-
sumably is why that dropdown arrow’s there in the first place. (After all, if worked,
then you wouldn’t need a separate dropdown arrow.)

So you can imagine my delight when I was playing around in one of the latest SAP
releases and was in SE80 and had typed in half of my program name and pressed

194

3.8 Assorted

by reflex. I hadn’t even put in a wildcard asterisk, but what should I see but a dropdown
list of results (see Figure 3.3).

Mere words cannot explain how happy this made me. It must be true that little things
please little minds. It turns out that this function was available as of release 7.31—but
not everyone knows about it, so it’s worth calling out here.

v | v| Z [[BleditObect Cancel

& Repository Browser
¥ ATC Result Browser

[Package |v|

z4 1 x [y |$el

Z4_001_DDIC I
Z4_002 ABAP

74_00_CORE_OBJECTS
Z4_011_VILLAGE
Z4_012_MONSTER ~

Figure 3.3 F4 Search Help in SE80: Working at Long Last

3.8 Assorted

Much as I'try to fit all the new ABAP topics into round holes, there are some square pegs
that don't fit neatly anywhere but are still worth a mention. We'll look at those square
pegs in this section.

3.8.1 Unicode

One change in 7.5 that doesn'’t fit into any category is that now if you create a program
or class or what have you and check the Unicode checkbox, the system lets you create
the object, but then you get a fatal error in the syntax check until you switch it back off
again. I can see why you need the box, to change the setting for old programs, but if I
ruled the world, I'd have the system not even let you create the object unless the box
was checked—and likewise for Fixed Point Arithmetic, which the 7.5 system doesn’t
complain about at all if it’s off.

3.8.2 ABAP Language Versions

When you create a program, one setting you probably never even look at is the ABAP
Language Version in the attributes section of an executable program or a class. It
defaults to X (Standard ABAP Unicode) and you think nothing of it. In fact, if you were
to select the dropdown, you would see a whole bunch of options, as shown in Figure 3.4.

195

3 New Language Features in ABAP

ABAP Language Version: | Standard ABAP (Unicode) v

ABAP for key users
Static ABAP with Restricted Object Use
Standard ABAP with Restricted Object Use

Fix Point Arithmetic:

Start Using Variant:

Status:

Figure 3.4 ABAP Language Version Dropdown

The exact list you get varies with the version; Figure 3.4 shows version 7.2. In SAP BTP,
ABAP environment, you only get one option, which is ABAP for Cloud Development.

In any event, what this is all about is that outside of SAP BTP, ABAP environment, you
can change the default setting in order to make the syntax check stricter for an individ-
ual program or class or even an entire package. The standard SAP program ABAP_DOCU
VERSION WHITELIST will tell what objects (classes, data elements, etc.) are allowed for the
nonstandard language versions.

You may wonder why you would want to do such a strange thing (i.e., limit what’s avail-
able to you in a certain program). There are two use cases, one of which makes sense:

® You are creating a class (or whatever) in an on-premise system that you intend to
migrate to SAP BTP, ABAP environment at some stage. Therefore, you limit yourself
to only elements that are actually available in SAP BTP, ABAP environment. That
way, you won't get any syntax errors when you copy the object over.

® For a long while now, every so often, SAP comes out with the idea that you can let
some of your cleverer end users do some basic programming in the SAP system
without having to get IT involved. There have been many iterations of this: the
pseudo programming languages in SAP ERP HCM and Variant Configuration, vali-
dations and substitutions in SAP ERP Finance and Controlling, ECATT, and more
recently SAP Intelligent Robotic Process Automation (SAP Intelligent RPA). This
approach has never worked and never will; IT always ends up clearing up the mess
thus created. ABAP for Key Users is the latest attempt at this: a very restricted set of
ABAP commands intended for programs (enhancements to standard SAP) written
by end users. Will the idea work this time? What's that they say about doing the
same thing again and again and expecting different results?

3.8.3 Deprecation Concept

With ABAP 1908, something that should have happened long ago has started to occur.
Obsolete statements like STATICS now give a warning. The remote call statement PERFORM
xyz in PROGRAM 123 now gives a syntax error as it should.

Eventually—in about 15 ABAP versions’ time—these obsolete statements will all give
syntax errors, so that’s a wonderful reason to not only not ever use them again but also
remove them whenever you see them in existing code.

196

3.8 Assorted

Apart from the two mentioned just now, the other deprecated statements are as fol-
lows:

®m AT END, AT FIRST, AT LAST, AT NEW, ENDAT
These statements have never worked. I have not used them for 20 years.

= ADD, DIVIDE, MULTIPLY, SUBTRACT
I will actually miss these. I thought they made the code look clearer. I think ADD 1 TO
MONSTER_COUNT reads more like plain English than the new MONSTER_COUNT =+1 equiva-
lent, though the latter does sound like something from the novel 1984 mentioned at
the start of the chapter.

®m RAISE, MESSAGE RAISING
We're talking about “classical” exceptions here. Only class-based exceptions will be
allowed going forward.

m FORM, ENDFORM, PERFORM
This news will give old-school ABAPers who have been doing things the exact same
way for 20 years a heart attack. No more FORM routines! That’s almost as bad as hav-
ing to stop riding horses and drive cars instead!

3.8.4 Clean ABAP

Let’s discuss three open-source projects, all to do with improving the quality of your
ABAP code. All three live on GitHub, and you'll find links to all three in the Recommend
Reading section at the end of the chapter:

® (Clean ABAP

First up is the most wonderful ABAP-language open-source project ever created:
Clean ABAP, which was started by SAP but which anyone can contribute to. This is
a set of ABAP programming guidelines based on the Clean Code book by Robert
Martin. That was one of the best programming books ever written, but a lot of
ABAP people ignored it because all the examples were in Java. This is not to do with
functional correctness like traditional ABAP Test Cockpit checks but rather clarity:
the easier your code is to understand, the easier (and cheaper) it is to make correc-
tions and changes.

This takes the form of an ABAP programming style guide. In essence, there are about
10 billion rules, with explanations of why each rule is a Good Thing, coupled with
good and bad examples. Naturally, not everyone will agree with everything (mon-
sters don’t generally like being clean, for example), but most programmers will
agree with the vast majority of the suggested guidelines.
®m ABAP Test Cockpit checks

In addition, you can download from the GitHub URL special ABAP Test Cockpit
checks created by SAP that you can add into your default Code Inspector check vari-
ant, so you can see how “clean” your code really is.

197

3 New Language Features in ABAP

® ABAP code review guide
If that wasn’t enough, there’s yet another open-source project in this area—this time
to do with ABAP code reviews. You probably already have a formal or informal pro-
cess whereby one of your colleagues looks over your code before it goes to QA; this
project seeks to compile a list of best practices (and helpful tools) to boost your
efforts in this area.

3.9 Summary

In this chapter, you read about the somewhat radical changes that have been intro-
duced in the ABAP language in recent years, starting with 7.02 but most notably in
releases 7.4 and above. This chapter cataloged the vast array of new language constructs
that have been introduced into ABAP and showed examples of where they might be
useful in your day-to-day work, broken into several categories.

Now that you've learned about the development environment (Eclipse), the version-
management control coming in the future (abapGit), and the increased capabilities of
the language you program in, it’s time to move on to how to handle cases where every-
thing falls in a heap—in other words, exceptions.

Recommended Reading

® Clean ABAP style guide
https://github.com/SAP/stylequides/blob/main/clean-abap/CleanABAP.md
(Klaus Haeuptle et al.)

