=7 PRESS

AT EANT AO0O) SODIDINIADSG ejyed =SA20D

First-hand knowledge.

Core Data Services
for ABAP’

> Develop data models with ABAP core data services

Create and extend models for analytical and transactional applications

iati i work
Define annotations and associations, implement access controls,

with hierarchies, and more

Renzo Colle .
Ralf Dentzer (A Rhglhnwerk
Jan Hrastnik Publishing

® Rheinwerk

Publishing

Reading Sample

In this chapter, you'll learn about the technical basics of CDS data models.
Walk through syntax elements such as key fields, cast operations, simple
types, projection fields, and more. Then, familiarize yourself with associa-
tions and annotations.

“Fundamentals of CDS Data Modeling”

Contents

% Index

8 The Authors

Colle, Dentzer, Hrastnik

Core Data Services for ABAP

754 pages | 10/2023 | $89.95 | ISBN 978-1-4932-2376-3
¥ www.sap-press.com/5642

https://www.sap-press.com/core-data-services-for-abap_5642/?utm_source=AWS&utm_medium=referral&utm_campaign=Browse+the+Book&utm_content=2376

Chapter 2
Fundamentals of CDS Data Modeling

This chapter explains the basic syntax and concepts of core data services
(CDS) for defining data models. It focuses on the most important design-
time artifact—the CDS view—and describes its components.

CDS allows you to define and implement data models. The implementation
of these data models is based on the CDS data definition language (DDL),
which is closely related to the structured query language (SQL). It supports
defining several specialized CDS entity types and related metadata models.

In this chapter, Section 2.1 provides an overview of these models and their
purposes. The remainder of the chapter deals with CDS view models, which,
from a developer’s perspective, are considered the most important CDS
entities. Specifically, you'll learn how to implement your data selections
using CDS syntax. You'll find an overview of the fundamental syntax ele-
ments for CDS view definitions in Section 2.2. Afterward, we’ll introduce
you to the following aspects in more detail:

= Key fields (Section 2.3)

m Cast operations (Section 2.4)

® Typed literals (Section 2.5)

= Simple types (Section 2.6)

m (Case statements (Section 2.7)

m Session variables (Section 2.8

= Client handling (Section 2.9)

m Select distinct statements (Section 2.10)

®m Union views (Section 2.11)

® [ntersect and except statements (Section 2.12

® Joins (Section 2.13)

® SQL aggregation functions (Section 2.14)

® Projection fields (Section 2.15)

® Parameters (Section 2.16)

m Reference fields (Section 2.17)

® Conversion functions for currencies and quantity units (Section 2.18)

53

Important terms

Structure of this
chapter

2 Fundamentals of CDS Data Modeling

Enrichments of the
data selection logic

CDS model
definitions

® Provider contracts (Section 2.19)

® Entity buffer definitions (Section 2.20)

Apart from modeling data selections, you'll also get acquainted with CDS
associations and annotations. Associations allow you to establish directed
relationships between your data models. These associations enrich the data
models with semantic information. Furthermore, they can be leveraged
when defining select statements. Associations are described in detail in

Chapter 3.

Annotations allow you to equip your CDS models with additional metadata
that is primarily expected to be interpreted by the consumers of the CDS
models. For example, CDS annotations are evaluated by the Service Adapta-
tion Definition Language (SADL) infrastructure when defining an OData
service. You'll learn how annotations are defined and applied in Chapter 4.

2.1 Overview of CDS Models

CDS models comprise the definitions of various CDS entity types such as
CDS views and CDS abstract entities. These entity types will cover different
use cases. Typically, the CDS entity type can’t be changed after the corre-
sponding CDS model is activated. From a technical perspective, all CDS
entity types are assigned to the object type DDLS, which we introduced in
Chapter 1, Section 1.2.2. However, the range of CDS models also comprises
further objects such as CDS metadata extensions and simple types, which
have deviating object types of DDLX and DRTY, respectively.

Table 2.1 shows the fundamental definitions of the available CDS models
along with their envisioned usages.

View defineview... as Data selection
select from...

View entity define viewentity Data selection; successor
. asselect from... of view CDS model
Projection view define viewentity Data selection

. asprojectionon

Transient view define transient view Analytical query
entity ... asprojec-
tionon...

Table 2.1 CDS Models

54

2.1 Overview of CDS Models

Extend view extendview... with

Extend view entity extend viewentity

. with ...
Table function define table function
Custom entity define customentity

Extend custom entity extend custom
entity.with..

Abstract entity define abstract
entity ...

Extend abstract entity ~ extend abstract
entity.with..

Hierarchy define hierarchy
entity ...
Metadata extension annotate view
. with...
Simple type define type..

