Build and deepen your coding knowledge c Rheinwe rk

from the top programming experts! Computing

Classes, Ob- .

Reading Sample _

Varia bles] L e ' : Java is an object-oriented programming language and the first

Arr ays, Stri ' | sample chapter focuses on objects that are created by a blueprint
- (the class). Objects are addressed via references and through

. references objects can be passed on to other places and can be

Ob] ect-Orief - ‘ compared. The second sample chapter explores the Java class

Programming] library.

Functional R “

publicstaticveid |1/ ((String | args)
L=) () random() * 5 + 1);

, P m G | i “The Class Library”
/) &I s Of oo H) Contents

. " publiCdssGuessWhat‘ ’ "CIasseS and ObjectS"

S i number=al

Systemout].J(;1{)! ’.'r.\lope, my number is largel
(| :11{{ number < guess
4 . . System out; 111! "Nope, my number is small I N dex
~

The
Comprehensive
Guide

Christian Ullenboom

Java: The Comprehensive Guide

1126 pages, 2023, $59.95
ISBN 978-1-4932-2295-7

Christian Ullenboom e Rheinwerk
S ¥ www.rheinwerk-computing.com/5557

https://www.sap-press.com/java_5557/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2295

Chapter3
Classes and Objects

“Nothing is more fairly distributed than common sense: no one thinks
he needs more of it than he already has.”
—René Descartes (1596—1650)

Java is an object-oriented programming language and this chapter focuses on objects
that are created by a blueprint (the class). Objects are addressed via references and
through references objects can be passed on to other places and can be compared.

3.1 Object-Oriented Programming

A book about Java programming must unite several parts:
® First, basic programming according to the imperative principle (variables, operators,
case distinction, loops, and simple static methods) in a new grammar for Java

m Then, the object orientation (objects, classes, inheritance, interfaces) and extended
possibilities of the Java language (exceptions, generics, lambda expressions)

® Finally, the libraries (string processing, input/output, etc.)
This chapter focuses on the paradigm of object orientation and demonstrates the syn-

tax, such as how classes are implemented in Java and how class/object variables and
methods are used.

Note

Java, of course, is not the first object-oriented (OO) language, nor was C++. Classically,
Smalltalk and especially Simula-67 from 1967 are considered the progenitors of all 0O
languages. The concepts they introduced are still relevant today, including the four
generally accepted principles of object-oriented programming (OOP): abstraction,
encapsulation, inheritance, and polymorphism.!

1 Restassured, all four basic pillars will be described in detail in the following chapters!

[]

3 Classes and Objects

3.1.1 Why Object-Oriented Programming at All?

Since people perceive the world in objects, the analysis of systems is also often already
modeled in an OO way. But with procedural systems that have only subroutines as a
means of expression, mapping OO design into a programming language becomes diffi-
cult, and inevitably, a break will occur. Over time, documentation and implementation
will diverge; the software then becomes difficult to maintain and extend. A better
approach, therefore, is to think in an OO way and then use an OOP language to map
these ideas.

Note

Bad code can be written in any language.

The objects mapped in the software have three important characteristics:

® Every object has an identity.
® Every object has a state.

® Every object has a behavior.

These three properties have important consequences: First, the identity of the object
remains the same during its lifetime until its death and cannot change. Second, the
data and the program code to manipulate that data are treated as belonging together.
In procedural systems, you’'ll often find scenarios like a large memory area that can be
accessed by all its subroutines in some way or other. For objects, this statement is not
true since objects logically manage their own data and monitor the manipulation of
that data.

So, OO software development is about modeling in objects and then programming.
Design takes a central position in this process; large systems are decomposed and
described in ever finer detail. The statement of the French writer Francois Duc de La
Rochefoucauld (1613-1680) fits well here:

“Those who spend too much time on small things become incapable of great
things.”

3.1.2 When I Think of Java, | Think of Reusability

With each new project, you may notice similar problems have already been solved in
previous projects. Of course, problems that have already been solved shouldn’t be
reimplemented; instead, repetitive parts should be reused as best as possible in differ-
ent contexts. The goal is the best possible reuse of components.

The reusability of program parts has existed since before OOP languages came into
being; however, OOP languages facilitate the programming of reusable software com-
ponents. Thus, the many thousands of classes in the library are examples of how

202

3.2 Members of a Class

developers won'’t be constantly bothered about the implementation of data structures,
for example, or the buffering of data streams.

Even though Java is an OOP language, being OO doesn’t guarantee fancy design and
ideal reusability. An OO language facilitates OOP, but OOP can also be achieved in a
simple programming language such as C. In Java, programs are also possible that con-
sist of only one class and accommodate 5,000 lines of program code with static meth-
ods. Bjarne Stroustrup (the creator of C++, also called Stumpy by his friends) aptly said
this about comparing C and C++:

“C makes it easy to shoot yourselfin the foot, C++ makes it harder, but when you do,

it blows away your whole leg.”?

In the spirit of our didactic approach, this chapter will first use some classes from the
standard library. We’ll start with the Point class, which represents two-dimensional
points. In a second step, we'll then program our own classes. Next, we'll focus on the
concept of abstraction in Java, namely, how groups of related classes are designed.

3.2 Members of a Class

Classes are an important feature of OOP languages. A class defines a new type, describes
the properties of the objects, and thus specifies the blueprint.

Each object is an instance of a class.

A class essentially declares two things:

m Attributes (what the object has)

® Operations (what the object can do)

Attributes and operations are also referred to as the members of an object. Which mem-
bers a class should actually have is determined in the analysis and design phase. We

won't describe this decision in this book; for us, the class descriptions are already avail-
able.

The operations of a class are implemented by the Java programming language through
methods. The attributes of an object define its states, and they are implemented by
class/object variables also referred to as fields.?

Note

The term “object-oriented programming” contains the term “object” but not the term
“class,” which we've used quite a bit. So, why isn’t OOP called “class-based program-
ming” instead? The reason is that class declarations aren’t mandatory for OO pro-

2 Or as Bertrand Meyer put it, “Do not replace legacy software by lega-c++ software.”
3 We won't use the term “field” in this context because it is a reserved word for arrays.

203

[«]

3 Classes and Objects

grams. Another approach is prototype-based object-oriented programming. In this case,
JavaScript is the best-known representative; only objects exist, which are concatenated
with a kind of base type, the prototype.

To approach a class, let’s use a fun first-person approach (object approach), which is also
used in the analysis and design phase. In this first-person approach, we put ourselves in
the object and say “Iam...” for the class, “I have...” for the attributes, and “I can...” for the
operations. Readers should test this thought experiment on the human, car, worm, and
cake classes.

Before we delve into custom classes, let’s first explore some classes from the standard
library. A simple class is Point, which describes a point on a two-dimensional plane by
the coordinates x and y and provides some operations to modify point objects. Let’s
test a point again with the object approach.

Concept Explanation

Class name | am a point.

Attribute | have an x and a y coordinate.
Operation | can move myself and set my position.

Table 3.1 OOP Terms and Their Meanings

Regarding the point, in Oracle’s application programming interface (API) documentation
(https://docs.oracle.com/en/java/javase/17/docs/api/java.desktop/java/awt/Point.html),
you can read that it defines the object variables x and y, has a setLocation(...) method
(among other things), and offers a constructor that takes two integers.

3.3 Natural Modeling Using Unified Modeling Language*

For the representation of a class, program code can be used (i.e., either text or a graphi-
cal notation). One of the available graphical description types is the Unified Modeling
Language (UML). Graphic illustrations are much easier for people to understand and
provide a broader overview.

In the first section of a UML diagram, you can read the attributes of an object; in the sec-
ond section, its operations. The + before the members, as shown in Figure 3.1, indicates
that they are public, and anyone can use them. Compared to Java, the type specification
is reversed: First comes the name of the variable, then the type or (in the case of meth-
ods) the type of the return value. Other programming languages such as TypeScript or
Kotlin also use this “flipped” type specification in the code.

204

3.3 Natural Modeling Using Unified Modeling Language*

java::awt::Point

+

x @ int
y : int

+

Point()

Point(p : Point)

Point(x : int, y : int)

getX() : double

getY() : double

getlocation() : Point
setlocation(p : Point)
setlocation(x : int, y : int)
setlocation(x : double, y : double)
move(x : int, y : int)
translate(dx : int, dy : int)
equals(obj : Object) : boolean
toString() : String

T T T

Figure 3.1 The java.awt.Point Class in a UML Representation

UML defines various diagram types that can describe different views of the software.
Different diagrams are important for the individual phases in software design. Let’s
take a brief look at four diagrams and their areas of use.

m Use cases diagram
A use cases diagram is usually created during the requirements phase and describes
business processes by showing how people—or existing programs—interact with
the system. The acting persons or active systems are called actors and are indicated
in the diagram as small people. Use cases then describe the interaction with the sys-
tem.

® (Class diagram
For a static view of a program’s design, the class diagram is one of the most import-
ant diagram types. On one hand, a class diagram represents the elements of the class
(i.e, its attributes and operations), and on the other hand, the relationships among
the classes. Class diagrams are used most frequently in this book, especially to show
association and inheritance to other classes. Classes are represented as rectangles in
such a diagram, and the relationships between classes are indicated by lines.

® Object diagram
At first glance, a class diagram and an object diagram are quite similar. The main dif-
ference is that an object diagram visualizes the assignment of attributes (i.e., the
object states). For this purpose, instance specifications are used, which include the
relationships the object has with other objects at runtime. For example, if a class dia-
gram describes a person, one rectangle appears in the diagram. If this person has
friends at runtime (i.e., has associations to other person objects), then a great many
people can be associated in an object diagram, while a class diagram can’t represent
this instance.

205

4

3 Classes and Objects

3.4 Creating New Objects

® Sequence diagram
The sequence diagram represents the dynamic behavior of objects. Thus, this dia-
gram shows the order in which operations are called and when new objects are cre-
ated. The individual objects are given a vertical lifeline, and horizontal lines between
the lifelines of the objects describe the operations or object creations. Thus, the dia-
gram is read from top to bottom.

Since the class diagram and object diagram tend to describe the structure of software,
these models are also called structure diagrams (along with package diagrams, compo-
nent diagrams, composition structure diagrams, and distribution diagrams). A use case
diagram and a sequence diagram tend to show dynamic behavior and are therefore
referred to as behavior diagrams. Other behavior diagrams include state diagrams,
activity diagrams, interaction overview diagrams, communication diagrams, and tim-
ing diagrams. In UML, however, capturing the central statements of the system in a dia-
gram is the goal, and thus, diagram types can be mixed without any problem.

In this book, you’ll find mostly class diagrams.

3.4 Creating New Objects

A class describes what an object should look like. Expressed in a set or element relation,
objects correspond to elements, and classes correspond to sets in which the objects are
contained as elements. These objects have members that can be used. If a point rep-
resents coordinates, ways to query and change these states will be available.

In the following sections, we’ll examine how instances of the Point class can be created
at runtime and how the members of the Point objects can be accessed.

3.4.1 Creating an Instance of a Class Using the new Keyword

Objects must always be explicitly created in Java. For this purpose, the language defines
the new keyword.

Example

The Java library declares the Point type for points. The following code will create a
Point object:

new java.awt.Point();

Basically, new is something like a unary operator. The new keyword is followed by the
name of the class of which an instance is to be created. The class name is fully qualified
here because Point is in a java.awt package. (A package is a group of related classes; in

206

Section 3.6.3, you'll see how developers can also abbreviate this notation.) The class
name is followed by a pair of parentheses for the constructor call. This call is a kind of
method call that can be used to pass values for the initialization of the fresh object.

If Java’s memory management can reserve free memory for the object to be created
and if the constructor can be passed through validly, the new expression subsequently
returns a reference to the fresh object to the program. If we don’t remember this refer-
ence, automatic garbage collection can release the object.

3.4.2 Declaring Reference Variables

The result of new is a reference to the new object. The reference is usually held in a refer-
ence variable in order to be able to access properties of the object later.

Example [Ex]

Let’s declare the variable p of type java.awt.Point. The p variable then takes the refer-
ence from the new object created via new, as in the following example:

Jjava.awt.Point p;
p = new java.awt.Point();

The declaration and initialization of a reference variable can be combined (also a local
reference variable is uninitialized at the beginning like a local variable of a primitive
type) in the following example:

java.awt.Point p = new java.awt.Point();

The types must be compatible, of course, and a Point object won’t pass as a String. Thus,
attempting to assign a point object to an int or string variable will result in a compiler
error. Consider the following examples:

int p = new java.awt.Point(); // & Type mismatch: cannot convert from
// Point to int

String s = new java.awt.Point(); // & Type mismatch: cannot convert from
// Point to String

So, a variable stores either a simple value (variable of type int, boolean, double, etc.) ora
reference to an object. Ultimately, the reference is internally a pointer to a memory
area but isn’t visible to Java developers in this way.

Reference types are available in four designs: class types, interface types, array types
(also called field types), and type variables (a special generic type). Our case represents
an example of a class type.

207

3 Classes and Objects

3.4 Creating New Objects

new java.awt.Point();

@ Assign statement to new local variable (Ctrl+2, L)

= Assign statement to new field (Ctrl=2, F)
¥ Remove
Return the allocated object

@ Extract to local variable (replace all occurrences)

© Extract to local variable
@ Add @SuppressWarnings 'unused’ to ‘'main()’
@ Extract to constant

import java.awt.Point;

public class T
{

Point point = new java.awt.Point();

Press 'Tab' from proposal table or click for focus)

Figure 3.2 Pressing Ctrl+1 Allows You to Create Either a New Local Variable or an Object

Variable for the Expression

3.43 Let’s Get to the Point: Accessing Object Variables and Methods

The variables declared in a class are called object variables or instance variables. Each
created object has its own set of object variables,* which make up the state of the object.

The dot operator allows you to access the states or call methods on objects. The dot is
located between an expression that provides a reference and the object member. The
API documentation describes which members exactly are provided by a class—if an
object doesn’t have a member, the compiler will prohibit its use.

java.awt.Point p = new java.awt.Point();

F'N-v'

° x:int - Point

e y:int - Point

@ clone() : Object - Point2D

@ distance(Point2D pt) : double - Point2D

@ distance(double px, double py) : double - Point2D
@ distanceSq(Point2D pt) : double - Point2D

@ distanceSq(double px, double py) : double - Point2D
@ equals(Object obj) : boolean - Point

@ getClass() : Class<?> - Object

@ getlocation() : Point - Point

@ getX() : double - Point

@ getY() : double - Point

@ hashCode() : int - Point2D

@ move(intx, int y) : void - Point

@ notify() : void - Object

»

1

Press 'Ctrl+Space’ to show Template Proposals

The X coordinate of this point. If no X coordinate is set it will default to 0.
Since:

10
See Also:

getlocation

move(int, int

@serial

Press Tab' from proposal table or click for focus|

Figure 3.3 Ctrl+Space Displays the Possible Members of a Reference. Pressing Enter Selects
the Member and, Especially for Methods, Places the Cursor between the Pair of Parentheses.

4 Insome cases, several objects will share one variable, called static variables. We’ll look at this case in
more detail later in Chapter 6, Section 6.3.

208

Example

The p variable references a java.awt.Point object. The object variables x and y are sup-
posed to be initialized, as in the following example:

java.awt.Point p = new java.awt.Point();

p.x = 1;

p.y = 2 + p.X;

A method call is just as simple as an access to class or object variables. The expression
with the reference is followed by the method name after the dot.

Door and Playing Piece on the Game Board

At first glance, point objects appear to be mathematical constructs, but they can be
used universally. Anything that has a position in two-dimensional space can be repre-
sented by a point object. The point stores x and y for us, and if we didn’t have any point
objects, we'd always have to store x and y separately.

Let’s now put a playing piece and a door on a game board. Of course, the two objects
have positions. Without objects, the storage of these coordinates would perhaps look
like the following example:

int playerX;
int playery;
int doorX;
int doorY;

Modeling x and y separately isn’t ideal since a much better abstraction is available by
using the Point class, which also provides several useful methods.

int playerX; java.awt.Point player;

int playerY;

int doorX;
int doorY;

java.awt.Point door;

Table 3.2 Objects Encapsulate States

The following example creates two points representing the x/y coordinates of a play-
ing piece and a door on a game board. Once the points have been created, the coordi-
nates are set, and a test is carried out to see how far apart the playing piece and the door
in the following example:

209

Ed

3 Classes and Objects

class PlayerAndDoorAsPoints {

public static void main(String[] args) {
java.awt.Point player = new java.awt.Point();
player.x = player.y = 10;

java.awt.Point door = new java.awt.Point();
door.setlLocation(10, 100);

System.out.println(player.distance(door)); // 90.0

}
¥

Listing 3.1 PlayerAndDoorAsPoints.java

In the first case, we are explicitly assigning the variables x and y of the game. In the sec-
ond case, we won't directly set the objects’ states via the variables but instead change
these states via the setLocation(...) method. The two objects have their own coordi-
nates and won't get in each other’s way.

PlayerAndDoorAsPoints

____________)4 java::awt::Point

+ main(String[])

Figure 3.4 UML Diagram Showing the Dependency between a Class and java.awt.Point with
a Dashed Line. Attributes and Operations of the Point Object Are Not Shown.

toString()

The toString() method returns a String object as the result to reveal the state of the
point. This method is special in that every object has a toString() method—however,
the output is not useful in every case.

class PointToStringDemo {

public static void main(String[] args) {
java.awt.Point player = new java.awt.Point();
java.awt.Point door = new java.awt.Point();
door.setlocation(10, 100);

System.out.println(player.toString()); // java.awt.Point[x=0,y=0]
System.out.println(door); // java.awt.Point[x=10,y=100]

}
¥

Listing 3.2 PointToStringDemo.java

210

3.4 Creating New Objects

Tip

Instead of explicitly calling println(obj.toString()) for the output, println(obj)
works as well. This method is useful because the signature println(Object) accepts any
object as an argument and automatically calls the toString() method on that object.

After the Dot, Life Goes On
As you've seen, the toString() method returns a String object as a result, as in the fol-

lowing code:

java.awt.Point p = new java.awt.Point();
String s = p.toString();
System.out.println(s); // java.awt.Point[x=0,y=0]

The String object itself has methods too. One String object method is length(), which
returns the length of the string, as in the following example:

System.out.println(s.length()); // 23

You can combine the request of the String object and its length into a single expres-
sion, which is referred to as cascaded calls, as in the following example:

java.awt.Point p = new java.awt.Point();
System.out.println(p.toString().length()); // 23

Object Creation without Variable Assignment

When using object members, the type to the left of the point must always be a refer-
ence. Whether the reference comes from a variable or is created on-the-fly does not
matter. Consider the following example:

java.awt.Point p = new java.awt.Point();
System.out.println(p.toString().length()); // 23

The following code does exactly the same thing:

System.out.println(new java.awt.Point().toString().length()); // 23

newPoint()|. toString()|-length()

Type: Point

Type: String

Type: int

Figure 3.5 Each Nesting Results in a New Type

21

[E:d

[]

3 Classes and Objects

3.4 Creating New Objects

Basically, the following statement also works:
new java.awt.Point().x = 1;
However, this last option doesn’t make sense in this context because, although the

object is created and an object variable is set, the object is then fair game again for auto-
matic garbage collection.

Example

You can use the File object to determine the size of a file with the following code:
long size = new java.io.File("file.txt").length();
The return value of the File method length() is the length of the file in bytes.

3.4.4 The Connection between new, the Heap, and the Garbage Collector

If a runtime system receives a request to create an object via new, it reserves enough
memory to accommodate all object members and management information. A Point
object stores coordinates in two int values so at least 2 x 4 bytes are needed. The Java
runtime environment obtains the memory space from the heap. The heap grows from
a starting size to the maximum size allowed so that a Java program can’t grab arbitrary
amounts of memory from the operating system, which would probably cause the
machine to crash. In the HotSpot Java virtual machine (JVM), the heap is !/4, of main
memory at startup and then grows to the maximum size of !/, of main memory.?

Note

Only a few special cases in Java exist where new objects aren’t created via new. Thus, the
newInstance() method, based on native code, creates a new object from the Construc-
tor object. Also, clone() can create a new object as a copy of another object. With
string concatenation via +, you don’t see a new, but the compiler will build internal code
to create a new String object.

If the system can’t provide enough memory for a new object, automatic garbage collec-
tion tries to clear away everything unused in a final rescue operation. If still not enough
free memory is available, the runtime environment will generate an OutOfMemoryError
and terminate the entire program.®

5 https://docs.oracle.com/en/java/javase/17/gctuning/ergonomics.html
6 However, this particular exception can also be intercepted, which is important for server operation
because if a buffer can’t be created, for example, the whole JVM should not stop immediately.

212

Heap and Stack

The JVM specification provides for five different runtime data areas.” In addition to
heap memory, let’s take a quick look at stack memory. The Java Runtime Environment
(JRE) uses it for local variables, for example. Also, Java uses the stack when calling meth-
ods with parameters. The arguments go on the stack before the method call, and the
called method can access the values by reading or writing through the stack. With end-
less recursive method calls, the maximum stack size will be reached at some point, and
an exception of type java.lang.StackOverflowError will occur. Since a JVM stack is asso-
ciated with each thread, the end of the thread has come, with other threads continuing
without impact.

Automatic Garbage Collection: It’s Gone

Let’s consider the following scenario:

java.awt.Point binariumlLocation;
binariumLocation = new java.awt.Point(50, 9);
binariumLocation = new java.awt.Point(51, 7);

In this code, we're declaring a Point variable, building an instance, and assigning the
variable. Then, we create a new Point object and override the variable. But what about
the first point?

If the object is no longer referenced by the program, the automatic garbage collector
notices and releases the reserved memory.® Automatic garbage collection regularly
tests whether the objects on the heap are still needed. If they aren’t needed, the object
hunter deletes them. So, a kind of graveyard atmosphere always exists around the
heap, and once the last reference has been taken from the object, it’s already dead. Sev-
eral garbage collection algorithms exist, and each JVM vendor has its own procedures.

3.4.5 Overview of Point Methods

A few methods of the Point class have already been mentioned, and the API documen-
tation naturally enumerates all methods:

class java.awt.Point

The more interesting methods include the following:

P double getX()

P double getY()
Returns the x or y coordinate.

7 Section 2.5 of the JVM specification, available at https://docs.oracle.com/javase/specs/jvms/sel7/
html/jvms-2.html#jvms-2.5.

8 With the java switch -verbose:gc set, a console output will always be produced when the garbage
collector detects objects that are no longer referenced and clears them away.

213

3 Classes and Objects

P void setlocation(double x, doubley)
Sets the x and the y coordinates at the same time. The coordinates are rounded and
stored in integers.

P boolean equals(Object obj)
Checks if another point has the same coordinates. If so, the return is true; otherwise,
it'’s false. If something other than a point is passed, the compiler won’t find fault
with this, but the result will always be false.

java::lang::0bject

+ Object()

+ getClass() : Class<?>

+ hashCode() : int

+ equals(obj : Object) : boolean

+ toString() : String

+ notify()

+ notifyAll()

+ wait(timeout : long)

+ wait(timeout : long, nanos : int)
+ wait()

‘F

java::awt::geom::Point2D

+ getX() : double

+ getY() : double

+ setlocation(x : double, y : double)

+ setlocation(p : Point2D)

+ distanceSq(x1 : double, y1 : double, x2 : double, y2 : double) : double

+ distance(x1 : double, y1 : double, x2 : double, y2 : double) : double

+ distanceSq(px : double, py : double) : double

+ distanceSq(pt : Point2D) : double

+ distance(px : double, py : double) : double

+ distance(pt : Point2D): double

+ clone() : Object

+ hashCode() : int

+ equals(obj : Object) : boolean
’ Float ‘
’ Double ‘

]

java::awt::Point

+X X

ty -y

Point()

Point(p : Point)

Point(x : int, y : int)

getX() : double

getY() : double

getlocation() : Point
setlocation(p : Point)
setlocation(x : int, y : int)
+ setlocation(x : double, y : double)
+ move(x : int, y : int)

+ translate(dx : int, dy : int)
+ equals(obj : Object) : boolean
+ toString() : String

+ o+ + o+

Figure 3.6 Inheritance Hierarchy in Point2D

214

3.4 Creating New Objects

Note

You may be surprised that a Point stores the coordinates as int, but the getX() and
getY() methods return a double, and setLocation(double, double) takes the coordi-
nates as double, rounds them, and stores them as int, thus losing precision. The reason
relates to inheritance, which will be discussed in more detail in Chapter 7, Section 7.2.
Point inherits from Point2D, and there’s already double getX(), double getY(), and
setlocation(double, double); the Point subclass can’t simply turn double into int.

A Few Words about Inheritance and the API Documentation*

Not only does a class have its own members, it always inherits some members from its
parents as well. In the case of Point, the superclass is Point2D—according to the API doc-
umentation. Even Point2D inherits from Object, the magic class that all Java classes
have as a superclass. We'll devote Chapter 7, Section 7.2, to inheritance later, but right
now, you must understand that the superclass passes object variables and methods to
subclasses. Inherited object variables and methods are only briefly listed in the API doc-
umentation of a class in the block “Methods inherited from...” and are quickly forgot-
ten. Therefore, developers must look not only at the methods of the class itself, but also
at its inherited methods. So, for Point, we need to not just understand the methods of
Point themselves, but also the methods from Point2D and Object.

Let’s look at some methods of the superclass. The class declaration of Point contains an
extends Point2D, which makes it explicitly clear that a superclass exists.”

class java.awt.Point
extends Point2D

P static double distance(double x1, double y1, double x2, double y2)
Calculates the distance between the given points according to Euclidean distance.

P double distance(double x, double y)
Calculates the distance of the current point to the specified coordinates.

P double distance(Point2D pt)
Calculates the distance of the current point to the coordinates of the passed point.

Are Two Points the Same?

The equals(...) method tells you whether two points are equal, and its use is pretty
simple. Let’s imagine managing the coordinates for a player, a door, and a snake and

9 However, the class declaration is not yet complete since an implements Serializable is missing, but
we are not concerned about this for now.

215

[«]

3 Classes and Objects

then test whether the player is “on” the door and whether the snake is “on” the player’s
position.

class PointEqualsDemo {

public static void main(String[] args) {
java.awt.Point player = new java.awt.Point();
player.x = player.y = 10;

java.awt.Point door = new java.awt.Point();
door.setlocation(10, 10);

System.out.println(player.equals(door)); // true
System.out.println(door.equals(player)); // true

java.awt.Point snake = new java.awt.Point();
snake.setlLocation(20, 22);

System.out.println(snake.equals(door)); // false

}

Listing 3.3 PointEqualsDemo.java

Since player and door have the same coordinates, equals(...) returns true. Whether
we have the distance from the player to the door calculated or the distance from the
door to the player—the result with equals(...) should always be symmetrical.

Another test option results from distance(...) because, if the distance between points
is zero, then the points naturally lie on top of each other and thus have no distance.

class Distances {

public static void main(String[] args) {
java.awt.Point player = new java.awt.Point();
player.setlocation(10, 10);
java.awt.Point door = new java.awt.Point();
door.setlocation(10, 10);
java.awt.Point snake = new java.awt.Point();
snake.setlLocation(20, 10);

System.out.println(player.distance(door)); // 0.0

System.out.println(player.distance(snake)); // 10.0
System.out.println(player.distance(snake.x, snake.y)); // 10.0

216

3.4 Creating New Objects

}

Listing 3.4 Distances.java

Player, door, and snake are again represented as Point objects and preassigned with
positions. For the player, we then call the distance(...) method and pass the reference
to the door and the snake.

3.4.6 Using Constructors

When objects are created with new, a constructor gets called. A constructor has the task
of putting an object into a start state, for example, initializing the object variables. A
constructor is a good approach to initialization because a constructor is always called
first, even before any other method is called. The initialization in the constructor
makes sure that the new object has a meaningful initial state:

class java.awt.Point
extends Point2D

Three constructors can be found in the API documentation for Point:

P Point()
Creates a point with the coordinates (0, O).
P Point(intx, inty)
Creates a new point and initializes it with the values from x and y.
P Point(Point p)
Creates a new point and initializes it with the coordinates the passed point has as
well. This kind of constructor is called a copy constructor.

A constructor without arguments is at parameterless constructor, sometimes also
referred to as a no-arg constructor. Each class can have at most one parameterless con-
structor. You can also have a class that doesn’t declare a parameterless constructor,
only constructors with parameters (i.e., parameterized constructors).

Example

The following three variants create a Point object with the same coordinates (1, 2).
Note that java.awt.Point has been abbreviated to Point:

Point p = new Point(); p.setlocation(1, 2);

Point g = new Point(1, 2);

Point r = new Point(q);

The parameterless constructor is written first, while the second and third constructors
are parameterized constructors.

217

21

3 Classes and Objects

3.5 ZZZ7ZZnake

3.5 ZZZZZnake

A classic computer game is Snake. On the screen is a player, a snake, some gold, and a
door. The door and the gold are fixed, the player can be moved, and the snake moves
independently towards the player. You must try to move the player to the gold and
then to the door. If the snake catches you before you achieve these goals, you're
unlucky, and it’s game over.

This game may sound complex at first glance, but you already have all the building
blocks to program this game:
® Player, Snake, Gold, and Door are Point objects preconfigured with coordinates.

® Aloop runs through all coordinates. If a player, the door, the snake, or gold has been
“hit,” a symbolic representation of the figure is displayed.

m You'll test three conditions for the game status: 1) Has the player collected the gold
and is standing on the door? (You've won the game.) 2) Does the snake bite the
player? (You've lost the game.) 3) Does the player collect gold?

® The Scanner enables you to respond to keystrokes and move the player around the
board.

® The snake must move in the direction of the player. While the player can only move
horizontally or vertically, the snake can move diagonally.

The corresponding source code for this game follows:

public class ZZZ7Znake {

public static void main(String[] args) {
java.awt.Point playerPosition = new java.awt.Point(10, 9);
)

java.awt.Point snakePosition = new java.awt.Point(30, 2);
java.awt.Point goldPosition = new java.awt.Point(6, 6);
java.awt.Point doorPosition = new java.awt.Point(0, 5);

boolean rich = false;

while (true) {
// Draw grid and symbols

for (inty = 0; y < 10; y++) {
for (int x = 0; x < 40; x++) {

java.awt.Point p = new java.awt.Point(x, y);

if (playerPosition.equals(p))
System.out.print('&");

else if (snakePosition.equals(p))
System.out.print('S');

else if (goldPosition.equals(p))
System.out.print('$');

218

else if (doorPosition.equals(p))
System.out.print('#');
else System.out.print('.');
}
System.out.println();

}
// Determine status

if (rich && playerPosition.equals(doorPosition)) {
System.out.printIn("You won!");
return;

}

if (playerPosition.equals(snakePosition)) {
System.out.printIn("SSSSSS. You were bitten by the snake!");
return;

}

if (playerPosition.equals(goldPosition)) {
rich = true;
goldPosition.setlocation(-1, -1);

}

// Console input and change player position

// Keep playing field between 0/0.. 39/9

switch (new java.util.Scanner(System.in).next()) {

case "u" /* p */ -> playerPosition.y = Math.max(0, playerPosition.y - 1);
case "d" /* own */ -> playerPosition.y = Math.min(9, playerPosition.y + 1);
case "1" /* eft */ -> playerPosition.x = Math.max(0, playerPosition.x - 1);
case "r" /* ight */ -> playerPosition.x = Math.min(39, playerPosition.x + 1);

}

// Snake moves towards the player

if (playerPosition.x < snakePosition.x)
snakePosition.x--;

else if (playerPosition.x > snakePosition.x)
snakePosition.x++;

if (playerPosition.y < snakePosition.y)
snakePosition.y--;

else if (playerPosition.y > snakePosition.y)
snakePosition.y++;

} // end while
¥
}

Listing 3.5 ZZZZZnake.java

219

[]

3 Classes and Objects

The Point members in use include the following:
® The object states x, y: The player and the snake can be moved, and the coordinates
must be reset.

® The setlocation(...) method: Once the gold has been collected, you set the coordi-
nates so that the coordinate from the gold is no longer on our grid.

® The equals(...) method: Tests if a point is on top of another point.

Extension

If you’re interested in a little more programming on this task, consider the following

enhancements:

® Player, snake, gold, and door should be set to random coordinates.

® |nstead of just one piece of gold, there should be two pieces.

®m |nstead of one snake, there should be two snakes.

m With two snakes and two pieces of gold, things can get a little tight for the player.
Let’s give the player a head start of 5 moves at the beginning without the snakes
moving.

® For advanced developers: The program, which is so far only contained in the main
method, should be split into different methods.

3.6 Tying Packages, Imports, and Compilation Units

The class library of Java is rather extensive, with thousands of types, and covers every-
thing developers of platform-independent programs need as a basis. The class library
includes data structures, classes for date/time calculation, file processing, and more.
Most types are implemented in Java itself (and the source code is usually directly avail-
able from the development environment), but some parts are implemented natively,
for example, when reading from a file.

When you program your own classes, they supplement the standard library, so to
speak; the bottom line is that creating your own classes increases the number of possi-
ble types a program can use.

3.6.1 Java Packages

A package is a group of thematically related types. Packages can be arranged in hierar-
chies so that one package can contain another package—similar to the directory struc-
ture of a file system. Examples of packages include the following:

B java.awt

B java.util

220

3.6 Tying Packages, Imports, and Compilation Units

® com.google
® org.apache.commons.math3.fraction

®m com.tutego.insel

The Java standard library classes are located in packages starting with java and javax.
Google uses the com.google root; the Apache Foundation publishes Java code at
org.apache. In this way, you can read from the outside which types your own class
depends on.

3.6.2 Packages in the Standard Library

The logical grouping and hierarchy can be observed easily in the Java library. The Java
standard library starts with the java root; some types are in javax. This package con-
tains other packages, such as awt, math, and util. For example, java.math contains the
classes BigInteger and BigDecimal because working with arbitrarily large integers and
floats is part of mathematics. A point and a polygon, represented by the Point and Poly-
gon classes, are part of the graphical user interface (GUI) package, which is the java.awt
package.

If someone put custom classes in packages with the prefix java, for example,
java.tutego, a program author might cause confusion since you could no longer easily
see whether the package was a component of each distribution. For this reason, the pre-
fix javais forbidden for custom packages.

Classes that are in a package starting with javax can be part of the Java SE like
javax.swing, but these classes don’t necessarily have to be part of the Java SE; more on
this topic will follow in Chapter 16.

3.6.3 Full Qualification and Import Declaration

To use the Point class, which is located in the java.awt package, outside of the java.awt
package (which is almost always the case), you must make this known to the compiler
with the entire package specification. For this purpose, the class name alone isn’t suffi-
cient because the class name might be ambiguous and a class declaration might exist
in different packages.

Types can’t be uniquely identified until you specify their package. A dot separates pack-
ages, so you'll write java.awt and java.util instead of just awt or util. With an innu-
merable number of packages and classes worldwide, uniqueness would not be feasible
at all if we didn’t write it this way. A type with the same name may be in different pack-
ages, for example, java.util.list and java.awt.List or java.util.Date and java.sql.Date.
Therefore, only the package and the type together form a unique identifier.

221

[»]

3 Classes and Objects

To enable the compiler to precisely assign a class to a package, two options are avail-
able: First, types can be fully qualified, as we've been doing up to now. An alternative
and more practical approach is to make the compiler aware of the types in the package

through an import declaration.

class AwtWithoutImport {
public static voidmain(String[] args){
java.awt.Pointp =
new java.awt.Point();

java.awt.Polygont =
new java.awt.Polygon();
t.addPoint(10, 10);
t.addPoint(10, 20);
t.addPoint(20, 10);

System.out.println(p);
System.out.println(t.contains(15, D
15));

¥

¥

Listing 3.6: AwtWithoutIimport.java

import java.awt.Point;
import java.awt.Polygon;

class AwtWithImport {
public static voidmain(String[] args){
Point p = new Point();

Polygon t = new Polygon();

t.addPoint(10, 10);
t.addPoint(10, 20);
t.addPoint(20, 10);

System.out.println(p);
System.out.println(t.contains(15, D
15));

¥

¥

Listing 3.7: AwtWithImport.java

Table 3.3 Type Access via Full Qualification and with an import Declaration

The source code on the left uses the full qualification approach, and each reference to a

3.6 Tying Packages, Imports, and Compilation Units

3.6.4 Reaching All Types of a Package with Type-Import-on-Demand

If a Java class accesses several other types of the same package, the number of import
declarations can become large. In our example, we're only using two classes from
java.awt (Point and Polygon), but you can easily imagine what happens when additional
windows, labels, buttons, sliders, and more are included from the GUI package. In this
case, an asterisk * is allowed as the last member in an import declaration:

import java.awt.*;
import java.math.*;

With this syntax, the compiler knows all the types in the java.awt and java.math pack-
ages, so the compiler can map the package for the Point and Polygon classes as well as
the package for the BigInteger class.

