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Chapter 2
Getting Started

JavaScript is still mainly used for creating dynamic web pages—within a
browser. Before we take a closer look at other application areas in later
chapters, this chapter will show you the ways in which you can embed
JavaScript in a web page and generate simple output. This chapter thus
is the basis for the following chapters.

Before we go into further detail about the JavaScript language itself, you should first
know how JavaScript relates to HTML and CSS within a web page, how to embed Java-
Script in a web page, and how to generate output.

2.1 Introduction to JavaScript and Web Development

The most important three languages for creating web frontends are certainly HTML,
CSS, and JavaScript. Each of these languages serves its own purpose.

2.1.1 The Relationship among HTML, CSS, and JavaScript

In HTML, you use HTML elements to specify the structure of a web page and the mean-
ing (semantics) of individual components on a web page. For example, they describe
which area on the web page is the main content and which area is used for navigation,
and they define components such as forms, lists, buttons, input fields, or tables, as
shown in Figure 2.1.

Artist Album Release Date Genre
Monster Magnet Powertrip 1998 Spacerock
Kyuss Welcome to Sky Valley 1994 Stonerrock
Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock
Beastie Boys 11l Communication 1994 Hip Hop

Figure 2.1 HTML Is Used to Define the Structure of a Web Page
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2.1 Introduction to JavaScript and Web Development

CSS, on the other hand, uses special CSS rules to determine how the individual compo-
nents that you have previously defined in HTML should be displayed; this is used to
define the design and layout of a web page. For example, you can define text color, text
size, borders, background colors, color gradients, and so on. Figure 2.2 shows how CSS
was used to adjust the font and font size of the table headings and table cells, add bor-
ders between table columns and table rows, and alternate the background color of the
table rows. The whole thing looks a lot more appealing than the variant without CSS.

Artist Album Release Date Genre

Monster Magnet Powertrip 1998 Spacerock

Kyuss Welcome to Sky Valley 1994 Stonerrock

Ben Harper The Will to Live 1997 Singer/Songwriter
Tool Lateralus 2001 Progrock

Beastie Boys Il Communication 1994 Hip Hop

Figure 2.2 With CSS, You Define the Layout and Appearance of Individual Elements of the
Web Page

Last but not least, JavaScript is used to add dynamic behavior to the web page (or to the
components on a web page) or to provide more interactivity on the web page. Exam-
ples of this are sorting and filtering the table data, as already mentioned in Chapter 1
(see Figure 2.3 and Figure 2.4). So while CSS takes care of the design of a web page, Java-
Script can be used to improve the user experience and interactivity of a web page.

Q | Search artist

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter
Kyuss Welcome to Sky Valley 1994 Stonerrock
Monster Magnet Powertrip 1998 Spacerock

Tool Lateralus 2001 Progrock

Figure 2.3 Sort Option to Make a Web Page More User-Friendly and Interactive with
JavaScript
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Q Be

Artist ~ Album Release Date Genre

Beastie Boys Il Communication 1994 Hip Hop

Ben Harper The Will to Live 1997 Singer/Songwriter

Figure 2.4 Filter Option to Make a Web Page More User-Friendly and Interactive
with JavaScript

Thus, in the vast majority of cases, a web page consists of a combination of HTML, CSS,
and JavaScript code (see Figure 2.5). Note that though we just said that JavaScript takes
care of the behavior of a web page, you can create functional web pages entirely with-
out JavaScript. In principle, you can also create web pages without CSS; it is possible. In
that case, only the HTML is evaluated by the browser. That means, however, that the
web page is less fancy (without CSS) and less interactive and user-friendly (without
JavaScript), as shown previously in Figure 2.1.

HTML (Structure)
>
CSS (Layout) > Web Page
—>
JavaScript
(Interaction)

Figure 2.5 Usually, a Combination of HTML, CSS, and JavaScript
Is Used within a Web Page

Note

HTML is used for the structure of a web page, CSS for layout and design, and JavaScript
for behavior and interactivity.
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Definition
Web and software developers also refer to three layers in this context: HTML provides
the content layer, CSS the presentation layer, and JavaScript the behavioral layer.

Separating the Code for the Individual Layers

It is considered good development style not to mix the individual layers—that is, to
keep HTML, CSS, and JavaScript code independent of each other and in separate files.
This makes it easier to keep track of a web project and ultimately ensures that you can
develop more effectively. In addition, this method enables you to include the same CSS
and JavaScript files in various HTML files (see Figure 2.6) and thus to reuse the same
CSS rules or JavaScript source code in several HTML files.

JS < HTML

D— HTML

CSS

JS < HTML

|
o

] HTML

Figure 2.6 If You Write CSS and JavaScript Code into Separate Files rather than Directly
into the HTML Code, It Is Easier to Reuse

A good approach to developing a website is to think about its structure first: What are
the different areas of the web page? What are the headings? Is there any data presented
in tabular form? What are the navigation options? Which information is included in
the footer area and which in the header area of the page? Only HTML is used for this
purpose. The website won't look nice or be very interactive, but that isn’t the point of
this first step, in which we do not want to be distracted from the essential element: the
website content.

Building on this structural foundation, you then implement the design using CSS and
the behavior of the web page using JavaScript. In principle, these two steps can also be
carried out in parallel by different people. For example, a web designer may take care of
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the design with CSS, while a web developer programs the functionality in JavaScript (in
practice, the web designer and web developer are often one and the same person, but
especially in large projects with numerous websites, a distribution of responsibilities is
not uncommon).

Phases of Website Development

When developing professional websites, there are several stages preceding the devel-
opment step. Before development even begins, prototypes are designed in concept and
design phases (either digitally or quite classically with pen and paper). The step-by-step
approach just described (first HTML, then CSS, then JavaScript) thus only refers to
development.

HTML Markup Language and CSS Style Language

By the way, HTML and CSS are not programming languages! HTML is a markup lan-
guage and CSS is a style language; only JavaScript of the languages we're discussing
here is a programming language. Strictly speaking, statements like "This can be pro-
grammed with HTML" are therefore not correct. You'd instead have to say something
like "This can be realized with HTML."

Definition

The process of presenting a web page in the browser is called rendering. A common
phrase among developers is "The browser renders a web page." This involves evaluat-
ing HTML, CSS, and JavaScript code, creating an appropriate model of the web page
(which we'll talk about in Chapter 5), and "drawing" the web page into the browser
window. In detail, this process is quite complex, and if you’re interested in this topic,
you might want to read the blog post at www.html5rocks.com/en/tutorials/internals/
howbrowserswork.

2.1.2 The Right Tool for Development

In principle, a simple text editor would be sufficient for creating JavaScript files (and for
simple code examples this is perfectly fine), but sooner or later you should acquire a
good editor that supports you when writing JavaScript and that is specifically designed
for developing JavaScript programs (if you don't already have one installed on your
computer anyway). Such an editor supports you, for example, by highlighting the
source text in color, relieving you of writing recurring source text modules, recogniz-
ing errors in the source text, and much more.
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Editors

There are a number of really good editors that can be used effectively. For example,
Sublime Text (www.sublimetext.com; see Figure 2.7) and Atom (https://atom.io; see
Figure 2.8), both available for Windows, macOS, and Linux, are popular editors in the
developer community. While the former currently costs $99 (as of June 2021), the Atom
editor is free of charge. In detail, both editors have their own features and strengths,
but they are still quite similar. Try them out to see which one suits you more.
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Figure 2.7 Sublime Text Editor
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o0 main.js — ~/[Documents/workspaces/github/javascript
Project main.js

function showMessage() {
alert('Hello World');

v Q javascript

}

showMessage() ;
> [ Chapter01

v [ Chapter02

> [ Listing_02_01
> [ Listing_02_02
v @ Listing_02_03

v [ scripts
B main.js

> [l styles
B index.html
> [ Listing_02_04
> [ Listing_02_05
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> [ Listing_02_07
> [ Listing_02_08
> [ Listing_02_09

> [ Listing_02_10-11

> [ Chapter03
> [ Chapter04
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> [ Chapter06
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> [ Chapter11
> [ Chapter12

Chapter02/Listing_02_03/scripts/main.js  4:15 LF UTF-8 JavaScript ¥ english & Publish OG‘\(HU{:» -0 Git (52)

Figure 2.8 Atom Editor

Development Environments

Software developers switching from languages like Java or C++ to JavaScript are in most
cases used to integrated development environments (IDEs), as known from their previ-
ous programming languages. In a way, you can think of a development environment as
a very powerful editor that provides various additional features compared to a "nor-
mal" editor, such as synchronization with a source control system, running automatic
builds, or integrating test frameworks. (If you're just shaking your head uncompre-
hendingly now and wondering what's behind all these terms, wait until Chapter 21, in
which we’ll go into more detail about these advanced topics of software development
with JavaScript.)

61




2 Getting Started 2.1 Introduction to JavaScript and Web Development

WebStorm by Intelli] (www.jetbrains.com/webstorm/; see Figure 2.9) is one example of T R—

a very popular and also very good development environment. A single license for Web- EXPLORER oS mainjs M X
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% Sublime Text ~ USD 99 Yes Yes Yes Editor
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Figure 2.9 WebStorm IDE
WebStorm usD 129/ Yes Yes Yes Development

Meanwhile a personal favorite among the development environments is Visual Studio BEiD) 5 COITEIIES

Code by Microsoft (https://code.visualstudio.com; see Figure 2.10). It is available for Table 2.1 Recommended Editors and Development Environments for Javascript

download free of charge, can be flexibly extended via plug-ins, and its perceived perfor- Development

mance is significantly better than that of WebStorm, for example.

A brief overview of the editors and development environments we’ve discussed is Tip
shown in Table 2.1. o ) -
For the beginning—for example, for trying out the code examples in this book—we

recommend that you use one of the editors mentioned in this section and not a
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development environment (yet). The latter have the disadvantage that they are
partly overloaded with menus and functionalities, so you have to deal not only with
learning JavaScript but also with learning the development environment. Let’s spare
you that at least for the moment.

In addition, development environments only make sense when exceeding a certain
project size. For smaller projects and the examples in this book, an editor is always
enough (even though we will also cover complex topics). Plus, the editors are usually
faster than the development environments in terms of execution speed.

2.2 Integrating JavaScript into a Web Page

Because we assume that you already know how to create an HTML file and how to
embed a CSS file, and that you are "only" here to learn JavaScript, we don't want to waste
any more time with details about HTML and CSS but will get started with JavaScript
straight away. Don’t worry: embedding and executing a JavaScript file is anything but
difficult.

2.2 Integrating JavaScript into a Web Page

However, it is a good idea to create different folders for the CSS and JavaScript files. The
names styles (for CSS files) and scripts (for JavaScript files) are quite common. Especially
if you are dealing with a lot of different JavaScript and CSS files during development,
this separation (or an arrangement with subfolders in general) makes it easier to keep
track of your project.

Starting Point of a JavaScript Application

Most of the examples in this book also follow the layout shown in Figure 2.11 as we will
only run the JavaScript code in the browser at the beginning, using the index.html file
as a kind of entry point to the program.

Later, in Chapter 17, you’ll learn how you can also run JavaScript independent of a
browser and thus independent of a corresponding HTML file. In this case, you don’t
need any HTML—and therefore no CSS files either.

Learn HTML and CSS

If you have not worked with HTML or CSS a very good introductory book on this topic is
HTML and CSS: Design and Build Websites by Jon Duckett (2011, John Wiley & Sons).

Per tradition (like almost every book on programming languages), we will start with a
very simple Hello World example, which only produces the output Hello World. This is
not very exciting yet, but right now the point is to show you how to embed a JavaScript
file in an HTML file in the first place and how to execute the source code contained in
the JavaScript file. We will take care of more complex things later.

2.2.1 Preparing a Suitable Folder Structure

For getting started and working through the following examples, we recommend that
you use the directory structure shown in Figure 2.11 for every example. The HTML file is
at the top level because this is the entry point for the browser and thus the file you will
invoke in the browser right away.

