Build and deepen your coding knowledge c Rheinwerk

from the top programming experts! Computing

Reading Sample

In these chapters, you'll explore a selection of key Node.js topics.
You'll take your first steps with the Node.js fundamentals, and then
explore the Express web application framework. Finally, you’ll walk
through creating command-line applications with Node.js.

“Basic Principles”

“Express”

import from 'express';
import from 'morgan’;
import { }from './movie/index.js';

= express();
.use(express.static(/public));
.use(morgan('commen’, {
.use('/movie!,
.get('/', (

“Node on the Command Line”

P@@®OOC

redirect('/movie); Co nte nts
listen(8080, () { ;
Jog('Server is listening');
Index
The Author

Node.|s

The Comprehensive Guide

Sebastian Springer

Node.js: The Comprehensive Guide

834 pages, 2022, $49.95

3 . ISBN 978-1-4932-2292-6
Sebastian Springer e Rheinwerk

Computing & www.rheinwerk-computing.com/5556

https://www.sap-press.com/nodejs_5556/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2292

Chapter1
Basic Principles

All beginnings are difficult.
—Ovid

Bringing more dynamics into web pages was the original idea behind JavaScript. The
scripting language was intended to compensate for the weaknesses of HTML when it
came to responding to user input. The history of JavaScript dates back to 1995 when it
was developed under the code name Mocha by Brendan Eich, a developer at Netscape.
One of the most remarkable facts about JavaScript is that the first prototype of this suc-
cessful and globally used language was developed in just 10 days. Still in the year of its
creation, Mocha was renamed to LiveScript and finally to JavaScript in a cooperation
between Netscape and Sun. This was mainly for marketing purposes, as at that time it
was assumed that Java would become the leading language in client-side web develop-
ment.

s ES2015 Support (e,

jed only to Nodejs

optimisation

proper tail calls (tail call i
directrecursion l co [o [o [oo [oo | oo [RECTENNCTNEE
mutual recursion g [[[[~ [B

syntax

default function

basic functonality I N N B N O N O B M
explicit undefined defers to the default | Emor |

defaults can refer to previous params

arguments object interaction

temporal dead zone

separate scope Yes Yes. | Eror | Eror | Emor |

new Function() support Yes 3 Yes Yes Yes. Yes. Yes

rest
basic functionality [Yes | Yes s Flagr
function 'length’ property Flagr
arguments object interaction

can't be used in setters - Flagr
new Function(support Flage

spread (..) operator

with arrays, in function calls

with arrays, in array literals

with sparse arrays, in function calls

with sparse arrays, in array literals

with strings, in function calls

with strings, in array literals

with astral plane strings, in function calls

with astral plane strings, in array literals

with generator instances, in calls

with generator instances, in arrays

with generic iterables, in calls s | ves | s Gl Eror [Emor |
with generic iterables, in arrays e Flage
with instances of iterables, in calls

with instances of iterables, in arrays

spreading non-iterables is a runtime error

Figure 1.1 Support for JavaScript Features in Node.js (http://node.green)

1 Basic Principles

Convinced by the success of JavaScript, Microsoft also integrated a scripting language
into Internet Explorer 3 in 1996. This was the birth of JScript, which was mostly compat-
ible with JavaScript, but with additional features added.

Today, the mutual vying of the two companies is known as the “browser wars.” The
development ensured that the two JavaScript engines steadily improved in both fea-
ture set and performance, which is the primary reason for JavaScript’s success today.

In 1997, the first draft of the language standard was created at Ecma International. The
entire language core of the script language is recorded under the cryptic designation
ECMA-262 or ISO/IEC 16262. The current standard can be found at www.ecma-interna-
tional.org/publications/standards/Ecma-262.htm. Due to this standardization, vendor-
independent JavaScript is also referred to as ECMAScript. Until a few years ago, the
ECMAScript standard was versioned in integers starting at 1. Since version 6, the ver-
sions are also provided with year numbers. ECMAScript in version 8 is therefore referred
to as ECMAScript 2017. As a rule, you can assume that the manufacturers support the
older versions of the standard quite well. You must either enable newer features by con-
figuration flags in the browser or simulate them via polyfills (that is, recreating the fea-
tures in JavaScript). A good overview of the currently supported features is provided by
kangax’s compatibility table, which can be found at http://kangax.github.io/compat-
table/es6/. A version adapted for Node.js can be reached at http://node.green/.

PYTHON -

JAVA I,

RUBY —e

C]

TYPESCRIPT -8

SHELL —e

SWIFT =l

SCALA al

OBJECTIVE-C *

Figure 1.2 Top Languages in GitHub Based on Pull Requests (octoverse.github.com)

32

11 The Story of Node.js

JavaScript is lightweight, is relatively easy to learn, and has a huge ecosystem of frame-
works and libraries. For these reasons, JavaScript is one of the most successful program-
ming languages in the world. This success can be backed up by numbers: Since 2008,
JavaScript has been in the top two spots in GitHub’s language trends. In 2021, JavaScript
was passed by Python in the number one spot and is now in second place in language
trends.

Node.js is based on this successful scripting language and has had a meteoric rise itself.
This chapter will serve as an introduction to the world of Node.js, showing you how the
platform is built, and where and how you can use Node.js.

1.1 The Story of Node.js

To help you better understand what Node.js is and how some of the development deci-
sions came about, let's explore the history of the platform.

1.1.1 Origins

Node.js was originally developed by Ryan Dahl, a PhD student in mathematics who
thought better of it, abandoned his efforts, and instead preferred to travel to South
America with a one-way ticket and very little money in his pocket. There, he kept his
head above water by teaching English. During this time, he got in touch with PHP as
well as Ruby and discovered his affection for web development. The problem with
working with the Ruby framework, called Rails, was that it couldn’t deal with concur-
rent requests without any workaround. The applications were too slow and utilized the
CPU entirely. Dahl found a solution to his problems with Mongrel, a web server for
applications based on Ruby.

Unlike traditional web servers, Mongrel responds to user requests and generates
responses dynamically, where otherwise only static HTML pages are delivered.

The task that actually led to the creation of Node.js is quite trivial from today’s point of
view. In 2005, Dahl was looking for an elegant way to implement a progress bar for file
uploads. However, the technologies available at the time only allowed unsatisfactory
solutions. Regarding file transfers, HTTP was used for relatively small files, and File
Transfer Protocol (FTP) was used for larger files. The status of the upload was queried
using long polling, which is a technique where the client sends long-lived requests to
the server, and the server uses the open channel for replies. Dahl’s first attempt to
implement a progress bar took place in Mongrel. After sending the file to the server, it
checked the status of the upload using a large number of Asynchronous JavaScript and
XML (AJAX) requests and displayed it graphically in a progress bar. However, the down-
side of this implementation was Ruby’s single-threaded approach and the large num-
ber of requests that were required.

33

1 Basic Principles

Another promising approach involved an implementation in C. Here, Dahl’s options
weren'’t limited to one thread. However, C as a programming language for the web has
a decisive disadvantage: only a small number of developers are enthusiastic about this
field of application. Dahl was also confronted with this problem and discarded this
approach after a short time.

The search for a suitable programming language to solve his problem continued and
led him to functional programming languages such as Haskell. Haskell's approach is
built on nonblocking input/output (I/O), which means that all read and write opera-
tions are asynchronous and don’t block the execution of a program. This allows the lan-
guage to remain single-threaded at its core and doesn’t introduce the problems that
arise from parallel programming. Among other things, no resources have to be syn-
chronized, and no problems are caused by the runtime of parallel threads. However,
Dahl still wasn't fully satisfied with this solution and was looking for other options.

1.1.2 Birth of Node.js

Dahl then found the solution he was finally satisfied with—JavaScript. He realized that
this scripting language could meet all his requirements. JavaScript had already been
established on the web for years, so there were powerful engines and a large number of
developers. In January 2009, he began working on his implementation for server-side
JavaScript, which can be regarded as the birth of Node.js. Another reason for implement-
ing the solution in JavaScript, according to Dahl, was the fact that the developers of
JavaScript didn’t envision this area of use. At that time, no native web server existed in
JavaScript, it couldn’t handle files in a file system, and there was no implementation of
sockets to communicate with other applications or systems. All these points spoke in
favor of JavaScript as the basis for a platform for interactive web applications because no
determinations had yet been made in this area, and, consequently, no mistakes had yet
been made either. The architecture of JavaScript also argued for such an implementa-
tion. The approach of top-level functions (i.e., functions that aren’t linked to any object,
are freely available, and can be assigned to variables) offers a high degree of flexibility in
development and enables functional approaches to solutions.

Thus, Dahl selected other libraries in addition to the JavaScript engine, which is respon-
sible for interpreting the JavaScript source code, and put them together in one plat-
form.

In September 2009, Isaac Schlueter started working on a package manager for Node.js,
the Node Package Manager (npm).

1.1.3 Breakthrough of Node.js

After Dahl integrated all the components and created the first executable examples on
the new Node.js platform, he needed a way to introduce Node.js to the public. This also

34

11 The Story of Node.js

became necessary because his financial resources shrank considerably due to the devel-
opment of Node.js, and he would have had to stop working on Node.js if he didn’t find
any sponsors. He chose the JavaScript conference JSConf EU in November 2009 in Berlin
as his presentation platform. Dahl put all his eggs in one basket. If the presentation was
a success and he found sponsors to support his work on Node.js, he could continue his
involvement; if not, almost a year’s work would have been in vain. In a rousing talk, he
introduced Node.js to the audience and showed how to create a fully functional web
server with just a few lines of JavaScript code. As another example, he introduced an
implementation of an Internet Relay Chat (IRC) chat server. The source code for this
demonstration comprised about 400 lines. Using this example, he demonstrated the
architecture and thus the strengths of Node.js while making it tangible for the audience.
The recording of this presentation can be found at www.youtube.com/watch?v=EeYvFI7-
li9E. The presentation didn’t miss its mark and led to Joyent stepping in as a sponsor for
Node.js. Joyent is a San Francisco-based software and services provider offering hosting
solutions and cloud infrastructure. With its commitment, Joyent included the open-
source software Node.js in its product portfolio and made Node.js available to its cus-
tomers as part of its hosting offerings. Dahl was hired by Joyent and became a full-time
maintainer for Node.js from that point on.

1.1.4 Node.js Conquers Windows

The developers made a significant step toward the spread of Node.js by introducing
native support for Windows in version 0.6 in November 2011. Up to that point, Node.js
could only be installed awkwardly on Windows via Cygwin.

Since version 0.6.3 in November 2011, npm has been an integral part of the Node.js
packages and is thus automatically delivered when Node.js is installed.

Surprisingly, at the start of 2012, Dahl announced that he would finally retire from
active development after three years of working on Node.js. He handed over the reins
of development to Schlueter. The latter, like Dahl, was an employee at Joyent and
actively involved in the development of the Node.js core. The change unsettled the
community, as it wasn’t clear whether the platform would continue to develop without
Dahl. A signal that the Node.js community considered as being strong enough for solid
further development came with the release of version 0.8 in June 2012, which was pri-
marily intended to significantly improve the performance and stability of Node.js.

With version 0.10 in March 2013, one of the central interfaces of Node.js changed: the
Stream application programming interface (API). With this change, it became possible
to actively pull data from a stream. Because the previous API was already widely used,
both interfaces continued to be supported.

35

1 Basic Principles

1.1.5 io.js: The Fork of Node.js

In January 2014, there was another change in the project management of Node.js.
Schlueter, who left Node.js maintenance in favor of his own company (called npmjs),
the host of the npm repository, was succeeded by TJ Fontaine. Under his direction, ver-
sion 0.12 was released in February 2014. A common criticism of Node.js at the time was
that the framework had still not reached the supposedly stable version 1.0, which pre-
vented numerous companies from using Node.js for critical applications.

Many developers were unhappy with Joyent, which had provided maintainers for
Node.js since Dahl, and so the community fractured in December 2014. The result was
io.js, a fork of Node.js that was developed separately from the original platform. As a
result, the independent Node.js Foundation was founded in February 2015, which was
responsible for the further development of io.js. At the same time, version 0.12 of the
Node.js project was released.

1.1.6 Node.js Reunited

In June 2015, the two projects io.js and Node.js were merged into the Node.js Founda-
tion. With version 4 of the project, the merger was completed. Further development of
the Node.js platform is now coordinated by a committee within the Node.js Founda-
tion rather than by individuals. As a result, we see more frequent releases and a stable
version with long-term support (LTS).

1.1.7 Deno: A New Star in the JavaScript Sky

Since the merger of io.js and Node.js, things have become quieter around Node.js. The
regular releases, the stability, and also the integration of new features, such as worker
threads, HTTP/2 or performance hooks, keep up the good mood within the community.
And just when things were starting to get almost too quiet around Node.js, an old
acquaintance, Dahl, took the stage again in 2018 to introduce a new JavaScript platform
called Deno during his talk, “10 Things I Regret about Node.js.”

The idea behind Deno is to create a better Node.js, untethered from the backwards
compatibility constraints that prevent revolutionary leaps in development. For exam-
ple, Deno is based on TypeScript by default and adds a fundamentally different module
system. Deno’s core is also quite different from Node.js, as it’s written almost entirely
in Rust.

Nevertheless, there are also some common features. For example, Deno is based on the
tried and tested V8 engine, which also forms the heart of Node.js. And you don’t have
to do without the huge number of npm packages either. For this purpose, Deno pro-
vides a compatibility layer. You can read more about Deno in Chapter 28.

36

1.2 Organization of Node.js

1.1.8 OpenlS Foundation

In 2015, the Node.js Foundation was established to coordinate the development of the
platform. The foundation was a subordinate project of the Linux Foundation. In 2019,
the JS Foundation and the Node.js Foundation then merged to form the Open]JS Foun-
dation. In addition to Node.js, it includes a number of other popular projects such as
webpack, ESLint, and Electron.

1.2 Organization of Node.js

The community behind Node.js has learned its lessons from the past. For this reason,
there are no longer individuals at the helm of Node.js, but a committee of several peo-
ple who steer the development of the platform.

1.2.1 Technical Steering Committee

The technical steering committee (TSC) is responsible for further developing the plat-
form. The number of members of the TSC isn’t limited, but 6 to 12 members are tar-
geted, usually selected from the contributors to the platform. The tasks of the TSC are
as follows:

m Setting the technical direction of Node.js

® Performing project and process control

m Defining the contribution policy

® Managing the GitHub repository

m Establishing the conduct guidelines

® Managing the list of collaborators

The TSC holds weekly meetings via Google Hangouts to coordinate and discuss current
issues. Many of these meetings are published via the Node.js YouTube channel
(www.youtube.com/c/nodejs+foundation).

1.2.2 Collaborators

Node.js is an open-source project developed in a GitHub repository. As with all larger
projects of this type, a group of people, called collaborators, have write access to this
repository. In addition to accessing the repository, a collaborator can access the contin-
uous integration jobs. Typical tasks of a collaborator include supporting users and new
collaborators, improving Node.js source code and documentation, reviewing pull
requests and issues (with appropriate commenting), participating in working groups,
and merging pull requests.

37

1 Basic Principles

Collaborators are designated by the TSC. Usually the role of a collaborator is preceded
by a significant contribution to the project via a pull request.

1.2.3 Community Committee

As the name implies, the Community Committee (CommComm) takes care of the
Node.js community with a special focus on education and culture. The CommComm
coordinates in regular meetings, which are recorded in a separate GitHub repository
(https://github.com/nodejs/community-committee). The CommComm exists to give
the community a voice and thus counterbalance the commercial interests of corpora-
tions.

1.2.4 Work Groups

The TSC establishes various work groups to have specific topics addressed separately by
experts. Examples of such work groups include the following:

® Release
This work group manages the release process of the Node.js platform, defining the
content of the releases and taking care of LTS.

® Streams
The streams work group is working to improve the platform’s Stream APL

= Docker
This work group manages the official Docker images of the Node.js platform and
ensures that they are kept up to date.

1.2.5 OpenlS Foundation

The Open]S Foundation forms the umbrella for Node.js development. Its role is similar
to that of the Linux Foundation for the development of the Linux operating system.
The Open]S Foundation was founded as an independent body for further developing
Nodejs. Its list of founding members includes companies such as IBM, Intel, Joyent,
and Microsoft. The Open]S Foundation is funded by donations and contributions from
companies and individual members.

1.3 Versioning of Node.js

One of the biggest points of criticism concerning Node.js before the fork of io.js was that
its development was very slow. Regular and predictable releases are an important selec-
tion criterion, especially in enterprise usage. For this reason, after merging Node.js and
io.js, the developers of Node.js agreed on a transparent release schedule with regular

38

1.3 Versioning of Node.js

releases and an LTS version that is provided with updates over a longer period of time.
The release schedule provides for one major release per half year.

Table 1.1 shows the release schedule of Node.js.

https://nodejs.org/down- Mainte- 4/21/2020 10/27/2020 10/19/2021 4/30/2023
load/release/latest-vi4.x/ nance LTS

https://nodejs.org/down- Active LTS 4/20/2021 10/26/2021 10/18/2022 4/30/2024
load/release/latest-vi16.x/

https://nodejs.org/down- Current 10/19/2021 4/1/2022 6/1/2022
load/release/latest-v17.x/

https://nodejs.org/down- Pending 4/19/2022 10/25/2022 10/18/2023 4/30/2025
load/release/latest-v18.x/

v19 Pending 10/18/2022 4/1/2023 6/1/2023

v20 Pending 4/18/2023 10/24/2023 10/22/2024 4/30/2026

Table 1.1 Node.js Release Schedule

As you can see from the release schedule, versions with an even version number are
LTS releases, while odd ones are releases with a shortened support period.

1.3.1 Long-Term Support Releases

ANode.js version with an even version number is transitioned to an LTS release as soon
as the next odd version is released. The LTS release is then actively maintained over a
period of 12 months. During this time, the version receives the following:

® Bug fixes

® Security updates

® npm minor updates

® Documentation updates

®m Performance improvements that don’t compromise existing applications

® Changes to the source code that simplify the integration of future improvements
After this phase, the version enters a 12-month maintenance phase during which the
version will continue to receive security updates. In this case, however, only critical

bugs and security gaps are fixed. In total, the developers of the Node.js platform sup-
port an LTS release over a period of 30 months.

39

1 Basic Principles

1.4 Benefits of Node.js

The development history of Node.js shows one thing very clearly: it’s directly con-
nected to the internet. With JavaScript as its base, you have the ability to achieve visible
results very quickly with applications implemented in Node.js. The platform itself is
very lightweight and can be installed on almost any system. As is common for a script-
ing language, Node.js applications also omit a heavyweight development process, so
you can check the results directly. In addition to the fast initial implementation, you
can also react very flexibly to changing requirements during the development of web
applications. Because the core of JavaScript is standardized by ECMAScript, the lan-
guage represents a reliable basis with which even more extensive applications can be
implemented. The available language features are well documented extensively both
online and in reference books. In addition, many developers are proficient in JavaScript
and able to implement even larger applications using this language. Because Node.js
uses the same JavaScript engine as Google Chrome—the V8 engine—all language fea-
tures are also available here, and developers who are proficient in JavaScript can famil-
iarize themselves with the new platform relatively quickly.

JavaScript’s long history of development has produced a number of high-performance
engines. One reason for this development is that the various browser manufacturers
were always developing their own implementations of JavaScript engines, so there was
healthy competition in the market when it came to running JavaScript in the browser. On
one hand, this competition led to the fact that JavaScript is now interpreted very quickly,
and, on the other hand, it led to manufacturers agreeing on certain standards. Node.js as
a platform for server-side JavaScript was designed as an open-source project since the
beginning of its development. For this reason, an active community quickly developed
around the core of the platform and deals mainly with the use of Node.js in practice, but
also with the further development and stabilization of the platform. Resources on
Node.js range from tutorials to help you get started to articles on advanced topics such as
quality assurance, debugging, or scaling. The biggest advantage of an open-source project
such as Node.js is that the information is available to you free of charge, and questions
and problems can be solved quite quickly and competently via a wide variety of commu-
nication channels or the community itself.

1.5 Areas of Use for Node.js

From a simple command-line tool to an application server for web applications run-
ning on a cluster with numerous nodes, Node.js can be used anywhere. The use of a
technology strongly depends on the problem to be solved, personal preferences, and
the developers’ level of knowledge. For this reason, not only should you know the key
features of Node.js, but you should also have a feel for working with the platform. You
can only fulfill the second point if you either have the opportunity to join an existing

40

1.6 The Core: V8 Engine

Node.js project or gain the experience in the best case with smaller projects that you
implement.

But let’s now turn to the most important framework data:

® Pure JavaScript
When working with Node.js, you don’t have to learn a new language dialect because
you can fall back on the JavaScript language core. Standardized and well-documented
interfaces are available for accessing system resources. However, as an alternative to
JavaScript, you can also write your Node.js application in TypeScript, translate the
source code to JavaScript, and run it with Node.js. You'll find more information about
this topic in Chapter 13.

® Optimized engine
Node.js is based on Google’s V8 JavaScript engine. Here, you benefit above all from
the constant further development of the engine, where the latest language features
are supported already after a very short time.

= Nonblocking I/O
All operations that don’t take place directly in Node.js don't block the execution of
your application. The principle of Node.js is that everything the platform doesn’t have
to do directly is outsourced to the operating system, other applications, or other sys-
tems. This gives the application the ability to respond to additional requests or to pro-
cess tasks in parallel. Once the processing of a task is complete, the Node.js process
receives feedback and can process the information further.

m Single-threaded

A typical Node.js application runs in a single process. For a long time, there hasn’t
been any multithreading, and concurrency was initially only provided for in the
form of the nonblocking I/O already described. Thus, all the code you write yourself
potentially blocks your application. For this reason, you should pay attention to
resource-saving development. If it still becomes necessary to process tasks in paral-
lel, Node.js offers you solutions for this in the form of the child process module,
which enables you to create your own child processes.

To develop your application in the best possible way, you should have at least a rough
overview of the components and how they work. The most important of these compo-
nents is the V8 engine.

1.6 The Core: V8 Engine

For you, as a developer, to assess whether a technology can be used in a project, you
should be sufficiently familiar with the characteristics of that technology. The sections
that follow now dive deep into the internal details of Node.js to show you the compo-
nents that make up the platform and how you can use them to the advantage of an
application.

4

1 Basic Principles

The central and thus most important component of the Node.js platform is the V8
JavaScript engine developed by Google (for more information, visit the V8 Project page
at https://code.google.com/p/v8/). The JavaScript engine is responsible for interpreting
and executing the JavaScript source code. There isn’t just one engine for JavaScript;
instead, the different browser manufacturers use their own implementations. One of
the problems with JavaScript is that each engine behaves slightly differently. Standard-
ization to ECMAScript attempts to find a reliable common denominator so that you, as
aJavaScript application developer, have less uncertainty to worry about. The competi-
tion among JavaScript engines resulted in a number of optimized engines, all with the
goal of interpreting JavaScript code as quickly as possible. Over time, several engines
have established themselves on the market: Mozilla's JaegerMonkey, Apple’s Nitro, and
Google’s V8 engine, among others. Microsoft meanwhile uses the same technical basis
as Chrome for its Edge browser, so it also uses the V8 engine.

Node.js uses Google’s V8 engine. This engine has been developed by Google since 2006,
mainly in Denmark, in collaboration with Aarhus University. The engine’s primary
area of use is Google’s Chrome browser, where it’s responsible for interpreting and exe-
cuting JavaScript code. The goal of developing a new JavaScript engine was to signifi-
cantly improve the performance of interpreting JavaScript. The engine now fully
implements the ECMAScript standard ECMA-262 in the fifth version and large parts of
the sixth version. The V8 engine itself is written in C++, runs on various platforms, and
is available under the Berkeley Source Distribution (BSD) license as open-source soft-
ware for any developer to use and improve. For example, you can integrate the engine
into any C++ application.

As usual in JavaScript, the source code isn’'t compiled before execution; instead, the
files containing the source code are read directly when the application is launched.
Launching the application starts a new Node.js process. This is where the first optimiza-
tion by the V8 engine takes place. The source code isn’t directly interpreted, but is first
translated into machine code, which is then executed. This technology is referred to as
just-in-time (JIT) compilation and is used to increase the execution speed of the JavaS-
cript application. The actual application is then executed on the basis of the compiled
machine code. The V8 engine makes further optimizations in addition to JIT compila-
tion. Among other things, these include improved garbage collection and an improve-
ment in the context of accessing object properties. For all the optimizations that the
JavaScript engine makes, you should keep in mind that the source code is read at pro-
cess startup, so the changes to the files have no effect on the running application. For
your changes to take effect, you must exit and restart your application so that the cus-
tomized source code files are read again.

1.6.1 Memory Model

The goal of developing the V8 engine was to achieve the highest possible speed in the
execution of JavaScript source code. For this reason, the memory model has also been

42

1.6 The Core: V8 Engine

optimized. Tagged pointers, which are references in memory that are marked as such
in a special way, are used in the V8 engine. All objects are 4-byte-aligned, which means
that 2 bits are available to identify pointers. A pointer always ends on 01 in the memory
model of the V8 engine, whereas a normal integer value ends on O. This measure allows
integer values to be distinguished very quickly from memory references, which pro-
vides an extremely significant performance advantage. The object representations of
the V8 engine in memory each consist of three data words. The first data word consists
of a reference to the hidden class of the object, which you’ll learn more about in later
sections. The second data word is a pointer to the attributes, that is, the properties of
the object. Finally, the third data word refers to the elements of the object. These are the
properties with a numeric key. This structure supports the JavaScript engine in its work
and is optimized in such a way that elements in the memory can be accessed very fast
so that little wait time arises from searching objects.

1.6.2 Accessing Properties

As you probably know, JavaScript doesn’t know classes; the object model of JavaScript
is based on prototypes. In class-based languages such as Java or PHP, classes represent
the blueprint of objects. These classes can’t be changed at runtime. Prototypes in JavaS-
cript, on the other hand, are dynamic, which means that properties and methods can
be added and removed at runtime. As with all other languages that implement the
object-oriented programming paradigm, objects are represented by their properties
and methods, where properties represent the state of an object, and methods are used
to interact with the object. In an application, you usually access the properties of the
various objects very frequently. In addition, methods in JavaScript are also properties
of objects that are stored with a function. In JavaScript, you work almost exclusively
with properties and methods, so access to them must be very fast.