Note

The * is only allowed on the last hierarchy level and always applies to all types in this
package. The following examples are syntactically incorrect:

import *; // 5% Syntax error on token "*", Identifier expected
import java.awt.Po*; // & Syntax error on token "*", delete this token

A declaration like import java.*; is syntactically correct but has no effect because no
type declarations exist in the package java, only subpackages.

The import declaration refers only to a directory (assuming that the packages are
mapped to the file system) and doesn’t include subdirectories.

Although the * does shorten the number of individual import declarations, there are
two things to keep in mind:

m If two different packages contain a type with the same name, for example, Date in

[«]

type costs more writing effort; on the right, the import declaration only mentions the
class name and “swaps out” the package specification to an import. All types named
with import are remembered by the compiler for this file in a data structure. When the
compiler arrives at the line with Point p = new Point();, it finds the Point type in its data
structure and can assign the type to the java.awt package, thus again providing the
indispensable qualification.

Note

The types from java.lang are automatically imported, and thus, import java.lang.
String; isn’t needed.

222

both java.util and java.sql or List in both java.awt and java.util, an interpreta-
tion error will occur when the type is used because the compiler doesn’t understand
the meaning. Full qualification will solve the problem.

® The number of import declarations tells you something about the degree of com-

plexity. The more import declarations you use the greater the dependencies on other
classes, which is generally a red flag. Although graphical tools can show dependen-
cies accurately, import * could obscure the full scope of dependency.

Best Practice [+]

Development environments usually set the import declarations automatically and usu-
ally cascade the blocks. Therefore, the * should be used sparingly because it “pollutes”
the namespace by many types and increases the risk of collision.

223

3 Classes and Objects

3.6.5 Hierarchical Structures across Packages and Mirroring in the File System

The classes belonging to a package are usually located!© in the same directory. The
name of the package is the same as the name of the directory (and vice versa, of course).
Instead of the directory separator (such as “/” or “\”), a dot is used.

Let’s assume the following directory structure with a helper class:
com/tutego/insel/printer/DatePrinter.class

In this case, the package name is com.tutego.insel.printer, and thus the directory
name is com/tutego/insel/printer. Umlauts and special characters should be avoided,
because they always cause trouble in the file system. Identifiers should always be in
English anyway.

The Structure of Package Names

Basically, a package name can be arbitrary, but hierarchies usually consist of inverted
domain names. Thus, the domain of the website http://tutego.com becomes
com.tutego. This naming ensures that classes remain unique worldwide. A package
name is usually written entirely in lowercase.

3.6.6 The Package Declaration

To place the DatePrinter class in a com.tutego.insel.printer package, two things must
be true:

® The package must be physically located in a directory (i.e., com/tutego/insel/printer).

® The source code contains a package declaration at the top.

The package declaration must be located at the very start; otherwise, an interpretation
error will occur (of course, comments can be placed before the package declaration):

package com.tutego.insel.printer;

import java.time.lLocalDate;
import java.time.format.*;

public class DatePrinter {
public static void printCurrentDate() {
DateTimeFormatter fmt =
DateTimeFormatter.oflocalizedDate(FormatStyle.MEDIUM);

10 I'wrote “usually” because the package structure doesn’t necessarily need to be mapped to
directories. Packages could be read from a database by the class loader, for example. In the
following sections, however, we always want to start from directories.

224

3.6 Tying Packages, Imports, and Compilation Units

System.out.println(LocalDate.now().format(fmt));
¥
¥

Listing 3.6 src/main/java/com/tutego/insel/printer/DatePrinter.java

The package declaration is followed by the import declaration(s) and the type declara-
tion(s) as usual.

To use the class, you have two options, as you already know: either the full qualification
or an import declaration. The following code is an example of the first variant.

public class DatePrinterUserl {
public static void main(String[] args) {
com.tutego.insel.printer.DatePrinter.printCurrentDate();

}
¥

Listing 3.7 src/main/java/DatePrinterUserl.java

The following code is an example of the second variant, with the import declaration:

import com.tutego.insel.printer.DatePrinter;

public class DatePrinterUser2 {
public static void main(String[] args) {
DatePrinter.printCurrentDate();
¥
¥

Listing 3.8 src/main/java/DatePrinterUser2.java

Tip

A development environment takes a lot of work off your hands, so you'll rarely notice
file operations like creating directories, for example. A modern integrated development
environment (IDE) also takes care of moving types to other packages, the associated
changes to the file system, and adjustments to the import and package declarations for
you.

3.6.7 Unnamed Package (Default Package)

An unnamed package or default package contains a class without a package specifica-
tion. A best practice is to always organize your own classes in packages. Doing so
enables finer visibility, and conflicts with other companies and other programmers can
be avoided. Big problems could arise if 1) every company were messy and put all their

225

[+]

3 Classes and Objects

classes in unnamed packages and then 2) tried to swap out libraries. Conflicts would
essentially be preprogrammed.

A class located in the package can import any other visible class from other packages,
but not classes from the unnamed package. Let’s assume Sugar is in the unnamed pack-
age and Chocolate in the com. tutego package:

Sugar.class
com/tutego/insel/Chocolate.class

The Chocolate class can’t use Sugar because classes from the unnamed package are not
visible to subpackages. Only other classes in the unnamed package can use classes in
the unnamed package.

If Sugar was in a package (or even in a superpackage!), Chocolate could import Sugar:

com/Sugar.class
com/tutego/insel/Chocolate.class

3.6.8 Compilation Unit

A java file is a compilation unit that consists of three (optional) segments in the follow-
ing order:

1. The package declaration
2. The import declaration(s)

3. The declaration(s)

Thus, a compilation unit consists of, at most, one package declaration (not necessary if
the type is in the default package), any number of import declarations, and any number
of type declarations. The compiler translates each type of compilation unit into its own
.class file. A package is ultimately a collection of compilation units. Usually, the compi-
lation unit is a source code file; in general, the lines of code could also come from a
database or be generated at runtime.

3.6.9 Static Import*

The import declaration informs the compiler about the packages, so that a type no lon-
ger needs to be fully qualified if it’s explicitly listed in the import section or if the pack-
age of the type is named via *.

If a class specifies static methods or constants, its members are always addressed by the
type name. Java provides a static import as an option to use the static methods or vari-
ables immediately without prefixed type names. So, while the normal import names
the types to the compiler, a static import makes class members known to the compiler,
thus going one level deeper.

226

3.6 Tying Packages, Imports, and Compilation Units

Example [Ex]

Import the static variable out from System statically for the screen output with the fol-
lowing code:

import static java.lang.System.out;

With the otherwise usual output via System.out.print*(...), the class name can be
omitted after the static import so that you only need out.print*(...).

Let’s include several static members in the following example of a static import:

package com.tutego.insel.oop;

import static java.lang.System.out;

import static javax.swing.JOptionPane.showInputDialog;
import static java.lang.Integer.parselnt;

import static java.lang.Math.max;

import static java.lang.Math.min;

class StaticImport {

public static void main(String[] args) {
int i = parseInt(showInputDialog("First number"));
int j = parseInt(showInputDialog("Second number"));
out.printf("%d is greater than or equal to %d.%n",
max(i, j), min(i,));
}
¥

Listing 3.9 src/main/java/com/tutego/insel/oop/Staticimport.java

Importing Multiple Types Statically

The following static import imports the static max(...)/min(...) methods:

import static java.lang.Math.max;
import static java.lang.Math.min;

If you require more static methods, the wildcard variant goes beyond the individual
enumeration, as in the following example:

import static java.lang.Math.*;

Best Practice [«]

Even if Java provides this wildcard option, you should use it in moderation. The possi-
bility of static imports is useful when classes want to use constants, but you run the

227

[+

3 Classes and Objects

risk, with a missing type name, that where the member actually comes from will
become invisible, as well as what dependency it is based on. Problems also arise with
methods that have names that are homonyms: A method from its own class can over-
lay statically imported methods. So, if later in the custom class—or superclass—a
method is included that has the same signature as a statically imported method, a
compiler error will not arise, but the semantics will change because then the new cus-
tom method will be used instead of the statically imported one.

3.7 Using References, Diversity, Identity, and Equality

In Java, null is an incredibly special reference that can trigger a large number of prob-
lems. But you can’t do without it, and the following section will demonstrate its impor-
tance. After this discussion, we’ll look at how object comparisons work and the
difference between identity and equivalence.

3.7.1 null References and the Question of Philosophy

In Java, three special references exist: null, this, and super. (We’'ll defer descriptions of
this and super to Chapter 6, Section 6.1.4.) The special literal null can be used to initial-
ize reference variables. The null reference is typeless and thus can be assigned to any
reference variable and passed to any method that awaits an object.!

Example

The declaration and initialization of two object variables with null is shown in the fol-
lowing example:

Point p = null;
String s = null;
System.out.println(p); // null

The console output in the last line briefly returns “null,” which is actually a string repre-
sentation of the null type.

Since null is typeless, and there’s only one null, null can be type-matched to any type.
Thus, for example, (String) null == null 8& (Point) null == null returns the result true.
The null literal is intended for references only and can’t be converted to any primitive
type such as the integer 0.2

A whole lot can be done with null. The main purpose is to indicate uninitialized refer-
ence variables (i.e, to express that a reference variable doesn’t reference any object). In

11 null thus behaves as though it were a subtype of any other type.
12 C(++) and Java differ in this regard.

228

3.7 Using References, Diversity, Identity, and Equality

lists or trees, for example, null indicates the absence of a valid successor or, in a graph-
ical dialog box, that the user has aborted the dialog process. In these cases, null is a
valid indicator, not an error.

Note [«]

For a local variable initialized with null, the shortcut with var does not work. A com-
piler error would arise with the following example:

var text = null; // & Cannot infer type: variable initializer is 'null’

Nothing Works on null except NullPointerException

Since null doesn’t hide an object, you cannot call a method or query an object variable
from null. The compiler knows the type of each expression, but only the runtime envi-
ronment (i.e., the JVM) knows what’s being referenced. When attempting to access a
member of an object via the null reference, the JVM throws a NullPointerExcep‘cion.13
Consider the following example:

package com.tutego.insel.oop; // 1
public class NullPointer { /] 2
public static void main(String[] args) { // 3
java.awt.Point p = null; /] 4
String s = null; //5
p.setlocation(1, 2); /] 6
s.length(); /] 7

¥ /] 8
¥ /]9

Listing 3.10 src/main/java/com/tutego/insel/oop/NullPointer.java

Notice how we have a NullPointerException at runtime because the program termi-
nates at p.setlocation(...) with the following output:

Exception in thread "main" java.lang.NullPointerException: Cannot invoke "java.a

wt.Point.setlocation(int, int)" because "p
at com.tutego.insel.oop.NullPointer.main(NullPointer.java:6)

is null

In the error message, the runtime environment tells you that the error, the NullPoint-
erException, is in line 6. To correct the error, you have two options. First, you must
either initialize the variables, that is, assign an object as in the following example:

13 The name is reminiscent of pointers. Although we aren’t dealing with pointers in Java, but with
references, it’s called NullPointerException and not NullReferenceException. This distinction is a
reminder that a reference identifies an object, and a reference to an object is a pointer. The NET
framework is more consistent in this regard and calls the exception NullReferenceException.

229

[]

3 Classes and Objects

p = new java.awt.Point();

s = s
Alternatively, before accessing the members, you can perform a test to determine
whether object variables point to something or are null and, depending on the out-
come of the test, allow access to the member or not.

null in Other Programming Languages*

Is Java a purely OOP language? No, because Java distinguishes between primitive types
and reference types. Let’s assume for a moment that primitive types don’t exist. Would
Java then be a pure OOP language, where each reference references a pure object? The
answer is still “no” because null is something that enables you to initialize reference
variables, but doesn’t represent an object and has no methods. This scenario can cause
aNullPointerException when de-referencing.

Other programming languages have different approaches to solving the problem, and
null referencing isn’t possible. For example, in Ruby, everything is always an object.
Where Java uses null to express “unassigned,” Ruby does so with nil. The subtle dif-
ference is that nil is an instance of the class NilClass (strictly speaking, a singleton
that exists only once in the system). nil also has some public methods like to_s (like
Java’s toString()), which then returns an empty string. With nil, no NullPointerEx-
ception exists anymore, but of course, an error can still arise if a method is called on
this object of type NilClass that doesn’t exist. In Objective-C, the standard language
for iOS programs (so far), you have the null object nil. Usually, nothing happens when
a message is sent to the nil object; the message is simply ignored.

3.7.2 Everything to null? Testing References

With the comparison operator == or the test for inequality via !=, you can easily deter-
mine whether a reference variable really references an object or not, for example,
through the following code:

if (object == null)

// variable references nothing, but is correctly initialized with null
else

// variable references an object

null Test and Short-Circuit Operators

At this point, let’s come back to the usual logical short-circuit operators and the logical
non-short-circuit operators. The former evaluates operands only from left to right until
the result of the operation is fixed. At first glance, whether all subexpressions are eval-
uated or not doesn’t seem to matter. In some expressions, however, this evaluation is
important. In the following example, the variable s is of type String, and the program
should output the string length when a string is entered:

230

3.7 Using References, Diversity, Identity, and Equality

String s = javax.swing.JOptionPane.showInputDialog("Input a string");
if (s !=null & ! s.isEmpty())

System.out.println("Length of string: " + s.length());
else

System.out.println("Dialog canceled or no input given");

Listing 3.11 src/main/java/NullCheck.java, main

The return value of showInputDialog(...) is null if the user cancels the dialog. Our pro-
gram should take this possibility into account. Therefore, the if condition tests
whether s references an object at all and, if so, additionally whether the string is non-
empty. After that evaluation follows an output.

This notation occurs frequently, and the AND operator for linking must be a short-cir-
cuit operator since it’s explicit in this case that the length is determined only if the s
variable references a String object at all and is not null. Otherwise, you'd get a Null-
PointerExceptionons.iskmpty() if every subexpression was evaluated and s was null.

The Luck of Others: null Coalescing Operator* [«]

Since null occurs far too often, but null references must be avoided, you may see a lot
of code like o !=null ? o : non null o. Various programming languages, including
JavaScript, Kotlin, Objective-C, PHP, and Swift provide a shortcut for this construct
called the null coalescing operator. Sometimes written as ?? or as ?:, in our example,
the null coalescing operator is written as o 2?2 non_null o. This construct is especially
nice with sequential tests of the type o ?? p 22 q ?? r, where it says something like,
“Return the first non-null reference.” Java doesn’t provide such an operator.

3.7.3 Assignments with References

A reference allows access to a referenced object, and a reference variable stores a refer-
ence. Multiple reference variables may store the same reference, similar to an object
being addressed under different names—just as a person might be addressed as “Boss”
by her co-workers, she might be called “Honey” by her husband. This nicknaming is
also referred to as an alias.

Example [Ex]

Let’s say you want to address a point object under an alternative variable name. Con-
sider the following example:

Point p = new Point();
Point q = p;

A point object is created and referenced with the variable p. The second line now stores
the same reference in the variable g. After that, p and q reference the same object. For

231

3 Classes and Objects

better understanding, what’s important here is how often new occurs because that tells
you how many objects the JVM will create. Since only one new exists in the two lines,
only one point is created.

(
(

BosS) Heney

e
If two object variables reference the same object, a natural consequence is that object

states can be read and modified via two paths. If the same person is consistently called
“Boss” in the company and “Honey” at home, everyone is happy.

Let’s continue with our example using point objects. If p and q point to the same point
object, changes via p can also be observed via the q variable, as in the following exam-

ple.
public static void main(String[] args) {

Point p = new Point();

Point q = p;

p.x = 10;

System.out.println(gq.x); // 10
q.y = 5;

System.out.printIn(p.y); // 5

}

Listing 3.12 ItsTheSame.java, main

3.7.4 Methods with Reference Types as Parameters

The fact that the same object can be addressed via two names (i.e., via two different
variables) can be observed in methods. A method that receives an object reference via
the parameter can access the passed object. As a result, the method can change this
object with the provided methods or access the object variables.

In the following example, we’ll declare two methods. The first method, initializePosi-
tion(Point),is supposed to initialize a given point with random coordinates. Two Point

232

3.7 Using References, Diversity, Identity, and Equality

objects are later passed to the method in main(...): one for the player and one for the
snake. The second method, printScreen(Point, Point), prints the playing field on the
screen and then prints a & when the coordinate hits a player and an S when it hits the
snake. If the player and the snake happen to meet, the snake “wins.”

package com.tutego.insel.oop;
import java.awt.Point;

public class DrawPlayerAndSnake {

static void initializePosition(Point p) {
int randomX = (int)(Math.random() * 40); // 0 <= x < 40
int randomy = (int)(Math.random() * 10); // 0 <=y < 10
p.setLocation(randomX, randomY);

¥

static void printScreen(Point playerPosition,
Point snakePosition) {
for ((inty =0; y < 10; y++) {
for (int x = 0; x < 40; x++) {
if (snakePosition.distanceSq(x, y) == 0)
System.out.print(‘S’);
else if (playerPosition.distanceSq(x, y) == 0)
System.out.print(&);
else System.out.print(“.”);
¥
System.out.println();
}
¥

public static void main(String[] args) {
Point playerPosition = new Point();
Point snakePosition = new Point();
System.out.println(playerPosition);
System.out.println(snakePosition);
initializePosition(playerPosition);
initializePosition(snakePosition);
System.out.println(playerPosition);
System.out.println(snakePosition);
printScreen(playerPosition, snakePosition);

}

¥

Listing 3.13 src/main/java/com/tutego/insel/oop/DrawPlayerAndSnake.java

233

[]

3 Classes and Objects

3.7 Using References, Diversity, Identity, and Equality

The code should produce the following output:

java.awt.Point[x=0,y=0]
java.awt.Point[x=0,y=0]
java.awt.Point[x=38,y=1]
java.awt.Point[x=19,y=8]

The momentmain(...) calls the static method initializePosition(Point), we have two
names for the Point object: playerPosition and p. However, this double naming is only
inside the JVM because initializePosition(Point) knows the object only via p but
doesn’t know the playerPosition variable. With main(...), the reverse is true: Only the
variable name playerPositionis knowninmain(...), but it has no idea about the name
p. The Point method distanceSq(int, int) returns the squared distance from the cur-
rent point to the passed coordinates.

Note

The name of a parameter variable may well be the same as the name of the argument
variable, which wouldn’t change the semantics. The namespaces are completely sepa-
rate, and misunderstandings don’t exist because both the calling method and the
called method have completely separate local variables.

Value Transfer and Reference Transfer via Call by Value

Primitive variables are always copied by value (call by value). The same applies to refer-
ences, which are to be understood as a kind of pointer, which are basically only inte-
gers. For this reason, the following static method has no side effects:

package com.tutego.insel.oop;
import java.awt.Point;

public class JavalsAlwaysCallByValue {
static void clear(Point p) {

System.out.printIn(p); // java.awt.Point[x=10,y=20]

234

p = new Point();
System.out.println(p); // java.awt.Point[x=0,y=0]
}

public static void main(String[] args) {
Point p = new Point(10, 20);
clear(p);
System.out.printIn(p); // java.awt.Point[x=10,y=20]
}
}

Listing 3.14 JavalsAlwaysCallByValue.java

After assigning p = newPoint() in the clear (Point) method, the parameter variable p ref-
erences another point object, and the reference passed to the method is thus lost. Of
course, this change isn’t visible from outside because the parameter variable p of
clear(...) is only a temporary alternative name for the p from main; a reassignment to
the clear-p doesn’t change the reference from the main-p. As a result, the caller of
clear(...), whichis main(...), has no new object under it. If you want to initialize the
point with null, you must access the states of the passed object directly, for instance, in
the following way:

static void clear(Point p) {
p.x =p.y =0;
}

Call by Reference Doesn’t Exist in Java: A Look at C and C++* [«]

In C++, another way to pass arguments is called call by reference. A swap(.. . .) function
is a good example of the usefulness of call by reference:

void swap(int& a, int8& b) { int tmp = a; a = b; b = tmp; }

Pointers and references are something different in C++, which easily confuses begin-
ners to the language. In C++ and also in C, a comparable swap(. . .) function could also
have been implemented with pointers:

void swap(int *a, int *b) { int tmp = *a; *a = *b; *b = tmp; }

The implementation provides a reference to the argument in C(++).

Final Declared Reference Parameter and the Missing const

As we've seen, final variables tell a programmer that variables must not be rewritten.
Local variables, parameter variables, object variables, and class variables can be final. In
any case, new assignments are taboo. Whether the parameter variable is of a primitive

235

3 Classes and Objects

type or areference type does not matter. Thus, with a method declaration of the follow-
ing type, an assignment to p and also to value would be forbidden:

public void clear(final Point p, final int value)

If the parameter variable isn’t final and is a reference type, we’d lose the reference to
the original object with an assignment, which would make little sense, as we saw in the
previous example. Parameter variables declared final make it clear in the program
code that changing the reference variable doesn’t make any sense, and the compiler
forbids an assignment. In the case of our clear(...) method, the initialization would
have been noticed directly as a compiler error. Consider the following example:

static void clear(final Point p) {
p = new Point(); // & Cannot assign a value to final variable ‘p’

}

Let’s recap: If a parameter is declared final, no assignments are possible. However,
final doesn’t prohibit changes to objects, and therefore, final could be understood as
“definitive.” With the reference of the object, you can very well change the state, as we
did in the previous sample program.

Therefore, final doesn’t fulfill the task of preventing write access to objects. A method
with passed references can therefore modify objects if, for example, set*(...) methods
or variables can be accessed. Thus, the documentation must always explicitly describe
when the method modifies the state of an object.

In C++, the addition const for parameters enables the compiler to recognize that object
states shouldn’t be changed. A program is called const-correct if it never modifies a con-
stant object. This const is an extension of the object type in C++, which doesn’t exist in
Java. Although Java’s developers have reserved the const keyword, it’s not used yet.

3.7.5 Identity of Objects

The comparison operators == and != are defined for all data types in such a way that
they test the complete correspondence of two values. With primitive data types, this
correspondence is easy to see, and with reference types, it's basically the same.
(Remember: references can be understood as pointers, which are integers.) The == oper-
ator tests references to see if they match (i.e., reference the same object). The != opera-
tor tests the opposite (i.e., whether they do not match), so the references aren’t equal.
Accordingly, the test says something about the identity of the referenced objects, but
nothing about whether two different objects may have the same content. The content
of the objects doesn’t matter for == and !=.

236

3.7 Using References, Diversity, Identity, and Equality

Example

The following example shows two objects with three different point variables (p, g, and
r) and illustrates the meaning of ==:

Point p = new Point(10, 10);

Point q = p;

Point r = new Point(10, 10);

System.out.println(p == q); // true, because p and q reference the
// same object

System.out.println(p == r); // false, because p and r reference two
// different point objects that happen to have
// the same coordinates

Since p and q reference the same object, the comparison returns true. p and r reference
different objects, but they happen to have the same content. But how is the compiler
supposed to know when two point objects are equal in content? Is it because a point is
characterized by the object variables x and y? The runtime environment might hastily
compare the assignment of each object variable, but this approach doesn’t always cor-
respond to the correct comparison we desire. For example, a point object could addi-
tionally record the number of method calls, which may not be taken into account in a
comparison based on the location of two points.

3.7.6 Equivalence and the equals(...) Method

The universal solution is to let the class determine when objects are equal (i.e., have the
same value). For this purpose, each class can implement a method called equals(...),
and with its help, each instance of this class can compare itself with any other object.
The classes always decide, according to the use case, which object variables they refer to
for an equality test, and equals(...) returns true if the desired states (object variables)
match.

Example
Two non-identical point objects with the same content can be compared via == and
equals(...), as in the following example:
Point p = new Point(10, 10);
Point g = new Point(10, 10);
System.out.println(p == q); // false
System.out.println(p.equals(q)); // true, since symmetrically also
// q.equals(p)

Only equals(...) tests content equivalence in this case.

237

Ed

Ed

3 Classes and Objects

Accordingly, due to the different meanings, we must carefully distinguish the concepts
of identity and equivalence (also equality) of objects. For this reason, Table 3.4 shows a

summary.
Identity of the references ==orl= Nothing to do
Equivalence of states equals(..) or I equals(..) Depending on the class

Table 3.4 Identity and Equivamlence of Objects

equals(...) Implementation of Point*
The Point class declares equals(...), as described in the API documentation. Let’s look

at an implementation for an idea of how it works next.

public class Point .. {

public int x;
public int y;

public boolean equals(Object obj) {

Point pt = (Point) obj;
return (x == pt.x) & (y == pt.y); // (*)

¥
¥

Listing 3.15 java/awt/Point.java (Snippet)

Although some things are new in this example, we recognize the comparison in line
(*).In this case, the Point object compares its own object variables with the object vari-
ables of the point object passed as argument to equals(...).

There’s Always an equals(...): The Object Superclass and Its Equals*

Every class has a equals(...) method because of the universal superclass Object (see
Chapter 7; for details). Thus, if a class doesn’t specify its own equals(...) method, it
inherits an implementation from the Object class, as in the following example:

public class Object {
public boolean equals(Object obj) {
return (this == obj);

238

3.8 Further Reading

}
Listing 3.16 java/lang/Object.java (Snippet)

In this case, the equivalence is mapped to the identity of the references, but no compar-
ison of content occurs. This equivalence is the only thing the given implementation
can do because, if the references are identical, the objects are naturally the same. The
only thing is that the base class Object doesn’t “know” anything about is states.

Language Comparison
Programming languages generally provide their own operators for identity comparison

and equivalence testing. == and equals(...) in Java is analogous to is and == in Python
and === and == in Swift.

3.8 Further Reading

In this chapter, the topic of object orientation was introduced rather quickly, which
doesn’t mean that OOP is easy. The road to good design is rocky and leads through
many Java projects. Reading other programs and studying design patterns can be
immensely helpful. Readers should also get comfortable with UML to sketch design
ideas. An interesting approach is taken by PlantUML (https://plantuml.com/) with a
text syntax that the tool converts into graphics.

239

Chapter 16
The Class Library

“What we need is some crazy people;

look where the normal ones have taken us.’
—George Bernard Shaw (1856—1950)

In this chapter you’'ll learn about the Java class library.

16.1 The Java Class Philosophy

A programming language consists not only of a grammar, but also, as in the case of
Java, of a programming library. A platform-independent language—as many imagine C
or C++ to be—isn’t really platform independent if different functions and program-
ming models are used on each computer, which is exactly the weak point of C(++).
These algorithms, which aren’t dependent on the operating system, can be applied
everywhere in the same way, but the result is realized in the end with inputs/outputs
or graphical user interfaces (GUIs). The Java library, on the other hand, tries to abstract
away from platform-specific features, and the developers have gone to great lengths to
put all the important methods into well-formed object-oriented (OO) classes and pack-
ages. These elements cover in particular the central areas of data structures, input and
output, graphics, and network programming.

AD AOY BN

16 The Class Library

16.1.1

Modules, Packages, and Types

At the top of the Java library are modules, which in turn consist of packages, which in
turn contain types.

Modules of the Java SE

The Java Platform, Standard Edition (Java SE) application programming interface (API)
consists of the following modules, all of which begin with the prefix java:

Module

Jjava.
Jjava.

Jjava.

Jjava.

Jjava.

Jjava.
Jjava.

Jjava.

Jjava.
Jjava.
Jjava.
Jjava.
Jjava.
Jjava.
Jjava.

Jjava.

Jjava.

Jjava.

base
compiler

datatransfer

desktop

instrument

logging
management

management.rmi

naming

prefs

mi

scripting
security.jgss
security.sasl
sql
sql.rowset

xml

xml.crypto

Description
Fundamental types of Java SE
Java language model, annotation processing, and Java compiler API

The API for data transfer between applications, usually the clip-
board

GUIs with Abstract Windowing Toolkit (AWT) and Swing, the Acces-
sibility API, audio, printing, and JavaBeans

Instrumentalization is the modification of Java programs at run-
time

The Logging API
Java Management Extensions (JMX)

Remote Method Invocation (RMI) connector for remote access to
the IMX beans

The Java Naming and Directory Interface (JNDI) API

The Preferences APl is used to store user preferences

Remote method calls with the RMI API

The Scripting API

Java binding of the IETF Generic Security Services API (GSS API)

Java support for IETF Simple Authentication and Security Layer (SASL)
The JDBC API for accessing relational databases

The JDBC RowSet AP

XML classes with the Java API for XML Processing (JAXP), Streaming
APl for XML (StAX), Simple API for XML (SAX), and W3C Document
Object Model (DOM) API

The API for XML cryptography

Table 16.1 Modules of the Java SE

836

The Java Class Philosophy

The java.base module—the most important module—contains core classes such as
Object and String, among others. This module is the only module that doesn't itself con-
tain any dependency on other modules. Every other module, however, references at least

java.base. The Javadoc contains a nice graphical representation, shown in Figure 16.1.

java.xml

=t

java.base

Figure 16.1 The java.xml Module Has a Dependency on the java.base Module

In some cases, more dependencies exist, such as with the java.desktop module, shown

in Figure 16.2.

‘ java.desktop ‘

‘ java.xml ‘ ‘java.datatransfer‘

java.base

Figure 16.2 Dependencies of the java.desktop Module

The java.se Module

One special module is java.se, which doesn’t declare its own packages or types but

merely groups other modules together. The name for such a construction is aggregator
module. The java.se module defines the API for the Java SE platform in this way, as

shown in Figure 16.3.

Java.se

{java.sql.rowset |

[Java.xml.crypto |

Java.sql

P —

java.desktop

Java.management.tmi

Java.

Java.security.sasl
prefs

[java.management| [java.net.http |

[java.security. jgss|

[ava.naming][java.transaction.xa] [java. logging|[java.scripting Hja\/a_xml‘ [java. datatransfer][java. conpiler|[java. instrunent] [java.rmi |

Java.base |-

Figure 16.3 Dependencies of the java.se Module

837

[]

16 The Class Library

Note

In the following sections, we won’t discuss the Java SE types in terms of the module
from which they originate. You only need to know in which module a type is located
when building smaller subsets of Java SE.

Other Modules

Two other modules that also start with java but aren’t part of the Java SE standard are
java.jnlp for the Java Network Launch Protocol (JNLP) and java.smartcardio, which is
the Java API for communication with smart cards according to the international stan-
dard ISO/IEC 7816-4.!

The Java Development Kit (JDK) is the standard implementation of Java SE. This imple-
mentation provides developers with more packages and classes, such as with an HTTP
server or with Java tools like the Java compiler and the Javadoc tool. In this implemen-
tation, several modules will start with the prefix jdk.

16.1.2 Overview of the Packages of the Standard Library

The Java 11 Core Java SE API consists of the following modules and packages:

java.base java.io, java.lang, java.lang.annotation, java.lang.invoke,
java.lang.module, java.lang.ref, java.lang.reflect,
java.math, java.net, java.net.spi, java.nio, java.nio.chan-
nels, java.nio.channels.spi, java.nio.charset,
java.nio.charset.spi, java.nio.file, java.nio.file.attri-
bute, java.nio.file.spi, java.security, java.security.cert,
Jjava.security.interfaces, java.security.spec, java.text,
java.text.spi, java.time, java.time.chrono, java.time.for-
mat, java.time.temporal, java.time.zone, java.util,
Jjava.util.concurrent,

java.base java.util.concurrent.atomic, java.util.concurrent.locks,
java.util.function, java.util.jar, java.util.regex
java.util.spi, java.util.stream, java.util.zip,
javax.crypto, javax.crypto.interfaces, javax.crypto.spec,
javax.net, javax.net.ssl, javax.security.auth, javax.secu-
rity.auth.callback, javax.security.auth.login, javax.secu-
rity.auth.spi, javax.security.auth.x500,
Jjavax.security.cert

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API

1 https://en.wikipedia.org/wiki/ISO/IEC 7816

838

16.1 The Java Class Philosophy

java.compiler javax.annotation.processing, javax.lang.model,
javax.lang.model.element, javax.lang.model. type,
javax.lang.model.util, javax.tools

java.datatransfer java.awt.datatransfer

java.desktop java.applet, java.awt, java.awt.color, java.awt.desktop,
java.awt.dnd, java.awt.event, java.awt.font, java.awt.geom
Jjava.awt.im, java.awt.im.spi, java.awt.image,
java.awt.image.renderable, java.awt.print, java.beans,
java.beans.beancontext, javax.accessibility,
Jjavax.imageio, javax.imageio.event, javax.imageio.meta-
data, javax.imageio.plugins.bmp,
javax.imageio.plugins.jpeg, javax.imageio.plugins.tiff,
Jjavax.imageio.spi, javax.imageio.stream, javax.print
javax.print.attribute, javax.print.attribute.standard,
javax.print.event, javax.sound.midi, javax.sound.midi.spi,
javax.sound.sampled, javax.sound.sampled. spi, javax.swing,
javax.swing.border, javax.swing.colorchooser
javax.swing.event, javax.swing.filechooser
javax.swing.plaf, javax.swing.plaf.basic,
javax.swing.plaf.metal, javax.swing.plaf.multi,
javax.swing.plaf.nimbus, javax.swing.plaf.synth,
javax.swing.table, javax.swing.text,
javax.swing.text.html, javax.swing.text.html.parser,
javax.swing.text.rtf, javax.swing.tree, javax.swing.undo

Jjava.instrument java.lang.instrument
java.logging java.util.logging
Jjava.management java.lang.management, javax.management, javax.manage-

ment.loading, javax.management.modelmbean, javax.manage-
ment.monitor, javax.management.openmbean,
javax.management.relation, javax.management.remote,
Jjavax.management.timer

Jjava.management.rmi javax.management.remote.rmi

Jjava.naming javax.naming, javax.naming.directory, javax.naming.event
javax.naming.ldapjavax.naming.spi

java.prefs java.util.prefs

Jjava.rmi java.rmi, java.rmi.activation, java.rmi.dgc, java.rmi.reg-
istry, java.rmi.server, javax.rmi.ssl

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API (Cont.)

839

16 The Class Library

Java.scripting Jjavax.script

java.security.jgss Jjavax.security.auth.kerberos, org.ietf.jgss
java.security.sasl javax.security.sasl

java.sql java.sql, javax.sql, javax.transaction.xa

java.sql.rowset javax.sqgl.rowset, javax.sql.rowset.serial,
javax.sql.rowset.spi

java.xml Jjavax.xml, javax.xml.catalog, javax.xml.datatype
javax.xml.namespace, javax.xml.parsersjavax.xml.stream,
javax.xml.stream.events, javax.xml.stream.util,
javax.xml.transform, javax.xml.transform.dom
javax.xml.transform.sax, javax.xml.transform.stax
javax.xml.transform.stream, javax.xml.validation,
javax.xml.xpath, org.w3c.dom, org.w3c.dom.bootstrap
org.w3c.dom.events, org.w3c.dom.1s, org.w3c.dom.ranges,
org.w3c.dom.views, org.xml.sax, org.xml.sax.ext,
org.xml.sax.helpers

java.xml.crypto javax.xml.crypto, javax.xml.crypto.dom,
javax.xml.crypto.dsig, javax.xml.crypto.dsig.dom,
javax.xml.crypto.dsig.keyinfo,
javax.xml.crypto.dsig.spec

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API (Cont.)

