Build and deepen your coding knowledge

Rheinwerk
from the top programming experts!

Computing

const

=>

const age
if age

'Age cannot be negative,'

const =>

const element document
element 'blur'
element 'blur'

=>

false
element

a>

v JavaScript

The Comprehensive Guide

Philip Ackermann

& Rheinwerk

Computing

Reading Sample

In these sample chapters you'll first learn about the ways in which
you can embed JavaScript in a web page and generate simple out-
put, and then see how you can use the jQuery library to simplify
different JavaScript programming tasks.

“Getting Started”

“Simplifying Tasks with jQuery”

Philip Ackermann
JavaScript: The Comprehensive Guide

982 pages, 2022, $59.95
ISBN 978-1-4932-2286-5

& www.rheinwerk-computing.com/5554

https://www.sap-press.com/javascript_5554/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2286

Chapter 2
Getting Started

JavaScript is still mainly used for creating dynamic web pages—within a
browser. Before we take a closer look at other application areas in later
chapters, this chapter will show you the ways in which you can embed
JavaScript in a web page and generate simple output. This chapter thus
is the basis for the following chapters.

Before we go into further detail about the JavaScript language itself, you should first
know how JavaScript relates to HTML and CSS within a web page, how to embed Java-
Script in a web page, and how to generate output.

2.1 Introduction to JavaScript and Web Development

The most important three languages for creating web frontends are certainly HTML,
CSS, and JavaScript. Each of these languages serves its own purpose.

2.1.1 The Relationship among HTML, CSS, and JavaScript

In HTML, you use HTML elements to specify the structure of a web page and the mean-
ing (semantics) of individual components on a web page. For example, they describe
which area on the web page is the main content and which area is used for navigation,
and they define components such as forms, lists, buttons, input fields, or tables, as
shown in Figure 2.1.

Artist Album Release Date Genre
Monster Magnet Powertrip 1998 Spacerock
Kyuss Welcome to Sky Valley 1994 Stonerrock
Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock
Beastie Boys 11l Communication 1994 Hip Hop

Figure 2.1 HTML Is Used to Define the Structure of a Web Page

2 Getting Started

2.1 Introduction to JavaScript and Web Development

CSS, on the other hand, uses special CSS rules to determine how the individual compo-
nents that you have previously defined in HTML should be displayed; this is used to
define the design and layout of a web page. For example, you can define text color, text
size, borders, background colors, color gradients, and so on. Figure 2.2 shows how CSS
was used to adjust the font and font size of the table headings and table cells, add bor-
ders between table columns and table rows, and alternate the background color of the
table rows. The whole thing looks a lot more appealing than the variant without CSS.

Artist Album Release Date Genre

Monster Magnet Powertrip 1998 Spacerock

Kyuss Welcome to Sky Valley 1994 Stonerrock

Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock

Beastie Boys Il Communication 1994 Hip Hop

Figure 2.2 With CSS, You Define the Layout and Appearance of Individual Elements of the
Web Page

Last but not least, JavaScript is used to add dynamic behavior to the web page (or to the
components on a web page) or to provide more interactivity on the web page. Exam-
ples of this are sorting and filtering the table data, as already mentioned in Chapter 1
(see Figure 2.3 and Figure 2.4). So while CSS takes care of the design of a web page, Java-
Script can be used to improve the user experience and interactivity of a web page.

Q | Search artist

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter
Kyuss Welcome to Sky Valley 1994 Stonerrock
Monster Magnet Powertrip 1998 Spacerock

Tool Lateralus 2001 Progrock

Figure 2.3 Sort Option to Make a Web Page More User-Friendly and Interactive with
JavaScript

56

Q Be

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter

Figure 2.4 Filter Option to Make a Web Page More User-Friendly and Interactive
with JavaScript

Thus, in the vast majority of cases, a web page consists of a combination of HTML, CSS,
and JavaScript code (see Figure 2.5). Note that though we just said that JavaScript takes
care of the behavior of a web page, you can create functional web pages entirely with-
out JavaScript. In principle, you can also create web pages without CSS; it is possible. In
that case, only the HTML is evaluated by the browser. That means, however, that the
web page is less fancy (without CSS) and less interactive and user-friendly (without
JavaScript), as shown previously in Figure 2.1.

HTML (Structure)
>
CSS (Layout) > Web Page
—>
JavaScript
(Interaction)

Figure 2.5 Usually, a Combination of HTML, CSS, and JavaScript
Is Used within a Web Page

Note

HTML is used for the structure of a web page, CSS for layout and design, and JavaScript
for behavior and interactivity.

57

2 Getting Started

Definition
Web and software developers also refer to three layers in this context: HTML provides
the content layer, CSS the presentation layer, and JavaScript the behavioral layer.

Separating the Code for the Individual Layers

It is considered good development style not to mix the individual layers—that is, to
keep HTML, CSS, and JavaScript code independent of each other and in separate files.
This makes it easier to keep track of a web project and ultimately ensures that you can
develop more effectively. In addition, this method enables you to include the same CSS
and JavaScript files in various HTML files (see Figure 2.6) and thus to reuse the same
CSS rules or JavaScript source code in several HTML files.

JS < HTML

D— HTML

CSS

JS < HTML

|
o

] HTML

Figure 2.6 If You Write CSS and JavaScript Code into Separate Files rather than Directly
into the HTML Code, It Is Easier to Reuse

A good approach to developing a website is to think about its structure first: What are
the different areas of the web page? What are the headings? Is there any data presented
in tabular form? What are the navigation options? Which information is included in
the footer area and which in the header area of the page? Only HTML is used for this
purpose. The website won't look nice or be very interactive, but that isn’t the point of
this first step, in which we do not want to be distracted from the essential element: the
website content.

Building on this structural foundation, you then implement the design using CSS and
the behavior of the web page using JavaScript. In principle, these two steps can also be
carried out in parallel by different people. For example, a web designer may take care of

58

2.1 Introduction to JavaScript and Web Development

the design with CSS, while a web developer programs the functionality in JavaScript (in
practice, the web designer and web developer are often one and the same person, but
especially in large projects with numerous websites, a distribution of responsibilities is
not uncommon).

Phases of Website Development

When developing professional websites, there are several stages preceding the devel-
opment step. Before development even begins, prototypes are designed in concept and
design phases (either digitally or quite classically with pen and paper). The step-by-step
approach just described (first HTML, then CSS, then JavaScript) thus only refers to
development.

HTML Markup Language and CSS Style Language

By the way, HTML and CSS are not programming languages! HTML is a markup lan-
guage and CSS is a style language; only JavaScript of the languages we're discussing
here is a programming language. Strictly speaking, statements like "This can be pro-
grammed with HTML" are therefore not correct. You'd instead have to say something
like "This can be realized with HTML."

Definition

The process of presenting a web page in the browser is called rendering. A common
phrase among developers is "The browser renders a web page." This involves evaluat-
ing HTML, CSS, and JavaScript code, creating an appropriate model of the web page
(which we'll talk about in Chapter 5), and "drawing" the web page into the browser
window. In detail, this process is quite complex, and if you’re interested in this topic,
you might want to read the blog post at www.html5rocks.com/en/tutorials/internals/
howbrowserswork.

2.1.2 The Right Tool for Development

In principle, a simple text editor would be sufficient for creating JavaScript files (and for
simple code examples this is perfectly fine), but sooner or later you should acquire a
good editor that supports you when writing JavaScript and that is specifically designed
for developing JavaScript programs (if you don't already have one installed on your
computer anyway). Such an editor supports you, for example, by highlighting the
source text in color, relieving you of writing recurring source text modules, recogniz-
ing errors in the source text, and much more.

59

2 Getting Started

Editors

There are a number of really good editors that can be used effectively. For example,
Sublime Text (www.sublimetext.com; see Figure 2.7) and Atom (https://atom.io; see
Figure 2.8), both available for Windows, macOS, and Linux, are popular editors in the
developer community. While the former currently costs $99 (as of June 2021), the Atom
editor is free of charge. In detail, both editors have their own features and strengths,
but they are still quite similar. Try them out to see which one suits you more.

o0 ™ main.js — javascript

FOLDERS main.js
v javascript function s
> } '
> Chapter01
v Chapter02
Listing_02_01
Listing_02_02
Listing_02_03
scripts

* main.js

index.html
Listing_02_04
Listing_02_05
Listing_02_06
Listing_02_07
Listing_02_08
Listing_02_09
Listing_02_10-11
Chapter03
Chapter04
Chapter05
Chapter06
Chapter07
Chapter08
Chapter09
Chapter10
Chapter11
Chapter12
Chapter13
Chapter14
Chapter15
Chapter16
Chapter17

Chapter18
Line 4, Column 15 P english (200 Spaces: 2 JavaScript

ﬂ

styles
]

]

|

|

|

|

Figure 2.7 Sublime Text Editor

60

2.1 Introduction to JavaScript and Web Development

o0 main.js — ~/[Documents/workspaces/github/javascript
Project main.js

function showMessage() {
alert('Hello World');

v Q javascript

}

showMessage() ;
> [Chapter01

v [Chapter02

> [Listing_02_01
> [Listing_02_02
v @ Listing_02_03

v [scripts
B main.js

> [l styles
B index.html
> [Listing_02_04
> [Listing_02_05
> @ Listing_02_06
> [Listing_02_07
> [Listing_02_08
> [Listing_02_09

> [Listing_02_10-11

> [Chapter03
> [Chapter04
> @@ Chapter05
> [Chapter06
B Chapter07
i Chapter08
@ Chapter09
@ Chapter10
> [Chapter11
> [Chapter12

Chapter02/Listing_02_03/scripts/main.js 4:15 LF UTF-8 JavaScript ¥ english & Publish OG‘\(HU{:» -0 Git (52)

Figure 2.8 Atom Editor

Development Environments

Software developers switching from languages like Java or C++ to JavaScript are in most
cases used to integrated development environments (IDEs), as known from their previ-
ous programming languages. In a way, you can think of a development environment as
a very powerful editor that provides various additional features compared to a "nor-
mal" editor, such as synchronization with a source control system, running automatic
builds, or integrating test frameworks. (If you're just shaking your head uncompre-
hendingly now and wondering what's behind all these terms, wait until Chapter 21, in
which we’ll go into more detail about these advanced topics of software development
with JavaScript.)

61

2 Getting Started 2.1 Introduction to JavaScript and Web Development

WebStorm by Intelli] (www.jetbrains.com/webstorm/; see Figure 2.9) is one example of T R—

a very popular and also very good development environment. A single license for Web- EXPLORER oS mainjs M X

Storm currently costs USD 129 (for personal use, there is another version that currently g jAVASCR'PT Chapter02 LiSt'i‘ngjozm_woei 2 Zcer(u;ts{ Js mainjs > ..
costs USD 59). However, if you want to test the program first, you can download a 30- > Chapter01 X A T TR

day trial version from the WebStorm homepage. WebStorm is available for Windows 2 BTG 4 showlessage();

3 > Listing_02_01
and for macOS and Linux. > Listing_02_02
v Listing_02_03

o0 javascript - main.js v scripts
JS main.js
javascript) Chapter02) Listing_02_03) scripts) jf§ ma v Add Configuration...
> styles

[&] Project v ° — & index.html
Listing_02_04

> Listing_02_05
Listing_02_06
Listing_02_07

> Listing_02_08

v I javascript [javascripthandbuch] showMessage() {
> I Chapter01 alert()
v I Chapter02 +
> I Listing_02_01
> M Listing_02_02
v M Listing_02_03
v M scripts

P Project

showMessage () ;|

$ Commit

Listing_02_09 PROBLEMS ~ OUTPUT TERMINAL DEBUG CONSOLE Blzsh +~ D @ ~ X
Listing_02_10-11
Chapter03 cleancoderocker@BP-von-Philip [0 english + |

I
> I styles

7% index.html
> M Listing_02_04
> I Listing_02_05
> I Listing_02_06
> [Listing_02_07
>
>
>

Chapter04
Chapter05
> Chapter06
Chapter07
Chapter08
> Chapter09

> Chapter10
> OUTLINE

> TIMELINE
L X Penglish* ® ®0AO0 Ln4,Col15 Spaces:2 UTF-8 LF {} JavaScript & 0Q

F Pull Requests

B Listing_02_08

M Listing_02_09
B Listing_02_10-11
> I Chapter03
> [Chapter04
> I Chapter05
>
>

= Chapter06

 Chapter07 Figure 2.10 Microsoft Visual Studio Code

Terminal: Local + v

cleancoderocker@VBP-von-Philip

Name Price macOS Linux Windows Editor/Development
e Environment
% Sublime Text ~ USD 99 Yes Yes Yes Editor
g Atom Free of charge Yes Yes Yes Editor
ko Microsoft Free of charge Yes Yes Yes Development
PGt ZTODO @ Problems B Terminal _ Qevent Log Visual Studio environment
() 4:15 P english T
Code
Figure 2.9 WebStorm IDE
WebStorm usD 129/ Yes Yes Yes Development

Meanwhile a personal favorite among the development environments is Visual Studio BEiD) 5 COITEIIES

Code by Microsoft (https://code.visualstudio.com; see Figure 2.10). It is available for Table 2.1 Recommended Editors and Development Environments for Javascript

download free of charge, can be flexibly extended via plug-ins, and its perceived perfor- Development

mance is significantly better than that of WebStorm, for example.

A brief overview of the editors and development environments we’ve discussed is Tip
shown in Table 2.1. o) -
For the beginning—for example, for trying out the code examples in this book—we

recommend that you use one of the editors mentioned in this section and not a

62 63

2 Getting Started

development environment (yet). The latter have the disadvantage that they are
partly overloaded with menus and functionalities, so you have to deal not only with
learning JavaScript but also with learning the development environment. Let’s spare
you that at least for the moment.

In addition, development environments only make sense when exceeding a certain
project size. For smaller projects and the examples in this book, an editor is always
enough (even though we will also cover complex topics). Plus, the editors are usually
faster than the development environments in terms of execution speed.

2.2 Integrating JavaScript into a Web Page

Because we assume that you already know how to create an HTML file and how to
embed a CSS file, and that you are "only" here to learn JavaScript, we don't want to waste
any more time with details about HTML and CSS but will get started with JavaScript
straight away. Don’t worry: embedding and executing a JavaScript file is anything but
difficult.

2.2 Integrating JavaScript into a Web Page

However, it is a good idea to create different folders for the CSS and JavaScript files. The
names styles (for CSS files) and scripts (for JavaScript files) are quite common. Especially
if you are dealing with a lot of different JavaScript and CSS files during development,
this separation (or an arrangement with subfolders in general) makes it easier to keep
track of your project.

Starting Point of a JavaScript Application

Most of the examples in this book also follow the layout shown in Figure 2.11 as we will
only run the JavaScript code in the browser at the beginning, using the index.html file
as a kind of entry point to the program.

Later, in Chapter 17, you’ll learn how you can also run JavaScript independent of a
browser and thus independent of a corresponding HTML file. In this case, you don’t
need any HTML—and therefore no CSS files either.

Learn HTML and CSS

If you have not worked with HTML or CSS a very good introductory book on this topic is
HTML and CSS: Design and Build Websites by Jon Duckett (2011, John Wiley & Sons).

Per tradition (like almost every book on programming languages), we will start with a
very simple Hello World example, which only produces the output Hello World. This is
not very exciting yet, but right now the point is to show you how to embed a JavaScript
file in an HTML file in the first place and how to execute the source code contained in
the JavaScript file. We will take care of more complex things later.

2.2.1 Preparing a Suitable Folder Structure

For getting started and working through the following examples, we recommend that
you use the directory structure shown in Figure 2.11 for every example. The HTML file is
at the top level because this is the entry point for the browser and thus the file you will
invoke in the browser right away.

Name A
€ index.html
v [scripts

E main.js
v L styles
® main.css

Figure 2.11 Example Folder Structure

64

Running JavaScript in the Browser
While you can execute JavaScript within a browser without creating an HTML file to

embed the corresponding script (via special developer tools provided by browsers; Sec-
tion 2.3.2), for now we don’t want to use this feature.

2.2.2 Creating a JavaScript File

As mentioned earlier, it’s better to save JavaScript code in a separate file (or in several
separate files) that can then be embedded in the HTML code. So the first thing you need
is a JavaScript file. Simply open the editor of your choice (or if you didn't take my
advice, the development environment of your choice), create a new file, enter the lines
of source code provided in Listing 2.1, and then save the file under the name main.js.

function showMessage() {
alert('Hello World');

}

Listing 2.1 A Very Simple JavaScript Example That Defines a Function

Note

JavaScript files have the extension .js. Other file extensions are also possible, but the .js
extension has the advantage that editors, development environments, and browsers
directly know what the content is about. You should therefore always save all Java-
Script files with the .js extension. (By the way, browsers recognize JavaScript files deliv-
ered by a web server via the Content-Type header, a piece of information that comes
with the file from the server.)

65

2 Getting Started

Listing 2.1 defines a function with the name showMessage, which in turn calls another
function (with the name alert) and passes it the message Hello World. The alert func-
tion is a JavaScript standard function, which we will briefly discuss later in this chapter.
Functions in general, however, will be detailed in Chapter 3.

Supplemental Downloads for the Book

This code example and all those to come can also be found in the Product Supplements
area for the book (see https://www.rheinwerk-computing.com/5554). There you can
easily download the code and open it in your editor or directly in your browser
(although we think that the most effective way to learn is to type the examples your-
self, following them step by step).

2.2.3 Embedding a JavaScript File in an HTML File

To use the JavaScript source code within a web page, you need to link the JavaScript file
to the web page or embed the JavaScript file in the HTML file. This is done via the HTML
element named <script>.

This element can be used in two different ways: On the one hand, as we will demon-
strate subsequently, external JavaScript files can be included in the HTML. On the other
hand, JavaScript source code can be written directly between the opening <script> tag
and the closing </script> tag.

An example of the latter method will be shown later, but this approach is only useful in
exceptional cases because JavaScript code and HTML code are then mixed—that is,
stored in one file (which is not a best practice for the reasons already mentioned). So
let's first look at how to do it properly and include a separate file.

The <script> element has a total of six attributes, out of which the src attribute is cer-
tainly the most important one: it’s used to specify the path to the JavaScript file that is
to be included. (Table 2.2 shows an overview of what the other attributes do.)

async Specifies whether the linked JavaScript file should be down- Optional
loaded in an asynchronous way in order not to interrupt the
download of other files (Section 2.2.5). This only makes sense in
combination with the src attribute.

Table 2.2 The Attributes of the <script> Element

66

2.2 Integrating JavaScript into a Web Page

charset Specifies the character set of the source code that is embedded Optional
via the src attribute. This only makes sense in combination with
the src attribute, but is rarely used because most browsers do
not respect this attribute. It is also considered better style to use
UTF-8 everywhere within a website and define this in the
<meta> element via the charset attribute.

defer Specifies whether to wait to execute the linked JavaScript file Optional
until the web page content has been completely processed (Sec-
tion 2.2.5). This only makes sense in combination with the src
attribute, but is not always supported, especially not by older
browsers.

language Originally intended to indicate the version of JavaScript code Outdated
used, but largely ignored by browsers.

SIC Specifies the path to the JavaScript file to be embedded. Optional

type Used to specify the MIME type (see box ahead) in order to iden- Optional
tify the scripting language (in our case, JavaScript). However, you
can also omit this attribute because text/javascript is used
by default, which is supported by most browsers.

Table 2.2 The Attributes of the <script> Element (Cont.)

Now create an HTML file named index.html and insert the content shown in Listing 2.2.

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<!--Here the JavaScript file will be included -->
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.2 Embedding JavaScript in HTML
If you now open this HTML file in the browser, nothing will happen yet because the
function we defined in Listing 2.1is not yet called at any point. Therefore, add the show-

Message() call at the end of the JavaScript file, as shown in Listing 2.3, and reload the web
page in the appropriate browser. Then a small hint dialog should open, containing the

67

2 Getting Started

2.2 Integrating JavaScript into a Web Page

message Hello World and with a slightly different appearance depending on the
browser (see Figure 2.12).

function showMessage() {
alert('Hello World');
}

showMessage();

Listing 2.3 Function Definition and Function Call

This page says

Hello World

Hello World

This page says

Hello World

Close

This page says © file:/)

Hello

orld Hello World

Figure 2.12 Hint Dialogs in Different Browsers

Definition

Multipurpose Internet Mail Extension (MIME) types, also called internet media types or
content types, were originally intended to distinguish between content types within
emails containing different content (such as images, PDF files, etc.). Now, however,
MIME types are not only used in the context of email, but also whenever data is trans-
mitted over the internet. If a server sends a file with a special MIME type, the client
(e.g., the browser) knows directly what type of data is being transmitted.