Name A
€ index.html
v [ scripts

E main.js
v L styles
® main.css

Figure 2.11 Example Folder Structure
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Running JavaScript in the Browser
While you can execute JavaScript within a browser without creating an HTML file to

embed the corresponding script (via special developer tools provided by browsers; Sec-
tion 2.3.2), for now we don’t want to use this feature.

2.2.2 Creating a JavaScript File

As mentioned earlier, it’s better to save JavaScript code in a separate file (or in several
separate files) that can then be embedded in the HTML code. So the first thing you need
is a JavaScript file. Simply open the editor of your choice (or if you didn't take my
advice, the development environment of your choice), create a new file, enter the lines
of source code provided in Listing 2.1, and then save the file under the name main.js.

function showMessage() {
alert('Hello World');

}

Listing 2.1 A Very Simple JavaScript Example That Defines a Function

Note

JavaScript files have the extension .js. Other file extensions are also possible, but the .js
extension has the advantage that editors, development environments, and browsers
directly know what the content is about. You should therefore always save all Java-
Script files with the .js extension. (By the way, browsers recognize JavaScript files deliv-
ered by a web server via the Content-Type header, a piece of information that comes
with the file from the server.)
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Listing 2.1 defines a function with the name showMessage, which in turn calls another
function (with the name alert) and passes it the message Hello World. The alert func-
tion is a JavaScript standard function, which we will briefly discuss later in this chapter.
Functions in general, however, will be detailed in Chapter 3.

Supplemental Downloads for the Book

This code example and all those to come can also be found in the Product Supplements
area for the book (see https://www.rheinwerk-computing.com/5554). There you can
easily download the code and open it in your editor or directly in your browser
(although we think that the most effective way to learn is to type the examples your-
self, following them step by step).

2.2.3 Embedding a JavaScript File in an HTML File

To use the JavaScript source code within a web page, you need to link the JavaScript file
to the web page or embed the JavaScript file in the HTML file. This is done via the HTML
element named <script>.

This element can be used in two different ways: On the one hand, as we will demon-
strate subsequently, external JavaScript files can be included in the HTML. On the other
hand, JavaScript source code can be written directly between the opening <script> tag
and the closing </script> tag.

An example of the latter method will be shown later, but this approach is only useful in
exceptional cases because JavaScript code and HTML code are then mixed—that is,
stored in one file (which is not a best practice for the reasons already mentioned). So
let's first look at how to do it properly and include a separate file.

The <script> element has a total of six attributes, out of which the src attribute is cer-
tainly the most important one: it’s used to specify the path to the JavaScript file that is
to be included. (Table 2.2 shows an overview of what the other attributes do.)

async Specifies whether the linked JavaScript file should be down- Optional
loaded in an asynchronous way in order not to interrupt the
download of other files (Section 2.2.5). This only makes sense in
combination with the src attribute.

Table 2.2 The Attributes of the <script> Element
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charset Specifies the character set of the source code that is embedded Optional
via the src attribute. This only makes sense in combination with
the src attribute, but is rarely used because most browsers do
not respect this attribute. It is also considered better style to use
UTF-8 everywhere within a website and define this in the
<meta> element via the charset attribute.

defer Specifies whether to wait to execute the linked JavaScript file Optional
until the web page content has been completely processed (Sec-
tion 2.2.5). This only makes sense in combination with the src
attribute, but is not always supported, especially not by older
browsers.

language Originally intended to indicate the version of JavaScript code Outdated
used, but largely ignored by browsers.

SIC Specifies the path to the JavaScript file to be embedded. Optional

type Used to specify the MIME type (see box ahead) in order to iden- Optional
tify the scripting language (in our case, JavaScript). However, you
can also omit this attribute because text/javascript is used
by default, which is supported by most browsers.

Table 2.2 The Attributes of the <script> Element (Cont.)

Now create an HTML file named index.html and insert the content shown in Listing 2.2.

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<!--Here the JavaScript file will be included -->
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.2 Embedding JavaScript in HTML
If you now open this HTML file in the browser, nothing will happen yet because the
function we defined in Listing 2.1is not yet called at any point. Therefore, add the show-

Message() call at the end of the JavaScript file, as shown in Listing 2.3, and reload the web
page in the appropriate browser. Then a small hint dialog should open, containing the
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message Hello World and with a slightly different appearance depending on the
browser (see Figure 2.12).

function showMessage() {
alert('Hello World');
}

showMessage();

Listing 2.3 Function Definition and Function Call

This page says

Hello World

Hello World

This page says

Hello World

Close

This page says © file:/)

Hello

orld Hello World

Figure 2.12 Hint Dialogs in Different Browsers

Definition

Multipurpose Internet Mail Extension (MIME) types, also called internet media types or
content types, were originally intended to distinguish between content types within
emails containing different content (such as images, PDF files, etc.). Now, however,
MIME types are not only used in the context of email, but also whenever data is trans-
mitted over the internet. If a server sends a file with a special MIME type, the client
(e.g., the browser) knows directly what type of data is being transmitted.

For JavaScript, the MIME type wasn’t standardized for a long time, so there were sev-
eral MIME types—for example, application/javascript, application/ecmascript,
text/javascript and text/ecmascript. Since 2006, however, there is an official stan-
dard (www.rfc-editor.org/rfc/rfc4329.txt) that defines the acceptable MIME types for
JavaScript. According to this standard, text/javascript and text/ecmascript are both
deprecated, and application/javascript and application/ecmascript should be
used instead. Ironically, it’s safest not to specify any MIME type for JavaScript at all (in
the <script> element) as the type attribute is ignored by most browsers anyway.
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Embedding Multiple JavaScript Files

Of course, you can embed several JavaScript files within one HTML file. Simply use a
separate <script> element for each file you want to include.

2.2.4 Defining JavaScript Directly within the HTML

For the sake of completeness, we'll also show how you can define JavaScript directly
within an HTML file. While this is usually not advisable because it means mixing HTML
and JavaScript code in one file, it won't hurt to know that it still works.

Simply write the relevant JavaScript code inside the <script> element instead of linking
it via the src attribute. Listing 2.4 shows the same example as in the previous section,
but it doesn’t use a separate JavaScript file for the JavaScript code. Instead, it embeds
the code directly in the HTML. The src attribute is therefore omitted completely.

<IDOCTYPE html>

<html>

<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">

</head>

<body>

<script>
function showMessage() {

alert('Hello World');

}
showMessage();

</script>

</body>

</html>

Listing 2.4 Only Makes Sense in Exceptional Cases: Definition of JavaScript
Directly in an HTML File

Note

Note that <script> elements that use the src attribute must not contain any source
code between <script> and </script>. If there is any, this source code will be ignored.
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Tip
Use separate JavaScript files for your source code instead of writing it directly into a

<script> element. This creates a clean separation between the structure (HTML) and
the behavior (JavaScript) of a web page.

The <noscript> Element

You can use the <noscript> element to define an HTML section that is displayed when
JavaScript is not supported in the browser or has been disabled by the user (see Listing
2.5). However, if JavaScript is supported or enabled, the content of the <noscript> ele-
ment will not be shown.

<noscript>
JavaScript is not available or is disabled. <br />
Please use a browser that supports JavaScript,
or enable JavaScript in your browser.

</noscript>

Listing 2.5 Example of the Use of the <noscript> Element

2.2.5 Placement and Execution of the <script> Elements

If you had asked a web developer a few (many) years ago where to place a <script> ele-
ment within a web page, they probably would have advised placing it in the <head> area
of the web page. In the early days of web development, people thought that linked files
such as CSS files and JavaScript files should be placed in a central location within the
HTML code.

Since then, however, this idea has been abandoned. While CSS files are still placed in the
<head> area, JavaScript files should be included before the closing </body> tag instead.
The reason is this: when the browser loads a web page, it loads not only the HTML code
but also embedded files such as images, CSS files, and JavaScript files. Depending on
processor performance and memory usage, modern browsers are capable of download-
ing several such files in parallel. However, when the browser encounters a <script> ele-
ment, it immediately starts processing the corresponding source code and evaluating
it using the JavaScript interpreter. To be able to do this, the corresponding JavaScript
source code must first be downloaded entirely. While this is happening, the browser
pauses downloading all other files and parsing (i.e., processing) the HTML code, which
in turn leads to the user impression that it takes longer to build the web page (see
Figure 2.13).
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Process HTML Process HTML

0 I
v
Download JavaScript File

Execute JavaScript
Source Code

Figure 2.13 By Default, HTML Code Processing Stops when the Browser Encounters
a <script> Element

In addition, you will often want to access HTML elements on a web page within the
JavaScript source code. (You'll see how this works in Chapter 5.) If the JavaScript code is
executed before these HTML elements have been processed, you'll encounter an access
error (see Figure 2.14). If you place the <script> element before the closing </body> tag,
though, you are on the safe side in this regard (see Figure 2.15), because in that case all
elements included inside the <body> element are already loaded (with the exception of
other <script> elements, of course).

Process HTML Download Javascript Process HTML
v File ‘ ‘
S A HTML Elements
Not Loaded before
4'_ This Point Cannot

Execute JavaScript ~ Be Accessed
Source Code

Figure 2.14 If JavaScript Accesses HTML Elements That Have Not Yet Been Loaded,
an Error Occurs

HTML Elements Can Be Accessed

Process HTML $

Download JavaScript

B File

~

Execute JavaScript
Source Code

Figure 2.15 If the <script> Element Is Placed before the Closing </body> Tag,
All Elements inside the <body> Element Are Loaded

Note

As a rule, you should position <script> elements at the end of the <body> element. This
is because the browser first evaluates the JavaScript source code contained or embed-
ded in each <script> element before continuing to load other HTML elements.
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Two attributes that can be used to influence the loading behavior of JavaScript are the
async and defer attributes, which we already mentioned briefly (see Table 2.2). The for-
mer ensures that the processing of HTML code is not paused when the browser encoun-
ters a <script> element. The JavaScript file is downloaded asynchronously (hence the
name async). This concept is shown in Figure 2.16.

Process HTML Process HTML

v r
Download JavaScript File
Execute JavaScript

Source Code

Figure 2.16 Due to the async Attribute, the HTML Code Continues To Be Processed until the
Corresponding JavaScript Has Been Downloaded

Asyou can see, the JavaScript code is executed right away as soon as the corresponding
JavaScript file has been completely downloaded.

The defer attribute takes this one step further. On the one hand, just like async, this
attribute ensures that the HTML code processing is not paused. On the other hand, the
JavaScript source code is executed only after the HTML code has been fully processed
(see Figure 2.17). The execution of the JavaScript code is effectively deferred (hence the
name defer).

Process HTML

Download JavaScript File |:|

Execute JavaScript
Source Code

Figure 2.17 The defer Attribute Ensures That the Corresponding JavaScript Is Only Executed
after the Entire HTML Code of the Web Page Has Been Loaded

So when should you use which attribute? For now, you can bear in mind that it’s prob-
ably best not to use either attribute by default. The async attribute is only suitable for
scripts that work completely independently and have nothing to do with the HTML on
the web page. An example of this is the use of Google Analytics. The defer attribute, on
the other hand, is currently not supported by all browsers, so you should also consider
its use with caution.
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Definition

Another way to ensure that all the content of the web page has been loaded before
JavaScript code is executed is to use event handlers and event listeners. We'll introduce
both of them in detail in Chapter 6. But for now, we’ll show you roughly how both of
them are used because they appear in the source code examples in the book before we
get to the examples for Chapter 6.

In general, both event handlers and event listeners are used to respond to certain
events that occur during the execution of a program and to execute certain code.
(There is a small, subtle difference between event handlers and event listeners, but it's
not important for now, and we'll explain it in Chapter 6.) Events can be mouse clicks,
keystrokes, window resizing actions, and more. For web pages, too, there are various
events that are triggered and can be answered by such event handlers and event listen-
ers. For example, an event is triggered when the content of a web page is fully loaded.