Prototypes in JavaScript

JavaScript differs from languages such as C, Java, or PHP in that it doesn’t take a class-
based approach but instead is based on prototypes, such as the Self language. In Javas-
cript, every object normally has a prototype property and thus a prototype. In Javas-
cript, as in other languages, you can create objects. For this purpose, however, you
don’t use classes in conjunction with the new operator. Instead, you can create new
objects in several different ways. Among other things, you can use constructor func-
tions or the Object.create method. These methods have in common that you create
an object and assign the prototype. The prototype is an object from which another
object inherits its properties. Another feature of prototypes is that they can be modi-
fied at application runtime, allowing you to add new properties and methods. By using
prototypes, you can build an inheritance hierarchy in JavaScript.

43

1 Basic Principles

Normally, accessing properties in a JavaScript engine is done through a directory in the
memory. So, if you access a property, this directory is searched for the memory section
of the respective property, and then the value can be accessed. Now imagine a large
application that maps its business logic in JavaScript on the client side, and in which a
large number of objects are held in parallel in the memory, constantly communicating
with each other. This method of accessing properties would quickly turn into a prob-
lem. The developers of the V8 engine have recognized this vulnerability and developed
a solution for it—the hidden classes. The real problem with JavaScript is that the struc-
ture of objects is only known at runtime and not already during the compilation pro-
cess because such a process doesn’t exist with JavaScript. This is further complicated by
the fact that there isn’t just one prototype in the structure of objects, but they can
rather exist in a chain. In classical languages, the object structure doesn’t change at
application runtime; the properties of objects are always located in the same place,
which significantly speeds up accessing them.

Ahidden class is nothing more than a description in which the individual properties of
an object can be found in the memory. For this purpose, a hidden class is assigned to
each object. This contains the offset to the memory section within the object where the
respective property is stored. As soon as you access a property of an object, a hidden
class is created for that property and reused for each subsequent access. So for an
object, there is potentially a separate hidden class for each property.

In Listing 1.1, you can see an example that illustrates how hidden classes work.

class Person {
constructor(firstname, lastname) {
this.firstname = firstname;
this.lastname = lastname;

}
¥

const johnDoe = new Person("John", "Doe");

Listing 1.1 Accessing Properties in a Class

In the example, you create a new constructor function for the group of person objects.
This constructor has two parameters—the first name and the last name of the person.
These two values are to be stored in the firstname and lastname properties of the object,
respectively. When a new object is created with this constructor using the new operator,
an initial hidden class, class O, is created first. This doesn’t yet contain any pointers to
properties. If the first assignment is made, that is, the first name is set, a new hidden
class, class 1, is created based on class O. This now contains a reference to the memory
section of the firstname property, relative to the beginning of the object’s namespace.
In addition, a class transition is added to class O, which states that class 1 should be used
instead of class O if the firstname property is added. The same process takes place when
the second assignment is performed for the last name. Another hidden class, class 2, is

44

1.6 The Core: V8 Engine

created based on class 1, which then contains the offset for both the firstname and last-
name properties and inserts a transition indicating that class 2 should be used when the
lastname property is used. If properties are added away from the constructor, and this
is done in a different order, new hidden classes are created in each case. Figure 1.3 clari-
fies this process.

When the properties of an object are accessed for the first time, the use of hidden
classes doesn’t yet result in a speed advantage. However, all subsequent accesses to the
property of the object then happen many times faster, because the engine can directly
use the hidden class of the object and this contains the reference to the memory sec-
tion of the property.

Hidden class C2
A point object

For x see
Class pointer > offset 0
Offset 0: x Fory see
Offset1:y offset 1
Hidden class C1
For x see
offset 0
Initial hidden
class CO If you add
propertyy,
If you add transition to
property X, class C2
transition to
class C1

Figure 1.3 Hidden Classes in the V8 Engine (https://github.com/v8/v8/wiki/Design%20
Elements#fast-property-access)

1.6.3 Machine Code Generation

Asyou already know, the V8 engine doesn’t directly interpret the JavaScript application
source code, but performs a JIT compilation into native machine code to increase exe-
cution speed. No optimizations are made to the source code during this compilation.
The source code written by the developer is thus converted one to one. In addition to
this JIT compiler, the V8 engine has another compiler that is capable of optimizing the
machine code. To decide which code fragments to optimize, the engine maintains
internal statistics about the number of function calls and how long each function is
executed. Based on this data, the decision is made regarding whether the machine code
of a function requires optimizing.

Now you're probably wondering why the entire source code of the application isn’t
compiled with the second, much better compiler. There is a very simple reason for this:

45

1 Basic Principles

a compiler that doesn’t perform optimizations is much faster. Because the source code
is compiled JIT, this process is very time critical because any wait times caused by a
compilation process that takes too long can have a direct impact on the user. Therefore,
only code sections that justify this additional effort are optimized. This machine code
optimization has a particularly positive effect on larger and longer-running applica-
tions and on those in which functions are called more often than just once.

Another optimization the V8 engine performs is related to the hidden classes and
internal caching already described earlier. After the application is launched and the
machine code is generated, the V8 engine searches for the associated hidden class each
time a property is accessed. As a further optimization, the engine assumes that the
objects used at this point will have the same hidden class in the future, so it modifies
the machine code accordingly. The next time the code section is traversed, the prop-
erty can be accessed directly with no need to search for the associated hidden class first.
If the object used doesn’t have the same hidden class, the engine detects this, removes
the previously generated machine code, and replaces it with the corrected version.
There is a critical problem with this approach: Imagine you have a code section where
two different objects with different hidden classes are always used in alternation. Then
the optimization with the prediction of the hidden class would never take effect at the
next execution. In this case, various code fragments are used, which can’t be used to
find the memory section of a property as quickly as with just one hidden class, but the
code in this case is many times faster than without the optimization because it’s usu-
ally possible to select from a very small set of hidden classes. The generation of
machine code and the hidden classes in combination with the caching mechanisms
creates possibilities that are familiar from class-based languages.

1.6.4 Garbage Collection

The optimizations described so far mainly affect the speed of an application. Another
very important feature is the garbage collector of the V8 engine. Garbage collection
refers to the process of clearing up the application’s memory area in the main memory.
Elements that are no longer used are removed from memory so that the space freed up
becomes available to the application again.

If you're wondering why you need a garbage collector in JavaScript, the answer is quite
simple: Originally, JavaScript was intended for small tasks on web pages. These web
pages, and thus the JavaScript on this page, had a fairly short lifetime until the page was
reloaded, completely emptying the memory containing the JavaScript objects. The
more JavaScript is executed on a page and the more complex the tasks to be performed
become, the greater the risk that memory will be filled with objects that are no longer
needed. If you now assume you have an application in Node.js that has to run for sev-
eral days, weeks, or even months without restarting the process, the problem becomes
clear. The V8 engine’s garbage collector comprises a number of features that allow it to

46

1.7 Libraries around the Engine

perform its tasks very quickly and efficiently. Basically, when the garbage collector is
running, the engine stops the execution of the application completely and resumes it
as soon as the run is finished. These application pauses are in the single-digit millisec-
ond range so that the user normally doesn'’t feel any negative effects due to the garbage
collector. To keep the interruption by the garbage collector as short as possible, the
complete memory isn't cleaned up, but only parts of it. In addition, the V8 engine
knows at all times where in the memory which objects and pointers are located.

The V8 engine divides the available memory into two areas—one area for storing
objects and another area to keep the information about the hidden classes and the exe-
cutable machine code. The process of garbage collection is relatively simple. When an
application is executed, objects and pointers are created in the short-lived area of the
V8 engine’s memory. If this memory area is full, it’s cleaned up. Objects that are no lon-
ger used are deleted, and objects that are still needed are moved to the long-lived area.
During this shift, the object itself is shifted, and the pointers to the object’'s memory
location are corrected. The partitioning of memory areas makes different types of gar-
bage collection necessary.

The fastest variant is represented by the scavenge collector, which is very fast and effi-
cient and deals only with the short-lived area. Two different garbage collection algo-
rithms exist for the long-lived memory section, both based on mark-and-sweep. The
entire memory is searched, and elements that are no longer needed are marked and
later deleted. The real problem with this algorithm is that it creates gaps in the mem-
ory, which causes problems over a longer runtime of an application. For this reason, a
second algorithm exists that also searches the elements of the memory for those that
are no longer needed, marks them, and deletes them.

The most important difference between the two is that the second algorithm defrag-
ments the memory; that is, it rearranges the remaining objects in the memory so that
afterwards, the memory has as few gaps as possible. This defragmentation can only
happen because V8 knows all objects and pointers. For all its benefits, the garbage col-
lection process also has a drawback: it takes time. The fastest the scavenge collection
can run is about 2 ms. This is followed by the mark-and-sweep process without optimi-
zations at 50 ms and finally the mark-and-sweep with defragmentation with an aver-
age of 100 ms.

In the following sections, you’ll learn more about the other elements used in the
Node.js platform besides the V8 engine.

1.7 Libraries around the Engine

The JavaScript engine alone doesn’t make a platform yet. For Node.js to handle all
requirements such as event handling, I/O, or support functions such as Domain Name
System (DNS) resolution or encryption, additional functionality is required. This is

47

1 Basic Principles

1.7 Libraries around the Engine

implemented with the help of additional libraries. For many tasks that a platform such
as Node.js has to deal with, ready-made and established solutions already exist. For this
reason, Dahl decided to build the Node.js platform on top of a set of external libraries
and fill in the gaps he felt weren’t adequately covered by any existing solution with his
own implementations. The advantage of this strategy is that you don’t have to reinvent
the solutions for standard problems; you can fall back on tried and tested libraries.

A prominent example that is also built on this strategy is the Unix operating system. In
this context, developers should stick to the following principle: focus only on the
actual problem, solve it as well as possible, and use existing libraries for everything
else. Most command-line programs in the Unix area implement this philosophy. Once
a solution has established itself, it can be used in other applications for similar prob-
lems. This in turn has the advantage that improvements in the algorithm only have to
be made at one central point. The same applies to bug fixes. If an error occurs in DNS
resolution, it’s fixed once, and the solution works in all places where the library is used.
But that also leads to the flip side of the coin: the libraries on which the platform is built
must exist. Node.js solves this problem in that it’s built on only a small set of libraries
that must be provided by the operating system. But these dependencies rather consist
of basic functions such as the GNU Compiler Collection (GCC) runtime library or the
standard C library. The remaining dependencies, such as z1ib or http parser, are
included in the source code.

1.7.1 Event Loop

Client-side JavaScript contains many elements of an event-driven architecture. Most
user interactions cause events that are responded to with appropriate function calls. By
using various features such as first-class functions and anonymous functions in Javas-
cript, you can implement entire applications based on an event-driven architecture.
The term event-driven means that objects don’t communicate directly with each other
via function calls; instead, events are used for this communication. Event-driven pro-
gramming is therefore primarily used to control the program flow. In contrast to the
classical approach, where the source code is run through linearly, here functions are
executed when certain events occur. A small example in Listing 1.2 illustrates this
approach.

myObj.on('myEvent', (data) => {
console.log(data);

1;
myObj.emit('myEvent', 'Hello World');

Listing 1.2 Event-Driven Development in Node.js

You can use the on method of an object that you derive from events.EventEmitter, a
component of the Node.js platform, to define which function you want to use to

48

respond to each event. This pattern is referred to as a publish-subscribe pattern.
Objects can thus register with an event emitter and then be notified when the event
occurs. The first argument of the on method is the name of the event in the form of a
string to respond to. The second argument consists of a callback function that is imple-
mented as an arrow function in this case, which is executed once the event occurs.
Thus, the function call of the on method does nothing more than register the callback
function the first time it’s executed. Later in the script, the emit method is called on
myObj. This ensures that all callback functions registered by the on method are executed.

What works in this example with a custom object is used by Node.js to perform a vari-
ety of asynchronous tasks. However, the callback functions aren’t run in parallel, but
sequentially. The single-threaded approach of Node.js creates the problem that only
one operation can be executed at a time. Time-consuming read or write operations in
particular would block the entire execution of the application. For this reason, all read
and write operations are outsourced using the event loop. This allows the available
thread to be exploited by the application’s code. Once a request is made to an external
resource in the source code, it’s passed to the event loop. A callback is registered for the
request that forwards the request to the operating system; Node.js then regains control
and can continue executing the application. Once the external operation is complete,
the result is passed back to the event loop. An event occurs and the event loop ensures
that the associated callback functions are executed. Figure 1.4 shows how the event
loop works.

Event Queue Event Systems
async
Operation | File
- 5 _ 5 | Database
Network
Event Loop
Callback

Figure 1.4 Event Loop

The original event loop used in Node.js is based on libev, a library written in C that
stands for high performance and a wide range of features. libev is based on the
approaches of libevent but has a higher performance rate, as evidenced by various
benchmarks. Even an improved version of libevent—libevent2—doesn’t match the
performance of libev. However, for compatibility reasons, the event loop was
abstracted to achieve better portability to other platforms.

49

1 Basic Principles

1.7.2 Input and Output

The event loop alone in combination with the V8 engine allows the execution of JavaS-
cript, but there is still no possibility of interacting with the operating system directly in
the form of read or write operations on the file system. In the implementation of
server-side applications, accesses to the file system play an important role. For exam-
ple, the configuration of an application is often outsourced to a separate configuration
file. This configuration must be read by the application from the file system. However,
templates, which are dynamically filled with values and then sent to the client, are also
usually available as separate files. Both reading and writing information to files is often
a requirement for a server-side JavaScript application. Logging within an application is
another common area of usage of write accesses to the file system. Here, different types
of events within the application are logged to a log file. Depending on where the appli-
cation is executed, only fatal errors, warnings, or even runtime information is written.
Write accesses are also used for persisting information. During runtime of an applica-
tion, usually through the interaction of users and various computations, information
is generated that needs to be captured for later reuse.

Node.js uses the C library libeio for these tasks. It ensures that the write and read oper-
ations can take place asynchronously, and thus the library works very closely with the
event loop. However, the features of 1ibeio aren’t limited to write and read access to
the file system; rather, they offer considerably more possibilities to interact with the
file system. These options range from reading file information (e.g., size, creation date,
or access date) to managing directories (i.e., creating or removing them) to modifying
access rights. Similar to the event loop, during the course of its development, this
library was separated from the actual application by an abstraction layer.

To access the file system, Node.js provides its own module, the file system module. This
module enables you to address the interfaces of 1ibeio and thus represents a very light-
weight wrapper around libeio.

1.7.3 libuv

The two libraries you've encountered so far are related to Linux. However, Node.js was
supposed to become a platform independent of the operating system. For this reason,
the libuv library was introduced in version 0.6 of Node.js. This library is primarily used
to abstract differences between different operating systems. Consequently, using libuv
makes it possible for Node.js to run on Windows systems as well. The structure without
libuv, as it was used in Node.js up to version 0.6, looks like this: the core is the V8
engine; it’s supplemented by libev and libeio with the event loop and the asynchro-
nous file system access. With libuv, these two libraries are no longer directly integrated
into the platform, but are abstracted.

For Node.js to work on Windows, it’s necessary to provide the core components for Win-
dows platforms. The V8 engine isn’t a problem here; it has been working in the Chrome

50

1.7 Libraries around the Engine

browser for many years on Windows without any problems. However, it gets more dif-
ficult with the event loop and asynchronous file system operations. Some components
of libev would need to be rewritten when running on Windows. In addition, libev is
based on native implementations of the operating system of the select function, but,
on Windows, a variant optimized for the operating system is available in the form of
I0CP. To avoid having to create different versions of Node.js for the different operating
systems, the developers decided to include an abstraction layer with 1ibuv that allows
libev to be used for Linux systems and IOCP for Windows. With libuv, some core con-
cepts of Node.js have been adapted. For example, we no longer speak of events, but of
operations. An operation is passed to the 1ibuv component; within 1ibuv, the operation
is passed to the underlying infrastructure, that is, 1ibev or I0CP, respectively. Thus, the
Node.js interface remains unchanged regardless of the operating system used.

libuv is responsible for managing all asynchronous I/O operations. This means that all
access to the file system, whether read or write access, is performed via 1ibuv’s inter-
faces. For this purpose, 1ibuv provides the uv_fs_functions, as well as timers, that is,
time-dependent calls, and asynchronous Transmission Control Protocol (TCP) and
User Datagram Protocol (UDP) connections run via 1ibuv. In addition to these basic
functionalities, 1ibuv manages complex features such as creating and spawning child
processes and thread pool scheduling, an abstraction that allows tasks to be completed
in separate threads and callbacks to be bound to them. Using an abstraction layer such
as libuvis an important building block for the wider adoption of Node.js and makes the
platform a little less dependent on the system.

1.7.4 Domain Name System

The roots of Node.js can be found on the internet. When you’re on the internet, you'll
quickly encounter the problem of name resolution. Actually, all servers on the internet
are addressed by their IP address. In Internet Protocol version 4 (IPv4), the address is a
32-bit number represented in four blocks of 8 bits each. In IPv6, the addresses have a
size of 128 bits and are divided into eight blocks of hexadecimal numbers. You rarely
want to work directly with these cryptic addresses, especially if a dynamic assignment
via Dynamic Host Configuration Protocol (DHCP) is added. The solution to this is the
Domain Name System (DNS). The DNS is a service for name resolution on the web that
ensures domain names are converted into IP addresses. There is also the possibility of
reverse resolution, where an IP address is translated into a domain name. If you want
to connect a web service or read a webpage in your Node.js application, DNS is used
here as well.

Internally, Node.js doesn’t handle the name resolution itself but passes the respective
requests to the C-Ares library. This applies to all methods of the dns module except for
dns.lookup, which uses the operating system’s own getaddrinfo function. This excep-
tion is caused by the fact that getaddrinfo is more constant in its responses than the C-
Ares library, which, by itself, is a lot more performant than getaddrinfo.

51

1 Basic Principles

1.7.5 Crypto

The crypto component of the Node.js platform provides you with several encryption
options for development purposes. This component is based on OpenSSL. This means
that this software must be installed on your system if you want to encrypt data. The
crypto module allows you to encrypt data with different algorithms as well as create
digital signatures within your application. The entire system is based on private and
public keys. The private key, as the name implies, is for you and your application only.
The public key is available to your communication partners. If content is to be
encrypted, this is done with the public key. The data can then only be decrypted with
your private key. The same applies to the digital signature of data. Here, your private
key is used to generate such a signature. The recipient of a message can then use the
signature and your public key to determine whether the message originated from you
and hasn’t been changed.

1.7.6 Zlib

When creating web applications, as a developer, you need to take into consideration
the resources of your users and your own server environment. For example, the avail-
able bandwidth or free memory for data can be a limitation. To address such cases, the
Node.js platform contains the z1ib component. With its help, you can compress data
and decompress it again when you want to process it. For data compression, you can
use two algorithms, Deflate and Gzip. Node.js treats the data that serves as input to the
algorithms as streams.

Node.js doesn’t implement the compression algorithms itself, but instead uses the
established z1ib and passes the requests on in each case. The z1ib module of Node.js
simply provides a lightweight wrapper for the underlying Gzip, Deflate/Inflate, and
Brotli algorithmns and ensures that I/O streams are handled correctly.

1.7.7 HTTP Parser

As a platform for web applications, Node.js must be able to handle not only streams,
compressed data, and encryption but also HTTP. Because parsing HTTP is a laborious
procedure, the HTTP parser handling this task has been outsourced to a separate proj-
ect and is now included by the Node.js platform. Like the other external libraries, the
HTTP parser is written in C and serves as a high-performance tool that reads both HTTP
requests and responses. As a developer, this means you can use the HTTP parser to
read, for example, the various information in the HTTP header or the text of the mes-
sage itself.

The primary goal of developing Node.js is to provide a performant platform for web
applications. To meet this requirement, Node.js is built on a modular structure. This
allows the inclusion of external libraries such as the previously described libuv or the

52

1.8 Summary

HTTP parser. The modular approach continues through the internal modules of the
Node.js platform and extends to the extensions you create for your own application.

Throughout this book, you’ll learn about the different capabilities and technologies
that the Node.js platform provides for developing your own applications. We’ll start
with an introduction to the module system of Node.js.

1.8 Summary

For many years now, Node.js has been an integral part of web development. In this con-
text, Node.js isn’t just used to create server applications but also is the basis for a wide
range of tools—from the bundler webpack to tools such as Babel and the compiler for
CSS preprocessors. The success of the platform is based on several very simple con-
cepts. The platform is based on a collection of established libraries, which together cre-
ate a very flexible working environment. Over the years, the core of the platform has
always been kept compact, offering only a set of basic functionalities. For all other
requirements, you can use the npm to integrate a wide variety of packages into your
application.

Although Node.js has now been proven in practice for several years, you may still fre-
quently hear the following question: Can I safely use Node.js for my application? In the
versions prior to 0.6, this question could not be answered in the affirmative in good
conscience because the interfaces of the platform were subject to frequent changes.
Today, however, Node.js is much more mature. The interfaces are kept stable by the
developers. The LTS version was created for use in enterprises. This is a Node.js version
that is supported by updates for a total of 30 months. This increases the reliability of
the platform and takes the pressure off companies to always update to the latest ver-
sion.

A thoroughly exciting chapter in the development history was the separation of io.js
because the development of Node.js had lost its momentum, and no innovations
entered the platform for a long time. This event was a crucial turning point for the
development of Node.js. The Node.js Foundation was formed, and responsibility for
development was transferred from an individual to a group. As a result, release cycles
and versioning were standardized, signaling both reliability and continuous further
development to users of the platform.

By deciding to delve deeper into Node.js, you'll be in good company with numerous
enterprises large and small around the world that are now strategically using Node.js
for application development.

53

Chapter 6
Express

The future was better in the past too!
—Karl Valentin

Express has been the most popular web application framework for Node.js for many
years. The open-source project was launched in June 2009 by T. J. Holowaychuk, and its
purpose is to help you develop web applications. The focus of Express is on speed, man-
ageable scope of the core framework, and an easily extensible interface. The well-
thought-out architecture makes it possible to maintain until today, and thus the
framework has become an almost indispensable companion when it comes to the
development of web server applications based on Node.js. Frameworks such as Express
exist because web development often involves solving standard tasks. For example, in
PHP, there is the Symfony framework; in Python, you can use Django; and Ruby on
Rails offers a solution for web applications under Ruby. You can implement your appli-
cation completely in the respective language (in this case, Node.js) without the help of
further libraries and frameworks, but you lose a lot of time with the implementation of
the basic infrastructure. Just remember the createServer callback function from the
previous chapter where you had to take care of parsing the URL and performing the
corresponding action yourself.

In addition to handling requests and resolving URLs, other standard tasks such as ses-
sion handling, authentication, or file uploads need to be taken care of. There are already
established solutions for all these tasks, which have been combined into a framework
under the leadership of Express. Because of its stability over the years and its extensi-
ble architecture, Express serves as the foundation for a variety of other libraries and
frameworks, such as Nest, which we’ll look at in more detail in Chapter 14.

6.1 Structure

Express is a compact framework with a manageable range of functions. However, it can
be easily extended with middleware components. The structure of Express, much like
Nodejs itself, is layered, as you can see in Figure 6.1.

6 Express
Routing / Middleware
Middleware Layer < Middleware
HTTP \ Middleware
Request Response

Figure 6.1 Express Structure

The http module of Node.js serves as the foundation for Express. The http module cre-
ates the server process on which Express is based. In addition, the request and response
objects are available to access the request information and create the response to the
client, respectively. Internally, for example, Express makes use of the URL the user has
entered in the browser to implement the routing process within the application.

The second layer of the Express architecture is the middleware layer. In the context of
Express, a middleware is a function located between the incoming request and the
server’s response to the client. Multiple middleware functions can be chained together
to perform specific actions based on the client’s request. Prior to the third version of
Express, Connect formed this middleware layer. In version 4, the developers aban-
doned this additional dependency and developed a standalone layer, which remains
mostly compatible. The third layer of the Express architecture is the router. This com-
ponent of Express controls which function should be executed depending on the called
URL to generate a response to the client. When routing, both the HTTP method and the
URL path are considered.

In this chapter, you'll create a web application that allows you to manage a movie data-
base. Before you start working on the application, you must first initialize it and install
Express.

6.2 Installation

Express follows the Node Package Manager (npm) package standard: It’s freely avail-
able as an open-source project, subject to the MIT License and developed on GitHub.
The Express package is available through a package manager of your choice, for exam-
ple, npm. Before installing Express in your application, you must use npm init -y on the
command line to generate the package.json file for your application and add the type

178

6.3 Basic Principles

field with the module value to use the ECMAScript module system. Then you must
install Express via the npm install express command. After that, you can test the func-
tionality of the framework with a simple application. Listing 6.1 shows the source code
of this first step. You save the source code in a file named index.js.

import express from 'express';

const app = express();

app.get('/", (reg, res) => {
res.send('My first express application');

1

app.listen(8080, () => {
console.log('Movie database accessible at http://localhost:8080");
1)

Listing 6.1 First Express Application (index.js)

In the first step, you include the express package. The default export of the package is a
function that you use to create the base for your application via the app object. The get
method of the app object creates a route, in this case, for the path /. In the last step, you
bind your application to Transmission Control Protocol (TCP) port 8080. Internally, a
server is created at this point using the http module of Node.js and bound to the speci-
fied port. Once you've started the application via the node index.js command, you can
access and test it in the browser using the URL http://localhost:8080. The results are
displayed in Figure 6.2.

® O ® /[y Iocalhost:8080 x Sebastian

&« C @ localhost:8080 @ % H O F & ¢« H

My first express application

Figure 6.2 Output of the Express Application in the Browser

Based on this working foundation, you can now proceed to extend this example step
by step to a fully functional application.

6.3 Basic Principles

The process by which an Express application works always has the same pattern. The
Express server receives a request from a client. Based on the chosen http method and

179

6 Express

URL path, a suitable route is chosen, and one or more callback functions are executed.
Within this callback function, you can access the request and response objects, as is the
case with the http module. These two objects, along with the router and middleware
components, are the heart of an application.

6.3.1 Request

The request object is the first argument of the Express routing callback functions and
represents the user’s request. You can extend this object by using middleware compo-
nents such as the body parser and the cookie parser, for example, so that you can man-
age cookies or other aspects of the communication with the client more conveniently.
But even in standard mode, it contains a lot of helpful information. Table 6.1 introduces
you to some of the most important properties of the request object.

method Contains the HTTP method used to send the request to the server.

originalUrl Contains the original request URL. This allows the url property, which con-
tains the same information, to be modified for in-application purposes.

params Contains the value that consists of the variable parts of the URL. You'll learn
how to define and use them in Express later in this chapter.

path Enables you to access the URL path.
protocol Contains the protocol of the request, such as HTTP or HTTPS.
query Accesses the query string is a part of the URL.

Table 6.1 Key Properties of the “request” Object

In addition to the properties, you also have access to some methods that allow you to
read more information about the incoming request. The get method enables you to
read header fields from the request. For example, if you're interested in the Content-
Type field, the call is req.get (' Content-Type'). It doesn’t matter whether you use upper-
case or lowercase letters with this method.

