First-hand knowledge.

® Rheinwerk

Publishing

ssa>dng

ney
VOEIIANRADD _ANS
“ % Y i

2

SD2INS UOoISUD1IXT . AVS

'S 4

SAP’ Certification Success Guide

C_CPE

Development Associate Exam

SAP’ Extension Suite
Certification Guide

»Achieve success with the only sAP-endorsed certification guide«

Krishna Kishor I(ammajf'_ c Rheinwerk
Mahesh Kumar palavalli il

Reading Sample

This chapter covers different web standards and data formats you can use for con-
figuration files and data transfer over the internet. You'll start by walking through
application programming interfaces (APIs), representational state transfers (REST),
and Open Data (OData). Then, you'll learn about programming lanqguages used
for web development, including JavaScript Object Notation (JSON) and Yet Another
Markup Language (YAML). You'll also review the twelve-factor app principles for
building and designing resilient applications. As with all other chapters in the
book, this chapter contains practice questions with detailed answers to help you
better understand the topic.

“Web Development Standards”

Krishna Kishor Kammaje, Mahesh Kumar Palavalli

SAP Extension Suite Certification Guide:
Development Associate Exam

307 pages, 2023, $79.95
ISBN 978-1-4932-2239-1

¥ www.sap-press.com/5490

https://www.sap-press.com/sap-extension-suite-certification-guide_5490/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2239

Chapter 2

Web Development
Standards

Techniques You'll Master

m Understanding web development standards

m Using APIs and the importance of REST and OData
m Working with JSON and YAML data formats.

m Building a twelve-factor app

64

»

Chapter2 Web Development Standards

Web technologies are evolving at a fast pace. Web development standards are
established by various independent bodies specifying how the developers must
build products, how they interact with other standards, and how usability and
accessibility features are used. This chapter covers different web standards and
data formats you use for configuration files and data transfer over the internet.
You'll also learn about the twelve-factor app principles for building and designing
resilient applications.

Real-World Scenario

You're developing a modern, enterprise-grade resilient web application and
need to deploy this application to an industry-standard cloud provider. You
then need to understand which types of application programming interfaces
(APIs) are required and the guidelines to develop resilient applications.

2.1 Objectives of This Portion of the Test

This portion of the test checks your understanding of the web development stan-
dards. Application programming interfaces (APIs) play a significant role in moving
data to and from user interfaces (UIs). You're expected to know about representa-
tional state transfer (REST) principles in API design and development. You'll also
have to learn about Open Data Protocol (OData), a REST-based protocol for building
and consuming RESTful APIs. You'll learn about Yet Another Markup Language
(YAML) and JavaScript Object Notation (JSON), which are useful for defining config-
uration files, as well as the best practices for developing resilient applications.

Note
Web development standards topics make up less than 8% of the total exam.

2.2 Application Programming Interface, Representational
State Transfer, and Open Data

For different systems to communicate with each other to exchange data, you need

an interface called an API There are various ways to architect the APIs, and REST,

Simple Object Access Protocol (SOAP), and OData are the most popular formats.
We’ll discuss these in detail in the following sections.

2.2.1 API

APIs enable companies to securely connect their internal applications or external
partners to transfer data both ways. An API will have a set of protocols that defines

API, Representational State Transfer, and Open Data Chapter 2

the rules of how it’s accessed. Consumers don’t need to know how an APIis imple-
mented; they only need the documentation that is explicitly provided or comes
automatically with the APL

The role of an API is to act as an interface or an intermediate layer that transfers
the data between multiple partners, as shown in Figure 2.1. The actors and their
responsibilities in Figure 2.1 are as follows:

m Consumers, who can be the end users and third-party companies, request the
API to access the data from their applications.
m API producers take care of creating, hosting, and managing the APL

m The API gets the request from the consumers, validates it, and queries the data-
base to fetch the data.

m Data is processed and sent back to the consumer applications.

<——> APl |«———>

[1 Database
End User

Consumption
1
il

Third-Party Companies/
API Producers

Figure 2.1 High-Level API Design

APIs should not expose all the data of the database or the server; they should only
show the required and authorized information when they are accessed. For
instance, A bank application only lets you access your account details; it should
not show other users’ accounts. So it’s recommended to include robust security
protocols while designing an APL

There are different ways to architect the APIs, and the widely used architectures
are SOAP and REST. SOAP is a stricter protocol with defined security rules and is
standardized by the World Wide Web Consortium (W3C), which uses XML payload
to transfer the data between systems. Although SOAP used to be popular, the REST
protocol is now used mainly for developing APIs. In the next section, we’ll cover
REST in detail, which is the most used architecture today.

2.2.2 REST

REST is a famous web API architecture that is mainly used for lightweight web ser-
vices and mobile applications. Unlike SOAP, which has stricter protocols, REST

65

66

Chapter2 Web Development Standards

comes with guiding principles, and the APIs that implement these guidelines are
referred to as RESTful APIs. Following are the guiding principles and constraints
that a RESTful API should have:

= Client-server architecture

The client-server architecture enforces the separation of client and server,
which allows them to be updated and evolve independently. The client will only
request the server for the data using an API, and the server can only return the
data via HTTP requests without interacting with the clients.

For example, consider a mobile bank application (client), where only the appli-
cation is available in the user’s mobile phone, but not the database or the busi-
ness logic of the bank process. Users can only see their account details via the
API provided by the bank. The business logic and database reside in the server,
where the requests coming from the API are authenticated and processed.

m Statelessness
Statelessness requires that all the requests originated from the client be uncon-
nected, and each request should have all the information to complete the
request.

= Cacheability
Cache ability suggests that, when required, resources should be cacheable on
the client side or server side to increase the performance of applications.

= Layered system
The layered system in a server takes care of the request in different stages (fire-
wall, load balancing, security, etc.). The server should hide all these processes
from the client and only respond to the request by returning the data.

= Uniform interface
Uniform interface mandates that all API requests should have a standard for-
mat. The following multiple constraints should be applied while designing an
API:
— All the resources requested from the client must be uniquely identifiable.

— Server responses should have uniform representations, including metadata,
which API consumers can use to modify the resources in the server.

— Response messages from the server should be informative enough for the
client to process them.

— Hyperlinks to different actions should be available in the server response to
discover the available resources the API needs.

= Code on demand
Code on demand is the ability to send the executable code to the client to cus-
tomize different functionalities. For instance, the client can use Java applets or
JavaScript code to extend its functionality.

API, Representational State Transfer, and Open Data Chapter 2

2.2.3 OData

OData is a REST-based protocol approved by International Organization for Stan-
dardization/International Electrotechnical Commission (ISO/IEC) and used for
building and consuming RESTful APIs. It helps you focus on business logic without
needing to worry about the different API approaches in defining your request,
response, status codes, URL conventions, query options, and so on. OData sup-
ports XML-based AtomPub and JSON formats.

OData protocol follows these design principles to achieve the uniformity of both
the data and the data model:

m Follow the REST principles as OData is the best way to REST.
m Support the API extension without breaking the client’s functionality.

m Keep it simple by addressing the common functionalities and providing the
extensions wherever required.

m Prefer mechanisms that work on a variety of data sources. Don’t assume a rela-
tional data model.

m Build incrementally—a basic, compliant service should be easy to build, and
additional work should be necessary only to support additional capabilities.

In SAP, the OData protocol is primarily used to generate the APIs. For example, SAP
S/AHANA uses the ABAP RESTful Application Programming Model (RAP) to gener-
ate OData V2 and V4 services, and in SAP BTP, the SAP Cloud Application Program-
ming model is used for generating the OData services. Even the UI, SAPUI5, has
built-in libraries to consume OData V2 and V4 models, which use metadata and
annotations to construct the UI dynamically. A typical OData service looks like
Figure 2.2.

67

—| Schema |—| Host H 3 |—| Port |—| Service Root |—| Resource Path |—| ? H Query Options l—

https://services.odata.org/V2/Northwind/Northwind.svc/Customers(‘ALFKI')/Orders?Stop=3& Sfilter=Freight It 29

~— A A

J

—~——
Service Root URI Resource Path Query Options

Figure 2.2 OData URI Components

Let’s look at the OData request URL and its components in detail:

m Service root URI
The service root URI is the root of an OData service through which different
resources can be accessed and created. OData services provide two types of
metadata documents, as follows:

68

%

»

Chapter2 Web Development Standards

A service document has all top-level feeds so clients can discover them and
access only those required (see Figure 2.3). The service document is available
by accessing the service root URI directly.

<service xml:base="https://services.odata.org/V2/Northwind/Northwind.svc/">
<workspace>

<atom:title>Default</atom:title>

<collection href="Categories">»
<atom:title>»Categories</atom:title>
</collections

<collection href="CustomerDemographics”»
<atom:title>CustomerDemographics</atom:title>
</collections

<collection href="Customers"»
<atom:title>Customers</atom:titles
</collection>

<collection href="Employees">»
<atom:title>Employees</atom:title>

</workspace>

</service>»

Figure 2.3 Service Document

Example
To see an example of an OData service, go to: http://s-prs.co/v540902.

— A service metadata document is usually referred to as metadata. This docu-
ment describes the Entity Data Model (EDM) for a given service. You can get
all the information about different resources, associations, and properties
from the EDM.

Example

To access the metadata of an OData service, you must add Smetadata to the end of the
service as shown in this URL: https://services.odata.org/V2/Northwind/Northwind.svc/
Smetadata.

As you can see in Figure 2.4, the metadata document provides all the entities,
properties, and relations (navigation properties). Along with the properties of
the individual entity, it also returns the key properties. For instance, the cus-
tomer entity has CustomerID’ as the key property. An entity is a single resource;
it can be a customer, order, and so on. Entity type describes an entity (properties,
keys, navigations, etc.), and entity set is a collection of entities. For instance, an
entity set can be customers (multiple), orders, and so on.

Note

The EDM is a set of concepts that describe the structure of data, regardless of its stored
form.