® Clean ABAP ATC checks
https://github.com/SAP/code-pal-for-abap

® ABAP code review guide
https://github.com/SAP/styleguides

m Clean ABAP
https://www.sap-press.com/clean-abap_5190/
(Klaus Haeuptle et al., SAP PRESS, 2021)

198

Contents

Acknowledgments 19
Introduction 21
1 Integrated Development Environment 31
1.1 Installation 33
111 Installing Eclipse 33
11.2 Installing SAP-Specific Add-Ons 36
113 Connecting Eclipse to a Backend SAP System 37
114 Upgrading Eclipse 39
1.2 ABAP-Specific Features 39
1.2.1 |Initial Tour and Basic Tasks 40
1.2.2 Working on Multiple Objects at the Same Time 44
1.2.3 Creating a Method from the Calling Code 45
124 Extracting a Method 49
1.2.5 Refactoring: Moving Methods and Attributes 54
12.6 Deleting Unused Variables 54
1.2.7 Creating Instance Attributes and Method Parameterscccceeeeun. 56
1.2.8 Quick Fixes for Classes 56
129 Extracting Conditional Logic 57
1.2.10 Seeing Message Details 59
1.2.11 Renaming Repository Objects 59
1.2.12 Magic Numbers 61
1.2.13 ABAP 7.5+ Features 61
1.3 Eclipse-Specific Features 65
131 Neon (2016) 66
13.2 Oxygen (2017) 67
1.3.3 Photon (2018) 68
134 Eclipse 2020-03 68
1.4 Testing and Troubleshooting 70
141 UnitTesting 70
142 Debugging 71
1.43 Dynamic Log Points 74
144 Runtime Analysis 76
1.5 Customization Options with User-Defined Plug-Ins 77
151 Favorites List 78

Contents

152 Continuous INTEGration ... seeseesecseennes 80
153 Code Insight ... 83
154 CuStom QUICK FIXES ..ot cesesesesesesessesessssesessesessenas 83
155 Custom Quick Fixes for ABAP Test Cockpitccocovcruuonericernccnunens 85
1.6 The Future of IDEs for ABAP Development 85
161 SAP Web IDEccc.... 85
1.6.2 SAPBusiness Application Studio 86
1.6.3 Visual Studio Code 89
1.7 Summary 96
2 abapGit 99
2.1 Theory 100
2.2 Installation 101
221 Installing the abapGit Repository in Your SAP Systemoccmeceneceenn. 101
222 Keeping Your abapGit Version Up to Datecocrnecenneceneceinneeenne 107
2.23 Watching the abapGit Repository 109
2.3 Storing and Moving Objects 110
231 abapGit Versus SAPHNK ... iieceeeenerereesiesieecsiseesseessaseesisnessens 111
2322 Using Online RepoSItOriescrecrmncerinecenncenes 111
2.3.3 USIiNg Offlin@ REPOSILONIES ...ouvevereercriicricriicriecniseeriecsieeseseesssessssseeseseseenes 117
2.4 Dependency Management 122
241 APACK: TREOMY wcoovervemeineiieceieseaseesieseaseesssessaesesssssanessasesssssesses 122
242 APACK: INSTAllation ... sesssesensseseneas 123
243 APACK: EXAMPIE oottt seiseesssesssseessssessesee s ssssessssesssssssens 124
2.5 Branching 125
251 Project Collaboration: Sharing Solutionscccenecunnceee. 126
252 Production SUPPOITcvcevemeeeneceecrieeereceeeeeennee 133
2.5.3 ULOPIan DrEAM ..ceeccesecreciciceerieeiesssessse e stsesssssssessesssessssssssessssssscnes 141
2.6 abapGit for Customizing 141
2.7 Summary 142
3 New Language Features in ABAP 145
3.1 Declaring and Creating Variables 147
3.1.1 Omitting Data Type Declarations 147

Contents
3.1.2 Creating Objects Using NEW ... 148

3.1.3 Filling Structures and Internal Tables while Creating Them
Using VALUE ... 148
3.1.4 Filling Internal Tables from Other Tables Using FOR 150
3.1.5 Creating Short-Lived Variables Using LET 151
3.1.6 Enumerations 152
3.1.7 New Mathematical Operatorscnenecnecenerne. 155
3.2 SEHNG PrOCESSINGoooocreieiecrriinesceriiaeesessiesesssssiesesssssesseesssssassssssssasnesssssssnnns 155
3.3 CalliNg FUNCHIONS ...t sseseessesssssisseesssssasessssssssnesssssssnnes 156
3.3.1 Avoiding Type Mismatch Dumps when Calling Functionscccoee.... 156
3.3.2 Using Constructor Operators to Convert Stringscuemioneccnncnnns 158
3.3.3 Functions Expecting TYPE REF TO DATA ...ccoociiririsececesesenceneennne 159
3.4 Conditional Logic . 160
341 OMItting ABAP_TRUEociiiieeicceeesceneimeceeeecsesesesessssesssssseesesssessesssesessenseseses 161
342 Using XSDBOOL as a Workaround for BOOLCcccccomeeeummerreenecceeennecenns 162
3.43 The SWITCH Statement as a Replacement for CASEccccoonvoncennennes 164
344 The COND Statement as a Replacement for IF/ELSEccomevvmmrccecrnenceens 165
3.5 INterNAl TADIEs ...t sssiesssssssses 167
3.51 Table Work Areas et 167
3.5.2 ReadingfromaTable 169
3.5.3 CORRESPONDING for Normal Internal Tables 170

3.54 MOVE-CORRESPONDING for Internal Tables with

DEEP SEIUCTUIES ...oreeeec et senaees 172
3.5.5 Dynamic MOVE-CORRESPONDINGcccccocmmrrvurieriuirenens 175
3,56 New Functions for Common Internal Table Tasks 177
3.5.7 Internal Table Queries with REDUCEcccoomrimmcmmneneeeneceeeseceesssencenns 179
3.5.8 Grouping Internal Tables ..., 181
3.5.9 Extracting One Table from Another 185
3.5.10 Virtual Sorting of Internal Tables 187
3.6 Object-Oriented Programmingrremonecessmnesessseasessesssssnen 188
3.6.1 Upcasting/Downcasting with CAST 189
3.6.2 Finding the Subclass of an Object Instancec.cccccomnccuuen. 189
3.6.3 CHANGING and EXPORTING Parameters 191
3.6.4 Changesto Interfaces ... 192
3.7 Search Helps 193
3.7.1 Predictive Search Helps ... 193
3.7.2 Search Helpin SE80coomeomevenerunne. 194
3.8 Assorted 195
3.8 1 UNICOAE oo ceeeceeseseeeesseesssssesesss s eesse s seses e eseeesenan 195
3.8.2 ABAP Language VerSioNSreneeeneseseeeeseesssescssesannes 195
9

Contents

3.8.3 Deprecation CONCEPL ...t sssesssees 196
3.84 Clean ABAP ... 197
3.9 Summary 198
4 Exception Classes and Design by Contract 199
4.1 Types of Exception Classes 201
411 Static Check: Local or Nearby Handlingcrnccnnccnccinnccinens 201
412 Dynamic Check: Local or Nearby Handling 203
4.13 No Check: Remote Handlingcccommecnmecemneceneceanee 204
414 Deciding Which Type of Exception Class t0 USeccoucmcemnerrnecenncernees 206
4.2 Designing Exception Classes 207
421 Creating the Exception 207
422 Declaring the EXCEPLION ... cnreecereceecineceiecrisecsisecsisecsssessasecsssessenees 212
4.2.3 Raising the Exception 213
424 Cleaning Up after the Exception Is Raised 218
42,5 Error Handling with RETRY and RESUMEccccoovniiinnnicinncnnnnns 220
4.3 Design by Contract 224
431 Preconditions and Postconditions ... 226
432 Class INVANANTS ...oirieeceeesecreiieeseieeceeeses s sesaseesessesssssesesssessesseeseseneas 228
433 Handling Violationsicsecnecsecisesieecsssessssessssesseens 230
44 Summary 232
5 ABAP Unit and Test-Driven Development 233
5.1 Eliminating Dependenciesreceonneneeminesesssinsesessseasessssssssnen 235
51.1 Identifying Dependencies ... 236
51.2 Breaking Up Dependencies Using Test Seams 238
5.1.3 Breaking Up Dependencies Properly ... ececeecenecsenecees 240
5.2 Implementing Test Doublesnneeerenesessseseseessessens 242
521 TestInjection for TESt SEAMSoccrceneeeinecineceneeenecineceissecsecsieesssennen 243
522 Creating Test DOUDIES ... scaecieecees 243
5.2.3 Injection: Good Method 246
524 Injection: Better Methodnecnnccnecenenns 248
5.3 Writing and Implementing Unit Tests ..., 251
53.1 Test-Driven Development ... 252