Entity buffer definition ~ define viewentity
bufferon ...

Table 2.1 CDS Models (Cont.)

Extension of a CDS view

Extension of a CDS view
entity

Data selection with
SAP HANA—-native func-
tions

ABAP-based data selec-
tion in SADL-based OData
services

Extension of a CDS cus-
tom entity

Modeling of structures

Extension of an abstract
entity

Modeling of hierarchies

Annotation decorator

Typing of fields and
parameters; successor of
ABAP Data Dictionary
data element in CDS

Buffering records of CDS
view entities

As shown, there are different types of CDS view models: Views

m Views (aka V1 views)
Represent the original CDS view models.

m View entities (aka V2 views)

Represent the successor of V1 views. Compared to V1 views, V2 views
don’t generate an additional ABAP Data Dictionary view upon their acti-
vation. This reduces the risk of technical inconsistencies and improves

the overall activation performance. Furthermore, V2 views enforce more

55

2 Fundamentals of CDS Data Modeling

homogenous modeling and apply stricter syntax checks. For example,
V2 views foster uniform client handling, which avoids some of the issues
that might occur when defining and using V1 views. Because primarily
view entities are expected to benefit from further improvements of the
CDS infrastructure, we recommend always defining V2 views (probably
as projection or transient views) instead of V1 views.

Migration of V1 Views to V2 Views

You can migrate your existing V1 views to V2 views. This migration can be
achieved by manually changing the statement define view .. to define
view entity ... Alternatively, you can run report RUTDDLSV2MIGRATION or
use the corresponding functionality Migrate to CDS View Entity of the
context menu in the Project Explorer view of the ADT environment.

However, before migrating a V1 view, all the usages of its generated SQL
view need to be removed. Additionally, the definitions of the V1 views and
their extensions need to be aligned with the stricter syntax checks and
behavior of V2 views prior to their migration. The migration tools just
mentioned perform some of the necessary adjustments automatically and
provide you with information about potential changes. Therefore, we sug-
gest using the tools for migrating V1 views.

® Projection views
Represent a specialization of the view entities. Their main purpose is the
definition of interfaces on their underlying CDS models with a modeled
mapping of the corresponding functionality. As a result, projection
views restrict the overall functionality of view entities to mere projec-
tion features. Projection views will be explained later in Chapter 6, Sec-
tion 6.1.

® Transient views

Transient views (sometimes also referred to as V3 views) define CDS view
entities without a direct representation on the SAP HANA database sys-
tem. They act as mere declarative view models whose runtime behavior
is governed and implemented by infrastructure components such as the
analytical engine. This implies that you can neither use transient views
as data sources for other CDS views nor can you select from transient
views in your ABAP code. You'll learn about the use of transient views in
the context of implementing analytical queries in Chapter 10, Section
10.3.

For the sake of brevity, we’ll refer to CDS view entities when talking about
CDS views or simply views unless explicitly mentioned otherwise.

56

2.1 Overview of CDS Models

Extend views and extend view entities allow you to enhance a CDS view or a
CDS view entity, respectively, with additional fields and associations; that
is, they allow you to define extensions of CDS data models. You'll learn
more about such extensions in Chapter 15.

Whereas the selection logic of CDS views is implemented in the definitions
of the CDS models themselves by applying a declarative CDS syntax, the
implementation of table functions leverages native SAP HANA SQLScript
syntax. The usage of SAP HANA SQLScript enables a higher degree of free-
dom in the way the selection logic is implemented. In addition, it provides
you with the option to use functions that aren’t yet supported by the CDS
syntax. However, there are also several drawbacks to using table functions.
You'll find further information about CDS table functions in Chapter 7.

Similar to table functions, custom entities only capture the signature of a
data model within the CDS model definition itself. The actual implementa-
tion of custom entities occurs in ABAP code. As such, the logic of custom
entities can’t be executed on the database level. Instead, custom entities
can be used to define OData entity sets that are processed by the SADL
infrastructure. For more information, refer to http://s-prs.co/v529401.

ABAP Logic Can’t Be Used in Logic Accessed from SAP HANA

You can’t incorporate ABAP logic into the logic being executed on SAP
HANA. ABAP logic can only be processed before or after processing the
logic on SAP HANA.

Abstract entities are used to define signatures without implementation. In
the context of the ABAP RESTful application programming model, you can
use them for defining data structures for parameters and results of actions
and functions, as well as for event payloads. Furthermore, abstract entities
may be used for defining proxies of external service models entities. For
more information, refer to the SAP documentation at http://s-prs.co/
v529421.