For JavaScript, the MIME type wasn’t standardized for a long time, so there were sev-
eral MIME types—for example, application/javascript, application/ecmascript,
text/javascript and text/ecmascript. Since 2006, however, there is an official stan-
dard (www.rfc-editor.org/rfc/rfc4329.txt) that defines the acceptable MIME types for
JavaScript. According to this standard, text/javascript and text/ecmascript are both
deprecated, and application/javascript and application/ecmascript should be
used instead. Ironically, it’s safest not to specify any MIME type for JavaScript at all (in
the <script> element) as the type attribute is ignored by most browsers anyway.

68

Embedding Multiple JavaScript Files

Of course, you can embed several JavaScript files within one HTML file. Simply use a
separate <script> element for each file you want to include.

2.2.4 Defining JavaScript Directly within the HTML

For the sake of completeness, we'll also show how you can define JavaScript directly
within an HTML file. While this is usually not advisable because it means mixing HTML
and JavaScript code in one file, it won't hurt to know that it still works.

Simply write the relevant JavaScript code inside the <script> element instead of linking
it via the src attribute. Listing 2.4 shows the same example as in the previous section,
but it doesn’t use a separate JavaScript file for the JavaScript code. Instead, it embeds
the code directly in the HTML. The src attribute is therefore omitted completely.

<IDOCTYPE html>

<html>

<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">

</head>

<body>

<script>
function showMessage() {

alert('Hello World');

}
showMessage();

</script>

</body>

</html>

Listing 2.4 Only Makes Sense in Exceptional Cases: Definition of JavaScript
Directly in an HTML File

Note

Note that <script> elements that use the src attribute must not contain any source
code between <script> and </script>. If there is any, this source code will be ignored.

69

2 Getting Started

2.2 Integrating JavaScript into a Web Page

Tip
Use separate JavaScript files for your source code instead of writing it directly into a

<script> element. This creates a clean separation between the structure (HTML) and
the behavior (JavaScript) of a web page.

The <noscript> Element

You can use the <noscript> element to define an HTML section that is displayed when
JavaScript is not supported in the browser or has been disabled by the user (see Listing
2.5). However, if JavaScript is supported or enabled, the content of the <noscript> ele-
ment will not be shown.

<noscript>
JavaScript is not available or is disabled.

Please use a browser that supports JavaScript,
or enable JavaScript in your browser.

</noscript>

Listing 2.5 Example of the Use of the <noscript> Element

2.2.5 Placement and Execution of the <script> Elements

If you had asked a web developer a few (many) years ago where to place a <script> ele-
ment within a web page, they probably would have advised placing it in the <head> area
of the web page. In the early days of web development, people thought that linked files
such as CSS files and JavaScript files should be placed in a central location within the
HTML code.

Since then, however, this idea has been abandoned. While CSS files are still placed in the
<head> area, JavaScript files should be included before the closing </body> tag instead.
The reason is this: when the browser loads a web page, it loads not only the HTML code
but also embedded files such as images, CSS files, and JavaScript files. Depending on
processor performance and memory usage, modern browsers are capable of download-
ing several such files in parallel. However, when the browser encounters a <script> ele-
ment, it immediately starts processing the corresponding source code and evaluating
it using the JavaScript interpreter. To be able to do this, the corresponding JavaScript
source code must first be downloaded entirely. While this is happening, the browser
pauses downloading all other files and parsing (i.e., processing) the HTML code, which
in turn leads to the user impression that it takes longer to build the web page (see
Figure 2.13).

70

Process HTML Process HTML

0 I
v
Download JavaScript File

Execute JavaScript
Source Code

Figure 2.13 By Default, HTML Code Processing Stops when the Browser Encounters
a <script> Element

In addition, you will often want to access HTML elements on a web page within the
JavaScript source code. (You'll see how this works in Chapter 5.) If the JavaScript code is
executed before these HTML elements have been processed, you'll encounter an access
error (see Figure 2.14). If you place the <script> element before the closing </body> tag,
though, you are on the safe side in this regard (see Figure 2.15), because in that case all
elements included inside the <body> element are already loaded (with the exception of
other <script> elements, of course).

Process HTML Download Javascript Process HTML
v File ‘ ‘
S A HTML Elements
Not Loaded before
4'_ This Point Cannot

Execute JavaScript ~ Be Accessed
Source Code

Figure 2.14 If JavaScript Accesses HTML Elements That Have Not Yet Been Loaded,
an Error Occurs

HTML Elements Can Be Accessed

Process HTML $

Download JavaScript

B File

~

Execute JavaScript
Source Code

Figure 2.15 If the <script> Element Is Placed before the Closing </body> Tag,
All Elements inside the <body> Element Are Loaded

Note

As a rule, you should position <script> elements at the end of the <body> element. This
is because the browser first evaluates the JavaScript source code contained or embed-
ded in each <script> element before continuing to load other HTML elements.

n

2 Getting Started

Two attributes that can be used to influence the loading behavior of JavaScript are the
async and defer attributes, which we already mentioned briefly (see Table 2.2). The for-
mer ensures that the processing of HTML code is not paused when the browser encoun-
ters a <script> element. The JavaScript file is downloaded asynchronously (hence the
name async). This concept is shown in Figure 2.16.

Process HTML Process HTML

v r
Download JavaScript File
Execute JavaScript

Source Code

Figure 2.16 Due to the async Attribute, the HTML Code Continues To Be Processed until the
Corresponding JavaScript Has Been Downloaded

Asyou can see, the JavaScript code is executed right away as soon as the corresponding
JavaScript file has been completely downloaded.

The defer attribute takes this one step further. On the one hand, just like async, this
attribute ensures that the HTML code processing is not paused. On the other hand, the
JavaScript source code is executed only after the HTML code has been fully processed
(see Figure 2.17). The execution of the JavaScript code is effectively deferred (hence the
name defer).

Process HTML

Download JavaScript File |:|

Execute JavaScript
Source Code

Figure 2.17 The defer Attribute Ensures That the Corresponding JavaScript Is Only Executed
after the Entire HTML Code of the Web Page Has Been Loaded

So when should you use which attribute? For now, you can bear in mind that it’s prob-
ably best not to use either attribute by default. The async attribute is only suitable for
scripts that work completely independently and have nothing to do with the HTML on
the web page. An example of this is the use of Google Analytics. The defer attribute, on
the other hand, is currently not supported by all browsers, so you should also consider
its use with caution.

72

2.2 Integrating JavaScript into a Web Page

Definition

Another way to ensure that all the content of the web page has been loaded before
JavaScript code is executed is to use event handlers and event listeners. We'll introduce
both of them in detail in Chapter 6. But for now, we’ll show you roughly how both of
them are used because they appear in the source code examples in the book before we
get to the examples for Chapter 6.

In general, both event handlers and event listeners are used to respond to certain
events that occur during the execution of a program and to execute certain code.
(There is a small, subtle difference between event handlers and event listeners, but it's
not important for now, and we'll explain it in Chapter 6.) Events can be mouse clicks,
keystrokes, window resizing actions, and more. For web pages, too, there are various
events that are triggered and can be answered by such event handlers and event listen-
ers. For example, an event is triggered when the content of a web page is fully loaded.

To define an event handler for this event, you can use the onload attribute: The code
you specify here as the value for such an attribute is invoked when the web page is
fully loaded. As a value, you can specify a JavaScript statement, such as the call to a
function, as shown in Listing 2.6.

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body onload="showMessage()">
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.6 Using an Event Handler

Event listeners, however, cannot be defined via HTML. Instead, you use the addEvent-
Listener() function of the document object (more on this later), to which you pass the
name of the event and the function to be executed when the event is triggered (see Lis-
ting 2.7).
function showMessage() {

alert('Hello World');
¥

document.addEventlListener('DOMContentLoaded', showMessage);

Listing 2.7 Using Event Listeners

3

2 Getting Started

The showMessage() call you just added to the end of the main.js file will need to be
removed again in both cases. Otherwise, the function will be called twice (once by the
script itself and once by the event handler/event listener), and as a consequence a
message dialog will be displayed twice in succession.

2.2.6 Displaying the Source Code

All browsers usually provide a way to view the source code of a web page. This can be
helpful in many cases—for example, if you want to check how a particular feature is
implemented on a website you have discovered.

In Chrome, you can view the source code by following menu path View - Developer -
View Source (see Figure 2.18); in Firefox, Tools - Browser Tools - Page Source (see Figure
2.19); in Safari, Develop + Show Page Source (see Figure 2.20); in Opera, Developer - View
Source (see Figure 2.21); and in Microsoft Edge, Tools - Developer - View Source (see
Figure 2.22).

View History Bookmarks Profiles Tab Window Help

Always Show Bookmarks Bar
Always Show Toolbar in Full Screen
Always Show Full URLs

Customise Touch Bar...

Stop
Force Reload This Page

Enter Full Screen
Actual Size
Zoom In

Zoom Out

Cast...

Developer View Source
Developer Tools
Inspect elements
JavaScript Console

Allow JavaScript from Apple Events

Figure 2.18 Show Source Code in Chrome

Source Code for More Complex Web Pages

If you look at the source code of more complex web pages, it's often very confusing.
This is usually due to multiple reasons: on the one hand, content is often generated
dynamically, and on the other, JavaScript is often deliberately compressed and
obscured by web developers—the former to save space, the latter to protect the source
code from prying eyes. This book does not deal with the compression and obfuscation
of source code.

74

22

Integrating JavaScript into a Web Page

Tools Window Help

Downloads
Add-ons and Themes

Sign In

Browser Tools Web Developer Tools

Page Info £ Task Manager

Remote Debugging
Browser Console
Responsive Design Mode
Eyedropper

Page Source

Extensions for Developers

Figure 2.19 Show Source Code in Firefox

Develop Window Help

Open Page With
User Agent

MacBook Pro von Philip

Service Workers

Web Extension Background Pages
Experimental Features

Enter Responsive Design Mode
Show Snippet Editor

Connect Web Inspector
Show JavaScript Console

Show Page Source

Figure 2.20 Show Source Code in Safari

Developer Window Help

Developer Tools

View Source

Task Manager

Figure 2.21 Show Source Code in Opera

Tools Profiles Tab Window Help
Read Aloud >
Developer > View Source

Developer Tools...
Inspect Elements

JavaScript Console

Allow JavaScript from Apple Events

Figure 2.22 Show Source Code in Microsoft Edge

75

2 Getting Started

2.3 Creating Output

If you display the source code of a web page (no matter in which browser), you are first
presented with the corresponding HTML code of the web page. Conveniently, however,
embedded files such as CSS files or JavaScript files are linked in this source code view
(see Figure 2.23) so that you can easily get to the source code of the linked file as well
(see Figure 2.24).

@ @® view-source:file:f//[Users/cleancoderocker/Documents/worksy

Line wrap
<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>

<script src="scripts/main.js"></script>
</body>
</html>

Figure 2.23 Source Code View for HTML in Chrome

(N) main.js X =+

C @ File | /Users/cleancoderocker/Documents/y

function showMessage() {
alert('Hello World');
}

Figure 2.24 Source Code View for JavaScript in Chrome

2.3 Creating Output

In the Hello World example, you have already seen how you can create simple output
by calling the alert() function. However, there are several other options as well.

2.3.1 Showing the Standard Dialog Window

In addition to the already known hint dialog displayed by calling the alert() function
(see Figure 2.25), the JavaScript language provides two more standard functions for dis-
playing dialog boxes. The first one is the confirm() function. It’s used to display confir-
mation dialogs—that is, yes/no decisions (see Figure 2.26). In contrast to the hint
dialog, the confirmation dialog contains two buttons: one to confirm and one to cancel
the corresponding message. The second one is the prompt() function. This function
opens an input dialog where users can enter text (see Figure 2.27).

76

This page says

This is a warning

Figure 2.25 Simple Hint Dialog

This page says

Do you really want to delete this file?

Figure 2.26 Simple Confirmation Dialog

This page says

Please enter the name of the file.

Figure 2.27 Simple Input Dialog

In practice, however, these standard dialogs for hints, confirmation, and input are
rarely used because they offer limited options for statements and—as already shown
for the hint dialog—their design relies on the layout of the browser being used, which
usually does not match the layout of the web page.

For this reason, web developers like to resort to one of the various JavaScript libraries
that offer fancier and more functional dialogs (see Figure 2.28). One of these libraries is
jQuery Ul, which builds on the well-known jQuery library and extends it with various
UI components. We will take a closer look at the main library, jQuery, as well as jQuery
Ul in Chapter 10.

Delete entry? x

Yes No

Figure 2.28 Custom Confirmation Dialog with JavaScript

77

2 Getting Started

2.3.2 Writing to the Console

When developing JavaScript applications, you'll often want to generate output for
yourself for testing purposes only—for example, to return an intermediate result. For
such test-only output, it obviously doesn't make sense to present it in dialogs that
users would get to see as well. For this reason, all current browsers now offer a console,
which is suitable for exactly such purposes and which you can access within a Java-
Script program in order to output messages. By default, this console is hidden because
users of a web page usually can do little with it.

Displaying the Console

To activate the console, proceed as follows, depending on your browser (we won't pro-
vide screenshots at this point as the menu items can be found in similar places as the
menu items for displaying the source code, mentioned earlier in this chapter):

® In Chrome, select View - Developer + JavaScript Console, which opens the console
within the Chrome DevTools.

® In Firefox, open the console via Tools - Browser Tools - Browser Console.

® [n Safari, open the console via Develop - Show JavaScript Console.

® In Opera, you must first select Developer - Developer Tools and then the Console tab.

® In Microsoft Edge, open the console via Tools + Developer - JavaScript Console.

(X € Rheinwerk Publishing -- Public X =+

& C @ sap-press.com/the-publish

Your account Help Login Register [y [

v G G- 5D R
Publishing - § 5 Hello World
Library Saved for Later Shopping Cart
:

Shop Books and E-Bites v Shop Subscriptions Blog LeamingCenter Newsletters Catalog PDF

® Rheinwerk

Publishing
Rheinwerk Publishing, Inc.
We are Rheinwerk Publishing. é:i:;fif,,e,f‘;;ifu"e e
+1.781.228.5070
Under the imprint SAP PRESS, we publish books and e-books that educate the SAP Info@rhelnwerk-publishing.com
community. Our goal is to create the that help your SAP
whether you're a beginner or an expert; a consultant or a business user; a developer, an
administrator, or an IT manager.
The best publications take time and skl to prepare, and we take our job as the world's leading ~ © 3¢ Visitus on
SAP publisher seriously. We listen to what our customers want, from introductions about new m
SAP products to instructions for detailed technical tasks. We engage with the SAP community,
consult with experts, and consider reader feedback.

Figure 2.29 By Default, the Console Is Displayed on the Right or at the Bottom of the Browser
Window (Google Chrome in This Case)

78

2.3 Creating Output

Figure 2.29 shows the console in the Chrome browser, for example. As you can see, it
doesn’t really look special, but it will be one of your main tools if you want to use Java-
Script for web development. In addition to receiving output, you can also enter your
input via the console (more about this in a few moments). In essence, the console is a
kind of terminal (or command prompt, if you're a Windows user) that lets you issue
JavaScript commands that are then executed in the context of the web page loaded.

Writing Output to the Console

For writing to the console, browsers provide the console object. This is a JavaScript
object first introduced by the Firefox plug-in named Firebug (https.//getfirebug.com),
and it provides various ways to generate output to the console. Firebug itself has been
discontinued, but the console object (although still not included in the ECMAScript
standard) is available in almost every JavaScript runtime environment.

Standardized API for Working with the Console

The individual methods provided by the console object differ from runtime environ-
ment to runtime environment. To counteract this, there are efforts underway to create
a standardized API.

A generally supported method is the 1log() method, which can be used to generate sim-
ple console output. To try using the console, simply replace the source code of the
main.js file with the source code in Listing 2.8 and call the web page again.

// scripts/main.js
function showMessage() {
console.log('Hello developer world');

}
Listing 2.8 Simple JavaScript Example
Depending on the browser, the result should be similar to that shown in Figure 2.30.

Elements Console Sources Network Performance Memory

top Filter All levels No Issues

Hello World main.js:2

Figure 2.30 Output to the Console in Chrome

79

2 Getting Started

In addition to the log() method, console provides several other methods. An overview
of the most important ones is provided in Table 2.3.

Method Description

clear() Clears the console.

debug() Used to output a message intended for debugging (or troubleshooting). (You
may first need to set the appropriate developer tools to return this type of out-
put.)

error() Used to output an error message. Some browsers display an error icon next to

the output message within the console.

info() This will display an info message in the console. Some browsers—Chrome, for
example—also output an info icon.

log() Probably the most commonly used method of console. Generates normal out-
put to the console.

trace() Outputs the stack trace—that is, the method call stack (see also Chapter 3) to
the console.
warn() Used to issue a warning to the console. Again, most browsers will display a cor-

responding icon next to the message.

Table 2.3 Most Important Methods of the console Object

Listing 2.9 shows the corresponding source code for using the console object. The out-
put for the individual methods is highlighted with colors or icons, depending on the
browser (see Figure 2.31).

console.log('Hello developer world'

)s // Output of a normal message
console.debug('Hello developer world'
d

;// Output of a debug message
;// Output of an error message
); // Output of an info message
); // Output of a warning

)
console.error('Hello developer world')
console.info('Hello developer world

console.warn('Hello developer world'

Listing 2.9 Using the console Object

[w ﬂ Elements Console Sources Network Performance 1 A1 o

P © | topvy | @ | |Filter All levels ¥ No Issues

Hello developer world
® »Hello developer world

Hello developer world
A »Hello developer world main.js:

Figure 2.31 Different Message Types Are Highlighted with Colors or Icons

80

2.3 Creating Output

Writing Input to the Console

In the last few screenshots, you may have noticed the > sign below the output. Here,
you can enter any JavaScript code and have it executed right away. This is a great way
to quickly test simple scripts, and actually indispensable for web development. Try it:
type the showMessage () command in the prompt and then press the key to exe-
cute the command. The results are displayed in Figure 2.32.

[w ﬂ Elements Console Sources Network Performance Memory o X

 © |topv | @ | Filter All levels ¥ || No Issues o
> showMessage()
Hello developer world main.js:2

<

Figure 2.32 You Can Also Execute Source Code via the Console

Note

The console window and the console object are important tools for web developers.
Make yourself familiar with both when you get a chance.

Logging Libraries

The console object works well for quick output during development. However, if a web
page goes live or a JavaScript application is used in production, you don't really want to
use console calls any longer (even though they are usually not displayed to the user). In
practice, you often use special logging libraries that enable console output to be acti-
vated (for development) but also deactivated again (for productive use) via specific
configuration settings. To start, and also for the examples in this book, however, the
use of the console object should be sufficient.

2.3.3 Using Existing Ul Components

Because the use of alert(), confirm(), and prompt() is rather outdated and only useful
for quick testing, and the output via the console object is reserved for developers any-
way, you obviously still need a way to create an appealing output for the user of a web
page. To this end, you can write the output of a program into existing Ul components
such as text fields and the like.

Listing 2.10, Listing 2.11, and Figure 2.33 show an example. It consists of a simple form
that can be used to determine the result of adding two numbers. The two numbers can
be entered into two text fields, the addition is triggered by pressing the button, and the
result is written into the third text field.

81

2 Getting Started

You don't need to understand the code for this example yet, and we won't into the
details at this point. For now, just keep in mind that when developing for the web with
JavaScript, it's relatively common to use HTML components for sending output from a
program to the user.

// scripts/main.js

function calculateSum() {
const x = parseInt(document.getElementById('fieldl').value);
const y = parselnt(document.getElementById('field2").value);
const result = document.getElementById('result');
console.log(x + y);
result.value = x + vy;

}

Listing 2.10 The JavaScript Code of the main js File

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<div class="container">
<div class="row">
<label for="fieldl">X</label> <input id="fieldl" type="text" value="5">
</div>
<div class="row">
<label for="field2">Y</label> <input id="field2" type="text" value="5">
</div>
<div class="row">
<label for="result">Result: </label> <input id="result" type="text">
<button onclick="calculateSum()">Calculate sum</button>
</div>
</div>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.1 The HTML Code for the Example Application

82

24 Summary

x = l
e B l
Result: I I I Calculate sum

Figure 2.33 Example Application

DOM Manipulation

The most complex scenario is when you dynamically modify a web page to produce
output—for example, dynamically modify a table to display tabular structured data.
We will discuss this topic of DOM manipulation in more detail in Chapter 5.