10

Contents

532 DefiniNg Test ClaSSescccmrcreiceriieceiiecssieeeeesiesssassesssssessssssesesssessenas 254

5.3.3 Implementing Test Classes 260

5.4 Optimizing the Test Process 269
5.4.1 Eclipse Support for the Unit Test Process 269

5.4.2 ABAP Support for the Unit Test ProCessmemcnecnecenecenecionecens 271

5.4.3 Test Double Framework .. 274

5.44 ABAP Unit Authority Check ..., 279

545 Unit Tests with Massive Amounts of Data ... 284

5.4.6 Combinatorial Test DeSIZNcccowmrerermeceieecineceireeceseeeseeessenaones 287

5.5 Summary 289
6 Database Programming with SAP HANA 201
6.1 The Three Faces of Code Pushdown 292
6.2 ABAPSQL 293
6.21 New Commands in ABAP SQLccoirimmecrmneceeeieesemsseessssesesssecsesesesenes 294

6.2.2 Creating while Reading 307

6.2.3 Buffering Improvementscncnncrnccenncnnes 308

6.2.4 INNERJOIN IMProvementsceecececesseecsscneceenes 310

6.2.5 UNION oot seseeecssssesessssesessssessesssessesss e esssessssse s sesses s seneas 311

6.2.6 Code Completion in SELECT Statementscccovmcnecvcencrnecnncesernccinenns 312

6.2.7 Filling a Database Table with Summarized Data 313

6.2.8 Common Table Expressions 314

6.2.9 ISINITIALin SELECT Statements ... rnneceinerceeseeceeesecenseeesenns 315

6.2.10 Stricter Syntax Check ... 316

6.2.11 The Death of FOR ALL ENTRIES ...ciiieeieiecireeereeenseeneeiseeeseeessesssesisessesssesenens 316

6.2.12 Unit Testing ABAP SQL Statements ..., 320

6.3 CDS Views and CDS ENtitiescc.coorrcrimncrrionnescerisnnecssssieseessssessnecsssseons 323
6.3.1 Creatinga CDS Entity in Eclipsecccoouvernevuene. 325

6.3.2 Choosing an Entity Typeccccoocioneecnncnunne. 328

6.3.3 Coding Annotations in the CDS Entity ... 334

6.3.4 Adding Authority Checks to a CDS Entitycccooceevecenercrnecenenns 337

6.3.5 Reading a CDS Entity from an ABAP PrOgramceneeneceneeeenne 339

6.3.6 Creating Special Types of CDS ENtitiesccionercnnnccenncceineccenns 340

6.3.7 Using Special CDS Entity FEAtUres ... 342

6.3.8 Unit Testing CDS Entities 347

6.4 ABAP Managed Database Procedures 350
6.41 Defining an AMDP in EClIPSE ...ccococerinecceerrcreineccriesneceeisecneaeseeeeaannes 350

n

Contents

6.4.2 Implementing AMDP in ECliPSE ..o 351
6.43 Calling AMDP from an ABAP Programcceenenreusssscesnessusesnsenns 355
6.4.4 Calling AMDP from inside @ CDS ENtity ...cccooceveceneccrnecrnccrnnccrnecnnns 356
6.5 Locating and Pushing DowWn COdeeomreerinneesesminssecesssessessssseons 359
6.5.1 Finding Custom Code that Needs to Be Pushed Downcccccccovecunereenn. 359
6.5.2 Which Technique to Use to Push Code Down 360
6.5.3 EXAMPIE .o 363
6.6 SUMMATY ... sss st 369
7 Business Object Processing Framework 371
7.1 Manually Defining a Business Objectcccccomomcrmmncnccminnenecssisneneens 373
711 Creating the ObJeCt ... ssseesseessaseseanns 374
712 Creating the Header (ROOt) NOGEcccoomrrreeeemmnnrceeeinnseensessseseeesessseeeesenns 375
7.1.3 Creatingan Item Node 378
7.2 Automatically Defining a Business Object Based on a CDS View 379
7.3 Using BOPF to Write a Dynpro-Style Programccccmrccnmnccrncnnneccens 383
731 Creating a Model Class ... s 384
7.3.2 Queries: Checking Object EXiStENCEccovcvuverrmerrrreceerererrecinenns .. 387
733 LOCKING ODJECES oot sisesseseeseses i esesessessesens 399
7.3.4 Performing Authority Checks ... 400
7.3.5 Determinations: Deriving Values from Other Valuesccccceuncceee. 402
7.3.6 Validations: Checking Data INtegrity ... 414
7.3.7 Actions: Responding to USEr INPULccovevncecrrnecrnncrmnecrnecrieeeninecseeseanne 421
7.3.8 Saving to the Database ... eseseesessseinns 432
7.3.9 Tracking Changes in BOPF ObjJectscccuinerenneeenecineceeeceoneseonas 438
7.4 Unit Testing BOPF Objects with BUNit ... 446
7.5 Using a Custom Interface (Wrapper)ceeeeensnnnnennnsseesssssssssssennns 449
Ti6 SUMMATY ...ttt esee st s ssee s ettt 450
8 Business Logic Using the ABAP RESTful
Application Programming Model 453
8.1 ABAP RESTful Application Programming Model versus BOPF 453
8.11 Business Definition LANGUAGE ..ovceceeeeereieceierienecrieesseseeriseesssseeseeeseneesons 454
8.1.2 Business Objects as First-Class Citizenscoininnecionereneccennecenna. 455

12

Contents
8.2 Coding Business Object CDS ENtities ... 455
821 Coding Data DefinitioNsrcrerinecrcniecriecsieeseeesiesessecseeseenes 456
822 CodiNG CDS PrOJECHIONS ..oomvemnceercrimeriiecriesieecriecsisseseseesissesssseseesssssessesssnes 460
8.23 Coding Metadata EXtENSIONS ..o 463
8.3 Coding Behavior Definitions and Projections ..., 469
8.4 Coding Behavior Implementations ... 474
8.41 Creating a Behavior Class ... 474
8.4.2 Creating or Changing ODJECESccecernecrrernecreceieereneseieecsseseanes 480
8.4.3 LOCKING ODJECES oot srseeseseesissesesss et 497
8.4.4 Performing Authority Checks ... 501
8.4.5 Determinations: Deriving Values from Other Valuesccccvvevonnnenn. 504
8.4.6 Validations: Checking Data INtegrity ... 507
8.4.7 Actions: Responding to USEr INPULoccceccinecineceierinecrineeeiseerisecsiseeeone 510
8.4.8 FEAtUre CONTIOL ...ttt siseeseees 513
8.49 Savingthe Changed Business Objects 516
8.410 Tracking Changes in ABAP RESTful Application Programming

IMOAEI ODJECES ..ot ses s sessssssaessinees 518
8.5 Calling CRUD Operations from ABAPccccccconmemimneemmnnesesmsssssseesssesseseens 519
8.6 SUMMANY ..o, 520
9 Service Layer 521
9.1 What Is SAP GateWay? ... cecceeeesisesestssese et ssssssssesssesessseces 521
9.2 Transaction SEGW Service Layer: Manual Creation ..., 522
9.21 CONTIGUIALION oottt sssessasee st 522
9.22 Coding 536
9.3 Transaction SEGW Service Layer: Automatic Creation ..., 549
9.3.1 Creating an SAP Gateway Service by Pulling from a CDS View 550
9.3.2 Creating an SAP Gateway Service by Pushing from a CDS View 552

9.4 ABAP RESTful Application Programming Model Service Layer:
Manual Creation ... 554
9.41 Creating a Service Definition 555
9.4.2 Creating a Service BiNdiNgcencreernecsieceeseessessiesessessones 556
9.43 Creating Automated Unit Tests for the OData Serviceccoecnneceoneceenn. 559

9.5 ABAP RESTful Application Programming Model Service Layer:
AUtomMatic Creation ... sesssaseessesseaeesenss 561
9.5.1 Making Sure the RAP Generator Is Available in Your System 561
13