To define an event handler for this event, you can use the onload attribute: The code
you specify here as the value for such an attribute is invoked when the web page is
fully loaded. As a value, you can specify a JavaScript statement, such as the call to a
function, as shown in Listing 2.6.

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body onload="showMessage()">
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.6 Using an Event Handler

Event listeners, however, cannot be defined via HTML. Instead, you use the addEvent-
Listener() function of the document object (more on this later), to which you pass the
name of the event and the function to be executed when the event is triggered (see Lis-
ting 2.7).
function showMessage() {

alert('Hello World');
¥

document.addEventlListener('DOMContentLoaded', showMessage);

Listing 2.7 Using Event Listeners
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The showMessage() call you just added to the end of the main.js file will need to be
removed again in both cases. Otherwise, the function will be called twice (once by the
script itself and once by the event handler/event listener), and as a consequence a
message dialog will be displayed twice in succession.

2.2.6 Displaying the Source Code

All browsers usually provide a way to view the source code of a web page. This can be
helpful in many cases—for example, if you want to check how a particular feature is
implemented on a website you have discovered.

In Chrome, you can view the source code by following menu path View - Developer -
View Source (see Figure 2.18); in Firefox, Tools - Browser Tools - Page Source (see Figure
2.19); in Safari, Develop + Show Page Source (see Figure 2.20); in Opera, Developer - View
Source (see Figure 2.21); and in Microsoft Edge, Tools - Developer - View Source (see
Figure 2.22).

View History Bookmarks Profiles Tab Window Help

Always Show Bookmarks Bar
Always Show Toolbar in Full Screen
Always Show Full URLs

Customise Touch Bar...

Stop
Force Reload This Page

Enter Full Screen
Actual Size
Zoom In

Zoom Out

Cast...

Developer View Source
Developer Tools
Inspect elements
JavaScript Console

Allow JavaScript from Apple Events

Figure 2.18 Show Source Code in Chrome

Source Code for More Complex Web Pages

If you look at the source code of more complex web pages, it's often very confusing.
This is usually due to multiple reasons: on the one hand, content is often generated
dynamically, and on the other, JavaScript is often deliberately compressed and
obscured by web developers—the former to save space, the latter to protect the source
code from prying eyes. This book does not deal with the compression and obfuscation
of source code.
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Downloads
Add-ons and Themes

Sign In

Browser Tools Web Developer Tools

Page Info £ Task Manager

Remote Debugging
Browser Console
Responsive Design Mode
Eyedropper

Page Source

Extensions for Developers

Figure 2.19 Show Source Code in Firefox

Develop Window Help

Open Page With
User Agent

MacBook Pro von Philip

Service Workers

Web Extension Background Pages
Experimental Features

Enter Responsive Design Mode
Show Snippet Editor

Connect Web Inspector
Show JavaScript Console

Show Page Source

Figure 2.20 Show Source Code in Safari

Developer Window Help

Developer Tools

View Source

Task Manager

Figure 2.21 Show Source Code in Opera

Tools Profiles Tab Window Help
Read Aloud >
Developer > View Source

Developer Tools...
Inspect Elements

JavaScript Console

Allow JavaScript from Apple Events

Figure 2.22 Show Source Code in Microsoft Edge
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2.3 Creating Output

If you display the source code of a web page (no matter in which browser), you are first
presented with the corresponding HTML code of the web page. Conveniently, however,
embedded files such as CSS files or JavaScript files are linked in this source code view
(see Figure 2.23) so that you can easily get to the source code of the linked file as well
(see Figure 2.24).

@ @® view-source:file:f//[Users/cleancoderocker/Documents/worksy

Line wrap
<!DOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>

<script src="scripts/main.js"></script>
</body>
</html>

Figure 2.23 Source Code View for HTML in Chrome

(N ) main.js X =+

C @ File | /Users/cleancoderocker/Documents/y

function showMessage() {
alert('Hello World');
}

Figure 2.24 Source Code View for JavaScript in Chrome

2.3 Creating Output

In the Hello World example, you have already seen how you can create simple output
by calling the alert() function. However, there are several other options as well.

2.3.1 Showing the Standard Dialog Window

In addition to the already known hint dialog displayed by calling the alert() function
(see Figure 2.25), the JavaScript language provides two more standard functions for dis-
playing dialog boxes. The first one is the confirm() function. It’s used to display confir-
mation dialogs—that is, yes/no decisions (see Figure 2.26). In contrast to the hint
dialog, the confirmation dialog contains two buttons: one to confirm and one to cancel
the corresponding message. The second one is the prompt() function. This function
opens an input dialog where users can enter text (see Figure 2.27).
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This page says

This is a warning

Figure 2.25 Simple Hint Dialog

This page says

Do you really want to delete this file?

Figure 2.26 Simple Confirmation Dialog

This page says

Please enter the name of the file.

Figure 2.27 Simple Input Dialog

In practice, however, these standard dialogs for hints, confirmation, and input are
rarely used because they offer limited options for statements and—as already shown
for the hint dialog—their design relies on the layout of the browser being used, which
usually does not match the layout of the web page.

For this reason, web developers like to resort to one of the various JavaScript libraries
that offer fancier and more functional dialogs (see Figure 2.28). One of these libraries is
jQuery Ul, which builds on the well-known jQuery library and extends it with various
UI components. We will take a closer look at the main library, jQuery, as well as jQuery
Ul in Chapter 10.

Delete entry? x

Yes No

Figure 2.28 Custom Confirmation Dialog with JavaScript
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2.3.2 Writing to the Console

When developing JavaScript applications, you'll often want to generate output for
yourself for testing purposes only—for example, to return an intermediate result. For
such test-only output, it obviously doesn't make sense to present it in dialogs that
users would get to see as well. For this reason, all current browsers now offer a console,
which is suitable for exactly such purposes and which you can access within a Java-
Script program in order to output messages. By default, this console is hidden because
users of a web page usually can do little with it.

Displaying the Console

To activate the console, proceed as follows, depending on your browser (we won't pro-
vide screenshots at this point as the menu items can be found in similar places as the
menu items for displaying the source code, mentioned earlier in this chapter):

® In Chrome, select View - Developer + JavaScript Console, which opens the console
within the Chrome DevTools.

® In Firefox, open the console via Tools - Browser Tools - Browser Console.

® [n Safari, open the console via Develop - Show JavaScript Console.

® In Opera, you must first select Developer - Developer Tools and then the Console tab.

® In Microsoft Edge, open the console via Tools + Developer - JavaScript Console.

(X € Rheinwerk Publishing -- Public X =+

& C @ sap-press.com/the-publish

Your account Help Login Register [y [

v G G- 5D R
Publishing - § 5 Hello World
Library Saved for Later Shopping Cart
:

Shop Books and E-Bites v Shop Subscriptions Blog LeamingCenter  Newsletters  Catalog PDF

® Rheinwerk

Publishing
Rheinwerk Publishing, Inc.
We are Rheinwerk Publishing. é:i:;fif,,e,f‘;;ifu"e e
+1.781.228.5070
Under the imprint SAP PRESS, we publish books and e-books that educate the SAP Info@rhelnwerk-publishing.com
community. Our goal is to create the that help your SAP
whether you're a beginner or an expert; a consultant or a business user; a developer, an
administrator, or an IT manager.
The best publications take time and skl to prepare, and we take our job as the world's leading ~ © 3¢ Visitus on
SAP publisher seriously. We listen to what our customers want, from introductions about new m
SAP products to instructions for detailed technical tasks. We engage with the SAP community,
consult with experts, and consider reader feedback.

Figure 2.29 By Default, the Console Is Displayed on the Right or at the Bottom of the Browser
Window (Google Chrome in This Case)
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Figure 2.29 shows the console in the Chrome browser, for example. As you can see, it
doesn’t really look special, but it will be one of your main tools if you want to use Java-
Script for web development. In addition to receiving output, you can also enter your
input via the console (more about this in a few moments). In essence, the console is a
kind of terminal (or command prompt, if you're a Windows user) that lets you issue
JavaScript commands that are then executed in the context of the web page loaded.

Writing Output to the Console

For writing to the console, browsers provide the console object. This is a JavaScript
object first introduced by the Firefox plug-in named Firebug (https.//getfirebug.com),
and it provides various ways to generate output to the console. Firebug itself has been
discontinued, but the console object (although still not included in the ECMAScript
standard) is available in almost every JavaScript runtime environment.

Standardized API for Working with the Console

The individual methods provided by the console object differ from runtime environ-
ment to runtime environment. To counteract this, there are efforts underway to create
a standardized API.

A generally supported method is the 1log() method, which can be used to generate sim-
ple console output. To try using the console, simply replace the source code of the
main.js file with the source code in Listing 2.8 and call the web page again.

// scripts/main.js
function showMessage() {
console.log('Hello developer world');

}
Listing 2.8 Simple JavaScript Example
Depending on the browser, the result should be similar to that shown in Figure 2.30.

Elements Console Sources Network Performance Memory

top Filter All levels No Issues

Hello World main.js:2

Figure 2.30 Output to the Console in Chrome
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In addition to the log() method, console provides several other methods. An overview
of the most important ones is provided in Table 2.3.

Method Description

clear() Clears the console.

debug() Used to output a message intended for debugging (or troubleshooting). (You
may first need to set the appropriate developer tools to return this type of out-
put.)

error() Used to output an error message. Some browsers display an error icon next to

the output message within the console.

info() This will display an info message in the console. Some browsers—Chrome, for
example—also output an info icon.

log() Probably the most commonly used method of console. Generates normal out-
put to the console.

trace() Outputs the stack trace—that is, the method call stack (see also Chapter 3) to
the console.
warn() Used to issue a warning to the console. Again, most browsers will display a cor-

responding icon next to the message.

Table 2.3 Most Important Methods of the console Object

Listing 2.9 shows the corresponding source code for using the console object. The out-
put for the individual methods is highlighted with colors or icons, depending on the
browser (see Figure 2.31).

console.log('Hello developer world'

)s // Output of a normal message
console.debug('Hello developer world'
d

;// Output of a debug message
;// Output of an error message
); // Output of an info message
); // Output of a warning

)
console.error('Hello developer world')
console.info('Hello developer world

console.warn('Hello developer world'

Listing 2.9 Using the console Object

[w ﬂ Elements Console Sources Network Performance 1 A1 o

P © | topvy | @ | |Filter All levels ¥ No Issues

Hello developer world
® »Hello developer world

Hello developer world
A »Hello developer world main.js:

Figure 2.31 Different Message Types Are Highlighted with Colors or Icons
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Writing Input to the Console

In the last few screenshots, you may have noticed the > sign below the output. Here,
you can enter any JavaScript code and have it executed right away. This is a great way
to quickly test simple scripts, and actually indispensable for web development. Try it:
type the showMessage () command in the prompt and then press the key to exe-
cute the command. The results are displayed in Figure 2.32.

[w ﬂ Elements Console Sources Network Performance Memory o X

 © |topv | @ | Filter All levels ¥ || No Issues o
> showMessage()
Hello developer world main.js:2

<

Figure 2.32 You Can Also Execute Source Code via the Console

Note

The console window and the console object are important tools for web developers.
Make yourself familiar with both when you get a chance.

Logging Libraries

The console object works well for quick output during development. However, if a web
page goes live or a JavaScript application is used in production, you don't really want to
use console calls any longer (even though they are usually not displayed to the user). In
practice, you often use special logging libraries that enable console output to be acti-
vated (for development) but also deactivated again (for productive use) via specific
configuration settings. To start, and also for the examples in this book, however, the
use of the console object should be sufficient.

2.3.3 Using Existing Ul Components

Because the use of alert(), confirm(), and prompt() is rather outdated and only useful
for quick testing, and the output via the console object is reserved for developers any-
way, you obviously still need a way to create an appealing output for the user of a web
page. To this end, you can write the output of a program into existing Ul components
such as text fields and the like.