2.4 Summary

In this chapter, you learned how to create JavaScript files and embed them in HTML.
You now have the basic knowledge for executing the examples in the next chapters.

The following key points were presented in this chapter:

Three languages are important for frontend development: HTML as a markup lan-
guage to define the structure of a web page, CSS as a style language to define design
and layout, and JavaScript as a programming language to add additional behavior
and interactivity to a web page.

You can specify JavaScript directly using the <script> element or can embed a sepa-
rate JavaScript file using the src attribute of the <script> element. We recommend
the latter, as it ensures a clean separation between the structure (HTML) and behav-
ior (JavaScript) of the web page.

You should always place <script> elements before the closing </body> tag, as this
ensures that the web page content is fully loaded.

JavaScript inherently provides three functions for generating output: alert() for
creating hint dialogs, confirm() for creating confirmation dialogs, and prompt() for
creating input dialogs.

In practice, however, instead of these (more or less obsolete) functions, people use
fancier dialogs, such as those offered by the jQuery library.

In addition, all current browsers provide the possibility to generate output via a con-
sole, which is primarily intended for you to use as a developer.

83

Chapter 10
Simplifying Tasks with jQuery

Many tasks that can now be performed relatively easily with JavaScript
were for a long time only possible with a relatively large amount of
source code due to browser differences. For this reason, various libraries
have emerged to simplify different tasks such as working with the DOM.
One of the most famous of these libraries is jQuery, which even today is
part of every web developer's toolbox.

Probably one of the best-known JavaScript libraries is the jQuery library (https://
jquery.com), which, in part, considerably simplifies working with JavaScript. Although
many things are now also possible with standard methods of the DOM AP], jQuery is
still a library to be taken seriously. This chapter provides an overview of using jQuery,
including how to simplify accessing and manipulating the DOM, working with events,
and formulating Ajax requests.

Note

The jQuery library is so extensive that we can't cover all its aspects in one chapter.
Instead, we’ll offer a selection of topics that are representative and give a good intro-
duction to the library. Also, we won’t discuss the selected topics in great detail but will
describe the code examples relatively concisely (we're assuming that you've already
acquired the necessary basic knowledge, such as DOM processing, events, Ajax, and so
on, throughout the preceding chapters).

10.1 Introduction

As you've seen in the previous chapters, there are differences between different brows-
ers with regard to DOM manipulation, event processing, and Ajax. The jQuery library
abstracts such browser-specific details and provides a unified interface, and not only
for the aforementioned topics. So essentially, jQuery has the following advantages:

® Simplified working with the DOM
jQuery simplifies access to elements of the DOM tree by providing various helper
methods. In Section 10.2, we discuss this topic in more detail. By the way: standard
methods of the current DOM API, like querySelector() and querySelectorAll()
(which are not available in older browsers), are based on ideas from jQuery.

10 Simplifying Tasks with jQuery

® Simplified working with events
jQuery simplifies working with events and provides helper methods for this pur-
pose, which we’ll introduce in Section 10.3.

® Simplified phrasing of Ajax requests
jQuery simplifies the phrasing of Ajax requests—again, by hiding browser-specific
details. We'll present the corresponding helper methods in Section 10.4.

jQuery Isn’t Always Necessary

Although jQuery is a really powerful library, you shouldn’t make the mistake of equat-
ing jQuery with JavaScript and first learning jQuery and then the JavaScript language.
jQuery can certainly be of support in many cases, but often the use of the library isn’t
even necessary because you can already solve the corresponding tasks with pure Java-
Script code or even other, leaner libraries. Websites like You Might Not Need jQuery
(http://youmightnotneedjquery.com) demonstrate this with various examples.

Tip
In principle, it's not bad for a JavaScript developer to both be able to use libraries like
jQuery and have a firm grasp of the basic language concepts as well.

10.1.1 Embedding jQuery

The jQuery library can be embedded in several ways. At https://jquery.com/download/,
you can download the current version of the library. Besides the "normal” version, a
minified (i.e., compressed) version is available for download, which is as small as possi-
ble in terms of file size. After you've downloaded the file, you can include it as usual via
the <script> element (see Listing 10.1).

<IDOCTYPE html>
<html>
<head lang="en">
<title>jQuery example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<script src="scripts/jquery-3.6.0.min.js"></script>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 10.1 Embedding a Downloaded Version of jQuery

556

10.1 Introduction

Minified Versions versus Nonminified Versions

Most libraries offer both a normal (nonminified) version and a minified version for
download. In the latter, spaces and often comments within the code are removed, for
example, and much more is optimized to reduce the file size and thus reduce down-
load time. Consequently, minified versions of libraries are suitable for use in a produc-
tion system. The nonminified version is actually only suitable if you also want to take a
look at the corresponding library during development—during debugging, for exam-

ple.

10.1.2 Embedding jQuery via a Content Delivery Network

If you download jQuery as described and embed it as a local dependency in your web
page and then load your website onto a server, you must also load jQuery onto the
appropriate server. Alternatively, you have the option of integrating jQuery via a con-
tent delivery network (CDN; see note box). For jQuery, the corresponding URL (for the
current version of the library) is https://code.jquery.com/jquery-3.6.0.min.js (see Listing
10.2).

<IDOCTYPE html>
<html>
<head lang="en">
<title>jQuery example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 10.2 Embedding jQuery via a Content Delivery Network

Content Delivery Network

A content delivery network (also known as a content distribution network) is a network
of servers connected via the internet that distribute requests so that they can be
answered as quickly as possible. Typically, the geographical location of a request plays
a major role: for example, if a user from Germany accesses your web page and you
have embedded jQuery there via a CDN URL (https://code.jquery.com), the correspond-
ing code is sent to the user from a server in Germany. A user accessing your web page
from the US, on the other hand, is served by a server located there.

557

10 Simplifying Tasks with jQuery

10.1.3 Using jQuery

The core of jQuery is the jQuery() function or the equivalent shortcut function $()
(called the jQuery method ahead). This function can be called with various arguments
(see http://apijquery.com/jQuery for details), three forms of which are used particu-
larly frequently:

® Call with CSS selector
In this case, you pass a selector to the jQuery method (similar to the CSS selectors,
but more about that in a moment) and receive an object as the return value that con-
tains the elements of the web page that match the selector. Examples of this are
shown in Listing 10.3 and Listing 10.4. The object returned by the method represents
a so-called wrapper object (called the jQuery object ahead) for the corresponding ele-
ments and provides various methods for these elements (more on this later).

const selectedElements = jQuery('body > div > span');

Listing 10.3 The jQuery() Function

const selectedElements = $('body > div > span');

Listing 10.4 The More Common Shortcut Function, $()

® Call with nodes from the DOM tree

As an alternative to calling the jQuery method with a selector, it can also be called
with a node of the DOM tree or with the corresponding JavaScript object represent-
ing the respective node. Here as well, the jQuery object represents a wrapper object
around the passed node and provides additional methods. For example, to define an
event listener that is called when the document object is fully loaded, proceed as in
Listing 10.5. The ready () method doesn’t exist for the document object but is provided
indirectly by the jQuery object (see also Section 10.3.2).

$(document).ready(() => {
console.log('Web page loaded');
1

Listing 10.5 Calling the jQuery Method with a Node from the DOM Tree

® Call with HTML string
You can also use the jQuery method to create new elements. To do this, simply pass
the appropriate HTML code for the element you want to create to the method as a
string, as shown in Listing 10.6.

const newElement = $('<div>New element</div>');

Listing 10.6 Calling the jQuery Method with an HTML String

558

10.1 Introduction

Note

In all cases shown, the return value of the jQuery method is an object that adds addi-
tional functionality, the jQuery object, to the corresponding elements. This object con-
tains references to one or more nodes of the DOM tree, hereafter referred to as selected
nodes or selected elements.

10.1.4 Simplifying Tasks with jQuery

The fact that jQuery simplifies working with the DOM is best demonstrated using an
example. Suppose you have an HTML list in which each list entry contains a URL (as
text, not as a link), and you'd like to use JavaScript to create real links from the URLs at
runtime. In other words: The text content of the list entries is to be converted into <a>
elements.

Using pure JavaScript, you would probably proceed as shown in Listing 10.7. First, the
appropriate <1i> elements must be selected (here, for simplicity, all <1i> elements of
the entire web page). Then, in each case, the text content must be extracted and
removed, and a new <a> element must be created, its href attribute and text content
must be set, and the element must be added to the <1i> element as a child element.

'use strict’;
function init() {
const listItems = document.getElementsByTagName('1i");
for(let i=0; i<listItems.length; i++) {
const listItem = listItems[i];
const url = listItem.textContent;
listItem.textContent = '';
const link = document.createklement('a');
link.setAttribute("href', url);
const linkText = document.createTextNode(url);
link.appendChild(1linkText);
listItem.appendChild(link);
¥

}
document.addEventListener('DOMContentlLoaded', init);

Listing 10.7 Creating Links Using Pure JavaScript
Not exactly little code for actually a trivial task. And it doesn't get any better if you use
the innerHTML property instead of the createElement (), setAttribute(), and createText-

Node() DOM methods, as shown in Listing 10.8. This code also looks relatively cluttered
and cobbled together.

559

10 Simplifying Tasks with jQuery

'use strict';
function init() {
const listItems = document.getElementsByTagName('1i");
for(let i=0; i<listItems.length; i++) {
listItems[i].innerHTML = '<a href="'
+ listItems[i].textContent + "">'
+ listItems[i].textContent + '';
¥

¥
document.addEventListener('DOMContentlLoaded', init);

Listing 10.8 Creating Links Using innerHTML

With jQuery, things get a little more elegant, to say the least. The corresponding code is
shown in Listing 10.9. Here the wrapInner() method comes into play, which is made
available to the selected elements by the jQuery object. This method wraps the con-
tents of the selected elements with the HTML code returned by the passed function in
the example. Much simpler than the previous code!

'use strict';
function init() {
$('1i").wrapInner(
function() {
return '<a href=
}
);

" "

+ this.textContent + '">'

}
$(document).ready(init)

Listing 10.9 Creating Links Using jQuery

10.2 Working with the DOM

jQuery Plug-ins

By the way, if you don't find a functionality within jQuery, there are thousands of plug-
ins available on the internet. A very good overview is given by the official jQuery regis-
try at https://plugins.jquery.com/.

10.2 Working with the DOM

Working with the DOM wasn’t always as comfortable as it is now thanks to methods
like querySelector() and querySelectorAll(). For a long time, jQuery was the first
choice when it came to processing the DOM in a relatively simple way—to select,

560

modify, or add elements, for example. Even today, jQuery supports you in the follow-
ing tasks, among others:

m Selection of elements (Section 10.2.1)

® Accessing and modifying content (Section 10.2.2)

m Filtering selected elements (Section 10.2.3)

® Accessing attributes (Section 10.2.4)

® Accessing CSS properties (Section 10.2.5)

m Navigating between elements (Section 10.2.6)

m Using effects (Section 10.2.7)

10.2.1 Selecting Elements

Using jQuery, elements can be selected using CSS-like selectors. These selectors can be
divided into the following groups:

® Basic selectors
Essential selectors that you already know from CSS (see Table 10.1)

® Hierarchy selectors
Selectors involving the hierarchy of elements (see Table 10.2), also already known
from CSS

® Basic filter selectors
Selectors that allow you to more specifically filter individual elements, not all of
which exist in CSS (see Table 10.3)

® Content filter selectors
Selectors that include the content of elements (see Table 10.4)

® Visibility filter selectors
Selectors involving the visibility of elements (see Table 10.5)

m Attribute filter selectors
Selectors that include the attributes of elements (see Table 10.6)

® Form filter selectors
Selectors that are specifically useful for selecting form elements (see Table 10.7)

m Child filter selectors
Selectors for selecting child elements (see Table 10.8)

i Elements with any element name

elementName Elements of type elementName

Table 10.1 Basic Selectors in jQuery

561

10 Simplifying Tasks with jQuery

#id Element with the ID id
.class Elements of the class class

selektorl, selector2 Elements that match either the selectorl selector or the selec-
tor2 selector

Table 10.1 Basic Selectors in jQuery (Cont.)

elementlelement2 All elements of type element2 that are inside an element of type
elementl
elementl > element2 All elements of type element2 that are direct child elements of an

element of type element1

elementl +element2 All elements of type element2 that directly follow an element of
type elementl

elementl ~element2 All elements of type element2 that follow an element of type
elementl

Table 10.2 Hierarchy Selectors in jQuery

:animated Selects elements that are currently used within an animation.

:header Selects all heading elements—that is, <h1>, <h2>, <h3>, <h4>,
<h5>, and <h6>.

:lang() Selects all elements for the passed language.
:not() Selects all elements that do not match the passed selector.
:root Selects the root element (not the document node)—that is, the

<html> element.

:target Selects the element identified by the fragment ID of the corre-
sponding URL. For example, if the URL is http://www. javas-
cripthandbuch.de#jquery, then $(' :target ") will select the
element with the ID jquery.

Table 10.3 Basic Filter Selectors in jQuery

562

10.2 Working with the DOM

:contains() Selects all elements that contain the passed text
rempty Selects all elements that have no child elements or child nodes
:has() Selects all elements that contain at least one element that

matches the passed selector

:parent Selects all elements that have at least one child node

Table 10.4 Content Filter Selectors in jQuery

:hidden Selects all elements that are not visible

:visible Selects all visible elements

Table 10.5 Visibility Filter Selectors in jQuery

[name|="value"] Selects elements with the attribute name for which the values are
a series of values separated by minus signs and where the first
value is value

[name*= "value"] Selects elements with the attribute name, the value of which con-
tains value as a substring

[name~="value"] Selects elements with the attribute name, the value of which is a
list of values, one of which is equal to value

[name$="value"] Selects elements with the attribute name, the value of which ends
with value

[name="value"] Selects elements with the attribute name that has the value value

[name!="value"] Selects elements with the attribute name that do not have the
value value

[name”="value"] Selects elements with the attribute name, the value of which

begins with value

[name] Selects elements with the attribute name
[name="value"] Selects elements with the attribute name having the value value
[name2="value2"] and with the attribute name2 having the value value2

Table 10.6 Attribute Filter Selectors in jQuery

563

10 Simplifying Tasks with jQuery

:button Selects all buttons

:checkbox Selects all checkboxes

:checked Selects all selected or activated elements

:disabled Selects all disabled elements

:enabled Selects all activated elements

:focus Selects all elements that have the focus

:file Selects all file input fields

:image Selects all elements with the attribute type having the value
image

:input Selects all input fields

:password Selects all password fields

:radio Selects all radio buttons

:reset Selects all elements with the attribute type having the value
reset

:selected Selects all selected elements

:submit Selects all elements with the attribute type having the value sub-
mit

1text Selects all text input fields

Table 10.7 Form Filter Selectors in jQuery

:first-child Selects the first child element

:first-of-type Selects the first element of a given type
:last-child Selects the last child element

:last-of-type Selects the last element of a given type
:nth-child() Selects the nth child element

:nth-last-child() Selects the nth child element, counting from the end

Table 10.8 Child Filter Selectors in jQuery

564

10.2 Working with the DOM

:nth-of-type() Selects the nth element of a given type

:nth-last-of-type() Selects the nth element of a given type, counting from the end

:only-child Selects elements that are the only child element of their parent
element
zonly-of-type() Selects elements that are the only child element of their parent

element of a given type
Table 10.8 Child Filter Selectors in jQuery (Cont.)

You can find some examples of using these selectors in Listing 10.10, and complete lists
of all corresponding selectors can be found in the tables ahead.

$(document).ready(() => {

const inputElements = $('input'); // all <input> elements

const john = $('#john'); // element with the ID "john"
const oddElements = $('.odd"); // elements of the class "odd"
const elements = $('td, th'); // all <td>- und <th> elements

const inputJohn = $('input[name="john"]'); // <input> elements the
// name attribute of which
// has the value "john"

const oddRows = $("tr').odd()); // all "odd" <tr> elements
const evenRows = $('tr').even(); // all "even" <tr> elements
const listItemsAtIndex = $('li:eq(2)'); // all <1li> elements at index 2
const allOthers = $(':not(1i)"); // all elements other than <1i>

const notExample = $(':not(.example)'); // all elements without the CSS
// class "example"

1;
Listing 10.10 A Few Examples of Using Selectors

Note

Some selectors such as :odd (for selecting all "odd" elements), :even (for selecting all
"even" elements), : first (for selecting the first elements), and :1ast (for selecting the
last elements) are deprecated since jQuery 3.4. Instead, you should first select the ele-
ments using the appropriate selector and apply the odd(), even(), first(), and last()
methods on the result set (see Listing 10.10 for the use of odd() and even()).

565

10 Simplifying Tasks with jQuery

10.2 Working with the DOM

Combination of Selectors

The individual selectors naturally can be combined with each other, as you know from
Css.

10.2.2 Accessing and Modifying Content

After you've selected elements via the jQuery method using the selectors presented in
the previous section, the jQuery object provides various methods for the selected ele-
ments to access and modify the content. These include but are not limited to the fol-
lowing:

® Accessing and modifying HTML and text content (see Table 10.9)

® Adding content within an element (see Table 10.10 and Figure 10.1)

® Adding content outside an element (see Table 10.11 and Figure 10.1)

® Adding content around an element (see Table 10.12)

m Replacing content (see Table 10.13)

® Removing content (see Table 10.14)

html() Without an argument, this method returns the HTML content of an ele-
ment. With an argument, this method sets the HTML content of an ele-
ment.

text() Without an argument, this method returns the text content of an ele-
ment. With an argument, this method sets the text content of an ele-
ment.

Table 10.9 Methods for Retrieving and Defining Content

append() Adds content to the end of the selected elements: $(a) .append(b)
adds content b to the end of element a (see Figure 10.1).

appendTo() Opposite of append(); that is, $(a) .appendTo(b) adds element a as
content to the end of element b.

prepend() Inserts content at the beginning of the selected elements: $(a) . pre-
pend(b) adds content b to the beginning of element a (see Figure 10.1).

prependTo() Opposite of prepend(); thatis, $(a) .prependTo(b) adds element a as
content to the beginning of element b.

Table 10.10 Methods for Adding Content within an Element

566

List entry List entry</Ii> List entry

|

prepend() append()

before() after()

Figure 10.1 The Different Methods for Adding Content inside and outside Elements

after() Adds content after each of the selected elements: $(a).after(b)
inserts content b after element a (see Figure 10.1).

before() Adds content before each of the selected elements: $(a) .before(b)
inserts content b before element a (see Figure 10.1).

insertAfter() Opposite of after(); thatis, $(a).insertAfter(b) inserts element a
after element b.

insertBefore() Opposite of before(); thatis, $(a).insertBefore(b) inserts element
a before element b.

Table 10.11 Methods for Adding Content outside an Element

clone() Creates a copy of the selected elements. More precisely, a so-called deep
copy is created, which also copies child elements of the selected ele-
ments.

wrap() Adds new content around each of the selected elements.

wrapAll() Adds new content around all selected elements.

wrapInner() Adds new content around the content of each of the selected elements.

Table 10.12 Methods for Adding Content around an Element

replaceWith() Replaces the selected elements with new content: $(a).replace-
With(b) replaces element a with content b.

Table 10.13 Methods for Replacing Content

567

10 Simplifying Tasks with jQuery

replaceAll() Opposite of replaceWith(); thatis, $(a).replaceAll(b) replaces all
elements selected by selector b with the content in a.

Table 10.13 Methods for Replacing Content (Cont.)

detach() Removes the selected elements from the DOM tree but retains refer-
ences to the removed elements so that they can be reincorporated into
the DOM tree at a later time

empty () Removes all child nodes from the selected elements
remove () Removes the selected elements from the DOM tree
unwrap() Removes the parent element from each of the selected elements

Table 10.14 Methods for Removing Content

Some examples of these methods are shown in Listing 10.11. For example, you can use
the html() method to access the HTML content, the text() method to access the text
content (both read and write access), append() to append new content to the existing
content of the selected elements, prepend() to insert content before the existing con-
tent, after() to append new content to the selected elements, and before() to insert
content before the selected elements.