Contents

9.5.2 Creating a JSON Configuration File ... 562
9.53 Pressing a Big, Red Button 564
9.6 Summary 565
10 ALV SALV Reporting Framework 567
10.1 Getting Started 569
10.1.1 Defining an SALV-Specific (Concrete) Classcemneceemmemeceerseenns 570
10.1.2 Codinga Program to Call a Report 571
10.2 Designing a Report Interface 574
10.2.1 Report Flow Step 1: Creating a Container (Generic/Optional) 576
10.2.2 Report Flow Step 2: Initializing a Report (GENETiC) ..vvveveermeccrereernrecerenenns 577

10.2.3 Report Flow Step 3: Making Application-Specific Changes
Y T1el]) 584
10.2.4 Report Flow Step 4: Displaying the Report (Generic) 596
10.3 Adding Custom Command Icons with Programming 601
10.3.1 Creating a Method to Automatically Create a Container 603
10.3.2 Changing ZCL_BC_VIEW_SALV_TABLE to Fill the Container 604
10.3.3 Changing the INITIALIZE Method 605
10.3.4 Addingthe Custom Commands to the Toolbarcmconecenennns 606
10.3.5 Sending User Commands from the Calling Programccccoucccuemueceens 607
10.3.6 AddiNG SEPArators ...t ssessesessssss s ssssesssssesseseseas 607
10.4 Editing Data ... sesiasessssssises s sssiessessens 609
10.4.1 Creating a Custom Class to Hold the Standard SALV Model Class 610
10.4.2 Changing the Initialization Method of ZCL_BC_VIEW_SALV_TABLE .. 610
10.4.3 Adding a Method to Retrieve the Underlying Grid Object 614
10.4.4 Changingthe Calling Programrceceneeecssesssessenecses 617
10.4.5 Coding User Command HandliNgcccovemcemeemecenmecenneceneceecesssecssesnen 617
10.5 Handling Large Amounts of Data with CL_SALV_GUI_TABLE_IDA 621
10.5.1 BasicExample 621
10.5.2 COMPIEX EXAMPIE .coooreireiciiecricrinecrieceiseeseeesisesssseeseessiseesssesssssesssnessesesses 624
10.6 Open-Source Fast ALV Grid Objectccocroncccrrincscriisnnesscssiesnseeeens 628
10.7 Making SAP GUI LOOK LiKe SAP FiOricoomeermmmmcerriimnceerriinseesesmieseessessiesseseens 629
J0.8 SUMMALY ..o eeseseesesssesesesesesss s sssse st 630

14

Contents

11 ABAP2XLSX and Beyond 631
11.1 The Basics 633
11.1.1 How XLSX Files Are Storedrinnnicinseriinenens 633

11.1.2 Downloading ABAP2XLSXccirrmmeccemmmesemmesemsssseesssssessssesensanns 635

11.1.3 Creating XLSX Files USING ABAPccvmcererereceneeeireeeisessissesssesseeesisensos 635

11.2 Enhancing Custom Reports with ABAP2XLSX 639
11.2.1 Converting an ALV to an Excel Object ... 639

11.2.2 Changing Number and Text Formats 641

11.2.3 Establishing Printer SEttings ... 644

11.2.4 Using Conditional Formatting 646

11.2.5 Creating Spreadsheets with Multiple Worksheets 655
11.2.6 Using Graphs and Pie Charts .. 656
11.2.7 Embedding MaCroscermnecrecrnsecenes 660
11.2.8 EMAIliNG the RESUIL .ottt sssesnen 665
11.2.9 Adding Hyperlinks to SAP Transactions 668
11.3 Tips and Tricks 673
11.3.1 Usingthe Enhancement Framework for Your Own FiXescccueceun 673
11.3.2 Creating a Reusable Custom Frameworkcecenernnne. 676
11.4 Beyond Spreadsheets: Microsoft Word Documents 676
1141 |Installingthe Tool ... 677
11.4.2 Creating @ TEMPIAtE .o ceccrceceecrecrieceiecreecsineeseesseeees 678
11.4.3 Filling Out the Template Programmatically 681
11.5 Summary 688
12 Web Dynpro ABAP and Floorplan Manager 689
12.1 The Model-View-Controller Concept 690
12.1.1 Model 691
12,02 VIBW ot ssse i sisss s sase s sssss s sssesisssasesssessnesssssssnssens 693
12.1.3 Controller 695
12.2 Building the WDA Application 696
12.2.1 Creatinga Web Dynpro Componentnercenessonnsesenns 697
12.2.2 Declaring Data Structures for the Controller w699
12.2.3 Establishing View SETEINGSccovcneceneiinecinecinneceseceneecinsecsseesssesssesnes 701
12.2.4 Defining the WindOWScccccrmneerenecceinneceeiseceianeeens 710
12.2.5 Navigating between Views inside the Windowcccconuceeeue. 711
12.2.6 Enabling the Application to be Called ... 714

15

Contents

12.3 Coding the WDA Application 715
12.3.1 Linkingthe Controller to the Model 715
12.3.2 Selecting MONSter RECOIASccwumreeceieriecriecnieeesiseesisensesessisenees 715
12.3.3 Navigating to the Single-Record View 721

12.4 Using Floorplan Manager to Create WDA Applications 724
12.41 Creatingan WDA Application using FPM Manuallyccccconvonceenennes 726
12.42 Creating a WDA Application Using FPM via BOPF Integration 738

12.5 Unit Testing WDA Applications 744

12.6 Making WDA Look Like SAP Fiori 747
12.6.1 Enabling SAP Fiori in WDA via Classic Configuration ... 747
12.6.2 Enabling SAP Fiori in WDA via New Customizing Ul ... 748

12.7 Touch Enablement of WDA Applications 752

12.8 Summary 753

13 SAPUI5 755

13.1 Basics 757
1311 WHAT IS SAPUIS? c.coriereeieciccisesirecieceseessesisessesssessssessse i sssssse e sssessssssanes 757
13.1.2 SAPUIS VEISUS SAP FIONT ..o ssnsssnnsnes 758

13.2 Modern IDEs 759
13201 VS COE ottt sssessses s sssse sttt ssseseon 759
13.2.2 SAP Business Application STUAIOccoccecvcenecneeineciscircenerrecieceienns 761

13.3 Creating an SAPUI5 Application Manually 763
1331 VSCode 764
13.3.2 SAP Business Application StUIOccvceecrmcrnnecrnecrneeineceeceienecsiecniseeees 787

13.4 Creating an SAPUI5 Application Automatically 792
1341 VSCode 793
13.4.2 SAP Business Application StUdiO ..., 798

13.5 Extension Tools 804
13.5.1 Guided Development 805
13.5.2 Adding Elements with OpenUI5 ... 809

13.6 Importing SAPUI5 Applications into SAP ERP 813
13.6.1 Storingthe Application inside SAPmneconnnns 814
13.6.2 Testing the SAPUI5 Application from within SAP ERPccccccovvvvonecunecens 816

13.7 Unit Testing SAPUIS5 Applicationsroncermncsesmisnsensessiesseseens 818
L13.7.0 ESLINT ottt sttt sttt 818
13.7.2 QUnit 819

16

Contents

13.7.3 OPA 820

1374 GRETKIN o 821

13.7.5 UlVeri5 and the Test Recordercenereenneccenesseseeseeseeens 822

13.8 SUMMANY ..o ceeees s esese s sss s 824
14 ABAP Channels 827
14.1 General Concepts 828
14.1.1 ABAP Messaging Channelsoncnncnnes 829

14.1.2 ABAP PUSh Channelscieecseccemseseeiesensessssesessssesesssessenas 830

14.1.3 ABAP DEEIMONS ...t ssssssssss s sssssssssssssssssssssssass 831

14.2 ABAP Messaging Channels: SAP GUI Example 833
1421 Coding the Sending Application .. 835

14.2.2 Coding the Receiving AppliCationcncenecneceneccunecennens 840

14.2.3 Watchingthe Applications Communicatecmcnnecenneceneceneeens 844

14.3 ABAP Push Channels: SAPUI5 Example 847
143.1 Coding the Receiving (Backend) Components 848

14.3.2 Coding the Sending (Frontend) Application 856

14.4 Internet of Things Relevance ... nesessnsessessiesseseens 857
145 SUMMATY ... 859
Conclusion 861
THE AUTNOT e s 863
INA@X oo 865
17