Hierarchy entities allow you to gain access to the functionality of SAP HANA
hierarchies; that is, they allow you to leverage SAP HANA hierarchy features
in your ABAP code. You'll find an explanation of the hierarchy modeling
and its application in Chapter 12, Section 12.3.

Whereas all the aforementioned CDS models represent dedicated CDS
entity types, metadata extensions represent an extension option of the CDS
entity type instead. From a technical perspective, they are assigned the
object type DDLX. The purpose of metadata extensions is to enrich and rede-
fine annotations of CDS entities. The concept of metadata extensions will
be explained in more detail in Chapter 4, Section 4.4.

57

View extensions

Table functions

Custom entities

Abstract entities

Hierarchies

Metadata
extensions

2 Fundamentals of CDS Data Modeling

2.2 Overview of CDS View Syntax

CDS simple types

Entity buffer
definitions

Example:
CDS view definition

CDS simple types define reusable scalar type definitions. From the CDS per-
spective, simple types can be interpreted as successors of the ABAP Data
Dictionary data elements. We'll demonstrate possible definitions and
usages of simple types in Section 2.6.

For CDS view models with simple logic, a buffer can be defined on the appli-
cation server. In this context, entity buffer definitions capture the required
administrative data similar to table buffers that are managed by the ABAP
Dictionary. Direct data selections from buffered CDS views via the ABAP
SQL interface are automatically transferred to the buffer by the ABAP run-
time environment, if the request can be processed on the buffer. This can
help reduce the load of the SAP HANA database and speed up the provision-
ing of the requested data. You'll find further information about entity buf-
fer definitions in Section 2.20.

2.2 Overview of CDS View Syntax

CDS views define select statements, which are augmented with additional
metadata information. Listing 2.1 provides an example of such a definition.

/*comment*/
//other comment
//annotations
@AccessControl.authorizationCheck: #MANDATORY
@EndUserText.label: 'View Definition'
//view definition
define view entity Z ViewDefinition
//parameter definition
with parameters
P SalesOrderType : auart
//data source of selection with alias name
as select from ZI SalesOrderItem as ITEM
//join
left outer to exact one join ZI SalesOrder as SO
on SO.SalesOrder = ITEM.SalesOrder
//association definition
association [0..1] to ZI Product as Product on
$projection.RenamedProduct = Product.Product

//projected field as key
key ITEM.SalesOrder,
//projected field used in association definition
key ITEM.Product as RenamedProduct,

58

//constant

abap.char'A’ as Constant,

//calculated field

concat(ITEM.SalesOrder, ITEM.Product) as CalculatedField,
//aggregate

count(*) as NumberOfAggregatedItems,
//projected association

ITEM. SalesOrder,

//association exposure

_Product

}

//filter conditions based on join partner and parameter
where

SO.SalesOrderType = $parameters.P SalesOrderType
//aggregation level
group by

ITEM. SalesOrder,

ITEM.Product

Listing 2.1 CDS View Definition

Let’s now take a closer look at this definition: Example analysis

® define statement
The define statement specifies the technical type of the CDS model. In
the given example, a CDS view entity model named 7 ViewDefinition is
defined (define viewentity).

® Data sources
CDS view Z ViewDefinition uses the CDS view for sales order items (ZI_
SalesOrderItem) as its primary data source (select from). It combines this
primary data source via a left outer join statement with a secondary
data source, which provides the header data of sales orders ZI Sales-
Order. Both data sources are locally renamed by alias names ITEM and SO,
respectively. You'll learn more about join types in Section 2.13.

® Projected elements
CDS view Z ViewDefinition projects various elements from its primary
data source, for instance, field SalesOrder, which identifies the sales
order, and field Product, which establishes a relationship between the
sales order item and its assigned product. The latter field is renamed by
aliasing it in RenamedProduct.

®m Aggregation
Due to the applied aggregation logic of the data records (group by) by

59

2 Fundamentals of CDS Data Modeling

Detailed
information

Technical aspects

fields SalesOrder and Product, both of these fields determine the key of
CDS view Z_ViewDefinition.

® Calculated fields
Besides the projected fields, CDS view Z ViewDefinition also defines the
field Constant locally, which has the value A for all records. Technically,
this field is defined as a typed literal (Section 2.5), which is based on the
elementary ABAP Data Dictionary type char of length 1. Furthermore, it
contains field CalculatedField, which concatenates the values of fields
SalesOrder and Product by applying function concat.

Field NumberOfAggregatedItems represents an aggregate. Its value is deter-
mined by counting (count (*)) the records of sales order items, which are
grouped in a single record of the selection result.

® where condition
The data selection is filtered by a where clause, which compares the sales
order type (SalesOrderType) with the value of CDS parameter P_Sales-
OrderType.