Listing 2.10, Listing 2.11, and Figure 2.33 show an example. It consists of a simple form
that can be used to determine the result of adding two numbers. The two numbers can
be entered into two text fields, the addition is triggered by pressing the button, and the
result is written into the third text field.
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You don't need to understand the code for this example yet, and we won't into the
details at this point. For now, just keep in mind that when developing for the web with
JavaScript, it's relatively common to use HTML components for sending output from a
program to the user.

// scripts/main.js

function calculateSum() {
const x = parseInt(document.getElementById('fieldl').value);
const y = parselnt(document.getElementById('field2").value);
const result = document.getElementById('result');
console.log(x + y);
result.value = x + vy;

}

Listing 2.10 The JavaScript Code of the main js File

<IDOCTYPE html>
<html>
<head lang="en">
<meta charset="UTF-8">
<title>Example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<div class="container">
<div class="row">
<label for="fieldl">X</label> <input id="fieldl" type="text" value="5">
</div>
<div class="row">
<label for="field2">Y</label> <input id="field2" type="text" value="5">
</div>
<div class="row">
<label for="result">Result: </label> <input id="result" type="text">
<button onclick="calculateSum()">Calculate sum</button>
</div>
</div>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 2.1 The HTML Code for the Example Application
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Figure 2.33 Example Application

DOM Manipulation

The most complex scenario is when you dynamically modify a web page to produce
output—for example, dynamically modify a table to display tabular structured data.
We will discuss this topic of DOM manipulation in more detail in Chapter 5.

2.4 Summary

In this chapter, you learned how to create JavaScript files and embed them in HTML.
You now have the basic knowledge for executing the examples in the next chapters.

The following key points were presented in this chapter:

Three languages are important for frontend development: HTML as a markup lan-
guage to define the structure of a web page, CSS as a style language to define design
and layout, and JavaScript as a programming language to add additional behavior
and interactivity to a web page.

You can specify JavaScript directly using the <script> element or can embed a sepa-
rate JavaScript file using the src attribute of the <script> element. We recommend
the latter, as it ensures a clean separation between the structure (HTML) and behav-
ior (JavaScript) of the web page.

You should always place <script> elements before the closing </body> tag, as this
ensures that the web page content is fully loaded.

JavaScript inherently provides three functions for generating output: alert() for
creating hint dialogs, confirm() for creating confirmation dialogs, and prompt() for
creating input dialogs.

In practice, however, instead of these (more or less obsolete) functions, people use
fancier dialogs, such as those offered by the jQuery library.

In addition, all current browsers provide the possibility to generate output via a con-
sole, which is primarily intended for you to use as a developer.
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Chapter 10
Simplifying Tasks with jQuery

Many tasks that can now be performed relatively easily with JavaScript
were for a long time only possible with a relatively large amount of
source code due to browser differences. For this reason, various libraries
have emerged to simplify different tasks such as working with the DOM.
One of the most famous of these libraries is jQuery, which even today is
part of every web developer's toolbox.

Probably one of the best-known JavaScript libraries is the jQuery library (https://
jquery.com), which, in part, considerably simplifies working with JavaScript. Although
many things are now also possible with standard methods of the DOM AP], jQuery is
still a library to be taken seriously. This chapter provides an overview of using jQuery,
including how to simplify accessing and manipulating the DOM, working with events,
and formulating Ajax requests.

Note

The jQuery library is so extensive that we can't cover all its aspects in one chapter.
Instead, we’ll offer a selection of topics that are representative and give a good intro-
duction to the library. Also, we won’t discuss the selected topics in great detail but will
describe the code examples relatively concisely (we're assuming that you've already
acquired the necessary basic knowledge, such as DOM processing, events, Ajax, and so
on, throughout the preceding chapters).

10.1 Introduction

As you've seen in the previous chapters, there are differences between different brows-
ers with regard to DOM manipulation, event processing, and Ajax. The jQuery library
abstracts such browser-specific details and provides a unified interface, and not only
for the aforementioned topics. So essentially, jQuery has the following advantages:

® Simplified working with the DOM
jQuery simplifies access to elements of the DOM tree by providing various helper
methods. In Section 10.2, we discuss this topic in more detail. By the way: standard
methods of the current DOM API, like querySelector() and querySelectorAll()
(which are not available in older browsers), are based on ideas from jQuery.
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® Simplified working with events
jQuery simplifies working with events and provides helper methods for this pur-
pose, which we’ll introduce in Section 10.3.

® Simplified phrasing of Ajax requests
jQuery simplifies the phrasing of Ajax requests—again, by hiding browser-specific
details. We'll present the corresponding helper methods in Section 10.4.

jQuery Isn’t Always Necessary

Although jQuery is a really powerful library, you shouldn’t make the mistake of equat-
ing jQuery with JavaScript and first learning jQuery and then the JavaScript language.
jQuery can certainly be of support in many cases, but often the use of the library isn’t
even necessary because you can already solve the corresponding tasks with pure Java-
Script code or even other, leaner libraries. Websites like You Might Not Need jQuery
(http://youmightnotneedjquery.com) demonstrate this with various examples.

Tip
In principle, it's not bad for a JavaScript developer to both be able to use libraries like
jQuery and have a firm grasp of the basic language concepts as well.

10.1.1 Embedding jQuery

The jQuery library can be embedded in several ways. At https://jquery.com/download/,
you can download the current version of the library. Besides the "normal” version, a
minified (i.e., compressed) version is available for download, which is as small as possi-
ble in terms of file size. After you've downloaded the file, you can include it as usual via
the <script> element (see Listing 10.1).

<IDOCTYPE html>
<html>
<head lang="en">
<title>jQuery example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<script src="scripts/jquery-3.6.0.min.js"></script>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 10.1 Embedding a Downloaded Version of jQuery
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Minified Versions versus Nonminified Versions

Most libraries offer both a normal (nonminified) version and a minified version for
download. In the latter, spaces and often comments within the code are removed, for
example, and much more is optimized to reduce the file size and thus reduce down-
load time. Consequently, minified versions of libraries are suitable for use in a produc-
tion system. The nonminified version is actually only suitable if you also want to take a
look at the corresponding library during development—during debugging, for exam-

ple.

10.1.2 Embedding jQuery via a Content Delivery Network

If you download jQuery as described and embed it as a local dependency in your web
page and then load your website onto a server, you must also load jQuery onto the
appropriate server. Alternatively, you have the option of integrating jQuery via a con-
tent delivery network (CDN; see note box). For jQuery, the corresponding URL (for the
current version of the library) is https://code.jquery.com/jquery-3.6.0.min.js (see Listing
10.2).

<IDOCTYPE html>
<html>
<head lang="en">
<title>jQuery example</title>
<link rel="stylesheet" href="styles/main.css" type="text/css">
</head>
<body>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<script src="scripts/main.js"></script>
</body>
</html>

Listing 10.2 Embedding jQuery via a Content Delivery Network

Content Delivery Network

A content delivery network (also known as a content distribution network) is a network
of servers connected via the internet that distribute requests so that they can be
answered as quickly as possible. Typically, the geographical location of a request plays
a major role: for example, if a user from Germany accesses your web page and you
have embedded jQuery there via a CDN URL (https://code.jquery.com), the correspond-
ing code is sent to the user from a server in Germany. A user accessing your web page
from the US, on the other hand, is served by a server located there.
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10.1.3 Using jQuery

The core of jQuery is the jQuery() function or the equivalent shortcut function $()
(called the jQuery method ahead). This function can be called with various arguments
(see http://apijquery.com/jQuery for details), three forms of which are used particu-
larly frequently:

® Call with CSS selector
In this case, you pass a selector to the jQuery method (similar to the CSS selectors,
but more about that in a moment) and receive an object as the return value that con-
tains the elements of the web page that match the selector. Examples of this are
shown in Listing 10.3 and Listing 10.4. The object returned by the method represents
a so-called wrapper object (called the jQuery object ahead) for the corresponding ele-
ments and provides various methods for these elements (more on this later).

const selectedElements = jQuery('body > div > span');

Listing 10.3 The jQuery() Function

const selectedElements = $('body > div > span');

Listing 10.4 The More Common Shortcut Function, $()

® Call with nodes from the DOM tree

As an alternative to calling the jQuery method with a selector, it can also be called
with a node of the DOM tree or with the corresponding JavaScript object represent-
ing the respective node. Here as well, the jQuery object represents a wrapper object
around the passed node and provides additional methods. For example, to define an
event listener that is called when the document object is fully loaded, proceed as in
Listing 10.5. The ready () method doesn’t exist for the document object but is provided
indirectly by the jQuery object (see also Section 10.3.2).

$(document).ready(() => {
console.log('Web page loaded');
1

Listing 10.5 Calling the jQuery Method with a Node from the DOM Tree

® Call with HTML string
You can also use the jQuery method to create new elements. To do this, simply pass
the appropriate HTML code for the element you want to create to the method as a
string, as shown in Listing 10.6.

const newElement = $('<div>New element</div>');

Listing 10.6 Calling the jQuery Method with an HTML String
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Note

In all cases shown, the return value of the jQuery method is an object that adds addi-
tional functionality, the jQuery object, to the corresponding elements. This object con-
tains references to one or more nodes of the DOM tree, hereafter referred to as selected
nodes or selected elements.

10.1.4 Simplifying Tasks with jQuery

The fact that jQuery simplifies working with the DOM is best demonstrated using an
example. Suppose you have an HTML list in which each list entry contains a URL (as
text, not as a link), and you'd like to use JavaScript to create real links from the URLs at
runtime. In other words: The text content of the list entries is to be converted into <a>
elements.

Using pure JavaScript, you would probably proceed as shown in Listing 10.7. First, the
appropriate <1i> elements must be selected (here, for simplicity, all <1i> elements of
the entire web page). Then, in each case, the text content must be extracted and
removed, and a new <a> element must be created, its href attribute and text content
must be set, and the element must be added to the <1i> element as a child element.

'use strict’;
function init() {
const listItems = document.getElementsByTagName('1i");
for(let i=0; i<listItems.length; i++) {
const listItem = listItems[i];
const url = listItem.textContent;
listItem.textContent = '';
const link = document.createklement('a');
link.setAttribute("href', url);
const linkText = document.createTextNode(url);
link.appendChild(1linkText);
listItem.appendChild(link);
¥

}
document.addEventListener('DOMContentlLoaded', init);

Listing 10.7 Creating Links Using Pure JavaScript
Not exactly little code for actually a trivial task. And it doesn't get any better if you use
the innerHTML property instead of the createElement (), setAttribute(), and createText-

Node() DOM methods, as shown in Listing 10.8. This code also looks relatively cluttered
and cobbled together.
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'use strict';
function init() {
const listItems = document.getElementsByTagName('1i");
for(let i=0; i<listItems.length; i++) {
listItems[i].innerHTML = '<a href="'
+ listItems[i].textContent + "">'
+ listItems[i].textContent + '</a>';
¥

¥
document.addEventListener('DOMContentlLoaded', init);

Listing 10.8 Creating Links Using innerHTML

With jQuery, things get a little more elegant, to say the least. The corresponding code is
shown in Listing 10.9. Here the wrapInner() method comes into play, which is made
available to the selected elements by the jQuery object. This method wraps the con-
tents of the selected elements with the HTML code returned by the passed function in
the example. Much simpler than the previous code!

'use strict';
function init() {
$('1i").wrapInner(
function() {
return '<a href=
}
);

" "

+ this.textContent + '"></a>'

}
$(document).ready(init)

Listing 10.9 Creating Links Using jQuery

10.2  Working with the DOM

jQuery Plug-ins

By the way, if you don't find a functionality within jQuery, there are thousands of plug-
ins available on the internet. A very good overview is given by the official jQuery regis-
try at https://plugins.jquery.com/.