// Add new HTML content
$('#main').html('<div>New content</div>"');
// Access the HTML content

const htmlContent = $('#main').html();

// Add new text content
$('#main').text('New text content');
// Access the text content

const textContent = $('#main').text();

// Add new content after the

// existing content of each <div> element
// with the CSS class "example"
$('div.example').append('<p>Example</p>');

// Add new content before the

// existing content of each <div> element
// with the CSS class "example"
$("div.example').prepend('<p>Example</p>');

568

10.2 Working with the DOM

// Add new content after each
// <div> element with the CSS class "example"
$('div.example').after('<p>Example</p>");

// Add new content before each
// <div> element with the CSS class "example"
$('div.example').before(' <p>Example</p>");

Listing 10.11 Some Examples of Changing and Adding Content

10.2.3 Filtering Selected Elements

The jQuery object also provides various methods for the selected elements, which you
can use to further narrow down the currently selected elements (see Table 10.15). Some
examples are shown in Listing 10.12: for example, the eq() method limits the selection
to the element at index 2 (i.e,, the third <1i> element in the example); the first() and
last() methods let you select the first and last of the currently selected elements,
respectively; the filter() method limits the selection to the specified selector; and the
not() method limits the selection to the elements that do not match the specified
selector. You can also use the has() method to select the elements that have at least one
child element that matches the given selector. Figure 10.2 illustrates the filter methods
shown in Listing 10.12.

// Selection of the third <1i> element

$('1i").eq(2);

// Selection of the first <1li> element

$('11") . first();

// Selection of elements that have the CSS class ".selected"
$('11i").filter('.selected');

// Selection of all <1li> elements that contain a element
$('1i").has('ul');

// Selection of all elements that have the CSS class ".selected"
$('1i").has('.selected");

// Selection of the last <1i> element

$('11").last();

// Selection of all class attributes of the <1li> elements
$('1i").map(() => { this.className });

// Selection of all <1li> elements that do not have the CSS class ".selected"
$('1i").not('.selected");

// Selection of the first two <1i> elements

$('11").slice(0, 2);

Listing 10.12 Usage of Different Filter Methods

569

10 Simplifying Tasks with jQuery

Y
- ([u
§(1) first(); $('1i").not(selected’); $(17).Jast();
Hrsty; $('1i").slice(0, 2); $('1i").eq(2); S(li").not('selected’); Jastl;

S('1i").slice(0, 2); S('li").not(.selected");

S('1i").has(ul');

S(li").not('selected’); S(li').not(.selected'); S('li").not(.selected’);
$('1i").slice(0, 2); S('1i").slice(0, 2); S('1i").eq(2);

v v '
[] [] L]

Figure 10.2 Narrowing Down Elements via jQuery Filter Methods

add() Adds new elements to a selection of elements

addBack () Adds a previous selection to the current selection of elements

eq() Reduces the selected elements to one element at a given index

filter() Reduces the selected elements to those elements (1) that match the passed

selector or (2) for which the passed filter function returns true

find() Selects the child elements of the selected elements that (1) match the
passed selector, (2) are contained in the passed jQuery object, or (3) are equal
to the passed element

first() Reduces the selected elements to the first element

has () Reduces the selected elements to those elements that have a child element
that (1) matches the passed selector or (2) is equal to the passed element

Table 10.15 Methods for Filtering

570

10.2 Working with the DOM

is() Checks if at least one of the selected elements (1) matches the passed selec-
tor, (2) returns true for the passed filter function, (3) is contained in the
passed jQuery object, or (4) is one of the elements passed as parameter

last() Reduces the selected elements to the last element

not() Reduces the selected elements to those that (1) do not match the passed
selector, (2) do not match the passed filter function, or (3) are not contained
in the passed jQuery object

slice() Reduces the selected elements to a subset defined by start and end index

Table 10.15 Methods for Filtering (Cont.)

10.2.4 Accessing Attributes

The jQuery object also provides some methods to access HTML attributes (see Table
10.16). The attr() method can be used to determine or reset values of attributes, as
shown in Listing 10.13: if you pass the name of an attribute to the method, the method
returns the corresponding value of the attribute; if, on the other hand, you pass
another string as the second argument to the method, this string is used as the new
value for the attribute.

Alternatively, you can pass an object to the method in order to add several attributes in
one go. In this case, the object's property names are used as names for the attributes,
and the object property values are used as values for the attributes.

To delete attributes, however, use the removeAttr () method. For adding and removing
CSS classes, the methods addClass() and removeClass() are available. However, these
two methods are actually redundant—at least for newer browsers that support the
classList property, which provide equivalent functionality via the add() and remove()
methods.

const element = $('a#main');
// Read access to the "href" attribute of the element
const href = element.attr('href');
// Write access to the "href" attribute of the element
element.attr('href', 'index.html');
// Alternative write access via configuration object
element.attr({

href: 'index.html',

target: ' blank’
bs
// Remove the "href" attribute from the element
element.removeAttr('href');

571

10 Simplifying Tasks with jQuery

// Add a CSS class
element.addClass('highlighted");

// Remove a CSS class
element.removeClass('highlighted');

Listing 10.13 Access to Attributes and CSS Classes

attr() With one argument, this method returns the value for an attribute (e.g.,
$(“attmain’).attr(‘href’)). With two arguments, this method sets
the value of an attribute (e.g., $('atfmain').attr('href',
"index.html")).

removeAttr() Removes an attribute from an element, e.g., $('a#tmain').removeAttr
("href")).
addClass() Adds a new CSS class to the values in the class attribute. In newer

browsers, this is possible without jQuery thanks to the standardized
classlist property and its add() method.

removeClass() Removes a CSS class from the values in the class attribute. This too is
possible in newer browsers without jQuery thanks to the classList
property and its remove () method. However, the removeClass ()
method can alternatively be passed a function that returns a comma-
separated list of CSS classes. This functionality isn’t possible via the
remove () method of the classList property.

toggleClass() Toggles a CSS class: if the element has the passed class, the class will be
removed, and if the element doesn’t have the passed class, the class will
be added.

Table 10.16 Methods for Accessing Attributes and CSS Classes

10.2.5 Accessing CSS Properties

To access CSS properties, jQuery provides the css() method. Like other methods, such
as html(), text(), and attr(), this method can be used to both read and set values. For
the former, pass the method the name of the CSS property of which the value is to be
read; for the latter, specify the value to be set as the second parameter.

Alternatively, as with the attr() method, an object can be passed as an argument, and
the respective properties are then used as CSS properties. In addition, you can also pass
an array of strings as an argument to read the values of several CSS properties in one
step. Some examples are shown in Listing 10.14.

// Read the background color of the <body> element
const backgroundColor = $('body").css('background-color');
// Read the foreground color and the background color of the <body> element

572

10.2 Working with the DOM

const properties = $('body").css(['color', 'background-color']);
// Set the background color of the <body> element
$('body").css("'background-color', 'blue');
// Set the foreground color and the background color of the <body> element
$('body").css({

'color': 'white',

'background-color': ‘blue’

D;
Listing 10.14 Accessing CSS Properties

10.2.6 Navigating between Elements

Starting from a selection of elements stored in a jQuery object, you can use the meth-
ods presented ahead to find elements that have a specific relationship to these ele-
ments, such as parent elements, sibling elements, and child elements. Some examples
are shown in Listing 10.15. The corresponding descriptions of the methods can be found
in Table 10.17.

// Child elements

// Selection of all child elements of
const listItems = $('ul').children();

// Selection of the next link within
const closestlink = $('ul').closest('a");

// Sibling elements

// Selection of the next sibling element

const nextSibling = $('ul").next();

// Selection of the next link element

const nextSiblinglink = $('ul").next('a");

// Selection of all next sibling elements

const nextSiblings = $('ul").nextAll();

// Selection of all next link elements

const nextSiblinglinks = $('div').nextAll('a");

// Selection of all next sibling elements up to the specified element
const nextSiblingsUntil = $('div').nextUntil('a");

// Selection of the previous sibling element

const previousSibling = $('ul").prev();

// Selection of all previous sibling elements

const previousSiblings = $('ul").prevAll();

// Selection of all previous sibling elements up to the specified element
const previousSiblingsUntil = $('div').prevUntil('a");

// Selection of all sibling elements

const siblings = $('div').siblings();

573

10 Simplifying Tasks with jQuery

// Parent elements

// Selection of the parent element

const parent = $('ul').parent();

// Selection of all parent elements

const parents = $('ul').parents();

// Selection of all parent elements up to the specified element
const parentsUntil = $('ul').parentsUntil('div');

Listing 10.15 Various Examples of Navigating between Elements

children() Selects the child elements of the selected elements. Optionally, a selec-
tor can be passed--in that case only those child elements are selected
to which this selector applies..

closest() Selects the first element of the selected elements that matches the
selector passed as a parameter or for which one of the parent ele-
ments matches the selector.

next () Selects the next sibling element of the selected elements. If a selector
is passed, the next sibling element that matches this selector is
selected.

nextAll() Selects all next sibling elements of the selected elements. If a selector
is passed, the next sibling elements that match this selector are
selected.

nextUntil() Selects all next sibling elements of the selected elements. If a selector
is passed, the next sibling elements are selected up to the sibling ele-
ment that matches this selector.

parent() Selects the parent element of the selected elements.

parents() Selects all parent elements preceding in the hierarchy of the selected
elements.

parentsUntil() Selects all parent elements preceding in the hierarchy of the selected

elements up to an element that (1) matches the passed selector, (2)
matches the passed element, or (3) is contained in the passed jQuery
object.

prev() Selects the previous sibling element of the selected elements. If a
selector is passed, the previous sibling element that matches this
selector is selected.

prevAll() Selects all previous sibling elements of the selected elements. If a
selector is passed, the previous sibling elements that match this selec-
tor are selected.

Table 10.177 Methods for Navigating the DOM Tree

574

10.2 Working with the DOM

prevUntil() Selects all previous sibling elements of the selected elements. If a
selector is passed, the previous sibling elements are selected up to the
sibling element that matches this selector.

siblings() Selects all sibling elements of the selected elements. If a selector is
passed, the sibling elements that match this selector are selected.

Table 10.17 Methods for Navigating the DOM Tree (Cont.)

10.2.7 Using Effects and Animations

Effects such as fading in or out elements of a web page were not always as easy to imple-
ment as they are now with the help of CSS3 animations. It’s little wonder then that
jQuery offers several methods for this as well, the most important of which are shown
in Table 10.18. For example, with fadeIn(), fadeOut(), and fadeToggle(), it's possible to
fade the selected elements in and out, and slideDown(), slideUp(), and slideToggle()
enable you to slide the selected elements in and out.

The most flexible option is provided by animate(). This method can be passed—in the
form of a configuration object—various CSS properties to be animated, the speed or
duration of the animation (either as a string, such as one of the values fast or slow, or
as a numeric value specifying the duration in milliseconds), an easing function (which
describes how the speed of the animation behaves in relation to the time within the
animation), and a callback function that’s called when the animation has been fully
executed (see Listing 10.16).

animate() Enables the animation of CSS properties.

clearQueue() Removes all animations from the queue that have not yet been exe-
cuted.

delay() Delays an animation by a specified number of milliseconds.

dequeue() Executes the next animation in the queue.

fadeIn() Fades the selected elements in.

fadeOut () Fades the selected elements out.

fadeTo() Adjusts the opacity of the selected elements.

fadeToggle() Fades the selected elements in or out, depending on their state: if an

element is visible, it’s faded out, but if it isn’t visible, it’s faded in.

Table 10.18 Methods for Displaying and Hiding Elements

575

10 Simplifying Tasks with jQuery

finish() Stops the current animation, removes all animations from the queue,
and sets the CSS properties of the selected elements to the target value.

hide() Hides the selected elements.

queue() Accesses the animations in the queue.

show() Shows the selected elements.

slideDown() Slides the selected elements down, from top to bottom.
slideToggle() Slides the selected elements in or out, depending on their state: if an

element is visible, it slides out from bottom to the, but if it isn’t visible,
it slides in from top to bottom.

slideUp() Slides the selected elements up, from bottom to top.
stop() Stops the current animation.
toggle() Hides or displays the selected elements: if an element is visible, it’s

hidden, but if it isn’t visible, it’s displayed.

Table 10.18 Methods for Displaying and Hiding Elements (Cont.)

'use strict';
$(document).ready(() => {
$("'main').animate(
{ opacity: 0.75 }, // Properties

'fast', // Speed
"swing', // Easing
0 = {

// Animation completed
}

);
b;
Listing 10.16 Accessing CSS Properties

10.3 Responding to Events

As you recall from Chapter 6, there are several options for catching events. Event han-
dlers are usually available for the corresponding event, and there’s also the possibility
to register several event listeners for one event via the addEventlListener() method.
Older versions of Internet Explorer also use the attachEvent () method, which fulfills a
similar task.

576

10.3 Responding to Events

We also showed a corresponding browser-independent helper function in Chapter 6.
The jQuery library offers a browser-independent solution as well.

10.3.1 Registering Event Listeners

jQuery provides several methods to respond to events or register event listeners. So, on
the one hand, you can use the on() method, which is called on the jQuery object, as
shown in Listing 10.17: you pass the name of the event to be responded to as the first
parameter and the event listener in the form of a function as the second parameter.

$("#button').on('click', (event) => {
console.log('Button pressed');

1);
Listing 10.17 Registering an Event Listener

Note

If the jQuery object contains references to multiple elements, calling an event method
for each element in the selection invokes the corresponding event listener.

As an alternative to the general on() method, jQuery offers various methods named
specifically after the event to be caught, such as the click() method found in Listing
10.18. Logically, these event methods don’t need to be passed the name of the respec-
tive event as a parameter, but only the event listener.

$('#button').click((event) =>
console.log('Button pressed

1
Listing 10.18 Registering an Event Listener via the Shorthand Method

{
)

Overall, the event methods can be classified as follows:

®m General event methods (see Table 10.19)

® Event methods for handling general events (Section 10.3.2)

® Event methods for handling mouse events (Section 10.3.3)

® Event methods for handling keyboard events (Section 10.3.4)

® Event methods for handling form events (Section 10.3.5)

577

10 Simplifying Tasks with jQuery

bind() Adds an event listener for an event. Since jQuery 1.7, however, the
on() method should be used according to the official documenta-
tion.

delegate() For older jQuery versions, this is the preferred method to add an

event listener for an event. However, since jQuery 1.7, the on()
method should be used.

off() Removes an event listener for an event.
on() Adds an event listener for an event.
one() Adds an event listener that is triggered at most once per event for

each selected element.

trigger() Runs all event listeners registered for an event.

triggerHandler () Like the trigger () method, but doesn’t perform the default behav-
ior for an event (such as submitting a form).

unbind() Removes an event listener for an event. Since jQuery 1.7, however,
the off() method should be used according to the official docu-
mentation.

undelegate() For older jQuery versions, this is the preferred method to remove an

event listener for an event. However, since jQuery 1.7, the of ()
method should be used.

Table 10.19 Methods for Managing Event Handlers

10.3.2 Responding to General Events

Table 10.20 contains some methods for registering event listeners for general events:
error () enables you to register event listeners that are triggered when an error event is
raised on the selected elements, event listeners registered via ready() are called as soon
as the corresponding elements have been loaded (see Listing 10.19), event listeners reg-
istered via resize() are called whenever a resize event occurs for the elements, and
event listeners registered via scrol1() are called whenever a scroll event occurs for the
elements.

error() Register event listeners that are executed when an error event occurs.

ready() Register event listeners that are executed when the DOM or the element
passed to the method is fully loaded.

Table 10.20 Different Methods for Registering Event Listeners

578

10.3 Responding to Events

resize() Register event listeners that are executed when a resize event occurs.

scroll() Register event listeners that are executed when an element is scrolled.

Table 10.20 Different Methods for Registering Event Listeners (Cont.)

$(document).ready(() => {
console.log('Web page loaded');

1;

Listing 10.19 Registering an Event Listener for Loading the Document

10.3.3 Responding to Mouse Events

Table 10.21 shows the methods jQuery uses to register event listeners for mouse events.
They basically correspond to the events you already know from Chapter 6: click() and
dbclick() for mouse clicks; focusin() and focusout () for focusing elements; and mouse-
down (), mouseenter (), mouseleave(), mousemove(), mouseout (), mouseover (), and mouseup()
for mouse movements over elements.

click() Register event listeners that are executed when the mouse is clicked

dblclick() Register event listeners that are executed when the mouse is double-
clicked

focusin() Register event listeners that are executed when an element receives
focus

focusout() Register event listeners that are executed when an element loses focus

hover () Register event listeners that are executed when the mouse pointer hov-

ers over an element

mousedown () Register event listeners that are executed when the mouse pointer is
over an element and the mouse button is pressed

mouseenter () Register event listeners that are executed when the mouse pointer
enters an element

mouseleave() Register event listeners that are executed when the mouse pointer leaves
an element

mousemove () Register event listeners that are triggered when the mouse moves over
an element

Table 10.21 Methods for Handling Mouse Events

579

10 Simplifying Tasks with jQuery

mouseout () Register event listeners that are executed when the mouse pointer leaves
an element
mouseover () Register event listeners that are executed when the mouse pointer

enters an element

mouseup() Register event listeners that are executed when the mouse pointer is
over an element and the mouse button is released

Table 10.21 Methods for Handling Mouse Events (Cont.)

An example is shown in Listing 10.20.

$('buttontttarget').click((event) => {
console.log('Button was pressed');

1;

Listing 10.20 Registering an Event Listener for a Mouse Event

By the way, it’s also possible to use the event methods not for registering event listen-
ers, but for triggering events. To do this, simply call the corresponding method without
any arguments. In Listing 10.21, for example, within the second event listener (regis-
tered on the <button> element with the ID target2), the click event is triggered for the
<button> element with the ID target.

$('buttontttarget').click((event) => {
console.log('Button was pressed');

1
$('buttonttarget2').click((event) => {
$('buttontttarget').click();

1);
Listing 10.21 Triggering an Event

Note

Most methods in jQuery can be called with a different number of arguments, and each
has different functions. For example, as shown earlier in this chapter, you can use the
attr() method to both read and write HTML attributes or, as just shown, you can use
the event methods to both register event listeners and trigger events.

580

10.3 Responding to Events

10.3.4 Responding to Keyboard Events

For registering event listeners for keyboard events, the methods listed in Table 10.22
are available: keydown (), keyup(), and keypress() for registering event listeners that are
triggered when a key is pressed or released. Again, all of this should be familiar from
Chapter 6.

keydown () Register event listeners that are executed when a key on the keyboard is
pressed. If a key is pressed for a longer time, the event listener is executed
several times.

keypress() Register event listeners that are executed when a key on the keyboard is
pressed.

keyup() Register event listeners that are executed when a key on the keyboard is
released.

Table 10.22 Methods for Handling Keyboard Events

An example of using these methods is shown in Listing 10.22. This nicely illustrates
how the individual event methods (or all jQuery methods in general) can be used one
after the other.

$("inputffusername")
.keypress((event) => {
console.log('Key for entering username pressed.');
1)
.keydown((event) => {
console.log('Key is pressed.');
1)
.keyup((event) => {
console.log('Key for entering username released.');

;s

Listing 10.22 Registering Different Event Listeners for Keyboard Events

Fluent API

When an API allows you to call a method directly on the return value of a method, as in
Listing 10.22, it is also called a fluent API.

10.3.5 Responding to Form Events

The methods listed in Table 10.23 for registering event listeners related to form events
should also be essentially familiar from Chapter 6: blur() and focus() for registering

581

10 Simplifying Tasks with jQuery

event listeners that are triggered when a form field loses or receives focus, change()
when the value of a form field changes, select() when a specific value is selected for a
form field, and submit() when a form is submitted.

blur() Register event listeners that are executed when a form field loses focus

change() Register event listeners that are executed when the selected value of a selec-
tion list, a checkbox, or a group of radio buttons has been changed

focus() Register event listeners that are executed when a form field receives focus

select() Register event listeners that are executed when the text of an input field
(<input> element of the text type) or a text input area (<textarea> element)
is selected

submit() Register event listeners that are executed when a form is submitted

Table 10.23 Methods for Handling Form Events

Some examples are shown in Listing 10.23.