Developers should be able to map the following packages according to their respective
capabilities:

Jjava.awt The AWT package provides classes for graphics output and GUI usage.
Java.awt.event Interfaces for the various events in GUIs.

java.io Input and output options. Files are represented as objects. Data
java.nio streams allow sequential access to file contents.

java.lang A package that’s automatically included. Contains indispensable

classes like string, thread, or wrapper classes.

java.net Communication via networks. Provides classes for building client and
server systems that can connect to the internet via TCP and IP, respec-
tively.

Table 16.3 Important Packages in the Java SE

840

16.1 The Java Class Philosophy

Java.text Support for internationalized programs. Provides classes for handling
text and formatting dates and numbers.

java.util Provides types for data structures, space and time, and parts of inter-
nationalization, as well as random numbers. Subpackages take care of
regular expressions and concurrency.

Javax.swing Swing components for GUIs. This package has various subpackages.

Table 16.3 Important Packages in the Java SE (Cont.)

For a developer, you can’t avoid studying the Java API documentation at https://
docs.oracle.com/en/java/javase/17/docs/api/index.html.

Official Interface (java and javax Packages)

The list provided by the Java documentation represents the permitted access to the
library. The types are basically designed to last forever, so developers can count on still
being able to run their Java programs in 100 years. But who defines the API? In essence,
three sources define APIs:

® QOracle developers put new packages and types into the APL

® The Java Community Process (JCP) adopts a new APL Then, Oracle is not acting alone,
but instead, a group works out a new API and defines its interfaces.

m The World Wide Web Consortium (W3C) provides an API for XML Document Object
Model (DOM), for example.

A good mnemonic is that anything starting with java or javax is a permitted API, and
anything else can lead to non-portable Java programs. Some classes are supported that
aren’t part of the official API These classes include, for example, various Swing classes
for controlling the appearance of the interface.

Standard Extension API (javax Packages)

Some Java packages start with javax. Originally, these extension packages were
intended to complement the core classes. Over time, however, many packages that ini-
tially had to be included have now migrated to the standard distribution, so that today,
a fairly large proportion start with javax, but no longer represent extensions that need
to be additionally installed. Sun didn’t want to rename the packages at that time, so as
not to make migration more difficult. If you notice a package name with javax in the
source code today, therefore, you can no longer easily determine whether an external
source must be included or whether the package is already part of the distribution (and
since Java version).

841

[+]

16 The Class Library

Truly external packages include the following packages:

® The Java Communications API for serial and parallel interfaces

® The java Telephony API

® Speech input/output with the Java Speech API

® JavaSpaces for shared memory of different runtime environments
m JXTA for establishing P2P networks

The bottom line is that developers are dealing with the following libraries:

m With the official Java API

m With APIs from Java Specification Request (JSR) extensions

m With unofficial libraries, such as open-source solutions, for example, to access PDF

files or control ATMs

An important role is also played by types from the jakarta package, which is part of
Jakarta EE (formerly Java EE) and semi-official.

16.2 Simple Time Measurement and Profiling*

In addition to the convenient classes for managing date values, two static methods pro-
vide simple ways to measure times for program sections:

final class java.lang.System

P static long currentTimeMillis()
Returns the milliseconds elapsed since 1/1/1970, 00:00:00 Coordinated Universal
Time (UTC).

P static long nanoTime()
Returns the time from the most accurate system timer. This method has no refe-
rence point to any date.

The difference between two time values can be used to roughly estimate the execution
times of programs.

Tip

The values of nanoTime() are always ascending, which isn’t necessarily true for cur-
rentTimeMillis() because Java gets the time from the operating system. System
times can change, for example, when a user adjusts the time. Differences of current-
TimeMillis() timestamps are then completely wrong and could even be negative.

842

16.3 The Class Class

16.2.1 Profilers

Where the Java virtual machine (JVM) does waste clock cycles in a program is shown by
a profiler. Optimization can then begin at those points. Java Mission Control is a power-
ful program of the JDK and integrates a free profiler. Java VisualVM is another free pro-
gram that can be obtained from https://visualvm.github.io/. On the professional and
commercial side, JProfiler (https://www.ej-technologies.com/products/jprofiler/over-
view.html) and YourKit (https://www.yourkit.com/java/profiler) are competitors. The
Ultimate Version of Intelli] also includes a profiler.

16.3 The Class Class

Let’s suppose we want to write a class browser. This program should display all classes
belonging to the running program and furthermore additional information, such as
variable assignment, declared methods, constructors, and some information about the
inheritance hierarchy. For this purpose, you'll need the library class, class. Instances of
Class are objects that, for example, represent a Java class, record or a Java interface.

In this respect, Java differs from many conventional programming languages because
the members of classes can be queried by the currently running program using the
Class objects. The instances of Class are a restricted kind of meta-object?>—containing
the description of a Java type but revealing only selected information. Besides normal
classes, interfaces are also represented by a Class object, and even arrays and primitive
data types—instead of Class, the class name Type would probably have been more
appropriate.

16.3.1 Obtaining a Class Object

First, for a given class, you must identify the associated Class object. Class objects
themselves can only be created by the JVM. (We can’t create instances because the con-
structor of Class is private.) To obtain a reference to a Class object, the following solu-
tions are available:

m If an instance of the class is available, you can call the getClass() method of the
object and get the Class instance of the associated class.

® FEach type contains a static variable named . class of type Class, which references the
associated Class instance.

®m The ending .class is also permitted for primitive data types. The same Class object
returns the static variable TYPE of the wrapper classes. Thus, int.class == Inte-
ger.TYPE is true.

2 True metaclasses are classes whose only instance in each case is the regular Java class. Then, for
example, the regular class variables would actually be object variables in the metaclass.

843

[+

16 The Class Library

® The class method Class.forName(String) can query a class, and you'll obtain the
associated Class instance as a result. If the type hasn’t been loaded yet, for-
Name(String) searches for and binds the class. Because searching can go wrong, a
ClassNotFoundException is possible.

® Ifyoualready have a Class object but are interested in its ancestors instead, you can
simply get a Class object for the superclass via getSuperclass().

The following example shows three ways to obtain a Class object for java.util.Date:

Class<Date> cl = java.util.Date.class;
System.out.println(cl); // class java.util.Date
Class<?> c2 = new java.util.Date().getClass();

// or Class<? extends Date> c2 = ..

System.out.println(c2); // class java.util.Date

try {
Class<?> c3 = Class.forName("java.util.Date");
System.out.println(c3); // class java.util.Date
¥

catch (ClassNotFoundException e) { e.printStackTrace(); }

Listing 16.1 src/main/java/com/tutego/insel/meta/GetClassObject.java, main()

The variant with forName(String) is useful if the name of the desired class wasn't deter-
mined when the program was translated.

Otherwise, the previous technique is more catchy, and the compiler can check if the
type exists. A full qualification is needed: Class.forName("Date") would only search for
Date in the default package, and the return isn’t a collection after all.

Example

Note that class objects for primitive elements aren’t returned by forName(String). The
two expressions Class.forName("boolean") and Class.forName(boolean.class.get-
Name()) lead to a ClassNotFoundException.

class java.lang.Object

P final Class<? extends Object> getClass()
Returns the Class instance at runtime which represents the class of the object.

final class java.lang.Class<T>
implements Serializable, GenericDeclaration, Type, AnnotatedElement

844

16.3 The Class Class

P static Class<?> forName(String className) throws ClassNotFoundException
Returns the Class instance for the class, record or interface with the specified fully
qualified name. If the type hasn’t yet been required by the program, the class loader
searches for and loads the class. The method never returns null. If the class couldn’t
be loaded and included, a ClassNotFoundException will occur. The alternative
method, forName(String name, boolean initialize, ClasslLoader loader), also allows
loading with a desired class loader. The class name must always be fully qualified.

ClassNotFoundException and NoClassDefFoundError*

A ClassNotFoundException can be thrown by any of the following methods:

m forName(...) from Class
® loadClass(String name [, boolean resolve]) from ClasslLoader

® findSystemClass(String name) from ClassLoader

An exception occurs whenever the class loader can’t find the class by its class name.
Thus, the trigger is when an application wants to load types dynamically, but those
types aren’t present.

In addition to ClassNotFoundException, the NoClassDefFoundError is a hard LinkageError
that the JVM raises whenever it can’t load a class referenced in the bytecode. For exam-
ple, let’s consider an expression like new MyClass (). When the JVM executes this code, it
attempts to load the bytecode from MyClass. If the bytecode for MyClass has been
removed after compilation, the JVM raises the NoClassDefFoundError due to the unsuc-
cessful load attempt. Also, the error occurs if the MyClass class was found when loading
the bytecode, but MyClass has a static initialization block that in turn references a class
for which no class file exists.

While ClassNotFoundException is more common than NoClassDefFoundError, the excep-
tion is generally an indication that a Java Archive file (JAR file) is missing in the module
path.

Problems after Applying an Obfuscator*

The fact that the compiler automatically generates bytecode according to this modified
source code only leads to unexpected problems if you run an obfuscator over the pro-
gram text, which subsequently modifies the bytecode and thus obscures the meaning
of the program or the bytecode and renames types in the process. Obviously, an obfus-
cator must not rename types whose Class instances are requested.

Otherwise, the obfuscator must correctly replace the corresponding strings as well (but
of course not replace all strings that happen to match class names).

845

16 The Class Library

16.3.2 AClass|s a Type

InJava, different types exist, and classes, records, interfaces, and enumeration types are
represented by the JVM as Class objects. In the Reflection API, the Type interface rep-
resents all types and the only implementing class is Class. Below Type there are some
subinterfaces:

® pParameterizedType represents generic types like List<T>.
® TypeVariable<D> represents, for example, T extends Comparable<? super T>.
® WildcardType represents ? super T.

B (CenericArrayType represents something like T[].

The only method of Type is getTypeName(), and this method is just a default method that
calls toString(). Type is the return of various methods in the Reflection API, such as
getGenericSuperclass() and getGenericInterfaces() of the Class class, and many other
methods listed in the Javadoc under USE.

16.4 The Utility Classes System and Members

In the java.lang.System class, methods exist for requesting and changing system vari-
ables, for redirecting the standard data streams, for determining the current time, for
terminating the application, and for several other tasks. All methods are exclusively
static, and an instance of System can’t be created. In the java.lang.Runtime class, addi-
tional helper methods are available, such as for starting external programs or for
requesting memory requirements. Unlike System, only one method is static in this class,
namely, the singleton method getRuntime(), which returns the instance of Runtime.

java::lang::System java::lang::Runtime

+ err : PrintStream

+ in : InputStream
+ out : PrintStream

+ arraycopy(src : Object, srcPos : int, dest : Object, destPos :

int, length :

int)

+ clearProperty(key : String) : Strin

+ console() : Console

+ g

+ getProperties() : Properties

+ getProperty(key : String, def : String) : String
+ getProperty(key : String) : String

+ addShutdownHook (hook : Thread)

+ availableProcessors() : int

+ exec(cmdarray : String[], envp : String[], dir : File) : Process
+ exec(command : String, envp : String[], dir File) : Process
+ exec(command : String) : Process

+ exec(cmdarray : String[]) : Process

+ exec(cmdarray : String[], envp : String[]) : Process

+ exec(command : String, envp : String[]) : Process

+ exit(status : int)

+ freeMemory() : long

+ gc)

+ getlocalizedInputStream(in : InputStream) : InputStream

+ getlocalizedOutputStream(out: OutputStream) : OutputStream
+ getRuntime() : Runtime

+ getSecurityManager() : SecurityManager + halt(status : int)
+ getenv(name: String) : Strin + load(filename : String)
+ getenv() : Map

+ identityHashCode(x : Object) : int

+ inheritedChannel() : Channel

+ load(filename : String

+ loadLibrary(libname : String)

+ mapLibraryName(libname : String) : Strin
+ nanoTime() : long

+ runFinalization

+ runFinalizersOnExit(Value : boolean)

+ setErr(err : PrintStream

+ setIn(in : InputStream

+ setOut(out : PrintStream

+ setProperties(props : Properties)

+ setProperty(key : String, value : String) : String
+ setSecurityManager(s : SecurityManager)

+ loadLibrary(libname : String)

+ maxMemory() : long

+ removeShutdownHook (hook : Thread) : boolean
+ runFinalization()

+ runFinalizersOnExit(value : boolean)

+ totalMemory() : long

+ traceInstructions(on : boolean)

+ traceMethodCalls(on : boolean)

Figure 16.4 Members of the System and Runtime Classes

846

16.4 The Utility Classes System and Members

Remark

All in all, the System and Runtime classes don’t seem particularly orderly, as shown in
Figure 16.4; you may think everything that doesn’t fit elsewhere can be found in these
two classes. Also, some methods of one class would be just as good in the other class.
The fact that the static method System.arraycopy(...) for copying arrays isn’t located
in java.util.Arrays can only be explained historically. Furthermore, Sys-
tem.exit(int) redirects to Runtime.getRuntime().exit(int). Some methods are
obsolete and distributed differently: The exec(...) of Runtime to start external pro-
cesses is handled by a new class (ProcessBuilder), and the question about the memory
state or the number of processors is answered by MBeans, such as ManagementFac-
tory.getOperatingSystemMXBean().getAvailableProcessors(). But API design is like
gambling: One rash action, and you've lost the farm.

16.4.1 Memory of the Java Virtual Machine

The Runtime object includes the following three methods that provide information
about the memory of the JVM:

® maxMemory () returns the maximum number of bytes available for the JVM. The value
can be set when calling the JVM with -Xmx in the command line.

® totalMemory() is what is currently used and can grow to maxMemory (). Basically, this
memory limit can also shrink again. The following applies: maxMemory() > totalMem-
ory().

m freeMemory() indicates the memory that is free for new objects and also provokes the
automatic garbage collection process. The following applies: totalMemory() > free-
Memory(). However, freeMemory() isn’t the entire freely available memory area
because the “share” of maxMemory() is still missing.

Two pieces of information are missing and therefore must be calculated:

® Used memory:
long usedMemory = Runtime.getRuntime().totalMemory() -
Runtime.getRuntime().freeMemory();

® Free total memory:
long totalFreeMemory = Runtime.getRuntime().maxMemory() - usedMemory;

Example

The following example outputs information about the memory on a computer:

long totalMemory = Runtime.getRuntime().totalMemory();
long freeMemory = Runtime.getRuntime().freeMemory();
long maxMemory = Runtime.getRuntime().maxMemory();
long usedMemory = totalMemory - freeMemory;

847

[«]

21

[+

[+

16 The Class Library

long totalFreeMemory = maxMemory - usedMemory;

System.out.printf(
"total=%d MiB, free=%d MiB, max=%d MiB, used=%d MiB, total free=%d MiB%n",
totalMemory >> 20, freeMemory >> 20, maxMemory >> 20,
usedMemory >> 20, totalFreeMemory >> 20);

The result is the following output:

total=126 MiB, free=124 MiB, max=2016 MiB, used=1 MiB, total free=2014 MiB

16.4.2 Number of CPUs or Cores

The Runtime method availableProcessors() returns the number of logical processors
or cores.

Example

Print the number of processors/cores:

System.out.println(Runtime.getRuntime().availableProcessors()); // 4

16.4.3 System Properties of the Java Environment

The Java environment manages system properties, such as path separators or virtual
machine versions in the java.util.Properties object. The static method System.get-
Properties() queries these system properties and returns the filled Properties object.
However, the Properties object isn’t absolutely necessary for querying individual prop-
erties: System.getProperty(...) directly queries a property.

Example

The following example outputs the name of the operating system:
System.out.println(System.getProperty("os.name")); // e.g., Windows 10
The following example outputs all system properties on the screen:
System.getProperties().list(System.out);

An excerpt of the result is shown in the following output:

-- listing properties --
sun.desktop=windows

awt. toolkit=sun.awt.windows.WToolkit
java.specification.version=9
file.encoding.pkg=sun.io
sun.cpu.isalist=amd64

848

16.4 The Utility Classes System and Members

Table 16.4 shows a list of the important standard system properties.

Jjava.version Version of the Java Runtime Environment (JRE)
java.class.path The current classpath

java.library.path Path for native libraries

java.io.tmpdir Path for temporary files

0S.name Name of the operating system

file.separator Separator of the path segments, for example / (Unix) or \ (Windows)
path.separator Separator for path specifications, such as : (Unix) or ; (Windows)
line.separator Newline character (string)

user.name Name of the logged-on user

user.home Home directory of the user

user.dir Current directory of the user

Table 16.4 Standard System Properties

Application Programming Interface Documentation

A few more keys are listed in the API documentation at System.getProperties(). Some
variables are also accessible in other ways, such as through the File class.

final class java.lang.System

P static String getProperty(String key)
Returns the assignment of a system property. If the key is null or empty, a
NullPointerException or an IllegalArgumentException, respectively, will occur.

P static String getProperty(String key, String def)
Returns the assignment of a system property. If the property isn’t present, the
method returns the string def, which is the default value. For the exceptions, the
same applies as for getProperty(String).

P static String setProperty(String key, String value)
Reassigns a system property. The return is the previous assignment or null if no pre-
vious assignment exists.

P static String clearProperty(String key)
Deletes a system property from the list. The return is the previous assignment or
null if no previous assignment exists.

849

16 The Class Library

P static Properties getProperties()
Returns a Properties object filled with the current system assignments.

16.4.4 Setting Custom Properties from the Console*

Properties can also be set from the console during the program startup. This approach
is convenient for a configuration that controls, for example, the behavior of a program.
On the command line, -D specifies the name of the property and, after an equal sign
(without whitespace), its value. Consider the following example:

$ java -DLOG -DUSER=Chris -DSIZE=100 com.tutego.insel.lang.SetProperty

The LOG property is “simply exists” but with no assigned value. The next two properties,
USER and SIZE, are associated with values that are first of type String and must be fur-
ther processed by the program. This information doesn’t appear with the argument list
in the static main(String[]) method because it precedes the name of the class and is
already processed by the JRE.

To read the properties, we’ll use the familiar System.getProperty(...) method in the
following example:

Optional<String> logProperty = ofNullable(System.getProperty("LOG"));
Optional<String> user nameProperty = ofNullable(System.getProperty("USER"));
Optional<String> sizeProperty = ofNullable(System.getProperty("SIZE"));

System.out.println(logProperty.isPresent()); // true
user nameProperty.ifPresent(System.out::println); //
Chris

sizeProperty.map(Integer::parseInt).ifPresent(System.out::println); // 100
System.out.println(System.getProperty("DEBUG", "false")); //
false

Listing 16.2 com/tutego/insel/lang/SetProperty.java, main()

In return, you'll receive a string indicating the value via getProperty(String). If no
property of that name exists at all, you'll get null instead. In this way, we can know if
this value was set at all. So, a simple null test tells us whether logProperty is present or
not. Instead of -DLOG, -DLOG= also returns the same result because the associated value
is the empty string. Since all properties are of type String to begin with, user nameProp-
erty is easy to output, and you’ll get either null or the string specified after =. If the
types aren’t strings, they must be processed further, for example, with Integer.par-
seInt(), Double.parseDouble(), and so on. The System.getProperty(String, String)
method, which is passed two arguments, is pretty useful in this case because the sec-
ond argument represents a default value. Thus, a default value can always be assumed.

850

16.4 The Utility Classes System and Members

Boolean.getBoolean(String)

In the case of properties that are assigned truth values, the following statement can be
written:

boolean b = Boolean.parseBoolean(System.getProperty(property)); // (¥)

There’s another variant for the truth values. The static method Boolean.getBool-
ean(String) searches for a property with the specified name in the system properties.
Thus, the following is analogous to the line (*):

boolean b = Boolean.getBoolean(property);

You might be surprised to find this static method in the wrapper class Boolean because
property access has nothing to do with wrapper objects and the class actually goes
beyond its area of responsibility in this case.

Compared to a separate, direct System query, getBoolean(String) also has a disadvan-
tage in that, when it returns false, you can’t distinguish whether the property simply
doesn’t exist or whether the property is assigned the value false. Also, incorrectly set
values like -DP=false always result in false.?

final class java.lang.Boolean
implements Serializable, Comparable<Boolean>

P static boolean getBoolean(String name)
Reads a system property named name and returns true if the value of the property is
equal to the string "true". The return value is false if the value of the system pro-
perty is false, if the property doesn’t exist, or if the property is null.

16.4.5 Newline Characters and line.separator

To move from the end of one line to the beginning of the next, a newline is inserted. The
character for a new line doesn’t have to be a single character; several characters may
also be necessary. Unfortunately for programmers, the number of characters for a new-
line sequence depends on the architecture, for instance:

® Unix, macOS: Line feed (LF for short), \n

m Windows: Carriage return (CR for short) and line feed

The control code for a carriage return is 13 (0xOD); the control code for a line feed is 10
(OxO0A). Java also assigns its own escape sequences for these characters: \r for carriage

returns and \n for line feeds. (The \f sequence is for a form feed, also called a “page
feed,” which doesn’t play any role in line breaks).

3 This confusion is due to the implementation: Boolean.valueOf("false") returns false just like
Boolean.valueOf("") or Boolean.valueOf(null).

851

16 The Class Library

In Java, you can obtain a newline character or a newline string from the system in one
of the following three ways:

® By calling System.getProperty("line.separator")

® By calling System.lineSeparator()

® You don’t always have to query the character (or, strictly speaking, a possible string
of characters) individually. If the character is part of a formatted output at the for-

matter, String.format(...) or printf(...), the format specifier %n stands for exactly
the newline string stored in the system.

16.4.6 Environment Variables of the Operating System

Almost every operating system uses the concept of environment variables; for exam-
ple, PATH is known for the search path for applications on Windows and Unix. Java
enables access to these system environment variables. Two static methods are used for
this purpose:

final class java.lang.System

P static Map<String, String> getEnv()
Reads a set of <string, string> pairs with all system properties.

P static String getEnv(String name)
Reads a system property named name. If the property doesn’t exist, the return will be
null.

COMPUTERNAME Name of the computer MOE

HOMEDRIVE Drive of the user directory C:

HOMEPATH Path of the user directory \Users\Christian

0S Name of the operating system* Windows_NT

PATH Search path C:\windows\SYSTEM32;
C:\windows ...

PATHEXT File extensions that represent .COM;.EXE;.BAT;.CMD;.VBS;.\VVBE;.JS;.

executable programs JSE;.WSF;.WSH;.MSC

SYSTEMDRIVE Drive of the operating system C:

TEMP and also TMP Temporary directory C:\Users\CHRIST~1\AppData\Local\
Temp

USERDOMAIN Domain of the user MOE

Table 16.5 Selection of Some Environment Variables Available in Windows

852

16.5 The Languages of Different Countries

USERNAME Name of the user Christian
USERPROFILE Profile directory C:\Users\Christian
WINDIR Directory of the operating system C:\windows

* The result differs from System.getProperty("os.name"), which already returns “Windows
10” for Windows 10.

Table 16.5 Selection of Some Environment Variables Available in Windows (Cont.)

Some variables are also accessible via the system properties, for instance, with Sys-
tem.getProperties(), System.getProperty(..), and so on.

Example [Ex]
The following example outputs the environment variables of the system:

Map<String,String> map = System.getenv();
map.forkach((k, v) -> System.out.printf("%s=%s¥%n", k, v));

16.5 The Languages of Different Countries

When developers start with console or GUI output, they often hardwire the output to a
local language. If the language changes, the software can’t handle other country-spe-
cific rules, for example, when formatting floats. Developing “multilingual” programs
that provide localized outputs in different languages is not too difficult. Basically, you'll
replace all language-dependent strings and formatting of data with code that takes into
account country-specific output formats and rules. Java offers a solution for these
cases: on one hand, you can define a language that then specifies rules according to
which the Java API can automatically format data, and on the other hand, you can allow
language-dependent parts to be swapped out to resource files.

16.5.1 Regional Languages via Locale Objects

In Java, Locale objects represent languages in geographic, political, or cultural regions.
The language and the region must be separated because a region or a country doesn'’t
always clearly specify the language. For Canada, in the province of Quebec, the French
edition is relevant, which, of course, differs from the English edition. Each of these lan-
guage-specific properties can be encapsulated in a special object. These Locale objects
are then passed to a Formatter that’s located behind String.format(...) and
printf(...) or passed to a Scanner. These outputs are referred to as locale sensitive.

853

[+

[E:d

16 The Class Library

Building Locale Objects

Locale objects are always created with the name of the language and optionally with
the name of the country or a region and variant. The Locale class provides three ways
to build the objects:

m Using the Locale constructor (deprecated in Java 19)

® Using the nested Builder class of Locale uses the builder pattern to build new Locale
objects

® Using the Locale method forLanguageTag(...) and a string identifier

Example
Country abbreviations are specified in the constructor of the Locale class, for example,
for a language object for Great Britain or France. Consider the following examples:

Locale greatBritain = new Locale("en", "GB");
Locale french = new Locale("fr");

In the second example, we don’t care about the country. We're simply choosing French
as the language, no matter what part of the world.

Languages are identified by 2-letter abbreviations from the ISO 639 code* (ISO Lan-
guage Code), and country names are 2-letter abbreviations described in ISO 3166° (ISO
Country Code).

Example

Three variants for building Locale.JAPANESE are found in the following example:

16.5 The Languages of Different Countries

Locale locl = new Locale("ja");

Locale loc2 = new Locale.Builder().setlanguage("ja").build();
Locale loc3 = Locale.forlanguageTag("ja");

final class java.util.locale

implements Cloneable, Serializable

P Locale(String language)
Creates a new Locale object for the language given by the ISO-693 standard. Invalid
identifiers aren’t recognized.

P Locale(String language, String country)
Creates a Locale object for a language according to ISO 693 and a country according to
the ISO 3166 standard.

4 https://en.wikipedia.org/wiki/List_of ISO_639-1 codes
5 https://en.wikipedia.org/wiki/ISO_3166-1

854

P Locale(String language, String country, String variant)
Creates a Locale object for a language, a country, and a variant. variant is a vendor-
dependent specification like “WIN” or “MAC.”

The static Locale.getDefault() method returns the currently set language. For the run-
ning JVM, Locale.setDefault(Locale) can change the language.

The Locale class has more methods; developers should study the Javadoc for the
Builder, for forlanguageTag(...) and the new extensions and filter methods.®

Constants for Some Languages

The Locale class has constants for commonly occurring languages, with an option for
specifying countries. The constants for countries and languages include, for example, CAN-
ADA, CHINA, FRENCH, GERMAN, ITALIAN, KOREAN, TAIWAN, UK and US. Behind an abbreviation like
Locale.UK, nothing else exists except for the initialization with new Locale("en", "GB").

Methods That Accept Instances of Locale

Locale objects are actually not interesting as objects—they do have methods, but more
exciting is its use as a type for the identification of a language. Dozens of methods in
the Java library accept Locale objects and adjust their behaviors based on them. Exam-
ples include printf(Locale, ...), format(Locale, ...), and tolLowerCase(Locale).

Tip

If no variant of a format or parse method exists with a Locale object; the method usu-
ally doesn’t support language-dependent behavior. The same limitation applies to
objects that don’t accept a Locale via a constructor or setter. Double.toString(...) is
one such example, as is Double.parseDouble(...). In internationalized applications,
these methods will rarely be found. Also, string concatenation with, for example, a
float isn’'t permitted (because a Double method is called internally), and using
String.format(...) is definitely a better option.

Methods of Locale*

Locale objects provide a number of methods that reveal the ISO-639 code of the coun-
try, for example.

Example

The following example outputs the Locale information accessible for languages in
selected countries. The objects System.out and Locale.* are imported statically:

6 Oracle’s Java tutorial describes these extensions at http://docs.oracle.com/javase/tutorial/il8n/
locale/index.html.

855

[+]

21

16 The Class Library

out.println(GERMANY.getCountry()); // DE
out.println(GERMANY.getLanguage()); // de
out.println(GERMANY.getVariant()); //

out.println(GERMANY.getISO3Country()); // DEU
out.println(GERMANY.getISO3Language()); // deu

out.println(CANADA.getDisplayCountry()); // Canada
out.println(GERMANY.getDisplaylLanguage()); // German
out.println(GERMANY.getDisplayName()); // German (Germany)
out.println(CANADA.getDisplayName()); // English (Canada)
out.println(GERMANY.getDisplayName(FRENCH)); // allemand (Allemagne)
out.println(CANADA.getDisplayName(FRENCH)); // anglais (Canada)

Listing 16.3 src/main/java/com/tutego/insel/locale/GermanyLocal.java, main()

Static methods also exist for querying Locale objects:

final class java.util.locale
implements Cloneable, Serializable

P static Locale getDefault()
Returns the language preset by the JVM, which defaults to the operating system.

P static Locale[] getAvailablelocales()
Returns a list of all installed Locale objects. The field contains at least Locale.US and
about 160 entries.

P static String[] getISOCountries()
Returns an array of all 2-letter ISO-3166 country codes.

P static Set<String> getISOCountries(Locale.IsoCountryCode type)
Returns a set with all ISO-3166 country codes, where the IsoCountryCode list determi-
nes the following: PART1 _ALPHA2 returns the code of 2 letters, PART1 ALPHA3 of 3 letters,
PART3 of 4 letters.

On the other hand, other methods provide abbreviations according to ISO standards:

final class java.util.locale
implements Cloneable, Serializable

P String getCountry()
Returns the country abbreviation according to the ISO-3166 2-letter code.

» String getlanguage()
Returns the abbreviation of the language in ISO-639 code.

P String getISO3Country()
Returns the ISO abbreviation of the country of these settings and throws a
MissingResourceException if the ISO abbreviation isn’t available.

856

16.6 Overview of Important Date Classes

P String getISO3Language()
Returns the ISO abbreviation of the language of these settings and throws a
MissingResourceException if the ISO abbreviation isn’t available.

P String getVariant()
Returns the abbreviation of the variant or an empty string.

These methods provide abbreviations, but they aren’t intended for human-readable
output. For various get*() methods, therefore, corresponding getDisplay*() methods
exist:

final class java.util.locale
implements Cloneable, Serializable

P String getDisplayCountry(Locale inlocale)
final String getDisplayCountry()
Returns the name of the country for screen outputs for a language or Loa-
cale.getDefault().

P String getDisplaylanguage(Locale inLocale)
String getDisplaylanguage()
Returns the name of the screen output language for a given Locale or
Locale.getDefault().

P String getDisplayName(Locale inLocale)
final String getDisplayName()
Returns the name of the settings for a language or Locale.getDefault().

P String getDisplayVariant(Locale inLocale)
final String getDisplayVariant()
Returns the name of the variant for a language or Locale.getDefault().

16.6 Overview of Important Date Classes

Because date calculations are convoluted entities, we can be grateful to the developers
of Java for providing many classes for date calculation and formatting. The developers
have kept the classes abstract enough to allow for local specifics like output formatting,
parsing, time zones, or daylight saving time/winter time in different calendars.

Prior to Java 1.1, only the java.util.Date class was available for displaying and manipu-
lating date values, and this class had to carry out several tasks:

m (Creation of a date/time object from year, month, day, minute, and second
® Querying day, month, year, and so on with an accuracy of milliseconds

® Processing and output of date strings

857

[

]

16 The Class Library

Since the Date class wasn’t quite bug-free and internationalized, new classes were intro-
duced in JDK 1.1, namely, the following:

® (alendar takes on Date’s task of converting between different date representations
and time scales. The GregorianCalendar subclass is created directly.

® DateFormat breaks up date strings and formats the output. Date formats also depend
on the country, which Java represents through Locale objects, and on a time zone,
which is represented by the instances of the TimeZone class.

InJava 8, another date library was added with entirely new types. Finally, date and time
can be represented separately:

® |ocalDate, LocalTime, and LocalDateTime are the temporal classes for a date, for a
time, and for a combination of date and time, respectively.

® Period and Duration represent intervals.

16.6.1 Unix Time: January 1,1970

January 1,1970, was a Thursday with groundbreaking changes: The British rejoiced that
the age of majority dropped from 24 to 18, and as in every year, and people everywhere
woke up to massive hangovers from the night before. For us, however, a technical inno-
vation is of concern: The date of 1/1/1970, 0:00:00 UTC is also referred to as the Unix
epoch, and a Unix time is described in relation to this time in terms of seconds. For
example, 100,000,000 seconds after 1/1/1970 is March 3,1973, at 09:46:40. The Unix Bil-
lennium was celebrated 1,000,000,000 seconds after Jan. 1, 1970, namely, on Sept. 9,
2001, at 01:46:40.

16.6.2 System.currentTimeMillis()

Unix time is also an important concept for us Java developers because many times in
Java are relative to this date. The timestamp O refers to 1/1/1970 0:00:00 Greenwich
Mean Time. The System.currentTimeMillis() method returns the past milliseconds—
not seconds!—relative to 1/1/1970, 00:00 UTC, although your operating system’s clock
may not be that accurate. The number of milliseconds is represented in a long (i.e., in 64
bits), which will suffice for about 300 million years.

Warning

The values of currentTimeMillis() don’t necessarily ascend because Java gets the
time from the operating system, where the system time can change. A user can adjust
the time, or a service such as the Network Time Protocol (NTP) takes over this task. Dif-
ferences of currentTimeMillis() timestamps are then completely wrong and could
even be negative. An alternative is nanoTime(), which has no reference point, is more
precise, and is always ascending.”

7 http://stackoverflow.com/questions/351565/system-currenttimemillis-vs-system-nanotime goes into
more details and provides links to internal implementations.

858

16.6 Overview of Important Date Classes

16.6.3 Simple Time Conversions via TimeUnit

A time duration in Java is often expressed in terms of milliseconds. 1,000 milliseconds
correspond to 1 second, 1,000 x 60 milliseconds to 1 minute, and so on. However, all
those large numbers aren’t easy to read, which is why TimeUnit objects are used with
their to*(...) methods for the purpose of conversion. Java declares the following con-
stants in TimeUnit: NANOSECONDS, MICROSECONDS, MILLISECONDS, DAYS, HOURS, SECONDS, and
MINUTES.

Each of the enumeration elements defines the conversion methods, for instance,
toDays(..), toHours(..), toMicros(..), toMillis(..), toMinutes(..), toNanos(..), and toSec-
onds(..). These methods receive a long and return a long in the corresponding unit. In
addition, two convert(...) methods convert from one unit to another.

Example

The following example converts 23,746,387 milliseconds to hours:

int v = 23 746 387;

System.out.printIn(TimeUnit.MILLISECONDS.toHours(v)); // 6

System.out.println(TimeUnit.HOURS.convert(v,
TimeUnit.MILLISECONDS)); // 6

enum java.util.concurrent.TimeUnit

extends Enum<TimeUnit>

implements Serializable, Comparable<TimeUnit>

» NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS, DAYS
TimeUnit enumeration elements.

P long toDays(long duration)

P long toHours(long duration)

P long toMicros(long duration)
P long toMillis(long duration)
P long toMinutes(long duration)
P long toNanos(long duration)
P long toSeconds(long duration)

P long convert(long sourceDuration, TimeUnit sourceUnit)
Returns sourceUnit.to*(sourceDuration), where * represents the respective unit. For
example, this method returns HOURS.convert(sourceDuration, sourceUnit), then
sourceUnit.toHours(1). The readability of this method isn’t ideal, so the other
methods should be preferred. Results may be truncated, not rounded. If an overflow
occurs, no ArithmeticException will follow.

859

[«]

16 The Class Library

P long convert(Duration duration)
Converts the passed duration into the time unit that represents the current TimeUnit.
For example, TimeUnit.MINUTES.convert(Duration.ofHours(12)) returns 720. Thus,
for example, aunit.convert(Duration.ofNanos(n)) and aunit.convert(n, NANOSEC-
ONDS) are the same.

16.7 Date-Time API

The java.time package is based on the standardized calendar system of ISO-8601, and
this covers how a date is represented, including time, date and time, UTC, time inter-
vals (duration/time span), and time zones. The implementation is based on the Grego-
rian calendar, although other calendar types are also conceivable. Java’'s calendar
system can use other standards or implementations as well, including the Unicode
Common Locale Data Repository (CLDR) for localizing days of the week or the Time-Zone
Database (TZDB), which documents all time zone changes since 1970.