10.2 Working with the DOM

Working with the DOM wasn’t always as comfortable as it is now thanks to methods
like querySelector() and querySelectorAll(). For a long time, jQuery was the first
choice when it came to processing the DOM in a relatively simple way—to select,
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modify, or add elements, for example. Even today, jQuery supports you in the follow-
ing tasks, among others:

m Selection of elements (Section 10.2.1)

® Accessing and modifying content (Section 10.2.2)

m Filtering selected elements (Section 10.2.3)

®  Accessing attributes (Section 10.2.4)

® Accessing CSS properties (Section 10.2.5)

m Navigating between elements (Section 10.2.6)

m Using effects (Section 10.2.7)

10.2.1 Selecting Elements

Using jQuery, elements can be selected using CSS-like selectors. These selectors can be
divided into the following groups:

® Basic selectors
Essential selectors that you already know from CSS (see Table 10.1)

® Hierarchy selectors
Selectors involving the hierarchy of elements (see Table 10.2), also already known
from CSS

® Basic filter selectors
Selectors that allow you to more specifically filter individual elements, not all of
which exist in CSS (see Table 10.3)

® Content filter selectors
Selectors that include the content of elements (see Table 10.4)

® Visibility filter selectors
Selectors involving the visibility of elements (see Table 10.5)

m  Attribute filter selectors
Selectors that include the attributes of elements (see Table 10.6)

® Form filter selectors
Selectors that are specifically useful for selecting form elements (see Table 10.7)

m  Child filter selectors
Selectors for selecting child elements (see Table 10.8)

i Elements with any element name

elementName Elements of type elementName

Table 10.1 Basic Selectors in jQuery
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#id Element with the ID id
.class Elements of the class class

selektorl, selector2 Elements that match either the selectorl selector or the selec-
tor2 selector

Table 10.1 Basic Selectors in jQuery (Cont.)

elementlelement2 All elements of type element2 that are inside an element of type
elementl
elementl > element2 All elements of type element2 that are direct child elements of an

element of type element1

elementl +element2 All elements of type element2 that directly follow an element of
type elementl

elementl ~element2 All elements of type element2 that follow an element of type
elementl

Table 10.2 Hierarchy Selectors in jQuery

:animated Selects elements that are currently used within an animation.

:header Selects all heading elements—that is, <h1>, <h2>, <h3>, <h4>,
<h5>, and <h6>.

:lang() Selects all elements for the passed language.
:not() Selects all elements that do not match the passed selector.
:root Selects the root element (not the document node)—that is, the

<html> element.

:target Selects the element identified by the fragment ID of the corre-
sponding URL. For example, if the URL is http://www. javas-
cripthandbuch.de#jquery, then $(' :target ") will select the
element with the ID jquery.

Table 10.3 Basic Filter Selectors in jQuery
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:contains() Selects all elements that contain the passed text
rempty Selects all elements that have no child elements or child nodes
:has() Selects all elements that contain at least one element that

matches the passed selector

:parent Selects all elements that have at least one child node

Table 10.4 Content Filter Selectors in jQuery

:hidden Selects all elements that are not visible

:visible Selects all visible elements

Table 10.5 Visibility Filter Selectors in jQuery

[name|="value"] Selects elements with the attribute name for which the values are
a series of values separated by minus signs and where the first
value is value

[name*= "value"] Selects elements with the attribute name, the value of which con-
tains value as a substring

[name~="value"] Selects elements with the attribute name, the value of which is a
list of values, one of which is equal to value

[name$="value"] Selects elements with the attribute name, the value of which ends
with value

[name="value"] Selects elements with the attribute name that has the value value

[name!="value"] Selects elements with the attribute name that do not have the
value value

[name”="value"] Selects elements with the attribute name, the value of which

begins with value

[name] Selects elements with the attribute name
[name="value"] Selects elements with the attribute name having the value value
[name2="value2"] and with the attribute name2 having the value value2

Table 10.6 Attribute Filter Selectors in jQuery

563




10 Simplifying Tasks with jQuery

:button Selects all buttons

:checkbox Selects all checkboxes

:checked Selects all selected or activated elements

:disabled Selects all disabled elements

:enabled Selects all activated elements

:focus Selects all elements that have the focus

:file Selects all file input fields

:image Selects all elements with the attribute type having the value
image

:input Selects all input fields

:password Selects all password fields

:radio Selects all radio buttons

:reset Selects all elements with the attribute type having the value
reset

:selected Selects all selected elements

:submit Selects all elements with the attribute type having the value sub-
mit

1text Selects all text input fields

Table 10.7 Form Filter Selectors in jQuery

:first-child Selects the first child element

:first-of-type Selects the first element of a given type
:last-child Selects the last child element

:last-of-type Selects the last element of a given type
:nth-child() Selects the nth child element

:nth-last-child() Selects the nth child element, counting from the end

Table 10.8 Child Filter Selectors in jQuery
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:nth-of-type() Selects the nth element of a given type

:nth-last-of-type() Selects the nth element of a given type, counting from the end

:only-child Selects elements that are the only child element of their parent
element
zonly-of-type() Selects elements that are the only child element of their parent

element of a given type
Table 10.8 Child Filter Selectors in jQuery (Cont.)

You can find some examples of using these selectors in Listing 10.10, and complete lists
of all corresponding selectors can be found in the tables ahead.

$(document).ready(() => {

const inputElements = $('input'); // all <input> elements

const john = $('#john'); // element with the ID "john"
const oddElements = $('.odd"); // elements of the class "odd"
const elements = $('td, th'); // all <td>- und <th> elements

const inputJohn = $('input[name="john"]'); // <input> elements the
// name attribute of which
// has the value "john"

const oddRows = $("tr').odd()); // all "odd" <tr> elements
const evenRows = $('tr').even(); // all "even" <tr> elements
const listItemsAtIndex = $('li:eq(2)'); // all <1li> elements at index 2
const allOthers = $(':not(1i)"); // all elements other than <1i>

const notExample = $(':not(.example)'); // all elements without the CSS
// class "example"

1;
Listing 10.10 A Few Examples of Using Selectors

Note

Some selectors such as :odd (for selecting all "odd" elements), :even (for selecting all
"even" elements), : first (for selecting the first elements), and :1ast (for selecting the
last elements) are deprecated since jQuery 3.4. Instead, you should first select the ele-
ments using the appropriate selector and apply the odd(), even(), first(), and last()
methods on the result set (see Listing 10.10 for the use of odd() and even()).
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10.2  Working with the DOM

Combination of Selectors

The individual selectors naturally can be combined with each other, as you know from
Css.

10.2.2 Accessing and Modifying Content

After you've selected elements via the jQuery method using the selectors presented in
the previous section, the jQuery object provides various methods for the selected ele-
ments to access and modify the content. These include but are not limited to the fol-
lowing:

® Accessing and modifying HTML and text content (see Table 10.9)

® Adding content within an element (see Table 10.10 and Figure 10.1)

® Adding content outside an element (see Table 10.11 and Figure 10.1)

® Adding content around an element (see Table 10.12)

m Replacing content (see Table 10.13)

® Removing content (see Table 10.14)

html() Without an argument, this method returns the HTML content of an ele-
ment. With an argument, this method sets the HTML content of an ele-
ment.

text() Without an argument, this method returns the text content of an ele-
ment. With an argument, this method sets the text content of an ele-
ment.

Table 10.9 Methods for Retrieving and Defining Content

append() Adds content to the end of the selected elements: $(a) .append(b)
adds content b to the end of element a (see Figure 10.1).

appendTo() Opposite of append(); that is, $(a) .appendTo(b) adds element a as
content to the end of element b.

prepend() Inserts content at the beginning of the selected elements: $(a) . pre-
pend(b) adds content b to the beginning of element a (see Figure 10.1).

prependTo() Opposite of prepend(); thatis, $(a) .prependTo(b) adds element a as
content to the beginning of element b.

Table 10.10 Methods for Adding Content within an Element
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prepend() append()

before() after()

Figure 10.1 The Different Methods for Adding Content inside and outside Elements

after() Adds content after each of the selected elements: $(a).after(b)
inserts content b after element a (see Figure 10.1).

before() Adds content before each of the selected elements: $(a) .before(b)
inserts content b before element a (see Figure 10.1).

insertAfter() Opposite of after(); thatis, $(a).insertAfter(b) inserts element a
after element b.

insertBefore() Opposite of before(); thatis, $(a).insertBefore(b) inserts element
a before element b.

Table 10.11 Methods for Adding Content outside an Element

clone() Creates a copy of the selected elements. More precisely, a so-called deep
copy is created, which also copies child elements of the selected ele-
ments.

wrap() Adds new content around each of the selected elements.

wrapAll() Adds new content around all selected elements.

wrapInner() Adds new content around the content of each of the selected elements.

Table 10.12 Methods for Adding Content around an Element

replaceWith() Replaces the selected elements with new content: $(a).replace-
With(b) replaces element a with content b.

Table 10.13 Methods for Replacing Content
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replaceAll() Opposite of replaceWith(); thatis, $(a).replaceAll(b) replaces all
elements selected by selector b with the content in a.

Table 10.13 Methods for Replacing Content (Cont.)

detach() Removes the selected elements from the DOM tree but retains refer-
ences to the removed elements so that they can be reincorporated into
the DOM tree at a later time

empty () Removes all child nodes from the selected elements
remove () Removes the selected elements from the DOM tree
unwrap() Removes the parent element from each of the selected elements

Table 10.14 Methods for Removing Content

Some examples of these methods are shown in Listing 10.11. For example, you can use
the html() method to access the HTML content, the text() method to access the text
content (both read and write access), append() to append new content to the existing
content of the selected elements, prepend() to insert content before the existing con-
tent, after() to append new content to the selected elements, and before() to insert
content before the selected elements.

// Add new HTML content
$('#main').html('<div>New content</div>"');
// Access the HTML content

const htmlContent = $('#main').html();

// Add new text content
$('#main').text('New text content');
// Access the text content

const textContent = $('#main').text();

// Add new content after the

// existing content of each <div> element
// with the CSS class "example"
$('div.example').append('<p>Example</p>');

// Add new content before the

// existing content of each <div> element
// with the CSS class "example"
$("div.example').prepend('<p>Example</p>');
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// Add new content after each
// <div> element with the CSS class "example"
$('div.example').after('<p>Example</p>");

// Add new content before each
// <div> element with the CSS class "example"
$('div.example').before( ' <p>Example</p>");

Listing 10.11 Some Examples of Changing and Adding Content

10.2.3 Filtering Selected Elements

The jQuery object also provides various methods for the selected elements, which you
can use to further narrow down the currently selected elements (see Table 10.15). Some
examples are shown in Listing 10.12: for example, the eq() method limits the selection
to the element at index 2 (i.e,, the third <1i> element in the example); the first() and
last() methods let you select the first and last of the currently selected elements,
respectively; the filter() method limits the selection to the specified selector; and the
not() method limits the selection to the elements that do not match the specified
selector. You can also use the has() method to select the elements that have at least one
child element that matches the given selector. Figure 10.2 illustrates the filter methods
shown in Listing 10.12.