$("input#tusername")
.focus((event) => {
console.log('Input field focused.');

b
.blur((event) => {

console.log('Input field no longer focused."');

1)
.change((event) => {
console.log('Text changed.');

9
.select((event) => {
console.log('Text selected.');

s

Listing 10.23 Registering Different Event Listeners for Form Events

10.3.6 Accessing Information from Events

The event object, which is available as a parameter within each event listener, contains
different information and provides different methods, as shown in Table 10.24. Basi-
cally, this is the information also contained in the standard event object, as discussed
in Chapter 6, supplemented by a few more details. But again, jQuery hides the browser-
specific details, allowing for browser-independent use.

582

10.3 Responding to Events

currentTarget

data

delegateTarget

isDefaultPrevented()

isImmediatePropagationStopped()

isPropagationStopped()

metaKey

namespace

pagex

pageY

preventDefault()

relatedTarget

result

stopImmediatePropagation()

stopPropagation()

Contains the current element during the bubbling
phase

Contains an optional data object passed to the
event method

Contains the element on which the event listener
was registered

Indicates whether preventDefault () was called
on the event object

Indicates whether stopImmediatePropagation()
was called on the event object

Indicates whether stopPropagation() was called
on the event object

Contains an indication of whether the so-called
meta key (for Mac keyboards, the key; for
Windows keyboards, the key) was

pressed while the event was triggered.
Contains the namespace of the event

Contains the mouse position relative to the left
edge of the document

Contains the mouse position relative to the top of
the document

Prevents the default action for an event from being
executed

For an element for which an event was triggered,
contains the element directly related to the event
(e.g., in the case of a mouseout event, the element
on which the mouseover event was triggered by the
same user action)

Contains the result of an event listener previously
triggered for an event

Immediately prevents the event from rising further
during the bubbling phase

Prevents the event from rising further during the
bubbling phase

Table 10.24 Properties and Methods of the Event Object

583

10 Simplifying Tasks with jQuery

target Contains the element that triggered the event

timeStamp Contains a timestamp indicating the time when
the event was triggered

type Contains the type of the event

which In the case of mouse or keyboard events, contains
the mouse button or key on the keyboard that was
pressed

Table 10.24 Properties and Methods of the Event Object (Cont.)

Listing 10.24 shows an example of how you can access this information. Most impor-
tantly, you can also see here that it’s possible to pass an event a data object that you can
then access within the event listener.

$("input').on(

"change,

{
value : 4711 // Data object

b

(event) => {
console.log(event.currentTarget); // current element
console.log(event.data); // data object
console.log(event.data.value); // property of the data object
console.log(event.pageX); // x position of mouse
console.log(event.pageY); // y position of mouse

¥

);
Listing 10.24 Accessing the jQuery Event Object

10.4 Creating Ajax Requests

Generating Ajax requests is also considerably simplified by jQuery. In this section, we'll
show you how to perform the examples in Chapter 9 for Ajax-based loading of HTML,
XML, and JSON data via the appropriate jQuery methods.

10.4.1 Creating Ajax Requests

For creating Ajax requests, jQuery provides several methods, listed in Table 10.25. These
are methods that—with the exception of the load() method—are called not on a

584

10.4 Creating Ajax Requests

selection of elements, as has been the case so far in this chapter, but directly on the
$ object. Therefore, we call these methods global jQuery methods ahead.

$.ajax() Performs an asynchronous HTTP request

$.get() Performs an HTTP request using the HTTP GET method

$.getISON() Performs an HTTP GET request to load JSON data from a server
$.getScript() Performs an HTTP GET request to load JavaScript data from a server and

execute it directly

load() Performs an HTTP GET request to load HTML data from a server and
embed it directly into the selected elements

$.post() Performs an HTTP request using the HTTP POST method

Table 10.25 Main Methods for Working with Ajax

The jQuery global method ajax() (or $.ajax()) allows you to create arbitrary Ajax
requests. The configuration object expected by this method gives you the most leeway
regarding the configuration of a request.

The get() and post () methods are used to create GET or POST requests, meaning that you
don't have to worry about specific configurations for these request types, such as spec-
ifying the HTTP method.

In addition, special methods are available for loading HTML data (1oad()), loading JSON
data (getJSON()), and loading JavaScript files (getScript()).

Listing 10.25 shows an example of using the ajax() method, which you already know
about in principle from Chapter 9: the goal is to load JSON data from the server and
dynamically create a table for this data.

The URL for the request is configured via the url property of the configuration object,
the type expected as a response via the dataType property (possibilities include, for
example, json, xml, or html), and the type of the request via the type property. Callback
functions for the successful execution of a request or also for errors can be defined via
the success and error properties. Within the success callback function, the response of
the server is accessed via the data parameter in the example. Because this is JSON data,
it can be processed directly to create the table, as already mentioned.

'use strict';
$(document).ready(() => {
$.ajax({
url: 'artists.json’,
dataType: 'json',
type: 'GET',

585

10 Simplifying Tasks with jQuery

10.4 Creating Ajax Requests

success: (data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; 1 < artists.length; i++) {
const artist = artists[i];
const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];
const row = createRow(
artist.name,
album.title,
album.year
);
$(table).find('tbody").append(row);
}
}
$('#artists-container"').append(table);

1
error: (jgXHR, errorMessage, error) => {
}
1);
1);

Listing 10.25 Generating an Ajax Request

As an alternative to specifying the callback functions via the success and error proper-
ties, you also have the option of defining them via the done() and fail() methods,
which (thanks to jQuery's Fluent API) can be combined directly with calling the ajax()
method (see Listing 10.26).

'use strict';
$(document).ready(() => {
$.ajax({
url: 'artists.json',
dataType: 'json',
type: 'GET'
b
.done((data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; i < artists.length; i++) {
const artist = artists[i];
const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];

586

const row = createRow(
artist.name,
album.title,
album.year
)5
$(table).find("tbody").append(row);
}
¥
$('#artists-container').append(table);
b
.fail((jgXHR, errorMessage, error) => {
bs
1
Listing 10.26 Generating an Ajax Request via the Fluent API

10.4.2 Responding to Events

For responding to events related to working with Ajax requests, jQuery provides the
methods shown in Table 10.26.

ajaxComplete() Specify an event listener that is called when an Ajax request completes

ajaxError() Specify an event listener for errors

ajaxSend() Specify an event listener that is called when an Ajax request is sent

ajaxStart() Specify an event listener that is called when the first Ajax request is
started

ajaxStop() Specify an event listener that is called when all Ajax requests have
completed

ajaxSuccess () Specify an event listener that is called whenever an Ajax request com-

pletes successfully

Table 10.26 Methods for Handling Ajax Events

An example is shown in Listing 10.27. There are two things to keep in mind here: first,
the methods are each called on a selection of elements (or the corresponding jQuery
object); second, the event listeners each have a different number of parameters. The
event listeners for ajaxStart() and ajaxStop() have no parameters at all, the event lis-
teners for ajaxSend() and ajaxComplete() each get the event object, plus an object rep-
resenting the Ajax request and an object with configurations related to the request. The
event listeners for the ajaxSuccess() and ajaxError() methods also receive the
response data and the error object, respectively.

587

10 Simplifying Tasks with jQuery

10.4 Creating Ajax Requests

$(document)

.ajaxStart(() => {
console.log('Request started."');

)

.ajaxSend((event, request, settings) => {
console.log('Request sent.');

19

.ajaxSuccess((event, request, settings, data) => {
console.log('Request completed successfully');

1))

.ajaxError((event, request, settings, error) => {
console.log('Error on request: ' + error);

3]

.ajaxComplete((event, request, settings) => {
console.log('Request completed.');

i)

.ajaxStop(() => {
console.log('All requests completed.');

1
Listing 10.27 Registering Different Event Listeners for Ajax Events

10.4.3 Loading HTML Data via Ajax

To load HTML data via Ajax, you can proceed as in Listing 10.28 and use the global
jQuery get() method. The important thing here is that you pass the value html to the
dataType property. You can then use html() in the corresponding callback function to
assign the response data directly to an element as HTML content.

'use strict';
$(document).ready(()
const login = $('#login');
const register = $('#register');
login.click((e) => {
e.preventDefault();
loadContent('login');
IOk
register.click((e) => {
e.preventDefault();
loadContent('register');
b;
D;

0 =1

function loadContent(name) {

$.get({

588

url: name + '.html',
dataType: 'html'
}).done((data) => {
$('#main-content').html(data);
bs
}

Listing 10.28 Loading HTML Data via Ajax

But this process is even easier with the load() method, as shown in Listing 10.29. You
can call this method directly on a jQuery object (or the selection of elements it rep-
resents). As arguments, you pass the URL from which the HTML data should be loaded
and optionally a callback function that will be called when the data has been success-
fully loaded.

function loadContent(name) {
$("#main-content").load(
name + '.html',
(
responseText,
textStatus,
jgqXHRObject
) = {
console.log("'HTML loaded');
}
)5
}

Listing 10.29 Alternative Loading of HTML Data via Ajax

Sending Additional Data with the Request

You can optionally insert another argument between the URL and the callback func-
tion—namely to define the data to be sent to the server with the request (in the form
of a string). This is useful, for example, if the server is to generate either this or that
response based on the data.

10.4.4 Loading XML Data via Ajax

To load XML data, use the get () method as shown in Listing 10.30, passing the xm1 value
for the dataType property. Within the callback function, the response data is then
directly available as XML or as a DOM tree. The best thing about this is that the jQuery
$() method can also use it—for example, to select all <artist> elements using the
find() method as shown in the listing, to iterate over these elements using each()

589

10 Simplifying Tasks with jQuery

(another helper method of jQuery, by the way), or to access the text content of the
<title> and <year> elements using text().

'use strict';
$(document).ready(() => {
$.get({
url: 'artists.xml',
dataType: 'xml'
}).done((data) => {
const table = initTable();
const artists = $(data).find('artist');
artists.each((index, artist) => {
const albums = $(artist).find('album');
albums.each((index, album) => {
const row = createRow(
artist.getAttribute('name'),
$(album).find('title").text(),
$(album).find('year").text()

)5
$(table).find('tbody").append(row);
bs
bs
$('#artists-container').append(table);
bs

1;
Listing 10.30 Loading XML Data via Ajax

10.4.5 Loading JSON Data via Ajax

We showed you how to load JSON data using jQuery at the beginning of Section 10.4.1
using the ajax() method. Listing 10.31 shows the equivalent example using the get()
method. You specify json as the value for the dataType property and can then access the
JSON data sent by the server in the callback function as usual.

'use strict’;
$(document).ready(() => {
$.get({
url: 'artists.json’,
dataType: 'json'
}).done((data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; i < artists.length; i++) {
const artist = artists[i];

590

10.4 Creating Ajax Requests

const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];
const row = createRow(
artist.name,
album.title,

album.year
)5
$(table).find('tbody").append(row);
}
}
$('#artists-container').append(table);
1

s
Listing 10.31 Loading JSON Data via Ajax

Alternatively, jQuery provides the getJSON() method, which further simplifies request-
ing JSON data (see Listing 10.32). As arguments, you pass this method the URL to be
requested and a callback function to access the JSON data sent by the server.

'use strict';
$(document).ready(() => {
$.getISON(
'artists.json’,
(
data,
textStatus,
jgXHRObject
) = {
// here is the already known content
}
)5
b
Listing 10.32 Alternative Loading of JSON Data via Ajax

Sending Additional Data with the Request

As you saw with the load() method, you can optionally specify one more argument
between the URL and the callback function to define those data that should be sent to
the server with the request.

591

10 Simplifying Tasks with jQuery

10.5 Summary

In this chapter, you learned about the popular jQuery JavaScript library, which simpli-
fies many things, especially with regard to DOM manipulation, event handling, and
creating Ajax requests. The following list summarizes the most important aspects:

® jQuery is a library that mainly hides browser-specific details and provides helper
methods for recurring tasks that can be used across browsers.
® The linchpin for working with jQuery is the jQuery() or $() method.

® Among other things, you can pass a selector, an existing element, or an HTML string
as an argument to this method.

® Asareturn value, the method provides a wrapper object (jQuery object) that extends
the corresponding elements by additional methods (jQuery methods).

® Thus, a jQuery object provides various methods for working with the DOM, includ-
ing the following:
— Methods to access the content of elements
— Methods to filter selected elements
— Methods to access attributes
— Methods to access CSS properties
— Methods to navigate between elements
— Methods to animate elements or their CSS properties

® For working with events, jQuery provides several methods to register event listen-
ers, including the following:

— Methods to register event listeners for general events
— Methods to register event listeners for mouse events

— Methods to register event listeners for keyboard events
— Methods to register event listeners for form events

® Creating Ajax requests is also made easier by a number of helper methods, including
the following:

— A method to create arbitrary Ajax requests

— A method to create GET requests

— A method to create POST requests

— A method to load HTML content directly into an element via Ajax
— A method to load JavaScript files

— A method to load JSON files

® Most helper methods can be used for various purposes; for example, HTML attri-
butes can be both read and written via the attr () method, CSS properties can be read
and written via the css() method, and event listeners can be registered or removed
again via the event methods.

592

10.5 Summary

Finally, Table 10.27 compares how different problems can be handled with jQuery and
with pure JavaScript. For more examples, we recommend looking at the http://you-

mightnotneedjquery.com website mentioned earlier. There you can see very nicely how
the code of both variants is about equally compact, especially in the DOM manipula-

tion area. When working with events and with Ajax, the code is still a bit more compact

with jQuery. In all cases, however, it’s true that jQuery is largely browser-independent,
while this doesn’t always apply to the pure JavaScript variants.

Working with the DOM

Add CSS class

Access child elements

Iterate over elements

jQuery:
$(element).addClass(
newClassName

)
Pure JavaScript:

if (element.classlist) {
element.classlList.add(newClassName);

} else {
element.className +=

}
jQuery:
$(element).children();

[T

+ newClassName;

Pure JavaScript:

element.children

jQuery:

$(selector).each(
(index, element) => {
}

)

Pure JavaScript:

const elements = document.querySelectorAll(
selector

)

Array.prototype.forEach.call(
elements, (element, index) => {
}

)

Table 10.27 Comparison between jQuery and Pure JavaScript

593

10 Simplifying Tasks with jQuery

10.5 Summary

Search elements below
an element

Search elements

Access attributes

Read HTML content

Write HTML content

Read text content

jQuery:
$(element).find(
selector

)
Pure JavaScript:

element.querySelectorAll(
selector

);

jQuery:

$(selector);

Pure JavaScript:

document. querySelectorAll(selector);
jQuery:
$(element).attr(name);

Pure JavaScript:
element.getAttribute(name);
jQuery:

$(element).html();

Pure JavaScript:
element.innerHTML;

jQuery:
$(element).html(content);
Pure JavaScript:
element.innerHTML = content;
jQuery:

$(element).text();

Pure JavaScript:

element.textContent;

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)

594

Write text content

Next element

Previous element

Working with events

Add event listener

Remove event listener

jQuery:
$(element).text(content);

Pure JavaScript:

element.textContent = content;

jQuery:
$(element).next();

Pure JavaScript:

element.nextElementSibling;

jQuery:
$(element).prev();

Pure JavaScript:

element.previoustlementSibling;

jQuery:

$(element).on(
eventName,
eventHandler

)
Pure JavaScript:

element.addEventListener(
eventName,
eventHandler

i

jQuery:

$(element).off(
eventName,
eventHandler

)
Pure JavaScript:

element.removeEventlistener(
eventName,
eventHandler

i

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)

595

10 Simplifying Tasks with jQuery

Execute function when jQuery:
loading the document $(d0cument).ready(() = {

s

Pure JavaScript:

function ready(callback) {
if (document.readyState != 'loading'){
callback();
} else {
document.addEventListener(
'DOMContentLoaded’,

callback
)
}
}
Working with Ajax requests
Send GET request jQuery:
$.ajax({
type: 'GET',
url: url,

success: response => {},
error: () => {}

};

Pure JavaScript:
fetch(url)

.then(response => {})
.catch(error => {});

Send POST request jQuery:
$.ajax({
type: 'POST',
url: url,
data: data
b

Pure JavaScript:

fetch('url', {
method: 'POST',
body: data,

1))

.then(response => {})

.catch(error => {});

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)

596

10.5 Summary

Load JSON via Ajax jQuery:
$.getISON(
'data.json’,

(data) => {}
)5

Pure JavaScript:

fetch('data.json")
.then(response => response.json())
.then(data => {})
.catch(error => {});

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)

597

Contents

Book Resources 25
Preface 27
1 Basics and Introduction 31
1.1 Programming Basics 31
111 Communicating with the Computer 32
11.2 Programming Languages 33
11.3 Tools for Program Design 40
1.2 Introduction to JavaScript 46
121 History 46
1.2.2 Fields of Application 47
1.3 Summary 53
2 Getting Started 55
2.1 Introduction to JavaScript and Web Development 55
211 The Relationship among HTML, CSS, and JavaScript ... 55
2.1.2 TheRight Tool for Development 59
2.2 Integrating JavaScript into a Web Page 64
2.21 Preparinga Suitable Folder Structure 64
2.2.2 CreatingaJavaScript File 65
223 Embedding aJavaScript File in an HTML File 66
2.2.4 DefiningJavaScript Directly within the HTML 69
225 Placement and Execution of the <script> Elementsccccccvveconecnecunnn. 70
2.2.6 Displaying the Source Code 74
2.3 Creating Output 76
231 Showing the Standard Dialog Window 76
23.2 Writing to the Console 78
233 Using Existing Ul Components 81
2.4 Summary 83

Contents

3 Language Core 85
3.1 Storing Values in Variables 85
311 Defining Variables 85
3.1.2 UsingValid Variable Names 88
3.1.3 Defining Constantscecnecennecnnnee 94
3.2 Using the Different Data Types ... 94
3.21 Numbers 95
3.2.2 SHINES ottt e 98
3.23 Boolean Values ... 103
3.24 AITays s 104
3.25 Objects 109
3.2.6 Special Data Types 110
3.2.7 SYmMbOIS v 112
3.3 Deploying the Different Operators ... 112
3.3.1 Operators for Working with Numbers 114
3.3.2 Operators for Easier Assignment 115
3.3.3 Operators for Working with Strings 116
3.3.4 Operators for Working with Boolean Values 117
3.3.5 Operators for Working with Bits 124
3.3.6 Operators for Comparing Values 125
3.3.7 The Optional Chaining Operator 128
3.3.8 The Logical Assignment OPeratorscenecenecesecesneceeeeees 130
3.3.9 Operators for Special Operations .. 132
3.4 Controlling the Flow of a Program 132
3.41 Defining Conditional Statements 133
3.42 Defining Branchesccececnecenscesessisecssssennes 134
343 Using the Selection Operator 140
3.44 Defining Multiway Branches 142
3.45 Defining Counting Loops 148
3.4.6 Defining Head-Controlled Loopsccoucce.... 155
3.4.7 Defining Tail-Controlled Loops 158
348 Prematurely Terminating Loops and Loop Iterations ... 160
3.5 Creating Reusable Code Blocks 168
3.5.1 Defining FUNCLIONS ..covverveeceecireceieeriecrienreecresecnens 168
3.5.2 Calling Functions 171
3.5.3 Passing and Evaluating Function Parameters 172
3.54 Defining Return Values 180
3.5.5 Defining Default Values for Parameters ... 182
3.5.6 Using Elements from an Array as Parameters 184
3.5.7 Defining Functions Using Short Notation 185

Contents
3.5.8 Modifying Strings via Functions 188
3.59 Functions in Detail 189
3.5.10 Calling Functions through User Interactioncncnneconecnns 197
3.6 Responding to Errors and Handling Them Correctly 198
3.6.1 Syntax Errors ..., 198
3.6.2 Runtime Errors ... 199
3.6.3 LogicErrors 200
3.6.4 The Principle of Error Handlingc.ovccvceeernecrnneeineceneceineeseneceiseessecsenecees 201
3.6.5 Catchingand Handling Errorsccccceuunee. 202
3.6.6 Triggering Errors 205
3.6.7 Errors and the Function Call Stack . 208
3.6.8 Calling Certain Statements Regardless of Errors That
Have Occurred ... 210
3.7 Commenting the Source Code .. 216
3.8 Debugging the Code .. 216
3.8.1 Introduction .. 217
3.8.2 ASimple Code Example 217
3.8.3 Defining Breakpointscnceiecinecrisesisecsessessssesssecssssecssesssnesees 218
3.84 Viewing Variable Assignments 220
3.8.5 Runninga Program Step by Step 221
3.8.6 Defining Multiple Breakpoints ... 223
3.8.7 Other Types of BreaKpointsocmceneernecrnnecineceinseeineessseceisecssecssesees 223
3.8.8 Viewing the Function Call Stack 224
3.9 SUMMANY ..o 226
4 Working with Reference Types 229
4.1 Difference between Primitive Data Types and Reference Types 229
411 The Principle of Primitive Data Types 229
4.1.2 The Principle of Reference Types 230
4.13 Primitive Data Types and Reference Types as Function Arguments 232
4.1.4 Determining the Type of a Variable ..., 233
415 Outlook 236
4.2 Encapsulating State and Behavior in Objects .. 236
421 Introduction to Object-Oriented Programming 236
422 Creating Objects Using Literal Notation 237
423 Creating Objects via Constructor FUNCLIONSoovceecenecemecenecinscriecinees 239
424 Creating Objects Using Classes 242
42,5 Creating Objects via the Object.create() Function 246
9

Contents

4.3

4.4

4.5

4.6

4.7

10

4.2.6 Accessing Properties and Calling Methods

4.2.7 Adding or Overwriting Object Properties and Object Methods
4.2.8 Deleting Object Properties and Object Methodsccccovceonecrnecennccrnees
429 Outputting Object Properties and Object Methods

4210 Using Symbols to Define Unique Object Properties

4.2.11 Preventing Changes to Objectscc...

Working With Arrays ...