6.3.2 Response

The response object, which you can access via the second argument of the routing func-
tion, represents the response to the client. Because you mainly write to this object, it
also provides significantly more methods than properties. The most important prop-
erty of the object is headersSent. This Boolean value tells you whether the HTTP headers
of the response have already been sent. If this is the case, you can no longer modify it.
Table 6.2 provides an overview of the most important methods of the response object.

180

6.4 Setup

get(field) Reads the specified header field of the response.
set(field[, value]) Sets the value of the specified header field.

cookie(name, value[, options]) Sets a cookie value.

redirect([status,]path) Forwards the request.

status(code) Sets the status code of the response.
send([body]) Sends the HTTP response.

Json([body]) Sends the HTTP response. The passed object is con-

verted to a JavaScript Object Notation (JSON) object,
and the correct response headers are set.

end([data][, encoding]) Sends the HTTP response. You should use this method
primarily if you don’t send user data such as HTML
structures. Otherwise, you should use the send
method.

Table 6.2 Key Methods of the “response” Object

After this brief introduction to the request and response handling elements, the follow-
ing sections deal with the setup and architecture of an Express application.

6.4 Setup

As a general best practice in dealing with Express, it has emerged that an application
should be divided into separate components as far as possible, each of which is stored in
separate files. Although you create a lot of files with this strategy, depending on the size
of your application, you'll still be able to locate the files quickly due to a well-structured
directory hierarchy. A file contains only one component and thus a self-contained unit.
For structuring an Express application, a classic model-view-controller (MVC) approach
is the best choice.

MVC: The Model-View-Controller Pattern

The MVC pattern is used to structure applications, especially in web development,
where it has become an important standard. This pattern describes where certain parts
of an application should be stored and how these parts interact. The name MVC
already contains the three components of the pattern:

= Model
The models of an MVC application are used for data management. Models encap-
sulate all operations related to the data of your application. This concerns both the

181

6 Express

creation and the modification or deletion of information. Typically, a model encap-
sulates database accesses. In addition to the pure data and the associated logic for
handling it, models also encapsulate the business logic of your application.

m View
The task of views consists of displaying information. The views of an Express appli-
cation are mostly HTML templates populated with the dynamic data of your appli-
cation before delivery to the client. In modern applications that are application
programming interface (API) heavy, this aspect of the MVC architecture is increas-
ingly taking a back seat, as templates are rarely rendered, and, instead, JSON
objects are often sent from the server to the client.

m Controller
A controller contains the control logic of your application. The controller brings
models and views together. You should make sure that your controllers don’t
become too large. If the controller contains too much logic, you should outsource it
to support functions or models.

When building your application, it’s critical that you follow a consistent convention
when structuring the file and directory hierarchy to maintain maintainability and
extensibility over the lifecycle of the application.

6.4.1 Structure of an Application

The choice of directory structure depends very much on the scope of your application.
Avoid making the structure unnecessarily complex at the very start because when you
start working on an application, you usually don’t know exactly what it will look like in
the end. The more complex the structure becomes, the more time-consuming its
adjustments become. Start with as flat a hierarchy as possible, and restructure the
directories and files as needed. The module system of Node.js and modern develop-
ment environments support you in this continuous refactoring process by easily mov-
ing files and directories and automatically adjusting import statements. An application
usually consists of the following components: models, views, controllers, routers, and
helpers.

Structure for Small Applications

For very small applications, you should create one file per component and place itin a
directory. An example of such a structure is given in Figure 6.3.

This structuring approach only works for very manageable applications or small proto-
types. As soon as your project has more than three or four separate endpoints, you
should switch to the next larger variant or start with it directly, as migrating the struc-
ture in this case will only become unnecessarily time-consuming.

182

6.4 Setup

detail.html
list.html
controllers.js
helpers.js
models.js
router.js

o/e @ e aald
°

» node_modules
@ index.js
k&l package.json

Figure 6.3 Directory Structure for Small Applications

Structure for Medium-Sized Applications

Web applications that have 10 to 15 independent endpoints, that is, separate routes, fit
into the category of medium-sized applications. This structuring variant is a good start-
ing point for normal web applications. In this structure, the different components—
models, views, and controllers—are stored in separate directories. All structures are
located in their own files and are named accordingly. To make it easier to locate the
structures in the development environment, it has become best practice to include the
type of structure in the file name. For example, a controller that is responsible for the
login process of your application is then located in a file named login.controller.js in the
controllers directory. The structure of such an application could look like the one
shown in Figure 6.4.

v controllers
@ login.controller.js
@ user.controller.js

v helpers
e format.helper.js

@ index.js

v models

@ account.model.js
@ user.model.js
> node_modules
ksl package.json

router.js

v views

€| login.html

€ userList.html

Figure 6.4 Structure for Medium-Size Applications

183

6 Express

The advantage of this structuring variant is that all structures are stored separately
from each other and also within the respective component; for example, in the case of
models, a thematic separation takes place at the file level. This decouples the different
areas of the application and keeps the number of files per directory low. For small- and
medium-sized applications this is a very good approach.

Structure for Large Applications

As far as the scope of your application is concerned, you're hardly limited when using
Express. However, when developing the file and directory structure of large-scale appli-
cations, you should take an approach that allows you to thematically separate the mod-
ules of your application. Such a strategy allows you to develop your application in
parallel with several teams and manage the individual modules independently. This
also greatly simplifies the localization of code locations. Figure 6.5 shows an example of
such a structure.

v account
@ account.router.js
v controllers
@ login.controller.js
@ settings.controller.js
v models
@ account.model.js
@ login.model.js
v views
€ login.html
€ settings.html

v helpers
o format.helper.js
@ index.js
> node_modules

L4 package.json
@ router.js
v user

v controllers
@ group.controller.js
@ user.controller.js

v models
@ group.model.js
@ user.model.js

@ user.router.js

v views
€ groupList.html
€ userDetail.html
€ userList.html

Figure 6.5 Structure for Extensive Applications

184

6.5 Movie Database

As you can see in Figure 6.5, there are separate directories for each subject area of the
application. The selection and delineation of these areas depend entirely on you and
the requirements of your application. Typically, modules are chosen to cover a topic in
its entirety. This approach enables clean interfaces to the other parts of the application.
The available options here range from logical units within an endpoint to groups of
multiple thematically related endpoints. Each module in turn contains subdirectories,
each of which contains the module’s models, views, and controllers. In addition, each
module defines its own router. Now that you have an overview of the structuring
options for your application, you can move on to extending your first sample applica-
tion in the next step.

6.5 Movie Database

A movie database will serve as a sample application for Express. This covers all essential
aspects of a typical application. You can add movies to the database, view the existing
records, update them if necessary, and also delete them. In addition, further function-
alities such as ratings can be implemented. This application also serves as a basis for the
following chapters when it comes to integrating template engines, connecting differ-
ent databases, or authenticating users.

For the sample application, we chose the structure of a large application, although it
will initially consist of only one module. The reason is that this structure offers the
highest degree of flexibility, allowing you to get to know more features of Express.

The first step in the implementation of the application consists of the initialization. For
this purpose, you should create a directory named movie-db and go to this directory via
the command line. After that, you must run the npm init -y command to create a pack-
age.json file. Once you've created the file, you must add the type field with the module
value to be able to use the ECMAScript module system. You're relatively free to choose
aname, but you should select a unique name in case you want to publish your applica-
tion. Note that the name must be written in lowercase letters and consist of only one
word. However, it may contain hyphens and underscores. Then you must install
Express using the npm install express command. Listing 6.2 shows the package.json file
of the application.

{

"name": "node-book",
"version": "1.0.0",
"description": "",
"main": "index.js",
"type": "module",
"scripts": {

"start": "node index.js"

b

185

6 Express

"keywords": [],
"author": ""
"license": "ISC",
"dependencies”: {
"express": ""4.17.1"

}
¥

Listing 6.2 Initial Configuration of the Application (package.json)

The two changes you need to make manually to the file are the type field and a startup
script that allows you to conveniently start your application using the npm start com-
mand.

In the final step of initialization, you must create an index.js file in the root directory of
your application as the entry point to your application. During development, you
should make sure that this file is only responsible for initializing the application and
doesn’t perform any other tasks. The preliminary source code of this file is shown in
Listing 6.3.

import express from 'express';
const app = express();

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080"');
1

Listing 6.3 Getting Started with the Application (index.js)

6.5.1 Routing

In the first step, you want your application to output a simple list of movie titles. For
this purpose, you must first define a module, that is, a unit in your application that cov-
ers all aspects related to movies in the application. Based on the default guidelines for
the structure, you first need a directory with the name of the module, in this case,
movie. In this directory, you create a file named index.js. The file is the entry point to
the module. If you integrate it into your application at a later point in time, this file
ensures that all other relevant parts of the module are loaded so that the integration
causes as little effort as possible.

The index file of your module exports the router object you later include in the index
file of your application. In addition to creating the router object, this file currently takes
care of managing the data and the response to the request in the callback function of
the route. Listing 6.4 contains the source code of the file.

186

6.5 Movie Database

import { Router } from 'express';
const router = Router();

const data = [

{ id: 1, title: 'Iron Man', year: '2008" },

{ id: 2, title: 'Thor', year: '2011' },

{ id: 3, title: 'Captain America', year: '2011" },
I

router.get('/', (request, response) => {
response.send(data);

})J

export { router };

Listing 6.4 Router File of the Movie Module (movie/index.js)

Before you can display the data in the browser, you must integrate the router into your
application. This is done in the index.js file in the root directory of your application, as
shown in Listing 6.5.

import express from 'express';
import { router as movieRouter } from './movie/index.js';

const app = express();
app.use('/movie', movieRouter);
app.get('/', (request, response) => response.redirect('/movie'));

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080"');
b;

Listing 6.5 Integrating the Router (index.js)

When loading the router, you must specify the name of the file in the ECMAScript mod-
ule system, that is, index.js, as Node.js doesn’t use this automatically when specifying a
directory. This is different from the Common]JS module system. To make the code a bit
more meaningful, you should rename the router to movieRouter on import. The use
method specifies that the movieRouter is responsible for the /movie path. Currently,
users of your application need to know that the movie list can be found at http://local-
host:8080/movie. By using the get route for the / path and then redirecting to /movie,
you enable users to also access the list via http://localhost:8080. This way, you've
defined the entry point for your application. If you start your application via the npm

187

6 Express

start or node index.js commands, you can open it in your browser and get a display
similar to the one shown in Figure 6.6.

@ localhost:8080/movie [+ (@

@ localhost:8080/movie . v g % Incognito

[{"id":1,"title":"Iron Man", "year":"2008"},
"id":2,"title":"Thor","year":"2011"},
{"id":3,"title":"Captain America","year":"2011"}]

Figure 6.6 Movie List in the Browser

Patterns in Routes

Static routes, as you've come to know them so far, cover most use cases in a web appli-
cation. However, there are use cases where you reach the limits due to little flexibility.
For this reason, it’s possible to formulate dynamic routes in Express.

/ab?c /abc or /ac Sign may occur, but doesn’t have to.
+ /ab+c /abc or /abbc Character occurs once or multiple times.
* /a*c Jac or /aABCc Any character string.

Table 6.3 Patterns in Routes

In addition to the patterns listed in Table 6.3, you can create groups of characters by
means of parentheses and apply the multipliers to these groups. Thus, a route from
/a(bc)?d applies to both /ad and /abcd. If these options are still not sufficient to cover
your use case, you can also specify routes as regular expressions. Listing 6.6 shows an
example of such a route, which is responsible for all paths that contain the string /movie
somewhere in the path.

Route Dependency

Note that a route in Express can cause other routes to stop running, depending on
where you place it in your application. Express always uses the first suitable route it
can find. If it sends its response to the client, the middleware chain is broken, and
Express doesn’t perform any further functions for this request.

app.get(/.*\/movie.*$/, function (request, response) {
response.send('Movie Route');

IOF

Listing 6.6 Regular Expressions as Routes

188

6.5 Movie Database

If you formulate your routes with regular expressions, you have maximum flexibility.
However, this often makes the routes less legible, which makes troubleshooting more
difficult. For this reason, you should use regular expressions sparingly in this case and
rather as an exception when the normal route definitions are no longer sufficient.

6.5.2 Controller

At this point, your router still implements the complete MVC pattern on its own. This
isn’t desirable because readability suffers with increasing functionality, so in the next
step, you must outsource everything except the actual route definition to a controller.
The controller has the task of merging the view and the model. In addition, at this
point, the information is usually extracted from the request, and the response to the
client is formulated. As to the naming of routing callback functions, it has become stan-
dard in many web frameworks to refer to these functions as actions. A controller can
contain several of these action functions. Listing 6.7 shows the implementation of the
controller for the list view.

const data = [

{ id: 1, title: 'Iron Man', year: '2008" },

{ id: 2, title: 'Thor', year: '2011' },

{ id: 3, title: 'Captain America', year: '2011" },
1

export function listAction(request, response) {
response.send(data);

}

Listing 6.7 Controller (movie/controller.js)

Export and implementation are linked in this case. However, at this point, you may as
well collect all exports at the end of the file. There is no right or wrong here; the only
important thing is to stay consistent and always use the same type of export. Typically,
you use the combination of export and definition in files that contain only a few
exports. In general, you should make sure that a file doesn’t export too many struc-
tures, as this can quickly become confusing and indicate that the file hosts too many
structures.

The controller is included in the router, where a reference to the listAction method of
the controller is entered instead of the routing callback function. The source code of the
customized router is shown in Listing 6.8.

import { Router } from 'express';
import { listAction } from './controller.js';

const router = Router();

189

6 Express

6.5 Movie Database

router.get('/', listAction);

export { router };

Listing 6.8 Including the Controller Action in the Router (movie/index.js)

When extending the router, you must import listAction and use it in the get method
of the router. With this modification, you've separated the routing of your module and
the handling of request and response. However, model, view, and controller are still
quite tightly connected. The next step is to resolve this.

6.5.3 Model

The movie database data has the form of a simple array of objects. The model encapsu-
lates this array and provides a function to read the data and later further methods to
modify this data structure. You're not yet working with a database or other external
system for data storage in your application. But to make the source code of the applica-
tion a bit more realistic, you should implement the interfaces of the model with prom-
ises and, thus, asynchronously.

Promises

A promise is an object that represents the fulfillment of an asynchronous operation in
JavaScript. Unlike callback functions, you can work much better with promises and also
bind multiple operations to the fulfillment of such a promise object.

Promises are a language feature of JavaScript and part of the standard, so they are sup-
ported on both the client side and server side. You can create a promise object either
with the promise constructor or with Promise.resolve or Promise.reject. Listing 6.9
shows a simple example of a function that works with promises.

function asyncFunction() {
return new Promise((resolve, reject) => {
setTimeout(() => {
resolve('Hello world!");
}, 1000);
b;
}

const promise = asyncFunction();
promise.then((value) => {
console.log(value);

15
Listing 6.9 Using Promises

190

You pass a callback function to the promise constructor in the asyncFunction function.
This function has access to the resolve and reject arguments. You can use these func-
tions to indicate a success or failure of an asynchronous operation by calling the
respective function. Here, you can pass any value that represents something like the
return value of the asynchronous operation.

The promise object that the asyncFunction returns has the then, catch, and finally
methods. Each of these methods accepts a callback function that will be executed in
case of success, error, or both, respectively, and will be passed the value you passed
when calling resolve or reject. The then method is a special case because here you
can specify a second callback function for the case of an error.

The data of the model is in the scope of the file and can’t be modified directly from out-
side. The getAll method returns a promise object that you can create using the Prom-
ise.resolve method (see Listing 6.10). This promise object is resolved with a reference
to the data. This is a problem at first because the information could be changed via this
reference. At a later date, this data structure will be exchanged for a fully-fledged data-
base, so there’s currently no need to worry about this problem. After you've created the
basis for the model, you still need to integrate it into your application. The controller is
the place to go for this. Listing 6.11 shows the adjustments you need to make to your
code.

const data = [

{ id: 1, title: 'Iron Man', year: '2008"' },

{ id: 2, title: 'Thor', year: '2011' },

{ id: 3, title: 'Captain America', year: '2011" },
15

export function getAll() {
return Promise.resolve(data);

¥
Listing 6.10 Implementing the Model (movie/model.js)

import { getAll } from './model.js';

export async function listAction(request, response) {
const data = await getAll();
response.send(data);

}

Listing 6.11 Adapting the Controller to Integrate the Model (movie/controller.js)

191

6 Express

If you implement the 1istAction function as an async function as in our example, you
can use the await keyword within this function to wait for the promise to resolve. This
whole task is done asynchronously, that is, nonblocking, making the source code much
more readable than if you were using callback functions. Express supports this type of
asynchronicity directly and without additional configuration.

6.5.4 View

The final component of your MVC application with Express is the view. This part is
responsible for the display. The output of a JavaScript object isn’t a particularly appeal-
ing form of presentation. Therefore, it’s better to use HTML as the output format at this
point. You have several options for the display. For example, you can save the HTML
code in a separate HTML file, read it with JavaScript, and replace the appropriate sec-
tions. You can either do this replacement directly using the replace method of the
HTML string, or you can use an HTML parser such as Cheerio. A simpler variant is to use
JavaScript template strings, as you'll see later in this section. Another option is touse a
template engine. The next chapter describes this topic in greater detail. Listing 6.12 con-
tains the movie list view.

export function render(movies) {
return °
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Movie list</title>
</head>
<body>
<table>
<thead><tr><th>Id</th><th>Title</th></tr></thead>
<tbody>
${movies
.map(movie => ‘<tr><td>${movie.id}</td><td>${movie.title}</td></tr>")
oin("")}
</tbody>
</table>
</body>
</html>

¥
Listing 6.12 Displaying the Movie List View (movie/view.js)

192

6.6 Middleware

The view in this case consists of a render function that receives the data to be displayed
as an argument. Within the HTML structure, each entry is transformed into a table row
using the map method. You connect this structure with the join method into a character
string, which is then output at the correct position within the template string. The task
of the controller is to bring the model and view together. Listing 6.13 contains the cus-
tomized code of the controller.

import { getAll } from './model.js’;
import { render } from './view.js';

export async function listAction(request, response) {
const data = await getAll();
const body = render(data);
response.send(body);

}

Listing 6.13 View Integration in the Controller (movie/controller.js)

The listAction function loads the list of movies in the first step. This is passed to the
view in the second step. In the last step, you send the HTML structure to the client.
When you restart your application via the command line using the npm start command
now, you'll get an output like the one shown in Figure 6.7.

DO O @ Movie list &) @

C @ localhost:8080/movie Q W @ Incognito

Id Title

1 Iron Man

2 Thor

3 Captain America

Figure 6.7 Display of the Movie List after the View Conversion

When implementing your application, make sure that you move as little logic as possi-
ble into the view. Iteration, as you've implemented here, or simple conditions to hide
or show parts are recommended options. You should definitely outsource more exten-
sive logic to your models.

6.6 Middleware

Akey design feature of Express is the middleware concept, which makes the framework
a very flexible tool. Simply put, middleware here refers to a function that stands

193

6 Express

between the incoming request and the outgoing response. You can put as many of
these functions in succession as you like. There are already numerous predefined mid-
dleware functions that you can include in your application and that perform specific
tasks for you. If all this doesn’t provide any solution to your problem, you can even
write such a function yourself.

6.6.1 Custom Middleware

You can use a middleware function to extract information from the incoming request
and store it, such as with a logger. However, you can also enrich the response based on
information from the request. A middleware function must have a specific signature so
that it doesn’t break the chain of middleware functions. Suppose you wanted to define
a logger for your application that writes each request to the console. To do this, you
must adjust the contents of your application’s initial file according to Listing 6.14.

import express from 'express';
import { router as movieRouter } from './movie/index.js';

const app = express();

function log(request, response, next) {
console.log(request.url);
next();

}

app.use(log);

app.use('/movie', movieRouter);
app.get('/', (request, response) => response.redirect('/movie’));

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080"');
1

Listing 6.14 A Simple Logger (index.js)

As you can see in Listing 6.14, the signature of a middleware function is similar to that
of an ordinary routing function. A middleware function always has the three parame-
ters: request, response, and a callback function. The request and response parameters
provide access to the request and response, just like in the controller actions. The
request object is used in the example to output the requested URL to the console. The
passed callback function, which by convention is named next, ensures that the next
middleware function in the chain is called when the function is called. If you don’t per-
form this callback function, usually no response is sent to the client, and the client

194

6.6 Middleware

receives a time-out error. You can register your middleware using the use method of
your application. As the first argument, this method optionally accepts a URL path to
which the middleware should be applied. If you only pass a callback function, the mid-
dleware will be executed on every request. The order in which you register your func-
tions is important. If you first register a regular routing method that doesn’t call the
next callback function, your middleware component, which is registered afterwards,
won't be executed. If your middleware is to perform calculations or modifications you
need later in the call chain of the functions, you can cache this information in the
request object or, better yet, in the response object within a property. These objects are
available to all functions as a reference and can therefore also be used to transport
information.

Especially for standard tasks, such as the creation of an access log, there are prefabri-
cated components that you only have to install and integrate. For a list of middleware
components, see http://expressjs.com/en/resources/middleware.html.

6.6.2 Morgan: Logging Middleware for Express

Logging incoming requests is a standard problem for which there are established solu-
tions. Morgan is one of the most popular middleware components available that does
this work for you. Use the npm install morgan command to install the package in your
application. At its core, Morgan consists of a function that accepts a format for the log
entries and additional options. This means you can replace your current logger imple-
mentation with Morgan in the next step, as shown in Listing 6.15.

import express from 'express';

import morgan from 'morgan’;

import { router as movieRouter } from './movie/index.js"';

const app = express();

app.use(morgan('common', { immediate: true }));

app.use('/movie", movieRouter);

app.get('/', (request, response) => response.redirect('/movie’));
app.listen(8080, () => {

console.log('Server is listening to http://localhost:8080");
1

Listing 6.15 Morgan Middleware

Concerning the format, you can choose from a number of predefined formats such as
combined, short, or dev. The common format used in the example is similar to the format

195

6 Express

used by the Apache web server in the access log. As an alternative to the predefined for-
mats, you can also define a format yourself. For example, if you want to record only the
date, HTTP method, URL, and status code, the corresponding format looks like this:
':date :method :url :status'. The third variant for defining a format consists of using a
function instead of a character string. Irrespective of the variant you decide on, you
must pass it to the morgan function as the first argument. The option object, which you
pass as the second argument to Morgan, allows you to manipulate the behavior of the
logger. With the immediate key used in the example, you specify whether the log entry
should be written immediately or only when the response is sent to the client. The
stream property allows you to specify a writable stream to which the log entries are
written. This allows you to write the log entries to not only the console but also a file.

In Listing 6.16, you can see how to use the createlWriteStream function from the fs mod-
ule to open a data stream that writes to the access.log file and pass it to Morgan using
the stream property of the configuration object. This results in a new entry being writ-
ten to the file each time it’s accessed. The configuration object of the createlWriteStream
function with the flags property and the a value ensures that new entries are appended
and the existing content isn’t overwritten. Furthermore, the file gets created, if it
doesn’t already exist.

The skip property allows you to specify a function that can access the request and

response and whose return value determines whether an entry is written to the log or
not. If the skip function returns the false value, the entry won’t be written.

import express from 'express';

import morgan from 'morgan';

import { createWriteStream } from 'fs';

import { router as movieRouter } from './movie/index.js’';

const app = express();

const accessLogStream = createlWriteStream('access.log', { flags: 'a' });
app.use(morgan('common', {

immediate: true,

stream: accessLogStream

N);
app.use('/movie', movieRouter);
app.get('/', (request, response) => response.redirect('/movie'));

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080");
1);

Listing 6.16 Writing Log Entries to a File (index.js)

196

6.6 Middleware

6.6.3 Delivering Static Content

Web applications that you implement with Express usually not only consist of dynamic
content but also require static files. For this reason, HTML, JavaScript, CSS, and image
files must be loaded. Although you can use the fs module to read the contents of these
files and send them to the client as a response, this task becomes much easier if you use
the static middleware. Unlike Morgan, that is a component of Express, so you don’t
need to install any additional packages. If you take a look at the movie list in your
browser, you won't be presented with a particularly attractive sight. However, this can
be changed with a little bit of CSS. The CSS code shown in Listing 6.17 makes the table
look slightly more appealing.

table {
border-spacing: 0

h

th {
background-color: black;
font-weight: bold;
color: lightgrey;
text-align: left;
padding: 5px;

¥

td {
border-top: 1px solid darkgrey;
padding: 5px;

¥

tbody tr:hover {
background-color: lightgrey;

h

Listing 6.17 Styling the List (public/style.css)

To apply the styling to the movie list, you must adjust your application in two places.
First, you need to make sure that the server delivers the CSS file and that the browser
actually loads it. The delivery is carried out via the already mentioned static middle-
ware. As was the case with the logger or the router, you include the static middleware
via the use method of the app object. Listing 6.18 shows the customized initial file of
your application.

import express from 'express';

import morgan from 'morgan';

import { dirname } from 'path’;

import { fileURLToPath } from 'url';

import { router as movieRouter } from './movie/index.js';

197

6 Express

const app = express();
app.use(express.static(${dirname(fileURLToPath(import.meta.url))}/public’));
app.use(morgan('common', { immediate: true }));

app.use('/movie', movieRouter);

app.get('/', (request, response) => response.redirect('/movie'));

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080");
1

Listing 6.18 Integrating the “static” Middleware (index.js)

When you call the static middleware, you pass the name of the directory where the
static content resides. For the movie list, this is the public directory in the root of your
application. In the next step, you can now reference the CSS file via a link tag in the
HTML code of the list, as shown in Listing 6.19.

export function render(movies) {
return °

<IDOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<title>Movie list</title>
<link rel="stylesheet" href="style.css" />

</head>

<body>
<table>...</table>

</body>

</html>

¥
Listing 6.19 Embedding the CSS File into the HTML Code (movie/view.js)

If you modify the list view source code according to Listing 6.19 and restart your appli-
cation, you'll get a view similar to the one shown in Figure 6.8.

198

6.7 Extended Routing: Deleting Data Records

D00 | 3 Movielist < | @B

C @ localhost:8080/movie @ % @ Incognito

Id Title

1 TIron Man
2 Thor

3 Captain America

Figure 6.8 List View with CSS

6.7 Extended Routing: Deleting Data Records

Until now, the functionality of your application is limited to the display of data. In the
next step, you provide your users with the option to delete data, as shown in Listing
6.20. To do this, you must first insert one link per record in the frontend. This link leads
to aroute on the server that takes care of deleting the record. After the deletion is done,
you must redirect the user to the list so that the view gets updated.