API, Representational State Transfer,and Open Data Chapter2 69

<« G @ & httpsy//services.odata.org/V2/Northwind/Northwind.svc/$metadata H

This XML file does not appear to have any style information associated with it. The document tree is shown below.

v <edmx : Edmx kmlns edmx="" http //SChEMn= microsoft.com/ado/26087/06/edmx” Version="1.8">
¥ <edmx:DataSer xmlns:m="http://schemas .microsoft.com/ado/2007/03/dataservices/metadata” m:DataServiceVersion="1.0">
v<Schema xml h::p /schemss . microsoft.com/ado/2007/08/dataservices” xmlns:m="http://schemas.microsoft.com/ado/2007/08/detaservices/metadata”
xmlns="http://schemas.microsoft.com/ado/2008/89/ /edn” Namespace="NorthwindMods1">
¥ <EntityType Name="Category”>
v <Key>

<PropertyRef Name="CategoryID"/>
</Key>
<Property xmlns:p8="http://schemas.microsoft.com/ado/2009/02/edm/annotation” Name="CategoryID” Type="Edm.Int32" Mullsble="false"
p8:StareGeneratedPattern="Tdentity"/>
<Property Name="CategoryName" Type="Edm.String” Nullable="false" MaxLength="15" Unicode="true" Fixedlength="false"/>
<Property Name="Description” Type="Edm.String” Hullable="true" MaxLength="Max" Unicode="true" FixedLength="false"/>
<Property Name="Picture” Type="Edm.Binary” Nullable="true" MaxLength="Max" FixedLength="false"/>

<NavigationProperty Name="Products” Relationship="NorthwindModel.FK_Products_Categories” FromRole="Categories” ToRole="Products”/>
</EntityTyper
b <EntityType Name="CustomerDemographic™>

</EntityType>
v <EntityType Name="Customer”>
v cKey>
<PropertyRef Name="CustomerID"/>

</Key>
<Praoperty Name="CustomerID” Type="Edm.String" Nullsble="false" MaxLength="5" Unicode="trus" FixedLength="true"/>
<Property Name="CompanyNsme” Type="Edm.String” Nullable="false" HaxLength="49" Unicode="true” FixedLength="false"/>
<Property Name="ContactMame” Type="Edm.Str Hullable="true” MaxLength="3¢" Unicode="tr,
<Property . e

<Property rue” leechngt 7>
<Property ixedLength="

<Property " FixedLength=

<Property

<Property

<Property

<Property "Fax” T}pe— Edm.String” Nullable true” MaxLength="24" Unicode="tru lechength "false"/>
<NavigatiDnPer=rty Name="0rders” Relationshi rthwindModel.FK_Orders_Customers” FromRole="Customers” ToRole="Orders”/>
<NavigationProperty Mame="CustomerDemographics” Relationship="NorthwindModel.CustomerCustomerDemo” FromRole="Customers” ToRole="CustomerDemographics™/>
</EntityType>
» <EntityType Name="Employee">

</EntityType>
» <EntityType Name="Order_Detail”»

</EntityType>
» <EntityType Name="Order">

</EntityType>
» <EntityType Mame="Product™>

</EntityType>
» <EntityType Name="Region">

</EntityType>
» <EntityType Name="Shipper™>

</EntityTyper

» <EntityType Name="Supplicr”>

Figure 2.4 Metadata of an OData Service

m Resource path

The resource path URI identifies the resources of an OData service such as cus-

tomers, a single customer, or orders related to a single customer. We'll look at

each of them here:

— Requesting resources (entity set)
These collections are called entity sets. Accessing each entity set will provide
the data related to it. For instance, the categories entity set will return all the
categories, and the customers entity set will give all the customers. In the fol-
lowing example, you can see the entity set Customers is added at the end of
the URL to fetch the list of customers.

Example ‘Qé

To request an entity set, you need to access the URL as shown in the example at: http://
s-prs.co/v540903.

As you can see in Figure 2.5, the response resources are in XML format
because, by default, OData V2 output is in XML format. But in the case of

70 Chapter2 Web Development Standards

OData V4, the default response format will be in JSON. You can learn
about this format in Section 2.3.1.

— Requesting an individual resource

property CustomerID in the URL (see Figure 2.6 for an example).

more

If you want to get details of a single customer in the system, you pass the key

Example

http://s-prs.co/v540904.

to pass the property name.

< C m & m

1/ /services.odata.org/V2/Northwind/Northwind.svc/Customers

Visit the following link to see another example of passing the key property in the URL:

Alternatively, if there is only one key property in the entity, it’s not required

<?xml version
<feed xml:bas

e

w9
d

Lo
encoding="utf-8" standalone="yes"?>

https://services.odata.org/V2/Northwind/Northwind. sve/" xmlns:
xmlns:m="http://schemas.microseft.com/ado/2007/08/dataservices/metadata” xmlns
<title type="text">Customers</title>
«id>https://services.odata.org/V2/Northwind/Northwind. svc/Customers</id>
<updated>2822-83-85T16:48:127< /updated>

«link rel="self" title="Custemers" href="Customers™ />
<entry>

http://schemas.microsoft.com/ado/2007/08/dataservices”
"http:/ /v .u3.org/ 2005/ Atom">

<id>https://services.odata.org/V2/Northwind/Northwind. sve/Customers('ALFKI ")</id>
<title type="text"></title>

<updated>2022-03-05T16:48:122</updated>
<author>

<name />
</author>
<link rel
<link rel="http://schemas.microsoft.com/ado/2007/@8/dataservices/related/Orders” type="application/atom+xml;type-feed” title="Orders" hre
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/CustomerDemographics” type="application/atom+xml;type=feed” title=
href="Customers ('ALFKI')/CustomerDemographics™ />

dit” title="Customer” href="Customers('ALFKI')" />

CustomerDemographics
<category term="NorthwindHodel.Customer” scheme="http://schemas.microsoft.com/ada/2007/08/dataservices/scheme” />
<content type="application/xml">
<m:properties>
<d:CustomerID m:type="Edm.String">ALFKI</d:CustomerID>
<d:CompanyName m: type:
<d:Contactlame m:type=""
<d:ContactTitle m:typ

Edm.String">Sales Representative</d:ContactTitle>
Address mitype="Edm.String">Obere Str. 57</d:Address>

<d:City mitype="Edm.String">Berlin</d:City>
:Region m:type="Edm.String" m:inull="true" />
<d:PostalCode m:type="Edm.String">12209¢/d:PostalCade>
<d:Country m:type="Edm.String">Germany</d:Country>
<d:Phone mitype="Edm.5tring">630-0074321</d:Phone>
<d:Fax m:type="Edm.String">638-0076545</d: Fax>
</m:properties>
</content>
</entry>

Customers('ALFKI')/Orders” />

&

Figure 2.5 OData Customers Entity Set Output

<

C ® @ nttps//services.odata.org/V2/Northwind/Northwind.sve/Customers(CustomerlD = 'ALFKI')

|

<?xml version="1.8" encoding="utf-8" standalone="yes"?»
<entry xml:base="https://services.odsts.org/V2/Northwind/Northuind.sve/" xmlns "http://schemas.microsoft.com/ado/2007/08/dataservices™
smlns:m="http://schemas.microsoft.com/ado/2607/08/dataservices/metadata” xml http:/ /v .w3.org/2005/Atom™ >

<idshttps://services.odata.org/V2/Northwind/Northuind. sve/Customers ("ALFKI®)</id>

<title type="text"»</title>

<updated>2822-03-@8T15:15: 092</updated>

<author>

<name />
«/author>

<link rel="edit" title="Customer” href="Customers('ALFKI')" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders” type="spplication/atom+xml; type=feed” title="Orders”
href="Customers('ALFKI')/Orders" />

<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/CustomerDemographics™ type="spplication/atomtxml;type=feed” title="CustomerDemographics”
href="Customers("ALFKI')/CustomerDemographics™ />
<category term="NorthwindModel.Customer” scheme="http://schemas.microsoft.com/ado/2607/08/dataservices/scheme” />
<content type="spplication/xml"s

<m:properties>
<d:CustomerID m:type=

dm. String” >ALFKI</d:CustomerID>
<d:CompanyName m:type="Edm.String”>Alfreds Futterkiste</d:Companyame>
<d:Contactlame m:type="Edm.String”>Maria Anders</d:ContactName>
<d:ContactTitle m:type="Edm.String">Sales Representative</d:ContactTitle>
<d:Address m:type="Edm.String">0Obere Str. 57</d:Address>

<d:City mitype="Edm.String”>Berlin</diCity>

<d:Region mitype="Edm.String” minull="true" /»

<d:PostalCode m:type="Edm.String”>12269</d:PostalCode>

<d: Edm.String”>Germany</d:Country>

<d:Phane m:type="Edm.String">03@-8874321</d:Phone>
<d:Fax mitype="Edm.String">030-0076545</d:Fax>
</m:properties>
<fcontent>
</entry>

Figure 2.6 Accessing an Individual Resource

API, Representational State Transfer,and Open Data Chapter2 71

Example

You see an example of the preceding scenario at the following URL: http.//s-prs.co/
v540905.

- Navigation/relationships

You can define relationships among the resources in the OData service. Each
resource (entity) can be logically connected to another entity by this concept.
For instance, a customer can get the orders created by using the navigation
property Orders (see Figure 2.7 for an example).

€ > C t @& senices.odata.org/V2/Northwind/Northwind.sve/Customers(% FKI)/Orders

"1.0" encoding="utf-8" standalone="yes"2>

"https://services.odsta.org/V2/Northuind/Northwind. svc/" xmlns:d="http://schemas.microsoft.com/sdo/2007/08/ dstaservices™
i//schemas .microsoft. con/ado/2067/08/dataservices /metadata” xmlns="http://www.u3.org/2085/Atom">
‘text”>0rders</title>
<idshttps://services.odata.org/V2/Northwind/Northuind. svc/Customers (%20 ALFKI ") /Orders</id>
<updated>2022-03-11T05: 65: 122</updated>
<link rel="self" title="Orders" href-"Orders” />
<entry>
<id>https://services.odats.org/Va/Northuind/Northuind . sve/Orders (10643)</id>
<title type="text"></title>

<updated>2022-03-11705:05:122</ updated>
<author>

<name />
</author>

title="Order” href="Orders(10643)" />

com/ado/2007 /65 /dataservices/related/Custoner” type="application/atomsxml;type=entry” title="Customer” href="Orders(10643)/Customer” />
-com/ado/ 2607 /08/dataservices/related/Enployee” type="application/atomxnl;typesentry” title="Employee” href="Orders(18643)/Employec” />
<com/ado/2007/@8/dataservices/related/Order_Details” type="application/atomsxml;type=fead” title="Order Details” href="Orders(10643)/Order Details" />
ttp://schemas.microsoft.com/ado/2007/@8/dataservices/ related/Shippar” type="application/ztomtxml; type=entry” titl

"NorthindHodel.Order” scheme="http://schemas.microsoft.con/ado/2007/08/dataservices/scheme”
<content type="application/xml">
<mipropertiess