431 Creating and INitializiNg Arrayscnceeeecsneceessessseesssessenees
43.2 Accessing Elements of an Arraynerenceeinseseessecsees
433 Adding Elements to an Array ...

4.3.4 Removing Elements from an Arraycconecencenne.

435 Copying Some of the Elements from an Arraycecnecennccnonees
436 SOMING AITAYS oot ssees
437 Using Arrays as a Stack ...,

4.3.8 Using Arrays as @ QUEUEccccooevrvercvecennenininienns

439 Finding Elements in Arrays

43.10 Copying Elements within an Array

4.3.11 Converting Arrays to Strings

Extracting Values from Arrays and Objects ...,
441 Extracting Values from AITaYscceeemecsecesssesmsessieessssessenees
442 Extracting Values from ODJECES ...
443 Extracting Values Within @ LOOP ...
444 Extracting Arguments of a Function

445 Copying Object Properties to Another Object ...
446 Copying Object Properties from Another Object

Working with Stringscccccccc...ce.

451 The Structure of a String

45.2 Determining the Length of a String

4.53 Searching Within @ STrNG ... sssessenees
454 Extracting Parts of a Stringcccceneceeeen.

USING MAPS ..o ssiees i sssees s ssessssssesssesens

4.6.1 Creating Maps ...

4.6.2 BaSiC OPEIAtiONS ..ottt esaesssesssesssesesssss e sssessseesssesssenens
4.6.3 Herating OVer Maps ... sseees
464 USiNg Weak MaPpscccvncrunceinenieeeiseseaesevseseineses

USING SES ..ot sree s ssese s eseens

471 Creating Sets ...

4.7.2 Basic Operations of Sets

473 Iterating over SEts ...

474 Using Weak Setscnnereeeinesineseisecinenns

249
256
260
262
265
267

270
270
273
274
279
282
284
287
288
290
292
293

294
294
298
302
303
304
305

306
306
307
308
310

314
314
315
317
319

321
321
321
323
324

Contents

4.8 Other Global ObJEcts ...t sse s eseseneenn 325
4.8.1 Working with Date and Time Informationcccooucceeue. 325

482 Performing Complex Calculationscenecencenernecrnecsisesnnees 328

4.8.3 Wrapper Objects for Primitive Data TYpescccromcceurneceemnncceiens 329

4.9 Working with Regular EXPressionsccrreiseemmeesesssesessssseens 329
49.1 Defining Regular EXpressions ... 330

49.2 Testing Characters against a Regular EXpressioncnecnees 330

4.9.3 USIiNg Character Classes ... crncreeiecsesseesesseesesssesssssesesssecsssenas 333

49.4 Limiting Beginning and ENdc.ccccounrninnecnnereneccnnerenne. 336

495 USiNg QUANTIFIEIS w.oueeececeecceiecreceieececeeesneeessse s sasessanes 339

4.9.6 Searching for OCCUITENCESc.vuerneceirnierecrieeeeesssecsisesssssesssessiseessaessenees 343

49.7 Searching All Occurrences within a String 344

49.8 Accessing Individual Parts of an Occurrence . 345

499 Searching for SPeCific STHNGSccouvvvrererrecinecreceirecereceserisesriseesisensenees 346
4.9.10 Replacing Occurrences Within @ StriNg ... 347

4911 Searching for OCCUITENCESoccwurreeceeeinereeeeeseaseesesseesesssesssssesessseesssenas 347
4.9.12 SPIItEING STHNGS ..o 348

4.10 Functions as Reference TYPEeSorceeemnnnneeesennneseessessnseeenes 349
4.10.1 Using FUNctions as ArGUMENTSociirnerenermeriesesseieniensesssessssesssenens 349

4.10.2 Using Functions as RetUrN ValUEs ... 351

4.10.3 Standard Methods of Each FUNCHION ... 353

.11 SUMMALY ..o soss s 356
5 Dynamically Changing Web Pages 357
5.1 Structure of a Web Pageccrririnnnecrinnecsssriensesesssiessesssssssnessssssasnens 357
511 Document ODJECt MOTELccrucireieciseesieeieeeiseeeiseeessecessseessesssesees 357

51.2 The Different Types of NOAESc.cinerinneiinerinereiseceseseseeeessesesesees 358

513 The Document NOGEiiicecciimesessesesssesssssessesssssssesssenes 361

5.2 Selecting EIements ... seesiessesssesiessessssssssesssssasnsssssssasnnens 363
521 Selecting EIemMeNnts DY IDcconceueerceineernecrieesineesissesssseesssecessecssesssnesees 364

522 Selecting Elements by Classcurncnncincrinneeineceeseseeeeeesseseeesees 367

5.2.3 Selecting Elements by Element Name 370

524 Selecting Elements by NAmMeccnecrnncmnecrnseeieesisecsieessessenecees 371

5.2.5 Selecting Elements by SElIeCtOrc.ovcceeernecrnreeineceeceisecineceieeciseciorecees 373

52.6 Selecting the Parent Element of an Element 378

5.2.7 Selecting the Child Elements of an Element ... 381

5.2.8 Selecting the Sibling Elements of an Element 385

5.2.9 Calling Selection Methods on Elementsccoeneceneceneeceneceonecens 387

n

Contents

Contents

5.2.10 Selecting Elements by Type 389
5.3 Working with Text Nodes 390
53.1 Accessing the Text Content of an Element 391
5.3.2 Modifying the Text Content of an Element 391
5.3.3 Modifying the HTML below an Element 392
53.4 Creating and Adding Text Nodes 393
5.4 Working with Elements ... 394
5.4.1 Creating and Adding Elements 394
5.4.2 Removing Elements and NOAESccoencrnneeineceinseeinecineceiecssecesesees 397
54.3 The Different Types of HTML Elements 398
5.5 Working with Attributes 403
5.5.1 Readingthe Value of an Attribute 403
5.5.2 Changingthe Value of an Attribute or Adding a New Attribute 405
5.5.3 Creating and Adding Attribute Nodes 406
5.5.4 Removing Attributes 406
5.5.5 Accessing CSS classes 406
5.6 SUMMAIY ..o 408
6 Processing and Triggering Events 409
6.1 The Concept of Event-Driven Programming 409
6.2 Responding to Events 410
6.2.1 Defining an Event Handler via HTML. 412
6.2.2 Defining an Event Handler via JavaScript .. 415
6.2.3 Defining EVENt LISTENEIS ..o sssseesesessesesesens 417
6.2.4 Defining Multiple Event Listeners 418
6.2.5 Passing Arguments to Event Listeners 420
6.2.6 Removing Event Listeners 422
6.2.7 Defining Event Handlers and Event Listeners via a Helper Function ... 423
6.2.8 Accessing Information of an Eventc.cccoocinccinnccinnn. 424
6.3 The Different Types of Events 426
6.3.1 Events when Interacting with the Mouse .. 427
6.3.2 Events when Interacting with the Keyboard and with Text Fields 431
6.3.3 Events when Working with Forms 434
6.3.4 Events when Focusing Elements 435
6.3.5 General Events of the User Interface 435
6.3.6 Events on Mobile Devicesrnncceneecens 438

12

6.4 Understanding and Influencing the Flow of Events 439
6.41 The Event Phases ... 439
6.4.2 Interrupting the EVeNnt FIOW ... 447
6.4.3 Preventing Default Actions of Eventsccoconcroncrennn. 452
6.5 Programmatically Triggering Events 454
6.5.1 Triggering Simple Events 454
6.5.2 Triggering Events with Passed Argumentsccoccneceee. 455
6.5.3 Triggering Default Events 456
6.6 Summary 456
7 Working with Forms 459
7.1 Accessing Forms and Form Fields ... 459
711 ACCESSING FOIMS .ouierririericereeienieniesnesereseseesesessasees 459
7.1.2 Accessing Form Elements 463
7.1.3 Readingthe Value of Text Fields and Password Fieldsccccccooueeeeue. 465
7.1.4 Readingthe Value of Checkboxes .. 467
7.1.5 Readingthe Value of Radio Buttons 467
7.1.6 Readingthe Value of Selection Lists 469
7.1.7 Readingthe Values of Multiple Selection Lists 470
7.1.8 Populating Selection Lists with Values Using JavaScriptccccccouueuuen. 471
7.2 Programmatically Submitting and Resetting Forms 472
7.3 Validating FOrm INPULSccocoooiriincrcrinnccrerienecesssiessesessssseesesssasnessesssesnensens 475
T4 SUMMATY ...t 485
8 Controlling Browsers and Reading Browser
Information 487
8.1 The Browser Object Model 487
8.2 Accessing Window Information 489
821 Determining the Size and Position of a Browser Window 489
8.2.2 Changing the Size and Position of a Browser Windowcccccouueceee. 490
8.2.3 Accessing Display Information of the Browser Barscoccovecnecenecennn. 492
8.2.4 Determining General Properties 493
8.2.5 Opening New Browser Windows ... 494
8.2.6 Closing the Browser Windowccccccu.... 495
13

Contents Contents

8.2.7 OPENING DIalOZS ..ottt ssese s s eaesenens 496 9.4.4 Loading JSON Data Via AJaXrecnerineciscsiaecneecnnes 543
8.2.8 Executing Functions in a Time-Controlled Manner ... 497 9.45 Sending Data to the Server via AjaX ..o 545
8.3 Accessing Navigation Information of a Currently Open Web Page 499 946 Submitting DOMMS Via AJaX oo >46
83.1 Accessing the Individual Components of the URLccoccnecenecrnecrnecennn. 499 9.4.7 Loading Data from Other Domains >47
8.3.2 Accessing Query String Parameters ... 500 948 The Newer Alternative to XMLHttpRequest: The Fetch API >>0
8.3.3 Loading a New Web Page ... 500 9.5 SUMMAIY ..o 554
8.4 Viewing and Modifying the Browsing Historyooccnnnnccenenns 502
8.41 Navigating in the Browsing History 502
8.4.2 Browsing History for Single-Page Applicationscoomercenneeeennnceens 503 10 S|mp||fy|ng Tasks with jQuery 555
8.4.3 Adding Entries to the Browsing History 503
8.4.4 Respor?ding to Changesin the Browsing I.—Iistor.y >06 L10.1 INErOAUCLION ... ssssaesesssis st sssas s sssesneseens 555
845 Replacing the Current Entry in the Browsing HISTOry .. >06 1011 EMDEAING JQUTY oottt 556
8.5 Recognizing Browsers and Determining Browser Features ... 508 10.1.2 Embedding jQuery via a Content Delivery Network ... 557
8.6 Accessing SCreen INFOrmationeeeersersesssessesseesen 510 1013 USING JQUETY wocovvvivssivsiessssissississssississssnis 558
10.1.4 Simplifying Tasks With JQUENYccccoincrirersreceseceeeseseeeseceeseeesenes 559
8.7 SUMMATY ...t ss s sss s 511
10.2 Working With the DOMcc.conccrinnceesssonesesssinsessesssessessssssesseseens 560
10.2.1 Selecting Elements ... 561
. . 10.2.2 Accessing and Modifying Content 566
9 Dynamlca"y Reloadmg Contents of a Web Page 513 10.2.3 Filtering Selected EI@MENTSccccociricceercreceeeccesesceeseceeseeesenes 569
10.2.4 ACCESSING ALLIDULES ..ottt cssesseeseen 571
9.1 The PrinCiple Of AJAX ... cessisesesessessessssssssssssssssssssssssseens 513 10.2.5 ACCeSSING CSS PrOPEItIESccvuereeeveeerecrmeeeseesseeseessssseenesssenes . 572
9.11 Synchronous Communication ... 513 10.2.6 Navigating between Elements 573
9.1.2 Asynchronous Communication 514 10.2.7 Using Effects and ANimMationscoccnercennccceoneccenn. 575
9.13 Typical Use Cases for Ajax >16 10.3 ReSPONING tO EVENLSc..oocoooooooeeceeeeecssecssesssesssoessssssses s 576
9.1.4 Data Formats Usedcnrmrnnrcnnecenenes 518 103.1 Registering Event Listeners 577
9.2 The XML FOIMALoomcccicrimmiininececeesesmsssssssesssessssssesssnsssessee 519 10.3.2 Respondingto General Events 578
921 The Structure 0f XML ...ccnccenecencceeceiecessenneecsisessenecsesessssseesesessessesens 519 10.3.3 Responding to MouUSe EVENTScc.cnrrnecrerinecrieseieesesecsiseessessesesees 579
9.22 XML aNd the DOM APLiecienscceisesceisecssieses s sesassesssesessssssesssseessenes 521 10.3.4 Responding to Keyboard EVENTSc..correeneceeeseceeeeseesmecceseeesenes 581
9.23 Converting Strings to XML Objects 522 10.3.5 Responding to FOrm EVENtsiccinncnccininnseniinns . 581
9.24 Converting XML Objects to Strings 523 10.3.6 Accessing Information from Events 582
9.3 TheJSON FOrmat ...t 524 10.4 Creating AjJaXx REQUESTScooovriemcencneceriserceieeseiesssceseeseseseeens . 584
9.3.1 The Structure Of JSONccemnereeesecemeseseeseseesesssesssssesessssessssesensenes 524 10.4.1 Creating Ajax REQUESTS ... 584
9.3.2 Difference between JSON and JavaScript Objectsccccoucrmncricnncceen. 526 10.4.2 Responding to EVENTSiccrreeceesecceieeeceeieseeasessessessesssecssseseesenes 587
9.3.3 Converting Objects to JSON Format 527 10.4.3 Loading HTML Data Via AJaX ... ssisssssssssssssssssssssesones 588
9.3.4 Converting Objects from JSON Format 528 10.4.4 Loading XML Data via Ajax 589
9.4 Making ReqUESTS Vid AJAXcccooccweuuomcrrrminncreeiineeseesiissesssessesnesssssesssessssssessnecsssseens 529 1045 10ading JSON Data Via AJaX v >90
9.41 The XMLHttpReqUEest ODJeCtcooicreereceiirecceereeseeescceeeseseeesecesseensenes 529 JO.5 SUMMAIY ..ot 592
9.42 Loading HTML Data Via AJaXcrreecninceemscsieesssesmssessssesssssesens 535
9.43 Loading XML Data via AjaXcccevoneruunenens 539

14 15

Contents

11 Dynamically Creating Images and Graphics 599
11.1 Drawing IMAGESccooocvwwwwummmecrrerveemmmmasnsesceesessmsssssssssssesssssssssssssnsseesee 599
1111 The DraWing Acereeeceeeriesiaeeessesiasessasssssssessssesesassssssesssssssssessssesees 599
11.1.2 The Rendering CONTEXLE ...crrrrereecriecriecrieniiecseessiseesesecsisssssessesesees 600
11.1.3 Drawing RECLANEGIES ...t ssiecsisssisseesssecssseessessssesses 602
1114 USING PALNS oot sssasesessse s sesses s seseeesenan 604
11.1.5 Drawing Texts ... 610
11.1.6 Drawing Gradi@ntscccrecinecrieerisecsieessecsesessissessecsssesssnessenecses 611
11.1.7 Saving and Restoring the Canvas State 613
11.1.8 Using Transformationscccecceemnecees 615
11.1.9 Creating Animations 618
11.2 Integrating Vector Graphicscrcneceneceenecenens 620
1121 The SVG FOIMAT ..o ceissecesesesessssesessssessesssescesssesseseseesenes 620
11.2.2 Integrating SVG in HTML ..o . 621
11.2.3 Changingthe Appearance of SVG Elements with CSS ... 624
11.2.4 Manipulating the Behavior of SVG Elements via JavaScript 625
113 SUMMALTY .oooiiiecceieceeeeceseseseessessessseseseseesesssesesssseseesese s sssse s cess s sese s sensanes 627
12 Using Modern Web APIs 629
12.1 Communicating via JavaScript ... 631
12.1.1 Unidirectional Communication with the Server 631
12.1.2 Bidirectional Communication with a Serverccccooueevueunce. 633
12.1.3 Outgoing Communication from the Server ... 635
12.2 ReCOGNIZING USEISooocovvovecerrericcsiniineecesssisesesssisessesssasessssssesns 639
1221 USING COOKIS ..oueouieerieeriemecieeeieeceeseniasecsassensasessasesnens 639
1222 Creating CoOKIES ... crcnceiereceisesrieesiee s ssesessssssssessesesses 641
12.2.3 REAAING COOKIS ..coumvemriireireciiceieriiecriecsiaeesieesisesssaseesessesisssesssesssssssssesssnesees 642
12.2.4 Example: Shopping Cart Based on Cookiesccccccc..... 644
12.2.5 Disadvantages of Cooki€scccouermerunucruane. 647
12.3 Using the Browser Storageocccoomreonmnceeennnnneceennnnseeesseee 647
12.3.1 Storing Values in the Browser Storage 648
12.3.2 Reading Values from the Browser StOrageommconecennecennecenecens 649
12.3.3 Updating Values in the Browser Storage 649
12.3.4 Deleting Values from the Browser Storage 650
12.3.5 Respondingto Changes in the Browser Storage 650
12.3.6 The Different Types of Browser STOragecocneneceneceneecenecenecens 651
123.7 Example: Shopping Cart Based on the Browser Storagecccouevuenuece. 653

16

Contents

12.4 Using the Browser Database ..., 654
1241 Opening a Database ... cciecinecrieeeiessiessiseeseessassesssessesesees 655

12,42 Creating @ Databasecceciecsieceieesiessisssesssecssseessesseesees 656

12.4.3 Creating an ObjJect STOre ... seeseceeseeeseeas 657

12.4.4 Adding Objects to an Object SLOrerneenecinecseeceseceerecens 657

12.45 Reading Objects from an Object Store 661

12.4.6 Deleting Objects from an Object STOre ... 661

12.47 Updating Objects in an Object StOreccicncronerinnccennen, 663

12.4.8 Usinga Cursor ... 664

12.5 Accessing the File System ... esceeesseenns 665
12.5.1 Selecting Files via File DIialogc.ccouueereernecrineriecrinseeieeseneceisecssecsenecees 666

12.5.2 Selecting Files via Drag and Dropcc.occeeeenneceeunecsesssessessecssseseseees 667

12,53 ReAdING FIleS ..o 668

12.54 Monitoring the Reading Progress 671

12.6 Moving Components of @ Web Page ... 673
12.6.1 Events of a Drag-and-Drop Operation 673

12.6.2 Defining Movable Elements ... cnneceenecseeseecsseeesenes 674

12.6.3 MovingElements 676

12.7 Parallelizing TASKScoooccrieeceiececeieeceeeeneseseeseeesseseeesssesssens 678
12.7.1 The Principle of Web WOTKEISccccvceeirrecrieeeinecrineceineesiseceiseessecserecees 679

12.7.2 USE WED WOIKEIScccoooereeceeiiccceiieeceiieeseeseesseasesesssessesssessesssessesasecsssesseseses 680

12.8 Determining the Location of Users ... 682
12.8.1 Accessing Location Information ..., 682

12.8.2 Continuously Accessing Location Information ... 684

12.8.3 Showing the POSition 0N @ Mapccccrnecrinneeineceieeeiseesssecessseessesssesees 685

12.8.4 Showing Directionsrncnscrinceineeenns 686

12.9 Reading the Battery Level of an End Device ..., 688

12.10 Outputting Speech and Recognizing Speech

12.9.1 Accessing Battery Information ...
12.9.2 ReSPONAING 1O EVENTS ..ot siseesiesessseesssecssssessessseseen

12.10.1 Outputting Speech ...
12.10.2 RECOGNIZING SPEECK ..ottt st ssssessssssssessesessen

12.11 Creating ANIMAtioNsoriccrenecreiiecesssieesessssseesesssassessssssesnessens

12101 USING TNE AP .ottt sisessiseesisesssseessses st sssssssesssneseon
12.11.2 Controlling an ANiMation ... ceeeseesseseoesees

12.12 Working with the Command Lineocccccoomcrirrrmisnneccceceeemsensssssseees

12.12.1 Selecting and Inspecting DOM Elements
12.12.2 EVENES ANIYSIS weevireeiciieeieciireceisesiieceieesisesseseesisseseeeseesssseesssessssssssnesssnessen
12.12.3 Debugging, Monitoring, and Profiling ...