<table>
<thead><tr><th>Id</th><th>Title</th><th></th></tr></thead>
<tbody>
${movies
.map(
movie => °
<tr>
<td>${movie.id}</td>
<td>${movie.title}</td>
<td>delete</td>
<S>t
)
.join(" ")}
</tbody>
</table>

Listing 6.20 Extending the Template with a Delete Link (movie/view.js)

The routing functions in Express support all available HTTP methods, including, for
example, the DELETE method. This should normally be the preferred way of deleting
data, as each HTTP method has a specific meaning. In classic web applications, how-
ever, the only method you can invoke through a link is GET. For this reason, you must
add an appropriate get route to your router for deleting data records. In Chapter 10,

199

6 Express

6.8 Creating and Editing Data Records: Body Parser

when you implement a representational state transfer (REST) server, the situation is
different. When you take alook at the delivered source code, you'll notice that each link
in the table looks different because you specify the ID of the record you want to delete.
This leads to a peculiarity in specifying the path in the router link. In this case, the link
contains a variable portion representing the ID you can access through the request
object. You must mark such a variable in the specification of the path of the routing
function by a colon followed by the name of the variable. Listing 6.21 shows the modi-
fication at the router.

import { Router } from 'express';
import { listAction, removeAction } from './controller.js';

const router = Router();

router.get('/', listAction);
router.get('/delete/:id", removeAction);

export { router };

Listing 6.21 Extending the Router with a Delete Route (movie/index.js)

In the removeAction of the controller, you can access the variables of the route via the
params object of the request. In this case, you can reach the ID passed by the user via
request.params.id. Here you should note that Express interprets the transmitted val-
ues as strings. To be able to continue using the ID later, you should convert it to a num-
ber via the parseInt function. Listing 6.22 contains the source code of the controller.

import { getAll, remove } from './model.js';s
import { render } from './view.js';

export async function listAction(request, response) {...}

export async function removeAction(request, response) {
const id = parselnt(request.params.id, 10);
await remove(id);
response.redirect(request.baselrl);

}

Listing 6.22 “removeAction” of the Controller (movie/controller.js)

Once you've converted the ID, you can call the remove method of the model, which will
make sure that the corresponding record in the data source gets deleted. This operation
is also asynchronous and works with promises, so put async/await here. After the oper-
ation is complete, you must redirect the user to the list using the response.redirect
method. Here you can see another feature of the modular structure of an application:

200

instead of redirecting directly to "/movie/" in the redirect method, the baseUrl prop-
erty of the request object is used in this case. The reason for this is that the movie mod-
ule itself doesn’t know the base URL for which it’s responsible. To avoid a tight coupling
between the embedding location and the module here, you must use the baseUr1 prop-
erty that contains the information. This allows you to change the baseUr] in the index.js
file at a later stage without having to modify the module.

Finally, the remove method of the model filters out the data record to be deleted from
the data source and overwrites the data source with the updated information. Listing
6.23 shows the corresponding implementation.

let data = [...];

export function getAll() {
return Promise.resolve(data);

}

export function remove(id) {
data = data.filter(movie => movie.id !== id);
return Promise.resolve();

}

Listing 6.23 Customization on the Model (movie/model.js)

Note that in the model implementation, to clear the data, you must change the data
array from a constant to a variable via let.

6.8 Creating and Editing Data Records: Body Parser

You can only transmit a few data records via variables in the URL, and especially for
forms this isn’t a practicable solution. As a rule, data is also sent using HTTP POST. You
can benefit from this fact when extending your application. In the next step, you'll
implement a way to create new records and edit existing ones. You start this customi-
zation again in the frontend of your application by adding a link to the list display,
which allows your users to create new records. Furthermore, you should add a link in
the table for each entry to edit the records. Listing 6.24 contains the source code of the
view.

export function render(movies) {
return °

<IDOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">

201

6 Express

<title>Movie list</title>
<link rel="stylesheet" href="style.css" />

</head>
<body>
<table>
<thead><tr><th>Id</th><th>Title</th><th></th><th></th></tr></thead>
<tbody>
${movies
.map(
(movie) => °
<tr>
<td>${movie.id}</td>
<td>${movie.title}</td>
<td>delete</td>
<td>edit</td>
<Jtr>T,
)
.join(' ")}
</tbody>
</table>
new
</body>
</html>
}

Listing 6.24 Customizing the View (movie/view.js)

Both links of the view point to the same route, once to /movie/formand once to /movie/
form/:id. In Express, you can define optional parameters. If you attach a question mark
to the parameter, it will be marked as optional, and you won't have to define two sepa-
rate routes. You can see the updated router configuration in Listing 6.25.

import { Router } from 'express';
import { listAction, removeAction, formAction } from './controller.js';

const router = Router();
router.get('/"', listAction);
router.get('/delete/:id"', removeAction);

router.get('/form/:id?', formAction);

export { router };

Listing 6.25 Customizing the Router Configuration (movie/index.js)

202

6.8 Creating and Editing Data Records: Body Parser

The controller is responsible for reading information from the model based on the
information from the request, if necessary, and for rendering the view. The crucial
point here is to distinguish whether the user passed an ID to edit a data record or to cre-
ate a new one. As you can see in Listing 6.26, a data record is passed to the view in each
case.

import { getAll, remove, get } from './model.js’;

import { render } from './view.js';

import { render as form } from './form.js';

export async function listAction(request, response) {...}

export async function removeAction(request, response) {...}

export async function formAction(request, response) {
let movie = { id: '', title: "', year: '' };

if (request.params.id) {
movie = await get(parseInt(request.params.id, 10));

}
const body = form(movie);
response.send(body);

}

Listing 6.26 “formAction” in the Controller (movie/controller.js)

The implementation of this view is based on the implementation of the list. Listing 6.27
contains the source code.

export function render(movie) {
return °
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Movie list</title>
<link rel="stylesheet" href=" /style.css" />
</head>
<body>
<form action="/movie/save" method="post">
<input type="hidden" id="id" name="id" value="${movie.id}" />
<div>
<label for="title">Titel:</label>

203

6 Express

<input type="text" id="title" name="title" value="${movie.title}" />
</div>
<div>
<label for="id">Year:</label>
<input type="text" id="year" name="year" value="${movie.year}" />
</div>
<div>
<button type="submit">save</button>
</div>
</form>
</body>
</html>

};

Listing 6.27 Form View (movie/form.js)

The form uses the action="/movie/save" and method="post" attributes to ensure that
the HTTP POST method data entered by the user is sent to the server. Based on the pres-
ence of an ID value, the server can distinguish whether the request is a creating or mod-
ifying operation. The values that are passed during editing are inserted into the
individual form fields as value attributes via template substitutions. To be able to edit
a record, you still need to implement the get method in the model, which you use to
load the data record from the data source. In this application, it's sufficient to call the
find method of the data array to load the data record based on its ID. Listing 6.28 shows
the corresponding source code.

let data = [...];
export function getAll() {...}

export function get(id) {
return Promise.resolve(data.find((movie) => movie.id === id));

}

export function remove(id) {...}

Listing 6.28 Extending the Model with the “get” Method (movie/model.js)

When reloading your application, you can reach the form either via the New or the Edit
links in the list. The results are shown in Figure 6.9.

204

6.8 Creating and Editing Data Records: Body Parser

Movie list

localhost [+¢ @ Incognito

Figure 6.9 Form for Creating Data Records

6.8.1 Handling Form Input: Body Parser

To save your users’ input, you must be able to access the form data. The most conve-
nient way to do so is to use the body parser middleware. The body parser package has
had a troubled past. Originally, middleware was an integral part of Express, similar to
static middleware. However, with version 4, it was moved out into a package of its
own, and with version 4.16, it was incorporated back into the core of Express. So, if
you're using a recent version of Express, you don’t need to install any additional pack-
ages to request body processing.

The body parser provides you with the two functions, json and urlencoded for JSON-
and URL-encoded requests, respectively, which you can access directly via the express
object. You can see the middleware integration in the index.js file of your application in
Listing 6.29.

import express from 'express';

import morgan from 'morgan';

import { dirname } from 'path’;

import { fileURLToPath } from ‘'url';

import { router as movieRouter } from './movie/index.js';

const app = express();
app.use(express.static("${dirname(fileURLToPath(import.meta.url))}/public’));
app.use(morgan('common', { immediate: true }));

app.use(express.urlencoded({ extended: false }));

app.use('/movie", movieRouter);

app.get('/', (request, response) => response.redirect('/movie'));

205

6 Express

app.listen(8080, () => {
console.log('Server is listening to http://localhost:8080");
1

Listing 6.29 Integrating the Body Parser Middleware (index.js)

As already mentioned, the body parser middleware supports various parsers. If you're
processing an ordinary HTML form, as in the example, you should use the urlencoded
parser. If your frontend sends the information in JSON format instead, the JSON parser
comes into play. Other parsers include the raw parser, which parses the body as a buf-
fer, and the text parser, which interprets the body of the request as text. However,
these two are only available as of Express version 4.17. You can also use the different
parsers in parallel, for example, both the urlencoded and the JSON parser at the same
time. After the inclusion, you must extend the router of your movie module to sup-
port the /movie/save URL path.

As you can see in Listing 6.30, the extension follows the scheme we’ve been using until
now. The saveAction of the controller passes the information to the model. For better
control, the controller extracts the required properties from the request.body property
provided by the body parser. This property contains all the data of the form as object
properties.

import { Router } from 'express';
import

listAction,

removeAction,

formAction,

saveAction,
} from './controller.js’;

const router = Router();

router.get('/"', listAction);
router.get('/delete/:id"', removeAction);
router.get('/form/:id?", formAction);
router.post('/save', saveAction);

export { router };
Listing 6.30 Extending the Router with the Save Route (movie/index.js)
A separate view isn’t needed in the controller because saveAction redirects to the list.

Again, as with deleting data records, the baseUrl property of the request object comes
into play. Listing 6.31 shows the customized controller.

206

6.8 Creating and Editing Data Records: Body Parser

import { getAll, remove, get, save } from './model.js"';
import { render } from './view.js';
import { render as form } from './form.js';

export async function listAction(request, response) {...}
export async function removeAction(request, response) {...}
export async function formAction(request, response) {...}

export async function saveAction(request, response) {
const movie = {
id: request.body.id,
title: request.body.title,
year: request.body.year,
};
await save(movie);
response.redirect(request.baselrl);

¥

Listing 6.31 “saveAction” of the Controller (movie/controller.js)

The controller doesn’t know whether the current operation is a new creation or an
update of a data record. This decision is left to the model. For this reason, the model
code is also a bit more extensive at this point, as you can see in Listing 6.32.

let data = [...];

function getNextId() {
return Math.max(...data.map((movie) => movie.id)) + 1;

}

function insert(movie) {
movie.id = getNextId();
data.push(movie);

}

function update(movie) {
movie.id = parseInt(movie.id, 10);
const index = data.findIndex((item) => item.id === movie.id);
data[index] = movie;

}

export function getAll() {...}

export function get(id) {...}

207

6 Express

export function remove(id) {...}

export function save(movie) {

if (movie.id === "'") {
insert(movie);

} else {
update(movie);

}

return Promise.resolve();

}

Listing 6.32 Implementing the “save” Method in the Model (movie/model.js)

In the save function of the model, the id property of the transferred data is used to
decide whether it’s a new or an existing data record. For new records, the hidden input
field of the form isn’t filled or has an empty character string as its value. To keep the
method clear and manageable, the insert and update functionality are swapped out
into separate helper functions. The insert function uses the getNextId function, which
searches for the next free ID in the data source. Normally, this task is assumed by the
database; in our case, the highest ID of the data in the array is searched and incre-
mented by one. Then the new ID is assigned to the record, and the information is
pushed into the data array. When updating the data, you must first convert the ID of
the record to a number because all information arrives from the client as character
strings, and the ID is stored as a number for the calculation of the next higher ID in the
data source. This change allows you to find the index of the affected record in the data
source and adjust the array by overwriting the old record with the new information.

After restarting the process, you can now view, delete, edit, and create new movies in
your database.

6.9 Express5

The development of Express has lost some momentum. A clear sign of this is that there
hasn’t been a major release in quite some time. In the summer of 2021, version 5 of the
framework was still in alpha stage. Version 4 of Express was released in April 2014. Since
then, the framework has received numerous minor updates. For web developers, how-
ever, this has a decisive advantage as well: Express is a very stable and thousand-times
field-tested basis for your application, where you don’t have to fear that the API will
change seriously.

For Express 5, the developers have announced that there will be no serious changes.
Some methods that have proven to be impractical or misleading over time are
removed. A classic example is the send method with which you could send a string or
a number. If a number is passed, it’s sent to the user as a status. For example, an

208

6.10 HTTPS and HTTP/2

Unauthorized message can be sent in a quick way. However, this has the disadvantage
that you have no way to send a regular number to the client. With Express 5, you
accomplish this with the sendStatus method.

Express 5, as long as it hasn’t yet been released, can be installed using the command npm
install express@5.0.0-alpha.8.

6.10 HTTPS and HTTP/2

Because Express is based on the HTTP module of Node.js, the framework is quite flexi-
ble when it comes to exchanging the communication protocol.

6.10.1 HTTPS

Instead of HTTP, you can also use the secure HTTPS variant recommended for produc-
tive applications. For this, you don’t need to do anything more than pass the app object
you created by calling the express function to the createServer method of the https
module.

Listing 6.33 contains the necessary customizations to deliver your movie database with
HTTPS. The example assumes that you've issued yourself a self-signed certificate and
saved the files in the cert directory as in Chapter 5, Section 5.3. When you restart the
server after these adjustments, you can reach your application at https://local-
host:8080.

import { createServer } from 'https';

import { readFileSync } from 'fs';

import express from 'express';

import morgan from 'morgan';

import { dirname } from 'path’;

import { fileURLToPath } from ‘'url';

import { router as movieRouter } from './movie/index.js';
const app = express();
app.use(express.static("${dirname(fileURLToPath(import.meta.url))}/public’));
app.use(morgan('common', { immediate: true }));
app.use(express.urlencoded({ extended: false }));

app.use('/movie', movieRouter);

app.get('/', (request, response) => response.redirect('/movie’));

209

6 Express

6.10 HTTPS and HTTP/2

const options = {
key: readFileSync('./cert/localhost.key'),
cert: readFileSync('./cert/localhost.cert'),

};

createServer(options, app).listen(8080, () => {
console.log('Server is listening to https://localhost:8080');

D;
Listing 6.33 Express with HTTPS

6.10.2 HTTP/2

The integration of HTTP/2 works similar to HTTPS. However, the problem here is that
Express version 4 isn’t compatible with the HTTP/2 module of Node.js. Therefore, you
have to switch to the spdy module at this point. Native support is planned for version 5.

You can install the spdy module using the npm install spdy command. The name of this
module is somewhat misleading, as it not only supports SPDY but also HTTP/2. SPDY is
a protocol developed by Google to replace HTTP in version 1. The HTTP/2 protocol picks
up some concepts from the SPDY protocol.

The spdy module is API compatible with the http and https modules of Node.js, so it
combines well with Express. With regard to the integration, you can proceed in a simi-
lar way as you did before with the HTTPS integration. As you can see in Listing 6.34,
instead of importing the https module, you must import the spdy package and call the
spdy.createServer function instead of the createServer function of the https module.

import spdy from 'spdy’;

import { readFileSync } from 'fs';

import express from 'express';

import morgan from 'morgan';

import { dirname } from 'path’;

import { fileURLToPath } from ‘'url';

import { router as movieRouter } from './movie/index.js’';

const app = express();
app.use(express.static("${dirname(fileURLToPath(import.meta.url))}/public’));
app.use(morgan('common', { immediate: true }));

app.use(express.urlencoded({ extended: false }));

app.use('/movie', movieRouter);

210

app.get('/', (request, response) => response.redirect('/movie'));

const options = {
key: readFileSync('./cert/localhost.key'),
cert: readFileSync("'./cert/localhost.cert'),

};

spdy.createServer(options, app).listen(8080, () => {
console.log('Server is listening to https://localhost:8080");

b;
Listing 6.34 HTTP/2 in Express

You can verify that the switch to the HTTP/2 protocol worked by opening your
browser’s developer tools and making sure that, as in Figure 6.10, the h2 protocol is

used for loading each resource.

Movie list b3 +
re | https://localhost
Id Title
1 Iron Man delete edit
2 Thor delete edit

3 Captain America delete edit

new

Elements Console S Network Performance
[] Y Disable cache No thro
Filter Invert Hide data URLs
All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other

Has blocked cookies Blocked Requests 3rd-party requests

50 ms 100 ms 150 ms 200 ms 250 ms 300 ms 350 ms

Name Status | Prot... | Type Initiator Size Time Waterfall

localhost 302 doc... Other 71B 149... ¢

movie 200 doc... 955 B 4 ms

style.css 200 style... movie 364B 20ms
Other

4 requ 1.6 kB tra d 3k es | Finish: 185 ms

Figure 6.10 Delivery of Resources via the h2 Protocol

21

6 Express

6.11 Summary

In this chapter, you learned about Express, the most widely used web application
framework for Node.js. Unlike the http module of Node.js, it's much more convenient
by either completely relieving you of numerous tasks or at least making them much
easier. Express is a lightweight framework that is well suited for use in both small- and
large-scale applications.

The Express framework provides a router that can be used to define combinations of
http methods and URL paths and then bind callback functions to them. Routes in
Express can have static and dynamic parts.

The middleware components provide you with a flexible plug-in system. A middleware
refers to a function that is located between the incoming request and the outgoing
response. You can use these functions to implement additional features, such as log-
ging or request body processing, and use them to process, enrich, or log the request.

To extend your application, you can either use existing middleware components, such
as Morgan or the body parser, or write your own components.

Due to its modular design, Express can be operated not only with HTTP but also with
HTTPS and HTTP/2.

212

Chapter 15
Node on the Command Line

You cannot teach a man anything; you can only help him find it within
himself.
—Galileo Galilei

In addition to typical web applications, Node.js can also be used to implement powerful
command-line tools. This is possible because, with Node.js, you have an interface to
your operating system that allows you to access not only the file system but also
almost all aspects of your system. Another advantage of Node.js on the command line
is that you can’t tell whether an application implemented in Node.js is based on Javas-
cript. As you run your tool directly on the command line, there is no direct indication
that Node.js is involved. The distribution of such tools is also quite simple thanks to
Node Package Manager (npm). For open-source projects, you can use the infrastructure
of the npm registry directly. You can distribute internal projects as files via npm or cre-
ate a local repository. Chapter 25 describes how this works in detail.

The areas of use for command-line tools in Node.js are also very diverse. Starting from
small utilities that support you in your daily development work up to large-scale appli-
cations, everything is possible. Most of the time, however, the commands are used in
web development because JavaScript is one of the most commonly used languages in
that area, and the relevant interfaces are already available. Thus, applications for han-
dling CSS, HTML, and JavaScript are provided. Testing and analysis tools are also often
written in Node.js. Another big area where Node.js is used is in the build process of web
applications, where the goal is to prepare the source code so that it can be distributed
to a server system and deployed.

15.1 Basic Principles

Before you start writing a command-line tool with Node.js, you need to know some
basic principles about commands and how to use them. All commonly used operating
systems have a command line where you can execute commands. This is true for
macOS and Linux as well as for Windows. In Listing 15.1, you can see the execution of a
typical shell command in a Unix environment.

15 Node on the Command Line

$ 1s -1 /usr/local/lib/node_modules/

total 0

drwxrwxr-x 23 root wheel 782 Dec 16 19:42 npm
drwxr-xr-x 8 nobody 41305271 272 Dec 23 02:01 nvm

Listing 15.1 Command-Line Command on a Unix Shell

Atypical feature of a command-line tool is that it’s called directly with no interpreter or
server process required. Normally, you can also omit the file extension of the com-
mand. In addition, most commands are located in the system’s search path, so they can
be executed without an explicit path name. Only in the rarest cases is a command used
on its own because you usually specify additional options and arguments to affect the
execution. In the example in Listing 15.1, the 1s command is used to create a listing of
files in a directory. The -1 option provides a more verbose output, and the /usr/local/
1ib/node modules argument determines which directory you're interested in. This
structure isn’t arbitrary, but follows a convention that you should follow when creating
a command-line tool with Node.js.

15.1.1 Structure

Node.js gives you a lot of leeway when building a command-line application. Although
this is a great advantage for you because you're hardly restricted, it quickly turns into a
disadvantage for the users of your application if every command on the command line
has to be used differently. For this reason, you should make sure your commands
always have the following structure: <command> <options> <arguments>. The individual
components of a command line are as follows:

= Command
The command designates the executable file of the tool. Normally, you can omit file
name extensions such as.exe or .bat. If you haven'’t placed the file within the search
path of your system, you must prefix the command with the absolute or relative
path to the file. So, for frequently used commands, it’s recommended to expand the
system search path and copy the tool executable to a location that is included in the
search path, or at least create a shortcut to it.

m Options
The options of a command affect its behavior. This means you can use options to
control what exactly your application should do. You've already seen a correspond-
ing example in Listing 15.1 where the -1 option made sure that more details were dis-
played. With regard to options, there is a convention that most applications follow.
If you prefix an option only with -, the option should consist of only one letter. If the
option requires a value, it’s separated from the option by a space. Several options in
the short notation can be combined. Thus, an 1s -1 -a becomes an 1s -1a. In the more
verbose notation for options, you must use two - as prefix. The name of the option

454

15.1 Basic Principles

in this case consists of a word, and the value is separated from the option by =. In this
context, it isn’t possible to group several options together as in the shorthand nota-
tion. An example of this notation is grep --recursive --max-count=3 "node.js" *.

= Arguments
Arguments enable you to pass information to the command. For the directory list-
ing in Listing 15.1, the argument consists of the name of the directory to be displayed.
For example, the grep command accepts two arguments. If you run grep --recursive
"node.js" *, the first argument is the character string node. js to search for, while * is
a wildcard for all files and directories in the current directory.

As is so often the case in Node.js, you should be careful with the flexibility the platform
gives you. For example, you can read the entire command line and determine the for-
mat of options and arguments yourself. This allows you to use a % rather than a - to
indicate options. However, you'd better stick to the convention described earlier and
thus allow the users of your application to use it as they are used to. By default, almost
all commands support options such as -h or --help for a short help, so you can get a
quick start with the features of the application.

15.1.2 Executability

To run a command on your system, you must meet some requirements. During the
course of this chapter, you'll learn how to design your application. There are addition-
ally some conditions that have to be fulfilled on the operating system side.

As mentioned earlier, the executable file of your application must be findable. If you
install the application globally via the npm, you must make sure that the file is located
in a directory that is in the search path of your system. If you want to install your appli-
cation without the npm, you have to adjust your search path manually. On a Windows
system, you can do this by extending the PATH variable in the system settings. You pro-
ceed in a similar way on a Unix-based system. Again, the environment variable is called
PATH and contains a list of directories separated by colons.

Especially on Unix systems, you must set special permissions for an application to run
on the command line. The Unix permission system provides for three types of permis-
sions: read, write, and execute. You can set them for the owner of the file, the assigned
group, and all other users of the system. For you to run the application, the executing
user must have at least read and execute permissions on the file. If that isn’t the case,
you'll receive an error message informing you of the missing authorization. You can set
the permission on the command line using the chmod +rx index.js command. This
assumes that the starting point of your application is in the file named index.js. The chmod
command in this case ensures that any user on the system can both read and execute the
file. With this prior knowledge, you can now move on to creating your command-line
application.

455

15 Node on the Command Line

15.2 Structure of a Command-Line Application

As an example of a command-line application, we want to create an application that
provides calculation tasks for the four basic arithmetic operations and checks the
results you enter. In the following sections, you'll implement such an application step
by step and see what options are available to you on the command line.

15.2.1 File and Directory Structure

Normally, a command-line application has at least two subdirectories:

= lib
The lib directory contains the actual application. Depending on the size of the tool,
you can distribute the source code across several files and subdirectories. As an
alternative to the name Ilib, you can also name this directory src. Both variants are
quite commonly used.

® bin
The executable files are located in the bin directory of the application. If you follow
this convention, it’s easy for outsiders to get started with the application.

In addition to the directories and files of the application, there is also the package con-
figuration in the form of the package.json file. According to the convention, you should
store the index.js file, which is the entry point to your application, in the [ib directory.

One of the features of a command-line application is that you can call the tool directly
and don't need to use the node command first. For this purpose, you can make use of
the shebang (#!) on Unix systems. This is a standardized character string that tells the
system how to execute the script. To make sure the Math Trainer application runs on
your system, you must create a file named mathTrainer.js in the bin directory. The con-
tents of this file are shown in Listing 15.2.

#!/usr/bin/env node

import '../lib/index.js';

Listing 15.2 Math Trainer Executable File (bin/mathTrainer.js)

After you've made sure the execution permission is also set correctly on a Unix system,
you can execute your application via the bin/mathTrainer. js command line in the root
directory of your application.

15.2.2 Package Definition

One of the most important aspects is the package.json file of a project. It helps you to
obtain an initial overview of a project. The file lists the name, description, and version

456

15.2 Structure of a Command-Line Application

number as well as the dependencies to be installed. Furthermore, it references the
entry point into the application. For the Math Trainer, you use the npm init command
to create the package.json file.

The interactive wizard will ask you some questions, after which, you'll have an initial
package configuration. This configuration file is primarily intended for normal Node.js
applications and not for command-line tools. For this reason, you still need to make
some adjustments. As a general best practice, you should set the private key to the
value true so that you don’t accidentally publish your application. As we're use the
ECMAScript module system, you must define the value module as type. The bin object
also represents a mapping from the command to the executable. If you've already cre-
ated a file in the bin directory, as in the example, npm init will automatically create the
mapping for you. You can delete the entries main for the entry point and scripts for var-
ious helper scripts for the time being. Listing 15.3 shows the package.json file for the
Math Trainer application.

{
"name": "math-trainer",
"version": "1.0.0",
"description": "A simple tool to train your math skills",
"bin": {
"math-trainer": "bin/mathTrainer.js"

b

"license": "ISC",
"private": true,
"type": "module"

}

Listing 15.3 “package.json” File for the Math Trainer Application

15.2.3 Math Trainer Application

Now that you've made the preparations for your application, it’s time to implement
the actual application logic. The user should be shown a certain number of tasks per
basic calculating operation on the command line. They can choose between three lev-
els of difficulty. At the first level, both operands are to be single-digit. At the second
level, one of the two operands should be one-digit, the second two-digit, and, finally, at
the third level, both should be two-digit. A special rule applies to division: only integer
divisions should be possible, and to increase the difficulty a bit, you generate the two
operands according to the rules mentioned before, multiply the first with the second
operand, and use the result as the first operand.