="Shipper” href="Orders(10643)/Shipper” />
7>

<d:OrderID m:type="Edm.Int32">10643</d:0rderID>
<d: CustomerID m:type="Edm. String" »ALFKI</d: CustomerID>
<d:EnplayeelD m:type="Edm.Int32">6</d: EmplayeelD>
<d:OrderDate m:typ ateTime">1997-08-25T08:00:00</d: OrderDate>
<d:Requiredate Edm.DateTime">1997-09-22700:00:00</d: RequiredDate>
<d:ShippedDate m dn.DateTine" +1997-09-02T60: 69: 00</d: ShippedDate>
<d:ShipVia m:type="Edm.Int32">1¢/d:ShipVia>
<d:Freight m:type="Edm.Decimal”>29.4600</d: Freight>
<d:Shiphame m: type="Edn.String">Alfreds Futterkistec/d:ShipName>
<d:ShipAddress mitype="Edm.String">Obere Str. 57</d:ShipAddress>
<d:ShipCity m:type="Edn.String”>Berlin</d:ShipCity>
<d:shipregion m:type="Edm.String" m:null="true" />
<d:ShipPostalCode m:type="Edn.String"»12209</d:ShipPostalCader
<d:ShipCountry m:type="Edn.String”>Gernany</d:ShipCountry>

</m:properties>

</content>

</entry>

<entry>

<id>https://services. odata.org/va/Northuind/Northuind . suc/Orders (10692)</id>
<title type="text"»</titler

<updated>2022-03-11705:05:122< /updated>

<author>
<neme />
<fauthor>
<link rel: dit™ title="Order™ href="Orders(10692)" />
<link rel="http://schemas.microsoft.com/ado/2007/08 /dataservices/related/Customer” type="application/atomsxnl;ty] “Customer” href="0rders(10692)/Customer” />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Enployee” type="application/atomtxml;ty] “Employee” href="
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Order_Details
<link rel="http://

ders(10592)/Employec” />
tle="Order_Details” href="Orders(10692)/Order Details” />
Shipper” href="Orders(19682)/Shipper” />

type="application/atomxml; type-feed"
chemas.microsoft.con/ado/2607 /65 dstaservices/related/Shipper” type="application/stomsxml;type=entry” title=
<category term="NorthwindHodel.Order” scheme="http://schemas.microsoft.com/ado/2067/08/dataservices/scheme”
<content typ

/>
pplication/xml">
<m:propertiess

<d:0rderID m:type="dm.Int32">10692</d:0rderID>

<d: CustomerID m:type="Edm. String" »ALFKI</d: CustomerID>

<d:EnployeelD m:type="Edm.Int32">4</d:EmplayeeID>
<d:OrderDate m:types="Edm.DateTime">1997-10-23T00:00
<d:RequiredDate m:type

:00</d:OrderDate>
Edm.DateTime">1997-10-31700:00:00</d: RequiredDate>
dn.DateTine" +1997-10-13T60: 09: 00</d: ShippedDate>
m. Int32">2¢/d:Shipvia>
dn.Decimal">61.0208</d: Freight>
Edn. String"»>Alfred's Futterkiste</d:Shiplamer
dn.String">Obere Str. 57</d:ShipAddress>
Edn.String”>Berlin</d:ShipCity>

< P
<d:shipCity m:type

Figure 2.7 Navigation property

Example ‘Q&
To access the related entities via navigation, see the example at the following URL: http.//
s-prs.co/v540906.

m Queries

With the help of queries, you can filter, sort, or restrict the response fields of

your OData request. These query options are added at the end of an OData ser-
vice, as shown in the following illustration.

72

%

Chapter2 Web Development Standards

For sorting the data by ascending and descending, you can pass the orderby sys-
tem query option ($orderby).

Example

You can apply sorting in the following ways:

m Ascending (see http://s-prs.co/v540907 for an example)
m Descending (see http.//s-prs.co/v540908 for an example)

If you want to get the top three entries, then you can use the system query
option $top, which gives the top n entries.

Example

To access the top n entries, add Stop at the end of the URL. For the top two customer
entries, the URL is https://services.odata.org/V2/Northwind/Northwind.svc/Customers?
Stop=2.

You can also skip the first n entries and get the remaining ones by using $skip.

Example

To skip the top n entries, add Sskip at the end of the URL. For skipping two customer
entries, the URL is https://services.odata.org/V2/Northwind/Northwind.svc/Customers?
Sskip=2.

You can combine $top and $skip to simulate pagination with OData. SAPUI5
controls such as Table and List natively support this function to simulate pagi-
nation (threshold approach). This approach is mainly used in SAP Fiori ele-
ments applications to display the data efficiently.

Example

The following URL combines Stop and Sskip to simulate pagination: https://services.
odata.org/V2/Northwind/Northwind.svc/Customers?Sskip=2&Sstop=1.

To find out the total number of entries in the collection of entries, you can use
$count or query option $inlinecount that provides both entries and count. The
main difference is that $inlinecount provides both the count and data in the
same request, whereas $count only returns the total count of entries. SAPUI5
controls and SAP Fiori elements templates use $count to perform pagination
(see Figure 2.8 for an example of $inlinecount).

API, Representational State Transfer, and Open Data Chapter 2

Example

Visit the following URLs to see examples of the $count and $inlinecount options:

m $count: http://s-prs.co/v540909
m $inlinecount: http://s-prs.co/v540910

« > C 0 8 services.odata.org/V2/Northwind/Morthwind.sve/Products?$inlinecount=allpages&$format=JSON&Stop=1

¢ B

v g

I "results™: [I

"__metadata™: {

"type": "NorthwindModel.Product”
I
"ProductID": 1,
"ProductName™: "Chai”,
"SupplieriD™: 1,
"CategoryID™: 1,
"QuantityPerunit”
"UnitPrice”: "13.0000",
"UnitsInStock”: 39,
“"UnitsOnOrder”: @,
"ReorderLevel”: 18,
"Discontinued”: false,

"Category": {
"__deferred": {
"uri™: "https://services.odata
}
).
"Order_Details": {
" __deferred": {
"uri”: “https://services.odata
}
¥
"Supplier”: {
" __deferred”: {
"uri™: "https://services.odata

"uri": "https://services.odata.org/V2/Northwind/Northwind.sve/Products(1)”,

"10 boxes x 2@ bags",

.org/V2/Northwind/Northwind.svc/Products(1)/Category”

.org/V2/Northwind/Northwind.svc/Products(1)/0rder_Details"

-org/V2/Northwind/Northwind.svc/Products{1)/Supplier”

¥

Figure 2.8 OData Inline Count

For filtering all the customers belonging to a country (e.g., Germany), you have

to use the query option $filter along with the filter operator eqg, as shown in

Figure 2.9.

Example

Visit the following URL for an example of a query option: http://s-prs.co/v540911.

You can also use other filter operators to filter the entries, such as Ne (not equal),

gt (greater than), or functions such as startswith, endswith, and tolower.

73

%

e

74 Chapter2 Web Development Standards

& O @) 5] https://services.odata.org/V2/Northwind/Northwind.svc/Customers?$filter=Country%e20e...

<?xml version="1.@" encoding="utf-8" standalone="yes"?>
<feed wml:base="https://services.odata.org/V2/Northuind/Northwind.sve/" xmlns:d="http://schemas.microsoft.com/ado/2007/08/dataservices™
xmlns:m="http://schemas.microsoft.com/ado/20@7/88/dataservices/metadata” xmlns="http://www.w3.org/2005/Atom" >
<title type="text"»Customers</title>
<idrhttps://services.odata.org/v2/Northwind/Northwind. svc/Customers</id>
<updated>2022-03-88T715:43:11Z< /updated>
<link rel="self" title="Customers" href="Customers” />
<entry:
<id>https://services.odata.org/v2/Northwind/Northwind. svc/Customers('ALFKI")</id>
<title type="text"s</title>
<updated>2022-83-88T15:43:117</updated>
<author>
<name />
</author>
<link rel="edit" title="Customer" href="Customers('ALFKI')" />
<link rel="http://schemas.microsoft.com/ado/2067/@3/dataservices/related/Orders" type="application/atomxml;type=feed" title="Orders"
href="Customers ('ALFKI')/Orders™ />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/CustomerDemographics” type="application/atomtxml;type=Tfeed"”
title="CustomerDemographics" href="Customers('ALFKI')/CustomerDemographics” />
<category term="NorthwindModel.Customer” scheme="http://schemas.microsoft.com/ado/2007/08/dataservices/scheme™ />
<content type="application/xml">
<m:properties»
«<d:CustomerID m:type="Edm.String">ALFKI</d:CustomerID>
<d:CompanyName m:type="Edm.String">Alfreds Futterkiste</d:CompanyName>
<d:Contactlame m:type="Edm.String">Maria Anders</d:ContactNames
<d:ContactTitle m:type="Edm.5tring">Sales Representative</d:ContactTitle>
<d:Address m:type="Edm.String"»>0bere 5tr. 57</d:Address>
<d:City m:type="Edm.String"s>Berlin¢/d:City>
<d:Region m:type="Edm.String" m:null="true" />
<d:PostalCode m:type="Edm.String">12209</d:PostalCode>
<d: Edm.String">Germany</d:Country>
<d: Edm.5tring"»@32-0074321</d: Phone>
<d:Fax m:type="Edm.5tring">830-8@76545</d;: Fax>
</m:properties»
</content>
<fentry>
<entry>
<id>https://services.odata.org/v2/Northuind/Northwind. svc/Customers(' BLAUS)</id>
<title type="text"></title>
<updated>2022-83-88T15:43:117</updated>
<author>
<name />
</authors
<link rel="edit" title="Customer" href="Customers('BLAUS')" />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/Orders"” type="application/atom+xml;type=feed” title="Orders"
href="Customers('BLAUS')/Orders™ />
<link rel="http://schemas.microsoft.com/ado/2007/08/dataservices/related/CustomerDemographics" type="spplication/atom+xml;type=Tfeed"”
title="CustomerDemographics” href="Customers('BLAUS')/CustomerDemographics” />
<category term="NorthwindModel.Customer” scheme="http://schemas.microsoft.com/ado/2007/68/dataservices/scheme™ />
<content type="application/xml">
<m:properties>
<d:CustomerID m:type="Edm.String">BLAUS</d:CustomerID>
<d:CompanyName m:type="Edm.String">Blausr See Delikatessen</d:CompanyName>
<d:ContactName m:type="Edm.5tring">Hanna Moos</d:ContactName>
<d:ContactTitle m:type="Edm.String">Sales Representative</d:ContactTitle>
<d:Address m:type="Edm.String">Forsterstr. 57</d:Address>
<d:City mitype="Edm.5tring">Mannheim</d:City>
<d:Region m:type="Edm.String" m:null="true" />
<d:PostalCode m:type="Edm.String">683@6</d:PostalCade>
<d:Country m:type="Edm.String">Germany</d:Country>
<d:Phone m:type="Edm.String">0621-08468</d:Phone>
<d:Fax m:type="Edm.5tring">0621-28%24</d: Fax>
</miproperties>
«/content>
</fentry>

API, Representational State Transfer, and Open Data Chapter 2

Example

The following example shows multiple filters with the logical OR operator: http.//s-prs.co/
v540914.