16.7.1 Initial Overview

The central temporal types from the Date-Time API can be quickly documented:

LocalDate Represents a common date Years, months, and days
LocalTime Represents a common time Hours, minutes, seconds, and
nanoseconds
LocalDateTime Combination of date and time Years, months, days, hours, min-
utes, seconds, and nanoseconds
Period Duration between two Local- Years, months, and days
Dates
Year Year only Year
Month Month only Month
MonthDay Month and day only Month, day
OffsetTime Time with time zone Hours, minutes, seconds, nanosec-
onds, and zone offset
OffsetDateTime Date and time with time zone as Year, month, day, hours, minutes,
UTC offset seconds, nanoseconds, and zone

offsets

Table 16.6 All Temporal Classes from java.time

860

16.7 Date-Time API

ZonedDateTime Date and time with time zoneasID Year, month, day, hours, minutes,
and offset seconds, nanoseconds, and zone
info
Instant Time (continuous machine time) Nanoseconds
Duration Time interval between two Seconds/nanoseconds
instants

Table 16.6 All Temporal Classes from java.time (Cont.)

16.7.2 Human Time and Machine Time

Date and time, which we as humans understand in units such as days and minutes, is
referred to as human time, while the continuous time of the computer, which has a res-
olution in the nanosecond range, is called machine time. The machine time begins at a
time we call an epoch, namely, the Unix epoch.

From Chapter 7, Section 7.2.5, you learned how most classes are made for humans and
that only Instant/Duration refers to machine time. LocalDate, LocalTime, and LocalDa-
teTime represent human time without reference to a time zone, whereas ZonedDateTime
does reference a time zone. When choosing the right time classes for a task, the first
consideration is, of course, whether to represent human time or machine time. This
choice is followed by questions about exactly which fields are needed and whether a
time zone is relevant or not. For example, if the execution time is to be measured, you
don’t need to know on which date the measurement started and ended; in this case,
Duration would be correct, unlike Period.

Example

Examples for explicit formatting and default formatting for the US locale:

LocalDate now = LocalDate.now();
System.out.println(now); // e.g., 2023-01-31
System.out.printf("%d. %s %d&n",

now.getDayOfMonth(), now.getMonth(), now.getYear());
// e.g., 31. JANUARY 2023
LocalDate bdayMLKing = LocalDate.of(1929, Month.JANUARY, 15);
DateTimeFormatter formatter =
DateTimeFormatter.oflocalizedDate(FormatStyle.MEDIUM);
System.out.println(bdayMLKing.format(formatter)); // Jan 15, 1929

The getMonth() method on a LocalDate returns a java.time.Month object as the result,
and these are enumerations. The toString() representation returns the constant in
uppercase letters.

861

21

[E:d

16 The Class Library

All classes are based on the ISO system by default. Other calendar systems, such as the
Japanese calendar, are created using types from java.time.chrono, and of course,
entirely new systems are also possible.

Example

Output for the Japanese calendar:

ChronolLocalDate now = JapaneseChronology.INSTANCE.dateNow();
System.out.println(now); // Japanese Reiwa 4-01-31

Package Overview

The types of the Date-Time API are distributed among different packages:

B java.time
Contains the standard classes like LocalTime and Instant. All types are based on the
ISO-8601 calendar system, commonly known as the “Gregorian calendar.” This cal-
endar is extended by the Proleptic Gregorian Calendar. This calendar is also valid for
the time before 1582 (the introduction of this calendar), so that a consistent timeline
can be used.

® java.time.chrono
In this package, you'll find predefined alternative (i.e.,, non-ISO) calendar systems,
such as the Japanese calendar, the Thai-Buddhist calendar, the Islamic calendar, and
a few others.

B java.time.format
Classes for formatting and parsing date and time, such as the DateTimeFormatter.

® java.time.zone
Supporting classes for time zones, such as ZonedDateTime.

® java.time.temporal
Deeper API that allows access and modification of individual fields of a date/time
value.

Design Principles

Before we get into the individual classes, let’s look at some design principles because all
types of the Date-Time API follow recurring patterns. The first and most important
property is that all objects are immutable; that is, they can’t be changed. In contrast,
with the “old” API, Date and the Calendar classes were mutable, with sometimes devas-
tating consequences. If these objects are passed around and changed, incalculable side
effects can occur. The classes of the new Date-Time API are immutable, and so the date/
time classes like LocalTime or Instant are opposed to mutable types like Date or Calen-
dar. All methods that look as if they permitted changes now instead create new objects
with the desired changes. Side effects are therefore absent, and all types are thread safe.

862

16.7 Date-Time API

Immutability is a design property as is the fact that null isn’t permitted as an argu-
ment. In the Java API, null is often accepted because it expresses something optional,
but the Date-Time API usually penalizes null with aNullPointerExcpetion. The fact that
nullisn’tinuse as an argument and not as a return benefits another property: The code
can be mostly written with a fluent API (i.e., cascaded calls) since many methods return
the this reference, as is known from StringBuilder.

Added to these more technical features is a consistent naming that is different from
the naming of the well-known JavaBeans. So, no constructors and no setters exist
(immutable classes don’t need them), but instead, patterns adhere to many types from
the Date-Time API:

Method Class/Instance Method Basic Meaning

now() Static Returns an object with current time/current date
of*() Static Creates new objects

from Static Creates new objects from other representations
parse*() Static Creates a new object from a string representation

format() Instance Formats and returns a string

get*() Instance Returns fields of an object

is*() Instance Queries the status of an object

with*() Instance Returns an instance of the object with a changed
state

plus*() Instance Returns an instance of the object with a totaled state

minus*() Instance Returns an instance of the object with a reduced state

to*() Instance Converts an object to a new type
at*() Instance Combines this object with another object
*Into() Instance Combines an own object with another target object

Table 16.7 Name Patterns in the Date-Time API

You've already used the now() method in one of the first examples in this section, and
this method returns the current date, for example. Other creator methods are prefixed
with of, from, or with; no constructors exist. The methods of the with*() type assume
the role of setters.

16.7.3 The LocalDate Date Class

A date (without a time zone) is represented by the LocalDate class. This class can be used
to represent a birth date, for example.

863

[E:d

16 The Class Library

A temporal object can be created using the static of (...) factory methods and derived
via ofInstant(Instant instant, Zoneld zone) or from another temporal object. Interest-
ing are the methods that work with a TemporalAdjuster.

Equipped with these objects, you can use various getters and query individual fields,
such as getDayOfMonth(); getDayOfYear() (return int); getDayOfWeek (), which returns an
enumeration of type DayOfiWeek; and getMonth(), which returns an enumeration of type
Month. Furthermore, other methods include long toEpochDay() and long toEpochSec-
ond(LocalTime time, ZoneOffset offset).

Example

Find the next Saturday from now:

LocalDate today = LocalDate.now();

LocalDate nextSaturday =

today.with(TemporalAdjusters.next(DayOfWeek.SATURDAY));

System.out.printf("Today is %s, and next Saturday is %s",
today, nextSaturday);

In addition, some methods return new LocalDate objects with minus*(...) or
plus*(...) if, for example, a number of years should be returned with minusYear(long
yearsToSubtract). By negating the sign, the opposite method can also be used. In other
words, LocalDate.now().minusMonths(1) provides the same result as Local-
Date.now().plusMonths(-1). The with*(...) methods reassign a field and return a mod-
ified new LocalDate object.

From a LocaleDate object, you can create other temporal objects: atTime(. . .), for exam-
ple, returns LocalDateTime objects in which certain time fields are assigned. atTime(int
hour, int minute) is such an example. With until(...), a time duration of the Period
type can be returned. Two methods that provide a stream of LocalDate objects up to an
endpoint are also interesting:

m Stream<lLocalDate> datesUntil(LocalDate endExclusive)

® Stream<LocalDate> datesUntil(LocalDate endExclusive, Period step)

16.8 Logging with Java

Logging information about program states is important for reconstructing and under-
standing the flow and states of a program at a later time. A logging API can write mes-
sages to the console or to external storage, such as text files, XML files, and databases,
or to distribute these messages via chat.

864

16.8 Logging with Java

16.8.1 Logging Application Programming Interfaces

Regarding logging libraries and APIs, the Java world is unfortunately divided. Since the
Java standard library didn’t provide a logging API in its first versions, the open-source
library log4j quickly filled this gap. This library is used in almost every major Java proj-
ect today. When the Logging API moved into Java 1.4 with Java Specification Request
(JSR) 47, the Java community was surprised to find that java.util.logging (JUL) was nei-
ther API-compatible with the popular Log4j nor as powerful as Log4j.8

Over the years, the picture has changed. While in the early day’s developers relied
exclusively on log4j, more and more projects are now using JUL. One of the reasons is
that some developers want to avoid external dependencies (although this doesn’t
really work since almost every included Java library is based on log4j). Another reason
is that for many projects JUL is simply sufficient. In practice, for larger projects, as a
result, multiple logging configurations overcrowd their own programs, as each logging
implementation is configured differently.

16.8.2 Logging with java.util.logging

The Java logging API can write a message that you can then use for maintenance or
security checks. The API is simple:

package com.tutego.insel.logging;

import static java.time.temporal.ChronoUnit.MILLIS;
import static java.time.Instant.now;

import java.time.Instant;

import java.util.logging.level;

import java.util.logging.logger;

public class JULDemo {
private static final Logger log = Logger.getlLogger(JULDemo.class.getName());

public static void main(String[] args) {
Instant start = now();
log.info("About to start");

try {
log.log(Level.INFO, "Lets try to throw {0}", "null");
throw null;

}

8 The standard logging API, on the other hand, provides only basics like hierarchical loggers. Stan-
dard logging doesn’t come close to the power of log4j with its large number of writers in files, sys-
log/NT loggers, databases, and dispatch over the network.

865

16 The Class Library

catch (Exception e) {
log.log(Level.SEVERE, "Oh Oh", e);
}
log.info(() -
> String.format("Runtime: %s ms", start.until(now(), MILLIS)));
}
}

Listing 16.4 src/main/java/com/tutego/insel/logging/CULDemo.java, JULDemo

When you run the example, the following warning appears on the console:

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

INFO: About to start

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

INFO: Lets try to throw null

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

SEVERE: Oh Oh

java.lang.NullPointerException: Cannot throw exception because "null" is null
at com.tutego.insel.logging.JULDemo.main(JULDemo.Jjava:20)

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main
INFO: Runtime: 35 ms

The Logger Object

The Logger object is a central element that can be retrieved via Logger . getAnonymousLog-
ger() or via Logger.getlLogger(String name), where name is usually assigned the fully
qualified class name. Often, the Logger object is declared as a private static final variable
in the class.

Logging with Log Level

Not every message is equally important. Some messages are useful for debugging or
because of timing measurements, but exceptions in the catch branches are hugely
important. To support different levels of detail, you can specify a log level. This level
determines how “serious” the error or a message is, which is important later when
errors are sorted according to their urgency. Log levels are declared as constants in the
Level class? in the following ways:

® FINEST (smallest level)
® FINER
® FINE

9 Since thelogging framework joined Java in version 1.4, it doesn’t yet use typed enumerations, which
have only been available since Java 5.

866

16.9 Maven: Resolving Build Management and Dependencies

CONFIG

® INFO

WARNING

SEVERE (highest level)

For the logging process itself, the Logger class provides the general method log(Level
level, Stringmsg) or a separate method for each level.

SEVERE log(Level.SEVERE, msg) severe(Stringmsg)
WARNING log(Level .WARNING, msg) warning(String msg)
INFO log(Level.INFO, msg) info(Stringmsg)
CONFIG log(Level.CONFIG, msg) config(Stringmsg)
FINE log(Level .FINE, msg) fine(String msg)
FINER log(Level.FINER, msg) finer(String msg)
FINEST log(Level .FINEST, msg) finest(Stringmsg)

Table 16.8 Log Levels and Methods

All these methods send a message of type String. If an exception and the associated
stack trace must be logged, developers must use the following logger method, which is
also used in the example:

P void log(Level level, Stringmsg, Throwable thrown)

The variants of severe(...), warning(...), and so on are not overloaded with a Throw-
able parameter type.

16.9 Maven: Resolving Build Management and Dependencies

In Chapter 1, Section 1.9.1, we created a Maven project, but never really benefited from

using Maven. Two things stand out:

1. Dependencies can be easily declared, and they are automatically downloaded by
Maven, including all sub-dependencies. Maven'’s particular strength lies in resolving
transitive dependencies.

2. During the build, Java source code alone doesn’t make a project; the sources must be
compiled, test cases must be run, and Javadoc should be generated. At the end, the
final result is usually a compressed JAR file.

867

16 The Class Library

16.9.1 Dependency to Be Accepted

As an example, let’s create a dependency on the small web framework Spark (https://
sparkjava.com). Let’s open the Project Object Model (POM) file pom.xml and add the
code lines in bold for the dependency:

<project ..»>

<properties>
<maven.compiler.target>17</maven.compiler.target>
<maven.compiler.source>17</maven.compiler.source>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>com.sparkjava</groupId>
<artifactId>spark-core</artifactId>
<version>2.9.3</version>
</dependency>
</dependencies>
</project>

Listing 16.5: pom.xml

All dependencies are located in a special XML element named <dependencies>. Below
that element, you can then have any number of <dependency> blocks.

Now that everything is prepared, let’s write the main program:

public class SparkServer {
public static void main(String[] args) {
spark.Spark.get("/hello", (req, res) -
> "Hello Browser " + req.userAgent());

¥
¥

Listing 16.5 src/main/java/SparkServer.java

When you start the program as usual, a web server starts as well, and you can read the
output via the URL http://localhost:4567/hello. (You can ignore the logger outputs.)

16.9.2 Local and the Remote Repository

Resolving dependent JAR files takes longer the first time because Maven contacts a
remote repository and always pulls the latest JAR files from that location and then
stores these files locally. The extensive remote repository stores almost all versions of
JAR files for many well-known open-source projects. The Central Repository can be
found https://repo.maven.apache.org/maven2/.

868

16.10 Further Reading

The downloaded resources themselves aren’t stored in the project but in a local repos-
itory located in the user’s home directory and named .m2. In this way, all Maven proj-
ects share the same JAR files, and they don’t have to be reobtained and updated on a
project-by-project basis.

16.9.3 Lifecycles, Stages, and Maven Plugins

A Maven build consists of a three-stage lifecycle: clean, default, and site. Within this
lifecycle are stages. For example, default contains the compile stage for translating the
sources. Everything Maven runs are plugins, such as compilers, and many others that
are listed at https://maven.apache.org/plugins/. A plugin can execute different goals.
For example, the Javadoc plugin (described at https://maven.apache.org/components/
plugins/maven-javadoc-plugin/) currently knows 16 goals. A goal can be accessed sub-
sequently via the command line or via the integrated development environment (IDE).

For example, a JAR file is created via the package stage:

$ mvn package

The command-line tool must be called in the directory where the POM file is located.

16.10 Further Reading

The Javalibrary provides a large number of classes and methods, but not always exactly
what’s required by the current project. Some problems, such as the structure and con-
figuration of Java projects, object-relational mappers (www.hibernate.org), or com-
mand-line parsers, may require various commercial or open-source libraries and
frameworks. With purchased products, licensing issues are obvious, but with open-
source products, integration into one’s own closed source project isn’t always a given.
Various types of licenses (https://opensource.org/licenses) for open-source software
with always different specifications—whether the source code is changeable, whether
derivatives must also be free, whether mixing with proprietary software possible—
complicate the choice, and violations (https://gpl-violations.org/) are publicly
denounced and unpleasant. Java developers should increasingly focus their attention
on software under the Berkeley Source Distribution (BSD) license (the Apache license
belongs in this group) and under the LGPL license for commercial distribution. The
Apache group has assembled a nice collection of classes and methods named Apache
Commons (http://commons.apache.org), and studying these sources are recommended
for software developers. The website https://www.openhub.net is exceptionally well
suited for this purpose and enables searching via specific keywords through more than
1 billion source code lines of various programming languages—amazing how many
developers use profanities!

869

Chapter 16
The Class Library

“What we need is some crazy people;

look where the normal ones have taken us.’
—George Bernard Shaw (1856—1950)

In this chapter you’'ll learn about the Java class library.

16.1 The Java Class Philosophy

A programming language consists not only of a grammar, but also, as in the case of
Java, of a programming library. A platform-independent language—as many imagine C
or C++ to be—isn’t really platform independent if different functions and program-
ming models are used on each computer, which is exactly the weak point of C(++).
These algorithms, which aren’t dependent on the operating system, can be applied
everywhere in the same way, but the result is realized in the end with inputs/outputs
or graphical user interfaces (GUIs). The Java library, on the other hand, tries to abstract
away from platform-specific features, and the developers have gone to great lengths to
put all the important methods into well-formed object-oriented (OO) classes and pack-
ages. These elements cover in particular the central areas of data structures, input and
output, graphics, and network programming.

AD AOY BN

16 The Class Library

16.1.1

Modules, Packages, and Types

At the top of the Java library are modules, which in turn consist of packages, which in
turn contain types.

Modules of the Java SE

The Java Platform, Standard Edition (Java SE) application programming interface (API)
consists of the following modules, all of which begin with the prefix java:

Module

Jjava.
Jjava.

Jjava.

Jjava.

Jjava.

Jjava.
Jjava.

Jjava.

Jjava.
Jjava.
Jjava.
Jjava.
Jjava.
Jjava.
Jjava.

Jjava.

Jjava.

Jjava.

base
compiler

datatransfer

desktop

instrument

logging
management

management.rmi

naming

prefs

mi

scripting
security.jgss
security.sasl
sql
sql.rowset

xml

xml.crypto

Description
Fundamental types of Java SE
Java language model, annotation processing, and Java compiler API

The API for data transfer between applications, usually the clip-
board

GUIs with Abstract Windowing Toolkit (AWT) and Swing, the Acces-
sibility API, audio, printing, and JavaBeans

Instrumentalization is the modification of Java programs at run-
time

The Logging API
Java Management Extensions (JMX)

Remote Method Invocation (RMI) connector for remote access to
the IMX beans

The Java Naming and Directory Interface (JNDI) API

The Preferences APl is used to store user preferences

Remote method calls with the RMI API

The Scripting API

Java binding of the IETF Generic Security Services API (GSS API)

Java support for IETF Simple Authentication and Security Layer (SASL)
The JDBC API for accessing relational databases

The JDBC RowSet AP

XML classes with the Java API for XML Processing (JAXP), Streaming
APl for XML (StAX), Simple API for XML (SAX), and W3C Document
Object Model (DOM) API

The API for XML cryptography

Table 16.1 Modules of the Java SE

836

The Java Class Philosophy

The java.base module—the most important module—contains core classes such as
Object and String, among others. This module is the only module that doesn't itself con-
tain any dependency on other modules. Every other module, however, references at least

java.base. The Javadoc contains a nice graphical representation, shown in Figure 16.1.

java.xml

=t

java.base

Figure 16.1 The java.xml Module Has a Dependency on the java.base Module

In some cases, more dependencies exist, such as with the java.desktop module, shown

in Figure 16.2.

‘ java.desktop ‘

‘ java.xml ‘ ‘java.datatransfer‘

java.base

Figure 16.2 Dependencies of the java.desktop Module

The java.se Module

One special module is java.se, which doesn’t declare its own packages or types but

merely groups other modules together. The name for such a construction is aggregator
module. The java.se module defines the API for the Java SE platform in this way, as

shown in Figure 16.3.

Java.se

{java.sql.rowset |

[Java.xml.crypto |

Java.sql

P —

java.desktop

Java.management.tmi

Java.

Java.security.sasl
prefs

[java.management| [java.net.http |

[java.security. jgss|

[ava.naming][java.transaction.xa] [java. logging|[java.scripting Hja\/a_xml‘ [java. datatransfer][java. conpiler|[java. instrunent] [java.rmi |

Java.base |-

Figure 16.3 Dependencies of the java.se Module

837

[]

16 The Class Library

Note

In the following sections, we won’t discuss the Java SE types in terms of the module
from which they originate. You only need to know in which module a type is located
when building smaller subsets of Java SE.

Other Modules

Two other modules that also start with java but aren’t part of the Java SE standard are
java.jnlp for the Java Network Launch Protocol (JNLP) and java.smartcardio, which is
the Java API for communication with smart cards according to the international stan-
dard ISO/IEC 7816-4.!

The Java Development Kit (JDK) is the standard implementation of Java SE. This imple-
mentation provides developers with more packages and classes, such as with an HTTP
server or with Java tools like the Java compiler and the Javadoc tool. In this implemen-
tation, several modules will start with the prefix jdk.

16.1.2 Overview of the Packages of the Standard Library

The Java 11 Core Java SE API consists of the following modules and packages:

java.base java.io, java.lang, java.lang.annotation, java.lang.invoke,
java.lang.module, java.lang.ref, java.lang.reflect,
java.math, java.net, java.net.spi, java.nio, java.nio.chan-
nels, java.nio.channels.spi, java.nio.charset,
java.nio.charset.spi, java.nio.file, java.nio.file.attri-
bute, java.nio.file.spi, java.security, java.security.cert,
Jjava.security.interfaces, java.security.spec, java.text,
java.text.spi, java.time, java.time.chrono, java.time.for-
mat, java.time.temporal, java.time.zone, java.util,
Jjava.util.concurrent,

java.base java.util.concurrent.atomic, java.util.concurrent.locks,
java.util.function, java.util.jar, java.util.regex
java.util.spi, java.util.stream, java.util.zip,
javax.crypto, javax.crypto.interfaces, javax.crypto.spec,
javax.net, javax.net.ssl, javax.security.auth, javax.secu-
rity.auth.callback, javax.security.auth.login, javax.secu-
rity.auth.spi, javax.security.auth.x500,
Jjavax.security.cert

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API

1 https://en.wikipedia.org/wiki/ISO/IEC 7816

838

16.1 The Java Class Philosophy

java.compiler javax.annotation.processing, javax.lang.model,
javax.lang.model.element, javax.lang.model. type,
javax.lang.model.util, javax.tools

java.datatransfer java.awt.datatransfer

java.desktop java.applet, java.awt, java.awt.color, java.awt.desktop,
java.awt.dnd, java.awt.event, java.awt.font, java.awt.geom
Jjava.awt.im, java.awt.im.spi, java.awt.image,
java.awt.image.renderable, java.awt.print, java.beans,
java.beans.beancontext, javax.accessibility,
Jjavax.imageio, javax.imageio.event, javax.imageio.meta-
data, javax.imageio.plugins.bmp,
javax.imageio.plugins.jpeg, javax.imageio.plugins.tiff,
Jjavax.imageio.spi, javax.imageio.stream, javax.print
javax.print.attribute, javax.print.attribute.standard,
javax.print.event, javax.sound.midi, javax.sound.midi.spi,
javax.sound.sampled, javax.sound.sampled. spi, javax.swing,
javax.swing.border, javax.swing.colorchooser
javax.swing.event, javax.swing.filechooser
javax.swing.plaf, javax.swing.plaf.basic,
javax.swing.plaf.metal, javax.swing.plaf.multi,
javax.swing.plaf.nimbus, javax.swing.plaf.synth,
javax.swing.table, javax.swing.text,
javax.swing.text.html, javax.swing.text.html.parser,
javax.swing.text.rtf, javax.swing.tree, javax.swing.undo

Jjava.instrument java.lang.instrument
java.logging java.util.logging
Jjava.management java.lang.management, javax.management, javax.manage-

ment.loading, javax.management.modelmbean, javax.manage-
ment.monitor, javax.management.openmbean,
javax.management.relation, javax.management.remote,
Jjavax.management.timer

Jjava.management.rmi javax.management.remote.rmi

Jjava.naming javax.naming, javax.naming.directory, javax.naming.event
javax.naming.ldapjavax.naming.spi

java.prefs java.util.prefs

Jjava.rmi java.rmi, java.rmi.activation, java.rmi.dgc, java.rmi.reg-
istry, java.rmi.server, javax.rmi.ssl

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API (Cont.)

839

16 The Class Library

Java.scripting Jjavax.script

java.security.jgss Jjavax.security.auth.kerberos, org.ietf.jgss
java.security.sasl javax.security.sasl

java.sql java.sql, javax.sql, javax.transaction.xa

java.sql.rowset javax.sqgl.rowset, javax.sql.rowset.serial,
javax.sql.rowset.spi

java.xml Jjavax.xml, javax.xml.catalog, javax.xml.datatype
javax.xml.namespace, javax.xml.parsersjavax.xml.stream,
javax.xml.stream.events, javax.xml.stream.util,
javax.xml.transform, javax.xml.transform.dom
javax.xml.transform.sax, javax.xml.transform.stax
javax.xml.transform.stream, javax.xml.validation,
javax.xml.xpath, org.w3c.dom, org.w3c.dom.bootstrap
org.w3c.dom.events, org.w3c.dom.1s, org.w3c.dom.ranges,
org.w3c.dom.views, org.xml.sax, org.xml.sax.ext,
org.xml.sax.helpers

java.xml.crypto javax.xml.crypto, javax.xml.crypto.dom,
javax.xml.crypto.dsig, javax.xml.crypto.dsig.dom,
javax.xml.crypto.dsig.keyinfo,
javax.xml.crypto.dsig.spec

Table 16.2 Packages in the Modules of the Java 17 Core Java SE API (Cont.)

Developers should be able to map the following packages according to their respective
capabilities:

Jjava.awt The AWT package provides classes for graphics output and GUI usage.
Java.awt.event Interfaces for the various events in GUIs.

java.io Input and output options. Files are represented as objects. Data
java.nio streams allow sequential access to file contents.

java.lang A package that’s automatically included. Contains indispensable

classes like string, thread, or wrapper classes.

java.net Communication via networks. Provides classes for building client and
server systems that can connect to the internet via TCP and IP, respec-
tively.

Table 16.3 Important Packages in the Java SE

840

16.1 The Java Class Philosophy

Java.text Support for internationalized programs. Provides classes for handling
text and formatting dates and numbers.

java.util Provides types for data structures, space and time, and parts of inter-
nationalization, as well as random numbers. Subpackages take care of
regular expressions and concurrency.

Javax.swing Swing components for GUIs. This package has various subpackages.

Table 16.3 Important Packages in the Java SE (Cont.)

For a developer, you can’t avoid studying the Java API documentation at https://
docs.oracle.com/en/java/javase/17/docs/api/index.html.

Official Interface (java and javax Packages)

The list provided by the Java documentation represents the permitted access to the
library. The types are basically designed to last forever, so developers can count on still
being able to run their Java programs in 100 years. But who defines the API? In essence,
three sources define APIs:

® QOracle developers put new packages and types into the APL

® The Java Community Process (JCP) adopts a new APL Then, Oracle is not acting alone,
but instead, a group works out a new API and defines its interfaces.

m The World Wide Web Consortium (W3C) provides an API for XML Document Object
Model (DOM), for example.

A good mnemonic is that anything starting with java or javax is a permitted API, and
anything else can lead to non-portable Java programs. Some classes are supported that
aren’t part of the official API These classes include, for example, various Swing classes
for controlling the appearance of the interface.

Standard Extension API (javax Packages)

Some Java packages start with javax. Originally, these extension packages were
intended to complement the core classes. Over time, however, many packages that ini-
tially had to be included have now migrated to the standard distribution, so that today,
a fairly large proportion start with javax, but no longer represent extensions that need
to be additionally installed. Sun didn’t want to rename the packages at that time, so as
not to make migration more difficult. If you notice a package name with javax in the
source code today, therefore, you can no longer easily determine whether an external
source must be included or whether the package is already part of the distribution (and
since Java version).

841

[+]

16 The Class Library

Truly external packages include the following packages:

® The Java Communications API for serial and parallel interfaces

® The java Telephony API

® Speech input/output with the Java Speech API

® JavaSpaces for shared memory of different runtime environments
m JXTA for establishing P2P networks

The bottom line is that developers are dealing with the following libraries:

m With the official Java API

m With APIs from Java Specification Request (JSR) extensions

m With unofficial libraries, such as open-source solutions, for example, to access PDF

files or control ATMs

An important role is also played by types from the jakarta package, which is part of
Jakarta EE (formerly Java EE) and semi-official.

16.2 Simple Time Measurement and Profiling*

In addition to the convenient classes for managing date values, two static methods pro-
vide simple ways to measure times for program sections:

final class java.lang.System

P static long currentTimeMillis()
Returns the milliseconds elapsed since 1/1/1970, 00:00:00 Coordinated Universal
Time (UTC).

P static long nanoTime()
Returns the time from the most accurate system timer. This method has no refe-
rence point to any date.

The difference between two time values can be used to roughly estimate the execution
times of programs.

Tip

The values of nanoTime() are always ascending, which isn’t necessarily true for cur-
rentTimeMillis() because Java gets the time from the operating system. System
times can change, for example, when a user adjusts the time. Differences of current-
TimeMillis() timestamps are then completely wrong and could even be negative.

842

16.3 The Class Class

16.2.1 Profilers

Where the Java virtual machine (JVM) does waste clock cycles in a program is shown by
a profiler. Optimization can then begin at those points. Java Mission Control is a power-
ful program of the JDK and integrates a free profiler. Java VisualVM is another free pro-
gram that can be obtained from https://visualvm.github.io/. On the professional and
commercial side, JProfiler (https://www.ej-technologies.com/products/jprofiler/over-
view.html) and YourKit (https://www.yourkit.com/java/profiler) are competitors. The
Ultimate Version of Intelli] also includes a profiler.

16.3 The Class Class

Let’s suppose we want to write a class browser. This program should display all classes
belonging to the running program and furthermore additional information, such as
variable assignment, declared methods, constructors, and some information about the
inheritance hierarchy. For this purpose, you'll need the library class, class. Instances of
Class are objects that, for example, represent a Java class, record or a Java interface.

In this respect, Java differs from many conventional programming languages because
the members of classes can be queried by the currently running program using the
Class objects. The instances of Class are a restricted kind of meta-object?>—containing
the description of a Java type but revealing only selected information. Besides normal
classes, interfaces are also represented by a Class object, and even arrays and primitive
data types—instead of Class, the class name Type would probably have been more
appropriate.

16.3.1 Obtaining a Class Object

First, for a given class, you must identify the associated Class object. Class objects
themselves can only be created by the JVM. (We can’t create instances because the con-
structor of Class is private.) To obtain a reference to a Class object, the following solu-
tions are available:

m If an instance of the class is available, you can call the getClass() method of the
object and get the Class instance of the associated class.

® FEach type contains a static variable named . class of type Class, which references the
associated Class instance.

®m The ending .class is also permitted for primitive data types. The same Class object
returns the static variable TYPE of the wrapper classes. Thus, int.class == Inte-
ger.TYPE is true.

2 True metaclasses are classes whose only instance in each case is the regular Java class. Then, for
example, the regular class variables would actually be object variables in the metaclass.

843

[+

16 The Class Library

® The class method Class.forName(String) can query a class, and you'll obtain the
associated Class instance as a result. If the type hasn’t been loaded yet, for-
Name(String) searches for and binds the class. Because searching can go wrong, a
ClassNotFoundException is possible.

® Ifyoualready have a Class object but are interested in its ancestors instead, you can
simply get a Class object for the superclass via getSuperclass().

The following example shows three ways to obtain a Class object for java.util.Date:

Class<Date> cl = java.util.Date.class;
System.out.println(cl); // class java.util.Date
Class<?> c2 = new java.util.Date().getClass();

// or Class<? extends Date> c2 = ..

System.out.println(c2); // class java.util.Date

try {
Class<?> c3 = Class.forName("java.util.Date");
System.out.println(c3); // class java.util.Date
¥

catch (ClassNotFoundException e) { e.printStackTrace(); }

Listing 16.1 src/main/java/com/tutego/insel/meta/GetClassObject.java, main()

The variant with forName(String) is useful if the name of the desired class wasn't deter-
mined when the program was translated.

Otherwise, the previous technique is more catchy, and the compiler can check if the
type exists. A full qualification is needed: Class.forName("Date") would only search for
Date in the default package, and the return isn’t a collection after all.

Example

Note that class objects for primitive elements aren’t returned by forName(String). The
two expressions Class.forName("boolean") and Class.forName(boolean.class.get-
Name()) lead to a ClassNotFoundException.

class java.lang.Object

P final Class<? extends Object> getClass()
Returns the Class instance at runtime which represents the class of the object.

final class java.lang.Class<T>
implements Serializable, GenericDeclaration, Type, AnnotatedElement

844

16.3 The Class Class

P static Class<?> forName(String className) throws ClassNotFoundException
Returns the Class instance for the class, record or interface with the specified fully
qualified name. If the type hasn’t yet been required by the program, the class loader
searches for and loads the class. The method never returns null. If the class couldn’t
be loaded and included, a ClassNotFoundException will occur. The alternative
method, forName(String name, boolean initialize, ClasslLoader loader), also allows
loading with a desired class loader. The class name must always be fully qualified.

ClassNotFoundException and NoClassDefFoundError*

A ClassNotFoundException can be thrown by any of the following methods:

m forName(...) from Class
® loadClass(String name [, boolean resolve]) from ClasslLoader

® findSystemClass(String name) from ClassLoader

An exception occurs whenever the class loader can’t find the class by its class name.
Thus, the trigger is when an application wants to load types dynamically, but those
types aren’t present.

In addition to ClassNotFoundException, the NoClassDefFoundError is a hard LinkageError
that the JVM raises whenever it can’t load a class referenced in the bytecode. For exam-
ple, let’s consider an expression like new MyClass (). When the JVM executes this code, it
attempts to load the bytecode from MyClass. If the bytecode for MyClass has been
removed after compilation, the JVM raises the NoClassDefFoundError due to the unsuc-
cessful load attempt. Also, the error occurs if the MyClass class was found when loading
the bytecode, but MyClass has a static initialization block that in turn references a class
for which no class file exists.

While ClassNotFoundException is more common than NoClassDefFoundError, the excep-
tion is generally an indication that a Java Archive file (JAR file) is missing in the module
path.

Problems after Applying an Obfuscator*

The fact that the compiler automatically generates bytecode according to this modified
source code only leads to unexpected problems if you run an obfuscator over the pro-
gram text, which subsequently modifies the bytecode and thus obscures the meaning
of the program or the bytecode and renames types in the process. Obviously, an obfus-
cator must not rename types whose Class instances are requested.

Otherwise, the obfuscator must correctly replace the corresponding strings as well (but
of course not replace all strings that happen to match class names).

845

16 The Class Library

16.3.2 AClass|s a Type

InJava, different types exist, and classes, records, interfaces, and enumeration types are
represented by the JVM as Class objects. In the Reflection API, the Type interface rep-
resents all types and the only implementing class is Class. Below Type there are some
subinterfaces:

® pParameterizedType represents generic types like List<T>.
® TypeVariable<D> represents, for example, T extends Comparable<? super T>.
® WildcardType represents ? super T.

B (CenericArrayType represents something like T[].

The only method of Type is getTypeName(), and this method is just a default method that
calls toString(). Type is the return of various methods in the Reflection API, such as
getGenericSuperclass() and getGenericInterfaces() of the Class class, and many other
methods listed in the Javadoc under USE.