First, you implement a helper function that generates a random integer operand for
you. You store this function in the lib/operands.js file. Listing 15.4 shows the corre-
sponding source code.

457

15 Node on the Command Line

export default (digits) => Math.floor(Math.random() * 10 ** digits);

Listing 15.4 Helper Function to Create Random Operands (lib/operands.js)

The function exported as default expects a number that specifies how many digits the
operand should have. With this number, you generate and return a corresponding inte-
ger via a combination of Math.random, Math. floor, and the exponentiation operator.

In the next step, you create a file named task.js, which you also save in the [ib directory.
This file contains the logic for generating the individual tasks. A task is represented by
an object that has the properties task, result, and input. In task, you store the task as a
character string. result contains the precalculated result of the task as a number, and
input should finally contain the solution entered by the user and is first initialized with
an empty string.

The task.js file contains two functions, as shown in Listing 15.5. The createTask method
creates a new task object, and the getOperands method generates the two operators
using the helper function from operands.js. Because you only need the createTask func-
tion outside the file, it also represents the default export of the file.

import createOperand from './operands.js';

export default function createTask(operation, level) {
const [operandl, operand2] = getOperands(operation, level);
const task = “${operandl} ${operation} ${operand2}";
const result = eval(task);

return {
task,
result,
input: "',
b
}

function getOperands(operation, level) {
let operands;
switch (level) {

case 1:
operands = [createOperand(1), createOperand(1)];
break;

case 2:
operands = [createOperand(1), createOperand(2)];
if (createOperand(1) % 2 === 0) {

operands.reverse();

¥
break;

458

15.2 Structure of a Command-Line Application

case 3:
operands = [createOperand(2), createOperand(2)];
break;
}
if (operation === "/') {
operands[0] = operands[0] * operands[1];
}
return operands;
}

Listing 15.5 Creating New Tasks (lib/task.js)

The createTask function creates two operands via the getOperands function and assigns
them to the two variables operandl and operand2 by means of a destructuring opera-
tion. With these two variables and the type of operation passed as the operator, the
string representation of the operation is formed with a template string. You pass this
string to the eval function to have the result calculated. The eval function executes a
string as JavaScript source code. You should use this function only in exceptional cases,
and then only if you have complete control over the character string being executed.
This information forms the task object returned by the function.

The getOperands function receives as input the type of task and the difficulty level and then
uses this information to generate the operands from the previously defined rules. At the sec-
ond level of difficulty, the operands are randomly swapped using the Array . prototype.reverse
method. For this purpose, you create an additional random number via the createOperand
function. Ifit's an even number, it’s swapped so that the two-digit operand can appear both in
first and second place. At the end of the method, you must check if the operation is a division
and adjust the first operand according to the task.

You can now test the functionality by creating an index.js file in the lib directory and
integrating the application logic. Listing 15.6 shows the source code.

import createTask from './task.js';

const amount = 4;
const level = 2;
const operations = ['+', '-', "*', '/'];

operations.forkach((operation) => {
for (let i = 0; i < amount; i++) {
console.log(createTask(operation, level));
¥
b;

Listing 15.6 Creating Tasks

459

15 Node on the Command Line

The source code of the index.js file makes sure that four tasks per basic arithmetic oper-
ation are displayed to you when you run the application.

By implementing this file, you've created the final component for your command-line
application, which means your application is theoretically functional. To test this, you
can either install your application directly using the npminstall -g . command, or you
can use the npm link command. In this context, you enter the npm 1ink command in the
root directory of your application. npm takes care of everything else by ensuring that
the application is installed globally. For this purpose, a symbolic link to the executable
file is created in the global directory. In addition, the application directory is linked into
the global node_modules directory. The advantage of npm 1ink over an installation with
npm install is that the link makes all changes to the application effective immediately,
and you don’t have to reinstall the application. The command, npm uninstall -g math-
trainer allows you to remove the link again when you've finished your development
work.

Whether you choose to install or link, after running the command, you'll be able to use
Math Trainer system-wide. To do this, you enter the math-trainer command in the
command line in any directory on your system. The result is shown in Listing 15.7.

$ math-trainer

{ task: '33 + 3', result: 36, input: "' }

{ task: '99 + 4', result: 103, input: '' }
{ task: '68 + 5', result: 73, input: "' }

{ task: '80 + 0', result: 80, input: "' }

{ task: '9 - 48", result: -39, input: '' }
{ task: '47 - 3', result: 44, input: "' }

{ task: '9 - 5", result: 4, input: '" }

{ task: '56 - 1', result: 55, input: "' }

{ task: '2 * 6", result: 12, input: "' }

{ task: '34 * 8', result: 272, input: '' }
{ task: '26 * 3', result: 78, input: "' }

{ task: '76 * 7', result: 532, input: '' }
{ task: '0 / 32", result: O, input: "' }

{ task: '252 / 3', result: 84, input: '' }
{ task: '60 / 6', result: 10, input: "' }

{ task: '264 / 88', result: 3, input: '' }

Listing 15.7 Running Math Trainer

In the following sections, you'll extend Math Trainer into a full-fledged application that
a user can interact with.

460

153 Accessing Input and Output

15.3 Accessing Input and Output

Inaweb application, communication takes place over the network using a browser. The
communication protocol is usually HTTP. For a command-line application, however,
different rules apply when it comes to communication. There’s only one endpoint and
not any number of them. Moreover, the user doesn’t connect to the application via the
network, but works directly with the application through the command prompt. So,
you have to keep some things in mind when it comes to input and output, especially if
you aren’t just generating output but interacting with the user during the runtime of
the command-line application, as in the Math Trainer example.

15.3.1 Output

The general rule for Unix applications is that if there’s nothing to report, the applica-
tion won'’t generate any output. If the processing was successful, it isn’t necessary to
spend anything. Nevertheless, it's good style to give the user direct feedback. This is
either done automatically by the application or can be controlled by the user.

The simplest way to output information on the command line is the console.log
method. Everything you pass to it is written directly to standard output. However, a
Node.js process has two output channels: standard output and standard error output.
You can address both output channels via the global process module. Listing 15.8 shows
how you can access the output channels in write mode. The standard output channel is
represented by the process.stdout object, while the standard error output channel is
represented by the process.stderr object. Both objects are of the writable stream type
and therefore implement the write method. Unlike console.log, which automatically
inserts a line break, you have to take care of this yourself via the write method using
the \n control character; otherwise, this method simply continues the current output
line forever.

process.stdout.write('This is stdout\n'); // Output: This is stdout
process.stderr.write('This is stderr\n'); // Output: This is stderr

Listing 15.8 Accessing the Standard Output and Standard Error Output Channels
If you save the source code in a file named output.js, you can access the respective chan-
nel using the commands from Listing 15.9.

$ node output.js

This is stdout

This is stderr

$ node output.js 1> app.log

461

15 Node on the Command Line

This is stderr
$ node output.js 2> err.log
This is stdout

Listing 15.9 Output in the Standard Output and Standard Error Output Channels

You won'’t notice any difference between the two output channels until you separate
the two. You can use the node output.js 2> err.log command to redirect the standard
error output to the err.log file so that only the values of the standard output are dis-
played. With node output.js 1> app.log, you write the standard output messages to the
app.log file, and the error output appears on the console. In an application, this separa-
tion can be helpful to keep the output clear and still record all errors to handle them at
a later time.

Similar to console.log, which writes to standard output, Node.js also provides con-
sole.error, which allows you to write directly to standard error output without having
to go through the process module. In addition to these two admittedly most important
features, the console object provides numerous other methods, such as console. count,
which provides you with a counter, or console.table, which you can use to generate
tabular output.

153.2 Input

An application not only consists of outputs but also responds to inputs to adjust the
program flow accordingly. There are several possibilities for such an interaction with a
command-line application. The easiest way is to use the standard input of the process.
Like the output, the input is a data stream—in this case, a readable stream. With the
process.stdin object, you have a reference to the standard input.

Listing 15.10 contains source code that you can use to accept data via standard input. If
you save this source code in a file named input.js, you can start the example using the
node input.js command. If you enter a character string via the keyboard and confirm
the entry with the key, the data is passed to the application and written to the
standard output.

process.stdin.on('data', data => {
console.log(data.toString());

1
Listing 15.10 Accessing the Standard Input

Not only can the standard input be operated using the keyboard, you can also redirect
the output of other programs to your Node.js application. This output-input redirec-
tion, called piping, is achieved by connecting two commands with the pipe symbol (|).
On a Unix system, for example, this works with the command chain echo 'Helloworld'
| node input.js. The Hello World string is written to standard output by the echo

462

153 Accessing Input and Output

command. This is forwarded by the pipe symbol to the standard input of the subse-
quent command. In this context, the string is parsed by the Node.js application, and
appropriate output is generated.

Using the standard input to interact with the user turns out to be quite uncomfortable,
especially with guided dialogs as you know them from npm init, for example. For this
reason, Node.js has a second means of user interaction: the readline module.

15.3.3 User Interaction with the readline Module

Before you add the readline module to your application, you'll first learn how to use
the module on the basis of a simple example. Listing 15.11 contains a code block that
ensures the user is asked for their name and then greets them personally.

import { createlnterface } from 'readline’;

const rl = createlnterface({
input: process.stdin,
output: process.stdout,

1;

rl.question("What's your name? ", (name) => {
console.log("Hello ${name}!");
rl.close();

1;

Listing 15.11 Personal Greeting to User

If you want to use the readline module, you have to include it first. In this case, you
import directly the createInterface function from the readline module. To handle the
input correctly, you use the createInterface function to generate an interface that you
associate with the standard input and output of the current process. The interface of
the r1 object just created implements the question method, among other things. This
method displays the specified string on the console and waits for input. When the
input process is completed by pressing the key, the callback function you
passed as the second argument to the question method is called with the user’s input.
Once you've completed all interaction with the user, you must call the rl.close
method to close the interface. If you don’t do that, the application can’t be closed prop-
erly because of resources that are still open.

The readline module is a good example of an asynchronous operation. To sequence
multiple questions to the user, you either make another question call in the callback
function of the first method call or use the asynchronous programming capabilities of
Node.js. You'll learn more about this topic in the next chapter. At this point, only so
much can be said: You can use a promise object to encapsulate the user’s response.

463

15 Node on the Command Line

Listing 15.12 contains an extension of Listing 15.11. In this case, the user is also asked for
their place of residence.

import { createlnterface } from 'readline’;

const rl = createInterface({
input: process.stdin,
output: process.stdout,

1

function promisedQuestion(question) {
return new Promise((resolve) => {
rl.question(question, (answer) => resolve(answer));

D;

}

const user = {
name: '',
city: '',

};

user.name = await promisedQuestion('What's your name? ');
user.city = await promisedQuestion('Where do you live? ');

console.log(Hello ${user.name} from ${user.city}");

rl.close();

Listing 15.12 Asynchronous Combination of User Interactions

This special form of sequencing the question calls becomes necessary because the user
is asked for the answers in an asynchronous way. This means that any second question
call that immediately follows the first one is ignored by the process.

The core of the implementation in Listing 15.12 is the promisedQuestion function. It
encapsulates the question method in a promise object and resolves it once the user has
given their input. Using the top-level await feature of Node.js, you can then concate-
nate the two questions and output the result after answering the second question. At
the end of the chain, you also execute the rl1.close method to close the readline inter-
face and thus terminate the application. If you run the sample code, you get an output
like the one shown in Listing 15.13.

$ node readline.js
What's your name? Basti

464

153 Accessing Input and Output

Where do you live? Munich
Hello Basti from Munich

Listing 15.13 Output of the “readline” Example

With this information, you can now extend your Math Trainer implementation to ask
the user for the results of the tasks. First, you need to slightly modify the promisedQues-
tionfunction, as you can see in Listing 15.14, so that you can use it here as well. Save this
implementation in the lib directory under the name promisedQuestion.js.

export default function promisedQuestion(question, rl) {
return new Promise((resolve) => {
rl.question(question, (answer) => resolve(answer));
Ps
}

Listing 15.14 Version of the “promisedQuestion” Function Adapted for Math Trainer (lib/
promisedQuestion.js)

The adjustments to the promisedQuestion function are limited to passing a reference to
the readline interface as the second parameter and exporting the function.

The further adjustments take place in the index.s file in the lib directory of the Math
Trainer application. The updated version of the file is shown in Listing 15.15.

import { createInterface } from 'readline’;
import createTask from './task.js';
import promisedQuestion from './promisedQuestion.js';

const amount = 4;
const level = 2;
const operations = ['+', '-', "*', '/'];
const tasks = [];

operations.forEach((operation) => {
for (let i = 0; i < amount; i++) {
tasks.push(createTask(operation, level));
}
}s

const rl = createlInterface({
input: process.stdin,
output: process.stdout,

1

async function question(index) {
const result = await promisedQuestion(’${tasks[index].task} = *, rl);

465

15 Node on the Command Line

tasks[index].input = parselnt(result);

if (tasks[index].input === tasks[index].result) {
console.log('Correct!");

} else {
console.log('Wrong');

}
if (++index < tasks.length) {

question(index);
} else {
rl.close();

}
}

question(0);

Listing 15.15 Integration of the “readline” Module

In the first step, you add the created task objects to the tasks array, which you're going
to use in the following steps. Then you generate the readline interface that you can
pass to the promisedQuestion function. The question function represents the core of the
application. It receives the index of the current task and calls itself until all tasks have
been displayed to the user.

Once the user has entered the solution to a task via the command line, the promise of
this question is resolved. Within the callback function, you save the input in the respec-
tive task object and then check whether the input was correct. If the task was solved
successfully, the user will see the string Correct!. In the event of an error, the output
should read Wrong. If there are more tasks to solve, you must call the question function
again, or you can terminate the process using the r1.close method. If you've linked the
application with npm 1ink, you can test the implementation via the math-trainer com-
mand and get an output like the one shown in Listing 15.16.

$ math-trainer

4+ 68 =72
Correct!

11 + 4 = 16
Wrong

2+ 24 =

Listing 15.16 Running Math Trainer

In some situations, you may need to limit the interaction with an application to pass
options and arguments to enable the automation of an execution. In the following sec-
tion, you'll learn how to extend Math Trainer so that you can pass the difficulty level
and the number of tasks via options.

466

153 Accessing Input and Output

15.3.4 Options and Arguments

At the start of this chapter, you saw how a command is structured, that options influ-
ence the behavior of a command, and that arguments provide additional information.
The argv property of the process module allows you to access the command line of the
application. It contains an array that stores the individual components of the com-
mand-line command used to invoke the current process. The first element of the argv
array is the Node.js executable with the full path. The second element is the absolute
path of the executed script, and all other elements map the options and arguments.

With this information at hand, you should now make sure that it’s possible to pass the
--level=<difficulty level> and --amount=<number of tasks> options to the math-trainer
command, which will affect the behavior of the application accordingly. For example, if
you call Math Trainer via the math-trainer --level=1 --amount=2 command, the struc-
ture of the process.argyv array looks like the one shown in Listing 15.17.

[' /usr/local/bin/node ',
'/src/node/bin/math-trainer’,
'--level=1",

"--amount=2"]

Listing 15.17 Structure of the “process.argv” Array When Calling Math Trainer

To solve the task, you write a helper function called getOptions, which you swap out to
a separate getOptions.js file in the lib directory. The source code of this file is shown in
Listing 15.18.

export default function getOptions(levelDefault = 2, amountDefault = 4) {
const level = getOptionValue(getOption('level'), levelDefault);
const amount = getOptionValue(getOption('amount'), amountDefault);
return {
level,
amount,

};

function getOption(optionName) {
return process.argv.find((element) => element.includes(optionName));

}

function getOptionValue(option, defaultvalue) {
if (option) {
const [, value] = option.split('=");
return parseInt(value, 10);

}

467

15 Node on the Command Line

return defaultValue;

¥
Listing 15.18 Helper Function “getOptions” (lib/getOptions.js)

The helper function itself consists of the getOptions function, which is made available
to the entire application as a default export. Within it, you extract both the difficulty
level and the number of options from the command line. For both pieces of informa-
tion, you define default values in the parameter list of the function in case no value is
passed during the call. Because the operations for both pieces of information are the
same, you can again swap them out to helper functions. The getOption function reads
the passed option from the command-line array, while the getOptionValue function
receives this information. Using a combination of the split method, which converts
the option into an array, and the destructuring option, which assigns the value after
the equal sign to the value variable, you extract the option value. Note that, at this
point, the command line is interpreted as a character string, but your application works
with integers. For this reason, you must convert the value to a number using the par-
seInt function. It’s also important to note that the functions are called first and only
defined afterwards in this example. This works because JavaScript does something
called hoisting. In this context, named functions such as getOption and getOptionValue
are available in the entire scope, which, in this case, is within the file, no matter where
you declare them. The situation is different for function expressions. Here you define a
variable and assign a function object to it. Because this isn’t an atomic operation, the
variable declaration is echoed, but the assignment isn'’t, so you can’t use the function
until after the assignment operation.

If the user hasn’t specified the option on the command line, the default value is used
instead. In the index.js file, you now include the call of the helper function and can then
use your application’s command-line options. The necessary adjustments are shown in
Listing 15.19.

import { createlnterface } from 'readline’;

import createTask from './task.js';

import promisedQuestion from './promisedQuestion.js’;
import getOptions from './getOptions.js';

const { amount, level } = getOptions();

const operations = ['+', '-', '"*', '/'];
const tasks = [];

operations.forEach((operation) => {
for (let i = 0; i < amount; i++) {
tasks.push(createTask(operation, level));

}

468

154 Tools

IOF

const rl = createInterface({
input: process.stdin,
output: process.stdout,

IOF

async function question(index) {
const result = await promisedQuestion(”${tasks[index].task} = °, rl);
tasks[index].input = parseInt(result);
if (tasks[index].input === tasks[index].result) {
console.log('Correct!"');
} else {
console.log('Wrong');

}
if (++index < tasks.length) {
question(index);
} else {
rl.close();
}
}

question(0);

Listing 15.19 Integrating the Helper Function “getOptions” (lib/index.js)

Instead of assigning the two values in separate statements as before, you can use a
destructuring statement at this point to assign the object returned by the getOptions
function directly to the two constants. If you now start your application via the math-
trainer --level=1 --amount=1 command, you'll see a total of four simple tasks.

15.4 Tools

Node.js has also established itself as a valuable tool on the command line. For this rea-
son, you'll find ready-made solutions for numerous problems in the area of command-
line applications, which you can install as packages in your application. In the following
sections, you’ll be introduced to three of these tools—Commander, chalk, and node-
emoji—and integrate them into your Math Trainer.

15.4.1 Commander

Asyou've seen in the previous section, searching the command line for specific options
involves a certain amount of work. The situation gets even more inconvenient at this

469

15 Node on the Command Line

point if you also want to provide the shorthand notation of options instead of what
we’ve done so far in the example. In this case, you normally don’t use equal signs as
separators between the option and the value, so you also have to adjust the routine
here. For parsing the command line, you can include Commander in your application.
You can install the package via the npm install commander command. Because you've
already swapped out the parsing of the command line to a separate file in the previous
step, the adjustments for integrating Commander are limited to the lib/getOptions.js
file. The updated version of this file is shown in Listing 15.20.

import program from 'commander';

export default (levelDefault = 2, amountDefault = 4) => {
program

.version('1.0.0")

.option(
'-1, --level <n>',
'‘Difficulty level of tasks (1-3)",
parselnt,
levelDefault,

)

.option('-a, --amount <n>', 'Number of tasks', parselnt, :)
amountDefault)
.parse(process.argv);

const options = program.opts();

return {
level: options.level,
amount: options.amount,
1
¥

Listing 15.20 Integrating Commander (lib/getOptions.js)

Due to the customization in Listing 15.20, the source code of your application has
become simpler, and you also gained additional features. Thus, by default, Commander
supports the -V and --version options to display the version of the application. In addi-
tion, when the application is invoked with the -h or --help option, a help block describ-
ing how to use the command is displayed.

After these changes, you no longer support only the long version of the options, but
also a shortened version. If you call your application with the -h option, you'll see an
output like the one shown in Listing 15.21.

470

154 Tools

$ math-trainer -h
Usage: math-trainer [options]
Options:

-V, --version output the version number

-1, --level <n> difficulty level of tasks (1-3) (default: 2)
-a, --amount <n> number of tasks (default: 4)

-h, --help output usage information

Listing 15.21 Display of the Math Trainer Help

Using the option method of the Commander package, you can define the individual
options of your application. As the first argument, the method expects the name of the
option. Here you can specify both the short and the long variant. If a value is to be
passed to the application via the option, you can specify it afterwards. You have two dif-
ferent options for specifying the value: If you put the value in angle brackets, as in this
example, it's a mandatory value. If you want to define an optional option, you can use
square brackets here. The second parameter of the options method represents the
description of the option. This is displayed in the help menu. As a third argument, you
can pass a function to manipulate the value. For the Math Trainer application, use the
parseInt function to convert the passed value into a number. The last parameter allows
you to pass a default value for the option. Commander then automatically inserts the
string default: <value> into the option description.

For Commander to work, you must use the parse method to specify which data struc-
ture to evaluate. In most cases, this will be the process.argv array, but here you have
the option to specify any array that follows the rules of process.argv.

All methods of the Commander object return the object itself, so that a fluent interface
notation becomes possible, and you can directly concatenate the method calls.

You can obtain the values that were passed when the application was called by using
the opts method. This method returns an object containing the individual options and
their associated values as key-value pairs.

The Commander project site can be found at https://github.com/tj/commander.js. A
lightweight alternative to Commander.js is available in the form of minimist. This mod-
ule deals only with the correct parsing of command-line options. This project can be
found at https://github.com/substack/minimist.

15.4.2 Chalk

A feature that is often underestimated is the formatting of the command line. It allows
you to highlight important terms and thus guide the user on the command line. You

4n

15 Node on the Command Line

can apply colors and other formatting using control characters directly in console.log,
for example. Listing 15.22 shows how this works.

console.log('\u001b[33m yellow");
console.log('\u001b[31m red');
console.log('\u001b[34m blue');
console.log('\uoolb[om");

Listing 15.22 Coloring the Console

The output of this example consists of the character strings yellow, red, and blue, each
colored correspondingly. The last line resets the color of the console back to its original
state. The string \u001b[4m allows you to underline the subsequent characters. Other
features include italic, strikethrough, and bold font. You can also change the back-
ground color of the console. Admittedly, dealing with ANSI control characters in devel-
opment isn’t always convenient. Applying styles on the console is such a common
problem that a module called chalk comprehensively solves this problem for you. It
can be installed with the npm using the npm install chalk command. The code you
implemented in Listing 15.22 via control characters can be implemented more ele-
gantly with chalk using meaningful function names. The result shown in Listing 15.23 is
the same as the one from the previous example.

import chalk from 'chalk';
console.log(chalk.yellow('yellow"));

console.log(chalk.red('red"));
console.log(chalk.blue('blue'));

Listing 15.23 Using Chalk
In your Math Trainer application, chalk enables you to format the output of the result

in bold and green for success, and bold and red for failure. For this purpose, you must
modify the lib/index.js file after installing the package, as shown in Listing 15.24.

import { createlnterface } from 'readline’;

import chalk from 'chalk’;

import createTask from './task.js';

import promisedQuestion from './promisedQuestion.js’;
import getOptions from './getOptions.js’;

const { amount, level } = getOptions();

const operations = ['+', '-', '"*', '/'];
const tasks = [];

operations.forEach((operation) => {

472

154 Tools

for (let i = 0; i < amount; i++) {
tasks.push(createTask(operation, level));
¥
b

const rl = createlnterface({
input: process.stdin,
output: process.stdout,

1;

async function question(index) {
const result = await promisedQuestion(’${tasks[index].task} =, rl);
tasks[index].input = parseInt(result);
if (tasks[index].input === tasks[index].result) {
console.log(chalk.bold.green('Correct!"));
} else {
console.log(chalk.bold.red('Wrong'));

}
if (++index < tasks.length) {

question(index);
} else {
rl.close();
}
}

question(0);

Listing 15.24 Using Chalk in Math Trainer (lib/index.js)

As you can see in Listing 15.24, it’s possible to apply several styles at the same time by
concatenating the statements. Another convenient feature of chalk is that it also takes
care of resetting the formatting to the console default style for you after the passed
character string has been formatted.

The chalk project can be found on GitHub at https://github.com/chalk/chalk.

15.4.3 node-emoji

One of the most popular tools that uses emojis for console output is the package man-
ager Yarn. Like chalk, emojis can be used to direct the user’s attention to a particular
output on the console, to make the console clearer because certain states can be
expressed more quickly via an emoji than via text, and, finally, to liven up your appli-
cation a bit by using the right emojis in the appropriate places. Because JavaScript sup-
ports the Unicode character set, it's possible to use Unicode emojis directly. An

473

15 Node on the Command Line

alternative to this is to use the node-emoji package, which allows you to use the text rep-
resentation of various emojis, making your code more readable.

Your implementation of the Math Trainer application is currently missing a summary
ofthe results. To implement these in the lib/summary.js file, you can use the node-emoji
package. In the first step, you install this package via the npm install node-emoji com-
mand. The source code in the lib/summary.js file is shown in Listing 15.25.

import emoji from 'node-emoji';

export default (tasks) => {
const correctCount = tasks.reduce((correctCount, task) => {
if (task.input === task.result) {
correctCount++;
¥
return correctCount;
b, 0);
const percent = (correctCount * 100) / tasks.length;
if (percent === 100) {
return emoji.emojify(
*:trophy: Congratulations, you have solved all ${tasks.length} tasks :D
correctly.’,
);
} else if (percent >= 50) {
return emoji.emojify(
*:sunglasses: Very good, you have correctly solved ${correctCount} out of
D)

)s
} else if (percent >= 1) {
return emoji.emojify(
“:cry: You have correctly solved ${correctCount} out of ${tasks.length} ta

sks, O

you can do better.”,

${tasks.length} tasks.",

)5
} else {
return emoji.emojify(
*:skull_and_crossbones:)
Your answers to all ${tasks.length} tasks are wrong.",
)5
}
b

Listing 15.25 Preparation of the Results Summary (lib/summary.js)

474

154 Tools

To display the result, you divide it into four categories: The user solved all tasks cor-
rectly, the user solved more than 50% correctly, the user solved less than 50% correctly,
and the user didn’t solve any task correctly. You can use the emoji.emojify method to
generate a character string that contains an emoji. This method should be marked with
colons. The emoji.emojify("':trophy:"') call creates a character string containing the
trophy emoji. In the last step you need to display the generated character string. You
can do this by calling the helper function for summaries before you exit the process.
Listing 15.26 contains the customized source code of the lib/index.js file.

import { createlnterface } from 'readline’;

import chalk from 'chalk’;

import createTask from './task.js';

import promisedQuestion from './promisedQuestion.js’;
import getOptions from './getOptions.js';

import summary from './summary.js';

const { amount, level } = getOptions();

const operations = ['+', '-', "*', '/'];
const tasks = [];

operations.forkach((operation) => {
for (let i = 0; i < amount; i++) {
tasks.push(createTask(operation, level));
}
b;

const rl = createInterface({
input: process.stdin,
output: process.stdout,

1;

async function question(index) {
const result = await promisedQuestion(’${tasks[index].task} = °, rl);
tasks[index].input = parseInt(result);
if (tasks[index].input === tasks[index].result) {
console.log(chalk.bold.green('Correct!"));
} else {
console.log(chalk.bold.red("'Wrong"));
}
if (++index < tasks.length) {
question(index);
} else {
console.log(summary(tasks));
rl.close();

475

15 Node on the Command Line

question(0);

Listing 15.26 Summary Display (lib/index.js)

In addition to formatting strings, the node-emoji package is also capable of resolving
emojis in character strings or assigning them a random emoji. You can find the project
site at https://github.com/omnidan/node-emoji.