You can refer to the following documentation for other operators and functions
that you can use in the filters: http://s-prs.co/v540915. You can also format the
output as JSON instead of XML with the $format query option, as shown in
Figure 2.10.

&= = C 0 & services.odata.org/V2/Northwind/Northwind.svc/Customers? $format=json&S$top=1
|| | |
{
mdUr [
{
__metadsta": {
i": "https://services.odata.org/V2/Northwind/Northwind. sve/Customers('ALFKI')",
“type”: "NorthwindModel.Customer™
I
"CustomerID": "ALFKI",
"CompanyName”: "Alfreds Futterkiste",
“ContactName "Maria Anders”,
"ContactTitle": "Sales Representative”,
"Address": “"Obere Str. 57,
"City": "Berlin",
"Region”: null,
“PostalCode™: "122@3",
"Country™: "Germany”,
"Phone": "@3@-e074321",
"Fax": "@30-0076545",
"Orders”™: {
*__deferred”: {
"uri”: “"https://services.odata.org/V2/Northwind/Northwind.svc/Customers('ALFKI')/Orders"
}
}s
“CustomerDemographics”: {
*__deferred”: {
"uri”: “https://services.odata.org/V2/Northuind/Northwind.sve/Customers('ALFKI')/CustomerDemographics™
¥
}
}
1
¥

Figure 2.10 JSON Formatted Output

ote

Figure 2.9 OData Filter Query Parameter

na Example

Visit the following URLs for examples of filters:
m Less than filter: http://s-prs.co/v540912
This URL returns the entries where freight is less than 10.

m Greater than filter: http://s-prs.co/v540913
This URL returns entries with freight greater than 200.

You can use the OR operator to perform a logical OR operation on the data. The
data contains Germany or Mexico as the country.

Example

Adding $format at the end of the URL will format the output: https://services.odata.org/
V2/Northwind/Northwind.svc/Customers?Sformat=json&Stop=1.

You saw earlier how to get customer relationship data using the navigation
property Orders. If you use that, the service only gives the orders entries. To get
data for multiple relationships simultaneously, along with the parent entity,
you can use the $expand query option, as shown in Figure 2.11.

Example

To access both parent and related child entities data, you can use $expand, as shown in
this URL: https://services.odata.org/V2/Northwind/Northwind.svc/Products?Sexpand=
Supplier,Order_Details&sformat=json&Stop=1.

75

76

Chapter2 Web Development Standards

« > C 0O B services.odata.org/V2/Northwind/MNorthwind.svc/Products?Sexpand=Supplier, Order_Details&Sformat=json&S{

N

"results": [

{
{

"__metadata™: {
"uri": "https://services.odata.org/V2/Northwind/Northwind.sve/Products(1)",
"type": "NorthwindModel.Product”

"ProductID”: 1,
"Productiame™: "Chai",
"SupplierID": 1,
"CategoryID": 1,
"QuantityPerUnit": "1@ boxes x 28 bags",
"UnitPrice": "13.@882",
"UnitsInStock™: 39,
"UnitsOnOrder”: @,
"ReorderLevel”: 1@,
"Discontinued”: false,
"Category": {..}.
"Order_Details": {
"results": [..]
¥s
"Supplier”: {
" metadata™: { .},
"SupplierID": 1,
"CompanyMName": "Exotic Liquids",
"ContactMame": "Charlotte Cooper”,
"ContactTitle": "Purchasing Manager",
"Address": "49 Gilbert St.",
"City": "London",
"Region”: null,
"PostalCode™: "EC1 45D",
"Country": "UK",
"Phone”: "(171) 555-2222",
"Fax": null,

"HomePage": null,

Figure 2.11 OData Expand

In Figure 2.11, you can see that we're fetching the relationship data Supplier,
Order Details for the Products entity. The response also has the parent data
(Products) along with the related entities.

You can use $select to specify the response entity’s properties. For example, you
can pass the properties ProductID and ProductName to the query option $select to
fetch only those properties, as shown in Figure 2.12.

Example

See an example of how to use query option $select at the following URL: http.//s-prs.co/
v540916.

JavaScript Object Notation and Yet Another Markup Language Chapter 2

& lb C 0 @ services.odata.org/V2/Northwind/Northwind.svc/Products?$select=ProductiD,ProductName
{
"d": [
{
"__metadata": {
"uri”: “"https://services.odata.org/V2/Northwind/Northwind.sve/Products(1)",
"type": "NorthwindModel.Product”
bs
"ProductID": 1,
"ProductMame”: "Chai"
}
1
¥

Figure 2.12 OData $select

2.3 JavaScript Object Notation and Yet Another Markup
Language

JSON and YAML are two popular formats for data exchange and configuration files.
They are similar in functions and features, but the difference will be in the design,
which affects the scope of use. This section will provide an overview of JSON and
YAML, followed by an explanation of their differences.

2.3.1 JSON

JSON is an open standard file format and data interchange format that uses
human-readable text to store and transmit data objects consisting of attribute-
value pairs and arrays. It’s one of the common data formats used in modern web
applications. Although JSON was derived from JavaScript, it's a language-indepen-
dent data format. JSON files use the extension .json.

JSON is built on two structures:
m A collection of name-value pairs, which are called object, record, or struct in
other programming languages

m Anordered list of values, which are called array, vector, or sequence in most lan-
guages.

JSON Object/Structure

An object is an unordered set of name-value pairs. It starts with a left brace ({) and
ends with a right brace (}). Name-value pairs, separated by a colon (:) will be added
inside these braces, and these values can be of type string, number, array, or other
data types.

77

78

%

Chapter2 Web Development Standards

Example
Listing 2.1 shows an example JSON object.

{
"squadName": "Super hero squad",
"homeTown": "Metro City",
"formed": 2016,
"secretBase": "Super tower",
"active": true,
"members": [
{
"name": "Molecule Man",
"age": 29,
"secretIdentity": "Dan Jukes",
"powers": [
"Radiation resistance",
"Turning tiny",
"Radiation blast"

}

Listing 2.1 Example JSON Object

You can notice in the preceding example that the JSON object has a mix of data
types: a string, "Super hero squad"; a number, 2016; a Boolean, true; and an array.

JSON Array

An array is an ordered collection of objects. They begin with [(left bracket), end
with] (right bracket), and have JSON objects between them.

Example
Listing 2.2 shows an example array.

[
{
"name": "Hyper Man",
"age": 19,
"secretIdentity": "Dan King",
"powers": [
"Super Strength",
"Cold Breath",
"Flight"
]

"name": "Madame Tsunade",
"age": 29,
"secretIdentity": "Jane Tsunade",

JavaScript Object Notation and Yet Another Markup Language Chapter 2

"powers": [
"Million times punch",
"Super Strength",

]
}
]

Listing 2.2 Example Array

23.2 YAML

YAML is a human-friendly data serialization language. It’s a superset of JSON, so
JSON files are valid in YAML. The extensions of YAML files are.yaml or.yml. It’s pri-
marily used in configuration files, internet messaging, data auditing, and so on.

The YAML file is made up of name-value pairs but follows a special indentation to
indicate nesting. It doesn’t have braces or square brackets like JSON does.

Example
A typical YAML file looks like Listing 2.3.

Super Hero Detail

Name: Hyper Man

Age: 19

Secret Identity: Dan King
Powers:

= Super Strength

= Cold Breath

= Flight

Descriptionl: >

Although this text
appears in different
lines, it will be formatted
to single line

Listing 2.3 Example YAML

From the preceding example, you can observe that name-value pairs are separated
by a colon (:) and a long string, which, when specified with >, ensures that a multi-
line string is formatted to a single line. A comment will have a hash (#) in the begin-
ning. An array of values is separated by - with a single tab indentation.

Example
You can see an array in the following formats:

Typel:[‘valuel’, ‘value2’, ‘value3’]
Type2:

= valuel

= value2

= value3

79

%

80

Chapter2 Web Development Standards

Type3:
= id: 1
Name: franc
= id: 11
Name: Tom

The YAML array example can also be represented in the JSON format as shown here:

{

"Typel": [
"valuel",
"value2",
"value3"

15

n ypezll: [
"valuel",
"value2",

"value3"

I;
"Types": [
{
"id": 1,
"name": "franc'
Fs
{
"id": 11,
"name": "Tom
}
]
}

2.3.3 YAML versus JSON

Although both YAML and JSON are two popular human-readable data formats,
both have different priorities. Technically, YAML is a superset of JSON, so it offers
more functionalities than JSON; for example, in a JSON file, you can have duplicate
key values, but that can be prevented easily in YAML files. So, you can say for this
specific reason, YAML is preferred in configuration files. YAML tends to be simpler
to read and understand because you won't find unnecessary braces. It also has
tons of better features such as comments, recursive structures, and so on. YAML
also supports nonhierarchical data and doesn’t need to follow the typical parent
and child relationship like the JSON model.

On the other hand, JSON isn’t as complex as YAML as it has simple data types and
structures. It can also be parsed and generated faster than YAML. Because the JSON
format is used mostly in JavaScript, it has a better developer ecosystem than
YAML.

Twelve-Factor App Principles Chapter 2

2.4 Twelve-Factor App Principles

Web applications are ubiquitous these days. As browsers become more and more
powerful, desktop applications are shrinking, and delivering applications via
browser is becoming increasingly common. These applications are called web
applications as they are accessed using the World Wide Web (the internet).

As web applications became popular in the past two decades, many best practices
and principles have emerged to develop and maintain web applications, including
the twelve-factor app set of principles for building performant, scalable, and resil-
ient web applications.

As the name suggests, twelve-factor app principles provide 12 principles for creat-
ing modern, microservice-based cloud-native web applications. It was originally
introduced by Adam Wiggins in the 2011. He also happens to be the cofounder of
Heroku, which was once a very popular platform-as-a-service (PaaS) for running
enterprise applications.