16.4 The Utility Classes System and Members

In the java.lang.System class, methods exist for requesting and changing system vari-
ables, for redirecting the standard data streams, for determining the current time, for
terminating the application, and for several other tasks. All methods are exclusively
static, and an instance of System can’t be created. In the java.lang.Runtime class, addi-
tional helper methods are available, such as for starting external programs or for
requesting memory requirements. Unlike System, only one method is static in this class,
namely, the singleton method getRuntime(), which returns the instance of Runtime.

java::lang::System java::lang::Runtime

+ err : PrintStream

+ in : InputStream
+ out : PrintStream

+ arraycopy(src : Object, srcPos : int, dest : Object, destPos :

int, length :

int)

+ clearProperty(key : String) : Strin

+ console() : Console

+ g

+ getProperties() : Properties

+ getProperty(key : String, def : String) : String
+ getProperty(key : String) : String

+ addShutdownHook (hook : Thread)

+ availableProcessors() : int

+ exec(cmdarray : String[], envp : String[], dir : File) : Process
+ exec(command : String, envp : String[], dir File) : Process
+ exec(command : String) : Process

+ exec(cmdarray : String[]) : Process

+ exec(cmdarray : String[], envp : String[]) : Process

+ exec(command : String, envp : String[]) : Process

+ exit(status : int)

+ freeMemory() : long

+ gc)

+ getlocalizedInputStream(in : InputStream) : InputStream

+ getlocalizedOutputStream(out: OutputStream) : OutputStream
+ getRuntime() : Runtime

+ getSecurityManager() : SecurityManager + halt(status : int)
+ getenv(name: String) : Strin + load(filename : String)
+ getenv() : Map

+ identityHashCode(x : Object) : int

+ inheritedChannel() : Channel

+ load(filename : String

+ loadLibrary(libname : String)

+ mapLibraryName(libname : String) : Strin
+ nanoTime() : long

+ runFinalization

+ runFinalizersOnExit(Value : boolean)

+ setErr(err : PrintStream

+ setIn(in : InputStream

+ setOut(out : PrintStream

+ setProperties(props : Properties)

+ setProperty(key : String, value : String) : String
+ setSecurityManager(s : SecurityManager)

+ loadLibrary(libname : String)

+ maxMemory() : long

+ removeShutdownHook (hook : Thread) : boolean
+ runFinalization()

+ runFinalizersOnExit(value : boolean)

+ totalMemory() : long

+ traceInstructions(on : boolean)

+ traceMethodCalls(on : boolean)

Figure 16.4 Members of the System and Runtime Classes

846

16.4 The Utility Classes System and Members

Remark

All in all, the System and Runtime classes don’t seem particularly orderly, as shown in
Figure 16.4; you may think everything that doesn’t fit elsewhere can be found in these
two classes. Also, some methods of one class would be just as good in the other class.
The fact that the static method System.arraycopy(...) for copying arrays isn’t located
in java.util.Arrays can only be explained historically. Furthermore, Sys-
tem.exit(int) redirects to Runtime.getRuntime().exit(int). Some methods are
obsolete and distributed differently: The exec(...) of Runtime to start external pro-
cesses is handled by a new class (ProcessBuilder), and the question about the memory
state or the number of processors is answered by MBeans, such as ManagementFac-
tory.getOperatingSystemMXBean().getAvailableProcessors(). But API design is like
gambling: One rash action, and you've lost the farm.

16.4.1 Memory of the Java Virtual Machine

The Runtime object includes the following three methods that provide information
about the memory of the JVM:

® maxMemory () returns the maximum number of bytes available for the JVM. The value
can be set when calling the JVM with -Xmx in the command line.

® totalMemory() is what is currently used and can grow to maxMemory (). Basically, this
memory limit can also shrink again. The following applies: maxMemory() > totalMem-
ory().

m freeMemory() indicates the memory that is free for new objects and also provokes the
automatic garbage collection process. The following applies: totalMemory() > free-
Memory(). However, freeMemory() isn’t the entire freely available memory area
because the “share” of maxMemory() is still missing.

Two pieces of information are missing and therefore must be calculated:

® Used memory:
long usedMemory = Runtime.getRuntime().totalMemory() -
Runtime.getRuntime().freeMemory();

® Free total memory:
long totalFreeMemory = Runtime.getRuntime().maxMemory() - usedMemory;

Example

The following example outputs information about the memory on a computer:

long totalMemory = Runtime.getRuntime().totalMemory();
long freeMemory = Runtime.getRuntime().freeMemory();
long maxMemory = Runtime.getRuntime().maxMemory();
long usedMemory = totalMemory - freeMemory;

847

[«]

21

[+

[+

16 The Class Library

long totalFreeMemory = maxMemory - usedMemory;

System.out.printf(
"total=%d MiB, free=%d MiB, max=%d MiB, used=%d MiB, total free=%d MiB%n",
totalMemory >> 20, freeMemory >> 20, maxMemory >> 20,
usedMemory >> 20, totalFreeMemory >> 20);

The result is the following output:

total=126 MiB, free=124 MiB, max=2016 MiB, used=1 MiB, total free=2014 MiB

16.4.2 Number of CPUs or Cores

The Runtime method availableProcessors() returns the number of logical processors
or cores.

Example

Print the number of processors/cores:

System.out.println(Runtime.getRuntime().availableProcessors()); // 4

16.4.3 System Properties of the Java Environment

The Java environment manages system properties, such as path separators or virtual
machine versions in the java.util.Properties object. The static method System.get-
Properties() queries these system properties and returns the filled Properties object.
However, the Properties object isn’t absolutely necessary for querying individual prop-
erties: System.getProperty(...) directly queries a property.

Example

The following example outputs the name of the operating system:
System.out.println(System.getProperty("os.name")); // e.g., Windows 10
The following example outputs all system properties on the screen:
System.getProperties().list(System.out);

An excerpt of the result is shown in the following output:

-- listing properties --
sun.desktop=windows

awt. toolkit=sun.awt.windows.WToolkit
java.specification.version=9
file.encoding.pkg=sun.io
sun.cpu.isalist=amd64

848

16.4 The Utility Classes System and Members

Table 16.4 shows a list of the important standard system properties.

Jjava.version Version of the Java Runtime Environment (JRE)
java.class.path The current classpath

java.library.path Path for native libraries

java.io.tmpdir Path for temporary files

0S.name Name of the operating system

file.separator Separator of the path segments, for example / (Unix) or \ (Windows)
path.separator Separator for path specifications, such as : (Unix) or ; (Windows)
line.separator Newline character (string)

user.name Name of the logged-on user

user.home Home directory of the user

user.dir Current directory of the user

Table 16.4 Standard System Properties

Application Programming Interface Documentation

A few more keys are listed in the API documentation at System.getProperties(). Some
variables are also accessible in other ways, such as through the File class.

final class java.lang.System

P static String getProperty(String key)
Returns the assignment of a system property. If the key is null or empty, a
NullPointerException or an IllegalArgumentException, respectively, will occur.

P static String getProperty(String key, String def)
Returns the assignment of a system property. If the property isn’t present, the
method returns the string def, which is the default value. For the exceptions, the
same applies as for getProperty(String).

P static String setProperty(String key, String value)
Reassigns a system property. The return is the previous assignment or null if no pre-
vious assignment exists.

P static String clearProperty(String key)
Deletes a system property from the list. The return is the previous assignment or
null if no previous assignment exists.

849

16 The Class Library

P static Properties getProperties()
Returns a Properties object filled with the current system assignments.

16.4.4 Setting Custom Properties from the Console*

Properties can also be set from the console during the program startup. This approach
is convenient for a configuration that controls, for example, the behavior of a program.
On the command line, -D specifies the name of the property and, after an equal sign
(without whitespace), its value. Consider the following example:

$ java -DLOG -DUSER=Chris -DSIZE=100 com.tutego.insel.lang.SetProperty

The LOG property is “simply exists” but with no assigned value. The next two properties,
USER and SIZE, are associated with values that are first of type String and must be fur-
ther processed by the program. This information doesn’t appear with the argument list
in the static main(String[]) method because it precedes the name of the class and is
already processed by the JRE.

To read the properties, we’ll use the familiar System.getProperty(...) method in the
following example:

Optional<String> logProperty = ofNullable(System.getProperty("LOG"));
Optional<String> user nameProperty = ofNullable(System.getProperty("USER"));
Optional<String> sizeProperty = ofNullable(System.getProperty("SIZE"));

System.out.println(logProperty.isPresent()); // true
user nameProperty.ifPresent(System.out::println); //
Chris

sizeProperty.map(Integer::parseInt).ifPresent(System.out::println); // 100
System.out.println(System.getProperty("DEBUG", "false")); //
false

Listing 16.2 com/tutego/insel/lang/SetProperty.java, main()

In return, you'll receive a string indicating the value via getProperty(String). If no
property of that name exists at all, you'll get null instead. In this way, we can know if
this value was set at all. So, a simple null test tells us whether logProperty is present or
not. Instead of -DLOG, -DLOG= also returns the same result because the associated value
is the empty string. Since all properties are of type String to begin with, user nameProp-
erty is easy to output, and you’ll get either null or the string specified after =. If the
types aren’t strings, they must be processed further, for example, with Integer.par-
seInt(), Double.parseDouble(), and so on. The System.getProperty(String, String)
method, which is passed two arguments, is pretty useful in this case because the sec-
ond argument represents a default value. Thus, a default value can always be assumed.

850

16.4 The Utility Classes System and Members

Boolean.getBoolean(String)

In the case of properties that are assigned truth values, the following statement can be
written:

boolean b = Boolean.parseBoolean(System.getProperty(property)); // (¥)

There’s another variant for the truth values. The static method Boolean.getBool-
ean(String) searches for a property with the specified name in the system properties.
Thus, the following is analogous to the line (*):

boolean b = Boolean.getBoolean(property);

You might be surprised to find this static method in the wrapper class Boolean because
property access has nothing to do with wrapper objects and the class actually goes
beyond its area of responsibility in this case.

Compared to a separate, direct System query, getBoolean(String) also has a disadvan-
tage in that, when it returns false, you can’t distinguish whether the property simply
doesn’t exist or whether the property is assigned the value false. Also, incorrectly set
values like -DP=false always result in false.?

final class java.lang.Boolean
implements Serializable, Comparable<Boolean>

P static boolean getBoolean(String name)
Reads a system property named name and returns true if the value of the property is
equal to the string "true". The return value is false if the value of the system pro-
perty is false, if the property doesn’t exist, or if the property is null.

16.4.5 Newline Characters and line.separator

To move from the end of one line to the beginning of the next, a newline is inserted. The
character for a new line doesn’t have to be a single character; several characters may
also be necessary. Unfortunately for programmers, the number of characters for a new-
line sequence depends on the architecture, for instance:

® Unix, macOS: Line feed (LF for short), \n

m Windows: Carriage return (CR for short) and line feed

The control code for a carriage return is 13 (0xOD); the control code for a line feed is 10
(OxO0A). Java also assigns its own escape sequences for these characters: \r for carriage

returns and \n for line feeds. (The \f sequence is for a form feed, also called a “page
feed,” which doesn’t play any role in line breaks).

3 This confusion is due to the implementation: Boolean.valueOf("false") returns false just like
Boolean.valueOf("") or Boolean.valueOf(null).

851

16 The Class Library

In Java, you can obtain a newline character or a newline string from the system in one
of the following three ways:

® By calling System.getProperty("line.separator")

® By calling System.lineSeparator()

® You don’t always have to query the character (or, strictly speaking, a possible string
of characters) individually. If the character is part of a formatted output at the for-

matter, String.format(...) or printf(...), the format specifier %n stands for exactly
the newline string stored in the system.

16.4.6 Environment Variables of the Operating System

Almost every operating system uses the concept of environment variables; for exam-
ple, PATH is known for the search path for applications on Windows and Unix. Java
enables access to these system environment variables. Two static methods are used for
this purpose:

final class java.lang.System

P static Map<String, String> getEnv()
Reads a set of <string, string> pairs with all system properties.

P static String getEnv(String name)
Reads a system property named name. If the property doesn’t exist, the return will be
null.

COMPUTERNAME Name of the computer MOE

HOMEDRIVE Drive of the user directory C:

HOMEPATH Path of the user directory \Users\Christian

0S Name of the operating system* Windows_NT

PATH Search path C:\windows\SYSTEM32;
C:\windows ...

PATHEXT File extensions that represent .COM;.EXE;.BAT;.CMD;.VBS;.\VVBE;.JS;.

executable programs JSE;.WSF;.WSH;.MSC

SYSTEMDRIVE Drive of the operating system C:

TEMP and also TMP Temporary directory C:\Users\CHRIST~1\AppData\Local\
Temp

USERDOMAIN Domain of the user MOE

Table 16.5 Selection of Some Environment Variables Available in Windows

852

16.5 The Languages of Different Countries

USERNAME Name of the user Christian
USERPROFILE Profile directory C:\Users\Christian
WINDIR Directory of the operating system C:\windows

* The result differs from System.getProperty("os.name"), which already returns “Windows
10” for Windows 10.

Table 16.5 Selection of Some Environment Variables Available in Windows (Cont.)

Some variables are also accessible via the system properties, for instance, with Sys-
tem.getProperties(), System.getProperty(..), and so on.

Example [Ex]
The following example outputs the environment variables of the system:

Map<String,String> map = System.getenv();
map.forkach((k, v) -> System.out.printf("%s=%s¥%n", k, v));

16.5 The Languages of Different Countries

When developers start with console or GUI output, they often hardwire the output to a
local language. If the language changes, the software can’t handle other country-spe-
cific rules, for example, when formatting floats. Developing “multilingual” programs
that provide localized outputs in different languages is not too difficult. Basically, you'll
replace all language-dependent strings and formatting of data with code that takes into
account country-specific output formats and rules. Java offers a solution for these
cases: on one hand, you can define a language that then specifies rules according to
which the Java API can automatically format data, and on the other hand, you can allow
language-dependent parts to be swapped out to resource files.

16.5.1 Regional Languages via Locale Objects

In Java, Locale objects represent languages in geographic, political, or cultural regions.
The language and the region must be separated because a region or a country doesn'’t
always clearly specify the language. For Canada, in the province of Quebec, the French
edition is relevant, which, of course, differs from the English edition. Each of these lan-
guage-specific properties can be encapsulated in a special object. These Locale objects
are then passed to a Formatter that’s located behind String.format(...) and
printf(...) or passed to a Scanner. These outputs are referred to as locale sensitive.

853

[+

[E:d

16 The Class Library

Building Locale Objects

Locale objects are always created with the name of the language and optionally with
the name of the country or a region and variant. The Locale class provides three ways
to build the objects:

m Using the Locale constructor (deprecated in Java 19)

® Using the nested Builder class of Locale uses the builder pattern to build new Locale
objects

® Using the Locale method forLanguageTag(...) and a string identifier

Example
Country abbreviations are specified in the constructor of the Locale class, for example,
for a language object for Great Britain or France. Consider the following examples:

Locale greatBritain = new Locale("en", "GB");
Locale french = new Locale("fr");

In the second example, we don’t care about the country. We're simply choosing French
as the language, no matter what part of the world.

Languages are identified by 2-letter abbreviations from the ISO 639 code* (ISO Lan-
guage Code), and country names are 2-letter abbreviations described in ISO 3166° (ISO
Country Code).

Example

Three variants for building Locale.JAPANESE are found in the following example:

16.5 The Languages of Different Countries

Locale locl = new Locale("ja");

Locale loc2 = new Locale.Builder().setlanguage("ja").build();
Locale loc3 = Locale.forlanguageTag("ja");

final class java.util.locale

implements Cloneable, Serializable

P Locale(String language)
Creates a new Locale object for the language given by the ISO-693 standard. Invalid
identifiers aren’t recognized.

P Locale(String language, String country)
Creates a Locale object for a language according to ISO 693 and a country according to
the ISO 3166 standard.

4 https://en.wikipedia.org/wiki/List_of ISO_639-1 codes
5 https://en.wikipedia.org/wiki/ISO_3166-1

854

P Locale(String language, String country, String variant)
Creates a Locale object for a language, a country, and a variant. variant is a vendor-
dependent specification like “WIN” or “MAC.”

The static Locale.getDefault() method returns the currently set language. For the run-
ning JVM, Locale.setDefault(Locale) can change the language.

The Locale class has more methods; developers should study the Javadoc for the
Builder, for forlanguageTag(...) and the new extensions and filter methods.®

Constants for Some Languages

The Locale class has constants for commonly occurring languages, with an option for
specifying countries. The constants for countries and languages include, for example, CAN-
ADA, CHINA, FRENCH, GERMAN, ITALIAN, KOREAN, TAIWAN, UK and US. Behind an abbreviation like
Locale.UK, nothing else exists except for the initialization with new Locale("en", "GB").

Methods That Accept Instances of Locale

Locale objects are actually not interesting as objects—they do have methods, but more
exciting is its use as a type for the identification of a language. Dozens of methods in
the Java library accept Locale objects and adjust their behaviors based on them. Exam-
ples include printf(Locale, ...), format(Locale, ...), and tolLowerCase(Locale).

Tip

If no variant of a format or parse method exists with a Locale object; the method usu-
ally doesn’t support language-dependent behavior. The same limitation applies to
objects that don’t accept a Locale via a constructor or setter. Double.toString(...) is
one such example, as is Double.parseDouble(...). In internationalized applications,
these methods will rarely be found. Also, string concatenation with, for example, a
float isn’'t permitted (because a Double method is called internally), and using
String.format(...) is definitely a better option.

Methods of Locale*

Locale objects provide a number of methods that reveal the ISO-639 code of the coun-
try, for example.

Example

The following example outputs the Locale information accessible for languages in
selected countries. The objects System.out and Locale.* are imported statically:

6 Oracle’s Java tutorial describes these extensions at http://docs.oracle.com/javase/tutorial/il8n/
locale/index.html.

855

[+]

21

16 The Class Library

out.println(GERMANY.getCountry()); // DE
out.println(GERMANY.getLanguage()); // de
out.println(GERMANY.getVariant()); //

out.println(GERMANY.getISO3Country()); // DEU
out.println(GERMANY.getISO3Language()); // deu

out.println(CANADA.getDisplayCountry()); // Canada
out.println(GERMANY.getDisplaylLanguage()); // German
out.println(GERMANY.getDisplayName()); // German (Germany)
out.println(CANADA.getDisplayName()); // English (Canada)
out.println(GERMANY.getDisplayName(FRENCH)); // allemand (Allemagne)
out.println(CANADA.getDisplayName(FRENCH)); // anglais (Canada)

Listing 16.3 src/main/java/com/tutego/insel/locale/GermanyLocal.java, main()

Static methods also exist for querying Locale objects:

final class java.util.locale
implements Cloneable, Serializable

P static Locale getDefault()
Returns the language preset by the JVM, which defaults to the operating system.

P static Locale[] getAvailablelocales()
Returns a list of all installed Locale objects. The field contains at least Locale.US and
about 160 entries.

P static String[] getISOCountries()
Returns an array of all 2-letter ISO-3166 country codes.

P static Set<String> getISOCountries(Locale.IsoCountryCode type)
Returns a set with all ISO-3166 country codes, where the IsoCountryCode list determi-
nes the following: PART1 _ALPHA2 returns the code of 2 letters, PART1 ALPHA3 of 3 letters,
PART3 of 4 letters.

On the other hand, other methods provide abbreviations according to ISO standards:

final class java.util.locale
implements Cloneable, Serializable

P String getCountry()
Returns the country abbreviation according to the ISO-3166 2-letter code.

» String getlanguage()
Returns the abbreviation of the language in ISO-639 code.

P String getISO3Country()
Returns the ISO abbreviation of the country of these settings and throws a
MissingResourceException if the ISO abbreviation isn’t available.

856

16.6 Overview of Important Date Classes

P String getISO3Language()
Returns the ISO abbreviation of the language of these settings and throws a
MissingResourceException if the ISO abbreviation isn’t available.

P String getVariant()
Returns the abbreviation of the variant or an empty string.

These methods provide abbreviations, but they aren’t intended for human-readable
output. For various get*() methods, therefore, corresponding getDisplay*() methods
exist:

final class java.util.locale
implements Cloneable, Serializable

P String getDisplayCountry(Locale inlocale)
final String getDisplayCountry()
Returns the name of the country for screen outputs for a language or Loa-
cale.getDefault().

P String getDisplaylanguage(Locale inLocale)
String getDisplaylanguage()
Returns the name of the screen output language for a given Locale or
Locale.getDefault().

P String getDisplayName(Locale inLocale)
final String getDisplayName()
Returns the name of the settings for a language or Locale.getDefault().

P String getDisplayVariant(Locale inLocale)
final String getDisplayVariant()
Returns the name of the variant for a language or Locale.getDefault().

16.6 Overview of Important Date Classes

Because date calculations are convoluted entities, we can be grateful to the developers
of Java for providing many classes for date calculation and formatting. The developers
have kept the classes abstract enough to allow for local specifics like output formatting,
parsing, time zones, or daylight saving time/winter time in different calendars.

Prior to Java 1.1, only the java.util.Date class was available for displaying and manipu-
lating date values, and this class had to carry out several tasks:

m (Creation of a date/time object from year, month, day, minute, and second
® Querying day, month, year, and so on with an accuracy of milliseconds

® Processing and output of date strings

857

[

]

16 The Class Library

Since the Date class wasn’t quite bug-free and internationalized, new classes were intro-
duced in JDK 1.1, namely, the following:

® (alendar takes on Date’s task of converting between different date representations
and time scales. The GregorianCalendar subclass is created directly.

® DateFormat breaks up date strings and formats the output. Date formats also depend
on the country, which Java represents through Locale objects, and on a time zone,
which is represented by the instances of the TimeZone class.

InJava 8, another date library was added with entirely new types. Finally, date and time
can be represented separately:

® |ocalDate, LocalTime, and LocalDateTime are the temporal classes for a date, for a
time, and for a combination of date and time, respectively.

® Period and Duration represent intervals.

16.6.1 Unix Time: January 1,1970

January 1,1970, was a Thursday with groundbreaking changes: The British rejoiced that
the age of majority dropped from 24 to 18, and as in every year, and people everywhere
woke up to massive hangovers from the night before. For us, however, a technical inno-
vation is of concern: The date of 1/1/1970, 0:00:00 UTC is also referred to as the Unix
epoch, and a Unix time is described in relation to this time in terms of seconds. For
example, 100,000,000 seconds after 1/1/1970 is March 3,1973, at 09:46:40. The Unix Bil-
lennium was celebrated 1,000,000,000 seconds after Jan. 1, 1970, namely, on Sept. 9,
2001, at 01:46:40.

16.6.2 System.currentTimeMillis()

Unix time is also an important concept for us Java developers because many times in
Java are relative to this date. The timestamp O refers to 1/1/1970 0:00:00 Greenwich
Mean Time. The System.currentTimeMillis() method returns the past milliseconds—
not seconds!—relative to 1/1/1970, 00:00 UTC, although your operating system’s clock
may not be that accurate. The number of milliseconds is represented in a long (i.e., in 64
bits), which will suffice for about 300 million years.

Warning

The values of currentTimeMillis() don’t necessarily ascend because Java gets the
time from the operating system, where the system time can change. A user can adjust
the time, or a service such as the Network Time Protocol (NTP) takes over this task. Dif-
ferences of currentTimeMillis() timestamps are then completely wrong and could
even be negative. An alternative is nanoTime(), which has no reference point, is more
precise, and is always ascending.”

7 http://stackoverflow.com/questions/351565/system-currenttimemillis-vs-system-nanotime goes into
more details and provides links to internal implementations.

858

16.6 Overview of Important Date Classes

16.6.3 Simple Time Conversions via TimeUnit

A time duration in Java is often expressed in terms of milliseconds. 1,000 milliseconds
correspond to 1 second, 1,000 x 60 milliseconds to 1 minute, and so on. However, all
those large numbers aren’t easy to read, which is why TimeUnit objects are used with
their to*(...) methods for the purpose of conversion. Java declares the following con-
stants in TimeUnit: NANOSECONDS, MICROSECONDS, MILLISECONDS, DAYS, HOURS, SECONDS, and
MINUTES.

Each of the enumeration elements defines the conversion methods, for instance,
toDays(..), toHours(..), toMicros(..), toMillis(..), toMinutes(..), toNanos(..), and toSec-
onds(..). These methods receive a long and return a long in the corresponding unit. In
addition, two convert(...) methods convert from one unit to another.

Example

The following example converts 23,746,387 milliseconds to hours:

int v = 23 746 387;

System.out.printIn(TimeUnit.MILLISECONDS.toHours(v)); // 6

System.out.println(TimeUnit.HOURS.convert(v,
TimeUnit.MILLISECONDS)); // 6

enum java.util.concurrent.TimeUnit

extends Enum<TimeUnit>

implements Serializable, Comparable<TimeUnit>

» NANOSECONDS, MICROSECONDS, MILLISECONDS, SECONDS, MINUTES, HOURS, DAYS
TimeUnit enumeration elements.

P long toDays(long duration)

P long toHours(long duration)

P long toMicros(long duration)
P long toMillis(long duration)
P long toMinutes(long duration)
P long toNanos(long duration)
P long toSeconds(long duration)

P long convert(long sourceDuration, TimeUnit sourceUnit)
Returns sourceUnit.to*(sourceDuration), where * represents the respective unit. For
example, this method returns HOURS.convert(sourceDuration, sourceUnit), then
sourceUnit.toHours(1). The readability of this method isn’t ideal, so the other
methods should be preferred. Results may be truncated, not rounded. If an overflow
occurs, no ArithmeticException will follow.

859

[«]

16 The Class Library

P long convert(Duration duration)
Converts the passed duration into the time unit that represents the current TimeUnit.
For example, TimeUnit.MINUTES.convert(Duration.ofHours(12)) returns 720. Thus,
for example, aunit.convert(Duration.ofNanos(n)) and aunit.convert(n, NANOSEC-
ONDS) are the same.

16.7 Date-Time API

The java.time package is based on the standardized calendar system of ISO-8601, and
this covers how a date is represented, including time, date and time, UTC, time inter-
vals (duration/time span), and time zones. The implementation is based on the Grego-
rian calendar, although other calendar types are also conceivable. Java’'s calendar
system can use other standards or implementations as well, including the Unicode
Common Locale Data Repository (CLDR) for localizing days of the week or the Time-Zone
Database (TZDB), which documents all time zone changes since 1970.

16.7.1 Initial Overview

The central temporal types from the Date-Time API can be quickly documented:

LocalDate Represents a common date Years, months, and days
LocalTime Represents a common time Hours, minutes, seconds, and
nanoseconds
LocalDateTime Combination of date and time Years, months, days, hours, min-
utes, seconds, and nanoseconds
Period Duration between two Local- Years, months, and days
Dates
Year Year only Year
Month Month only Month
MonthDay Month and day only Month, day
OffsetTime Time with time zone Hours, minutes, seconds, nanosec-
onds, and zone offset
OffsetDateTime Date and time with time zone as Year, month, day, hours, minutes,
UTC offset seconds, nanoseconds, and zone

offsets

Table 16.6 All Temporal Classes from java.time

860

16.7 Date-Time API

ZonedDateTime Date and time with time zoneasID Year, month, day, hours, minutes,
and offset seconds, nanoseconds, and zone
info
Instant Time (continuous machine time) Nanoseconds
Duration Time interval between two Seconds/nanoseconds
instants

Table 16.6 All Temporal Classes from java.time (Cont.)

16.7.2 Human Time and Machine Time

Date and time, which we as humans understand in units such as days and minutes, is
referred to as human time, while the continuous time of the computer, which has a res-
olution in the nanosecond range, is called machine time. The machine time begins at a
time we call an epoch, namely, the Unix epoch.

From Chapter 7, Section 7.2.5, you learned how most classes are made for humans and
that only Instant/Duration refers to machine time. LocalDate, LocalTime, and LocalDa-
teTime represent human time without reference to a time zone, whereas ZonedDateTime
does reference a time zone. When choosing the right time classes for a task, the first
consideration is, of course, whether to represent human time or machine time. This
choice is followed by questions about exactly which fields are needed and whether a
time zone is relevant or not. For example, if the execution time is to be measured, you
don’t need to know on which date the measurement started and ended; in this case,
Duration would be correct, unlike Period.

Example

Examples for explicit formatting and default formatting for the US locale:

LocalDate now = LocalDate.now();
System.out.println(now); // e.g., 2023-01-31
System.out.printf("%d. %s %d&n",

now.getDayOfMonth(), now.getMonth(), now.getYear());
// e.g., 31. JANUARY 2023
LocalDate bdayMLKing = LocalDate.of(1929, Month.JANUARY, 15);
DateTimeFormatter formatter =
DateTimeFormatter.oflocalizedDate(FormatStyle.MEDIUM);
System.out.println(bdayMLKing.format(formatter)); // Jan 15, 1929

The getMonth() method on a LocalDate returns a java.time.Month object as the result,
and these are enumerations. The toString() representation returns the constant in
uppercase letters.

861

21

[E:d

16 The Class Library

All classes are based on the ISO system by default. Other calendar systems, such as the
Japanese calendar, are created using types from java.time.chrono, and of course,
entirely new systems are also possible.

Example

Output for the Japanese calendar:

ChronolLocalDate now = JapaneseChronology.INSTANCE.dateNow();
System.out.println(now); // Japanese Reiwa 4-01-31

Package Overview

The types of the Date-Time API are distributed among different packages:

B java.time
Contains the standard classes like LocalTime and Instant. All types are based on the
ISO-8601 calendar system, commonly known as the “Gregorian calendar.” This cal-
endar is extended by the Proleptic Gregorian Calendar. This calendar is also valid for
the time before 1582 (the introduction of this calendar), so that a consistent timeline
can be used.

® java.time.chrono
In this package, you'll find predefined alternative (i.e.,, non-ISO) calendar systems,
such as the Japanese calendar, the Thai-Buddhist calendar, the Islamic calendar, and
a few others.

B java.time.format
Classes for formatting and parsing date and time, such as the DateTimeFormatter.

® java.time.zone
Supporting classes for time zones, such as ZonedDateTime.

® java.time.temporal
Deeper API that allows access and modification of individual fields of a date/time
value.

Design Principles

Before we get into the individual classes, let’s look at some design principles because all
types of the Date-Time API follow recurring patterns. The first and most important
property is that all objects are immutable; that is, they can’t be changed. In contrast,
with the “old” API, Date and the Calendar classes were mutable, with sometimes devas-
tating consequences. If these objects are passed around and changed, incalculable side
effects can occur. The classes of the new Date-Time API are immutable, and so the date/
time classes like LocalTime or Instant are opposed to mutable types like Date or Calen-
dar. All methods that look as if they permitted changes now instead create new objects
with the desired changes. Side effects are therefore absent, and all types are thread safe.

862

16.7 Date-Time API

Immutability is a design property as is the fact that null isn’t permitted as an argu-
ment. In the Java API, null is often accepted because it expresses something optional,
but the Date-Time API usually penalizes null with aNullPointerExcpetion. The fact that
nullisn’tinuse as an argument and not as a return benefits another property: The code
can be mostly written with a fluent API (i.e., cascaded calls) since many methods return
the this reference, as is known from StringBuilder.

Added to these more technical features is a consistent naming that is different from
the naming of the well-known JavaBeans. So, no constructors and no setters exist
(immutable classes don’t need them), but instead, patterns adhere to many types from
the Date-Time API:

Method Class/Instance Method Basic Meaning

now() Static Returns an object with current time/current date
of*() Static Creates new objects

from Static Creates new objects from other representations
parse*() Static Creates a new object from a string representation

format() Instance Formats and returns a string

get*() Instance Returns fields of an object

is*() Instance Queries the status of an object

with*() Instance Returns an instance of the object with a changed
state

plus*() Instance Returns an instance of the object with a totaled state

minus*() Instance Returns an instance of the object with a reduced state

to*() Instance Converts an object to a new type
at*() Instance Combines this object with another object
*Into() Instance Combines an own object with another target object

Table 16.7 Name Patterns in the Date-Time API

You've already used the now() method in one of the first examples in this section, and
this method returns the current date, for example. Other creator methods are prefixed
with of, from, or with; no constructors exist. The methods of the with*() type assume
the role of setters.

16.7.3 The LocalDate Date Class

A date (without a time zone) is represented by the LocalDate class. This class can be used
to represent a birth date, for example.

863

[E:d

16 The Class Library

A temporal object can be created using the static of (...) factory methods and derived
via ofInstant(Instant instant, Zoneld zone) or from another temporal object. Interest-
ing are the methods that work with a TemporalAdjuster.

Equipped with these objects, you can use various getters and query individual fields,
such as getDayOfMonth(); getDayOfYear() (return int); getDayOfWeek (), which returns an
enumeration of type DayOfiWeek; and getMonth(), which returns an enumeration of type
Month. Furthermore, other methods include long toEpochDay() and long toEpochSec-
ond(LocalTime time, ZoneOffset offset).

Example

Find the next Saturday from now:

LocalDate today = LocalDate.now();

LocalDate nextSaturday =

today.with(TemporalAdjusters.next(DayOfWeek.SATURDAY));

System.out.printf("Today is %s, and next Saturday is %s",
today, nextSaturday);

In addition, some methods return new LocalDate objects with minus*(...) or
plus*(...) if, for example, a number of years should be returned with minusYear(long
yearsToSubtract). By negating the sign, the opposite method can also be used. In other
words, LocalDate.now().minusMonths(1) provides the same result as Local-
Date.now().plusMonths(-1). The with*(...) methods reassign a field and return a mod-
ified new LocalDate object.

From a LocaleDate object, you can create other temporal objects: atTime(. . .), for exam-
ple, returns LocalDateTime objects in which certain time fields are assigned. atTime(int
hour, int minute) is such an example. With until(...), a time duration of the Period
type can be returned. Two methods that provide a stream of LocalDate objects up to an
endpoint are also interesting:

m Stream<lLocalDate> datesUntil(LocalDate endExclusive)

® Stream<LocalDate> datesUntil(LocalDate endExclusive, Period step)

16.8 Logging with Java

Logging information about program states is important for reconstructing and under-
standing the flow and states of a program at a later time. A logging API can write mes-
sages to the console or to external storage, such as text files, XML files, and databases,
or to distribute these messages via chat.

864

16.8 Logging with Java

16.8.1 Logging Application Programming Interfaces

Regarding logging libraries and APIs, the Java world is unfortunately divided. Since the
Java standard library didn’t provide a logging API in its first versions, the open-source
library log4j quickly filled this gap. This library is used in almost every major Java proj-
ect today. When the Logging API moved into Java 1.4 with Java Specification Request
(JSR) 47, the Java community was surprised to find that java.util.logging (JUL) was nei-
ther API-compatible with the popular Log4j nor as powerful as Log4j.8

Over the years, the picture has changed. While in the early day’s developers relied
exclusively on log4j, more and more projects are now using JUL. One of the reasons is
that some developers want to avoid external dependencies (although this doesn’t
really work since almost every included Java library is based on log4j). Another reason
is that for many projects JUL is simply sufficient. In practice, for larger projects, as a
result, multiple logging configurations overcrowd their own programs, as each logging
implementation is configured differently.

16.8.2 Logging with java.util.logging

The Java logging API can write a message that you can then use for maintenance or
security checks. The API is simple:

package com.tutego.insel.logging;

import static java.time.temporal.ChronoUnit.MILLIS;
import static java.time.Instant.now;

import java.time.Instant;

import java.util.logging.level;

import java.util.logging.logger;

public class JULDemo {
private static final Logger log = Logger.getlLogger(JULDemo.class.getName());

public static void main(String[] args) {
Instant start = now();
log.info("About to start");

try {
log.log(Level.INFO, "Lets try to throw {0}", "null");
throw null;

}

8 The standard logging API, on the other hand, provides only basics like hierarchical loggers. Stan-
dard logging doesn’t come close to the power of log4j with its large number of writers in files, sys-
log/NT loggers, databases, and dispatch over the network.

865

16 The Class Library

catch (Exception e) {
log.log(Level.SEVERE, "Oh Oh", e);
}
log.info(() -
> String.format("Runtime: %s ms", start.until(now(), MILLIS)));
}
}

Listing 16.4 src/main/java/com/tutego/insel/logging/CULDemo.java, JULDemo

When you run the example, the following warning appears on the console:

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

INFO: About to start

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

INFO: Lets try to throw null

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main

SEVERE: Oh Oh

java.lang.NullPointerException: Cannot throw exception because "null" is null
at com.tutego.insel.logging.JULDemo.main(JULDemo.Jjava:20)

Jan. 24, 2022 7:47:46 PM com.tutego.insel.logging.JULDemo main
INFO: Runtime: 35 ms

The Logger Object

The Logger object is a central element that can be retrieved via Logger . getAnonymousLog-
ger() or via Logger.getlLogger(String name), where name is usually assigned the fully
qualified class name. Often, the Logger object is declared as a private static final variable
in the class.