17

Contents

12.13 Developing Multilingual Applications 708
12.13.1 Explanation of Terms 709
12.13.2 The Internationalization APIccccoucrionncceenen. 710
12.13.3 Comparing Character String Expressions .. 712
12.13.4 Formatting Dates and Times 714
12.13.5 Formatting Numeric Values 717

12.14 Overview of Various Web APIscocmcrrcomcreemioneesecsiennene 720

J2.15 SUMMATY ..ot 724

13 Object-Oriented Programming 725

13.1 The Principles of Object-Oriented Programming 725
13.1.1 Classes, Object Instances, and Prototypes 726
13.1.2 Principle 1: Define Abstract Behavior 728
13.1.3 Principle 2: Encapsulate Condition and BEhaViorcoenecennecnnecenecees 728
13.1.4 Principle 3: Inherit Condition and Behavior 729
13.1.5 Principle 4: Accept Different Types 731
13.1.6 JavaScript and Object Orientation 731

13.2 Prototypical Object Orientation 732
13.2.1 The Concept of Prototypes 732
13.2.2 Deriving from Objects 733
13.2.3 Inheriting Methods and Properties 733
13.2.4 Defining Methods and Properties in the Inheriting Object 734
13.2.5 Overwriting Methods 735
13.2.6 The Prototype Chain 736
13.2.7 Calling Methods of the Prototype 737
13.2.8 Prototypical Object Orientation and the Principles of

Object Orientation ... 738

13.3 Pseudoclassical Object Orientation .. 739
13.3.1 Defining Constructor Functions 739
13.3.2 Creating Object Instances 739
13.3.3 Defining Methodscoicrieincrenrccreineeceineceeiseeseeesseseisseeees 740
13.3.4 Deriving from Objects 740
13.3.5 Calling the Constructor of the "Superclass' 744
13.3.6 Overwriting Methods 744
13.3.7 Calling Methods of the "Superclass" 745
13.3.8 Pseudoclassical Object Orientation and the Principles of

Object Orientation 745

18

Contents

13.4 Object Orientation with Class Syntax .. 745
13.41 Defining Classes 746

13.4.2 Creating Object INSTANCESc.cvvverererecenceiscerireceieerieceieseiseeeieees 748

13.4.3 Defining Getters and Setters 748

13.4.4 Defining Private Properties and Private Methods 750

13.45 Deriving from "Classes" 753

13.4.6 OVErwriting MethOds ... sieesisessisseesssecsssseesssessseseen 757

13.4.7 Calling Methods of the "Superclass” 759
13.4.8 Defining Static Methods 760

13.49 Defining Static Properties .. 762
13.4.10 Class Syntax and the Principles of Object Orientation ... 763

13.5 SUMMArY ..., 764
14 Functional Programming 765
14.1 Principles of Functional Programming 765
14.2 Imperative Programming and Functional Programming ..., 767
14.2.1 Iterating with the forEach() Method 767
14.2.2 Mapping Values with the map() Method 770

14.2.3 Filtering Values with the filter() Method 771

14.2.4 Reducing Multiple Values to One Value with the reduce() Method 773
1425 Combination of the Different Methods 775

14.3 SUMMANY ... 776
15 Correctly Structuring the Source Code 779
15.1 Avoiding Name Conflicts 779
15.2 Defining and Using Modules 783
15.2.1 The Module Design Pattern 783

15.2.2 The Revealing Module Design Pattern 786

1523 AMD .. 791

1524 CommonlS 792

15.2.5 Native Modules 794

15.3 SUMMANY ...oooiicccceeeceeeeseseeseeseeeseseessesseesesasesees 797

19

Contents

16 Using Asynchronous Programming and

Other Advanced Features 799
16.1 Understanding and Using Asynchronous Programming ... 799
16.1.1 Usingthe Callback Design Pattern 800
16.1.2 Using Promises .. 804
16.1.3 Using Async Functions 813
16.2 Encapsulating Iteration over Data Structures 816
16.2.1 The Principle of Iterators 816
16.2.2 Using Iterators 817
16.2.3 Creating Your Own Iterator 817
16.2.4 Creatingan Iterable Object 819
16.2.5 Iterating over Iterable Objects 820
16.3 Pausing and Resuming Functions 820
16.3.1 Creating a Generator Function 821
16.3.2 Creating a Generatorncrncenecereenens 821
16.3.3 lIterating over Generators 822
16.3.4 Creating Infinite Generators 822
16.3.5 Controlling Generators with Parameters 823
16.4 Intercepting Access to Objects ..., 824
16.4.1 The PrinCiple Of PrOXIESovcccemerinecriseeieeriseesieesiseesisseessseesssessssecssesssnesees 824
16.4.2 Creating Proxies 825
16.4.3 Defining Handlers for Proxies 825
16.5 SUMMACY ... 829
17 Creating Server-Based Applications with Node.js s31
17.1 Introduction to Node.js 831
17.1.1 The Architecture of Node.js 831
17.1.2 Installing Node.js ... 833
17.1.3 ASimple Application 833
17.2 Managing Node.js Packages 834
17.2.1 Installing the Node.js Package Manager 834
17.2.2 Installing Packages 835
17.2.3 Creating Your Own Packages 838
17.3 Processing and Triggering EVents ... nncrsnensessiesnseneens 841
17.3.1 Triggering and Intercepting an Event 841
17.3.2 Triggering an Event Multiple Times 844

20

Contents

17.3.3 Intercepting an Event Exactly Once 844

17.3.4 Intercepting an Event Multiple Times 845

17.4 Accessing the File System ..., 846
17.41 ReAdING FIleS w.coiierecerecirecerecereceieceirecriesreseeseeceees 846

17.4.2 Writing Files 847

17.43 Reading File Information 848

17.44 Deleting Files 849

17.45 Working With DireCtoriesccnecnecenecenerinecrrecriennes 849

17.5 Creating a Web Server 851
17.51 Startinga Web Server 851

17.5.2 Making Files Available via Web Server 852

17.5.3 Creatinga Client for a Web Server 853

17.54 DefiNiNG ROULES ...oveeieecieceieceeiseciiseeieeriseesieessseesises s essses s esssesssseseen 853

17.5.5 Usingthe Express.js Web Framework 854

17.6 Accessing Databases 859
17.6.1 MongoDB Installation 859

17.6.2 Installing a MongoDB Driver for Node.js 860

17.6.3 Establishing a Connection to the Database 860

17.6.4 Creatinga Collection 861

17.6.5 Saving Objects ... 862

17.6.6 Reading Objects ... 862

17.6.7 Updating Objects 865

17.6.8 Deleting Objects 865

17.7 Working with Streams 866
17.7.1 Introduction and Types of Streamsc.occonececneecinneceineces 866

17.7.2 Stream Use Cases 867

17.7.3 Reading Data with Streams 868

17.7.4 Writing Data with Streams 869

17.7.5 Combining Streams Using Piping 870
17.7.6 Error Handling during Piping 873

17.8 Summary 874
18 Creating Mobile Applications with JavaScript 877
18.1 The Different Types of Mobile Applications ... 877
18.1.1 Native APPlICAtIONS ...ceeiceeceecrccieceinceieeriseceieesieesisssssseesieees 877

18.1.2 Mobile Web Applications 878

18.1.3 Hybrid Applications 879

18.1.4 Comparison of the Different Approaches .. 881

21

Contents

18.2 Creating Mobile Applications with React Native 883
18.2.1 The Principle of React Native . 883
18.2.2 Installation and Project Initialization ..., 883
18.2.3 Starting the Application 884
18.2.4 The Basic Structure of a React Native Application 887
18.2.5 Using Ul Components 889
18.2.6 Communication with the Server ... 894
18.2.7 Building and Publishing Applications 895
18.3 Summary 895
19 Desktop Applications with JavaScript 897
191 NWS ccincecreiereenesssasnensesssesss 898
19.1.1 Installing and Creating an Applicationcnneenecrneceinneeenne 899
19.1.2 Starting the Application 900
19.1.3 Packaging of the Application 901
19.1.4 More Sample Applications 902
19.2 Electron 903
19.2.1 |Installing and Creating an Application .. 904
19.2.2 Starting the Application 906
19.2.3 Packaging 906
19.2.4 More Sample Applications 907
19.3 SUMMArY ..., 908
20 Controlling Microcontrollers with JavaScript 909
20.1 Espruino 910
20.1.1 Technical Information 910
20.1.2 Connection and Installation ... 911
20.1.3 First Example 911
20.1.4 Controlling LEDs 912
20.1.5 More Modules 914
20.1.6 REAAING SENSOIS ..oueveurrercricrirreirecrieseissecssesesecsassensenes 915
20.2 Tessel 916
20.2.1 Technical Information 916
20.2.2 Connection and Installation .. 917

22

Contents

20.2.3 Controlling LEDs 917
20.2.4 Programming the Push Buttons 919

20.2.5 Extendingthe Tessel with Modules 920

20.3 BeagleBone BIAcKcrimioncerniinneeeesiinseesessissnessesssesnen 921
20.3.1 Technical Information ... 921
20.3.2 Connection and Installation 922

20.3.3 Controlling LEDs 923

2008 ATAUINO ...t sssiesessessesseessessas st ssssas s sssss et sssassessssssssneseens 924
20.4.1 The Firmata Protocol ... seessesssssesessssecssseseesenes 924

20.4.2 Connection and Installation 925

20.4.3 ThelJohnny Five Node.js Module 925

20,5 CYIONLJS ..ot sssiesessessesseessesses s ssssas s sssas e 927
20.5.1 Controlling the BeagleBone Black with Cylon.js 927

20.5.2 Controlling the Tessel Board with Cylon.js 928

20.5.3 Controlling an Arduino with Cylon.js 928

20.6 SUMMAIYoccomircirrccrcerneereneceiesesnecsieees 929
21 Establishing a Professional Development Process 931
21.1 Automating Tasks 931
21.1.1 Automating Tasks with Grunt 931
21.1.2 Automating Tasks with Gulp 935

21.2 Automated Testing of Source Code 936
21.2.1 The Principle of Automated Tests 936

21.2.2 The Principle of Test-Driven Development 937

21.2.3 Automated Testing of Source Code with QUnit 939

21.2.4 Automated Testing of Source Code with mocha 945

21.3 Source Code Version Managementermsesmmensesmieneseens 949
21.3.1 Introduction to Version Management 949

21.3.2 Installing and Configuring the Git Version Control System 953
21.3.3 Creating a New Local Repository 954

21.3.4 Cloning an Existing Repository 954

21.3.5 Transferring Changes to the Staging Areacnecennecrneceineecenne 955
21.3.6 Transferring Changes to the Local Repository 956
21.3.7 The Different States in Git 957

21.3.8 Transfering Changes to the Remote Repository 958
21.3.9 Transferring Changes from the Remote Repositorycneeeenn. 959

23

Contents

21.3.10 Workingin a New Branch 960
21.3.11 Adopting Changes from a Branch 961
21.3.12 Overview of the Most Important Commands and Termscccccoueveeen. 962
21.4 Summary 965
The Author 967
Index 969

24

Index

__proto__ 241,732
:invalid 477
:required 477
:valid 477
<canvas> 599
<noscript> 70
<script> 70
$0 558
A
Abstraction 725,728
ACCESS PrOPertyeeeceeeenienns 247,255,739
Accessing attributes 571
Accessing CSS properties ... 572
Accessor 729
Accessor method 729
Actuator 909
addEventListener() 417
Addition 114
Aggregation 726
Ajax 48,513,584
alert() 66, 76
Algorithm 32
AMD 791
Analyze events 704
AND operator 117
Android 51,877
Animation 696

AnimationEffectTiming ... 696

AnimationTimeline

cancel

pause

start

Anonymous function
Answer

App
appendChild()
Apple
Application

hybrid

native
application/ecmascriptceeceeeeesnnne 68
application/javascript 68
apply() 356
Arduino 924
Argument 172,173

Array 104, 270
access elements 273
add elements 274
convert to strings 293
copy elements 282,292
create 270
elements 104
entries 104
extract elements 294
find elements 290
index-based StrUCtUTEcoeceerremrremrrnnrens 106
initialize 270
multidimensional 106
remove elements 279
sort 284
use as queue 288
use as stack 287
values 104
Array destructuring 294
Array literal notation ... 104, 270, 271
Array.isArray() 235
Arrow function 186
Assembly language 33
Assertion 936
Assignment 0perator ... 86,115
Association 726
Async functions 72,813

Asynchronous JavaScript and XML 48,513

Asynchronous module definition 783
Asynchronous programming ... 799
Atom 60
attachEvent() 418
Attribute 109
Attribute node 360
Automatic builds 61
B
Backend 48
Bad practices 48
Battery Status API 688
BeagleBone Black 921
control LEDs 923
Behavior 726
Behavioral layer 58
Best practices 48
Bidirectional communicationcccccouueee. 631

969

Index

Binary buffer 868 C
Binary code 33
Binary Large Object 634 Cache 85
Binary notation 96 call() 355
Binary number 96 Callback 800
bind() 353 Callback design pattern ... 800
Blob 634, 665 Callback functionccenrvcvcenen. 769, 800
Blocking I/0 831 Callback handler 800
Boilerplate code 767 Callback hell 803
BOM API 487 CamelCase spelling 92
BoneScript 922 Canvas API
Boolean 103 2D rendering context .
Boolean value 103 3D rendering context
Bootstrap 462 drawing arcs and Circles ... 608
Branch 133,134,960 drawing area 599
break 160 drawing Bezier CUTVESccweecerneecerveeens 607
Breakpoint 218 drawing rectangles 602
conditional 223 drawing SqUQAre CUIVESceeeomeeeeeonees 607
DOM 224 drawing texts 610
event listener 224 rendering context 600
XHR 224 rotation 616
Browser scaling 615
address bar 493 translation 617
menu bar 493 using paths 604
personal bar 493 CanvasRenderingContext2D ... 601
recognize 508 Capturing phase 439
scrollbars 493 Cascading Style Sheets 51
status bar 493 catch 202
toolbar 493 Character class 333
Browser database 654 negation 333
Browser detection 509 predefined 334
Browser feature 508 range 333
Browser Object Model ... 487 simple class 333
Browser sniffing 509 Checkbox, read 467
Browser storage 647 checkValidity() 482
Browser window Chrome DevTools 78,217,361
change position 490 Class 242,726
close 495 defining 746
determine general properties 493 deriving 730
determine position 489 that inherits 730
determine size 489 Class body 243,746
open new 494 C(Class declaration 746
resize 490 Class diagram 236,726
Browsing history 502 Class expressions 747
replace current entry 506 Class that inherits 730
respond to changes 506 Class under test 936
state object 504 Class-based object orientation 727
Bubbling phase 439 Class-based programming language ... 727
Bug 200 Classless programmingcceeecnneceeeens 727
Build tool 931 classList 407
Bytecode 39 className 407
Client 513

970

Index
Client side 48 Convert string
Closure 783 to XML objects 522
Cloud9 IDE 922 Cookie 639, 641
CLR 38 CORS 549
Code, global 191 CouchDB 654
Collator 712 Counter variable 148
Collection 861 Counting loop 148
Column families 654 Coupling 726
Command line 699 Create object
Command Line API 700 classes 242
Debugging 704 CONSLIUCLOT fUNCLIONS ... 239
Monitoring 704 literal notation 237
Profiling 704 Object.create() 246
Comment 216 createAttribute() 403, 406
multi-line 216 createElement() 394
Common Language RUntimeccooeeecceeeeennnee 38 createTextNode() 393
Common]S 783,792 Creating AjaX requestscnecenennns 584
Communication Cross-origin request 547
asynchronous 514 proxy 548
bidirectional 631 Cross-Origin Resource Sharing ... 549
synchronous 513 CRUD 654
unidirectional 631 CSss 55
Comparing character string expressions ... 712 class 367
Compiler 35 CSs3 51
Component test 938 media queries 878
Composition 726 Cursor 664
Concatenation 116 CustomEvent 455
configurable 247 CVs 949
confirm() 76 Cylonjs 927
Confirmation dialog 76
Console 78,79 D
show in Chrome 78
show in Firefox 78 Data encapsulation 252,725,728,782
show in Opera 78 Data property 255,739
show in Safari 78 Data structure 358
const 94 Data type 94,95
Constant 94 primitive 94
define 94 special 110
Constraint Validation APIccovmcercennnns 478 Data URL 669
Constructor 748 Data, numeric 95
constructor 241 Database 654
Constructor function ... 239, 270,739 create 656
constructor() 243,747 document-orientedeeerveeeeeeenenns 859
Content delivery network ... 557 transaction 658
Content distribution networkcccceevveuuee.e. 557 Database schemacccovvevveveeeveeennnne 655,657
Content layer 58 Date 325
Content type 68 DateTimeFormat 714
Context object 192 Debuggingoeemerernneerenens 80, 216, 217,219
continue 160, 162 Decision point 43
Control character 100 Declarative 766
Control structure 133 Decrement operator 114
Default parameter 182
97

Index

Default value 182 DOM (Cont.)
Defensive programmingcceneeces 365 read attributes 403
defer 72 remove attributes 406
Define animations 695 Scripting 48
Define movable elementccvvvnnnnrvennens 674 tree 357
Delete 260 DOMContentLoaded 417
Deriving class 730 DOMParser 522
Design pattern 783 Dot notation 249
Desktop applications 897 Dragand Drop API ... 667,673
Destructuring 294 Drag source 673
Destructuring statementccccoccceveienecennn. 294 Drag-and-drop operation ... 673
Determine events 673
date 326 Drawing a BéZIer CUIVEcreecrmnneccrnnns 607
day of month 326 Drawing arcs and Circles ... 608
hour 326 Drawing area 599
minute 326 Drawing text 610
month 326 Drop target 673
seconds 326 DTID 519
the current month 325 Duplex streams 867
time 326 Dynamic HTML 48
weekday 326
year 326 E
Development environment 61
Development, test-driven 937 Easing function 575
Directory ECMAScript 46
create 849 Editor 59
delete 849 Eich, Brendan 46
list files 849 Electron 903
dispatchEvent() 454 installation 904
Diversity 731 packaging 906
Division 114 Element
Document 359 filter 569
Document database 654 getAttribute() 403
Document node 359,361 move 676
Document Object Model 357 navigate between 573
Document type definition 519 node 359
document.anchors 390 removeAttribute() 403
document.body 390 select 363,561
document.forms 390 select by class 367
document.head 390 select by element NAMEcceuuuecevreeen. 370
document.images 390 select by ID 364
document.links 390 select by name 371
DocumentTimeline 696 select by selector 373
DOM 357 setAttribute() 403
access CSS classes 406 Encapsulation 252,728
API 362 enumerable 247
change the value of an attribute 405 Error 203
create and add attribute nodes 406 catch and handle 202
event handler 411 logic 200
event listener 411 trigger 205
eXamine in bBrOWSereeeeeeeeeeeeessens 361 Error handling 201
manipulation 392 Escape character 99