Now, let’s explore these 12 principles:

m Codebase

The codebase principle states that the application resources should have a
version-managed, source-code repository such as Git or Subversion. Multiple
apps sharing the same code is a violation of the twelve-factor app principles.
The solution here is to factor shared code into libraries that can be included
through the dependency manager.

Per the twelve-factor app methodology, a deploy is an instance of an app in the
developer’s system, development system, quality system, and production sys-
tem, though different versions can be active in each deployment (see Figure
2.13). The codebase can be accessible to Continuous Integration/Continuous
Delivery (CI/CD) as part of the software development cycle. A system’s codebase
can be in sync with some level of automation using CI/CD.

Deploys
Codebase
Developer 1 Developer 2

— Development
— System (Optional) —
— Q)
a

— Quality System
y Y i
— m
L — 'c
L 7 Production m

System

Figure 2.13 Twelve-Factor App Principle: Codebase

81

82

Chapter2 Web Development Standards

m Dependencies

When you build an application, it's common to use other reusable repositories
and tools within the application that you create. One easy way to handle depen-
dencies is to include those dependent library codes into your application itself.
However, that comes with the disadvantage of mixing the lifecycle of the appli-
cation code and the dependent library code.

This principle specifies that the dependencies should be set in your app mani-
fest or configuration file and managed externally instead of including them
directly in the source code.

If you're using Node.js, you specify the dependencies inside a package.json file
(see Figure 2.14). The node package manager (NPM) takes care of downloading
the specified versions and installing them to make them available for the appli-
cation to use. Similarly, in a Java application, you set the dependencies in a
build.gradle file, and the Gradle dependency manager takes care of those depen-
dencies.

"name": "main_app",
Application Source Code "version": "1.0.0",
"description”: "",
"main": "Helloword.js",
"dependencies": {
"lodash": ""4.17.21", Required for the
"express": "4.13.4", Application to Run
"cors": "2.7.1",
"underscore": "1.8.3"
b
"devDebendencies": {
"chai": ""4.3.4",
"chai-as-promised": "*7.1.1",
"chai-subset": "*1.6.0",
"sqlite3": "npm:@mendix/sqlite3@"5"
}
}

Uses

Used for the Application
at Time of Development
and Unit Testing

]

Figure 2.14 Twelve-Factor App Principle: Node.js Dependencies

= Config

This principle states that configurations of an application need to be stored
independently from the code itself, as environment variables, or in a configura-
tion file.

Examples of configuration data are hostname, port number, and credentials.
These configuration data are different for each of the deployment environ-
ments where the application is going to run. By separating such configuration
data, we're making it easy to run the application in different environments by
just applying the independently maintained configuration data to the runtime.
Figure 2.15 shows that when running in different landscapes, the same codebase
is run, but different sets of configuration data are applied in different environ-
ments.

Twelve-Factor App Principles Chapter 2

Running in < > Your Application |« > Running in
Development Sandbox
v 4 v
Development Y Sandbox
¢ Running ¢
Locall
Host=https://abc.com Y Host=https://abc.com
Port=3030 Port=3030
User=supplier * User=supplier
Password=init1l Password=initl

Local

v

Host=https://abc.com
Port=3030
User=supplier
Password=init1l

Figure 2.15 Same Application Code Running in Different Environments

m Backing services

The backing service principle suggests that services such as databases, messag-
ing systems, Simple Mail Transfer Protocol (SMTP) services, and so on, should
be architected as external resources. The application consumes these backing
services over the network.

These services can be locally managed or provided by third parties such as Ama-
zon Simple Storage Service (Amazon S3) or Google Maps. URLs, credentials, and
so on should be maintained in a configuration file, and when required to
replace an existing service with another one, you can easily change the details
in the configuration file. Each of these backing services is referred to as a
resource. In Figure 2.16, you can see an example of the SAP Cloud Application
Programming Model application accessing three different resources.

SAP Cloud Application
Programming Model
Application

= L0

SAP HANA SAP Event Mesh Mail Server
Database

Figure 2.16 Twelve-Factor App Principle: SAP Backing Services

84

Chapter2 Web Development Standards

m Build, release, and run

This principle states that there should be three independent steps in your

deployment process (see Figure 2.17):

— The build stage converts the code repo into an executable bundle. At this
stage, all the dependencies will also be fetched and compiled into the execut-
able bundle.

— The release stage combines the configurations from configuration files and
environment variables with the executable bundle. The resulting build will
be an executable file ready to be run in the execution environment.

— The run stage runs the app in the execution environment, which can be
development, quality, or production.

Codebase

Build

Converts to
Executable Code

N

Release

Applies
Configurations

Run

Runs the App in the
Execution Environment

Continuous Integration/Continuous Delivery (Cl/CD) >

Twelve-Factor App Principles Chapter 2

Consider that a user’s request is served by process 1. Subsequent requests
should be able to be served by process 2 or any other processes as well. There
will be no session data maintained in any of the processes, and each process
independently serves the request without communicating with other pro-
cesses. Any data that needs to persist must use a backing service such as a data-
base.

Following this principle makes it easy to scale the infrastructure up and down,
thus making it ideal for cloud deployments.

m Port binding
The twelve-factor app is a self-contained standalone app that doesn’t require a
web server to create a web-facing service. Instead of having a web server to han-
dle the requests and sending to the individual services, where dependency with
the web server is created, a twelve-factor app directly binds to a port and
responds to incoming requests (see Figure 2.19).

Figure 2.17 Twelve-Factor App Principle: Build, Release, Run

m Stateless processes
This principle states that applications should have the provision to be served by
multiple stateless, independent processes, as shown in Figure 2.18.

1

Load Balancer

PN

Process 1 Process 2 —-— . - Process n

Figure 2.18 Stateless Processes Serving the Application

(%
l

Y Y Y
Port 30211 Port 3022] Port 3023 Port 30NN\|
i { { {
y
Service 1 Service 2 Service 3 Service N

Figure 2.19 Port Binding

An individual service can act as a backing service to another app by providing
the backing service URL in the configuration of the consumption app.

= Concurrency
This principle states that the application needs to be broken down into multiple
modules so that each of those modules can be scaled up and down inde-
pendently. For instance, HTTP requests can be handled by a web process, and a
worker process can take care of background jobs. Again, these individual pro-
cesses can be scaled up or down to handle the increased workloads inde-
pendently.

m Disposability
A twelve-factor app should maximize robustness with fast startup and graceful
shutdown. The processes should minimize the time to startup and ideally take
a few seconds to start and receive the incoming requests; it helps while scaling
up the processes. At the same time, the processes should shut down gracefully

85

86

Chapter2 Web Development Standards

and cease to listen on the service port without allowing any incoming requests;
in such cases, if there is a queuing system, the requests can be queued and pro-
cessed once the processes are up.

= DEV/PROD parity
The twelve-factor app methodology suggests that an app’s development, stag-
ing, and production are kept as similar as possible. A twelve-factor app should
be designed with the CI/CD approach by making the time gap small—where the
developer writes some code and deploys it in hours or even minutes—and
keeping DEV and PROD as similar as possible. This eliminates the risk of bugs in
production when new changes are moved with different versions.

m Logs
This rule suggests treating logs as event streams. Logs are typically time-
ordered event information, or logs can be error or success messages recorded
by an app. A twelve-factor app never concerns itself with storing the log infor-
mation in the app, as it can die and, as a result, lose the information. Instead, the
app should treat log entries as event streams and use a separate service to save
them. These can be consumed by interested parties to perform analytics or for
monitoring.

= Admin processes
The developer often needs to perform administrative or maintenance activities
for apps that need data migration, running processes, or one-time scripts. These
should also be identical across different landscapes (DEV, QA, and PROD). These
processes should also be shipped along with the application code to avoid syn-
chronization issues.

2.5 Important Terminology

In this chapter, the following terminology was used:

= Application programming interface (API)
APIs enable companies to securely connect their internal applications or exter-
nal partners to transfer data in both directions.

m JavaScript Object Notation (JSON)
JSON is an open standard file format and data interchange format that uses
human-readable text to store and transmit data objects consisting of attribute-
value pairs and arrays.

m Open Data Protocol (OData)
OData is a REST-based protocol approved by ISO/IEC used for building and con-
suming RESTful APIs.

m Representational State Transfer (REST)
REST is a famous web API architecture that is mainly used for lightweight web
services and mobile applications.

Practice Questions Chapter 2

= Simple Object Access Protocol (SOAP)
SOAP is a stricter protocol with defined security rules that is standardized by
the W3C and uses an XML payload to transfer the data between systems.

m Twelve-factor app
Atwelve-factor app defines the principles for building performant, scalable, and
resilient microservice-based cloud-native web applications.

m Yet Another Markup Language (YAML)
YAML is a human-friendly data serialization language. It’s a superset of JSON, so
JSON files are valid in YAML.

2.6 Practice Questions

—_

What is an application programming interface (API)?

A. Interface used for software applications to interact with each other

B. Tool for creating web applications

O 0O g

C. A software development kit of mobile applications

N

Consumers of an API need which of the following?

A. Architectural design of an API
B. Server details

C. Database dump from the server

O 0O 00

D. Documentation of the API

What are the features of a RESTful API? (There are three correct answers.)

A. Client-server model
B. Stricter protocols

C. Statelessness

I O I O I

D. Uniform interface

-

Which of the following is valid for the OData protocol? (There are two correct
answers.)

A. Follow the new protocols instead of REST principles.

B. Support the extensions of API without breaking the client’s functionality.

C. Act as a relational database.

I

D. Follow the REST principles.

87

88

Chapter2 Web Development Standards

© O oOoogag ® OoOoogag N Oooao © O 0O0gd ol

Ooooao

Where can you find the top-level feeds and Entity Data Model (EDM) of an
OData service? (There are two correct answers.)

A. Annotations

B. Service document

C. Metadata

D. SOAP document

What can you find in the metadata document of an OData service? (There are
three correct answers.)

A. Entity definitions

B. Relations

C. Entity properties

D. Entity data (entries)

Which of the following URIs are correct for fetching a single resource? (There
are two correct answers.)

A. /Customers(CustomerID = 'ALFKI')

B. /Customers?Stop=1

C. /Customers?Sselect=CustomerID

D. /Customers?Scount

Which URI option will we use to fetch the parent and the associated entities
together? (There are two correct answers.)

A. /Customers('ALFKI')/Orders

B. /Customers('ALFKI)?Sexpand=Orders

C. /Customers?sexpand=Orders

D. /Customers(‘ALFKI’)/Orders?Sselect=Customerld

Which functionalities are used by OData to implement pagination in frontend
applications?