Logging with Log Level

Not every message is equally important. Some messages are useful for debugging or
because of timing measurements, but exceptions in the catch branches are hugely
important. To support different levels of detail, you can specify a log level. This level
determines how “serious” the error or a message is, which is important later when
errors are sorted according to their urgency. Log levels are declared as constants in the
Level class? in the following ways:

® FINEST (smallest level)
® FINER
® FINE

9 Since thelogging framework joined Java in version 1.4, it doesn’t yet use typed enumerations, which
have only been available since Java 5.

866

16.9 Maven: Resolving Build Management and Dependencies

CONFIG

® INFO

WARNING

SEVERE (highest level)

For the logging process itself, the Logger class provides the general method log(Level
level, Stringmsg) or a separate method for each level.

SEVERE log(Level.SEVERE, msg) severe(Stringmsg)
WARNING log(Level .WARNING, msg) warning(String msg)
INFO log(Level.INFO, msg) info(Stringmsg)
CONFIG log(Level.CONFIG, msg) config(Stringmsg)
FINE log(Level .FINE, msg) fine(String msg)
FINER log(Level.FINER, msg) finer(String msg)
FINEST log(Level .FINEST, msg) finest(Stringmsg)

Table 16.8 Log Levels and Methods

All these methods send a message of type String. If an exception and the associated
stack trace must be logged, developers must use the following logger method, which is
also used in the example:

P void log(Level level, Stringmsg, Throwable thrown)

The variants of severe(...), warning(...), and so on are not overloaded with a Throw-
able parameter type.

16.9 Maven: Resolving Build Management and Dependencies

In Chapter 1, Section 1.9.1, we created a Maven project, but never really benefited from

using Maven. Two things stand out:

1. Dependencies can be easily declared, and they are automatically downloaded by
Maven, including all sub-dependencies. Maven'’s particular strength lies in resolving
transitive dependencies.

2. During the build, Java source code alone doesn’t make a project; the sources must be
compiled, test cases must be run, and Javadoc should be generated. At the end, the
final result is usually a compressed JAR file.

867

16 The Class Library

16.9.1 Dependency to Be Accepted

As an example, let’s create a dependency on the small web framework Spark (https://
sparkjava.com). Let’s open the Project Object Model (POM) file pom.xml and add the
code lines in bold for the dependency:

<project ..»>

<properties>
<maven.compiler.target>17</maven.compiler.target>
<maven.compiler.source>17</maven.compiler.source>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>com.sparkjava</groupId>
<artifactId>spark-core</artifactId>
<version>2.9.3</version>
</dependency>
</dependencies>
</project>

Listing 16.5: pom.xml

All dependencies are located in a special XML element named <dependencies>. Below
that element, you can then have any number of <dependency> blocks.

Now that everything is prepared, let’s write the main program:

public class SparkServer {
public static void main(String[] args) {
spark.Spark.get("/hello", (req, res) -
> "Hello Browser " + req.userAgent());

¥
¥

Listing 16.5 src/main/java/SparkServer.java

When you start the program as usual, a web server starts as well, and you can read the
output via the URL http://localhost:4567/hello. (You can ignore the logger outputs.)

16.9.2 Local and the Remote Repository

Resolving dependent JAR files takes longer the first time because Maven contacts a
remote repository and always pulls the latest JAR files from that location and then
stores these files locally. The extensive remote repository stores almost all versions of
JAR files for many well-known open-source projects. The Central Repository can be
found https://repo.maven.apache.org/maven2/.

868

16.10 Further Reading

The downloaded resources themselves aren’t stored in the project but in a local repos-
itory located in the user’s home directory and named .m2. In this way, all Maven proj-
ects share the same JAR files, and they don’t have to be reobtained and updated on a
project-by-project basis.

16.9.3 Lifecycles, Stages, and Maven Plugins

A Maven build consists of a three-stage lifecycle: clean, default, and site. Within this
lifecycle are stages. For example, default contains the compile stage for translating the
sources. Everything Maven runs are plugins, such as compilers, and many others that
are listed at https://maven.apache.org/plugins/. A plugin can execute different goals.
For example, the Javadoc plugin (described at https://maven.apache.org/components/
plugins/maven-javadoc-plugin/) currently knows 16 goals. A goal can be accessed sub-
sequently via the command line or via the integrated development environment (IDE).

For example, a JAR file is created via the package stage:

$ mvn package

The command-line tool must be called in the directory where the POM file is located.

16.10 Further Reading

The Javalibrary provides a large number of classes and methods, but not always exactly
what’s required by the current project. Some problems, such as the structure and con-
figuration of Java projects, object-relational mappers (www.hibernate.org), or com-
mand-line parsers, may require various commercial or open-source libraries and
frameworks. With purchased products, licensing issues are obvious, but with open-
source products, integration into one’s own closed source project isn’t always a given.
Various types of licenses (https://opensource.org/licenses) for open-source software
with always different specifications—whether the source code is changeable, whether
derivatives must also be free, whether mixing with proprietary software possible—
complicate the choice, and violations (https://gpl-violations.org/) are publicly
denounced and unpleasant. Java developers should increasingly focus their attention
on software under the Berkeley Source Distribution (BSD) license (the Apache license
belongs in this group) and under the LGPL license for commercial distribution. The
Apache group has assembled a nice collection of classes and methods named Apache
Commons (http://commons.apache.org), and studying these sources are recommended
for software developers. The website https://www.openhub.net is exceptionally well
suited for this purpose and enables searching via specific keywords through more than
1 billion source code lines of various programming languages—amazing how many
developers use profanities!

869

Contents

Preface 31
1 Introduction 43
1.1 Historical Background 43
1.2 Onthe Popularity of Java: The Key Features 45
121 Bytecode 46
12.2 Executing the Bytecode via a Virtual Machine 46
1.2.3 Platform Independence 46
124 Javaas a Language, Runtime Environment, and Standard Library 47
1.2.5 Object Orientation in Java 47
1.2.6 Javals Widespread and Well Known 48
1.2.7 Javals Fast: Optimization and Just-In-Time Compilation 48
1.2.8 Pointers and References 50
129 Take Out the Trash, Garbage Collector! 51
1.2.10 Exception Handling 52
1.2.11 The Range of Libraries and Tools 52
1.2.12 Comparably Simple Syntax 53
1.2.13 Abandoning Controversial Concepts 53
1.2.14 Javals Open Source 54
1.2.15 WhatJava ls Less Suitable for 55
1.3 Java versus Other Languages* 56
1.3.1 Javaand C(++) 56
1.3.2 JavaandJavaScript 57
1.3.3 A Word about Microsoft, Java, and J++ 57
1.3.4 Javaand C#/.NET 58
1.4 Further Development and Losses 59
141 The Development of Java and Its Future Prospectscncenes 59
142 Features, Enhancements, and Specification Requestsccoecvecrnecenne. 60
143 Applets 61
144 JavaFX 61
1.5 Java Platforms 62
1.5.1 Java Platform, Standard Edition 62
1.5.2 Java Platform, Micro Edition: Java for the Little Onesccccooveevereerennnee 65
1.5.3 Javaforthe Very, Very Little Ones 65
1.5.4 Java for the Big Ones: Jakarta EE (Formerly Java Platform,
Enterprise Edition) 65
155 Real-TimelJava 66

Contents

1.6 Java Platform, Standard Edition, Implementations ..., 67
161 OPENIDK oo 67
1.6.2 OraCle IDK ittt ssssessisse i esi s een 68
1.7 Installing the Java Development Kitccoocccmromncrmnncnceninnenscnsiennseneens 69
171 Installing Oracle JDK on WiNdOWScocimieneionerenesinseceeseeeseoesens 70
1.8 Compiling and Testing the First Program ... 71
1.81 ASquare NUMDErs PrOZIammcerrecsmeerareesssessersesssnesseseesssnessen 72
1.8.2 The COMPIIEr RUN .eieceiecemeceieeimeeriseesissesseseesisessseesssessssssessesssssssssessssessen 73
1.8.3 The RUNtime ENVIFONMENT ..ottt seecisessesins 74
1.84 Common Compiler and Interpreter ISSUESccouwmeronerennereoneceereerirennns 74
1.9 Development ENVIrONmMENtscccoicncneceeecesseeesesesesssseesseens 75
191 INTEII IDEA ot cieesiecsaecsssesseseesisse s ssss s sssssssnessesesses 76
19.2 Eclipse Integrated Development Environment ... 80
193 NEBEANS .o 81
1.10 FUIther REAAING ...ttt esi s esentenes 81
2 Imperative Language Concepts 83
2.1 Elements of the Java Programming Languageccccommcccecceemmucrsnnnnecen 83
211 Tokens 84
212 TextEncoding by Unicode Characters 85
213 TAENTITIEIS oottt ssse st 85
214 LITEIAIS ettt 87
215 (RESEIVE) KEYWOITS .oorveeeermeeeeemmmneeesssseseesssesseseesssssssesssssesssesssssesnsssessssnns 87
2.1.6 Summary of the Lexical ANalYSiscccrecrnecrerrecereceiesseceiecssanee 88
207 COMMENTS oot se e een 89
2.2 From Classes to Statements ... 91
221 What Are Statements? ... s 91
222 Class DEClaration ... sessseesesssesessseeseeeas 92
2.2.3 TheJourney Begins with main(String[]) 93
224 The First Method Call: printIn(...) oo eeeeseseeseens 93
225 Atomic Statements and Statement Sequences ..., 95
22.6 Moreabout print(...), printin(...), and printf{(...) for Screen Output 95
2.2.7 Application Programming Interface Documentation ... 97
2.2.8 EXPIESSIONS wcoureiiieincierieeireriestseasse e ssesisesssse s it ssse s st sesesisessaenes 98
229 Expression Statements ..., 98
2.210 First Insights into Object Orientation ... 99
2201 MOITIEIS oot sssse e ssssse st 100
2212 Grouping Statements with BIOCKS ... 101
8

Contents
2.3 Data Types, Typing, Variables, and Assignments ... 102
231 Overview of Primitive Data TYPESerecrecrnecrineereecsiseeessecseeseenne 104
232 Variable DecClarationscerereeeiesieesisesssseesiseessssessssessesssesens 106
2.3.3 Automatic Type Detection With var ... 109
2.3.4 Final Variables and the final Modifier ..., 110
2.3.5 CONSOIE INPULS .ottt ssisecsssessesecsasesseseesees i ssssessesesesnns 110
236 TIUEN VAIUES .ottt seieesse s sssessasee st sssses s sines 112
2.3.7 Integer Data TYPES ... saanes 112
2.3.8 Underscores in NUMDETS ... scsssesssseessonas 114
2.3.9 Alphanumeric Characters ... creencsneceieessessesesssessones 115
2.3.10 The float and double Data Types 115
2.3.11 Good Names, Bad NAMES ...ttt 117
2.3.12 No Automatic Initialization of Local Variables ... 118
2.4 Expressions, Operands, and Operators ... 119
241 Assignment Operator 119
242 Arithmetic OPErators . ssse s sesssesens 121
243 UNary Minus and PIUSicrerccesesiisecesecsseesssesssssesssesssesesens 124
2.4.4 Prefix or Postfix Increment and Decrementccooccnevecnecenenns 124
245 Assignment with Operation (Compound Assignment Operator) 126
2.4.6 Relational Operators and Equality Operators
2.4.7 Logical Operators: NOT, AND, OR, and XOR
2.4.8 Short-Circuit Operatorscneeunne.
2.49 The Rank of Operators in Evaluation Orderneconecenn.
2410 Typecasting (CAStING) ..covceeeeeereeemeeeeiseeessseeessssesessseessssesessssssesssesessseseeses
2411 Overloaded PlUs fOr StINESccocrrcriumnereinecriinnceeiireeseeiseeseeseseeesecsssesesenes
2412 0perators MiSSING™ ... ssssss s sssssessssssssones
2.5 Conditional Statements or Case Distinctions ..., 142
2,51 Branching with the if Statement ... 142
2.5.2 Choosing the Alternative with an if-else Statementccccocnecceee. 145
253 The Condition OPeratorccenessieesesessssesssessesesesnns 148
2.54 The Switch Statement Provides an Alternative ... 151
2.5.5 Switch Expressions 157
2.6 Always the Same With LOOPSccomricnmceriinneesineesesssinsssssssiensseseons 160
261 Thewhile Loop ...
2.6.2 Thedo-while Loop
2.6.3 THETOI LOOP vt sssesssse s ssssesssseesises st ssssessesssssnns
2.6.4 Loop Conditions and Comparisons with =="ccccnninnernercnecnenns 168
2.6.5 Loop Termination with break and back to Test with continue 171
2.6.6 break and continue with Labels™ ... 174
2.7 Methods of @ CIASs ... seiineeessesiseesesssssseesesssassessssssesnessens 177
271 Components of @ Methodcncicineceeerseeeiseesesesseseeiens 177

Contents Contents

2.7.2 Signature Description in the Java Application Programming 3.6.7 Unnamed Package (Default PACKAZE) ...coowwvwmmmmecemmvemcecrmmiensescrssiocsessnenns 225
Interface DocUMENTAtioN ... 179 3.6.8 CoMPIlAtioN UNIt c..oeeieecccecncrccreciesiiecsisessiessesessssessesessssesssessssesees 226
273 CalliNg @ METNOM ... saseessasessessesiseesene 180 3.6.9 STATIC IMPOITT oot snen 226
274 Declaring Methods without Parameters 181 3.7 Using References, Diversity, Identity, and Equality ..., 228
2.7.5 Static Methods (Class Methods)inreinnernnneieneresssisesseeseseeessenns 182 371 null References and the Question of PhiloSOphY ... 228
2.76 Parameters, Arguments, and Value Transfers 183 3.7.2 Everything to null? Testing Referencescccocceenercenncrennn. .. 230
2.7.7 Ending Methods Prematurely with return ... 185 373 ASSIGNMENTS With REFETENCES v 231
2.7.8 Unreachable Source Code for Methods™oronnccenncreenscceennns 185 374 Methods with Reference Types as Parameters ... 232
2.7:9 MEthOds WIth REEUMS v 186 375 1deNtity OF OBJECES ..o 236
2.710 OVerloading METNOMS 191 3.7.6 Equivalence and the equals(...) Method ..o 237
2701 SCOPE e 193
2712 Default Values for Unlisted ArgUMENS ..o 195 3.8 FUITher REAAING ...t ssesssasesssssssssessssssasessssssssnes 239
2713 Recursive Methods™ ... seasseaens 195
2.7.14 Towers of Hanoi* 198
2.8 FUIher REAAING ...ttt esi s ssentaes 200 4 A"ays and Their Areas of Use 241
4.1 Simple Field Work ... 241
3 Classes and Objects 01 411 BasiC COMPONENTS ...t ssss s sssssesenens 242
4.1.2 Declaring Array Variablescenecrceinecrinecsnneesneens 243
413 Creating Array Objects With NEW ... 244
3.1 Object-Oriented PrOGrAMMING ... 201 414 Arrays With { CONTENTS } ooveercveireccisneccenieseccenseeeeesseesesssesessssssesnns 245
311 Why Object-Oriented Programming at All?cooccmcmconcmnecrnecrnennes 202 415 Reading the Length of an Array via the Object Variable Length .. 246
312 When|Thinkof Java, I Think of REUSEDIIILY .o 202 416 Accessingthe Elements via the INdeX ... 246
3.2 Members 0f @ CIaSS ... ssseeesssssessessssseesessssssesnaens 203 417 TYPICAI AITAY EFTOTS ooocvveiercveeeeessessiasesssssessssssssessnsssssassnesessssssnssssssssnnens 248
3.3 Natural Modeling Using Unified Modeling Language® ... 204 4.1.8 Passing Arrays to Methods ..., 250
419 Multiple RETUIN ValUES™ ...t ssesessaseesssessanens 250
3.4 Creating NeW ODjJECLScocrccernnneenisneseenieesssssesessssseesessssssesnes 206 8110 PrEiNTHANiZed AITAYS oo 251
341 Creatingan Instance of a Class Using the new Keywordccccceecccee. 206
342 Declaring REFErence VANADIES ... 207 4.2 The EXtended fOr LOOPcooienrreeeeeeeceeiesesisesesssseeesssseessssssssssssssssesessseees 252
343 Let's Get to the Point: Accessing Object Variables and Methods ... 208 421 Using Anonymous Arrays in the Extended for LOOPccoccceomcreennccrnennes 253
344 The Connection between new, the Heap, and the Garbage 4272 Example: Searching Arrays With STrings ... 254
CONBEEON et 212 423 Creating Random Player POSItions 255
3.45 Overview of Point Methods ... 213 4.3 A Method with a Variable Number of Argumentsccoomccnnncccrnnnns 256
346 USING CONSTIUCTONS ..o senssecenssesesssessssssscesssesenassnens 217 43.1 System.out.printf(...) Accepts Any Number of Arguments .. 257
3.5 ZZZZZNAKE ...t 218 43.2 Finding the Average of Variable ATgUMENTS ... 257
433 Vararg DESIGN TIPS™ ..ireeeineeeiesiseseiseesasesssessasessssessasesssssessasessssesssanens 259
3.6 Tying Packages, Imports, and Compilation Units ..., 220
3.6.1 JAVA PACKAZES ..ot 220 44 MURIAIMENSIONA] ATTAYS ..o 259
362 Packages inthe Standard LIBrary wo oot 521 441 NONrectanGUIAT ATAYS™ .. ceenrecieceiseciesssessassesssesssssessssessesessssssssenees 262
3.6.3 Full Qualification and Import Declaration . 221 4.5 Library SUPPOIt fOr ATQYScocccomccmimmeeeeminneseessiessesssesesssssiesmssssssessnssssseons 264
3.6.4 Reaching All Types of a Package with Type-Import-on-Demand 223 451 Cloning Can Be Worthwhile: Propagating Arrays 264
3.6.5 Hierarchical Structures across Packages and Mirroring in the 452 Why Can Arrays “D0” SO LItHe? ..o 265
File SYStem ... 224 453 Copying Array CoONtENtScoiimcreeirereeneceeeisseseeesesesssereesseesessseseseanas 266
3.6.6 The Package Declarationecneeecsecssesssesnes 224

10 n

Contents

4.6 Using the Arrays Class for Comparing, Filling, Searching, and Sorting 267
4.6.1 String Representation of an Array ... 267
4.6.2 SOTEING oottt eses et srs s sene 268
4.6.3 Parallel Sorting 269
4.6.4 Comparing Arrays of Primitives with Arrays.equals(...) and
Arrays.deePEQUAIS(...) eeeeeeeeeeeeieeeeeeeiseee e sesesssss s essssssssssessssssssssseens 269
46.5 Comparing Object Arrays Using Arrays.equals(...) and
Arrays.deePEQUAIS(...)™ wrrrerinneeeesieeseeeseesessssseeseessssessmesssssessssssssesnnns 271
4.6.6 Searching Differences Using Mismatch (..)* wnececeeonncecceeennns 272
4.6.7 FillING ATTAYS™ ..coiieieirrecrieriecrinesiseesiecsisesssssesseses s ssssessesessssessssessasessssnessenees 272
4.6.8 COPYING AIray SECLIONS™ ..o ssieesissesseses s sseseesesessseees 273
4.6.9 BIiNAry SEArC™ ... sess s sssse s ssssssseees 275
4.6.10 Lexicographic Array Comparisons Using compare(...) and
COMPATEUNSIZNEA(-1.) worrrereeeemmmrreeeeesseeeeeessssesseessssssessessssssesssssssssssssssssssssssssesns 276
4.6.11 Arrays for Lists with Arrays.asList(...): Convenient for Searching
AN COMPATINEG™ ..ot esss s sessssrases 277
4.6.12 ALONE SNAKE ..o 278
4.7 The Entry Point for the Runtime System: main(...)cccooorrrecccrmnnnnrrnriennes 281
471 Correct Declaration of the Start Method ... 281
4.7.2 Processing Command Lin€ ArGUMENTScccovevucucemmneerecrmenrirecsiseeninees 282
473 The Return Type of main(...) and System.exit(int)*oecccemmerecercnn 283
4.8 FUrther REAAING ...t ests st sssss s sesiseees 285
5 Handling Characters and Strings 287
5.1 From ASCll via ISO-8859-1 to Unicode 287
511 287
512 288
513 289
514 Unicode Character ENCOAINGccoimrinneiineieneeeeseseescessesesesesssecsssennes 291
515 ESCAPE SEQUENCES ...ttt 292
5.1.6 Notation for Unicode Characters and Unicode Escapesccuceeneenen 292
5.1.7 Java Versions Go Hand in Hand with the Unicode Standard™ 294
5.2 Data Types for Characters and Stringsmnccconnceemsonen 295
5.3 The Character CIassmneinnessesseeessesseeesssssessnesssssesnessssssssnes 296
531 IS TRALE SO? oottt sase s ssse s seas 296
5.3.2 Converting Characters to Uppercase/LOWErCaseceeeeeeens 298
5.3.3 From Character to STring ...cnecnecenecrnecninnees 299
53.4 From charto int: From Character to Number* 299
12

Contents
Bu8 SEINES ..ottt 301
5.5 The String Class and Its Methods ... 303
5.5.1 String Literals as String Objects for Constant Strings .. . 303
552 Concatenation With + ... csecceeseeceeessecesesesessssesseens 303
5.5.3 Multiline Text Blocks With “”” ... seesecessesseseens 304
5.5.4 String Length and Testing for Empty Strings 309
5.5.5 Accessing a Specific Character with charAt(int) 310
5.5.6 Searching for Contained Characters and Stringsocnnccnecnes 311
55.7 The Hangman Game ..o s sssssesssessssesees 314
5.5.8 Good That We Have COMPAredeeneerneseneeeesesesesesssesseesees 316
559 Extracting STring SECLIONS ... saessans 320
5.5.10 Appending Strings, Merging Strings, Case Sensitivity, and
WHITESPACE ..ottt sttt sesbsee e basesines 325
5.5.11 Searched, Found, and Replaced 328
5.5.12 Creating String Objects with Constructors and from Repeats* 330
5.6 Mutable Strings with StringBuilder and StringBuffer ..., 333
5.6.1 Creating StringBuilder ODJECtScvcncenececeneesecinecsseereecrissenees 334
5.6.2 Converting StringBuilder to Other String Formats ... 335
5.6.3 Requesting Characters or STHNESrnreneeeneeeneeesseseoecessessesenees 335
564 APPeNdiNg Data ... ssiseesesesssse s sesesses 335
5.6.5 Setting, Deleting, and Reversing Characters and Strings ... 337
5.6.6 Length and Capacity of a StringBuilder Object™ccrmrcecnncceenns 339
5.6.7 Comparison of StringBuilder Instances and Strings with
SEINGBUITAERT .ot ssse s sseessasessssessenes 340
5.6.8 hashCode() with StringBuilder* 342
5.7 CharSequence as Base TYPEorreemmmreesmeessssssssesssssssssesssssssssssssssssnes 342
5.7.1 Basic Operations of the Interface ... 343
5.7.2 Static compare(...) Method in CharSEqUENCEccceeeeeeeeeereeeeeessseeeeeeennns 344
5.7.3 Default Methods in the CharSequence Interface®cocveconecennecnnn. 345
5.8 Converting Primitives and Strings ... 345
5.8.1 Converting Different Types to String Representationscccccceee. 345
5.8.2 Converting String Contents to a Primitive Value ... 347
5.8.3 String Representation in Binary, Hex, and Octal Formats®cc.... 349
5.8.4 parse*(...) and print*() Methods in DatatypeConverter® ... 353
5.9 Concatenating STriNGS ... sseses s ssessssenes 353
59.1 Concatenating Strings with StringJoiner ..., 353
5.10 DeCOMPOSING SEHNGScccvoveumrrrrrincerrinnenesesieessessesseesssssessesssssessnesesssssssessssssssns 355
5.10.1 Splitting Strings via SPIit(..) ceeeeeeeeemeeeeerereeereeeeeesseeeeieeeeeseeeesseseessesesssssneeens 356
5.10.2 Yes We Can, Yes We Scan: The Scanner Classcveeeeeeeeeeceeesenene. 356

13

Contents

Contents
5.11 Formatting Outputs ..., 360
5.11.1 Formatting and Outputting via format()ccoeecommmeeeeecnnneeeeessrneeceeenns 361
5.12 FUIhEr REAAING ..ot ssessesseessssseasesssssassnesssssessessssssssnns 367
6 Writing Custom Classes 369
6.1 Declaring Custom Classes with Members ..., 369
6.1.1 MIiNIMUM ClaSSoiieeerieeecceiicceemeeemmsesesesessessesesssesessssesssssesesssssessssessones 370
6.1.2 Declaring Object Variables ... ceieceneceieceneseiesessseseones 370
6.1.3 Declaring Methods ... s sseseseanas 373
6.1.4 Shadowed Variables 375
6.1.5 The this REfEreNCe ... senseessenes 377
6.2 Privacy and Visibilityconncnscesinesssssiessseessssesnsssssseons 380
6.2.1 FOrthe PUDIIC: PUDIIC oot sieeiaens 381
6.2.2 Not Public: Passwords Are private ... 381
6.2.3 Why Not Free Methods and Variables for All? ..., 383
6.2.4 private Is Not Quite Private: It Depends on Who Sees It* 383
6.2.5 Declaring Access Methods for Object Variablescccneccnncceenns 384
6.2.6 Setters and Getters according to the JavaBeans Specification 384
6.2.7 PACKAGE-VISIDIIILY oot ssaeesesessessesene 386
6.2.8 ViSiDIlItY SUMMATY oot ssssessssee s ssssessisessesssesens 388
6.3 One for All: Static Methods and Class Variables ... 390
6.3.1 Why Static Members Are USeful ... 391
6.3.2 Static Members With Static ... 392
6.3.3 Using Static Members via References?™cnnecenecenneceneceonne 393
6.3.4 Why Case Sensitivity Is Important® 394
6.3.5 Static Variables for Data Exchange™inneconenns 395
6.3.6 Static Members and Object Members®ccmcmnceronecrnncnnes 396
6.4 Constants and ENUMErationsnrcenneceesinnecssssesecsssneons 397
6.41 Constants via Static Final Variables ... 397
6.4.2 Type-Unsafe ENUMErationscrencriinesesesseseeseessssseseenns 398
6.4.3 Enumeration Types: Type-Safe Enumerations with enum 400
6.5 Creating and Destroying Objects ... 405
6.5.1 WIIting CONSTIUCTOS .ot stseesseseseseessesssesssssssesnes 405
6.5.2 Relationship of Method and CoNStruCtor ... 406
6.5.3 The Default CONSIUCLOr ... 407
6.5.4 Parameterized and Overloaded Constructorsnnncenns 408
6.5.5 COPY CONSTIUCTONS ..o saees 410
6.5.6 Calling Another Constructor of the Same Class via this(...) ..ccccooueeereneen. 412

14

6.5.7 Immutable Objects and Wither Methods ... 414

6.5.8 We Don’t Miss You: The Garbage Collectorrneceonecnnnn. 416

6.6 Class and Object Initialization™ ... 418
6.6.1 Initializing Object VariabIes ... ccrnecrieernecsneeeisecseseseenne 418

6.6.2 Static Blocks as Class INItialiZers ... 420

6.6.3 Initializing Class Variablesccccuconcinecen. . 421

6.6.4 Compiled Assignments of the Class Variables ..., 421

6.6.5 INSTANCE INIHIANIZEN oo senes 422

6.6.6 Setting Final Values in the Constructor and Static Blockscccconeeeeee. 425

6.7 Conclusioncommnccneereeeieienne 426
7 Object-Oriented Relationship 427
7.1 Associations between ObjJectsccoincrionecnesceiinessessiesseseens 427
7. 11 ASSOCIAtION TYPES .ot ssae s ssseaens 427

7.1.2 Unidirectional 1-t0-1 Relationship ... 428

7.1.3 Becoming Friends: Bidirectional 1-to-1 Relationships ..., 429

7.1.4 Unidirectional 1-to-n Relationships ... 431

7.2 INNEITANCE ..ot esses s ssbe s s s oo 436
721 INhEritanCe iNJAVA ..o sssssessssessones 437

722 MOAEIING EVENTS .ottt sseeesaseesssseesesessisssssessenessanes 438

7.2.3 Thelmplicit Base Class java.lang.Object .. . 440

7.24 Single and Multiple Inheritance™ ... 440

7.2.5 Do Children See Everything? The Protected Visibilityccoeevvevonennenn. 441

7.2.6 Constructors in Inheritance and SUPET(...) owwureeeeereereeeeeeeesseeceseeeeeeens 442

7.3 Typesin HIerarchi@sincrinecessiinseesesssssssessesssssnsesssssseseseons 447
7.3.1 Automatic and EXplicit TYpeCastingccenceneernecrnecriseerisecseseeenne 447

7.3.2 The Substitution PrinCIplecnereeciseseereeeeciseessesesesiseesseens 450

7.3.3 Testing Types with the instanceof Operator ... 452

7.3.4 Pattern Matching for instanceofncncnecncecneceinecnens 455

7.4 OVerriding Methodsiinncecrineeeessinesesssissessesssessessssssesseseens 457
7.41 Providing Methods in Subclasses with a New Behaviorc...c. 457

7.4.2 With super to the Parents 461

7.5 Testing Dynamic BiNdingscooooircicececeisecesiseeesiesessseeeseenes 463
7.51 Bound to toString() wccoeeeeoneneeeeesreneeeennnne . 463

7.5.2 Implementing System.out.printIn(Object)ocwcwcmmecemrecnmecceerenccerenenns 465

7.6 Final Classes and Final Methods 466
7.6.1 FINAI ClASSES ... ssse s ssenes 466

7.6.2 Non-Overridable (final) Methods ... 466
15

Contents

7.7 Abstract Classes and Abstract Methods ... 468
771 ADSEIACE CIASSES oot seiscsase s sasessssseeseses s ssssessesesesnns 468
772 ADSract METNOUS ...t eseses s 470
7.8 Further Information on Overriding and Dynamic Bindingccooecccce 476
7.81 No Dynamic Binding for Private, Static, and final Methods 476
7.8.2 Covariant RELUIN TYPES ... sasesneens 476
7.83 Array Types and COVarianCe™cecrrerneesiesesseeseessassessessanes 477
7.8.4 Dynamic Binding even with Constructor Calls™ccmecneecnnecenne. 478
7.8.5 No Dynamic Binding for Covered Object Variables™cccuceeneceen. 480
7.9 AProgramming TASK ...t esssseessssessssseeessesesssessssanes 482
8 Interfaces, Enumerations, Sealed Classes, Records 4s3
8.1 Interfaces ... 483
8.11 Interfaces Are NEW TYPESrneeicesieesisesesessasessssssssessasessssessanes 483
8.1.2 Declaring INtErfacesrcerinecrcriecriecsiseeresessissesseeseesessecssessanes 484
8.1.3 Abstract Methods in INTerfacesccneceneeneeeneseiecssneseones 484
814 Implementing INterfaces ... seeeseeeeseeeseeens 485
8.1.5 APolymorphism Example with Interfaces ... 487
8.1.6 Multiple Inheritance with INterfaces ... 488
8.1.7 NoRisk of Collision with Multiple Inheritance®cmcnnecnnecenn. 491
8.1.8 Extending Interfaces: Subinterfaces ... 493
8.1.9 Constant Declarations for Interfacesnecneernnccenesennn. 494
8.1.10 Subsequent Implementation of Interfaces* 494
8.1.11 Static Programmed Methods in INterfacescecnecennecene. 495
8.1.12 Extending and Modifying INterfacesncrnccersneccenns 497
8.1.13 Default METNOAS ...t ssiessaseseaens 498
8.1.14 Declaring and Using Extended Interfacescnecnnecnnecenn. 500
8.1.15 Publicand Private Interface Methods ... 503
8.1.16 Extended Interfaces, Multiple Inheritance, and Ambiguities” 504
8.1.17 Creating Building Blocks with Default Methods™ ... 508
8.1.18 Marker INTErfaces™ ... icinecirecrieeriecrisesseeeseseessseesesessisesesssessenessanes 512
8.1.19 (Abstract) Classes and Interfaces in COMParisonneeeernneceens 513
8.2 ENUMEration TYPESoooccccriceeiiienssneeccereeeemessssssseeceesessssssssssssssesesssssssssssssssece 513
821 Methods on ENUM ODJECES ... ssssesseeseaens 514
8.2.2 Enumerations with Custom Methods, Constructors, and
INTEIAIIZEIS™ oottt 518
8.3 Sealed Classes and INterfaces ... seeeseae 523
8.3.1 Sealed Classes and Interfaces 525
8.3.2 Subclasses Are Final, Sealed, and Non-Sealed 527
8.3.3 Abbreviated NOtations ... 528

16

Contents
B4 RECOIAS ... sesesess s s 529
841 SIMPIE RECOIAS oo saseessssseseses e esssessenessines 529
8.42 Records With Methods ... seeeseeceseseeseeeseeseseeesenes 531
8.43 Customizing Record CONStructorscncenccennennns 532
8.4.4 AdAING CONSTIUCTOIS ..o ssaseeseas 534
8.45 Sealed Interfaces and RECOIAScoicrcmnnerceneeciecceeeeeseeesecseresesenes 535
8.4.6 RECOIAS: SUMMAIY oouieerceereeieeceineetseeessesesseesssesesseeesses s ssssesssssessssessssesssssessen 536
9 There Must Be Exceptions 539
9.1 Fencing In Problem Areascceimeneesmineseesiessessssseesssssssesnnssssseons 539
9.11 ExceptionsinlJava with try and catch ..., 540
9.1.2 Checked and Unchecked Exceptions ... ettt ienes 540
9.1.3 A NumberFormatException (Unchecked Exception)ccccrmeeceeennn. 541
9.14 Appending a Date/Timestamp to a Text File (Checked Exception) 543
9.1.5 Repeating Canceled SECtIONS™ ... rcecrinecriceiseeriseesiseesisessesseions 545
9.1.6 EMpty catch BlOCKS ..o 546
9.1.7 Catching Multiple EXCEPLIONSovcvvcvecrrcvireccrreciicnnes .. 547
9.1.8 Combining Identical catch Blocks with Multi-Catchccocconevvnneceneneenn. 548
9.2 Redirecting Exceptions and throws at the Head of Methods/
Constructors ..., 549
9.21 throwsin Constructors and Methods ..., 549
9.3 The Class Hierarchy of EXCEPLIONScoiomrirrmomereerisnecseerisnsecsessesnecsesneons 550
931 Members of the Exception Object . 550
9.3.2 Base Type TNrOWaADIE ... sseesaeseseaens 551
9.3.3 The Exception HIerarchy ... 552
9.3.4 Catching SUPEr-EXCEPLIONSceucrrecricrriecricrieecriesreeereseessseeseseesisneesens 552
9.3.5 AIready CAUGNT? ..ottt esssesseseseinas 554
9.3.6 Procedure of an Exceptional SItuation ..., 555
9.3.7 No General Catching! 555
9.3.8 Known RuntimeException Classes 557
9.3.9 Interception Is Possible, but Not Mandatory 558
9.4 Final Handling Using finallycccooccnnceceninnsecsessesecsseneons 558
941 ThelgNOorant VEISiON ... rcericseieesiseesisessisessssessssssssesssnesssnns 559
9.42 The Well-Intentioned AtEemMP ... 560
9.43 From Now On, Closing Is Part of the Agendaccoocomevneecmecennecenecrnnne. 560
944 SUMMATY oo sas s sas s es 562
9.45 Atrywithouta catch, but a try-finally ... 562
9.5 Triggering Custom EXCEPLIONS ... scnieees 564
9.51 Triggering EXceptions Via TNIOWc..occecrinccrcriecrieceieeseecseeseanne 564
9.5.2 Knowing and Using Existing Runtime Exception Typescccccouecemeeeenn. 566
17

Contents

9.53 Testing Parameters and Good Error Messagescncceennecennas 568
9.5.4 Declaring New EXCeption Classesrceerneernecminesseesseneeeenns 570