// Selection of the third <1i> element

$('1i").eq(2);

// Selection of the first <1li> element

$('11") . first();

// Selection of <li> elements that have the CSS class ".selected"
$('11i").filter('.selected');

// Selection of all <1li> elements that contain a <ul> element
$('1i").has('ul');

// Selection of all elements that have the CSS class ".selected"
$('1i").has('.selected");

// Selection of the last <1i> element

$('11").last();

// Selection of all class attributes of the <1li> elements
$('1i").map(() => { this.className });

// Selection of all <1li> elements that do not have the CSS class ".selected"
$('1i").not('.selected");

// Selection of the first two <1i> elements

$('11").slice(0, 2);

Listing 10.12 Usage of Different Filter Methods
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Figure 10.2 Narrowing Down Elements via jQuery Filter Methods

add() Adds new elements to a selection of elements

addBack () Adds a previous selection to the current selection of elements

eq() Reduces the selected elements to one element at a given index

filter() Reduces the selected elements to those elements (1) that match the passed

selector or (2) for which the passed filter function returns true

find() Selects the child elements of the selected elements that (1) match the
passed selector, (2) are contained in the passed jQuery object, or (3) are equal
to the passed element

first() Reduces the selected elements to the first element

has () Reduces the selected elements to those elements that have a child element
that (1) matches the passed selector or (2) is equal to the passed element

Table 10.15 Methods for Filtering
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is() Checks if at least one of the selected elements (1) matches the passed selec-
tor, (2) returns true for the passed filter function, (3) is contained in the
passed jQuery object, or (4) is one of the elements passed as parameter

last() Reduces the selected elements to the last element

not() Reduces the selected elements to those that (1) do not match the passed
selector, (2) do not match the passed filter function, or (3) are not contained
in the passed jQuery object

slice() Reduces the selected elements to a subset defined by start and end index

Table 10.15 Methods for Filtering (Cont.)

10.2.4 Accessing Attributes

The jQuery object also provides some methods to access HTML attributes (see Table
10.16). The attr() method can be used to determine or reset values of attributes, as
shown in Listing 10.13: if you pass the name of an attribute to the method, the method
returns the corresponding value of the attribute; if, on the other hand, you pass
another string as the second argument to the method, this string is used as the new
value for the attribute.

Alternatively, you can pass an object to the method in order to add several attributes in
one go. In this case, the object's property names are used as names for the attributes,
and the object property values are used as values for the attributes.

To delete attributes, however, use the removeAttr () method. For adding and removing
CSS classes, the methods addClass() and removeClass() are available. However, these
two methods are actually redundant—at least for newer browsers that support the
classList property, which provide equivalent functionality via the add() and remove()
methods.

const element = $('a#main');
// Read access to the "href" attribute of the element
const href = element.attr('href');
// Write access to the "href" attribute of the element
element.attr('href', 'index.html');
// Alternative write access via configuration object
element.attr({

href: 'index.html',

target: ' blank’
bs
// Remove the "href" attribute from the element
element.removeAttr('href');

571




10 Simplifying Tasks with jQuery

// Add a CSS class
element.addClass('highlighted");

// Remove a CSS class
element.removeClass('highlighted');

Listing 10.13 Access to Attributes and CSS Classes

attr() With one argument, this method returns the value for an attribute (e.g.,
$(“attmain’).attr(‘href’)). With two arguments, this method sets
the value of an attribute (e.g., $('atfmain').attr('href',
"index.html")).

removeAttr() Removes an attribute from an element, e.g., $('a#tmain').removeAttr
("href")).
addClass() Adds a new CSS class to the values in the class attribute. In newer

browsers, this is possible without jQuery thanks to the standardized
classlist property and its add() method.

removeClass() Removes a CSS class from the values in the class attribute. This too is
possible in newer browsers without jQuery thanks to the classList
property and its remove () method. However, the removeClass ()
method can alternatively be passed a function that returns a comma-
separated list of CSS classes. This functionality isn’t possible via the
remove () method of the classList property.

toggleClass() Toggles a CSS class: if the element has the passed class, the class will be
removed, and if the element doesn’t have the passed class, the class will
be added.

Table 10.16 Methods for Accessing Attributes and CSS Classes

10.2.5 Accessing CSS Properties

To access CSS properties, jQuery provides the css() method. Like other methods, such
as html(), text(), and attr(), this method can be used to both read and set values. For
the former, pass the method the name of the CSS property of which the value is to be
read; for the latter, specify the value to be set as the second parameter.

Alternatively, as with the attr() method, an object can be passed as an argument, and
the respective properties are then used as CSS properties. In addition, you can also pass
an array of strings as an argument to read the values of several CSS properties in one
step. Some examples are shown in Listing 10.14.

// Read the background color of the <body> element
const backgroundColor = $('body").css('background-color');
// Read the foreground color and the background color of the <body> element
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const properties = $('body").css(['color', 'background-color']);
// Set the background color of the <body> element
$('body").css("'background-color', 'blue');
// Set the foreground color and the background color of the <body> element
$('body").css({

'color': 'white',

'background-color': ‘blue’

D;
Listing 10.14 Accessing CSS Properties

10.2.6 Navigating between Elements

Starting from a selection of elements stored in a jQuery object, you can use the meth-
ods presented ahead to find elements that have a specific relationship to these ele-
ments, such as parent elements, sibling elements, and child elements. Some examples
are shown in Listing 10.15. The corresponding descriptions of the methods can be found
in Table 10.17.

// Child elements

// Selection of all child elements of <ul>
const listItems = $('ul').children();

// Selection of the next link within <ul>
const closestlink = $('ul').closest('a");

// Sibling elements

// Selection of the next sibling element

const nextSibling = $('ul").next();

// Selection of the next link element

const nextSiblinglink = $('ul").next('a");

// Selection of all next sibling elements

const nextSiblings = $('ul").nextAll();

// Selection of all next link elements

const nextSiblinglinks = $('div').nextAll('a");

// Selection of all next sibling elements up to the specified element
const nextSiblingsUntil = $('div').nextUntil('a");

// Selection of the previous sibling element

const previousSibling = $('ul").prev();

// Selection of all previous sibling elements

const previousSiblings = $('ul").prevAll();

// Selection of all previous sibling elements up to the specified element
const previousSiblingsUntil = $('div').prevUntil('a");

// Selection of all sibling elements

const siblings = $('div').siblings();
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// Parent elements

// Selection of the parent element

const parent = $('ul').parent();

// Selection of all parent elements

const parents = $('ul').parents();

// Selection of all parent elements up to the specified element
const parentsUntil = $('ul').parentsUntil('div');

Listing 10.15 Various Examples of Navigating between Elements

children() Selects the child elements of the selected elements. Optionally, a selec-
tor can be passed--in that case only those child elements are selected
to which this selector applies..

closest() Selects the first element of the selected elements that matches the
selector passed as a parameter or for which one of the parent ele-
ments matches the selector.

next () Selects the next sibling element of the selected elements. If a selector
is passed, the next sibling element that matches this selector is
selected.

nextAll() Selects all next sibling elements of the selected elements. If a selector
is passed, the next sibling elements that match this selector are
selected.

nextUntil() Selects all next sibling elements of the selected elements. If a selector
is passed, the next sibling elements are selected up to the sibling ele-
ment that matches this selector.

parent() Selects the parent element of the selected elements.

parents() Selects all parent elements preceding in the hierarchy of the selected
elements.

parentsUntil() Selects all parent elements preceding in the hierarchy of the selected

elements up to an element that (1) matches the passed selector, (2)
matches the passed element, or (3) is contained in the passed jQuery
object.

prev() Selects the previous sibling element of the selected elements. If a
selector is passed, the previous sibling element that matches this
selector is selected.

prevAll() Selects all previous sibling elements of the selected elements. If a
selector is passed, the previous sibling elements that match this selec-
tor are selected.

Table 10.177 Methods for Navigating the DOM Tree
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prevUntil() Selects all previous sibling elements of the selected elements. If a
selector is passed, the previous sibling elements are selected up to the
sibling element that matches this selector.

siblings() Selects all sibling elements of the selected elements. If a selector is
passed, the sibling elements that match this selector are selected.

Table 10.17 Methods for Navigating the DOM Tree (Cont.)

10.2.7 Using Effects and Animations

Effects such as fading in or out elements of a web page were not always as easy to imple-
ment as they are now with the help of CSS3 animations. It’s little wonder then that
jQuery offers several methods for this as well, the most important of which are shown
in Table 10.18. For example, with fadeIn(), fadeOut(), and fadeToggle(), it's possible to
fade the selected elements in and out, and slideDown(), slideUp(), and slideToggle()
enable you to slide the selected elements in and out.

The most flexible option is provided by animate(). This method can be passed—in the
form of a configuration object—various CSS properties to be animated, the speed or
duration of the animation (either as a string, such as one of the values fast or slow, or
as a numeric value specifying the duration in milliseconds), an easing function (which
describes how the speed of the animation behaves in relation to the time within the
animation), and a callback function that’s called when the animation has been fully
executed (see Listing 10.16).

animate() Enables the animation of CSS properties.

clearQueue() Removes all animations from the queue that have not yet been exe-
cuted.

delay() Delays an animation by a specified number of milliseconds.

dequeue() Executes the next animation in the queue.

fadeIn() Fades the selected elements in.

fadeOut () Fades the selected elements out.

fadeTo() Adjusts the opacity of the selected elements.

fadeToggle() Fades the selected elements in or out, depending on their state: if an

element is visible, it’s faded out, but if it isn’t visible, it’s faded in.

Table 10.18 Methods for Displaying and Hiding Elements
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finish() Stops the current animation, removes all animations from the queue,
and sets the CSS properties of the selected elements to the target value.

hide() Hides the selected elements.

queue() Accesses the animations in the queue.

show() Shows the selected elements.

slideDown() Slides the selected elements down, from top to bottom.
slideToggle() Slides the selected elements in or out, depending on their state: if an

element is visible, it slides out from bottom to the, but if it isn’t visible,
it slides in from top to bottom.

slideUp() Slides the selected elements up, from bottom to top.
stop() Stops the current animation.
toggle() Hides or displays the selected elements: if an element is visible, it’s

hidden, but if it isn’t visible, it’s displayed.

Table 10.18 Methods for Displaying and Hiding Elements (Cont.)

'use strict';
$(document).ready(() => {
$("'main').animate(
{ opacity: 0.75 }, // Properties

'fast', // Speed
"swing', // Easing
0 = {

// Animation completed
}

);
b;
Listing 10.16 Accessing CSS Properties

10.3 Responding to Events

As you recall from Chapter 6, there are several options for catching events. Event han-
dlers are usually available for the corresponding event, and there’s also the possibility
to register several event listeners for one event via the addEventlListener() method.
Older versions of Internet Explorer also use the attachEvent () method, which fulfills a
similar task.

576

10.3 Responding to Events

We also showed a corresponding browser-independent helper function in Chapter 6.
The jQuery library offers a browser-independent solution as well.

10.3.1 Registering Event Listeners

jQuery provides several methods to respond to events or register event listeners. So, on
the one hand, you can use the on() method, which is called on the jQuery object, as
shown in Listing 10.17: you pass the name of the event to be responded to as the first
parameter and the event listener in the form of a function as the second parameter.

$("#button').on('click', (event) => {
console.log('Button pressed');

1);
Listing 10.17 Registering an Event Listener

Note

If the jQuery object contains references to multiple elements, calling an event method
for each element in the selection invokes the corresponding event listener.

As an alternative to the general on() method, jQuery offers various methods named
specifically after the event to be caught, such as the click() method found in Listing
10.18. Logically, these event methods don’t need to be passed the name of the respec-
tive event as a parameter, but only the event listener.

$('#button').click((event) =>
console.log('Button pressed

1
Listing 10.18 Registering an Event Listener via the Shorthand Method

{
)

Overall, the event methods can be classified as follows:

®m General event methods (see Table 10.19)

® Event methods for handling general events (Section 10.3.2)

® Event methods for handling mouse events (Section 10.3.3)

® Event methods for handling keyboard events (Section 10.3.4)

® Event methods for handling form events (Section 10.3.5)
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bind() Adds an event listener for an event. Since jQuery 1.7, however, the
on() method should be used according to the official documenta-
tion.

delegate() For older jQuery versions, this is the preferred method to add an

event listener for an event. However, since jQuery 1.7, the on()
method should be used.

off() Removes an event listener for an event.
on() Adds an event listener for an event.
one() Adds an event listener that is triggered at most once per event for

each selected element.

trigger() Runs all event listeners registered for an event.

triggerHandler () Like the trigger () method, but doesn’t perform the default behav-
ior for an event (such as submitting a form).

unbind() Removes an event listener for an event. Since jQuery 1.7, however,
the off() method should be used according to the official docu-
mentation.

undelegate() For older jQuery versions, this is the preferred method to remove an

event listener for an event. However, since jQuery 1.7, the of ()
method should be used.