15.5 Signals

On a Unix system, a signal is a message to a process. Such signals are often used to ter-
minate a process. However, you can also just send some information to the process, for
example, that the window size has changed. Most signals you send to a Node.js process
cause an event to which you can bind a callback function to respond to the signal. For
example, if a user presses the shortcut [Ctr1]+[c], the SIGINT signal gets triggered. You
can intercept this via process.on('SIGINT', () => {}) and act accordingly. When integrat-
ing it into your Math Trainer application, you have to keep in mind that the readline
interface intercepts the signals, so you can’t respond to them directly. The solution to
this problem is to register the event handler for the program termination not on the
process object but on the rl object. Upon termination, the user should be shown a mes-
sage that tells him how many tasks he has already solved until termination. For this pur-
pose, you define another helper function and save it in the lib/handleCancel s file. The
source code of this file is shown in Listing 15.27.

export default (rl, tasks) => {
rl.on('SIGINT", () => {
const solvedCount = tasks.reduce((solvedCount, task) => {
if (task.input !== "") {
solvedCount++;
}
return solvedCount;
} 0);
console.log(
“\nToo bad you want to leave, you only solved ${solvedCount} :)
of ${tasks.length} tasks.",
)5
rl.close();
bs
15

Listing 15.27 Integrating a Signal Handler (lib/handleCancel.js)

476

15.5 Signals

You pass a reference to the readline interface and the task array to the helper function.
First, you register a handler function for the SIGINT signal. In the callback function, use
the array-reduce function to calculate how many tasks have been solved. Then you
issue a message and end the process. This step is needed because a custom signal han-
dler overrides the default, so it’s no longer possible to exit the program via the

+(c] shortcut.

You still need to include the handleCancel function in the lib/index.js file now, so that
you can intercept the signal correctly. Listing 15.28 shows the point at which you should
integrate the function call.

import { createlnterface } from 'readline’;

import chalk from 'chalk';

import createTask from './task.js';

import promisedQuestion from './promisedQuestion.js’;
import getOptions from './getOptions.js’;

import summary from './summary.js’;

import handleCancel from './handleCancel.js';

const { amount, level } = getOptions();

const operations = ['+', '-', '"*¥') '/'];
const tasks = [];

operations.forEach((operation) => {
for (let i = 0; i < amount; i++) {
tasks.push(createTask(operation, level));
}
Ps

const rl = createInterface({
input: process.stdin,
output: process.stdout,

1;

handleCancel(rl, tasks);

async function question(index) {

const result = await promisedQuestion(${tasks[index].task} =, rl);

tasks[index].input = parseInt(result);

if (tasks[index].input === tasks[index].result) {
console.log(chalk.bold.green('Correct!'));

} else {
console.log(chalk.bold.red("'Wrong"));

}

41

15 Node on the Command Line

if (++index < tasks.length) {
question(index);

} else {
console.log(summary(tasks));
rl.close();

}

}

question(0);

Listing 15.28 Integrating the Signal Handler (lib/index.js)

If you restart your application after making these adjustments, you can terminate the
application at any time by pressing (Ctr1]+(c] and obtain a summary like the one
shown in Figure 15.1.

00 M sebastian.springer — -zsh — 63x18

basti@MacBook ~ % math-trainer
71 &+ 2 = 73

Correct!

59 + 1 = 60

Correct!

1 + 71 = 73

(7 + 87 =

Too bad you want to leave, you only solved 3 of 16 tasks.
basti@MacBook ~ %l

Figure 15.1 Terminating the Application

15.6 Exit Codes

Signals are means by which you can communicate with an application. Exit codes, on
the other hand, work in exactly the opposite direction. In a way, an exit code is the
return value of an application. On a Unix system, the echo $? command enables you to
read the exit code of the last command on the command line. Usually, a Node.js appli-
cation exits with exit code 0. This means that the application was terminated without
any problem. An exit code with a value greater than O indicates an error.

Code Name Description

1 Uncaught Fatal Exception An exception occurred that wasn’t caught and
caused the application to terminate.

Table 15.1 Exit Codes in Node.js

478

157 Summary

Code Name Description

3 Internal JavaScript Parse The source code of Node.js itself caused a parse error.
Error

4 Internal JavaScript Evalua- An error occurred while running Node.js.
tion Failure

5 Fatal Error A fatal error has occurred in the V8 engine.

6 Nonfunctional Internal An exception occurred and wasn’t caught. The inter-
Exception Handler nal exception handler has been disabled.

7 Internal Exception Handler An exception occurred, wasn’t caught, and the inter-
Runtime Failure nal exception handler threw an exception itself.

9 Invalid Argument An invalid option was passed during the call.

10 Internal JavaScript Runtime An exception occurred while bootstrapping Node.js.
Failure

12 Invalid Debug Argument An invalid port was specified for the debugger.

>128 Signal Exit If Node.js is terminated by a signal, the exit code 128

plus the value of the signal is set.

Table 15.1 Exit Codes in Node.js (Cont.)

Node.js automatically sets the correct exit code in most cases. However, you can also
specify an exit code yourself. The exit method of the process module enables you to
terminate the current process. This method accepts an integer as argument, which is
used as an exit code.

15.7 Summary

Whenever you're faced with a problem you need to solve with a shell script, you can use
Node.js. Especially when it comes to implementing solutions for automating tasks in
the web environment, Node.js comes in handy. Many existing tools such as various CSS
preprocessors, JavaScript optimizers, and HTML parsers show how processing web
standards on the command line can work with Node.js.

You don’t even have to look at such a Node.js command-line tool to know that it’s a
JavaScript application. Thus, such tools behave like the native commands. You can pass
arguments and options to your Node.js application. For parsing the command line, you
should use one of the available libraries such as Commander. As everywhere, the prin-
ciple applies that you should first check the npm repository to see if there is already a
solution to your problem before you start implementing it.

479

15 Node on the Command Line

What a command-line application with Node.js is capable of is shown by a multitude of
implementations that are used every day in web development, such as the build tool
webpack.

480

Contents

Foreword 25
Preface 27
1 Basic Principles 31
1.1 The Story of Node.js 33
111 Origins 33
1.1.2 Birth of Node,js 34
113 Breakthrough of Node.js 34
114 Node.js Conquers Windows 35
115 iojs: The Fork of Node.js 36
11.6 Node.js Reunited 36
11.7 Deno: A New Star in the JavaScript Sky 36
11.8 OpenlS Foundation 37
1.2 Organization of Node.js 37
121 Technical Steering Committee 37
122 Collaborators 37
123 Community Committee 38
124 Work Groups 38
1.2.5 OpenlS Foundation 38
1.3 Versioning of Node.js 38
13.1 Long-Term Support Releases 39
1.4 Benefits of Node.js 40
1.5 Areas of Use for Node.js 40
1.6 The Core: V8 Engine 41
1.6.1 Memory Model 42
1.6.2 Accessing Properties 43
1.6.3 Machine Code Generation 45
1.6.4 Garbage Collection 46
1.7 Libraries around the Engine 47
1.7.1 Event Loop 48
1.7.2 Inputand Output 50
173 libuv 50
1.7.4 Domain Name System 51
175 Crypto 52
17,6 Zlib 52

Contents

L1.7.7 HTTP PAISEI ettt sas e sa s saenae 52
1.8 Summary 53
2 Installation 55
2.1 Installing Packages ..o, 56
211 Linux 57
212 WiNAOWS ..eieeiereeecineerseisecireninees 60
213 macOS 63
2.2 Compiling and Installing 68
2.3 Node Version Manager 71
2.4 Node and Docker 71
2.5 Summary 72
3 Developing Your First Application 73
3.1 Interactive Mode 73
311 General USe .ncecrseeneerecineceessinenes 74
3.1.2 Other REPL Commands 75
3.1.3 Saving and Loading in the REPLcvcenccrnnecrnnecenenns 76
314 CONEXE Of thE REPL oottt ssseesssesssseessessssesens 77
3.1.5 REPLHIStOry .o 77
316 REPLIMOAE ..ot sise s sase s sssse s ssssesssseseon 78
3.1.7 Searchingin the REPLccoucmevnecrrecnnes 78
3.1.8 Asynchronous Operations in the REPLccmemcmneceoneccnnennnee 79
3.2 TheFirst Application 79
321 Web Serverin Node.js 80
322 EXtending the WED SEIVEr ... cenecrnceneceneeensecssecseeeessessesessen 83
3.2.3 Creating an HTML RESPONSEcuevucruereeceerinerirerieceseeeeeiseniaeenane 85
3.24 Generating Dynamic RESPONSESovvuvcrueeriunereoeeeesiieseesesesesessessesesees 86
3.3 Debugging Node.js Applications 88
3.3.1 Navigatingin the Debugger 90
3.3.2 Information in the DEDUGEETocrceneeeirrecineceneciecineeerseceeceiseeseesnen 91
3.3.3 Breakpoints 93
3.34 Debugging with Chrome Developer Tools 96
3.3.5 Debugging in the Development Environment 97

Contents

3.4 nodemon Development Tool 98
3.5 Summary 99
4 Node.js Modules 101
4.1 Modular Structure ... 101
4.2 Core Modules ... 103
420 SEADIILY e 104

422 List of Core Modules 105

423 Lloading Core Modules 108

424 Global ODJECES ..o sreseesaseeenes 111

4.3 JavaScript Module Systems 121
431 COMMONIS ..ot eeisesenanes 121

432 ECMAScript Modules 122

4.4 Creating and Using Your Own Modules 124
441 Modules in Node.js: COMMONIS ...ccoreeeumeceierinereirecrisenserecsssenses 125

442 Custom Node.js Modules 126

443 Modules in Node.js: ECMAScript 127

4.4.4 Exporting Different Types of Datarncrneceneeinecrcernecresecrieees 129

445 The modules Modulemenecne. .. 130

4.4.6 MOAUIE LOATET ...t sieciseiase e sasenen 131

4.5 Summary 135
5 HTTP 137
5.1 WebServer ... 137
511 Server ODJECL .ot sssseesesessssseesssessinnees 137

512 Server EVENtS ... 142

51.3 Request Object 145

5.1.4 Handling the Request Body (Update)wwormreeeeemmmneeeeeensnseeeeesssseeceeenns 152

5.1.5 Delivering Static CoNteNnt ... ccenecesecneecesecesecieceieeisecseecnes 157

516 File UPIoad .rececicenecireciecisesesesisesisesaseeseneees 159

5.1.7 Fine-Tuning the Frontend 163

5.2 Node.js as HTTP Client 164
52.1 Requests with the http Module ... 164

522 The request PACKAGE ... essessesesees 165

523 HTML Parser 167

9

Contents

Contents
5.3 Secure Communication with HTTPS 168
531 Creating CertifiCates ... ccnecrceceneceisecsseceesesssessesecnes 168
5.3.2 Using HTTPS in the Web Serverccocvecncenn. 169
5.4 HTTP/2 170
541 HTTP/2 SEIVET oo 170
54.2 HTTP/2 Client 173
5.5 Summary ... 175
6 Express 177
6.1 Structure 177
6.2 Installation 178
6.3 Basic Principles 179
6.3.1 Request 180
6.3.2 Response 180
6.8 SEEUP ..ot et e 181
6.4.1 Structure of an Application ..., 182
6.5 Movie Database 185
6.51 Routing 186
6.5.2 Controller 189
6.5.3 Model 190
6.54 View 192
6.6 Middleware 193
6.6.1 Custom Middleware 194
6.6.2 Morgan: Logging Middleware for EXpresscnncenes 195
6.6.3 Delivering Static Contentccommmecnnecnnne. 197
6.7 Extended Routing: Deleting Data Records 199
6.8 Creating and Editing Data Records: Body Parser 201
6.8.1 Handling Form Input: Body Parser 205
6.9 Express5 208
6.10 HTTPS and HTTP/2 209
6.10. 1 HTTPS et se st 209
6.10.2 HTTP/2 oottt cesseesssssesssessss bbbt 210
6.11 Summary 212

10

7 Template Engines 213
7.1 Custom Template Engine 214
7.2 Template Engines in Practice: Pug 215
721 Installation 215

7.2.2 Pugand Express: Integration . 216

723 VaArabIeS iN PUG .ottt ssiseessssesssseesesss s ssssessssesesnas 219

724 Specific FEatures of PUGrrcrnecceiieeceeinecsiieesesasssessssseessesescenas 221

7.2.5 Conditions and Loops 222

7.26 Extendsand Includes ..., 223

727 Mixins . 226

7.2.8 UsiNg Pug WithOUt EXPressirncrincrinecieseieeeeesesecesiesaesesennns 228

7.29 Compiling 228

7.3 Handlebars 229
731 INSTANATION oot 230

7.3.2 Integration With EXPresseecscenernsecnisennes 230

7.3.3 Conditions and LOOPScccveveevererenecn 232

734 Partials . 234

7.3.5 Custom Helpers 236

7.3.6 Handlebars WithOUt EXPIeSs.crcecrieerineesiseeseseessssessecsseseenes 238

7.4 Summary 239
8 Connecting Databases 241
8.1 Node.js and Relational Databases 242
81D MYSQL et 242

812 SQLILE coeeeeieeiseeiretieeietse ettt bbbt 251

8.1.3 Object-Relational Mapping 257

8.2 Node.js and Nonrelational Databases 260
821 Redis .muunnn. 260

8.2.2 MongoDB 265

8.3 Summary 272
n

Contents

9 Authentication and Session Handling 273
9.1 Passport 273
9.2 Setup and Configuration 274
9.21 Installation 274
9.2.2 CONFIBUIALION oottt sasesseee s e s sanes 274
9.2.3 Strategy CONfIGUIAtioN ... ssesessessseinns 275
9.3 Logging In to the Application 277
9.3 1 LOZIN FOMM oot ssse s 277
9.3.2 SECUNMNE RESOUICES ...t sssse s sass s sssscnes 280
9.3.3 LOGEING OUT ..ooeecececiecictssiseessessssssssssse s s ssssssse e sssesssessassnsssnes 281
9.3.4 Connecting to the Database ... 282
9.4 Accessing Resources 285
9.41 Access Restriction 285
9.4.2 SUDMITEING RATINGS .cooverrieceienceicieceeceiceisecniecsisesseneeseses s sseesseeseanes 289
9.5 SUMMANY ... 294
10 REST Server 295
10.1 Introduction to REST and Usage in Web Applications 295
10.2 Accessing the Application 296
10.2.1 Postman 296
10.2.2 cURL 297
10.3 Adaptations to the Application Structure ..., 297
10.4 Read ReqQUESLS ... 298
10.4.1 Reading All Data Records of a Resource 298
10.4.2 Accessing a Data Record 301
10.4.3 Error HANAIING wcocececeeeceeceeceicneieceiecesiecrisecssssesseesseseesissessenessineens 302
10.4.4 SOMING Te LISt ..ot ssseesssessssessen 304
10.45 Controlling the Output Format 307
10.5 Write Requests 309
10.5.1 POST: Creating New Data Recordsccccccun. 309
10.5.2 PUT: Modifying Existing Data Records 312
10.5.3 DELETE: Deleting Data RECOIAScouccemeceemecenecereeceecireceeeeennnee 314
10.6 Authentication via JWTs 316
10.6.1 Login 317
10.6.2 Safeguarding RESOUICESccccreereeerieeeieeesieesieessseessssessessasesssnessenesses 319

12

Contents

10.6.3 Accessing User Information in the Token ... 321

10.7 OpenAPI Specification: Documentation with Swagger 324
10.8 Validation 329
10.8.1 Installation and First Validation .. 330

10.8.2 Checking Requests with a Validation Schema 332

10.9 Summary 335
11 GraphQlL 337
11.1 GraphQl Libraries 338
11.2 Integration with Express 339
11.3 GraphiQL 341
11.4 Reading Data via the Interface 342
11.4.1 Parameterizing Queries ... 345

11.5 Write Accesses to the GraphQL Interface ..., 347
1151 Creating New Data RECOIdSccomiiemcreuecreiiserceemsecseeeeeeeeessesesssseseesseesenas 347

11.5.2 Updating and Deleting Data Records 350

11.6 Authentication for the GraphQL Interface 353
11.7 Summary 355
12 Real-Time Web Applications 357
12.1 The Sample Application ... eeeseae 358
T2.2 SEEUP .ottt et 358
12.3 WebSocketsoomcercmmneeeiinecerriieseceennns 364
12.3.1 The Server Side .. 366

12.3.2 TheClient Side 367

1233 UserlList ... 370

12.3.4 Logout w373

12.4 Socket.lIO 377
12.41 |Installation and Integration ... 378

12,42 SOCKELIO API .ot ssssessasessaneses 379

12.5 Summary 383
13

Contents

13 Type-Safe Applications in Node.js 385
13.1 Type Systems for Node.js 386
13.1.1 Flow 386
13,12 TYPESCIIPT oo ssssssse e s ssse s s sssesssessssesssesssessssssns 390
13.2 Tools and CoNFIGUIAtioNccrimonnccrmiinneceeriinneesessiisseesesssssesssssseseseens 392
13.2.1 Configuring the TypeScript COMPIIENc.ovueeemreeirnecenecernecireceieeeiserierecnes 393
13.2.2 Integration into the Development Environment 394
13.2.3 ESLINT o 395
1324 £SN0AE oo 396
13.3 Basic Principles 398
1331 DAta TYPES ot sss s 398
13.3.2 Functions .. 400
13.3.3 Modules 402
L1314 CUASSESooorreiecceeiieeseeeeissee e ssisssesssssessesssesiss s ssses s ssis st ssse et 403
1341 Methods 404
13.4.2 Access Modifiers ..., 405
1343 INN@ITANCE oot senen 405
13,5 INEEITACES ...t ssssisesesssis st sssessessens 406
13.6 Type Aliases in TYPESCHPLcoriincrinecerriineesessiiseesesssassesssssseseseens 408
13,7 GENEKICS ..ot ssieasesssssessse s sssessesssessas s sesbas s sesss s sesss st sssesessons 409
13.8 TypeScript in Use in a Node.js Application ..., 410
13.8.1 TYPe DEfiNILIONS oottt esise e essses st sssss s sssessen 410
13.8.2 Creating Custom Type Definitions ... 410
13.8.3 Sample Express Application 411
13.9 Summary 412
14 Web Applications with Nest 413
14.1 |Installation and Getting Started with Nest 414
14.2 Nest Command-Line Interface 416
1421 Commands for Operating and Running the Applicationccccccc..c. 416
14.2.2 Creating Structures in the Applicationcccceeees 418
14.3 Structure of the Application ... 419
14.3.1 Root Directory with the Configuration Filesmncnnecnecnns 419
14.3.2 src Directory: Core of the Application ... 420
14.3.3 Other Directories of the Application ... 420

14

Contents

14.4 Modules: Logical Units in the Source Code 421
1441 Creating MOCUIES ... sisseesssessees e s ssssessen 422

1442 MOAUIE DECOTATON ..oumiiireiiciieciecireciirseeiseerisee i siss et esssesseseseon 423

14.5 Controllers: Endpoints of an Application 423
1451 Creatinga Controller ... 424

14.5.2 Implementing a Controller ... 424

14.5.3 Integrating and Checking the Controller 426

14.6 Providers: Business Logic of the Application 428
146.1 Creatingand Including a Service 428

14.6.2 Implementing the Service ... 429

14.6.3 Integrating the Service via Nest’s Dependency Injection ..., 431

14.7 Accessing Databases ..o 432
14.7.1 Setup and Installation ... 432

14.7.2 Accessing the Database 435

14.8 Documenting the Endpoints with OpenAPI 439
14.9 Authentication 442
149.1 Setup 442

14.9.2 AUthentication SEIVICE ...t esssesseseseen 443

14.9.3 Login Controller: Endpoint for User Login 445

1494 Protecting Routes 446

14.10 Outlook: Testing in Nest 449
14.11 Summary 451
15 Node on the Command Line 453
15.1 Basic Principles 453
1511 SETUCKUIE ot 454

1512 EXECULADITILY weooeoeiiecceccceci e sesase e sesesees 455

15.2 Structure of a Command-Line Application ..., 456
15.2.1 File and Directory STrUCLUIEc..ovcccneceneciseciseceneceneceeeisecsecsieessennen 456

15.2.2 Package Definitioncreccinecesieseceessesesaseessssessesssecesseessenas 456

15.2.3 Math Trainer AppliCation ... 457

15.3 Accessing Input and Output 461
153.1 Output 461

153.2 Input 462

15.3.3 User Interaction with the readline Module 463

15.3.4 Options and ArGUMENTSccccrcernecrinerineesineesiecsssecsisseessecsescsssnessenesses 467
15

Contents

15.4 Tools 469
1541 COMMANGEL .ot ss s s s assaesaeen 469
L1542 CRAIK ettt 471
1543 node-emoji 473
15.5 Signals 476
15.6 Exit Codes 478
15.7 Summary 479
16 Asynchronous Programming 481
16.1 Basic Principles of Asynchronous Programmingrccnnencnns 481
16.1.1 The child_process MOUIEeeneeinnecrneeeinecineeenseeisecssssssssessseseen 485
16.2 Running External Commands Asynchronously 486
16.2.1 Theexec Method ..., 487
16.2.2 The SPAWN METNOG ...t esssecsisesssessesessen 489
16.3 Creating Node.js Child Processes with fork Method ..., 492
16.4 The cluster Modulerrrincrcercrnnecrrniecnnecennnns 496
16.41 Main Process 497
16.4.2 Worker Processesoneveene. 501
16.5 Worker Threads 504
16.5.1 Shared Memory in the worker_threads Modulecccovmconcnncconecnns 505
16.6 Promises in NOAE.JScoimrremionccriiinnccessieeesesssasessesssssnssssssssssessssssesssesenss 507
16.6.1 Using util.promisify to Use Promises Where None Actually Exist 510
16.6.2 Concatenating Promisesoconccnncnnes 511
16.6.3 Multiple Parallel Operations with Promise.all 512
16.6.4 Fastest Asynchronous Operation with Promise.racecconeconecen. 513
16.6.5 Overview of the Promise FUNCLIONScco.oieciuumnrreenicceineceeesseceeeseceeseseeceens 514
16.7 Async Functions 514
16.7.1 Top-Level AwWaitcoovcvvevencrrcrreciecnnns 516
16.8 Summary 517
17 RxJS 519
17.1 Basic Principles 520
17.1.1 Installation and INtegration ... 521

16

Contents

17.1.2 ODbservable ... 521

17.1.3 Observer 522

17.1.4 Operator 523

17.1.5 Example of RXJS iN NOGELJSovcerererierinecrineesisecesseessssessssecssneessesssnessen 523

17.2 Operators 525
17.2.1 Creation Operators ... 527

17.2.2 Transformation Operators 529

17.2.3 FilEriNg OPErators ... crcrceinecriseerisecsissesieesesessisesssesssnssssnessenesses 532

17.2.4 JOIN OPEIAtOrS .ccocerreereeeicrieereeiesiecissesesesesiesssessssssse s sssesssessasesssesssesssessans 534

17.2.5 Error Handling Operatorsnerneceneseseseoseennnnes 535

17.2.6 Utility Operators 537

17.2.7 Conditional OPEratorscenceineeineesneesiseesssessisessisesssnessessesssnessen 538

17.2.8 CONNECLION OPEIAtOrScovericeirerireeieceeeisereerierssesssssssesiseessessssesssessssssssens 539

17.2.9 CONVErSioN OPEIrators ...t sisessseesasesisesssesssessanes 540

17.3 Subjects 540
17.4 Schedulers 542
17.5 Summary 543
18 Streams 545
18.1 Introduction ... 545
18.1.1 What 15 @ STrEaM? ettt sses e sasssaes 545

18.1.2 Stream Usages 546

18.1.3 Available Streamsrncceseneeeceeseeesesnecenens 546

18.1.4 Stream Versions in NOGE.|Scocrneeinecrneeeinecesnecesseesssecssnsssssesssnesses 547

18.1.5 Streams Are EVENtEMITIErS ... 548

18.2 Readable Streams 548
18.2.1 Creating a Readable Stream 548

18.2.2 Readable Stream Interface ... 550

18.2.3 Events of a Readable Streamcneccneeneceneceissecsssessiseees 550

18.2.4 Error Handling in Readable Streams 552

18.2.5 Methods 553

18.2.6 Piping 553

18.2.7 Readable Stream MOUESireeneeirneeinecenseeisesessessessesssesssssesssesson 554

18.2.8 Switching to Flowing Mode ..., 554

18.2.9 Switching to the Paused Mode 555
18.2.10 Custom Readable Streams ... 555
18.2.11 Example of a Readable Streamveconeeenneceneceneees 556
18.2.12 Readable Shortcut 558
17

Contents

18.3 Writable Streams 559
18.3.1 Creating a Writable Stream 560
L18.3.2 EVENTS ettt 560
18.3.3 Error Handling in Writable Streams ... 562
18.3.4 Methods 562
18.3.5 Buffering Write Operationsccenecroneceneeeenecennens 563
18.3.6 FIOW CONTION oottt sise st ssssessssessen 564
18.3.7 Custom Writable Streamscvmcnecvencrnecnecenneenenns 565
18.3.8 Writable Shortcut 566
18.4 Duplex Streams 566
18.4.1 DuUplex Streams in USEccrieerneesinesiecsensssissesssecssnesssessenecses 566
18.4.2 CuSTOM DUPIEX SErEAMS ..ottt esssesseseseen 567
18.4.3 Duplex Shortcut 567
18.5 Transform Streams 568
18.5.1 Custom Transform Streams 568
18.5.2 Transform SNOMtCUL ... 569
18.6 Gulp 570
18.6.1 Installation 570
18.6.2 Example of a Build Process with GUIPccoccmcrnnecrneceneecunecenenns 571
18.7 SUMMALY ... ceeeseesenens 572
19 Working with Files 573
19.1 Synchronous and Asynchronous Functions 573
19.2 Existence of Files 575
19.3 Reading Files 576
19.3.1 Promise-Based APlemerneeineerinessinsesisessisessieses 581
19.4 Error Handling 582
19.5 Writing to Files 582
19.6 Directory Operations 586
19.7 Advanced Operations 589
19.7.1 The watch Methodcccececiseninecresecsisecsisecsieees 591
19.7.2 ACCESS PEIMISSIONS ..ouceerierrircrincermerierieceseeiseseseriesssesssnsssesaesssessssessnessnesssessans 592
19.8 Summary 594