A. $top and $select

B. $top, $count, and $expand

C. $top, $skip, and $inlinecount

D. $top, $skip, and $select

10.

O O

11

12.

O O

13.

O

14.

O 0O

15.

O

16.

O O

Practice Questions Chapter 2

What is the relationship between YAML and JSON?
A.YAML is a superset of JSON.

B. YAML is a subset of JSON.
C. YAML and JSON are the same.

For what is YAML primarily used?
A. Creating configuration files
B. Transferring data

C. Storing data in the database

Which of the following supports nonhierarchical data?
A.JSON

B. YAML

C. Both JSON and YAML

Which data format supports comments?
A.YAML

B.JSON

C. Neither of them

Which of the following is true for JSON?
A. It supports indentation.

B. Arrays should begin with a bracket ([).
C. YAML can be used inside JSON.

The codebase principle of the twelve-factor app suggests which of the follow-
ing? (There are two correct answers.)

A. Code should be shared using libraries and the dependency manager.
B. Version/source control isn’'t mandatory for codebases.

C. The CI/CD approach can be used to keep the systems codebase in sync.

Where can configurations such as credentials, host, or port be saved?

A. Dependencies
B. Code

C. Environment variables

89

90

Chapter2 Web Development Standards

17. Which of the following statements are true? (There are two correct answers.)

0 A. Applications should access backing services using the configuration file.
[0 B. Abacking service is a library that can be reused in different codebases.

[0 C.SAP HANA database and SAP Event Mesh are called backing services.

18. What principle should be followed for deploying the codebase to a production
environment?

0 A.Backing services

[0 B.Build, release, and run

0 C.Dependencies

19. The stateless principle from the twelve-factor app suggests which of the fol-
lowing? (There are two correct answers.)

[J A.Stateless independent processes

0 B.Dependent processes

[0 C.Use of backing services for persistency

20. Which one of the following is true in the case of a twelve-factor app?

[0 A.Use ports to listen to incoming requests instead of a web server directly.

00 B.Theapplication should be created from multiple modules that can be scaled
up and down independently.

[0 C.Development, staging, and production environments should be kept simi-
lar with the help of the CI/CD approach.

O D. All of the above are true.

21. Which of the following is true for a twelve-factor app?

[0 A.Logs should be stored in the application.
0 B. Admin processes should be similar in all the landscapes.

[0 C.Neither of the above are true.

2.7 Practice Question Answers and Explanations

1. Answer: A
APIs are used for software applications to interact with each other. An APIisn’t
a tool for creating web applications or an SDK for developing mobile apps.

10.

11.

12.

Practice Question Answers and Explanations Chapter 2

Answer: D

While designing an API, API producers should hide the complexity of what an
API does in the background and only provide the information the consumer
requests. API producers will give the consumers the documentation of an API
explicitly or implicitly (via metadata) to understand how the API works.

Answer: A, C,and D

RESTful APIs follow the REST guidelines such as client-server model, cacheabil-
ity, uniform interface, statelessness, and the layered system, but they don'’t fol-
low any strict protocols like SOAP does.

Answer: Band D
OData services follow the REST principles, and they should support the exten-
sion of APIs without breaking the client’s functionality.

Answer: Band C

Service documents have all the top-level feeds of an OData service, whereas the
EDM can be determined from the metadata document.

. Answer: A, B,and C

You can find entity definitions, properties, key properties, and related entities
(relationships) in the metadata. You need to pass the entity set name in the
resource path to access the entity data.

Answer: A and B

/Customers(CustomerID = 'ALFKI') returns only one record matching the key
property ALFKI and /Customers?$top=1 returns up to one customer entry as the
$top=1 query option is used.

Answer: Band C

$expand is used to fetch the parent entity and the mentioned associated entities
in $expand.

. Answer: C

The $top, $skip, and $inlinecount or $count query options of an OData service
are used to implement pagination in frontend applications such as SAPUIS5.

Answer: A

YAML is the superset of JSON. A valid YAML file can contain JSON. You can con-
vert JSON to YAML without any loss of information, and every JSON file is also
a valid YAML file.

Answer: A
As YAML is more human-readable than JSON, it’s preferred in creating configu-
ration files.

Answer: B
YAML supports nonhierarchical data and doesn’t need to follow the typical par-
ent and child relationship like the JSON model.

91

92

Chapter2 Web Development Standards

13. Answer: A
YAML supports comments by default.

14. Answer: B
Arrays should begin with a bracket ([). YAML supports indentation to segregate
data inside it, and JSON can be used inside YAML, but not otherwise. JSON
arrays begin and end with brackets.

15. Answer: Aand C
Reusable code can be shared using libraries with the help of a dependency man-
ager. Codebase should have version control such as Git to track changes and
push to different landscapes. CI/CD can keep the systems in sync with the latest
codebase and patches, which is the recommended approach per the twelve-fac-
tor app principles.

16. Answer: C
We shouldn’t save the data such as host, port, or credentials in the code; it
should be saved in the environment variables.

17. Answer: Aand C
The application should access backing services such as SAP HANA database or
SAP Event Mesh via the environment variable or configuration files. Libraries
are dependencies, not backing services.

18. Answer: B

The build, release, and run principle should be followed when deploying the
codebase to a production environment. This principles states that there should
be three independent steps in your deployment process: the build stage that
converts the code repo into an executable bundle; the release stage that com-
bines the configurations from configuration files and environment variables
with the executable bundle; and the run stage that runs the app in the execu-
tion environment.

19. Answer: Aand C
The twelve-factor app principle suggests that stateless and independent pro-
cesses should serve an application, and if there is any need for data persistency,
a backing service should be used.

20.Answer: D
The port binding principle suggests that instead of using a webserver to handle
the requests, the application should listen to the ports to handle the incoming
requests directly.
The concurrency principle suggests that an application should be broken down
into multiple modules to be scaled up and down independently based on load.
The DEV/PROD parity principle requires all the environments to be similar and

use CI/CD tools to reduce the time and have the application identical in all the
environments.

Summary Chapter2

21. Answer: B
Logs should not be stored in the application, and external services should be
used to save the logs. Administrative or maintenance activities for apps such as
migrations or on-time scripts should be similar in all the landscapes.

2.8 Test Takeaway

OData is a REST-based protocol for building RESTful APIs. SAP recommends using
OData in its applications and frameworks, such as SAP Cloud Application Program-
ming Model (Node.js) or RAP (ABAP), which have huge support for OData. JSON
and YAML are the most popular data formats used in configuration files and while
transferring the data across the web. Twelve-factor app principles are the widely
endorsed principles that are recommended to be followed while designing an
application with modern web capabilities.

2.9 Summary

In this chapter, you learned about important web standards such as API, REST, and
OData. Then we covered YAML and JSON, two popular formats for data exchange
and configuration files. We discussed how to create resilient cloud-native applica-
tions by understanding the principles of the twelve-factor app as well. In addition,
we discussed the OData protocol in depth, which is a popular format used exten-
sively in SAP applications.

In the next chapter, we’ll discuss the the SAP Cloud Application Programming
Model.

93

Contents

Foreword 13
Introduction 15
1 SAP Business Technology Platform 25
1.1 Objectives of This Portion of the Test 26
1.2 Cloud Computing 26
121 Types of Cloud Computing 27
1.2.2 Cloud Computing Models 28
1.3 SAP Business Technology Platform 30
13.1 The Uniqueness of SAP Business Technology Platformcccccenecee. 30
1.3.2 SAP Business Technology Platform Capabilities 31
1.3.3 SAP Business Technology Platform Environmentscccccoocccenereonnccns 35
1.3.4 SAP Business Technology Platform Cockpit 37
1.4 SAP Business Technology Platform Account Model 38
141 Feature Sets 38
142 Account Model 38
1.5 SAP Business Technology Platform Commercial Modelsccccccccmnecccs 43
151 Consumption-Based Commercial Model 43
1.5.2 Subscription-Based Commercial Model 44
153 Free-Tier 45
154 Trial Account 45
1.55 Entitlements, Service Plans, and Quotas 46
1.6 Cloud Foundry 47
1.6.1 Architecture 48
1.6.2 Cloud Foundry Layers 49
1.6.3 Enabling Cloud Foundry in SAP Business Technology Platform 50
1.64 Cloud Foundry Command-Line Interface 51
1.6.5 Scalinga Cloud Foundry Application 51
1.6.6 Pastand Future of the Cloud Foundry Platform 53
1.7 SAP Discovery Center 54
1.8 Important Terminology 55
1.9 Practice Questions 57
1.10 Practice Question Answers and Explanations 59

Contents

111
112

2.1
2.2

2.3

2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2

3.3

34
3.5

TSt TAK@AWAY ..ottt sess st ess s ess s 61
SUMMIATY ..ottt ssesee et ese st bbbt bese e 61
Web Development Standards 63
Objectives of This Portion of the Test ... 64
Application Programming Interface, Representational State Transfer,

AN OPEN DAt ..ot . 64
221 64

2.2.2 REST 65
2.2.3 ODATA e 67
JavaScript Object Notation and Yet Another Markup Language 77
230 JSON e 77
232 YAML e e 79
233 YAMLVEISUS JSON ..o ssssssssssesssssanes 80
Twelve-Factor App Principlesccriressnnecncceeeeeeesscsne . 81
Important TermMinologyconccriceeeiiiissnseccreeseesssssssssseeesessssssssssssees 86
Practice QUESTIONScooovuuumoimccrrcrreeieiiisnrseccrcceeesesssss e esessssssss e . 87
Practice Question Answers and Explanations ... 90
Test TAK@AWAYccooueccerrreeeeieenseeeceeeeeseesssssseeessssssssssssss s ssssssssssssnnees . 93
SUMMATY ..oooooiic s 93
SAP Cloud Application Programming Model 95
Objectives of This Portion of the Test ... 96
SAP Business Application Studio ..., 97
321 Technical Detailsrceesecceiecceimecceseeeseeasecesesesesssesssssesseseneees 97
3.2.2 Getting Started with SAP Business Application Studiocc..ccccceeneces 98
Introduction to the SAP Cloud Application Programming Model 103
3.3.1 Capabilities of the SAP Cloud Application Programming Model 104
3.3.2 ReAI-WOIIA SCENATIO ..o cenieceseses s eseeses s enesesenssnens 106
3.3.3 Following the Progress in the Real-World Scenariocccuccecemcreeunnec. 108
Creating an SAP Cloud Application Programming Model Project 108
DOMAIN MOAEIINGooc i cereeeeissss e ssessssssss s ssssesssases 111