Index

A
ABAP
ABAP 1809 301, 349
ABAP 1909 345
ABAP 7.3 269
ABAP 74 300, 309
ABAP 7.5 49,61, 312,317
ABAP 7.55 145, 301-302, 306
development system 39
event mechanism 599
packages 41
quick assist 49
ABAP Authority Check Test Helper API 280
ABAP CDS Language SUpport ... 95
ABAP channel 827
general concept 828
ABAP Code Insight 83
ABAP Console 63
ABAP Continuous Integration plug-in ... 80, 82
ABAP Coverage View 271
ABAP Development Tools (ADT) 32,479
ABAP Doc 62-63
ABAP for Key Users 196
ABAP in Eclipse
ADT 32
connection 38
missing method 46
ABAP language version ... 146,195
ABAP Managed Database Procedures
[N 0702 292,324, 329, 350
ABAP program 355
CDsS entities 356
Eclipse 350-352
method definition 367
ABAP messaging channel ... 828-829, 833
activity scope 837

coding the receiving application
coding the sending application

configuration
example
framework
receiver object
SAP GUI
send a message

subscriber object
USer-SPecific SEttiNgsmeseceeeeeeeees
warning

ABAP Objects 45

ABAP programming model for
SAP S/4AHANA 323

ABAP push channel ... 828, 830, 848
code for incoming messages 850
coding receiving COmponents 848
coding the sending application 856
configuration 848
ON_MESSAGE methodccccumecerrrnnnn 851
SAPUI5 847
testing the APC Serviceomeceeennnns 854

ABAP RESTful application programming

model 332,341, 363
business logic 453
JSON configuration file ... 562
preview SAP Fiori Elements ... 557
service bindingceceeeeeecoinnneees 556-557
service definition 555
service layer 554
tracking changes 518
trigger MAIN methodoeceeccemnnecerernnnn 564
unit tests 559
versus BOPF 453
ABAP Snippets 95
ABAP SQL 292-293, 331
new commands 294
query 295
retrieve Single record ... ccemnecerernnns 298
ABAP SQL Test Double Framework 321
ABAP Syntax Highlighting ... 95
ABAP Test Cockpit 63, 82, 85,359-360, 818
ABAP Test Cockpit checksccomecrrreennee 197
ABAP Test Double Framework (ATDF) 269,
274,277
GIVEN method 276
THEN method 277
verifying results 275
WHEN method 276
ABAP Unit 233
ABAP Unit Authority Check Framework
API 282
ABAP Unit framework ... 818
ABAP Unit Runner 271
ABAP Unit Test Double Framework 820
ABAP Workbench 31-32,42,48,71,538
ABAP_TRUE 161
ABAP2DOCX
invoice example 687
type definitions 682

865

Index

ABAP2Word 677
ABAP2XLSX 631, 638
basics 633
code improvement 133
colors 647
conditional formatting 646, 648, 650
download 635
email 665

enhancement framework
enhancing custom reports
example programs

Excel objects
graphs and pie Charts ...
headers and footersconnnecenns
hyperlinks 668, 670
linking nodes 652
macro-enabled worksheet ... 661
macros 660
multiple worksheets 655
negatives to positives 654
overwrite exit method ... 674
printer settings 644
recommended reading 688
reuseable custom framework . 676
saving template to database 662
templates 663
testing 650
tips and tricks 673
traffic light icons 653
upload blank spreadsheet ... 661
virtual sorting 187
XML for conditional formatting 651
abapGit 99
change request 115
clone forked repoSitorycomeceenann. 129
committing 130
create online repository ... 135
Customizing 141
documentation 102
installation 101
new repository 114
offline repository 117
package hierarchy 106
packages 114
private repository 134
Production SUPPOTLeeeecmnecerromseeerrinneees 133
project collaborationceceecnneces 126
pull objects 116
pull request 131
repository 101, 105
repository settings 108
SAP versions 102

866

abapGit (Cont.)
stage 115
staging 130
storing and moving objects ... 110
transaction 102
versions 107
versus SAPlink 111
watch repository 109
abaplint 96, 132
Abstract entities 342
Access condition parameter ... 339
Actions 421
annotations 512
coding 422
coding validations 428
create
error handling
execute
implementation

respond to user input
results

validation
Adapter pattern
Advanced ABAP Snippets
Advanced Message Queuing Protocol
(AMQP) 859
Alias 329-330, 459, 482
All pairs technique 288
ALPHA formatting option ... 156
Alternative key 398
ALV
application 833
convert 639
function modules 596
grid 696,707,717
interface 837
list program 204
report 445,827
SALV 567
screen 772
tree 344
Analytical list page 794
Annotation ... 325,334, 380, 464

ANSI-standard SQL 353
Antifragile 720
Antifragile principle 49
APACK 122
example 124
installation 123
theory 122
Application configuration ... 728,736
Application configuration layercccoueeee. 748

Index

Application model 578
Application modeler 802
Application-defined function ... 582
Assemble/act/assert testenii 259
ASSERT 226, 267
Assertion 265
Assignment Operators.ceieinennens 155
ASSOCIatioN ..o 333,528,741, 780
set 528
Asterisks 311
Authority check unit test framework 280
Authority checksoueeee. 337-339,401-402
perform 501
Authorization master ... 501
Autosave 66
B
BAPEX structure 488
Behavior class 474,476
Behavior definition ... 469,473
Behavior determination ... 505
Behavior implementation ... 474
Behavior pool 474
Behavior-driven development ... 258, 289
Belize 629
Big data 147
Bill of materials (BOM)cccoovvrmmreermrrennerenrnnens 373
BOOLC 162
Boolean logic 162
Boolean variable 163
BOR object 524
Boundary numbers 288
Branching 125
main branch 129, 137
new branch 138
revert 139
switching branchesconcceenenn. 138
Breakpoint 393
Buffering 308-309
Built-in functions 178
BUnit 446
test definition 447
test implementationccconeceenes 448
Business Configuration Setscccvveeeee. 107
Business Definition Languageccccccceeeeee 454
Business object 389, 455
CDS views 379
manual definition 373
Business Object Processing Framework
[0216) 2325 RN 31, 158,371-372
action validations 427

Business Object Processing Framework (Cont.)

actions 421-422
authority checks 400
callback subclass 443
change data in memory ... 435
change document subnode 442
change record 437
configuration classeecnneeeeene 395
create header NOdeoecmneceeecmnecernnn. 375
create item node 378
create model ClaSSescmeeeecnneeeenann. 384
create new record 433
create object 374
creating an action 421
creating/changing objects ... 387
CUSTOM QUETIES ..o 388, 390
delegated objects 441
determinations 402
header record 394
locking objects 399
manually defined names ... 376
object generated from CDS view 382
persistency class 385
read object 408
recommended reading ... 451
service manager 396
testing 445
tracking changes 438
unit testing 446
update object in database 436
validations 414
wrappers 449
Business Rule Framework plus (BRFplus) ... 414
Business Server Pages (BSP)cc.ccommeceeueenns 371
Business transaction events ... 832
C
Calling code 45
Calling program 207,571
CASE .o 160, 164, 190, 294, 296, 321, 330
Case-insensitive search ... 303
CAST 189
CDS entities 292, 323-324, 334, 454, 550,
555, 624,748
access control 338
annotations 334
buffering 335
building 325
business object 455
create 459
create in Eclipse 325

867

Index

CDS entities (Cont.)
data definition 326
expose a hierarchy 346
joins 334
parent and child
read from ABAP
special features
special types
template-generated code
unit testing
virtual elements

CDS hierarchy
CDS Test Double Framework ... 347
CDS Views ..o 323,326, 380,402, 483, 550,
553,739
BOPF annotations 381
open 363
CE functions 353
Centralized version-control system 125
Certificate 104
Chain of responsibility patternceeeee. 535
Change document
CHANGING parameter
Channel extension 838
CHECK 406,410,417
Check method 267

CHECK_DELTAooovrvvrrmmrmrrsssssssssne
CL_OSQL_REPLACE class .
CL_SALV_TABLEcccccvrrrrrrsrrirrrrre.