Table 10.19 Methods for Managing Event Handlers

10.3.2 Responding to General Events

Table 10.20 contains some methods for registering event listeners for general events:
error () enables you to register event listeners that are triggered when an error event is
raised on the selected elements, event listeners registered via ready() are called as soon
as the corresponding elements have been loaded (see Listing 10.19), event listeners reg-
istered via resize() are called whenever a resize event occurs for the elements, and
event listeners registered via scrol1() are called whenever a scroll event occurs for the
elements.

error() Register event listeners that are executed when an error event occurs.

ready() Register event listeners that are executed when the DOM or the element
passed to the method is fully loaded.

Table 10.20 Different Methods for Registering Event Listeners
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resize() Register event listeners that are executed when a resize event occurs.

scroll() Register event listeners that are executed when an element is scrolled.

Table 10.20 Different Methods for Registering Event Listeners (Cont.)

$(document).ready(() => {
console.log('Web page loaded');

1;

Listing 10.19 Registering an Event Listener for Loading the Document

10.3.3 Responding to Mouse Events

Table 10.21 shows the methods jQuery uses to register event listeners for mouse events.
They basically correspond to the events you already know from Chapter 6: click() and
dbclick() for mouse clicks; focusin() and focusout () for focusing elements; and mouse-
down (), mouseenter (), mouseleave(), mousemove(), mouseout (), mouseover (), and mouseup()
for mouse movements over elements.

click() Register event listeners that are executed when the mouse is clicked

dblclick() Register event listeners that are executed when the mouse is double-
clicked

focusin() Register event listeners that are executed when an element receives
focus

focusout() Register event listeners that are executed when an element loses focus

hover () Register event listeners that are executed when the mouse pointer hov-

ers over an element

mousedown () Register event listeners that are executed when the mouse pointer is
over an element and the mouse button is pressed

mouseenter () Register event listeners that are executed when the mouse pointer
enters an element

mouseleave() Register event listeners that are executed when the mouse pointer leaves
an element

mousemove () Register event listeners that are triggered when the mouse moves over
an element

Table 10.21 Methods for Handling Mouse Events
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mouseout () Register event listeners that are executed when the mouse pointer leaves
an element
mouseover () Register event listeners that are executed when the mouse pointer

enters an element

mouseup() Register event listeners that are executed when the mouse pointer is
over an element and the mouse button is released

Table 10.21 Methods for Handling Mouse Events (Cont.)

An example is shown in Listing 10.20.

$('buttontttarget').click((event) => {
console.log('Button was pressed');

1;

Listing 10.20 Registering an Event Listener for a Mouse Event

By the way, it’s also possible to use the event methods not for registering event listen-
ers, but for triggering events. To do this, simply call the corresponding method without
any arguments. In Listing 10.21, for example, within the second event listener (regis-
tered on the <button> element with the ID target2), the click event is triggered for the
<button> element with the ID target.

$('buttontttarget').click((event) => {
console.log('Button was pressed');

1
$('buttonttarget2').click((event) => {
$('buttontttarget').click();

1);
Listing 10.21 Triggering an Event

Note

Most methods in jQuery can be called with a different number of arguments, and each
has different functions. For example, as shown earlier in this chapter, you can use the
attr() method to both read and write HTML attributes or, as just shown, you can use
the event methods to both register event listeners and trigger events.
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10.3.4 Responding to Keyboard Events

For registering event listeners for keyboard events, the methods listed in Table 10.22
are available: keydown (), keyup(), and keypress() for registering event listeners that are
triggered when a key is pressed or released. Again, all of this should be familiar from
Chapter 6.

keydown () Register event listeners that are executed when a key on the keyboard is
pressed. If a key is pressed for a longer time, the event listener is executed
several times.

keypress() Register event listeners that are executed when a key on the keyboard is
pressed.

keyup() Register event listeners that are executed when a key on the keyboard is
released.

Table 10.22 Methods for Handling Keyboard Events

An example of using these methods is shown in Listing 10.22. This nicely illustrates
how the individual event methods (or all jQuery methods in general) can be used one
after the other.

$("inputffusername")
.keypress((event) => {
console.log('Key for entering username pressed.');
1)
.keydown((event) => {
console.log('Key is pressed.');
1)
.keyup((event) => {
console.log('Key for entering username released.');

;s

Listing 10.22 Registering Different Event Listeners for Keyboard Events

Fluent API

When an API allows you to call a method directly on the return value of a method, as in
Listing 10.22, it is also called a fluent API.

10.3.5 Responding to Form Events

The methods listed in Table 10.23 for registering event listeners related to form events
should also be essentially familiar from Chapter 6: blur() and focus() for registering
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event listeners that are triggered when a form field loses or receives focus, change()
when the value of a form field changes, select() when a specific value is selected for a
form field, and submit() when a form is submitted.

blur() Register event listeners that are executed when a form field loses focus

change() Register event listeners that are executed when the selected value of a selec-
tion list, a checkbox, or a group of radio buttons has been changed

focus() Register event listeners that are executed when a form field receives focus

select() Register event listeners that are executed when the text of an input field
(<input> element of the text type) or a text input area (<textarea> element)
is selected

submit() Register event listeners that are executed when a form is submitted

Table 10.23 Methods for Handling Form Events

Some examples are shown in Listing 10.23.

$("input#tusername")
.focus((event) => {
console.log('Input field focused.');

b
.blur((event) => {

console.log('Input field no longer focused."');

1)
.change((event) => {
console.log('Text changed.');

9
.select((event) => {
console.log('Text selected.');

s

Listing 10.23 Registering Different Event Listeners for Form Events

10.3.6 Accessing Information from Events

The event object, which is available as a parameter within each event listener, contains
different information and provides different methods, as shown in Table 10.24. Basi-
cally, this is the information also contained in the standard event object, as discussed
in Chapter 6, supplemented by a few more details. But again, jQuery hides the browser-
specific details, allowing for browser-independent use.
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currentTarget

data

delegateTarget

isDefaultPrevented()

isImmediatePropagationStopped()

isPropagationStopped()

metaKey

namespace

pagex

pageY

preventDefault()

relatedTarget

result

stopImmediatePropagation()

stopPropagation()

Contains the current element during the bubbling
phase

Contains an optional data object passed to the
event method

Contains the element on which the event listener
was registered

Indicates whether preventDefault () was called
on the event object

Indicates whether stopImmediatePropagation()
was called on the event object

Indicates whether stopPropagation() was called
on the event object

Contains an indication of whether the so-called
meta key (for Mac keyboards, the key; for
Windows keyboards, the key) was

pressed while the event was triggered.
Contains the namespace of the event

Contains the mouse position relative to the left
edge of the document

Contains the mouse position relative to the top of
the document

Prevents the default action for an event from being
executed

For an element for which an event was triggered,
contains the element directly related to the event
(e.g., in the case of a mouseout event, the element
on which the mouseover event was triggered by the
same user action)

Contains the result of an event listener previously
triggered for an event

Immediately prevents the event from rising further
during the bubbling phase

Prevents the event from rising further during the
bubbling phase

Table 10.24 Properties and Methods of the Event Object
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target Contains the element that triggered the event

timeStamp Contains a timestamp indicating the time when
the event was triggered

type Contains the type of the event

which In the case of mouse or keyboard events, contains
the mouse button or key on the keyboard that was
pressed

Table 10.24 Properties and Methods of the Event Object (Cont.)

Listing 10.24 shows an example of how you can access this information. Most impor-
tantly, you can also see here that it’s possible to pass an event a data object that you can
then access within the event listener.

$("input').on(

"change,

{
value : 4711 // Data object

b

(event) => {
console.log(event.currentTarget); // current element
console.log(event.data); // data object
console.log(event.data.value); // property of the data object
console.log(event.pageX); // x position of mouse
console.log(event.pageY); // y position of mouse

¥

);
Listing 10.24 Accessing the jQuery Event Object

10.4 Creating Ajax Requests

Generating Ajax requests is also considerably simplified by jQuery. In this section, we'll
show you how to perform the examples in Chapter 9 for Ajax-based loading of HTML,
XML, and JSON data via the appropriate jQuery methods.

10.4.1 Creating Ajax Requests

For creating Ajax requests, jQuery provides several methods, listed in Table 10.25. These
are methods that—with the exception of the load() method—are called not on a
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selection of elements, as has been the case so far in this chapter, but directly on the
$ object. Therefore, we call these methods global jQuery methods ahead.

$.ajax() Performs an asynchronous HTTP request

$.get() Performs an HTTP request using the HTTP GET method

$.getISON() Performs an HTTP GET request to load JSON data from a server
$.getScript() Performs an HTTP GET request to load JavaScript data from a server and

execute it directly

load() Performs an HTTP GET request to load HTML data from a server and
embed it directly into the selected elements

$.post() Performs an HTTP request using the HTTP POST method

Table 10.25 Main Methods for Working with Ajax

The jQuery global method ajax() (or $.ajax()) allows you to create arbitrary Ajax
requests. The configuration object expected by this method gives you the most leeway
regarding the configuration of a request.

The get() and post () methods are used to create GET or POST requests, meaning that you
don't have to worry about specific configurations for these request types, such as spec-
ifying the HTTP method.

In addition, special methods are available for loading HTML data (1oad()), loading JSON
data (getJSON()), and loading JavaScript files (getScript()).

Listing 10.25 shows an example of using the ajax() method, which you already know
about in principle from Chapter 9: the goal is to load JSON data from the server and
dynamically create a table for this data.

The URL for the request is configured via the url property of the configuration object,
the type expected as a response via the dataType property (possibilities include, for
example, json, xml, or html), and the type of the request via the type property. Callback
functions for the successful execution of a request or also for errors can be defined via
the success and error properties. Within the success callback function, the response of
the server is accessed via the data parameter in the example. Because this is JSON data,
it can be processed directly to create the table, as already mentioned.

'use strict';
$(document).ready(() => {
$.ajax({
url: 'artists.json’,
dataType: 'json',
type: 'GET',
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success: (data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; 1 < artists.length; i++) {
const artist = artists[i];
const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];
const row = createRow(
artist.name,
album.title,
album.year
);
$(table).find('tbody").append(row);
}
}
$('#artists-container"').append(table);

1
error: (jgXHR, errorMessage, error) => {
}
1);
1);

Listing 10.25 Generating an Ajax Request

As an alternative to specifying the callback functions via the success and error proper-
ties, you also have the option of defining them via the done() and fail() methods,
which (thanks to jQuery's Fluent API) can be combined directly with calling the ajax()
method (see Listing 10.26).

'use strict';
$(document).ready(() => {
$.ajax({
url: 'artists.json',
dataType: 'json',
type: 'GET'
b
.done((data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; i < artists.length; i++) {
const artist = artists[i];
const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];
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const row = createRow(
artist.name,
album.title,
album.year
)5
$(table).find("tbody").append(row);
}
¥
$('#artists-container').append(table);
b
.fail((jgXHR, errorMessage, error) => {
bs
1
Listing 10.26 Generating an Ajax Request via the Fluent API

10.4.2 Responding to Events

For responding to events related to working with Ajax requests, jQuery provides the
methods shown in Table 10.26.

ajaxComplete() Specify an event listener that is called when an Ajax request completes

ajaxError() Specify an event listener for errors

ajaxSend() Specify an event listener that is called when an Ajax request is sent

ajaxStart() Specify an event listener that is called when the first Ajax request is
started

ajaxStop() Specify an event listener that is called when all Ajax requests have
completed

ajaxSuccess () Specify an event listener that is called whenever an Ajax request com-

pletes successfully

Table 10.26 Methods for Handling Ajax Events

An example is shown in Listing 10.27. There are two things to keep in mind here: first,
the methods are each called on a selection of elements (or the corresponding jQuery
object); second, the event listeners each have a different number of parameters. The
event listeners for ajaxStart() and ajaxStop() have no parameters at all, the event lis-
teners for ajaxSend() and ajaxComplete() each get the event object, plus an object rep-
resenting the Ajax request and an object with configurations related to the request. The
event listeners for the ajaxSuccess() and ajaxError() methods also receive the
response data and the error object, respectively.
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$(document)

.ajaxStart(() => {
console.log('Request started."');

)

.ajaxSend((event, request, settings) => {
console.log('Request sent.');

19

.ajaxSuccess((event, request, settings, data) => {
console.log('Request completed successfully');

1))

.ajaxError((event, request, settings, error) => {
console.log('Error on request: ' + error);

3]

.ajaxComplete((event, request, settings) => {
console.log('Request completed.');

i)

.ajaxStop(() => {
console.log('All requests completed.');

1
Listing 10.27 Registering Different Event Listeners for Ajax Events

10.4.3 Loading HTML Data via Ajax

To load HTML data via Ajax, you can proceed as in Listing 10.28 and use the global
jQuery get() method. The important thing here is that you pass the value html to the
dataType property. You can then use html() in the corresponding callback function to
assign the response data directly to an element as HTML content.