351 ENEIIES s 112

3.6

3.7

3.8

3.9
3.10

3.11
3.12
3.13
3.14
3.15
3.16

Contents

3.5.2

353 Aspects

354 €OAC LISt oot cessse s sess s sese oo 115
3.5.5 Views and Projections ... sesesesesssssessssesees 116
3.5.6 ASSOCIATIONS ..ot 116
3.5.7 Unmanaged and Managed AsSSOCIationscncnnecnecenecnns 117
3.5.8 COMPOSITIONS ecoeriirrircinriirieerierieeissenise e sisesssessse e sssesssessssssssssssessasesssessnesens 117
3.5.9 Actions and FUNCLIONS ...t sisesisesseesssessesene 118
3.5.10 Real-World Scenario: Domain Modelccmernccnnerunne. 119
3.5.11 Core Data Services Language to Core Schema Notationcccconece. 120
3.5.12 Database interactions

Creating OData SEIVICESccocoiircrinecrenineceesseeesssieessessesesesssess 122
3.6.1 Service MOEliNG ... sesseseasseseanes 122
3.6.2 Real-World Scenario: Create a Serviceeneceneceneeesnecrenecnes 124

Running Locally

3.7.1 Runningthe SAP Cloud Application Programming Model Project 125
3.7.2 AddiNg TESE Data ..o seeesees 126
3.7.3 Connecting to SAP HANA CloUdccovmirerineeineriieecenecereseeeesseeseaecees 128
3.7.4 CDSBiNd COMMANG ...onverecrcrieriecriecsiseeseeesesessiseessessssesssssesssnessenecses 132
CUSTOM HANAIEKSooccincce st sessesessssseens 133
3.81 Writing Custom HandIrsoccricceirereerneceeineceeeseesevseseeseseseeaseens 133
3.8.2 Application Programming Interface for Handler Registration 134
3.8.3 Explicit Way of Registering Event Handlerscccoevconrmecnneceoncens 134
3.84 Phases of Events 135
3.8.5 Real-World Scenario: Creating Custom Handlerscccccvceucreonncces 137
Emitting and Subscribing to Events ..., 138
Building and Deployingccoccccvnvuuunces

3.10.1 Cloud Foundry Native Deployment . .
3.10.2 Multi-Target AppliCationscnceenecrneeeieeiecsieceesseessecsieenes
ANNOTALIONSoooc st essessessens 146
Important TErMINOIOGYcooiiimriirinceriionnececrisnesesssissessssssessessssssesnesseens 148
Practice QUESTIONS ...t sssseeeesesssaesessssessessssssesesseens 149
Practice Question Answers and Explanations ... 152
TESt TAKEAWAYoovnvveeecreiiceiircrriie s sssiesesssssessesssssesessssssssesssssesnnens 154
SUMMATY ..ot as st 155

10

Contents
4 Connectivity 157
4.1 Objectives of This Portion of the Test ... 158
4.2 Consuming External OData Serviceseeeennseeesesseseeeeens 158
4.3 Destination SErVice ... 165
431 Creating a Destination ... 165
432 Manually Creating and Binding SAP BTP Service Instances 167
43.3 Creating and Binding the Service via the Terminalcccccuernncnnnee. 168
43.4 Creating and Binding the Service via mta.yaml| 169
435 Runningthe Service Locallycccoevmnecen 171
4.3.6 Runningon SAP Business Technology Platform 173
4.4 CloUd CONNECLONcovveciviireceiinestceriises i sssee s ssses s sseessssssias s sesennas 173
441 Installing the Cloud Connector 175
442 Configuring the Cloud CONNECEOTccuvvureenecerecrierireceerecriseeneanee 175
4.5 CONNECEIVILY SEIVICE ...ttt sne e 179
4.6 Advanced CONCEPTES ...ttt ssss e 181
46.1 Sendingthe Application Programming Interface Key 181
4.6.2 Advanced Custom HandIerncncececseesesisesieeseesnees 183
4.6.3 Application DEtailscciceeeriniinereereineceneceeeeeseseeeceieeseanes 184
4.7 Important TErMINOIOGY ...t sse e 185
4.8 Practice QUESTIONS ... seeseeesssssesee s sesssassesssssaanes 186
4.9 Practice Question Answers and Explanations ... 187
4.10 TeSt TAK@AWAY ..ottt ess st esss st sss s 188
B.1L SUMMATY ..ottt ssasee s ssese s ssse ettt sssessisessasnes 189
5 SAP Fiori Elements 191
5.1 Objectives of This Portion of the Test ... 192
5.2 SAPUIS ...ttt sssies s st e 192
5.3 SAP FIOTT oottt esssesesssssesses s ssseses s sssssesssssesessssssesessssssssesssssesnacs 194
5.4 SAP FiOri EIEMENLSoomocciiricciriincccetineneceviseessessiossesssssiesesssssesssesssesnssssssennas 201
5.4.1 Generating the SAP Fiori Elements Application ... 202
5.4.2 Enabling the Draft Functionality ..., 208
54.3 AddiNg ANNOLAtIONS ..ot eseseesisssesssecseneces 210
5.5 Important TEermMinologYireinesesminessssseesssssesssessssnnne 224
5.6 Practice QUESTIONS ... sessissesessssesesesssesecsssssesnessssseonee 224

5.7
5.8
5.9

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8
6.9

7.1
7.2

Contents
Practice Question Answers and Explanations ... 227
TESt TAKEAWAYoooneiveeeeeeeeiceeiieceeeieseessessesssseessesssssesssesssssasessssssasesssssssneans 228
SUMMATY oottt bbbt 228
Authorization and Trust Management 229
Objectives of This Portion of the Test ... 230
APPROULET ..ot 231
6.2.1 Challenges with the Microservices Approachnnncconecens 231
6.2.2 Options to Add the AppRouter Module ... 232
6.2.3 Configuring APPROULET ...t siseesssecssssesssesssesnen 233
6.2.4 Configuring the HTML5 Application Repository Servicecccccuucceee. 236
6.2.5 Real-World Scenario: Adding an AppRouter Moduleccccocconevuuncce 237
Authentication and Trust Management ... 241
6.3.1 Identity Provider at the Subaccount Levelncnneconecnns 241
6.3.2 Authentication Strategies 242
6.3.3 SAP Authorization and Trust Management Servicecooncvonecee. 245
6.3.4 JSON WED TOKENourreemieicreieceieciierieeiieeeisesieeseissessenesseessaeses 246
6.3.5 TYPES OF USEIS ..o esesecsasssesesessisessassssssessassssssnesssnessen 248
6.3.6 Real-World Scenario Adding Authentication ... 249
AULROMIZAIONooooi e sssee s ssses e 251
6.4.1 Role Collections, Roles, Scopes, ATtribDULES ... 251
6.4.2 Application Security Descriptor: Xs-security.jsoneconecens 252
6.4.3 Assigning and Enforcing Authorizations ...
6.4.4 Real-world Scenario: Adding Authorizations
Important TErMINOIOBY ...t eseess s sessssssssseseens 263
Practice QUESLIONSoiiiicccc s 264
Practice Question Answers and Explanations ... 266
TESt TAKEAWAY ...ooovreeerceeiiceiirecesises s ssses st sssss s essess 268
SUMMETY ..ooociiiteie ettt bttt 268
Continuous Integration and Delivery 271
Objectives of This Portion of the Test ... 273
Continuous Integration, Delivery, and Deployment ..., 273

7.21 ContinuOUS INTEEIration ...c..ceccerinerneriecieciceiesieeiesiseessesesesasesssesenee 273

12

Contents

7.2.2 Continuous Delivery

7.2.3 Continuous Deployment

7.3 Configuring the CI/CD Pipeline

731 UnitTesting
7.3.2 Git Repository

7.3.3 Configure CI/CD with SAP Continuous Integration and

Delivery Service

7.4 Important Terminology

7.5 Practice Questions

7.6 Practice Question Answers and Explanations

7.7 Test Takeaway

7.8 Summary

The Authors

Index

274
274

275
276
279

281
293
294
297
298
299

301
303

Index

303

.cdsrc.json 110 B
.cdsrc-private.json 171
.yaml 79 Backing services 83
yml 79 Basicauthentication ... 105, 243
Binding 166
A Blob store 48
BOSH 48
ABAP 35 Bound 118
ABAP RESTful Application Programming Build stage 84
Model 67 Build, release, and runccccooeeeeeeereeienennnns 84
Admin processes 86 build.gradle 82
Alibaba Cloud 41 Business user 42,264
Amazon Simple Storage Service
(Amazon S3) 8 C
Amazon Web Services (AWS) 28,35,41, 48
Analytics 32 Cacheability 66
Annotations 146,201,224 Cascading Style Sheet (CSS)uueeeeeemmrimrnnn 192
Apache Tomcat 174 CDS Bind Command 132
App 110 CDS Definition Language (CDL)cccccccvueennn. 104
Application CDS Query Language (CQL)cccormreeeeens 104,121
run locally 125 cfdeploy 51
Application Autoscaler ... 53 cflogin 51
Application connector cfpush 51
Application development Chai 276,293
Application integration ...t Client (CLI) tool 51
Application programming interface Client-server architecture ... 66
(API) 64, 86,243 Cloud computing 26
purchase order 106 models 28
query builder 104 Cloud connector 185
RESTful 66 Cloud Controller 48
Application security descriptor 252 Cloud credits 43
AppRouter 110,231,263 Cloud Foundry 35,47, 55
AppRouter configuration ... 238 architecture 48
AppRouter module 237 command-line interface ... 51
Association 116 enable in SAP Business Technology
Asynchronous communication ... 139 Platform 50
AtomPub 67 layers 49
Atos Cloud Foundry 48 native deploymentceceeeeecvmnnnnees 140
Attribute 252 scalability 51
Authentication 241 Cloud MTA Build Tool (MBT)ccoovcrmmrvrmrrrenns 145
method 233 Cloud Platform Enterprise Agreement
vs. authorization 263 (CPEA)
Authorization 241 Cloud.gov
assign 258 Cloud-native
declaritive enforcement ..., 253 Code list
programmatic enforcement 257 Code on demand
Authorization role 263 Codebase
Authorization scope 264 Command-line interface (CLI)
AWS Elastic Beanstalk 30 Comma-separated values (CSV)
Axios 277 Concurrency

304

Index

Config 82
Configuration variablescceunnnn. 143
Consumption-based commercial

model 43,55
Continuous delivery 274
Continuous deploymentcreceeeenne 274
Continuous integration ... 272,273

Continuous integration and continuous
delivery/deployment (CI/CD) ... 81,86,272,
294
pipeline 275,294

Core Schema Notation (CSN)

Coredata services (CDS) 101,243

Create, read, update, and delete (CRUD) ... 118

Create-Service-Push 141
Cross-origin request sharing

(CORS) 231,264
Custom handlers ... 133,148
D

Data Definition Language (DDL)
Data integrations
Data loss
Database
Database management ...
db
Decoupling
Demilitarized zone (DMZ) ..
Denial of service (DoS)
Dependencies
Destination
Dev spaces

DEV/PROD parity
Diego
Disposability
Document Classification
Domain modelingccmcnneeceeenn.