Clarity 263
Class invariants 228
Class under test 242
Class-based exception 212-213,215
Classification annotations ... 337
Clean ABAP 197
CLEANUP commandcccoueeeeeerveveeenens 218-219
Cloud connector 762
COALESCE statements cccccooceeveecunercenennnns 297
Code Exchange 284
Code generator 716
Code INSPECLOTveeuceeerrcrenerecrenenne 63,137,309
Code mining 68
Code pushdown 292,359
ABAP SQL 366
AMDP 366
CDS entities 366
example 363
Sfunctionality 361
integration 362
locating code 360
openness 363
reusability 362
semantics 362
868

Code pushdown (Cont.)
speed 361
techniques 360
Column attributeccooeeveveveeveeereeeens 587,593
SET CHECKBOX 590
SET _COLUMN_AS _BUTTON ... 592
SET COLUMN_ATTRIBUTES
METHOD 587
SET HOTSPOT 591
SET LONG_TEXT 594
SET TECHNICAL 592
SET _TOOLTIP 594
SET _VISIBLE 591
Combinatorial test designcooeeomeceennens 287
Combined structure 378
COMMIT WORK 318
Common table eXpression ... 314

Component

Component configuration
Component controller
Component split

COMPONENTCONTROLLER ... 724
Conceptual thinking 397
COND 165
Conditional logicccccccovevvervneccens 151,160, 185

extract 57
Configuration table 444
Conflict resolution 125
Consistency validation ... 431
Constants interface 375

Constructor expression

Constructor injection 246

arguments against 247
Constructor operator ... 158,166,171
Consumption VIEWinneceenennns 326,460
Container 575, 602, 604

create automMaticallyecnneveennne. 603
CONTEXT parameter 539
Continuous integration ... 270
Contract violation ... 228,278,623
Control structure 483
CORRESPONDING 170
CREATE 481,484
Create by association ... 472,492

Creating while reading

Cross-origin resource sharing (CORS) ..

CRUD operations 390, 432,454,470, 476,

480, 519, 526, 537-538, 559
Customizing settings

236

CX_DYNAMIC_CHECK
CX_NO_CHECK

... 203-204

205

CX_STATIC_CHECK ..o

.. 201-203

Index
D Distributed version-control system 125
Downcast 189
Daemons 831 Draft document 380
Data changed event 601 Draft-enabled 516, 550
Data class 336 Drawing object 657
Data Control Language (DCL) ..cccccevevreeceeennens 337 Dropdown menu creation ... 811
source 338 Duplicate code 50
Data declaration 64,168 Dynamic check 203
Data definition ... 256-257,456 Dynamic exception 204
Data provider class 537 Dynamic log point 74-75
Data source 328 Dynamic SQL 730
Data type declaration 147 DyNpro ... 372,383,568, 689, 693, 709
Data validation test 264 UI framework 383
Data values 402 Dynpro Screen Painter ... 703-704
Database access class 245
Database layer 293 E
DDIC 390
descriptions 730 Ease of maintenance 263
field 527 Eclipse 325,382
structure 524, 699 2020-03 68
table 335,527 2021-06 34,39
DDL s 325,331, 334, 349, 366 32-bit versus 64-bit 35
definition 356 AMDP 352
source 357 autogeneration of method definitions ... 270
source code 331 connect to backend system ... 37
Debugger 73 create attributes 56
Debugging 183 create parameters 56
Delegated object 440 debugging 71
DELETE 490 extract method 49
Dependency 234,347 Extract Method Wizard ... 54, 65
breaking up 238,240 favorites 41
eliminating 235 features 40
examples 238 help 65
identifying 236 installation 33,35
inversion 407 multiple objects 44
lookup 248 Neon 66
Dependency management ... 122 Oxygen 67
Derivation class 406 Photon 68
Design by contract ... 199, 224, 227, 264-265, plug-ins 77
590, 623 prerequisites 33
class invariants 228 quick assist 48
postconditions 226 recommended readingoeceenn. 97
preconditions 226 refactoring 55
violations 230 release cycle 31
Design Patterns—Elements of Resuable Object- runtime analysis 76
Oriented Software 371 SAP add-ons 36
Determination 402,408 SAP HANA 325
business logic code 403 SDK 78
definition 405 unit tests 70, 269
deriving values from values 504 unused variables 54
Dev space 88,798 upgrade 39
Dialog box 785 version 34

869

Index

Eclipse (Cont.)
welcome page 37
window layout 42
word wrap 67
Eiffel 226,228
Ellison, Larry 291
ELSE clause 330
Embedded views 710
Entities 522,526
Entity Manipulation Language
(029,705 IO 505, 508, 515,519
Entity set 526
Entity types 328
Enumeration 152,154
Error function 786
Error handling 214, 220, 480, 485, 537
method 599
RESUME 222
RETRY 221
Error message 211
Errors 787
ESLint 818
ETag 501
Excel 631
add object attributes ... 636
and ABAP 635
and XML 637
change numbers and text formats 641
create object 635
download spreadsheet to frontend 637
spreadsheet cell style 642
EXCEL_WRITER 637
EXCePLionccvovereneeeerecrineeins 549
cleanup 219
examples 199
handling 201
method clean up 220
object 201,214
raising 201,213
recommended reading ... 232
text 211
Exception class ... 61,199, 201-202, 417, 549
choosing type 206
constructor 208
creation 207
custom attributes 208
declaring 212
design 207
message classes 209
text 210
types 201
EXECUTE 406,412,423

870

Existence check
Export parameter
EXPORTING parameter
Extended syntax check ..
External breakpoint

. 545-547, 857

F
Facet 465
Factory class 602
Factory methodccinnnccenes 57,249, 386
return instance 250
test double 250
Fast ALV Grid Object (FALV)cccoommcccrrreenne 628
Favorites list 78
Feature control 469, 513
dynamic 514
Feeder 728
Feeder class 728
code 728
methods 729
Field catalog 595,612
Field symbol 152,177
FILTER 185-186
Filter structure 389
FitNesse 259
Floorplan Manager (FPM)ccceeeeee 31, 689, 724
BOFPF integration 738
drilldown 737
floorplans 725
GUIBBs 727
guided activity floorplan ... 725
outlook

overview floorplan
quick activity floorplan
recommended reading .. .
UIBBs 727

FLUID tool 743
Font size 66
FOR 150
FOR ALL ENTRIES ..ot 186,316
FOR/NEXT variations 181
Foreign keys 333
Forked repository 131
FORM routine 43,45
Fragment 769
Friends 249
Function module 213, 215-216, 604

signature 215
Functional methods 351

Index
G Importing parameter 356
Importing table 578
Generic method 449 Inbound plug 712,722
Generic user interface building blocks Index 394
(GUIBBs) 727,738 Information/warning/error ... 216
components 734 INITIALIZE 582,605,611
GET_ENTITYSET 538 Injection 242,246,248
query method 546 Injector 250
testing 544 class 250
Gherkin 821 Inline declarations 64
Git 100 INNER JOIN 310
GitHub 100,105,136 Integrated data acCessmcereceenenne 621
account 101 advantage 623
create project 112 calculated fields 625
errors 105 class 625
Issue tab 127 selection criteria 622
NEW TePOSILOTY vevereeeereeeeerinseeeriseeees 113,119 Integrated development environment 31
submit issue 127 Integration test 820
GIVEN method 746 Interaction phase 476
GIVEN/WHEN/THEN 322 Interface CDS entitiesomricnneennn. 460
Global class 70 Interface view 326
Global temporary table ... 317-318 Interfaces 192
God class 571 Internal table 167,396
GROUP BY 181,185 deep structures 172
GUID 375,396 extracting 185
key 387 grouping 181
Guided development 805 JOIN 319
column property 806 new functions 177
generated code 808 queries 179
overview 806 read 169
virtual sorting 187
H Internet of Things (I0T) .vveeeeerrrereeeeeennnns 828,857
IS INITIAL statement 315
Handler class 479 Isolation policy 829
Hard-coded restrictionsceeecceeeeneees 331
Hashed key 186)
Head First Design Patterns ... 245
Helper class 392 Java 31,148,755
Helper method 259,589 JavaScript 755
Helper variable 171 library 757,809
Hollywood Principle 829 Joe Dolce principle 274
Hotspot 581 Join condition 459
HTTP authentication 108 JSON Voorhees 837
| K
i18n 772 Key fields 526
ICF 669
IDocs 521 L
IF/ELSE 165
IF/THEN 160 LAG statement 304
Implicit parameter ... 479,486 Layout data property 706
87