9.5.5 Custom Exceptions as Subclasses of Exception or
RUNTIMEEXCEPTION? oecieriiiciriieeicrienieeiesisesiesiseeiseessesssessesssessss s sesessaenes 571
9.5.6 Catching and Redirecting Exceptions* 574
9.5.7 Changingthe Call Stack of Exceptions® ... 575
9.5.8 Nested EXCEPLIONSTrinecerecrienieseieceisesseecresesssaseesesessissssssessenessenes 576
9.6 try with Resources (Automatic Resource Management)cccceeueeenns 579
9.6.1 try WIith RESOUICES ..ot siesssee s s esssessiseseines 580
9.6.2 The AutoCloseable INTErface ... 581
9.6.3 EXCEPLIONS 10 ClOSE() wevvvrruerreerrmeereeimmeeeeesisssseessessesesssssssesesssssssssssssesssesssssens 582
9.6.4 Types That Are AutoCloseable and Closeablenrnneceonecennn. 583
9.6.5 USING MUHIPIE RESOUICES ...oumvvercrimeriiciicrinerisecsiseseeesieeesssesiesssesessessones 583
9.6.6 SUPPressed EXCEPLIONS™ ...t sssesessessenes 585
9.7 Special Features of Exception Handling™ ..., 588
9.71 Return Values for Thrown EXCEPLIONSccovvvecrenecrnecemnecrnecrineerieceeeeeenne 588
9.7.2 Exceptions and Returns Disappear: The Duo return and finally 589
9.7.3 throws on Overridden Methodsncecnereeneceesesiseeienns 590
9.7.4 Unreachable catch Clauses ..., 592
9.8 Hard Errors: EFTOr™cinccceeinecescessassessesssssneseesssssssssssssssesssssassseesssseens 593
9.9 ASSEITIONS™ ...t e 594
9.9.1 Using Assertions in Custom Programs 595
9.9.2 Enabling Assertions and Runtime Errorscnionernnccnnecenna. 595
9.9.3 Enabling or Disabling Assertions More Detailed ... 597
9,10 CONCIUSION ..ot sessassessesssssessssssssesssssessesssssesssesssseens 597
10 Nested Types 599
10.1 Nested Classes, Interfaces, and Enumerations ..., 599
10.2 Static Nested TYPeScoomrccemerceriinneeeeeseisnseeneens 601
10.21 Modifiers and VisibDility ... 602
10.2.2 Records as CONLTAINETS ... cemesesesssesesssseseeseessenas 602
10.2.3 Implementing Static Nested TYPes™mcnecnecnnecieceisseeisennes 602
10.3 Non-Static Nested Typescoomrrceonmecceiiinncennnns 603
10.3.1 CreatingInstances of Inner Classesnencrenecennernnne. 603
10.3.2 The this REFEreNCE ... seeseeesenes 604
10.3.3 Class Files Generated by the Compiler* 605
L10.4 LOCAI CIASSESoomeceveeceeiieeecsiieesesssiessessesseesessesiesessssssesssesssisessesssasnessssssessessons 605
1041 Example with a Custom Declaration ... 606

18

Contents
10.4.2 Using a Local Class for @ TIMEccccrnnrcenecniineseeeessesseesecessesesenns 606
10.5 ANONYMOUS INNET CLASSESccvrveveeeeirccccecrreiniessssseeeessesssssessssssssssesssssssessssnssees 607
10.5.1 Usingan Anonymous Inner Class for the Timer ... 608
10.5.2 Implementing Anonymous Inner Classes™ecnecennecenecens 609
10.5.3 Constructors of Anonymous INNer Classesccnceneceneceinecsoecnes 609
10.5.4 Accessing Local Variables from Local and Anonymous Classes* 611
10.5.5 Nested Classes Access Private Members ... 612
J0.6 NESESoo e 613
L0.7 CONCIUSTON ...t sssiessesssssessessseseassessssssasesssssss s ssssssessssssesnessens 614
11 Special Types of Java SE 615
11.1 Object Is the Mother of All Classesccooremmrreeeinnneeeesseeeeeeeisseeeessesssneeens 616
1111 Class ODJECLSeenceicerecrieeeieesiecrieesssecsisesisnessaseesessessesessessssssesssnesssssees 616
11.1.2 Object Identification With tOStrNG() w.eoeveeereeeeerereeereeiesereee e 617
11.1.3 Object Equivalence with equals(...) and Identity 619
11.1.4 Cloning an Object Using clone()*cccccccuummmececcceemmmeensinssssecceee 625
11.1.5 Returning Hash Values via hashCode()*rceeemmeeeeeesnnneeenes 630
11.1.6 System.identityHashCode(...) and the Problem of

Non-Unique Object References®mceoneccennnerennn. .. 636
11.1.7 Synchronization® ... SRR 637
11.2 Weak References and Cleaners ... 638
11.3 The java.util.Objects Utility Class ... 639
11.3.1 Built-In Null Tests for equals(...)/hashCode()ccowrmmrrermeeeenneceerrereeens 639
11.3.2 ODBJeCtSEOSEIING(..) crrveveeererrmieeerceriieessermsesesesssiesesssssessessssssesessssssesmasesssenns 640
11.3.3 null Checks with Built-In Exception Handling . 640
1134 TeStS FOr NUIT oo sesase s senes 641
11.3.5 Checking Index-Related Program Arguments for Correctness 642
11.4 Comparing Objects and Establishing Orderccomrccmnnccrcnnencens 643
11.41 Naturally Ordered or NOt? ... seoesevseseeesens 643

1142 compare*() Method of the Comparable and Comparator
INEEITACES ..ooooe i 644
11.4.3 Return Values Encode the Ordercnncceennecceeseccesesseseens 645
11.4.4 Sorting Candy by Calories Using a Sample Comparatorccccouccu. 645
11.45 Tips for Comparator and Comparable Implementations 647
11.4.6 Static and Default Methods in Comparatorcmconccrinncnnns 648
11.5 Wrapper Classes and AULODOXINGcccc.comrmmnmermmonnseemineesessseseseessiesseeseens 651
11.51 Creating Wrapper ODjJects ... 653
11.5.2 Conversions to a String Representation 654
19

Contents

11.5.3 Parsing from a String Representation ... 655
11.5.4 The Number Base Class for Numeric Wrapper Objectscccccoevevun. 655
11.5.5 Performing Comparisons with compare*(...), compareTo(...),
equals(...), aNd Hash ValUESooccreeecerceeeceeieceeseeeessesesssseeesssseesens 657
11.5.6 Static Reduction Methods in Wrapper Classes 660
11.5.7 Constants for the Size of a Primitive Type* 661
11.5.8 Handling Unsigned NUMDEIs™ccoemcrmemmecrneeennecesecsecsssesseresses 661
11.59 The Integer and LONG ClASSESocceeneernecrineeeineceiseseiseesssesesnecssecsssesees 663
11.5.10 The Double and Float Classes for FIOatscnnecrnecennnes 664
11.5.11 The BoOoI€an Class ... sosssssssssssssssessssssssonas 664
11.5.12 Autoboxing: BoxXing and UNDOXINGccccowemermermnecrnseeinmecrneceeseessecserecnes 665
11.6 Iterator, IRErable™ ... 670
11.6.1 The Herator INTErface .t eseesnen 670
11.6.2 The Supplier of the HErator ... 673
11.6.3 The lterable INTerface ... eessseceeseeesenes 674
11.6.4 Extended for and Iterable . 674
11.6.5 Internal HEration ... sssesaessanes 675
11.6.6 Implementing a Custom Iterable™ ..., 676
11.7 Annotations in Java Platform, Standard Edition ... 677
11.7.1 Places for ANNOLAtioNS ... ceeieseseessessesessaesensseseeeas 677
11.7.2 Annotation Types from java.langccneecneneceneeeisennes 678
11.7.3 @DEPreCAteA ...ttt sttt 678
11.7.4 Annotations with Additional Information 679
11.7.5 @SUPPIrESSWAININGS w.ooourveeeerereereesneseesmassesssssesssessssssasssssssssessesssssssnsessssssens 679
11.8 FUIrther REAAING ...t ssssisesssssssessesssasnsessssssesnessons 682
12 Generics<T> 683
12.1 Introduction to Java GENETICScoiiccreinccereeirnececemiiseeseeeiasseesessseseseens 683
12.1.1 Man versus Machine: Type Checking of the Compiler and the
RuUNtime ENVIFONMENToouiiiiicreiececneieciecisesisesisesteessessse e sseesaeees 683
12.1.2 0 ROCKEES oo 684
12.1.3 Declaring GENEIIC TYPES ...ovvvwueerueereecrimrereressiseessessiseessesssnsssssessanecsssessenesses 686
12,14 USING GENEIICS wourverrernreereinericerserseseesssesssesesesssesssessssssssesssesssessssssnessnesssesssssens 688
12.1.5 Diamonds Are FOTBVEToeneiiecieeiserisesiresiessssesisesisesieesssesssesssesssessssssenes 690
12.1.6 Generic INTErfaces ... ssssesssenes 693
12.1.7 Generic Methods/Constructors and Type Inferencecccooeeecrnenceens 695
12.2 Implementing Generics, Type Erasure, and Raw Typesccurcrcrneneens 699
12.2.1 Implementation OPLIONS ... sseseseen 699
1222 TYPE EFASUIE ..ot sasssss s sasssssss s sasssass 699
20

Contents
12.2.3 Problems with Type Erasureionecnncseneecnsenannes 700
12.2.4 RAW TYPES .o sasaan 704
12.3 Restricting Types Via BOUNAScoocrnrcinrcnceceiecesiseeesisesesseesseenes 706
12.3.1 Simple Restrictions with extends ... 707
12.3.2 Other Supertypes With &tcneinecnecnecsecenseceneceeeesssesseesees 709
12.4 Type Parameters in the throws Clause™ ... 710
12.41 Declaring a Class with Type Variable <E extends Exception> 710
12.4.2 Parameterized Type for Type Variable <E extends Exception> 710
12.5 Inheritance and Invariance with Generics 713
12,51 Arrays Are Covariantnccnncnnns . e 713
12.5.2 Generics Aren’t Covariant, but Invariant 714
1253 Wildcards With 2 ... sessessesssseeseeesenes 715
1254 Bounded WildCardsccmneceeseceeeseceesssessesseesesssesessscsesesseseees 717
12,55 Bounded Wildcard Types and Bounded Type Variables 720
1256 The PECS PrHNCIPIE ..ot ssisesseses i ssasesssssessesssseseas 722
12.6 Consequences of Type Erasure: Type Tokens, Arrays™occommmrecrmmnecens 725
12.6. 1 TYPE TOKENS ceceeereerrercrieeceieceimecriecsisesseeeseseessaeeseesseseesses s sssesssnesssssesssnessen
12.6.2 SUPEILYPE TOKENS ..coomieirreirceimecriecrieeieseesiseestsseesisessiseessses s s s sssessssesson
12.6.3 Generics and Arrays
12.7 FurtherReading ... 729
13 Lambda Expressions and Functional
Programming 731
13.1 Functional Interfaces and Lambda EXpressionsccccomcecmmnccrricnnnencens 731
13.1.1 Classes Implement INtErfaces ... ceseeeesecssecees 731
13.1.2 Lambda Expressions Implement Interfacesccouroncnennn. 733
13.1.3 Functional Interfaces 734
13.1.4 The Type of a Lambda Expression Depends on the Target Type 735
13.1.5 @Functionallnterface ANNOtationsrnncennecreinecceinnecenns 740
13.1.6 Syntax for Lambda EXPressionscceneceneceuneseneens . 741
13.1.7 The Environment of Lambda Expressions and Variable Accesses 745
13.1.8 Exceptions in Lambda EXPreSSioNScceneceenneeeneceneeessecssecesssesssesses 751
13.1.9 Classes with an Abstract Method as a Functional Interface?* 755
13.2 Method References ... 755
1321 Motivation ... 755
13.2.2 Method References With 1 ... 756
13.2.3 Variations of Method Referencescnrcnnccinncceesneeeenns 756

21

Contents

13.3 Constructor References 759
13.3.1 Writing Constructor REFEIENCEScceccrnecrncriecrneeerneceneceeeesecserecnen 760
13.3.2 Parameterless and Parameterized Constructorsmcnecnecens 761
13.3.3 Useful Predefined Interfaces for Constructor Referencescccooceuune.e. 761
13.4 Functional Programming 762
13.41 Code=Data 762
13.4.2 Programming Paradigms: Imperative or Declarative ... 763
13.4.3 Principles of Functional Programmingccnecnecenernne. 764
13.4.4 Imperative Programming and Functional Programming 767
13.45 Comparator as an Example of Higher-Order Functionsccccccoeeceee. 769
13.4.6 Viewing Lambda Expressions as Mappings or Functionscccucc... 769
13.5 Functional Interfaces from the java.util.function Packageccccccccoueecce. 770
13.5.1 Blocks with Code and the Functional Interface Consumerccccc....... 771
1352 SUPPHEL oot sean 773
13.5.3 Predicates and java.util.function.Predicate 773
13.5.4 Functions via the Functional Interface java.util.function.Function 775
13.5.5 1 TAKE TWO .ooverceieciecerceerineniseceecissesisesieeteesssesesenanens 779
13.5.6 Functional Interfaces with Primitives ... 782
13.6 Optional Is Not a Non-Starter 784
13.6.1 Using null 785
13.6.2 The Optional TYpe ... 787
13.6.3 Starting Functional Interfaces with Optional 789
13.6.4 Primitive-Optional with Special Optional* Classescncennennes 792
13.7 What Is So FUNctional NOW?cc...commcrminnecermiinseesessisseesesssssnsesssssseseseens 795
13.7.1 RECYCIADIIILY oottt essses s ssss s sssessen 795
13.7.2 Stateless, IMMULADIE ...t 795
13.8 Further Reading 797
14 Architecture, Design, and Applied Object
Orientation 799
14.1 SOLID Modeling 799
1411 Three Rules 800
141.2 SOLID 800
14.1.3 DONEBE STUPID ...oeviriceieceirecriessmecrieesisesseseesisessaseesesssssssssssnesssnssssnessenessen 802
14.2 Architecture, Design, and Implementation ..., 803
14.3 DeSiGN PAtLErNS ... sesiaseesssssasesssssssessesssasnsessssssesneseens 803
143.1 Motivation for Design Patternsreenecrneceesssecenns 804
1432 SINGIELON ettt seen 805

22

Contents
14.3.3 FACtory MEthods ... easesees 806
143.4 Implementing the Observer Pattern with Listeners ... 807
14.4 Further Reading 811
15 Java Platform Module System 813
15.1 Class Loader and Module/Classpath 813
15.1.1 Loading Classes per Request 813
15.1.2 Watching the Class Loader at Work ... 814
15.1.3 JMOD Files and JAR FIlEScueeerieerirecrisenriseesinsesiseessseeessesssessssecsssesssnesson 815

15.1.4 Where the Classes Come from: Search Locations and Special
Class Loadersvcnnereenseninnns .. 816
15.1.5 Setting the SEarch Pathcncecnecennecineceeesssesseecnes 817
15.2 Importing Modules 819
1521 WhO S5 WHOM? ..ot csse s sessesseesens 819
15.2.2 Platform Modules and a JMOD Example 821
15.2.3 Using Internal Platform Features: --add-exportsncconecnns 821
1524 Integrating New MOdUIESccoernceneernecrnerieeeiseeeiseceisecesseesssecsssesees 824
15.3 Developing Custom Modules 825
153.1 Module com.tutego.candytester ... 825
15.3.2 Module Declaration with module-info.java and Exports ... 826
15.3.3 Module com.tutego.main 826
15.3.4 Module info File with requires 827

15.3.5 Writing Module Inserters: Java Virtual Machine Switches -p
AN "M e 828
15.3.6 Experiments with the Module INfo File ... 829
153.7 Automatic MOAUIES ... sees 829
15.3.8 Unnamed Modules 830
15.3.9 Readability and Accessibility .. 831
15.3.10 MOUIE MIBFAatioN ...ceeeeveeceieerirecrieeieseeeisseessseeseseesiseessses s sssessssessssessssessen 832
15.4 Further Reading 833
16 The Class Library 835
16.1 TheJava Class PhiloSOPRYcncrrineccreiinnecsessiinseesesssassessesssesseseens 835
16.1.1 Modules, Packages, and TYPESccccreeneeeereeeirecemeesseessesssssesssesssssessssessen 836
16.1.2 Overview of the Packages of the Standard Libraryccccmnececrneccenn. 838
23

Contents

16.2 Simple Time Measurement and Profiling™ ... 842
16.2.1 PrOFIErS oot ses s senen 843
16.3 ThE ClASS ClASSccccouervreiecceriiieeeeriiesecesesisssesessseasesssssssssessesssssnessssssssessssssessesssnss 843
16.3.1 Obtaining @ Class ODJECT ...t sseesnen 843
16.3.2 A CIASS 1S @ TYPE .oomeecceicreeceieciieceiceieecssse s ssses s sasse s sasse s sesssesessesees 846
16.4 The Utility Classes System and Members ... 846
16.41 Memory of the Java Virtual Machine ... 847
16.4.2 NUMber Of CPUS OF COTESouureeerreeeeceieseeeseseseessecsssassessssesssssesessseesesens 848
16.4.3 System Properties of the Java Environment ... 848
16.4.4 Setting Custom Properties from the Console* .. 850
16.4.5 Newline Characters and line.separatorccnecnecns 851
16.4.6 Environment Variables of the Operating Systemccoeconemneconnccnnccnns 852
16.5 The Languages of Different Countries ..., 853
16.5.1 Regional Languages via Locale Objectscrnnnrcncnceineccinnncnns 853
16.6 Overview of Important Date Classesoeinreeeneceeeseeeeesesseeeens 857
16.6.1 Unix Time:January 1, 1970 858
16.6.2 System.currentTimeMillis() 858
16.6.3 Simple Time Conversions via TIMeUNIt ... 859
16.7 Date-Time APl ... 860
16.7.1 INIEIAl OVEIVIEW ...t ceescsesesesessesesssessssesessaseseeseessenas 860
16.7.2 Human Time and Machine TIMecc.orrrmrreneceeseneeesseceeeseseessseseeens 861
16.7.3 The LocalDate Date Class ... sesesessesessesnes 863
16.8 Logging with Java ... 864
16.8.1 Logging Application Programming Interfaces .. 865
16.8.2 Logging with java.util.loggINgc.ccomvveceneiinecrnecerecinecereeernecieceierierennen 865
16.9 Maven: Resolving Build Management and Dependenciescccccccunc 867
16.9.1 Dependency to Be ACCEPEU ... seeeceneennes 868
16.9.2 Local and the Remote RePOSITOrYcnereneeenerinesreecinesieeranennes 868
16.9.3 Lifecycles, Stages, and Maven PIUGINSoccconecenercrnecenenes . 869
16.10 FUIther REAAING ...t ssssisesssssssseesesssssnsessssssesneseons 869
17 Introduction to Concurrent Programming 871
17.1 Concurrency and Parallelism ... cneseeeissessessessseseens 871
17.1.1 Multitasking, Processes, and Threadsceceeececnns 872
17.1.2 Threads and PrOCESSESccriiceeeeinesiesesesesassesesesesssessssesessessssesees 873
17.1.3 How Concurrent Programs Can Increase Speedcnnernennes 874
17.1.4 How Java Can Provide for CONCUIMTENCYcccovermeremmeceneeeimecsneceeseessecserecees 875
24

Contents
17.2 Generating Existing Threads and New Threads ... 875
1721 MAINTRFEAM ..o ssesesessenes 876
17.2.2 0 WRO AM 17 oo eess e 876
17.2.3 Implementing the Runnable Interfacenecnnccceineecenns 876
17.2.4 Starting Thread with Runnable ... 878
17.2.5 Parameterizing RUNNADIEccvcrcncrecinecerneceneceneeeeseceinesssecsesecnes 879
17.2.6 Extending the Thread Class™ ... rcneeeeesissesisesseeesessesees 880
17.3 Thread Members and STates ... 882
1731 The Name of @ TArEAd ... sessessessecesseseseeas 882
17.3.2 TheStates of a Thread™ ... 882
17.3.3 SIEEPEIs WaNTEAoocveeveceicrirecriceriecriesriecseeesiseeseses i sssessssssssnessesesses 883
17.3.4 When Threads Are FINIShedcc.crncneceeesseeeeesseceeeseseeesseseeens 885
17.3.5 Terminating a Thread Politely Using Interrupts 885
17.3.6 Unhandled Exceptions, Thread End, and
UncaughtEXceptioNHANAIETc.cececireceeceinecrneceieceieceeneseieeesssessenee 887
17.3.7 The stop() from the Outside and the Rescue with ThreadDeath* 889
17.3.8 Stopping and Resuming the Work™ ... 891
17.3.9 Priority* 892
17.4 ENter the EXECULON ...t ssssiessesssssseesesssssnsessssssesnessens 893
1741 The EXeCUOr INTEITACE ..o sessesseessecceseseseees 893
17.4.2 Happy as a Group: The Thread POOIS ... 895
17.4.3 Threads with returnvia Callable 897
17.44 Memories of the Future: The Future Returncoocinccnnencnns 899
17.45 Processing Multiple Callable ObJECtScocvvemeceneernecenecenrecnecerseciirennen 902
17.4.6 CompletionService and ExecutorCompletionServiceccoccovceemernecen 903
17.47 ScheduledExecutorService: Repetitive Tasks and Time Controls 904
17.4.8 Asynchronous Programming with CompletableFuture
(COMPIELIONSTAZE) ceeorrveeerereeimreeeseeeeese et eeesis s eess s ess s sssssssessssesssssneees 905
17.5 FUrther REAAING ... seseessessssssessesssissssesssassessssssesessons 907
18 Introduction to Data Structures and Algorithms 909
LBLL LISES oo reeitiereeeieae e ssiessees s ssissssssssessesseseesseessssses s et 909
18.1.1 First LISt EXAMPIE oottt siseessesssse e sasecines 910
18.1.2 Selection Criterion ArrayList or LinkedList ... 911
18.1.3 The List Interface S S 911
L18.1.4 ATTAYLIST oottt sisesse e sssesss st sssesiseessesssse e ssssssssenis 918
1815 LINKEALIST ..ottt ease s 919
18.1.6 The Array Adapter Arrays.asList(...) ..rermmmmmesnsneceeeeemssmesssseeee 921
18.1.7 LISTHErator” ..o seses s sasesesssse s cenas 923

25

Contents

Contents
18.1.8 Understanding toArray(...) of Collection: Recognizing Traps 924
18.1.9 Managing Primitive Elements in Data Structures ... 927
LB.2 SLS ... 928
18.2.1 AFirst EXample 0f @ SET ...t eiecseecsssessesesses 928
18.2.2 Methods of the Set INterface ... necneenecnecnecnececseceiecees 930
18.2.3 HashSetncnnenernenns 932
18.2.4 TreeSet: The Sorted Set 933
18.2.5 The Interfaces NavigableSet and SortedSetcconeenecenerunne. . 935
18.2.6 LINKEAHASNSEL ..ottt sseessen 937
18.3 Associative Memory ... 938
18.3.1 The HashMap and TreeMap Classes and Static Map Methods 938
18.3.2 Inserting and Querying the Associative Memorycccouucceeee. 942
18.4 The SEre@am APl ... esseeeeesessessessssssesessssssss s sssssnsessssssesnessons 944
18.4.1 Declarative Programmingneseneseesesesesessesseesees 944
18.4.2 Internal versus External [teration ..., 945
18.43 Whatlsa Stream? 946
18.5 Creating a STre@am ... ssssiesessses e ssssssesssssseseeseens 947
18.5.1 SErEAMLOT (i) oot 948
18.5.2 Stream.generate(...) 949
18.5.3 Stream.iterate(...) v . 949
18.5.4 Parallel or Sequential STreamscenecrneeenecneceneecseceeceisesseresnes 950
18.6 Terminal OPerations ... seeese e seseeseseas 951
18.6.1 Number of Elements 951
18.6.2 And Now All: FOrEACh™ (..) wurvveeeeeeeeeeeeeeesee st 951
18.6.3 Getting Individual Elements from the Streamccccovevomcmncinnccnnecnes 952
18.6.4 Existence Tests With Predicates ... 953
18.6.5 Reducing a Stream to Its Smallest or Largest Elementccccccceee. 953
18.6.6 Reducing a Stream with Its Own Functions ... 954
18.6.7 Writing Results to a Container, Part 1: collect(...) wnreeeernrneeeeeenns 956
18.6.8 Writing Results to a Container, Part 2: Collector and Collectors 957
18.6.9 Writing Results to a Container, Part 3: Groupingsc....... 959
18.6.10 Transferring Stream Elements to an Array or an Iterator 961
18.7 Intermediary Operations 962
18.7.1 Element Previews 963
18.7.2 Filtering EIE@mMENts ... cese e 963
18.7.3 Stateful Intermediary Operationscnecneeenererecnns 963
18.7.4 PrefiX OPerations ... cceierneesineesineesiseesssecssesssssesssnecsssessenessen 965
L18.7.5 IMAGES oottt 966
18.8 FUrther REAdING ..o eesesssssssssssesessessssassssssssee 968

26

19 Files and Data Streams 969
19.1 Old and New Worlds in java.io and java.nio 969
19.1.1 java.io Package with the File Class ... 969
19.1.2 NIO.2 and the java.nio Package 970
19.2 File Systems and Paths ... ccreinsessiisseesessssssessesssesseseons 970
19.2.1 FileSystem and Path ... cisecsseeessesssesnen 971
19.2.2 The Files Utility Classcccconueuuane. 977
19.3 RANAOM ACCESS Filesoooirirceiiicrceiiieccseeieieeesessaseesssssssseessssssssessesssesneseens 980
19.3.1 Opening a RandomAccessFile for Reading and Writingccooeceonvceunecees 980
19.3.2 Reading from RaNdOMACCESSFIlEcovvumeemreinecenreeisecinecersecieceisecieesnen 981
19.3.3 Writing with RaNdomACCESSFIle ... 983
19.3.4 The Length of the RandomAccessFileriiinnercinenninnn. 983
19.3.5 Back and Forth within the File ... 984
19.4 Base Classes for Input/OUtPpuUt ... 985
19.4.1 The Four Abstract Base Classes 985
19.4.2 The Abstract Base Class OutputStream ... 986
19.4.3 The Abstract Base Class INputStreamcnecnnecrneceinennes 988
19.4.4 The Abstract Base Class WILETccenereneceneceneceeceissecsecsssseessnesson 990
19.45 The Appendable INTerface™ ... ceseeesssessssesees 991
19.4.6 The Abstract Base Class Reader ... 992
19.4.7 The Interfaces Closeable, AutoCloseable, and Flushable 995
19.5 Reading from Files and Writing to Files ..., 996
19.5.1 Obtaining Byte-Oriented Data Streams via Filescovmemnecnnccnecnns 997
19.5.2 Obtaining Character-Oriented Data Streams via Files . 997
19.5.3 The Function of OpenOption in the Files.new*(...) Methodsc..cccc...... 999
19.5.4 Loading Resources from the Module Path and from JAR Files 1001
19.6 FUIther REAAING ... ssssisesessssssessesssssnsessssssesneseens 1003
20 Introduction to Database Management with
JDBC 1005
20.1 Relational Databases and Java ACCESSccc..cormcremmonsecseeeiassensessiasseeseens 1005
20.1.1 The Relational MOdel ... seseesesseseenns 1005
20.1.2 Java Application Programming Interfaces for Accessing
Relational DAatabases ... sesesssenes
20.1.3 The JDBC APl and Implementations: The JDBC Driver . .
20.1.4 H2I15the TOOl iNJAVA ... ssssesesssssseseeesenes

27

Contents

20.2 A SaMPple QUENYrreerrreeeeneeeseseennes 1008
20.2.1 Stepsto Query the Databasecrnecencceeseseeeseceeseseecenns 1008
20.2.2 Accessing the Relational Database with Javacnecnnecnnecenn. 1008
20.3 FUIther REAAING ...t sesiessesssssseesesssasessesssasnsssssssesessons 1009
21 Bits and Bytes, Mathematics and Money 1011
21.1 Bits and Bytes 1011
21.1.1 The Bit Operators: Complement, AND, OR, and XOR 1012
21.1.2 Representation of Integers in Java: Two’s Complementccccouecceee. 1013
21.1.3 The Binary, Octal, and Hexadecimal Place Value Systems 1014
21.1.4 Effect of Typecasting on Bit Patternscnecnneconecenneennn. 1016
21.1.5 WOrking WithOUT SIBNScumieieiiecieceireceieriisecsieesseeeseseesssessssesssseseines 1018
21.1.6 The SNift OPErators ... ssssee s sesssesens 1021
21.1.7 Setting, Clearing, Reversing, and Testing a Bit 1023
21.1.8 Bit Methods of the Integer and Long Classes 1024
21.2 Floating Point Arithmeticin Java ... 1025
21.2.1 Special Values for Infinity, Zero, and Not a Number 1026
21.2.2 Standard Notation and Scientific Notation for Floats™cccccccceeeee. 1029
21.2.3 Mantissas and EXPONENTS™cercrcninecrecsiseereeesisesssnessesesesnns 1029
21.3 The Members of the Math Class ... 1031
21.3.1 Object Variables of the Math Class ... 1031
21.3.2 Absolute Values and SigNscerneceneerinecesneceucenes 1032
21.3.3 MaximuMS/MINIMUMS ... sessessessssssssesssssassssssassssssssseses 1032
21.3.4 ROUNAING VAIUES ..ottt ssiesesse s seessssseeseses s esssesssesssnas 1033
21.3.5 Remainder of an Integer Division* . 1035
21.3.6 Division with Rounding toward Negative Infinity and Alternative
REMAINAGTS™ ..o sesess oo 1036
21.3.7 MURIPIY-ACCUMUIALE ..ot sssse s sisssesene 1038
21.3.8 Square Root and Exponential Methodsccemeniincernccnnn. .. 1038
21.3.9 The Logarithm™ ... sssssssones 1039
21.3.10 ANGIE MEENOAS™ ..ot ssse s sasesesene 1040
21.3.11 RAaNAOM NUMDEIScooirieiccieiiereeemrecemieeeseaisecssaseeeeseseessssssesssseesessssesssssessenas 1041
21.4 Accuracy and the Value Range of Type and Overflow Control* 1042
2141 The Largest and Smallest Values ..., 1042
21.4.2 Overflow and Everything Entirely EXactccoccnrnniecnecenecrnecinennnnne 1042
21.4.3 Whatinthe World Does the ulp Method Do?ccomecnnecrnecennne 1045
21.5 Random Numbers: Random, ThreadLocalRandom, and SecureRandom 1046
2151 The RANAOM ClaSS ...t sesecssssessssessssesssssessssesssssesens 1047
28

Contents

21.5.2 ThreadLocalRaNOm ... esssesese e ssses s sessssenen 1050

21.5.3 The SecureRandom Class™ ... sessssssssssssssssssonens 1050
21.6 Large NUMDEIS™ ...t sesse st sss s sess st 1051

21.6.1 The BigINteger Classcrerrccriecsneeereeesissessseeseesssssessessenes 1051

21.6.2 Example: Quite Long Factorials with Biglntegercnccncccenn. 1058

21.6.3 Large Floats with BigDecimal

21.6.4 Conveniently Setting the Calculation Accuracy via MathContext 1062

21.6.5 Calculating even Faster with Mutable Implementationsccccoueeee.e. 1063
21.7 MONEY AN CUITEINCYcvvvemcrriioneeriieseseesseesesssesiesmessssssesmisssssssnessesssesnsssssssesnessons 1064

21.71 Representing AMounts of MONEYccccocrmrceneerienseermisnessiesecseseeesenas 1064

21.7.2 1SO 4217 v .. 1064

21.7.3 Representing CUrrenCies iN JAVaeeeeneeneereermenmensessesseessesssenes 1065
21.8 FUIther REAAING ...t sssiaseesssssinessesssssnsessesssasnessssssesneseens 1066
22 Testing with JUnit 1067
22,1 SOFEWAIE TESEScoocrrcerriieiccseceniieessseesssesssssesss st sanssessss s 1067

22.1.1 Procedure for Writing TEST CaSES ...c.vueuuierecrieceieecriecesseeessesessesesseseones 1068
22.2 The JUnit Testing FramewWorkcoimcrmmoneesmneesesssesssssssseseseens

2221 JUNIEVEISIONS wcoriineieeirecirecireciseesisesisesieeieesssesssesisesiseesssesasesssesssessses s sssesisssssenes

22.2.2 Integrating JUnit

22.2.3 Test-Driven Development and the Test-First Approachccccoecconeveenn.

22.2.4 Test, Implement, Test, Implement, Test, ReJOICEoccevvveerecenereernecenecennne

22.2.5 RunningJUnit Tests

22.2.6 assert*(..) Methods of the Assertions Classerreceereeeenevsesnnnn.

22.2.7 TeStiNG EXCEPLIONS ..ot sisesssessse e sases s sesessenes

22.2.8 Setting Limits for EXecution TIMESccocncrneernecrieerneeeneseisecesneceones

22.29 Labels with @DisplayNamecncrnccinecnnns

22.2.10 Nested Tests ...

22.2.11 I8NOTINEG TESES oot naenisesssssse st s sssesssesssessssssssssssesssessaeees

22.2.12 Canceling Tests with Methods of the Assumptions Class

22.2.13 Parameterized TESTS ...t eteesssesesesesessses s sessssenen
22.3 Java Assertion Libraries and Assert) ..., 1081

2231 Assert)
22.4 Structure of Large Test Cases

2240 FIXEUIES ottt sessessse i s ss ettt enes

2242 Collections of Test Classes and Class Organization ... 1084
22.5 Good Design Enables Effective TeSting ... 1085

29

Contents

22.6 Dummy, Fake, Stub, and Mock 1087
22.7 JUnit Extensions and Testing Add-Ons 1089
22.7.1 Web Tests 1089
22.7.2 Testing the Database Interface 1089
22.8 Further Reading 1089
23 The Tools of the JDK 1091
23.1 Overview 1091
23.1.1 Structure and Common Switches 1092
23.2 Translating Java Sources 1092
23.2.1 The Java Compiler of the Java Development Kit 1092
23.2.2 Native Compilers 1092
23.3 The Java Runtime Environment 1093
23.3.1 Switches of the Java Virtual Machine 1093
23.3.2 The Difference between java.exe and javaw.exe 1095
23.4 Documentation Comments with Javadoc 1096
23.41 Setting a Documentation Comment 1096
23.4.2 Creating Documentation with the javadoc Tool 1098
23.43 HTMLTags in Documentation Comments* 1099
23.4.4 Generated Files 1099
23.4.5 Documentation Comments at a Glance* 1100
23.4.6 Javadoc and Doclets* 1101
23.4.7 Deprecated Types and Members 1101
23.4.8 Javadoc Verification with Doclint 1104
23.5 The JAR Archive Format 1105
23.51 Usingthe jar Utility 1105
23.5.2 The Manifest 1105
23.5.3 Launching Applications in Java Archives: Executable JAR Files 1106
23.6 Further Reading 1107
The Author 1109
Index 1111

30

Index

*, logical operator 130
—, subtraction Operator ... 121
|, logical operator 130
?, generics 716
.., variable argument listccoreerecreecrrnenne 257
.class 617,843
.NET Core 59
.NET Framework 58
@AfterAll 1084
@AfterEach 1084
@author, Javadoc 1097
@BeforeAll 1084
@BeforeEach 1084
@code, Javadoc 1098
@Deprecated 678
@Deprecated, annotation 1103
@deprecated, Javadoc 1102
@Disabled 1079
@DisplayName 1078
@exception, Javadoc

@Functionallnterface .. 678, 740
@1link, Javadoc 1098
@linkplain, Javadoc 1098
@literal, Javadoc 1098
@NonNull 786
@Nullable 786
@Override ..o 460, 485,618, 678
@param, Javadoc 1097
@return, Javadoc 1097
@SafeVarargs 690
@see, Javadoc 1097
@SuppressWarningsc.oeceeees 678,679
@Test 1072
@throws, Javadoc 1097
@version, Javadoc 1097
*, multiplication operator ... 121
*7 44
/, division operator 121
//,line comment 92
&, generics 709
&&, logical operator 130
#ifdef 54
%, ModUlo OPerator ... 122,1035
%%, format specifier 361
%b, format specifier 361
%c, format specifier 361
%d, format specifier 361
%e, format specifier 361

%f, format specifier
%n, format specifier
%s, format specifier
%t, format specifier
%X, format specifier
+, addition operator
=, assigNMment OPeratorceeeeceees
==, reference comparison ...