18

Contents

20 Socket Server 595
20.1 Unix Sockets 596
20.1.1 AccessSing the SOCKET ...t sseessieseaens 598

20.1.2 Bidirectional Communicationccnnenens 600

20.2 WiINdOWS PiPESoooocooreereenreeceeeneee s sessssseeees 602
20.3 TCP SOCKELSooomrrrrerrecrrirenreriieneeseesieesecennnes 603
20.3.1 DAta TrANSTEr ..t eessse s ssssessssee st sisessisssesene 605

20.3.2 File Transfer 606

20.3.3 FIOW CONEIOL ..o ssenes 607

20.3.4 Duplex 609

20.3.5 PIPE ottt ettt e e 609

20.4 UDP Sockets 610
20.4.1 Basic Principles of a UDP Server 611

20.4.2 Example [llustrating the UDP SEIVETccrneernecrieeeinecseseseenne 612

20.5 SUMMANY ... e 614
21 Package Manager 615
21.1 Most Common Operations 616
21.11 Searching Packages 616

21.1.2 INSTAllING PACKAGES .ouuveureeerceirceirceicricrineseisceisessencsasessaseesesessisessssessensesnes 617

21.1.3 Viewing Installed PACKAZESccccomvemerumecrrnerieriireceiseriseesisecessseenes 622

21.1.4 Using Packagesonerennecenernanae 623

21.1.5 Updating Packages 624

21.1.6 Removing Packages ... 625

21.1.7 Overview of the Most Important Commandscccvneceneecnneceneceenne 626

21.2 Advanced Operations 627
21.2.1 Structure of a Module 627

21.2.2 Creating Custom Packagescecrecrmeerenecrunecnnes 630

21.2.3 Node Package Manager SCrPEscneeeieeieceeecessesisesessessanes 632

21.3 Tools for Node Package Manager 634
21.3.1 NOAE LICENSE FINAEN ..ottt cieesseessse s sssesssss s sisesssenes 634

21.3.2 Verdaccio 635

21.3.3 npm-check-updatesmncronecnne. 636

21314 NIPX e e 637

21.4 Yarn 637
21.5 Summary 638
19

Contents

22 Quality Assurance 641
22.1 Style Guides 642
22.1.1 Airbnb Style GUIde ... 642
22.2 Linter 643
2221 ESLINt e 644
22.3 Prettier 648
22.3.1 |Installation 649
22.3.2 Execution 649
22.4 Programming Mistake Detector: Copy/Paste Detector 649
22.4.1 Installation 650
2242 EXECUTION wouieeieciceneeerienierieseseesesisenieensssssessnessnes 651
22.5 Husky 652
22.6 Summary 653
23 Testing 655
23.1 Unit Testing 655
23. 1.1 Dir€Ctory SETUCTUIE .. ccececeecerecieeeerienieeiseeiesiesisessssesssesssessss e sessssacnes 656
23.1.2 UNit Tests and NOAE.JS ... s sssesassesenens 656
23.1.3 Arrange, Act, Assert 657
23.2 Assertion Testing 658
23.2.1 Exceptions 661
2322 TESTING PrOMISES ..cucouieieceiecieceniienienieeisesessestesessissesssesssesssesssssssnesesesssessseees 662
23.3 Jasmine 663
23.3.1 |Installation 664
23.3.2 CoNfiUIAtioN ..coceecrcceicrieceineceieeeieceieceasesssessesecsaneeses 664
23.3.3 Tests inJasmine ...cceececnnersernerenesseceeeees 665
23.3.4 ASSEITIONS oottt it sssebsse et 667
23.3.5 SPUES e 670
23.3.6 beforeEach and afterEach ... 671
238 JEST .. et 671
23.4.1 |Installation 671
2342 FIrSETEST et ees 672
23.5 Practical Example of Unit Tests with Jest 674
2351 TRETEST ot ssesesesseessanes 675
23.5.2 IMPIEMENTATION oot 676

20

Contents

23.5.3 Triangulation: Second Test 677

23.5.4 Optimizing the Implementation .. 678

23.6 Dealing with Dependencies: Mocking 679
23.7 Summary 681
24 Security 683
24.1 Filter Input and Escape Output 684
2400 FIEEI INPUL ottt sttt se e nseees 684

24.1.2 Blacklisting and Whitelisting 684

2413 Escape OUpUL ... 685

24.2 Protecting the Server ... 686
2421 User Permissions.ecne. 686

24.2.2 Problems Caused by the Single-Threaded Approachcoccvevncceen. 688

24.2.3 Denial-of-Service Attacks 690

24.2.4 RegUIAr EXPIeSSIONS w.covceemceemecemeceieeimesieecsissesssessseessasennes .. 692

2425 HTTPHeader ... 693

24.2.6 Error MESSAZES ... 695

24.2.7 SQLlInjections 695

24.2.8 BVA et 699

2429 Method Invocation 700
24.2.10 Overwriting Built-Ins 702

24.3 Node Package Manager Security 704
2431 PEIMISSIONS oo sssssssss s sssss s sssnes 704

24.3.2 Node Security PIatform ...cenecnceinecineceiseenes 705

24.3.3 Quality Aspect ..., 705

24.3.4 Node Package Manager Scripts 706

24.4 Client Protection ..o, 707
2441 Cross-Site SCrIPLING ..ccoveuvceererrereerieriserieriersseresesiseeseessesssessessssssssssessssssacnes 707

2442 Cross-Site Request Forgery 709

24.5 Summary 711
25 Scalability and Deployment 713
25.1 Deployment ..., 713
25.1.1 SiMPple DePlOoYMENTceceneieieeiereieceieeisesesseessssesssseesesesssssessssesssnssesnns 713

25.1.2 File Synchronization via rsync 715

21

Contents

25.1.3 Application as a Service 716
25.1.4 node_modules in Deployment 718
25.1.5 Installing Applications Using Node Package Manager ... 718
25.1.6 Installing Packages Locally 720
25.2 Tool Support 720
2521 GrUNT e 721
2522 Gulp 721
25.2.3 Node Package Managerccrmecrnccrnnecenes 721
25.3 Scaling 721
25.3.1 Child Processes 722
25.3.2 Load Balancer ... 726
25.3.3 Node in the Cloud 728
25.4 pm2:Process Management ... 730
25,5 DOCKET ...ttt sssiessesssssessesssessss s ssssassesssssss s sessssessssssessessons 730
25.5.1 DOCKEIIle oot rese s 731
25.5.2 Starting the Container 732
25.6 Summary 732
26 Performance 733
26.1 You Aren’t Gonna Need It 733
26.2 CPU 734
26.2.1 CPU-BIOCKING OPErationsirceeereeeeeeeriseciieesieecssesmssesssesieseseanns 734
26.2.2 Measuring the CPU Load 735
26.2.3 CPU Profiling with Chrome DevTools ...t 736
26.2.4 Alternatives to the Profiler: consoletime ... 738
26.2.5 Alternatives to the Profiler: Performance-Hooks Interfaceccouee..... 739
26.3 Memory 741
26.3. 1 MEMOIY LEAKS .cooureereirneiercrirceiieciiecsisesssessiseesssesseseesasesseneesssessssessessesssnecsens 742
26.3.2 Memory Analysis in DEVTOOIScecuerieceieriiecrieesisseeresessssseesseesessesnns 743
26.3.3 Node.js Memory Statistics 745
26.4 Network 747
26.5 Summary 751

22

Contents

27 Microservices with Node.js 753
27.1 Basic Principles 753
27.1.1 Monolithic Architecture 753

27.1.2 Microservice Architecture ... 755

27.2 Architecture ... 756
27.21 Communication between Individual SErVicesrnccecrnencenns 756

27.3 Infrastructure 758
27.3.1 Docker Compose 759

27.4 Asynchronous Microservice with RabbitMQ 759
27.4.1 Installation and SETUPcncecrececeseeceiecrieesreecsiseenes 760

27.4.2 Connecting to the RabbitMQ Server ... 762
27.43 Handling Incoming Messagescccuccneeunceuncceunnennes 763

27.4.4 Database Connection 764

27.4.5 DOCKEI SETUP ..ottt sissee s sssse s seseseines 765

27.5 APl Gateway 768
27.5.1 Connectingthe User Service 768

27.5.2 Asynchronous Communication with the User Service ... 770

27.5.3 Docker Setup of the APl Gateway 774
27.54 AULNENTICAtION ..o seseaenceean 776

27.6 Synchronous Microservice with Express 780
27.6.1 Setup 781

27.6.2 Controller 782

27.6.3 Model Implementation 782

27.6.4 DOCKEE SETUP ecvouriieictcieeireciectectseeiesieeisesisse st sese s esenes 784

27.6.5 Integration into the API Gateway ... 786

27.7 Summary 789
28 Deno 791
28.1 The Ten Things Ryan Dahl Regrets about Node.js 791
28.1.1 Promises 791

2812 SECUMLY oo 792

28.1.3 The Generate Your Projects Build Systemccncneecnecenecennn. 792

28.1.4 PACKAGEJSON .o nsiesessennes 792

28.1.5 Node_modules 792

28.1.6 Optional File Extension When Loading Modules 793

2817 INAEXJS coeurvrircricriecriseeieneesisseisseesesesssseesssessesesssses s ssesesssssesseses s ssasessessssissesens 793

23

Contents

28.1.8 What’s Going on Now with Node.js

28.2 Installing Deno

28.2.1 Deno Command-Line Interface

28.3 Execution

28.3.1 Runninga TypeScript Application

28.4 Handling Files

28.4.1 The Task: Copying a File
28.4.2 Processing Command-Line Options

28.4.3 Reading Files

28.4.4 Permissions in Deno

28.4.5 readTextFile Function

28.4.6 Writing Files with Deno

28.5 Web Server with Deno

28.6 Module System

28.6.1 Loading External Modules into Deno

28.6.2 deno.land/x
28.6.3 Using Node Package Manager Packages

28.7 Summary

The Author

Index

24

793

793
794

795
796

796
797
797
798
800
801
801

803

804
806
807
807

809

811
813

Index

__dirname 112 Backward compatibilityccoeeererecrnneccens 105
_ filename 112 Base64 607
.bom file 67 BDD 663
.eslint.json 395 Bearer token 321
.git 714 Best practice 129
.gitignore 161, 622 Bidirectional communicationc..... 357
.mjs 80,110,127 Bill of material 67
.msi package 60 Binary data 112,161
Binary package 60
A Blocking operation 482
Block scope 81
Abstract class 556 Body parser 362,769
Accessing properties ... 43,291 Breaking changes 55,104
Access restriction 285 Breakpoint 537
Admin privileges 82 Browser 84,137
Aggregation 293 BSDlicense 42
AJAX long polling 377 BSON format 265
Analysis tool 453 Buffer ... 84,112,487,579, 584, 601,611
Angular 295,416 Bugfix 39,55
Annotation 423 Build 570
Apache 137 process 720
API documentationccccccccecceeeeceees 55,441
Application 79 C
server 40
application/json 309 Caching
apt-get 59 internal 46
Architecture 48 removing a cache entry ... 135
Argument 454 Callback 574,582
Array method 520 function 483,484
Arrow functions 49, 141 hell 514
Assigning users 289 C-Ares library 51
async_hooks 105 Case sensitivity 127
Async function 200 Certificate 209
ASYNC evvvvrrrrreecrerverieissssseenns 200, 514,515,581 Chain of commands 491
await 200, 515 Chalk 471,472
ASYNChIONICItY ..oooooveeeeescssiccieeeereeee 49,119,481 Change frequency 98
AsSynchronous processing ... 484 Changelog 104
Authentication 273 Change of protocol 357
Authorizations 287 Character encoding 113
header 448 Cheerio 167,192
Automatic restart 98 child_process 485,723
Auxiliary program 453 application logic 492
Azure 60 callback function 487
child process 493
B communication 495
configuration objectecccemnnecereennns 492
Babel 571 data stream 489
Backtick 81 disconnect 486

813

Index

child_process (Cont.)

exec 486, 487
execFile 486, 488
exec options 487
exit event 485
fork 492, 498
input file 489
kill method 485
message event 495
message handler 496
NEW NOAE.JS PYOCESS oomevverrneeerrrseeverirnecsrens 494
output constraint 489
parent process 493
process.argv 494
send method 495
shell command 489
spawn 486, 489, 490
swapping out 492
Child process 485,492,722
cluster 726
locking 723
number 725
parallel process 724
performance 725
resource access 723
worker 724
worker process 723
chmod 455
Chrome 42
Chunk 140
Class 43
Client libraries 243
Cloud 728
Azure 729
Heroku 728
Heroku Toolbelt 728
platform as a serviceccicunnneevvernnns 728
Clustering 265, 496
cluster object
cleanup 503
communication 497
communication link terminated 499
event 499
exit event 503
identification number 498
incoming connection 501
interface 501
isPrimary 498
isWorker 498
lifecycle 503
listening event 503
main process 497

814

cluster object (Cont.)

message event 502
news 502
online event 501
process ID 501
properties 497
separate Memory areqds ... 497
setupPrimary 497
TCP port 504
terminated 501
unique identifier 501
Unix socket 504
worker objects 501
WOTREY PYOCESS .ouvvevemeeereneverisseeernnseees 498,501
Coding 84
Collaborator 37
Commander 469
Command line 58,60, 73,114,453, 461
absolute path 467
affecting the behaviorneceeon. 454
ANSI control characters ..., 472
application logic 457
argument 455,467
argv property 467
asynchronicity 463
bin 456
bold 472
call 117
color 472
command 454, 467
command chain 462
createlnterface 463
default style 473
default values 468
emoji 473
executability 455
execution permissions ... 455
exit code 478
exiting 477
formatting 472
help block 470
input 462
italic 472
lib 456
mandatory 471
message 476
notation, verbose 454
npm link 460
OPLION e 454, 467,469, 471
output 461
package.json 456
package configuration ... 457

Index
Command line (Cont.) CPD 649
package definition 456 duplicate 649
parsing options 468 execution 651
passing informationccceconneces 455 installation 650
PATH variable 455 Crockford, Douglas 643
permission 455 CRUD 353
pipe 462 Crypto 52
question 463, 464 CSS 157
readline 463 preprocessor 53
requirements 455 cURL 296, 297, 300, 776
return value 478 Cygwin 35,60
shorthand notation ... 454,470
SIGINT signal 476 D
signal 476
strikethrough 472 Daemon 716
structure 454,456 Dahl, Ryan 33,791
tool 40, 453, 469 Database 102,185, 241
user interaction 463 abstraction layer 257
version 470 document-based 265
Commit hook 648 driver 242
Common]S 108,121 foreign keys 242
export 121 non-relational 260
import 122 normalization 242
module system 80 relationship 242
Communication 595 schema 242
protocol 241 Database driver 756
Community COMMILTEEcoommmrrrrveecirreerrrerrneenes 38 Data compression 52
Compat Table 32 Datagram 610
Compiler 45 Data source 545
Compiling 46, 68 Data stream 149, 156, 196, 545, 573, 595
Components 101, 125 Data type 129, 385
Composite data type 385 composite 385
Computed property 172 primitive 385
Computer architecturesevveeeveeneennns 56 Debugging 40, 88
Configuration file 58,59 backtrace 91
Console 113 breakpoint 93,97
console.error 462 Chrome developer toolsnececonn 96
const 81 commands 90
Constant 81 console.log 89
Constructor 45 console messages 97
functions 43 debugger 89
Consul 756 debugger statement 94
Continuous integrationereeeeennn. 37 debug mode 91,95
Contributor 37 debug process 96
cookie-session 362 development environmentc...cceuu. 97
Copy/Paste Detector 649 information 91
Core components 50 inspect 90
Core libraries 101 interactive debug mode comeceeuunn. 90
Core modulesciiinnnnnrnens 77,103,105 interactive shell 91
loading 108 memory utiliation 97
Correlation identifier 762 navigation 90
CouchDB 241,719 outputs 88

815

Index

Debugging (Cont.)
remote targets 96
setBreakpoint 93
step by step 93
unwatch 92
variable scope 97
watch expressions 97
websocket 90
Decorator 423
Deflate 52
Defragmented 47
Deleting a session 374
Deno 36,791
address-port combination ... 803
--allow-read 800
args 797
ArrayBuffer 798
asynchronous file system operation 802
body 804
cache 806
Chocolatey 794
CLI 794
command-line optionconeceenenn. 797
copying a file 797
deno.land/x 807
dependency 806
execution 795
export 804
external module 806
fibonacci 807
fileExists 798
file extension 793
file system 796
GYP 792
header field 804
homebrew 794
import 804
index.js 793
installation 793
JSPM 808
Linux 793
listen 803
Lodash 808
macOS 793
module system 804
network permission 804
node_modules 792
Node.js core modulececomeceeinne 807
npm 807
package.json 792
permissions 792,799
promise 791
816

Deno (Cont.)

reading a file 798
readTextFile 801
sandbox concept 800
security 792
standard library 806
stat 798
synchronous file system operation 802
system resources 792
TextDecoder 798
TypedArrays 801
TypeScript 796
TypeScript cOmpIlereoreceeerecceennn 796
Uint8Array 799
V8 engine 795
watch 796
web server 803
Windows 793
writing files 801
Deployment 713
.git directory 714
Artifactory 719
budget 713
by copying 713
dry-run 715
FTP server 715
local installation 720
Nexus 719
node_modules 718
npm 718,720
npm proxy 719
npm script 721
open source 719
optimization 713
private repository 719
restart 715,716
rsync 715
scp 714
server 713
Sinopia 719
SYNCRIONIZALION ... 714,715
tar archive 720
tool 720
Verdaccio 719
Deprecated 104, 105
Destructuring ... 108, 346, 459
dgram 610
diagnostics_channel 105
Directory 44
name 112
structure 103,131
Distribution 58

Index

Django 177 Event loop 48,113
DNS 51,610 EventTarget 114
resolution 47 Exception 523
Docker 38,71,241,244,432,730,759, 765,774, Execution 80
784 Experimental 105
commands 7 SN 25 453 (11 N 177,213, 413,758
container 730 __express 217,230
Dockerfile 731 alpha 208
image 72,731 baseUrl 201
start 732 basic principles 179
Docker Compose 759 body parsereconeveionnens 180, 201, 205
docker-compose.ymlcceeconneeeeenn. 759 checkAuth 364
Dockerfile 759 content-type 180
restart 766 controller 189
Docker Hub 243 cookie parser 180
DOM node 167 custom middleware cceecnneceennn. 194
Duck typing 392 data management 190
Duplicates 292 default views directory ... 218
Dynamic web application ... 80 dependencies 188
header 180

E HTML, standards-compliant ... 218
HTTP/2 209

EADDRINUSE 82, 600 HTTPS 209
ECMA-262 32 installation 178
ECMAScript 32,40 json 205
2015 141 log file 196
loader 133 logging 195
version 6 32 middleware ... 177,193, 281, 319, 360
ECMAScript modules 122 model 190
export 122 modernization 413
import 123 module system 187
ECMAScript module system ... 80, 108, 185, 516 Morgan 195
__dirname 112 next callback function ... 195
__filename 112 port 179
Embedded JavaScript 239 raw 206
Encoding 140 render 216
Encryption 52,357 request 180
Engine, optimized 42 request.body 206
Entry point 132 request.session 364
Environment variables ... 117,132 response 180
Equality 150 FOULE et 199, 360, 362, 363
Error 661 router 178,186, 202
handling 303 routing callback function 189
level 584 routing multipliers 188
ESLint 642, 644 routing patterns 188
eval 459 routing variables 200
Event API 114 session 362
Event-driven architecture ... 48 standard tasks 195
Event-driven infrastructure 484 static content 197
EventEmitter 548,584 static middleware 197
emit 548 structure 182
on 548 text 206

817

Index

Express (Cont.)

urlencoded 205
version 5 208
view 192
view engine 216
express-handlebars 231
express-jwt 317,353,778
express-validator 329
External command 486
F
File extension 135,454
File name 112,127
extension 128,454
Files 573
File system 50
access 575
advanced OPErationseeeeen. 589
appendFile 585
asynchronicity 573
buffer 579
chmod 593
chown 593
close 585
constants 576
directory 586
encoding 580
error handlingcececnneccennns 579, 582
error message 582
error object 578
exception 589
existence of files 575
file handle 576, 582
flag 578,584
group 592
isDirectory 590
isFile 590
link 591
metadata 589
mode 593
nonexistent file 582
operations 574
path 573
path separator 573
permissions 573,592
PTOMISE oo 573,578,581, 591
read access 576
readFile 580
search operation 586
stat 575,590
statistics 589
818

File system (Cont.)

unwatch 591
user 592
watch 591
write access 582
writeFile 585
Filesystem Hierarchy Standardc......e... 57
File upload 159, 166
Flash socket 377
Flow 386
Sflow.js 389
flowconfig 387
check 388
control 507
Facebook 386
Fluent interface 471
Fork 36
formidable 159
Forms 86,152,161
fs/promises module 574
Functional scope 81
G
Garbage collectorncceronnecns 42,46, 745
mark-and-sweep 47
scavenge collector 47
GCC runtime library 48
Generalization 125
Git 714
GitHub 33,104,273
Global NPM packages 71
Global objects 111
Global scope 115
Global variables 115
Google Chrome 40
GraphQL 337,341
authentication 353
Boolean 343
buildSchema 338
creating 347
deleting 350
Express 339
express-graphql 339
Facebook 337
Float 343
graphqlHTTP 340
input type 348,351
Int 343
library 338
mandatory parameteroeeeen. 345
mutation 337,347

Index
GraphQL (Cont.) HTML (Cont.)
parameters 345 structure 167
query 337,339 HTML5 364
reading 342 HTTP 137,357,595
reference implementation 338 body 84,145
resolver 337 cache 149
rootValue 343 chunk 156
schema 337,342 client 164
string 343 content type 84
type system 337,343 createServer 139
updating 352 default values 165
write 347 delivery 143
Group ID 118 dynamic responses 86
Grunt 570,720 forwarding 151
Gulp 570,720,721 GET 86
build process 571 header ... 84,141, 145, 149
configuration 571 HTTP header 52
gulpfile.js 570 message body 145
installation 570 metadata 145
NPM packages 571 method 149,165
plug-in 570 parameters 86
Gzip 52 parser 52
POST 86, 155
H properties of the request object 149
protocol 52,137
Handlebars 229 queue 140
compile 238 read access 165
conditions 232 request 164
curly brackets 232 request object 84,145
Express 230 request package 165
express-handlebarsceconeceenn. 230 resource 145
extname 231 response header 152
helper 232,236 response object 84
installation 230 server 82,497
iteration 232 server events 142
loops 232 server object 137
partials 234,235 status code 84,151
partial templates 234 structure of a requestcceciiieeeeee 145
placeholders 231 submit form 155
registering helpers 237 text/html 86
without Express 238 trailer 149
Hash value 283 version 150
Haskell 34 write access 166
Hidden class 44 HTTP/2 36,137,170, 210
HMAC 320 client 173
Hoisting 468 connection setup 174
Hostnames 140 constants 172
HS256 320 server 170
HTML 85,144,157 session 172
form 277 socket connection 172
page 357 http module 178
parser 167

819

Index

HTTPS 168
certificates 168
key 169
web server 169

https module 209

Husky 652
Git hook 652
version control 652

|

1/0O operation 51

Image files 162

Images 157

import.meta.url 112

Importing directories 132

index.js 133

index.node 133

Input 50

--input-type 110

Installation 55,56

Installer package 64

instanceof 385

Int32Array 506

Interactive mode 73

Interactive shell 73

Interchangeability 103

Interdependencies 378

Interface 101, 125, 368

Internal caching 46

Interpreter 454

Interval 614

io.js 36

10Cp 51

IP address 82,139

IPv4 address 51, 82,140

IPv6 address 82,140,611

ISO/IEC 16262 32

J

Jade 215

JaegerMonkey 42

Jasmine 663
afterEach 671
assertion 667
beforeEach 671
command line 665
configuration 664
custom matcher 669
describe 664
error 667

820

Jasmine (Cont.)

execution 665
installation 664
it 664
jasmine.json 664
matcher 668
output 666
random execution 666
spec 665
spy 670
spyOn 670
test 665
test suite 664
toHaveBeenCalled 670
wrapper 670
JavaScript 31
engine 34,79
pure 41
Jest 671
__mocks__ 680
beforeEach 673
describe 673
execution 672
installation 671
jsdom 671
mock 680
test 672
Joyent 35
jsconf.eu 35,791
JScript 32
JSDoc 325
JSON 371,576
modules 148
JSONP polling 377
jsontoxml 308
jsonwebtoken 317
JSON web tokens 298, 442
sign 318
Just-in-time compilationccoevrnccens 42,45
K
Key-value store 260
L
Layered architecture 177
Legacy 105
let 81
Let’s Encrypt 168
libeio 50, 60
libev 49, 60

Index

libevent 49 MariaDB 243
libevent2 49 Markup language 229
Library 47 MDS5 hash 283, 285
libuv 50, 60, 101 Memory 46
License information ... 61, 64 area 47
Link 70 defragmentation 47
Linter 643 model 42
.eslintrc 644 range 47
error 646 section 44
ESLint 643 MessageChannel 115
ESLint configurationeceneces 644 MessageEvent 115
ESLint installation 644 MessagePort 115
ESLint version 646 Message queue 757
formatting 648 Message system 115
integration 648 Microservices 102,753
JSHint 643 adapter 753
JSLint 643 advantages 755
rules 646 AMQP 761
style guide 644 amqp//rabbitmq 763
warning 646 API gateway 758,768
Linux 55,57 API gateway cONtainercnneennn. 774
binaries 57 architecture 753,755,756
Linux Foundation 37,38 asynchronous communication 757,770
LiveScript 31 authentication 776
Load balancer ..., 497,499, 726 authorization headercwweunnn. 779
HAProxy 726 axios 788
Least Connections 728 bidirectional communication ... 759
NGINX 727 communication 755
proxy_pass 727 communication protocol ... 761
round robin 727,728 connectivity 768
Load operations 135 consumer 758
Load process 132 container 756
Local repository 453 controller 782
lodash 102,617 CRUD operations 781
Logger 582 cURL 779,789
Login 273, 360 database 782
route 279 database connectioneeeeennns 764
screen 360 docker-compose.ymloeeeeonneeeennne 784
Long-lived memory area ... 47 AOCREI-COMPOSC UP covoevvereseeerneeeeeiresereenne 767
Long-term support (LTS) ..o 36, 39, 55, 56 encryption 768
Loose coupling 125 Express 780
fire and forget 757

M HTTP 770
independence 755

Machine code 45,47 infrastructure 758
generate 45 interface 755
Machine-to-machine communication 302 JSON web tokens 776
macOS 55,63 JWT authenticationeeeeeerenens 777
Maintainability 494 login route 777
Major release 39,55 loose coupling 755
Make file 69 message handling 763
make install 70 message object 774

821

Index

Microservices (Cont.)

message queue 771
model 782
MongoDB containerenecennn. 765
MongoDB port 765
monolithic architecture ... 753
MVC structure 768
MySQL 781
public interface 769
RabbitMQ connectioneeeeeereeeeenne. 762
RabbitMQ containereeeevenenn. 765
request/reply 771
security 768, 786
specialized module 754
synchronous communication ... 757
tight coupling 757
time-out 773
token 777,779
Middleware 193,353
minimist 471
Minor release 55
Mocha 31
Modularization 102,125
Modular structure 101
module.exports 121
module.id 130
Module cache 133
Module loader 130,131
Modules 81,101
loading 81
own 124
modules module 130
Module system ... 79, 80, 115,121, 146
absolute path 123
default export 123
export 148
import 115
module 115
named export 123
relative path 123
require 115
MongoDB ..., 241, 265,759, 764
abstraction layer 271
client 266, 267
collection 267
connection 266
creating data recordsoneceennnn. 267
Docker 265
error object 269
find method 268
insert method 268
installation 266
822

MongoDB (Cont.)