Index

Lead selection 716,722
LEAD statement 304
LET 151
LINE_EXISTS 179
LINE_INDEX 178
List report object pageceeeeeceerninenes 794
Local variable 355
Lock class 498
LOCK method 498-499
Locking objects 497
Logging class 57,211
Logical unit of work 436
Looping 493,515
M
Magic number 61, 647
Making a deep insert 492
Making an association public ... 458
Managed scenario 504
Mandatory/suppress 514
Mapping object 176
Marker interface 122
Master data 333
Message classes 209
Message object 418,839
Message producer 839
Message Queuing Telemetry Transport
(MQTT) 858
Message text 59
Metadata extension ... 341, 463, 748
coding 465
Method 49,213
autocreation 46
call 52,230
definition 576
extract 51
Meyer, Bertrand 228
Microsoft Outlook 527
MIME IepOSILOIY ...oovveveeercveeereceeniresenna 285, 662
Mockup Loader 284-285
Model class 371, 384-385, 391, 507, 838
data retrieval 391
Model provider class 537
Model-view-controller (MVC) pattern 372,
383, 569-570, 584, 598
Module pool transaction ... 698
MOVE-CORRESPONDING 170,172,175
dynamic 175
nested tables 175
MVC patternreeiveerevennn. 690, 738, 758
controller 570, 695

872

MVC pattern (Cont.)
location of model 691
model 570, 584, 691

model as an assistance class
model declared in the controller ...
model inside the VIEW ommeeereenreenneen.

view 570, 693
N
NativeSQL 294-295
Navigation property 547,780, 788
Nested loops 178
NEW 148
No check 204
Node (JS) Package Manager (NPM) 761
Node structure 700
Node.js 761
Nuggets 111
(o)
Object authorization class ... 401

Object instance subclass ...
Object Linking and Embedding (OLE) ..

Object model usage 336
Object set 283
object_configuration 386
Object-oriented programming (OOP) 45,
188, 200, 215, 244, 371, 449, 569
Obsolete statements 196
OData 522,529,536
documentation 542
queries 543
V4 565
Offline repository 117
create new 118
On start message 855
Online repository 111
OPA 820
Open source 632
Open XML 635
Open/closed pattern factory .. 572
Open-closed principle . 75,355
OpenSQL 293
OpenUI5 809
button to trigger action ... 812
demo kit 810
Outbound plug 712
Overview page 735,794

Index
P REST 522
Result method 267
Pace layering 385 RETRIEVE DEFAULT PARAM ... 423
Parameter ID 835 Return parameters 356
Patterns 157 RevTrac 141
Perspective 75 RFC function module 351
Post exit 608 ROOt ViEW entity ... 332, 456-457
Postcondition 227
Precondition 227 S
PREPARE 423
Private method 52 SALV 568
Procedl%ral Programming ... 234 add custom icons 601
Processing block ; 184 application-specific changes 584
irograrrcl}lals;}lmptlons .. ;;; calling a report 571
Pro!ect_ adius e e CL_SALV_GUI_TABLE_IDA ..o 621
ro]e;_;on ! ’ 160 column attributes 587
C? ng column width 587
Projects 523
concrete class 570
Proxy t tai 576,603
calls 521 crec? e con am.er ,
Public method 207 design report interface ... 574
Publish and sUBSCIIDE v 828, 848 display report 596
Push Channel Protocol (PCP) ... 832,837,839 editable fields 614
interface 841 editing data 609
event handling 581
Q Jframework 597
grid refresh 612
Quartz theme 749 grid to editable mode ..., 618
Query logic 389 grids 611
Quick fixes 56, 83 initialize report 577
custom 85 object editablitity 610
QUnit 819 recommended reading ... 630
report 592
R SAP HANA 624
setup report 579
RAISE SHORTDUMP 231 with IDA 621
RAP generator 561, 565 SAP BTP cockpit 762
availability 561 SAP BTP, ABAP environment ... 32,40,123,126,
READ 486 141, 146, 196, 325, 352, 454, 556
Read by association 495 SAP Business Application Studio 86, 88,
READ TABLE 169 761,798
README file 113 data source 800
Read-only mode 617 entity selection 800
REDUCE. 179 file structure 802
Refactorlr}g 54 floorplan 298
Refresh display . 601 project attributes 801
Regular t;xprgssmnsn - 1;(1) SAPUIS 787
Remote function call (RFC)ccoovvverreenrrrernnnnen. 5 select template 708
Report . .
service selection 800
RS AUCV_RUNNERrveviriseririsennnns 271
- - . welcome screen 88
Report programming 567 .
. . SAP Business Technology Platform
Repository object 106
(SAP BTP) 87,762
rename 59
873

Index

SAP Business WOrkflow ..., 384
SAP Cloud Application Programming Model 86
SAP Community 32
SAP EarlyWatch Checkccccomcmnecreenneccrnenne 827
SAP Fiori 629, 747,758
[reestyle application ... 764
tile 790
WDA 747
SAP Fiori Elementscoovveeeveeeeerennnnee 763, 805
SAP Fiori launchpad 791
SAP Gateway 521,817
add new service 531
coding 536
configuration 522
configuration SEtting ... 531
create service 530
creating entities ..., 524,526
creating services and classes ... 529
data provider class

error handling
linking via association
model provider class
pull from CDS view

push from CDS view

Service Builder
service details
service implementation ... 537
testing 534
SAP GUI 74,194, 567, 828
embedded 74
SAP Fiori 629
SAPHANA ... 313, 544, 624,757, 835
code pushdownoccmmececnneeeennnn 292,359
database views 292
Eclipse 325
recommended reading ... 370
stored procedure 350
SAP NetWeaver Development Tools for
ABAP (ADT) 553
SAP Process Integration (SAP PI) ... 378,522,
834, 842
SAP S/AHANA migrationecceeeeees 63
SAP Web IDE 85
SAP Ul7.54 752
SAPlink 106,111,134
SAPscript 678
SAPUIS ... 31,379,690, 755, 828, 856
architecture 757
browser support 536
buttons 776,785
column headings 775
controller 782

874

SAPUIS (Cont.)

create app automatically ... 792
create manually 763
dialog box 785
fragment XML file 777
Jreestyle 787
HTML file 769
icons 782
importing applications ... 813
initialize controller 783
JavaScript 757
overview 757
preview 773
recommended reading ..., 824
search button 773
search function 784
Storing applicationscecnnecerconneces 814
testing 816
upload report 815
versus SAP Fiori 758
view 769
XML file 771
SAVE method 517
Save sequence 476
Scalar functions 351
Search helps 193
predictive 193
Search UIBB 732,737
SELECT o 293,301, 312, 315, 329
Selection criteria 732
Self-association 345
Separation of concerns 240-241, 627,720
Separators 607
Service binding 556
unit tests 559
Service Builder 523
Service definitioncciiinnerrrceens 488,555
Service layer 521
automatic creation with ABAP RESTful
application programming model 561
automatic creation with SEGW 549

manual creation with ABAP RESTful
application programming model
manual creation with SEGW ..o
Service modeler