==reference comparison
||, logical operator
$, inner class

1/1/1970
A
abs(), math 1032
Absolute value 149
abstract, keyword ... 468, 470
Abstract class 468
Accessibility, modular systemccccccoeeeees 831
Accessible, catch 592
Accessible source codeocoomvcrmircnnrirnninen. 185
Access method 384
Actuator 205
Adapter 921
--add-exports, SWitchccomecrrcrnecrenens 823,825
Addition 121
--add-modules, SWitChcccoovemmrermrrrrnriirrnnnene 825
Adjusted exponent 1030
Adobe Flash 61
AdoptOpen]DK 67
Ahead-of-time-Compilercmeccronne 1093
Algebra

Boolean 130

linear 1066
Alias 231

American Standard Code for Information

Interchange -> see ASCII
Amount
Ancestor, inheritance

And

bitwise 133,1012

logical 133
Android 65
Angle function 1040
Annotation 459
Anonymous inner class ... 607
Aonix Perc Pico 67

mm

Index

Index
Apache Commons CLI ...rrrreeevvevvvnssnnnens 282 B
Apache CommONs LaNgccceveeeeemmeceeemeceens 619
Apache Maven 78 Base-ten system 1014
append(), StringBuilder/StringBuffer 335 Basic Multilingual Plane (BMP)cccooevvveuuunnn. 294
Appendable, interface ..., Bias 1030
Applet BiConsumer, interface ... 779
Application class loader ... Bidirectional relationship ... 427
Arcus function BiFunction, interface 780
Argument BigDecimal, classcccouereeveccernonneces 1051, 1059
of functions Big endian 1053
optional BigInteger, class 1051
Argument count, variable Billion-dollar mistake 787
Ariane 5, crash Binary compatibility 497
ArithmeticEXception ... Binary Floating-Point Arithmetic 1025
Arithmetic operator 121 Binary name
ARM -> see Automatic Resource Management inner type 602
(ARM) 580 Binary operator 119
Array 241 BinaryOperator, interfacecooucvvunnen. 780
multidimensional 259 Binary representation ... 349
Array bound 52 binarySearch(), arrays 275
arraycopy(), system 266 Binary system 1014
ArrayIndexOutOfBoundsException 557 Binding, late dynamic ... 464
ArrayList, classccrrnneceneenne 432,909,918 BiPredicate, interface 782
ArrayStoreException 478,926 Bitwise exclusive OR
Array type 207 Bitwise NOT
ASCII character 85 Bitwise OR
asin(), math 1040 Blank character
asList(), arrays 277,921 Block
Assert, class 1073 empty
Assertion 595 BMP -> see Basic Multilingual Plane
AssertionError 595 (BMP) 294
Assert] 1081 Body 177
assertXXX(), assert 1073 BOM -> see Byte Order Mark (BOM) 295
Assignment 119,120,133 boolean, data type 104
with operation 133 Boolean algebra 130
with string concatenation ... 133 Boolean class 664
Association 427 Bootstrap class 10ader ... 816
circular 429 Boxing 615, 666
recursive 429 Break 1066
reflexive 429 break, keyword 171
Assumptions, class 1079 Byte 1011
Attributes 203,204 byte, data type 1014
Autoboxing 139, 665 Byte class 655
Autobuild 80 Bytecode 46
Automatic garbage collection 393,405 byte datatype 104, 112
Automatic memory release ... 51 Byte Order Mark (BOM)ccooceeveeeeumnnccrrrnnnnns 295
Automatic module 830 BYTES, wrapper CONStantccoeeeeeeceeennee 661
Automatic-Module-Name ccccovunnnrvunnens 832
Automatic Resource Management (ARM) ... 580 C
block 580
C 43
C++ 44,203

M2

Calculation inaccuracy ... 169
Calendar, class 858
Call, cascaded 211
Callable, interface 897
Callable objects 902
Call by Reference 235
Call by Value 184,234
Call stack 198
Camel case 86
CamelCase notation 87
Canonical constructor, recordooevvuenee. 529
Cardinality 427
Cascaded call 211
Case SensSitivity ... 86, 320, 326
Cast 132,135
catch, keyword 540
ceil(), math 1033
Central Repository, Maven ... 868
Chained list 919
char, data type 1014
Character 102, 115

appending from 339

replacing 328
Character string 93

constant 303

mutable 333
charAt(), string 310
char datatype ...cecnneecenenne 104,112,115
CharSequence, interface ... 302, 342
Checked exception 558
Child class 437
Class 47,203

abstract 468

anonymous inner 607

concrete 468

final 466

local 605

nested top-level 601

partially abstract 470

pure abstract 470

sealed 525

static inner 601
Class, class 616, 843
class, keyword 369
ClassCastEXCePtionceceeennn. 450, 557
Class concept 57
Class diagram 205
Class hierarchy 438
Class initializer 420
Class literal 616
Class loader 813

Class loading

explicit 814

implicit 814
Class method 182
ClassNotFoundExceptionc.... 844,845
Class object 616
CLASSPATH ..ooovorccerrrreernsecerrrneannne 818,1093, 1107
-classpath 818,1093
Classpath-Hell 819
Class-Path-Wildcard 1095
Class property 391
Class type 207
Cleanable, interface 638
Cleaner class 638
clone(), arrays 264
clone(), object 625
Cloneable, interface 626
CloneNotSupportedException 626, 628
Cloning 625
Closeable, interface 995
COBOL 32
Code page 295
Code point 85, 287
Collator class 644
Command line parameter ... 282
Command not found 75
Comma operator 167
Comment 92
Commercial roundingc.coeceeeenvecerereevenens 1034
Comparable, interface 489, 643, 657
Comparator, interface .. . 643
compare(), comparator 645
compare(), Wrapper classes ...t 657
compareTo(), Comparable ... 645
compareTo(), string 318
compareTolgnoreCase(), String ... 318
Comparison OpPerator ... 128
Comparison string 320
Compilation, conditionalcecenececnreceens 54
Compilation unit 92,226
Compiler 72

incremental 80

native 1093
Compiler error 74
Compile-time constant expression 421
Complement

bitwise

logical

CompletableFuture, classiiinerrvennns
CompletionService, interface .
CompletionStage, interface ...
Complex number

3

Index

Compound assignment operator, compound

operator 126
Compound operator 126
Concatenation 303
Concrete class 468
Condition, COMPOSItecccovverrueereverreceernnenes 144
Conditional compilationccerrveerennne. 54
Conditional operator 148
Condition OPerator ... 133,148
Configuration, reliable ... 831
Congruence, linear 1047
Conjunction 130
const, keyword 235,236
Constant

inherited 494

symbolic 397
Constant pool 332
const-correct 236
Constructor 217

general 408

inheritance 442

parameterized 408

parameterless 405
Constructor call 207
Constructor redirectionccvcnecennecnen. 442
Constructor referenceooeeveeenens 759, 760
contains(), string 311
containsKey(), Map 944
contentEquals(), STINgG ...coommeercerrvernnrccceerennnns 340
continue, keyword 173
Contravalence 130
Control structure 142
Converting radian measure ... 1041
Coordinates, Maven 77
Copy

deep 628

flat 628
Copy constructor ... 217,410, 625
Copy initialization blockccoccevuecnnnccrveunnns 610
copyOf(), arrays 273
copyOfRange(), arraysceomceeeeenees 273
CopyOnWriteArrayList, class ... 909
Copy variable 208,390
cos(), math 1040
cosh(), math 1041
Cosine 1040
Covariance for arrays 477
Covariant, array 926

Covariant, generics
Covariant return type
Coverage, test
Covered, attribute

ma

Covered method 476
Covert method 476
-cp 818,1093, 1095
Creating a stream 947
Currency, class 1065
currentThread(), Thread ... 876
currentTimeMillis(), system 842,858
D

-D

Dangling-else problem
Dangling pointer
Database query
Database schema
Database specification
Datalnput, interface
DataOutput, interface
Data pointer
Data structures
Data type
integer
Date, class
DateFormat, class
Date values

Daylight Saving Time/Winter Time 857
DbUnit 1089
Deadlock 873
Decimal point 1025
Decimal system 1014
Declarative programming 763,944
Deconstructor 417
Decrement 132
Deep copy, clone() 628
deepEquals(), arrays ... 270, 635

deepHashCode(), arrays .
default, switch-case, keyword
Default constructor
Default package
Deferred initialization ...,
Degree

delegate
delete(), StringBuffer/StringBuilder .
Dependency inversion principle
Deployment
Deprecated

-deprecation
De-referencing
Descendant, inheritance ...,
Design by contract
Design pattern
Diamond operator

Index

Diamond type 691 equals(), object 237,619
digit(), character 300 equals(), string 340
DIP -> see Dependency inversion equals(), URL 624

principle 801 equalsignoreCase(), Stringcccceeeeeen. 316,317
DirectX 58 Equivalence 130
Disjunction 130 Error 552
Dispatcher, operating system ... 872 Error class 551,593
Dividend 121,123,1037 Error code 539
Division 121 Error message, non-static method 182

remainder 1036 Escape character 312
Division operator 121 Escape sequence 292
Divisor 121,123,1037 Escher, Maurits 200
Doc comment 1096 Euler number 1031
Doclet 1101 Euro sign 293
Documentation commentcoevenne 1096 EventListener, interface ... 808
Don’t Repeat Yourself -> see DRY ... 800 EventObject, class 808
double, data type 1025 Exception 52
Double bracket initializationcc...e. 610 nested 577
Double class 655 tested 558
double datatype 104 testing 1076
doubleToLongBits(), Double 636, 1030 untested 558
do-while loop 163 untreated 887
DRY 800 Exception class 551
Dummy object 1088 Exception handler 543

Exception parameter 543
E Exception transparency ... 752
Execute-around-method pattern 773

-ea, switch 595, 1094 Executor, interface 893
EasyMock 1088 ExecutorCompletionService, class 903
Eclipse 80 ExecutorService, interface ..., 895
Eclipse Adoptium 67 exit(), system 283
Eclipse Language Pack 81 Exit code 283
ECMAScript 57 Explicit class loading 814
Effectively final 606, 745 Exponent 1029
Ego approach 204 adjusted 1030
else, keyword 145 Exponential value 1039
EmptyStackEXCeptioncecnneccencnneees 557 Expression 98
Empty String ... 330,332,333 pure 765
Enable assertions 595 Expression specificationccreennn. 205
End recursion 197 Expression statement ... 99,120
endsWith(), string 319 Extended for loop 253
Enhanced interface for ILMccooccvncceurneces 499 extends, keyword ..., 437,493
ensureCapacity(), list 919 Extension class 437
Entities 1005 Extension class loader ... 816
enum, keyword 400 Extension method, virtualccccccovrnnneee. 499
Enum class 513
Enumeration type 400 F
Environment variables (operating

system) 852 Factorial 1058
EOFException 982 Factory 804
Equality 238 Factory method 806
equals(), arrays 269,635 Fairy, the good 195

115

Index

Fake object 1087 Functional interface 734

Fall-through 153 Functional programming ... 762

FALSE, Boolean 664 Function descriptor 734

false, keyword 104 Future, interface 899

fastutil 928 FutureTask, class 901

Feature
object oriented 47 G
static 391

Fencepost error 166 Garbage collection, automatic ...

Field Garbage collector .. 393,416
non-primitive 254 Gaussian normal distribution 1048
non-rectangular 262 GC-> see Garbage collector
two-dimensional 259 GCD

File name extension 319 General constructor

FileNotFoundEXception ... 552 Generic method

FileSystem, class 970 Generics

fill(), arrays 272 Generic type

fillinStackTrace(), Throwablecccoovvue. 576 GERMAN, locale

final, keywordcccoomuenceees 110,397,466,467 get(), list

Final class 466 get(), map

finally, keyword 561 getBoolean(), Boolean

Final method 467 getChars(), string

Final values 425 getClass(), object

FindBugs 569 getInteger(), integer

First Person, Inc. 44 getNumericValue(), character ... 300

Fixture 1083 getPriority(), thread 892

Flat copy, clone() 628 getProperties(), SYSteM ... 848

Flat object copy 628 getResource(), class 1001

Float 102,115,1025 getResourceASStreamy() ... 1001

float, data type 1025 Getter 385

Float class 655 Global variable 193

float datatype 104 Glyphs 290

Floating point NUMDETcoueevevernecrrrernecreuene 1025 Gosling, James a4

floatToIntBits(), float 636 goto, keyword 174

floor(), math 1033 Graalvm 50

Flushable, interface 996 Grammar 83

Font§) 290 Granularity, threads 892

forDigit(), character 301 Greatest common divisor -> see GCD 1051

for-each loop 160 Green OS 44

for loop 164 Green project 44
extended 253 Groovy 60

format(), PrintWriter/PrintStream 362

format(), string 361

Format specifier 361 H

Format string 361 H2. database 1007

forName(), class 844 Ha;ncrest 1081

for-statement 165 Hangman 314

iiiljti; locale 855 Hash code 630

. hashCode(), arrays 635
ﬁTSt class 768 hashCode(), object 630
higher order 767 :
pure 764 Hash function 630
variadic 957 HashMap, class 938

1116

Index

HashSet, class 932 Inheritance 215,437
Hash table 938 Inherited constant 494
Hash value 630 Initialization, deferredcooveeeveneerenne. 110
hasNextLine(), SCANNereereeeenn. 357 Initializing a class variable ... 421
Header 177 Initial module 828
Header, record 529 Inline tag 1100
Header file 54 Innerloop 167
Heap 212 Inner type 600
Helper class 408 InputStream, class 988
Hexadecimal NUMDETcccooovevvvemmecereneccerennee 1015 Instance 203
Hexadecimal representation ... 349 Instance initializer 422
Hexadecimal system Instance variables 208
HexFormat, class int, data type 1014
Hidden variable int datatype 104,112
Hoare, Tony Integer 102
HotJava Integer class 655
HotSpot Integration test 1070
Human time 861 Intelli] IDEA 76

Interaction diagram 206
| INtErface ..o 57,468, 483, 484

enhanced 499

Identifier 85 Sfunctional 734
Identifiers 85 interface, keyword 484
Identity 238,619 Interface method, staticcccceevevvevcrrererneee.
identityHashCode(), systemccco.... 632,637 Interface segregation principle
IEEE 754 Interface type

IEEEremainder(), mathccooemricrnrrrnenns

if cascade

if statement
accumulated

Ignored status return value ..

IllegalArgumentException
566, 568, 570

IllegalMonitorStateException ... 558
IllegalStateException 566
IllegalThreadStateException ... 878
Imagination 44
Immutable 414
immutable 301
Imperative programming language 91
Implication 130
Implicit class loading 814
import, keyword 222
Import, static 226
Increment 132
Incremental compiler 80
Index 241, 248
Indexed variable 246
indexOf(), string 312
IndexOutOfBoundsException ... 249, 567
Infinite 1026
Infinite loop 161

Intermediary Operation ...
Intermediary operation

stateful 963
Internal iteration 675
Interpreter 72
Interrupt 885
interrupt(), thread 885
interrupted(), thread 887
InterruptedExceptionocneceenen. 884, 887
Interval 170
Invariant, generics 714
[OException 552
Is-a-kind-of-relationshipccomeeernecceennne 468
isInterrupted (), threadcooeeeceeernnrrecceennnns 885
is-method 385
isNaN(), double/floatccoocemrrvrmrircnnrrrens 1028
ISO/IEC 8859-1 288
[SO-639 code 854
ISO 8859-1 85, 289
ISO abbreviation 856
ISO Country Code 854
ISO Language Code 854
ISP -> see Interface segregation

principle 801
ITALIAN, locale 855
Iterable, interfaceevceeeenns 674,675

m7

Index

Iteration 945 Jump label, switch 152
internal 675 Jump target, switch 152
internal versus external ... 945 JUnit 1069

Iterator, interface 670 execution times 1077

iterator(), iterable 674 running test 1072

versions 1069

J Just-in-time (JIT) compilerccccccemmecereeeerne 49

Jython 60

]/Direct 57

Jakarta EE 65 K

JamaicaVM 67

JAR 1105 Keep It Simple, Stupid -> see KISS

-jar, java 1107 keytool

jar, utility 1105 Keyword

JAR file 815 reserved

jarsigner, utility 1091 KISS

Java 45 KOREAN, locale 855

java, package 221 Kotlin 59,76

java, utility 1093

java.lang.ref, package 638 L

java.nio.file, package 970

javac, utility 1092 Lambda expression 733

Java Card 65 lastIndexOf(), string 313

Java Database Connectivity (JDBC) 1006 Late dynamic binding 464

Javadoc, Utility ...cccoveeeeeneccenieccniis 1096, 1098 Latin-1 288

JavaFX platform 61 Left associativity 134

JavaFX script 62 length(), string 309

Java Mission Control, softwarecco......... 843 LESS principle 722

Java Platform, Enterprise Edition (Java EE)65 Lexicon 83

Java Platform, Micro Edition (Java ME) 62, 65 Lifetime 193

Java Platform, Standard Edition (Java SE) 61 line.separator 852

Java Platform Module System (JPMS) 819 Linear algebra 1066

Java Plug-in 61 Linear congruence 1047

Java Runtime Environment (JRE) 1106 Line break 851

JavaScript 57 Line comment 92

JavaSoft 45 lineSeparator(), system

Java Specification Request -> see JSR 60 LinkedHashSet, class 937

Java TV 65 LinkedList, class 909,919

Java Virtual Machine (JVM)cccoomvcrmmrrrnmrrennnns 46 Linking 813

javaw, utility 1095 Liskov, Barbara 452

javax, package 221,841 Liskov substitution principle ... 452

Jigsaw 819 Liskov substitution principle (LSP) 801

JIT -> see Just-in-time (JIT) compiler 49 List 909

join(), thread 890 chained 919

Joy, Bill 43 List, interface 909

JPMS -> see Java Platform Module System Listener 807
(JPMS) 819 ListIterator, interface 923

JProfiler, software 843 Literal 87

JRuby 60 Local class 605

JSR 60 Locale 855

JSR 354 Locale, class 326,853
Money and Currency API ... 1064 log(), math 1039

ms8

Index

log4j 865 Method (Cont.)
Logical operator 130 final 467
Log level 866 generic 695
long, data typeccmeecernnnees 104,112,1014 native 56
longBitsToDouble(), double ... 1030 overloaded 96,191
Long class 655 overwriting 457
Loop 160 parameterized 183

inner 167 recursive 195

outer 167 static 182
Loop condition 163,168 synthetic 602
Loop counter 165 method 203
Loop increment 165 Method body 177
Loop test 165 Method call 93,180,374
Lower-bounded wildcard typeccccooccuvueeeee 717 Method header 177
LSP -> see Liskov substitution principle Method referenceccnnccenenn. 755,756

(LSP) 801 variants 756

with 756
M Microsoft Development Kit ... 57
MIN_PRIORITY, thread

Machine time 861 MIN_RADIX
Magic number 398 MIN_VALUE 1042
main() 74 min(), math 1032
Main-Class 1106 Minimum 149,1032
Main class 92 Minus, unary 124,132
Main-Thread 876 Mixin 508
MANIFEST.MF 1105 Mockito 1088
Mantissa 1029 Mock object 1088
Map, interface 938 Model View Controller ... 807
Marker 174 Modifier 100,179
Marker annotation 679 Module
Marker interface 512 automatic 830
Masking 330 initial 828
Math, class 1031 readability 831
MathContext, class 1062 unnamed 830
Maven 78 Module info file 826

Goals 869 Module system, accessibilitycccccuuuwee. 831

Phases 869 Moneta 1064
MAX_PRIORITY, threadcooucccceumemmececeennnes 892 multicast 57
MAX_RADIX 301 Multi-catch 548
max(), math 1032 Multidimensional array ... 259
Maximum 149,1032 Multilevel continue 174
McNealy, Scott 44 Multiple branching 147
Member class 600 Multiple inheritance 488
Memory leak 417 Multiplication 121
Memory release, autOMAaticccommeeeereeeennnee 51 Multiplicity 427
MESA, programming language ... 43 Multitasking 872
Metadata 459 Multitasking capabilitycciinnrriienens 872
META-INF/MANIFEST.MF ..o 1105 Mutator 374
Meta object 843
Method 177

covered 476

covert 476

1m9

Index

N Number (Cont.)
hexadecimal 1015
NaN magic 398
nanoTime(), system Number class 655
Narrowing conversion NumberFormatException 348,542,546
native, keyword Number value, Unicode character 85
Native compiler Numeric promotion 121
Native method
Natural order (0]
Naughton, Patrick
NavigableMap, interface Oak 44
NavigableSet, interface . Obfuscator 845
NEGATIVE_INFINITY Object approach 204
Negative sign Object class 440,616
Nest Object copy, flat 628
Nested exception Object diagram 205
Nested tests Object equivalence 619
Nested top level class Object graph 417
Nested type Object identification 617
NetBeans Objective-C 57
Netscape Object orientation 47,99
new, keyword Object-oriented approachcccmmeceernnecens 57
Newline character Objects class 639
newOutputStream(), filesoooceeccecrrrrvccccennnns 997 Object type 50, 449
nextLine(), scanner 357 Object variable 208
No-Arg constructor 217 initializing 418
no-arg-constructor 405 Observer pattern 807
NoClassDefFOUNdEITOrcoocccvvereerccreennnees 845 Octal number representation 349
Nominal tuple 529 Octal system 1014
Non-number 122 Off-by-one error 165
Non-primitive field 254 Olson, Ken 1067
Normal distributionceoneeceeennn. 1048 Open—closed principleconeceeeenne. 801
Gaussian 1048 Open]DK 55,67
NoSuchElementException ... 671 OpenJFX 62
Not 130 Operating system independence 46
bitwise 1012 Operation 203
Not a Number (NaN)ccccomrveemrrenee 1026, 1042 intermediary 946,962
quiet 1029 reducing 946
signaling 1029 terminal 946,951
Not a Number -> see NaNccccouevvernccruunnna. 1026 Operator 119
Notation, scientific 1029 arithmetic 121
NULL 539 binary 119
null, keyword 228 logical 130
Nullary constructor 405 monadic 119
Null object 474 overloaded 54
Null-Object pattern 787 question mark 119
NullPointerException 229, 248, 558, relational 128
568, 784 ternary 149
null reference 228 trinary 149
Number two-digit 119
complex 1066 unary 119
Euler 1031 Operator precedence 132

1120

Index
Operator rank 132 Partially abstract classccconeceorececennn. 470
Operator ranking 132 PATH 71
Optional class 787 Path, interface 970
OptionalDouble class 793 Paths, class 971
Optionallnt class 793 Payne, Jonathan 45
OptionalLong class 793 PDA 65
OR PhantomReference classcomneceennnn. 638
bitwise 133,1012 Pi 1031
exclusive 130 Pipeline, stream API 946
exclusive bitwise 1012 Place value system 1014
logical 133 PlantUML 239
Oracle Corporation 45 Platform independenceiinnnrnreennns 46
Oracle JDK 68 Plugin
Oracle OpenJDK 67 Maven 869
Order, natural 643 Plus, overloaded 140
ordinal(), enum 517 Plus/minus, unary 132
Ordinal number, enumcccocooevevveervevvvenennnne 516 Plus/minus sign reversal ... 124
Outer loop 167 Point, class 204, 206
OutOfMemoryEITor ... 212,594,626 Pointer 50
Output formatting 857 Point operator 208
OutputStream, class 986 Polar method 1048
Overflow 1042 Polymorphism 465
Overloaded methodccocooevvvieivininne 96, 191 POM file 78
Overloaded operator 54 POSITIVE_INFINITY 1042
Overwrite Post-decrement 125
method 457 Post-increment 125
Potency 1039
P Pre-decrement 125
Prefix 319
Package 220 Prefix operation 965
unnamed 225 Pre-increment 125
package, keyword 224 print() 95,192
package-private 381 printf() 96
Package visibility 386 printf(), PrintWriter/PrintStream 362
Pair of parentheses 180 println() 95
Parallel 871 printStackTrace(), throwableocccceuucene. 550
Parameter 183 Priority, thread 892
current 183 Priority queue 892
formal 183 Privacy 380
Parameterized constructor ... 408 private, keyword 381
Parameterized tests 1079 Process 872
Parameterized type 688 Profiler 843
Parameterless CONStIUCLOTcoccevereunrieenennnne 405 Profiling 842
Parameter list 177,180 Program 92
Parameter passing mechanismc........... 184 Programming
parseBoolean(), Booleanconmccceeennns 347 against interfaces 488
parseByte(), byte 347 declarative 763,944
parseDouble(), dOubleomccereimrrreeerennnns 347 Programming against interfaces 802
parseFloat(), float 347 Programming language, imperative 91
parselnt(), integer ... 347,351, 546, 663 Programming paradigm
parseLong(), longecrmeeeereeeennne 347,351 Promotion, numeric
parseShort(), short 347 Properties, class

121

Index

Index
Property 384 Reference (Cont.)
protected, keyword 442 strong
Protocol 57 weak
Prototype 411 Reference type
Prototype-based object-oriented comparison with == ...
programming 204 Reference variable ...,
Provider 773 Referencing
Pseudo-prime number test ... 1051 Referential transparency ...
Pseudo-random NUMDbETcccccurmevrueececerennne 1047 regionMatches(), Stringooeceeeeesseceeeeennns
public, keyword 381 Relation
Pure abstract class 470 Relational database
Pure expression 765 access with Java
Pure function 764 Relational database systemcccconeeeees
Purely abstract class 470 Relationship, bidirectional ...
put(), map 942 Reliable configuration

Q

Quasi-parallelism 871
Question mark operator ... 119
Quotation marks 115
Quote, single 115
quote(), pattern 330
R

Random, class 1046

random(), mathcooocemreimnrieerrrnenen.
RandomAccess, interface .
RandomAccessFile, class
Random numberereceeennn.

Random number generator ... 1047
Range-Checking 52
Ranking 132
Raw type 704
Readability, module 831
readability, module 831
Reader, class 992
readUTF(), RandomAccessFile ... 982
Real-time Java 66
Real-time specification for Java ->

see RTS] 66
record, keyword 529
Records 529
Recursion type 197
Recursive method 195
Recursive type boundcerneccernnecns 709
Reducing operation 946
Reference 207

abstract class 638

122

reliable configuration
Remainder of a diviSion ...
Remainder operator
Removing whitespace ...
Rendezvous
replace(), string
replaceAll(), string
replaceFirst(), string
requireNonNull(), objects
Restricted identifiers
Result
Result type
resume(), thread
rethrow, exceptions
return, keyword
Return type
covariant
Reuse via COpY & PASLEoeeweeerrrrrrssrecccreeennns
Reverse function
Right associativity
rint(), math
round(), math

Rounding
commercial
Rounding down
RoundingMode, enumeration 1062
Rounding modes, BigDecimalcc.ccoueeeeee. 1061
Rounding up 1033
RTS] 66
run(), runnable 877
Runnable 879
parameterizing 879
Runnable, interface 876
Runtime environment 46
RuntimeException 541
Runtime interpreter 46

S

SapMachine 68
Scala 60
Scanner, class 356
ScheduledExecutorService, interface 904
ScheduledThreadPoolExecutor, class 894,

904

Scheduler, operating systemcccccoeeeeeeene. 872
Scientific notation 1029
Scope 193
Sealed class 525
Secondary 871
SecureRandom, classooveveenereennnns 1051
Seed 1047
Selenium 1089
Semantics 83
Separator 84, 355
Sequence diagram 206
Set, interface 928
setPriority(), thread 892
Setter 385
Set-top boxes 44
Sexadecimal SYStemcccocmmeererrnecrerenecnenes 1015
Shadowed variable 376
Sheridan, Mike 44
Shift 132
Shift operator 1021
short, data type 1014
Short-circuit 0peratorceceeenn. 131
Short class 655
short datatype 104, 112
Side effect 374
Sign, negative 119
Signaling NaN 1029
Signature 178
Sign extension 132
Silent NaN 1029
Silverlight 61
Simula 57,201
sin(), math 1040
Sine 1040
Single inheritance 440
Single quote 115
Singleton 401, 802, 805
Single-value annotation ... 679
sinh(), math 1041
sizeof 141
sleep(), thread 883
Smalltalk 47,201
Smiley 293
sNaN 1029

SoftReference class 638
Software architeCture ... 803
Software test 1067
SOLID 800
sort(), arrays 268
SortedMap, interface 940
Source code, accessiblenceennnn. 185
Spacebar 298
split(), string 356
Square root 1038
SRP (Single Responsibility Principle) 800
Stack 198
Stack-case label 155
Stack memory 213
StackOVerflOWEITOT ..o 198, 594
Stack trace 545
Standard Directory Layoutccemececrneceene 77
Standard Extension API ... 841
Star Seven 44
start(), overwriting methodccevceecvssrereceens 881
start(), thread 878
startsWith(), string 319
State, thread 882
Statement 91
atomic 95
blank 95
elementary 95
nested 147
Statement sequence 95
static, keyword 100, 392
Static (initialization) blockoccommerverrmereeenn. 420
Statically typed 102
Static feature 391
Static import 226
Static inner class 601
Static interface method ... 495
Status return value, ignoredcccevvveeeee 546
stop(), thread 885
Stream API 944
Stream class 985
Strictly typed 102
String
appending to a 325
length 309
StringBuffer 302,333
StringBuilder 302,333
String concatenation 132
StringIndexOutOfBoundsException ... 311, 322
String literal 303
String part
comparing 319
extracting 310, 320
123

Index

Strongly typed 102
Strong reference 638
Stroustrup, Bjarne 203
Stub object 1088
STUPID 802
Subclass 437
Subinterface 493
Substitution principle ... 452
Substring 311
substring(), string 320
Subtraction 121
Suffix 319
Sun Microsystems 45
SunWorld 45
super, keyword 461
super() 442,444, 446
Superclass 438
Supplier 773
Suppressed eXCeptioneccenenne 563
Surrogate pair 295
suspend(), thread 891
switch statement 151
Symbolic constant 397
Symmetry, equals() 622
Synchronization 637
Syntax 83
Synthetic method 602
System.err 100, 550
System.in 988
System.out 99
System class loader 816
System property 848
T
TAIWAN 855
tan(), math 1040
tanh(), math 1041
Target type, lambda expression 736
TCFTC 561
TCK -> see Technology Compatibility Kit

(TCK) 67
TDD 1070
Technology Compatibility Kit (TCK)cccoueeeee 67
Template pattern 988
Terminal operation ... 946,951
Test

ignoring 1078

nested 1078

parameterized 1079
Test-Driven Development -> see TDD 1070
Test-First 1069

1124

Test Runner 1068
this() 446
this(), constructor call 412
this$0, inner class 605
this reference 377,446
inner class 604
Thread 873
condition 882
granularity 892
name 882
native 873
priority 892
properties 882
Thread, class 878
extending 880
Thread end 887
ThreadLocalRandom, classcccoevcevviennnee. 950
Thread pool

ThreadPoolExecutor, class ...
Three-way comparison
throw, keyword

Throwable class

throws, keyword
Time measurement
TimeUnit, enumeration ...
Time zone
toArray(), collection
toBinaryString(), integer/long ...

toCharArray(), string 324
toHexString(), integer/1ong ... 349
Token 84
toLowerCase(), character ... 299
toLowerCase(), string 326
toOctalString(), integer/long ... 349
Top level class, nestedooeceecnneccennnecens 601
toString(), arrays 267
toString(), object 458,617
toString(), point 210,211
toUpperCase(), character ... 299
toUpperCase(), string 326
Towers of Hanoi 198
Trait 508
Translation error 74
Transparency, referential ... 765
TreeMap, class 939
TreeSet, class 933
trim(), string 327
TRUE, Boolean 664
true, keyword 104
Truth value 102
try, keyword 540

Index
try block 543 Unidirectional relationshipcoevnne. 427
try With resources ... 358,580 Unified Modeling Language (UML) 204
Tuple 1005 Unit test 1068
nominal 529 Unix epoch 858
Two's complement 1013 Unix time 858
Two-dimensional fieldccceeeeeermenneeerenes 259 Unnamed module 830
Type Unnamed package 225
arithmetic 104 UnsupportedOperationException ... 558, 589,
generic 686 673,922
inner 600 Untested exception 558
integral 104 Upper-bounded wildcard typecceemneee 717
nested 600 Upward compatibility 64
numeric 98 US,locale 855
parameterized 688 Usecase 205
primitive 103 Use case diagram 205
Type, interface 846 UTF-16 encodingccoocceeuemmeererrmecereerneceenens 291, 295
TYPE, Wrapper Classcooeeeeeeeeeenes 617,843 UTF-8 encoding 291,982
Type annotation 677 Utility class 408
Type bound, reCursivecneceronecenns 709
Typecast 135V
Typecasting 135
automatic 135, 447 Value object 414, 654
explicit 135,449 valueOf(), enum 515
Type comparison 133 valueOf(), string 345
Typed valueOf(), wrapper classes ... 653
static 102 Value operation 119
strict 102 Valuerange 384
strong 102 Value transfer 183,184
Type deletion 699,700 Vararg 257
Type inference 691,696 Variable
Type token 725 global 193
Type variable 686 hidden 377
indexed 246
U Variable declaration 106
Variable initialization ... 478
U+, Unicode 289 Variadic function 257
UK, locale 855 Vector, class 909
UML -> see Unified Modeling Language -verbose 1094
(UML) 204 Virtual extension methodcccoecnnccnnecnnn. 499
Umlaut 292 Virtual machine 46
Unary minus 124 Visibility 193, 380
Unary operators 119 Visibility modifier 381
Unary plus/minus 132 Visual Age forJava 80
Unboxing 666 VisualVM, software 843
UncaughtExceptionHandler, interface 888 void, keyword 181
Unchecked eXCEPtioN ovvvevveeeeessssesssssessinnenns 571 void-compatible 743
UncheckedIOException
Underscore in numbers W
Unicode 5.1
Unicode character 85 Weak reference 638
Unicode Consortium 289 WeakReference class 638
Unicode-Escape 293 Web 44
125

Index

Web applet 45
WebRunner 45
while loop 161
Whitespace 298
Widening conversion 136
Wildcard 716
Win32 API 57
Windows-1252 289
Wither method 415
World Wide Web -> see Web cccccomecvvrmecruen

Wrapper class
Writer, class
writeUTF(), RandomAccessFile
WWW -> see Web

X

-Xms 1094
-Xmx 1094
-Xnoclassgc 1094

1126

XOR 130
bitwise 133
logical 133

-Xrs 1094

-Xss 1094
n 198

-XX
ThreadStackSize=n 198

Y

YAGNI 800

Yoda style 129

You Ain’t Gonna Need It -> see YAGNI 800

YourKit, software 843

y4

Zero-Assembler Project ... 50

Build and deepen your coding knowledge

from the top programming experts!

® Rheinwerk
Computing

Statements, |
Variables, (§
Arrays, Stri

Object-Orie|
Programming
Functional |

public class GuessWhat |
public staticvoid . .1/ {String | args)|
intnumber—{int)} Mathi-1,(:; ({5

while true
System out [, | “What number do | haveint
int guess java. anner (/¢ ine]

i (number ==guess)
Systemout .); :i:(“Good guess!"
break // End of loop

“Nope, my number is largel

“Nope, my number s small

Comprehensive
Guide

Christian Ullenboom e Rheinwerk
Computing

Christian Ullenboom

Java: The Comprehensive Guide

1126 pages, 2023, $59.95
ISBN 978-1-4932-2295-7

¥ www.rheinwerk-computing.com/5557

Christian Ullenboom is an Oracle-certified Java programmer
and has been a trainer and consultant for Java technologies and
object-oriented analysis and design since 1997.

We hope you have enjoyed this reading sample. You may recommend or pass it
on to others, but only in its entirety, including all pages. This reading sample and
all its parts are protected by copyright law. All usage and exploitation rights are
reserved by the author and the publisher.

https://www.sap-press.com/java_5557/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2295