972

Index
Escaping 99 Execution context 191
Espruino 52,910 global 191
control LEDs 912 Exponential Operator ... 114
HTTP client 914 export 794
HTTP server 914 Export object 785
read files 914 Extensible Markup Language 518,519
read sensors 915 Extension sub tags 710
Web IDE 911
write files 914 F
European Computer Manufacturers
Asssociation 46 False 103
eval() 191 Falsy 119
EvalError 203 Fat arrow function 186
Event 409 Feature detection ... 509, 602
access information of the event 424 Fetch API 550, 894
bind 410 File 665
bubbling 440, 441 delete 849
capturing 440, 445 read 846
emitter 409, 841 write 847
focus events 435 FileList 665
form events 434 FileReader 665, 668
intercept 841 filter() 771
keyboard events 431 finally 210
loop 409,832 find() 292,775
method 577 findIndex() 292
mobile devices 438 Firebug 79
mouse events 427 Firmata protocol 924
phase 439 First in, first out 288
prevent default actions. ... 452 firstChild 383
queue 409 First-class citizen 765
respond to events 410 First-class object 765
trigger 409, 454, 841 firstElementChild 383
trigger programmatically ..., 454 Flag 344
user interface events ... 435 Flowchart 41
Event flow 439 Flowchart notation 41
interrupt 447 Fluent API 581
Event handler 73,409 Focus event 435
define via HTML 412 FocusEvent 435
define via JavaScriptconeccenonn. 415 for loop 149
helper function 423 forEach() 351,767
Event listener 73 for-in loop 247,262,317
define 417 Form
define multiple 418 access to 459
helper function 423 element access 463
pass arguments 420 event 434,581
register 577 reset 472
remove 422 submit 472
every() 775 validate 475
Exception 201 Formatting dates and timesccccuveceeenne. 714
Exception Handling 201 Formatting numeric values ... 717
Executable machine code file ... 35 FormData 546
for-of loop 317
973

Index

Fragment identifier 499
Front end 48
Function 66,171
anonymous 169
borrowing 355
call 171
call stack 190
call with a parameter ... 172
call with multiple parameters. 174
closure 783
code 191
declaration 169
define 168
define with a parameter 172
define with multiple parameters 173
expression 169
methods 353
named 169
parameters 172
signature 173
variadic 178
Functional Programming ... 765

Functional programming
difference to imperative programming ... 767

filter values 771
iterate 767
language 765
map values 770
reduce multiple values to one value ... 773
G
Garbage collectionvcrceneens 319,324
General event 578
Generator 820
infinite 822
parameter 823
Geolocation 682
API 682
get 251
getElementByld() 364
getElementsByClassName() 367
getElementsByName() 372
getElementsByTagName() 370
Getter method ,785
Git 950
branch 965
checkout 965
clone 965
commit 965
fork 965
HEAD 965

974

Git (Cont.)
index 952, 965
local working copy 952
merge 965
pull 965
push 965
remote repository 965
repository 965
snapshot 951
staging area 952,965
WOTRING directorycceeonneceenn 952,965
workspace 965
Global jQuery method ... 585
Google Maps API 685
Gradient
linear 611
radial 611
Grammar 85
Graph database 654
Grunt 931
installing plug-ins 933
using plug-ins 933
Gruntfile.js 932
Gulp 935
gulpfile.js 935
H
Hashbang URL 503
Hello World example 64
Hexadecimal notation 96
Hexadecimal number 96
High-level programming language 33
Hint dialog 76
History 46,503
pushState() 504
replaceState() 504, 506
history 502
History API 503
HTML 55
HTML element 66, 398
HTML event handler 411
HTML5 app 878
HTMLS application 51
HTTP 513
HTTP protocol 639
HTTP request 513
HTTP response 513
Hybrid app 879
Hybrid application 879
Hypertext Transfer Protocol ... 513

Index
| iPad 877
iPhone 877
i18n 708 isSealed() 268
IDE 61 Iterable 820
if statement 133 Iteration 148
if-else-if-else branch 136 Iterator 317,816
Immediately Invoked Function
Expression (IIFE) 783 J
Imperative programming ... 766
Implementation 41,362 Java 46,877
import() 796 Java Runtime Environment (JRE)cccccooouueee. 38
Increment operator 114 JavaScript library 77
Indexed Database APIccovveveeneennnns 654 JavaScript Object Notationc..... 519,524
IndexedDB API 654 JIT 38
indexOf() 290,308 Johnny Five 52,925
Infinite loop 164 jQuery
Infinity 98 access attributes 571
Information hidingc.ccccomeeccnneccercnnees 728,782 access content 566
Inheritance 265,726,729 access CSS properties ... 572
innerHTML 392 Ajax 584
innerText 392 Ajax events 587
Input 43 attribute filter selectors 561, 563
Input and output basic filter selectors ... 561, 562
blocking 831 basic selectors 561
non-blocking 833 child filter selectors ... 561, 564
Input dialog 76 content filter selectors ... 561, 563
insertBefore() 394 embed 556
Instance 726 embed via a CDN 557
Interface 362 event methods 577
Interface element 50 event object 582
Intermediate language 35 filter elements 569
Internationalisierung form events 581
locales 709 Jform filter selectors ... 561, 564
sub tags 709 general events 578
Internationalization global jQuery methods ... 585
extension subtag 710 hierarchy selectors ... 562
language subtag 709 keyboard events 581
language tag 709 load HTML data via Ajax ... 588
region subtag 709 load JSON data via Ajax ... 590
script subtag 710 load XML data via Ajax ... 589
variant subtag 710 modify content 566
Internationalization (118n)ccceervemerrenes 708 mouse events 579
Internationalization API 710 navigate between elements 573
Internet media type 68 register event liStenercneceeees 577
Internet of Things (I0T) ccccvmeeeererveecnnneens 52,909 respond to events 576
Interpret 37 select elements 561
Interpreter 35 selected elements 559
Intl.Collator 711 selected nodes 559
Intl.DateTimeFormat 711 use effects 575
Intl.NumberFormat 711 visibility filter selectors ... 561, 563
Ionic 883 jQuery method 558
i0S 51 jQuery object 558
975

Index

Loop (Cont.)
nested 153
outer 153
tail-controlled 149, 158
terminate prematurelycnceeeen. 160
Loop body 149,155
Loose augmentation 790
Loose typing 95
lowerCamelCase NOtationccecernecenns 92
M

jQuery() 558
JRE 38
JSON 519,524,527
JSON format 524
JSON with padding 550
JSON.stringify() 527,528
JSONP 550
JSX 888
Jump label 165
Just-in-Time Compiler 38
K
Keyboard event 431,581
KeyboardEvent 431
KeyframeEffect 696
Key-value pair 314
Key-value stores 654
Keyword 88
Kotlin 877
L
Label 165
Language subtag 709
Language tag 709
lastChild 383
lastElementChild 383
lastIndexOf{() 308
let 85
Library 50
LIFO principle 287
Literal 113
Literal notation 237
LiveScript 46
Local browser storage 647
Locales 709
localStorage 647
Location 499
assign() 500
href 501
reload() 501
replace() 501
Logical AND assignment operator 130
Logical assignment operators 130
Logical nullish assignment operator .. 130
Logical OR assighment operator 130
Long polling 632
Look-and-feel 883
Loop 133,148
head-controlled ... 148, 155
inner 153
976

Machine code
Machine language
Main thread
Map
add elements
delete all key-value pairs ...
delete individual key-value pairs ..
determine elements for key

map() 770
Markup language 59
Math 328
Maximum value of numbers
MEAN 866
stack 866
Member 250
Member operator 250
Mercurial 950
Method 109
borrowing 355, 369
call stack 80, 190
signature 173
static 760
Microcontroller 909
Middleware 854
function 854
Minimum value of numbers cccouueveenecnees 97
Mobile application
hybrid 879
native 877
Mobile web application ... 878
Mocha 46,945
Modifier 344
Modifying the CSS of an element 369
Module
default export 794
define 794
export 794
import 795
import dynamicallyccoomececmneccenen. 796
named export 794

Index
Module augmentationrereennees 789 NPM Registry 836
Module design pattern ... 783 null 110
Module test 938 Nullish coalescing operator ... 122
Modulo 114 Number 95
MongoDB 654, 859 definition 95
Mouse event 427,579 value range 97
MouseEvent 429 NumberFormat 717
Multidimensional array ... 106 NWjs 898
Multilingual applicationsceenneces 708 Installation 899
Multiple selection listcccvecenneecerrnecerinnecns 470 Packaging 901
read 470
Multiplication 114 (o)
Multipurpose Internet Mail
Extension (MIME) 68 Object 109, 726
Multithreaded 678 array-like 177
servers 831 behavior 236
Multiway branch 142 bind 353
definition 109
N extract values 298
first class 765
Named function 169 Jreeze 269
Namespace 779 global 488
Namespace design pattern ... 779 intercept access 824
NaN 98 iterable 819
Native applicationcceeeeernnecees 877,883 Object.create() 733
NativeScript 883 Object.defineProperties() ... 258
Navigator 508 Object.defineProperty() ... 258
Negation operator 117 Object.freeze() 269
Nested namespacing 782 Object.getOwnPropertyDescriptor() ... 248
Netscape 46 Object.getPrototypeOf() .. 241
nextElementSibling 386 Object.isExtensible() 268
nextSibling 385 Object.isFrozen() 269
Node 357 Object.preventEXtensions() ... 267
Node list 368 Object.seal() 268
static 369 prevent extensions 267
Node type 358 seal 268
Node.js 357 state 236
create packages 838 Object destructuring 298
instal packages 835 Object diagram 726
install packages globally ... 835 Object instance 726
install packages locally cuneceeen. 835 create 748
modules 831 Object literal NOtAtioNocevveeueerreereecreereccenennee 237
Node.js Package Manager (NPM) 834 Object method 109
NPM 834 add 256
Package configuration file ... 838 create via bracket notation 257
packages 831 create via dot notation ..., 256
use packages 836 create via helper methods 258
Nonblocking /0 833 delete 260
Nonrelational databaseccenccerennecns 654 output 262
NPM 834 overwrite 256
npm init 838 Object orientation 725
npm install 835 basic principles 725

971

Index

Object orientation (Cont.)

class syntax 731
class-based 727
prototypical 727,731
pseudoclassical 731
Object property 109
add 256
create via bracket notation ... 257
create via dot notation 256
create via helper methods .. 258
delete 260
output 262
overwrite 256
Object store
add objects 657
create 657
delete objects 661
read objects 661
update objects 663
use cursor 664
ODbject.entries() eeeeeeemsseeeeeens 238, 262, 263
Object.keys() 262,263
Object.values() 262,263
Object-based programming language 727
Objective-C 877

Object-oriented programming ... 242, 725, 766

Octal notation 96
Octal number 96
onload 416
onreadystatechange 534
Operation 43
Operator 113
arithmetic 114
binary 114,117
bitwise 124
logical 117
logical AND assignment ... 130
logical nullish assignment 130
logical OR assignment 130
overloaded 117
unary 113,117
Optional chaining operator 128, 366
OR operator 117
Output 43
P
Package 779
Package configuration fileccmcccmnecens 838
package.json 838
properties 839
Parameter 172,173

978

Parent class 732
Parent constructor 754
parentElement 379
parentNode 379
Parsing 70
Password field, read 465
Path 604
Pattern 783
Polling 631
Polymorphic 731
Polymorphism 726,731
pop() 279
PopStateEvent 506
Preflight request 549
Preflight response 549
Prematurely terminating loop iterations ... 162
Presentation Layer 58
preventDefault() 447,452

previousElementSibling ...

previousSibling

Private methods

Private properties

Private property
Program
native
Program flowchart
Programming
asynchronous 799
classless 727
event-driven 409
Jfunctional 765
imperative 766
object-oriented 725,766
prototype-based 727
prototypical 727
Programming languageccouecceeneeceees 33,59
class-based 727
compiled 35
functional 765
interpreted 35
object-based 727
ProgressEvent 671
Promise 804
Promise.all() 808
Promise.allSettled() 810
Promise.any() 811
Promise.prototype.catch() 805
Promise.prototype.finally() 806
Promise.prototype.then() ... 805
Promise.race() 809
Promise.reject() 812
Promise.resolve() 812

Index
prompt() 76 Regular expression (Cont.)
Property 109 define exact number of occurrences 340
static 762 define minimum and maximum
Property attribute ... 246,739 number Of OCCUTTENCES weeeneeerrenneces 340
Prototype 241,727,732 define minimum number of
Prototype chain 242,736 occurrences 340
Prototype programming ... 727 define optional occurrences 339
Prototype-based programming ... 727 groups 345
Prototypical object orientation ... 727,731, 732 named groups 346
calling methods of the prototype ... 737 replace occurrence 347
inherit methods and properties 733 search for specific Strings ... 346
overwrite methods 735 Relational database 654
Proxy 824 Relational operator 125
Pseudoclassical object orientation 731,739 Remainder operator 114
create object iNStANCES vvceerreeeeerreceenennes 739 Remote branch 959
define methods and properties 740 Remote repository 950
derive from objects 740 removeAttribute() 406
Pseudocode 44 removecChild() 397
Pseudocode technique 41 removeEventListener() 422
push() 275 Render 59
Pyramid of doom 803 Rendering context 600
Repetition 133
Q REPL 833
replaceChild() 394
Query string 499 reportValidity() 482
querySelector() 373 Repository 949
querySelectorAll() 373 local 950
Queue 272,288 remote 950
QUnit 939 Request 513
Request queue 832
R requestAnimationFrame() ... 618
reset() 472
Radio button, read 467 Responsive app 878
RangeError 203 Responsive web designccreennecerennne 878
Raspberry Pi 921 Rest parameter 177
React Native 877,883 Rest properties 304
Read file information 848 Return code 180
Readable stream 866, 868 Return value
Read-eval-print loop 833 multiple 182
Redis 654 Revealing module design pattern 786
reduce() 773 Revealing module pattern ... 787
reduceRight() 775 reverse() 284
Refactoring 938 RFC3986 670
ReferenceError 203 Rich internet application ... 47
RegExp Root node 359
exec() 329,343 Routing 853
test() 329,330 RTE 37
Region subtag 709 Runtime environment (RTE)occccveueermmeccerenens 37
Regular expression Runtime error 199
define any number of occurrences 339
define at least one occurrence 339
979

Index

S

Scalable Vector Graphicscoeeoncceennne. 599

Schema 657

Scope 192
chain 192,193
dynamic 192
lexical 192
static 192

Scope chain 193

Screen 510

Screen Orientation API

Script subtag

Search string
Secure Sockets Layer
Selection list

fill with values 471
read 469
Selection operator 140
Sensor 909
Serialize XML data 523
Server 513
Server side 48
Server-sent events ... 631,635
Session storage 647
Set 251,272,321
add elements 321
create 321
delete all elements 322

delete individual elements
setAttributeNode() ... 403,406
setInterval() 498
Setter 251
setTimeout() 498
shift()
Shopping cart
Side effect

Single-page application
Single-threaded server

slice()
Smartphone
Smartwatch
Socket connection
Software
Software library

some() 775
Sort array
arrays with objects 285
CoMparison fUNCtioncceconeeeeenne 284
sort() 284
Source code 34
automated testing 936

980

Source code (Cont.)

display 74
show in Chrome 74
show in Firefox 74
show in Microsoft Edgeccerennece. 76
show in Opera 74
show in Safari 74
Source control system 61
Source file 34
Source text 34
Speech output 692
Speech recognition 694
SpeechRecognition 691
SpeechSynthesis 691
splice() 277,281
Spread operator 184
Spread properties 305
Square curve 607
drawing 607
Stack 272,287
Stack trace 80
Standard variable, globalccouvcvmncironnecnnns 90
Start/stop checkpoints 42
State 726
Stateless protocol 639
Statement 43,73
conditional 133
destructuring 294
named 166
static 760
Static methods 760
Static property 762
Step 32
stopPropagation() 447
Storage 647
StorageEvent 650
Store value in variables ..., 85
Streams
flowing mode 869
paused mode 869
piping 870
read data 868
write data 869
Strict Typing 95
String 98,116
compare 712
definition 98
determine length 307
escaping 99
expressions 102
extract parts 310
match() 329

Index
String (Cont.) Test case 936
multiline 102 Test fixture 939
placeholder 101 Test framework 61
replace() 329,347 Test program 936
search 308 Test-driven development ... 937
search for ocCurrences ... 347 Textfield, read 465
search() 329 Text node 360
split 348 text/ecmascript 68
split() 329 text/javascript 68
structure 306 textContent 391
substr() 312 this 192,194
substring() 312 CONSLTUCLOY fUNCEION ...oovveeevrrerrrscecrrrreonne 196
String concatenation 101 global function 196
String operator 116 object method 196
Strong typing 95 Thread 678
Style language 59 throw 205
Sub tags 709 Tight augmentation 790
Subclass 730 Top level await 814
Sublime Text 60 Transaction 658
submit() 472 Transform streams 867
Subobject 730 Transformation MatriX ... 615
Subtraction 114 Trap 825
Subtype 730 Tree representation 357
Subversion 949 True 103
Sun 46 try 202
Superclass 730, 732 Two-dimensional array ... 106
Superobject 730 TypeError 203
Supertype 730 typeof 233
SVG format 620
Swift 877 U
Switch branch 142
Symbol 112 Ul 49, 409
Symbol.iterator 266 Ul component 50,77
Syntax 85 UlEvent 435
Syntax error 198, 203 UML 726
System under test 936 undefined 110
Unidirectional communication 631
T Unified modeling language (UML) 726
Uniform resource identifier (URI) 670
Tablet 877 Uniform resource locator (URL)ccoueveeenne. 670
Tag function 188 Uniform resource name (URN)cooocceeennn. 670
Tagged template 103,188 Unit test 936
Target phase 439 unshift() 276
Task 932 UpperCamelCase notation 93, 239, 243
Template string 101 URI 670
expressions 102 error 203
multiline 102 URL 670
placeholder 101 URN 670
use 101 Use effect 575
Tessel 52,916 User interface 49, 50, 409
control LEDs 917 event 435
Test anything protocol ..., 948
981

Index

V Web of Things
Web page
Validate form input 475 print
Validation 49 search for text
native 475 Web Socket API
Value assignment 86 Web Speech API
Value range of nUMDETScccccoomvcvveoneccrvrreccrine 97 Web Storage API
var 85 Webview
Variable 85 Web Worker API
define 85 WebGL
Variable declaration 85 WebGLRenderingContext
Variable initialization 86 Website
Variable name WebStorm
allowed characters 91 Whileloop
already assigned 90 Widget 518,883
case sensitivity 92 window 487
meaningful names 93 Windows Mobile 51
valid 88 World Wide Web Consortium (W3C) ... 362, 630
Variant subtag 710 Wrapper object 329
VCs writable 247
centralized 949 Writable Streamsccennccececeennns 866, 869
decentralized 949
Version control system (VCS) ... 949 X
Version management 949
Version management System ... 949 XML 518,519
Visual Studio Code 62 parse 522
serialize 523
W XML object, convert to Strings ... 523
XML schema 519
WeakMap 319 XMLHttpRequest 529
WeakSet 324 XMlLSerializer 523
Wearables 52
Web Animation API 695 Y
Web application 47
Web Hypertext Application Technology yield 821
Working Group 630

982

Build and deepen your coding knowledge s Rheinwe rk

from the top programming experts! Computing

const
const age
if age

Philip Ackermann is CTO of Cedalo GmbH and author of

several reference books and technical articles on Java, Java-
Script and web development. His focus is on the design and
development of Node.js projects in the areas of Industry 4.0

and Internet of Things.

'Age cannot be hegative.'

const =>
const element document
element 'blur!
element ‘blur' /=

false
element ‘blur' | =>

sener

14D

I JavaScript

The Comprehensive Guide

g
\ Philip Ackermann (A Rheinwerk
e Computing

Philip Ackermann
JavaScript: The Comprehensive Guide

982 pages, 2022, $59.95 We hope you have enjoyed this reading sample. You may recommend or pass it
ISBN 978-1-4932-2286-5 on to others, but only in its entirety, including all pages. This reading sample and

all its parts are protected by copyright law. All usage and exploitation rights are
-E www.rhei nwerk-computing.com/ 5554 reserved by the author and the publisher.

https://www.sap-press.com/javascript_5554/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2286