service_manager
Set indicators

SETUP method

Shifting testing left

Short dump 62,156,158
SICF framework 549
SICF service node 539

Index
Signature definition 158 Test class (Cont.)
Single responsibility principleccccee. 240 implement 260
Single-record view 721 prepare test data 262
Slinkees 111 private method 255
Smart Forms 678 set up 261
SOLID principles 253 Testcode 269
Sort criteria 595 Test coverage 269
Sort order 596 Testdata 262
Sorted key 186 Test doubles 242
Source code view 43 autoupdate 270
SQL 544 classes 244
calculations 299 complex objects 273
for the web 543 create 243
functions 302 create using interfaces ... 271
queries 296 object instance 275
SQL-92 standard 295 objects 256
trace 368 return values 272
view name 335 Test injection 243
SQL Monitor 359 Test method 258
SQL Performance Tuning Worklist 359-360 evaluate result 267
SQLSCIIPE oooeveercrreerriresiineriis 324, 350, 353-354 names 258
implementation method ... 357 natural language 260
table function 358 Testrelation 349
SSL 103 Test seams 238
SSL client 104 Test-driven development (TDD) ... 70-71,233,
Stateful 848 252,265,745
Stateless 848 blue phase 254
Static check 201 pattern 253
Static method 357,842 Testing 70
Stored procedure 293 The Pragmatic Programmer ... 264
String processing 155 THEN method 746
Structured variable 424 Tooltip 588,594
Stub objects 242 Tracefile 77
Suffixes/prefixes 456 Transaction 714
Summarized data 313 /BOBF/CONF_UI 441
SWITCH 164 /BOBE/TEST UIcoomecceen. 414,420,426,431
Syntax check 201, 316 /IWFND/ERROR _LOGcvoummevrerciinrnceeees 545
System alias 530 /IWFND/MAINT SERVICE ... 531,533-534,
SY-TABIX 180 544
BOB 373-374
T BOBF 373
BOBF/TEST UI 445
Table buffering 335 BOBX 373,446
Table join 312 cIco 827
Table work areas 167 FLUID 742
TCP protocol 858 FPM_WB 726,738
Technical columns 588 FPM_WDA 733
TeSt Class .. 71,251, 254, 447 ICON 782
calling production code ... 262 IWEND/MAINT SERVICEcoomeevvvrrrcenna. 554
definition 255 MRRL 313
duration 256 RSSCDI100 445
evaluate result 263 SALV 837
875

Index

Transaction (Cont.)

SAMC 836, 839, 848
SAPC 854
SAT 76
SATC 359
SCDO 439,443
SEl1 194, 324,329
SE24 189, 207-208, 529
SE38 43
SE80 ... 31, 41-42,76,106, 194, 697, 735
SEGW .ccvvvvvvsnnnvvverrnnnnns 492,522-523, 531, 549
SICF ... 78,529, 534-535, 669, 817, 848, 854
SIMGH 531
SLIN 54
SM12 399
SM36 109
SMICM 763
SMWO 285, 681
SQLM 359
STO5 308, 339, 359, 368
§T22 208
STRUST 103,105
SU53 339
SWLT 359
SWO1 524
ZMAM 840
transaction_Manager ... 386
Transactional view 380
Transient attribute 404
Transient Structureeveeeeeeeenns 377,403
Transport request 52,140
Troubleshooting 70
TRUE/FALSE 162
TRY/CATCH/CLEANUP ...ccccooevrvrvrrrrvvmmmmemmmnnnnnnnnn 214
T-Shirt sizes 337
TYPE declaration 307
TYPE definition 48
Type mismatches 157
TYPE REF TO DATA 159
U
UlVeri5 822
UMAP 78
Underlying grid object ... 614
Unicode 195
UNION 311
Unit testingc..... 71,106, 240, 251, 559, 744
ABAP SQL 320
automation 274
CDS entities 348
executable specifications ... 252
876

Unit testing (Cont.)
massive data AmMouNtseeconeeeeenne 284
mockA 274
recommended reading ... 289
SAPUI5 apps 818
Unmanaged business definition 454
Unmanaged scenario 487
Upcast 189
UPDATE 488,490
User acceptance testing (UAT)ccoovvveeeeeeennne 259
User command 578,607
handling 617
processing 205
routine 838
toolbar 606
User interface building blocks
(UIBBs) 727,738
Jreestyle 727
USING statement 352
\'
Validation
category
coding
creation
execute
logic
triggers
Validation class
VALUE
Variables

Version control
View controller
View entity
with to-parent association
Views
navigation
Violated postcondition ...
Violated preconditioncccennecens
Virtual element
Virtual sorting
Visual Basic for Applications (VBA)
VS Code
Application Modelerocconccenenn
Application Wizard
connect to SAP
create freestyle application ...
create new object
entity Selectionceeconneceennn.
explorer
extensions

Index
VS Code (Cont.) Web Dynpro ABAP (WDA) (Cont.)
file structure 796 touch enablement 752
fragment 778 trigger button 704
[reestyle floorplans 765 unit test 746
generate structure 764 unit test frameworkceconneceeconeeceens 744
guided developmentcmccevunncces 760 view settings 701
install 90 WebRFC object 681
plug-ins 91,95 WebSocket ..o 828, 830, 849-850, 855
popup box 779 connect from SAPPUI5ccvnunncvveennnn 856
project attributes 796 WHEN method 746
SAP Fiori Elements 794 WHERE clause ... 300, 331, 347
service selection 766 Window controller 695
template wizard 793 WITH construct 314
XML 760 Word documents 676
Work areas 168
W XML 682
Worklist 794
Web Dynpro ABAP (WDA) ... 31, 158, 689
add views 709 X
ALV grid 689
application buildingonceeeen. 696 XLSXfiles 633
calling application 714 XML 547,634,769
Code Wizard 716 convert 637
coding 715 file 634
color scheme 751 structure 633
component controller ... 695 tree 376
create component 697 XML Toolkit eXtension ... 772
data structures 699 XSDBOOL 162-163
define view 706-707
defining windows 710 Y
form container 702
graphical screen painter ... 693 Yeoman generators 764
interface controller 699
linking the controller ... 715 Z
nodes 701
PAI 694 Zaggregated storage table ... 313
PBO 694 ZClass e 42,254,387,611,758
recommended reading ... 753 ZABAPGIT 102
selecting records 715 ZCL_BC_VIEW_SALV_TABLE ... 604, 610
selection options 702 ZCX _NO_CHECK 204
standard elements 703 ZIP file 633
storing data 694

877

First-hand knowledge.

® Rheinwerk

Publishing

ABAP’ to the Future

Discover the latest and greatest features in the ABAP universe

Learn about the ABAP RESTful application programming model,
core data services, abapGit, SAPUI5, and more

Explore new development environments and test frameworks

Paul Hardy & Rheinwerk
Publishing

Paul Hardy

ABAP to the Future

877 pages | 11/2021 | $89.95 | ISBN 978-1-4932-2156-1
¥ www.sap-press.com/5360

Paul Hardy is a senior ABAP developer at Hanson and has worked
on SAP rollouts at multiple companies all over the world. He joined
Heidelberg Cement in the UK in 1990 and, for the first seven years,
worked as an accountant. In 1997, a global SAP rollout came
along; he jumped on board and has never looked back since. He
has worked on country-specific SAP implementations in the United
Kingdom, Germany, Israel, and Australia.

After starting off as a business analyst configuring the good old
IMG, Paul swiftly moved on to the wonderful world of ABAP pro-
gramming. After the initial run of data conversion programs, ALV reports, interactive
Dynpro screens, and (urrggh) SAPscript forms, he yearned for something more and since
then has been eagerly investigating each new technology as it comes out. Particular areas
of interest in SAP are business workflow, B2B procurement (both point-topoint and SAP
Ariba-based), logistics execution, and variant configuration, along with virtually anything
new that comes along.

Paul can regularly be found blogging away on SAP Community and presenting at SAP con-
ferences in Australia (Mastering SAP Technology and the SAP Australian User Group annu-
al conference). If you happen to ever be at one of these conferences, Paul invites you to
come and have a drink with him at the networking event in the evening and to ask him the
most difficult questions you can think of (preferably SAP-related).

We hope you have enjoyed this reading sample. You may recommend or pass it on to
others, but only in its entirety, including all pages. This reading sample and all its parts are
protected by copyright law. All usage and exploitation rights are reserved by the author
and the publisher.

http://www.sap-press.com/5360?utm_source=AWS&utm_medium=referral&utm_campaign=Browse+the+Book&utm_content=2156