MongoClient 267
Mongoose 271
reading data records 268
removing data records .. 270
selector 270
unique ID 268
updating data records ... 269
Monolith 102
MSl installer 60
MSSQL 241
Multiclient chat 358
multipart/form-data 159
MVC
controller 182
model 181
view 182
MySQL 241,242,432,758
cascade 250
connection 245
container 243
createConnection 246
creating data records neceennn. 247
database structure 244
delete 250
DELETE statement 250
Docker 243
escaping 247,248
initialization 246,433
insertld 248
installation 244
marking data recordsneeceonn. 251
password 244
placeholders 247
promise interface 248
promises 246
protocol 243

reading data records

removing data records ..

SELECT statements

updating records
mysql2

N

Name conflicts 115

Named export 109

Namespace 44

Nest 177,413
@nestjs 414
@nestjs/swagger 439
add 417

Index
Nest (Cont.) Nest (Cont.)
ApiOkResponse decorator ... 440 JWT strategy 446
ApiProperty decorator ... 440 library 421
app modules 415,421 loading a service 431
architecture 413 middleware 413,416
authentication 442 module 421
authentication Service ... 443 module decorator 423
auth module 445 monorepo 418
body decorator 426 nest start 416
build process 416 new command 414
CLI 414,416 npm start 415
commands 417 OpenAPI 439
config module 434 operating 416
container 421 package manager 414
controller 423 param decorator 426
controller decorator ... eceenon. 425 path variable 426
createTestingModuleocecomecreunnn. 450 port 415
creating a controlleroneceeen. 424 post 426
creating a module 422 protecting route 446
creating a service 428 provider 423,428
database 432 put 426
database access 435 registering a moduleccecenecenn. 422
decorators 423 registering a ServiCe.ceonsecenn. 428
delete 426 repository 428
dependency 431 repository pattern 435
dependency injection ... 436, 449 root directory 419
dist 416 routing 413,423
dist directory 420 running 416
DocumentBuilder 439 schematics 418
endpoint 424 service 428
entity 435 service implementation ... 429
entity class 435 service instance 431
environment variable ... 434 src directory 420
factory 428 status code 426
files 419 structure 413,418,419
forFeature 436 Swagger 439
JforRoot 436 Swagger module 439
generate controller 424 testing 449
generating a module ... 422 testing module 450
GET 426 TypeORM configuration ... 434
guard 446 TypeORM module 434
help 416 TypeScript 413
helper 428 TypeScript compilercooneeeerenneceens 421
HttpCode decorator ... conneees 426 update 417
import 423 URL path 425
info 417 UseGuards decorator ... 447
initialization ProCessconeceens 415 user login 445
injectable decoratorconcceen. 430 version 416
InjectRepository decorator ... 437 watch 417
installation 414 net.Socket 601
JWT 443 Network communicationoeceeveveeeeeennee 461
JwtGuard 447 Nginx 137

823

Index

Nitro 42
node_modules 161,617
Node.js 34
areas of use 40
available system-wide conceerconnces 63
benefits 40
community 35
Node.js Foundation ... 36, 38
Node bindings 102
node-emoji 473
nodemon 98,397
configuration file 99
debugging 99
log outputs 99
Node Packaged Modulecccomcemneccercnnecns 615

Node Package Manager (npm) ... 34,35,60, 215,
414,453, 615,721
advanced operations

bundledDependencies 621
command-line tool 623, 626, 630, 637
commands 626
creating 630
deduped 622
Aependencyconeeenn. 619, 621, 622
devDependencies 621
directory hierarchy 619
engines 628
global 620
initialization 624
INStAllationeeeveeveeveveeennnns 615,617,633
keyword 616
license 630, 634
list 622
major version 628
minor version 628
ncu 636
nlf 635
node_modules 617
npx 637
operations 616
optionalDependencies ... 621
other sources 621
outdated 625
PACRAGE.JSON ... 617,621, 627
package-lock.json 618
patch level 628
peerDependencies eeecnnees 619,621
private 632
--prod 622
production installation

proxy

publish

824

Node Package Manager (npm) (Cont.)

registry 616
repository 616, 630
restart 633
run 633
--save-dev 621
script 627,632
search 616, 620
security risk 634
short forms 627
start 633
stop 633
structure 619, 627

system-wide installation ..
tar archive

test
tool
tree structure 622
uninstall 625, 633
unpublish 632
unpublish rules 632
update 624, 636
upload 631
usage 623
Verdaccio 635
version 624, 633
version control 621
version humber 629
Node Security Platformoneccrenne. 705
Node Version Manager ... 71
nodist 71
Nonblocking I/O ..o 34,41, 83
NoSQL 260
npm
account 632
npm init 110,457
npm init -y 137
npmjs 36
nvm 59
nvm-windows 71
(o)
Object context 142
Object-oriented programming paradigm 43
Object-relational mappingcccomeveeeenne. 257
Observer pattern 519
Onion architecture 101
OpenAPI 324
OpenJS Foundation 37
Open source 241,453
project 40, 56

Index

OpenSSH 714 Performance ... 116,721,733
OpenSSL 52,101, 168 abstraction 722
Operating systemc..coueeeee. 55,69, 108, 603 accurate measurementeeeenens 741
Optimized engine 41,42 activity monitor 735
Option 454 advantage 43
OracleDB 241 allocation instrumentation on timeline 743
ORM 257,756 allocation Samplingocceennnn. 743
ORM2 257 analysis tool 733
Osl 595 arrayBuffers 746
Output 50 asynchronicity 722
channel 461 bandwidth 748
blocking operation ... 722,734

P bottleneck 733
cache 749

package.json 110,132,185, 358, 706, 719 caching 722
Package cache 59 child_process 734
package-lock.json 159 code optimization 749
Package manager ... 56-58, 63,615 complexity 722
Parallelizability 103 compression 749
Parameter list 141 computation 734
Parent module 131 console.time 738
Parent process 485 CcPU 734,736
parselnt 200 data volume 733
Passport 273,275,277 debugger 738
ACCESSING TESOUNCESoouveurereerrrerearesrasenns 285 DevTools 736
authentication mechanism ... 273 disabling the measurementccc...... 739
browser cookie 275 environment variable ... 739
configuration 274 execution times 738
CONNect-ensure-I0gin cneceeen. 280 external 746
database 282 flexible 733
failure 277 garbage collector 741
installation 274 getEntries 740
library 277 heap snapshot 743
logging out 281 heapTotal 746
login 277 heapUsed 746
login form 277 hooks 36
logout method 282 htop 735
logout route 281 I/O operations 722
middleware 273 infinite loop 734
modular authentication system 273 —-inspect 736
redirecting 279 --inspect-brk 736
securing resources 280 lightweight 733
serialization 275 measure 740
session 275 measuring CPU 735
setup 274 memory 741
strategy 273,276 memory address 741
strategy configuration ... 275 memory analysis 743
Password 273,363 Memory CONSUMPLIONooovnevvveinerrrrrnenrens 743
plain text 285 memory leak 742
Patch level 55 memory statistics 745
PATH variable 66 network 747
perf_hooks 116 network statistics 748

825

Index

Performance (Cont.)

Network tab 748
observe 740
perf_hooks 739
performance-ROORSceeomneveerinneces 739
PerformanceObserver ... 739
pregeneration 722
process.memoryUsage concene 745
profiler 736
profiler recording 737
resident set size 746
retained size 743
rss 746
shallow size 743
speed 733
Task Manager 735
throttling 748
time to first byte 748
wait time 748
worker_threads 734
YAGNI 733
Persistence 241
PHP 177
Pipe 491
pkg file 64
pkg installer 68
pkgutil 67
Platform independence ... 55
Plug-in 273
pm2 730
cluster 730
pnpm 414
Polyfill 32
Port number 82
PostgreSQL 241
Postman 296, 300
Pre-commit hook 652
Prettier 648
.prettierrc 649
configuration 649
execution 649
formatting 648
installation 649
Prime number 495
Primitive data type 385
Process 116,486
events 118
terminate 464
threads 486
Promise 119, 190, 507
catch 191
concatenation 511
826

Promise (Cont.)
error case
error handler
fastest operation
finally
logical flow control
parallel operations
pending
Promise.all
Promise.race
reject
rejected
resolve
resolved
settled
statuses
success case
then
then method

Prototype 43,

Publish-subscribe 49,

Pug
base template
basic structure
blocks 223,
cache
compiling
conditions
dynamic elements
escaping
Express
extends
file extension
filtering
includes 223,
indentations
installation
interpolation
JavaScript eXpresSionscneeecenees
library
loops
mixins
multiline blocks
parameter list
placeholders
program logic
rendering
reuse
specific features
structuring
syntax
template block

508
512
513
191
509
512
508
512
513
190
508
190
508
508
508
508
191
509
182
757
215
223
225
225
228
228
222
219
220
216
223
217
220
226
222
215
219
219
227
222
226
221
227
228
222
216
225
221
221
217
226

Index

Pug (Cont.) REPL (Cont.)
variables 219 async 79
without express 228 auto-complete 75
Pull request 37 cancel 76
Python 177 commands 75
context 75,77
Q exit 76
global context 77
Quality 641,705 history 76,77
assurance 40, 641 location 78
metrics 641 magic 78
static code analysisceconeceenone 641 mode 78
tools 641 multiline commands oneeceennn. 75
Query string 89 saving and loading 76
queueMicrotask 119 sloppy 78
strict 78
R Repository 58
require 108,121,134
RabbitMQ 757,759 resolve 135
installation 760 Resolving NPM modules ccccomereeeneeeeennne 131
Rails 33 REST 295,337
Random number 458 204—no content 316
React 295 accept header 307
ReactiveX 519 access 296
Readability 494 APl documentationwcicneeeeees 327
Read requests 50 authentication 316
Real-time web application 357,358,377 checkSchema 333
Redis 241, 260, 722 content-type 309, 312
backup copy 260 decoding tokens 321
client 261 delete 314
command set 265 documentation 324
connection 261 error handling 302
createClient 261 error message 318
creating data records ... 261 Fielding, Roy 295
Docker 260 formats 297
editing data records ccceennnn. 261 HATEOAS 296
error object 262 individual data records ... 301
events 261 JSON 295,307
installation 261 JSON Web tOREN ..o 295,317
key 263 links 305
memory 260 login 317
overwritten 261 output format 307
port 261 parameter validation ... 330
promise 262 POST 309
reading data recordsimnneeeees 263 pUT 309
removing data records ... 264 query parameters 304
ReferenceError 112 read requests 298
Relations 289 request.params 313
Relationship 435 resources 296, 298
Release schedule 38 safequarding reSOUrCesoeeeenn. 319
REPL 73 schema 332
.node_repl_history 77 sorting 304

827

Index

REST (Cont.)
stateless 296, 298
status code 302
structure 297
token 320
unauthorized 318
updating data 312
validation 329, 330
validation errors 331
validation schema 332
validator 330
write access 309
XML 307
Restart 98
Return 482
VAIUE oo 74,116, 141, 484, 507
Reuse 103,125
Root directory 456
root permission 57,70
Router 154
implementation 375
Routing 186
RxJS 519, 545
access to elements 532
accumulator 529
aggregating 529
array structure 527
asapScheduler 543
asynchronicity 519
asyncScheduler 543
AsyncSubject 542
BehaviorSubject 541
buffering 529
catchError 535
cold observable 523,524,539
combineLatest 534
complete 521
complete method 532
concatMap 531
conditional operators 538
condition for all data packages ... 539
connection operators 539
conversion operator 540
creation operator 527
data source 519
debounceTime 533
debugging 537
decision tree 526
defaultIfEmpty 538
default value 538
documentation 526
error 521

828

RxJS (Cont.)
error handling ... 522,523,535
event stream 520
every 539
file system 528
filtering operator 532
Jirst 532
flatMap 531
fromEvent 528
from operator 527
hot observable ... 523,524
installation 521
integration 521
iterable data StruCture ..., 527
join operator 530,534
last 532
latestValueFrom operator ... 540
logger 524
map function 529
marble diagram 526
mergeMap 530
merging observablescconccennnn 534
Microsoft 519
multiple subscription 540
next 521
observable 521
observer 519,522
operator 519,523,525
operator category 526
pipe method 523
promise 527
queueScheduler 543
range 529
rejecting 533
ReplaySubject 541
retry 536
scan 529
scheduler 542
skipUntil 533
startWith 529
subject 540
subscribe 522
subscribe method 522
subscription 523
switchMap 531
take 532
takeUntil 533
tap 537
termination 522
time 542
time interval 528
timeout 537

Index

RxJS (Cont.) Security (Cont.)
timeout operator 538 escaping 697,708
timer observable 534 eval 699
toPromise 540 file system 695
transformation operator ... 529 filter input 684
trying again 536 Junction constructoriceeneeevennnns 700
uniform interface 519 global functionality ... 703
unsubscribe 523 hash value 695
utility operator 537 header field 693
web server 524 hidePoweredBy 695
HTML injection 707
S HTTP header 693
I/0O operations 688
Safety issue 706
execution 700 limiting child processes ... 690
Helmet 694 link shortener 708
Scaling 40,713,721 logged-in user 687
cloud 722 malicious code 707
load balancing 722 mapping table 695
Schlueter, Isaac 34 method invoCationeveeeeeneeseenen. 700
Scoping 741 modifying the database 697
block 741 NosSQL 695
closure 741 npm 704
function 741 npm package 703
global 741 npm script 706
module 741 NSP 705
Searching for modulescccveernnecrrnnnnn. 131 nvm 704
Search path 60, 70, 454 origin header 709
Secure Shell 714 output data 685
Security 683 overwriting 702
administrator 687,704 OWASP 693, 695
attack scenario 683 permissions 699, 704
blacklist 684 preinstall 707
blocking an IP address ... 691 query string 685
caching 694 reading the database ... 697
child process 690 ReDoS 692
client 707 reqular exXpressions ceeeseeceens 692
configuration 697 repository 705
contributor 706 resource 690
CORS 709 restricting the value range 689
CPU-intensive operation ... 688 rimrafall 704,706
cross-origin resource sharing ... 709 same-origin policy 709
cross-site request forgery .. 709 security gap 701, 705
Cross-site SCripting ... 707 Security mechanisms ... 686
csurf 710 security update 39,72
database 695 separate user 687
DDOS 683 server 686
denial of service 690 session 709
documentation 705 session hijacking 683
dynamic method callcceccommcceceennnnn 701 software 695
error message 695 SQL injection 695
escape output 684, 685 standard function 702

829

Index

Security (Cont.)
statistics 706
system directory 687
token 709
user permissions 686
version number 695
web application ... 686, 693, 707
web store 709
whitelist 684
write permission 687
Selectors 167
Self-signed certificate 170
semver 55
Sequelize 257
configuration ODJECtceeomneeeernn. 258
dialect 258
instance 258
Sequential processingoneceenenne 484
Server object 82
Server process 499
Server request 510
Service
configuration SCriptceconeeeeeoreeevenenne 717
crash 716
discovery 756
node-linux 717
node-mac 717
node-windows 717
systemd 716
Unix 716
Windows 717
Session handling 273
SHA-256 320
Sharding 265
SharedArrayBuffer 505
Shared libraries 69
Shebang 456,623
Shell
commands 453
interactive
script
session

Short-lived memory area
Shutdown

Side effect

SIGKILL

SIGTERM 117,485

Single-page applicationcccneceenenne 357

Single-threaded ..., 33,41, 688
approach 481

Socket 34, 595
.sock file 597

830

Socket (Cont.)
access 598
ACK package 604
addressing 597, 602
bidirectional communication 600
binary data 606
buffer 608
character encoding 598
checksum 604
client 597
close 613
coding 606
communication protocol ..., 595
CONNECLION e 538, 597, 609
data transfer 605
duplex 609
file system 596
file transfer 606
[lexibility 603
flow control 607
fragmentation 603
handshake 604
multiple clients 602
network protocol 605
package size 604, 614
permission 598
pipe 609
port 612
security 605
SYN/ACK package 604
TCP 603
TCP client 605
TCP server 605, 608
UDP 610
UDP client 611
UDP server 611
Unix socket 596, 607
Windows pipeoeeeconeeeeennn. 596, 602, 607
Socket.IO 377
API 379
broadcast 382
client 379
connection 380
delivery 379
emit method 381
event 381
frontend 379
installation 378
integration 378
server 382
Source code 70
Spdy 210

Index
SQL 242 Stream (Cont.)
injection 247 drain 564
SQlite 241, 251,282 duplex 547,566
all method 256 error event 552
binary packages 251 error handling 552,562
connection 252 event handler 550
creating data recordsoceeennnn. 254 file system 546, 548
database object 252 flow control 564
database structure 251 flowing mode 551,554
deleting data records ... 256 framework implementation ... 565
editing data records coneceenn. 255 highWaterMark 549
escaping 255 implementation 548
file 252 input 546
GET method 256 lifecycle 550
INSERT query 255 mode change 554
installation 251 object 486
promise 253 object mode 558
reading data recordscnneccenn. 253 output 546
run method 254 paused mode ... 551,554, 555
Stability 104 permission 562
index 104,122 pipe 553
Stable 105 pipe method 553,569
Stack 486 pull 547,554
Standard C library 48 push 547,554
Standard error outputcccccvveceeees 461, 485 readable 547,548, 607
Standard iNPut ...c.ccceeveceeenneccennneecens 462, 485, 588 readable, sample stream ..., 556
Standard installation 66 readable eVent ... 549, 550
Standard library 102 readable method 553
Standard OUtputcoeeceeernecrevernecnnns 461, 485, 491 readable stream APIeveeveveeeernnnn 550
Static content 157 readable stream mode ..o 554
Static page 277 read method 549
Status code 304 shortcut 558, 566, 567
stderr 116, 461 standard event 550
stdin 116, 462 toString 549
stdout 116, 461 transform 547,568
Stream 38, 545 transform ShOrtCutceccnneeeeeneecnnns 569
_read 567 version 547
_transform 568 writable 547,559
_write 567 writable event 560
API 607 writable method 562
basic implementation ... 565 write permission 562
buffer 563, 566 Strict mode 78,141, 699
buffer size 549 Structure
(ol 11211 R 546, 548, 559, 568 large applications 184
connection 561 medium-size application ... 183
cork 564 small application 182
creating a readableeeconeceenann. 548 thematic separation ... 185
creating a writable stream ... 560 Structuring 125
custom duplex streamcconecveenenn. Style guide 642
custom readable stream ... Airbnb 642
custom transform stream Google 642
custom writable stream JavaScript Standardcccenecercenccenn. 642

831

Index

Style guide (Cont.)
linter 644
standard 642
Stylesheets 157
sudo 57,620
Support period 39
Swagger 324
swagger.json 325
Swagger specification ... 327
Swagger Ul 325,439
Symbolic link 70, 460
Symfony 177
Syntax highlighting 312
System ports 82
System resources 485
System-wide 70
T
Table 242
Target architecture 69
Target directory 62
TCP 595
header 604
port 139
server 497
TDD 674
Template 157
language 239
SETINGS oo 81, 154, 215, 459
Template engine 185,192,213
conditions 215
custom 214
loops 215
markers 214
parallelizability 213
performance 215
resources 215
reusability 213
security 215
separation of logic and markup 213
troubleshooting 215
Test 655,706
AAA 657
act 657
arrange 657
assert 656, 657
assertion method eeeeeuveeean.. 659, 664
assertion testing 658
assert module 658
async 662
automation 655

832

Test (Cont.)
dependency 674,679
directory structure 656
documentation 655
error 659, 675
exception 661
execution 658
fake it till you MARE it ..o 676
feedback 656
frequent execution 656
fs mock 679
isolating 655
mocking 679
no manual iNtervention ... 655
only one test case 655
output 658
promise 662
quality 656, 679
refactoring 678
reject 662
relevant code 656
separate 656
side effects 674
strictEqual 658
strict mode 660
test directory 656
test first 675
throws 661, 662
triangulation 677
with source code 656
Testability 103
TextDecoder 120
TextEncoder 120
this 141
Thread 486
pool 51
Tight cohesion 125
Tight coupling 753
Time-based features 113
Time-controlled calculation ... 358
Time-out error 83,195
Timing functions ... 111,113
TJ Fontaine 36
TJ Holowaychuk 177
Top-level await 79,516
Top-level functions 34
Troubleshooting 89
Trustworthiness 683
try-catch 484, 659
type 127
module 110
Typecasting 660

Index
Typed array 120,506 TypeScript (Cont.)
typeof 385 plug-in 394
TypeORM 432 polyfill 391
delete 437 private 405
find 437 protected 405
findOne 437 public 404, 405
save 437 rest parameter 401
TypeScript 36, 390 return value 398
@types 410 shortcut notation 404
@typescript-eslint 396 skipLibCheck 394
access MOdifiercconeceeoneecrnnnn 404, 405 strict 393
any 399 string 398
array 398 target 393,403
arrow function 400 tools 392
async 400 tsconfig.json 393, 402
Boolean 398 ts-node 396
class 403 tuple 398
class Collection<T> 409 type 408
collection 409 type alias 408
compiler 391 type definition 410
constructor 404 type inference 398
custom type definition ... 410 undefined 399
data type 398 union 400
declaration Mergingcneeeeenn. 408 unknown 399
default value 401 void 399
DefinitelyTyped 410 Type system 386
development environment ... 394
enum 399 U
ESLint 395
ESLint configuration ..., 395 Ubuntu
esModulelnterop 394 desktops
Express 411 UDP
extends keyword 405 Uglify]s
forceConsistentCasingInFileNames 394 Uint8Array
function 400 UnauthorizedError
generics 398, 409 UnauthorizedException
inheritance 405 Unicode character setcnnn:
initialization 393 Uninstalling 59,63, 67
installation 391 Unit test 655,656
interface 406 Unix 55
method 400, 404 philosophy 101
Microsoft 390 pipe 545
module 393,402 URL 120, 145, 149
module system 391 parameter 88
never 399 User ID 118
null 399 User name 273,363
number 398 Users currently logged in ... 285
object 400 Usertable 282
optional parametercncceenne 401 UTF-8 84,141
parameter 400 util.promisify 510
parameters list 401 Utilities 72,486
placeholder type 409
833

Index

Vv
V8 enginecceonneccens 40,41,101, 104
V8 Inspector 96
Validity range 115
var 81
Variable 81
assignment 99
Version conflicts 132
Version control 714
system 619
Version information ..., 63,67,117
Versioning 38,55
Version number
View engine property
Visual Studio Code .. 97,394
Vue 295
W
Waterline 257
Web application 753
dynamic 80
WebAssembly 121
Web development 453
Web server 35, 80, 137
HTTP response 80
WebSocket 102, 357,364
API 357
client 367
connection 366
connection event 366
connection process 371
constructor 368
disconnecting 375
encrypted 365
logout 373
protocol 364
reference 372
send method 369

834

WebSocket (Cont.)
server 366
setup 376
status message 370
subprotocol 365
user 370
WebStorm 97
wget 57
WHATWG URL API 88
Windows 35, 50, 55, 60
Worker processes 497
Worker thread 36,504
child thread 504
CPU 504
message event 505
postMessage 505
Work groups 38
Write operation 50
X
XML parser 616
Y
YAML 327
Yarn 386,414,473,637
installation 637
node_modules 638
package.json 638
Plug’n’Play 638
pnp 638
reliability 637
security 637
speed 637
yarn.lock 637,638
Z
Zlib 52

Build and deepen your coding knowledge c Rheinwerk

from the top programming experts! Computing

Sebastian Springer is a JavaScript engineer at MaibornWolff.
In addition to developing and designing both client-side and
server-side JavaScript applications, he focuses on imparting
knowledge. As a lecturer for JavaScript, a speaker at nume-
rous conferences, and an author, he inspires enthusiasm for
professional development with JavaScript. Sebastian was
previously a team leader at Mayflower GmbH, one of the
premier web development agencies in Germany. He was
responsible for project and team management, architecture, and customer

care for companies such as Nintendo Europe, Siemens, and others.

N

.listen(8080, ()
.log(Serve

D

Node.|s

The Comprehensive Guide

Sebastian Springer & Rheinwerk
Computing

Sebastian Springer
Node.js: The Comprehensive Guide

834 pages, 2022, $49.95 We hope you have enjoyed this reading sample. You may recommend or pass it
ISBN 978-1-4932-2292-6 on to others, but only in its entirety, including all pages. This reading sample and

all its parts are protected by copyright law. All usage and exploitation rights are
"g www.rheinwerk-computing.com/5556 reserved by the author and the publisher.

https://www.sap-press.com/nodejs_5556/?utm_source=AWS&utm_medium=readingsample&utm_campaign=Browse+the+Book&utm_content=2292