Draft
edit
Dummy authentication
E
Eclipse Theia 97
EDMX 159
EDMX file 185
Emitting 138
Enterprise miCroservices ... 231
Entitlement 47
Entity 68
set 68
type 68
Entity Data Model (EDM) oocccccveeveermnnccceerennenns 68

escalationsfe.zip folder ... 206
ETag 124
Event handler 134
Event phase 135
Exam objective 16
Exam structure 16
External systems 160
F

Facet annotations 213
Feature set 38
Field group 213
Free tier model 45
Full-Stack Cloud Applicationoueeweeee. 101
G

Garden 48,55

Gartner 2021 Magic Quadrant for
Multiexperience Development

Platforms 33
Gartner Magic Quadrant for Enterprise

Integration Platform as a Service 34
Generic Application Content

Deployer (GACD) 206
Git 81,272,294
GIt TePOSItOTY oo 103,273,279
GitHub 29,109, 279, 294
Gmail 29
Google App Engine 30
Google Cloudccommccereeeeunrrneccnnes 28, 35,41, 48
Google Maps 83
Gorouter 48
Gradle dependency manager ... 82
H
Header 247
Horizontal scaling 52
HTLM5 192
HTML5 35,194

application repository service 236
HTTP 49
Hybrid cloud 28,55
|
IBM Bluemix 30
IBM Cloud 28
IBM Cloud Foundry 47
Identity Authentication ..., 241
Identity federation 241
Identity provider (IdP)ccoeeeeereeermmnecceeennns 232

Index
Infrastructure-as-a-service ([aaS) 28,56 Monaco Editor 97
Installable version 175 MTA Tools 101
Integrated development environment mta.yaml 143
(IDE) MultiApp 51,146
Intelligent technologies Multi-target application (MTA) ... 51,143,169
International Organization for Multitenancy sCenario ... 232
Standardization/International Electro-
technical Commission (ISO/IEC) 67 N
Invoice Object Recommendation 33
Neural Autonomic Transport System
J (NATS) 49
Node package manager (NPM)ccccocouururveeccce 82
Java 35,82 Node,js 82,239
JavaScript 77,192
JavaScript Object Notation (JSON) ..64,67,77, ()
80, 86, 233
array 78 OAuth server 48
object 77 Object-relational mapping (ORM)ccoo... 104
structure 77 OData V2 67
Jenkins 275 OData V4 67
Jest 276,294 Open Connectors 34
JSON Web Token (JWT) 105,166,241, Open Data Protocol (OData) 64,67, 86
246, 264 Open VSX Registry 98
authentication 244 openSAP 19
Organization 49
K Outlook 29
Kubernetes 35 p
Kubernetes Pod 101
Kyma 56 package.json 82,110
Kyma project 36 package.json folder 206
Parameter 145
L Pay-As-You-Go for SAP BTPuuneee. 44,56
Payload 247
Layered system 66 Personal Access Tokens (PAT) ... 280
Lightweight Directory Access Protocol Piper 275
(LDAP) 177 Platform user 42,264
Locking 209 Platform-as-a-service (Paa$) 29,56, 81
Logs 86 Port binding 85
Portable version 175
M Private cloud 27,56
Properties 144
makefile.mta 145 Pseudo role 252
manifest.json file 239 Public cloud 27,56
Member Managementceenerceseenne 42 Publish-subscribe 138
Metadata 201
Micro apps 143 Q0
Microservices 231
Microsoft Azureceveeeeneee. 28,30, 35,41,48 Query 71
Microsoft Visual Studio Code (VS Code) 97
Mission 54 R
Mobile development kit (MDK) 101
Mocha 276,294 Red Hat OpenShift 30
Modules 143 Release stage 84

305

306

Index

Remote function call (RFC)ccoooocomrvererrrens 177
Representational State Transfer (REST) 64,
65, 86

Resiliency 139
Resource 143
path 69
server 241
Role 252
collection 252,264
template 252
role-collections 253
role-templates 253
Route 233
Run stage 84
S
Salesforce 29
Salesforce Platform 30
SAP Al Core 33
SAP Analytics Cloud 32
SAP API Business Hub ... 158,159
sandbox 179
SAP API Management 35
SAP AppGyver 34
SAP Application Logging service
for SAP BTP 46
SAP Authorization and Trust
Management Service ... 166, 241, 245
authentication 245
SAP BTP cockpit

SAP BTP connectivity service ...

SAP BTP destination service

SAP BTP, ABAP environment .

SAP BTP, Cloud Foundry
environment

SAP BTP, Kyma runtimeccomeenecennecens

SAP BTP, Neo environment

SAP Business API Hub

SAP Business Application Studio ... 34,42, 96,
97,148, 201, 280

SAP Business Technology Platform

(SAP BTP) .ooovverrrneecrrveenmnene 26, 30, 56, 67,273
account model 38
capabilities 31
commercial model 43
directory 39
enterprise account 39
features 30
global account 38
multi-cloud 35
pillars 32
subaccount 40

subaccount region 41

SAP Business Technology Platform (SAP BTP)

(Cont.)

trial account 39

users 42
SAP Cloud Application Programming

Model ... 83,96, 103, 148, 158, 273
SAP Cloud Transport Management ... 275, 281
SAP Community 21
SAP Continuous Integration and

Delivery 273,281
SAP Conversational Al 34
SAP Discovery Center 54

missions 20
SAP ERP 158
SAP Event Mesh 35,105
SAP Extension Suite 33,106, 281

exam 15
RV 28 5T) o N 72,97,101, 194, 224

1.0 196

2.0 196

3.0 196

design principles 195

floorplan 224

user interface 236
SAP Fiori elementsooveveeereennnne 201, 224

generate application ..., 202
SAP HANA Academy 18
SAP HANA Cloud ..o 128,141
SAP HANA extended application

services 35,101, 145
SAP HANA Native Application ..., 101
SAP Help 22
SAP Integration Suite 34
SAP Launchpad 34
SAP Learning Hub 18
SAP Mobile Application .. 101
SAP Mobile Services 34
SAP NetWeaver Application Server

for Java 177
SAP S/4HANA ... 28,36, 67,96, 105, 106,

119,158,163,177,194

SAP S/AHANA Cloudocoevvveveeermrenceees 29, 36, 106
SAP SuccessFactors .. 29,158,194

SAP tutorials for developers ...

SAP UI Vocabulary
SAP Web Analytics
SAP Web IDE
SAP Work Zone
SAPUI5vvivccnnnvvvinininnans 67,72,192,194, 224
features 193
Scope 251
scopes 253
Security Assertion Markup Language
(SAML) 242,245

Index

Security descriptor 264 User Account and Authorization (UAA) ... 166
Serve static file 232 User experience (UX) ... 193
Service 54 User interface (UI) ..coomrreeeeeemsmmmneeeeeens 35,275
broker 48 static 238
definition 122 User management 42
document 68 UUID key 114
metadata documentocccciinnnnncens 68
modeling 122/
plan 45,46
Service root URI 67 Vertical scaling 52
service_anotation.cds ... 210 View 116
Signature 247 VMware Tanzu 48
Simple Mail Transfer Protocol (SMTP) 83 VMware Tanzu Application Service ... 30
Simple Object Access Protocol (SOAP) ... 64,87 VS Code 201
Single sign-on (SSO) 232
Software-as-a-service (SaasS) 29,56,97 \\/
Space 49
SQlite 125,149 Web development standards ... 64
SIv 110 webapp folder 206
Stateless processes 84 welcomeFile 233
Statelessness 66 Windows PowerShell 168
Steampunk 36 Workday 29
Subscription-based commercial World Wide Web Consortium (W3Q) 65
model 44,56
Subversion 8l ¥«
SUSE Cloud Application Platform 48
Swisscom Application Cloudcccoumeececees 48 xsappname 253
XSUAA instance 238, 240, 249, 250, 252
T
Y
tenant-mode 253
Test preparation resources ... 18 Yahoo! mail 29
Test-taking strategies 22 Yeoman generator 103
Thing perspective 214 Yet Another Markup Language
Transport layer security (TLS)cccccemmmmeeees 174 (YAML) 64,79, 80, 87
Trial account 45
Twelve-factor app principles ... 81,87 7
Type 113
Zoho 29
U
ui5-deploy.yaml 206
Uniform interface 66
URL rewriting 235

307

® Rheinwerk

First-hand knowledge. Publishing

Krishna Kishor Kammaje is a passionate developer and
application architect working at ConvergentlS. He is a recog-
nized SAP Community contributor and was named as an SAP
Mentor. He is also an author of the book SAP Fiori Certifica-
tion Guide. His latest interests are in SAP Business Technology
Platform, cloud computing, machine learning, and teaching.

7 3 T A\ Mahesh Kumar Palavalli is a senior developer at SAP Labs in
} ¥l Py ' Bangalore. He has more than 9 years of experience working
7 SAP’ Certification Success Guide with customers from government and private sectors in the
m £°'exam areas of SAP Fiori, SAP Business Technology Platform, and
ﬁ —CPE ABAP. He was also recognized as a top contributor and a
n Development Associate Exam member of the month by SAP Community.
3
m ® L | |
4 SAP’ Extension Suite
: g = [
M Certification Guide
:
~
{D »Achieve success with the only saP-endorsed certification guide«
Krishna Kishor Kammaje e Rheinwerk
' Mahesh Kumar palavalli publishing
%

Krishna Kishor Kammaje, Mahesh Kumar Palavalli

SAP Extension Suite Certification Guide:
Development Associate Exam

307 pages, 2023, $79.95 We hope you have enjoyed this reading sample. You may recommend or pass it
ISBN 978-1-4932-2239-1 on to others, but only in its entirety, including all pages. This reading sample and

all its parts are protected by copyright law. All usage and exploitation rights are
-E www.sap-press.com/5490 reserved by the author and the publisher.

https://www.sap-press.com/sap-extension-suite-certification-guide_5490/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2239