'use strict';
$(document).ready(()
const login = $('#login');
const register = $('#register');
login.click((e) => {
e.preventDefault();
loadContent('login');
IOk
register.click((e) => {
e.preventDefault();
loadContent('register');
b;
D;

0 =1

function loadContent(name) {

$.get({
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url: name + '.html',
dataType: 'html'
}).done((data) => {
$('#main-content').html(data);
bs
}

Listing 10.28 Loading HTML Data via Ajax

But this process is even easier with the load() method, as shown in Listing 10.29. You
can call this method directly on a jQuery object (or the selection of elements it rep-
resents). As arguments, you pass the URL from which the HTML data should be loaded
and optionally a callback function that will be called when the data has been success-
fully loaded.

function loadContent(name) {
$("#main-content").load(
name + '.html',
(
responseText,
textStatus,
jgqXHRObject
) = {
console.log("'HTML loaded');
}
)5
}

Listing 10.29 Alternative Loading of HTML Data via Ajax

Sending Additional Data with the Request

You can optionally insert another argument between the URL and the callback func-
tion—namely to define the data to be sent to the server with the request (in the form
of a string). This is useful, for example, if the server is to generate either this or that
response based on the data.

10.4.4 Loading XML Data via Ajax

To load XML data, use the get () method as shown in Listing 10.30, passing the xm1 value
for the dataType property. Within the callback function, the response data is then
directly available as XML or as a DOM tree. The best thing about this is that the jQuery
$() method can also use it—for example, to select all <artist> elements using the
find() method as shown in the listing, to iterate over these elements using each()
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(another helper method of jQuery, by the way), or to access the text content of the
<title> and <year> elements using text().

'use strict';
$(document).ready(() => {
$.get({
url: 'artists.xml',
dataType: 'xml'
}).done((data) => {
const table = initTable();
const artists = $(data).find('artist');
artists.each((index, artist) => {
const albums = $(artist).find('album');
albums.each((index, album) => {
const row = createRow(
artist.getAttribute('name'),
$(album).find('title").text(),
$(album).find('year").text()

)5
$(table).find('tbody").append(row);
bs
bs
$('#artists-container').append(table);
bs

1;
Listing 10.30 Loading XML Data via Ajax

10.4.5 Loading JSON Data via Ajax

We showed you how to load JSON data using jQuery at the beginning of Section 10.4.1
using the ajax() method. Listing 10.31 shows the equivalent example using the get()
method. You specify json as the value for the dataType property and can then access the
JSON data sent by the server in the callback function as usual.

'use strict’;
$(document).ready(() => {
$.get({
url: 'artists.json’,
dataType: 'json'
}).done((data) => {
const table = initTable();
const artists = data.artists;
for (let i = 0; i < artists.length; i++) {
const artist = artists[i];
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const albums = artist.albums;
for (let j = 0; j < albums.length; j++) {
const album = albums[j];
const row = createRow(
artist.name,
album.title,

album.year
)5
$(table).find('tbody").append(row);
}
}
$('#artists-container').append(table);
1

s
Listing 10.31 Loading JSON Data via Ajax

Alternatively, jQuery provides the getJSON() method, which further simplifies request-
ing JSON data (see Listing 10.32). As arguments, you pass this method the URL to be
requested and a callback function to access the JSON data sent by the server.

'use strict';
$(document).ready(() => {
$.getISON(
'artists.json’,
(
data,
textStatus,
jgXHRObject
) = {
// here is the already known content
}
)5
b
Listing 10.32 Alternative Loading of JSON Data via Ajax

Sending Additional Data with the Request

As you saw with the load() method, you can optionally specify one more argument
between the URL and the callback function to define those data that should be sent to
the server with the request.
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10.5 Summary

In this chapter, you learned about the popular jQuery JavaScript library, which simpli-
fies many things, especially with regard to DOM manipulation, event handling, and
creating Ajax requests. The following list summarizes the most important aspects:

® jQuery is a library that mainly hides browser-specific details and provides helper
methods for recurring tasks that can be used across browsers.
® The linchpin for working with jQuery is the jQuery() or $() method.

® Among other things, you can pass a selector, an existing element, or an HTML string
as an argument to this method.

® Asareturn value, the method provides a wrapper object (jQuery object) that extends
the corresponding elements by additional methods (jQuery methods).

® Thus, a jQuery object provides various methods for working with the DOM, includ-
ing the following:
— Methods to access the content of elements
— Methods to filter selected elements
— Methods to access attributes
— Methods to access CSS properties
— Methods to navigate between elements
— Methods to animate elements or their CSS properties

® For working with events, jQuery provides several methods to register event listen-
ers, including the following:

— Methods to register event listeners for general events
— Methods to register event listeners for mouse events

— Methods to register event listeners for keyboard events
— Methods to register event listeners for form events

® Creating Ajax requests is also made easier by a number of helper methods, including
the following:

— A method to create arbitrary Ajax requests

— A method to create GET requests

— A method to create POST requests

— A method to load HTML content directly into an element via Ajax
— A method to load JavaScript files

— A method to load JSON files

® Most helper methods can be used for various purposes; for example, HTML attri-
butes can be both read and written via the attr () method, CSS properties can be read
and written via the css() method, and event listeners can be registered or removed
again via the event methods.
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Finally, Table 10.27 compares how different problems can be handled with jQuery and
with pure JavaScript. For more examples, we recommend looking at the http://you-

mightnotneedjquery.com website mentioned earlier. There you can see very nicely how
the code of both variants is about equally compact, especially in the DOM manipula-

tion area. When working with events and with Ajax, the code is still a bit more compact

with jQuery. In all cases, however, it’s true that jQuery is largely browser-independent,
while this doesn’t always apply to the pure JavaScript variants.

Working with the DOM

Add CSS class

Access child elements

Iterate over elements

jQuery:
$(element).addClass(
newClassName

)
Pure JavaScript:

if (element.classlist) {
element.classlList.add(newClassName);

} else {
element.className +=

}
jQuery:
$(element).children();

[T

+ newClassName;

Pure JavaScript:

element.children

jQuery:

$(selector).each(
(index, element) => {
}

)

Pure JavaScript:

const elements = document.querySelectorAll(
selector

)

Array.prototype.forEach.call(
elements, (element, index) => {
}

)

Table 10.27 Comparison between jQuery and Pure JavaScript
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Search elements below
an element

Search elements

Access attributes

Read HTML content

Write HTML content

Read text content

jQuery:
$(element).find(
selector

)
Pure JavaScript:

element.querySelectorAll(
selector

);

jQuery:

$(selector);

Pure JavaScript:

document. querySelectorAll(selector);
jQuery:
$(element).attr(name);

Pure JavaScript:
element.getAttribute(name);
jQuery:

$(element).html();

Pure JavaScript:
element.innerHTML;

jQuery:
$(element).html(content);
Pure JavaScript:
element.innerHTML = content;
jQuery:

$(element).text();

Pure JavaScript:

element.textContent;

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)
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Write text content

Next element

Previous element

Working with events

Add event listener

Remove event listener

jQuery:
$(element).text(content);

Pure JavaScript:

element.textContent = content;

jQuery:
$(element).next();

Pure JavaScript:

element.nextElementSibling;

jQuery:
$(element).prev();

Pure JavaScript:

element.previoustlementSibling;

jQuery:

$(element).on(
eventName,
eventHandler

)
Pure JavaScript:

element.addEventListener(
eventName,
eventHandler

i

jQuery:

$(element).off(
eventName,
eventHandler

)
Pure JavaScript:

element.removeEventlistener(
eventName,
eventHandler

i

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)
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Execute function when  jQuery:
loading the document $(d0cument).ready(() = {

s

Pure JavaScript:

function ready(callback) {
if (document.readyState != 'loading'){
callback();
} else {
document.addEventListener(
'DOMContentLoaded’,

callback
)
}
}
Working with Ajax requests
Send GET request jQuery:
$.ajax({
type: 'GET',
url: url,

success: response => {},
error: () => {}

};

Pure JavaScript:
fetch(url)

.then(response => {})
.catch(error => {});

Send POST request jQuery:
$.ajax({
type: 'POST',
url: url,
data: data
b

Pure JavaScript:

fetch('url', {
method: 'POST',
body: data,

1))

.then(response => {})

.catch(error => {});

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)
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Load JSON via Ajax jQuery:
$.getISON(
'data.json’,

(data) => {}
)5

Pure JavaScript:

fetch('data.json")
.then(response => response.json())
.then(data => {})
.catch(error => {});

Table 10.27 Comparison between jQuery and Pure JavaScript (Cont.)
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Source code 34
automated testing 936
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show in Opera 74
show in Safari 74
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Source file 34
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SpeechRecognition 691
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splice() 277,281
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Stack 272,287
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State 726
Stateless protocol 639
Statement 43,73
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named 166
static 760
Static methods 760
Static property 762
Step 32
stopPropagation() 447
Storage 647
StorageEvent 650
Store value in variables ..., 85
Streams
flowing mode 869
paused mode 869
piping 870
read data 868
write data 869
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String 98,116
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determine length 307
escaping 99
expressions 102
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match() 329
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multiline 102 Test fixture 939
placeholder 101 Test framework 61
replace() 329,347  Test program 936
search 308  Test-driven development ... 937
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search() 329 Text node 360
split 348  text/ecmascript 68
split() 329  text/javascript 68
structure 306 textContent 391
substr() 312 this 192,194
substring() 312 CONSLTUCLOY fUNCEION  ...oovveeevrrerrrscecrrrreonne 196
String concatenation 101 global function 196
String operator 116 object method 196
Strong typing 95 Thread 678
Style language 59  throw 205
Sub tags 709  Tight augmentation 790
Subclass 730  Top level await 814
Sublime Text 60  Transaction 658
submit() 472 Transform streams 867
Subobject 730  Transformation MatriX ... 615
Subtraction 114 Trap 825
Subtype 730 Tree representation 357
Subversion 949  True 103
Sun 46  try 202
Superclass 730, 732 Two-dimensional array ... 106
Superobject 730 TypeError 203
Supertype 730  typeof 233
SVG format 620
Swift 877 U
Switch branch 142
Symbol 112 Ul 49, 409
Symbol.iterator 266 Ul component 50,77
Syntax 85 UlEvent 435
Syntax error 198, 203 UML 726
System under test 936  undefined 110
Unidirectional communication ................... 631
T Unified modeling language (UML) ........... 726
Uniform resource identifier (URI) ................. 670
Tablet 877 Uniform resource locator (URL) .......ccoueveeenne. 670
Tag function 188  Uniform resource name (URN) .....cooocceeennn. 670
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Target phase 439  unshift() 276
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Template string 101 URI 670
expressions 102 error 203
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use 101 Use effect 575
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control LEDs 917 event 435
Test anything protocol ..., 948
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