® Association
The CDS view model also defines association Product, which establishes
a named relationship to the corresponding record of the CDS view of
product header ZI_Product. The association is exposed by incorporating
itin the projection list of the view. As a result, the association can be used
by consumers of the CDS view too.

= Comments
Within the CDS view model, comments refer to single-line comments
prefixed with double slashes (//) or incorporated into the pattern /*.*/,
which allows you to define multiline comments.

® Annotations
Annotation @AccessControl.authorizationCheck: #MANDATORY indicates
that the selection result will be subject to an access control. You'll learn
more about how to enable such authorization checks in Chapter 5. Anno-
tation @EndUserText.label specifies a language-dependent text for the
view that will correspond to its description.

Asyou can see from the presented example, the CDS syntax consists of var-
ious different elements. To master the definition of CDS models yourself,
we'll provide you with more detailed information about these syntax ele-
ments in the subsequent sections and chapters of this book.

The definition of a CDS view model is captured as source code in the trans-
portable object of type DDLS. The CDS view isn’t transported; instead, it’s

60

2.3 Key Fields

generated locally when activating the DDLS object. In the ABAP repository, it
has object type STOB (CDS view). For CDS view entities, the name of the CDS
view (converted to uppercase letters) has to match the name of its defining
DDLS object.

Consider the Namespace of CDS Models

The CDS view name shares the same namespace with other ABAP Data
Dictionary artifacts (e.g., tables and views). This restriction has to be con-
sidered when choosing names for CDS views and DDLS objects.

In addition, to avoid name clashes with SAP-delivered artifacts, you should
always use your dedicated customer or partner namespace when defining
your own CDS models.

2.3 Key Fields

CDS view fields are defined as key fields by adding the preceding syntax ele-
ment key to the fields. In general, the key of a CDS model can be composed
of multiple key fields. These key fields must be placed before the non-key
fields in the projection list of the CDS view. The key must be defined in such
a way that it uniquely identifies a single record in the results list of a data
selection. It's recommended to keep the key as short as possible; that is,
fields should only be included in the key definition if they are required for
achieving an unambiguous identification of a single record in the results
list of a data selection.

Client Field

CDS view entities apply an automated filtering based on the client (Section
2.9). Therefore, the client field isn’t contained in the list of key fields, even
if the underlying database records depend on the client.

The sample CDS view for sales order item ZI SalesOrderItem in Listing 2.2
has a key that consists of the two fields SalesOrder and SalesOrderItem. Both
fields are required key components because the identifier of the sales order
item is only uniquely defined in the context of its embedding sales order
document. From a technical perspective, it's also possible to mark field
Product as another key field. However, this field isn’t required for making
the key of the CDS view unique, so it isn’t included in the illustrated key
definition.

61

Key definition

Example: CDS view
with key fields

2 Fundamentals of CDS Data Modeling

Using the key
definition

Cast operations

Cast operations
without type
changes

define view entity ZI SalesOrderItem
as select from zsalesorderitem

{
key salesorder as SalesOrder,
key salesorderitem as SalesOrderItem,
product as Product
¥

Listing 2.2 CDS View with Key Definition

The key definition serves as documentation of a CDS view model. In addi-
tion, it can be used for consistency checks. For example, you can check the
specified cardinality of an association based on the bound key fields of the
target CDS model. Key definitions may also have an impact on the CDS
access controls that evaluate the key definitions when injecting authoriza-
tion restrictions into select statements. Furthermore, it’s evaluated by var-
ious implementation frameworks, which provide their services on top of
the corresponding CDS view. For instance, the key definition of a CDS
model can be used for automatically deriving the key definition of an
OData entity set, which is mapped onto the CDS model. Chapter 6 provides
you with more information about the OData exposure of CDS models.

Increase Transparency of CDS Models

You should always define a key for your CDS models if feasible from a tech-
nical perspective. A key definition should only be omitted if the CDS model
doesn’t contain suitable fields or combinations for defining a unique key.

2.4 Cast Operations

Cast operations represent some of the most important fundamental SQL
functions. You can use cast operations for determining the type of a calcu-
lated field and for converting the type of existing fields on the database
level. The CDS syntax supports casts onto elementary ABAP types as well as
onto data elements and simple types. By using data elements or simple
types, you not only can change the type of the cast fields but also assign
suitable annotations and properties such as label texts and conversion
exits to them.

If a cast doesn’t change the technical type of the field but, for example, is
performed to exchange its label texts, you can enrich the cast statement
with addition preserving type. This addition informs the compiler that no

62

2.4 Cast Operations

effective type change is required, and, as a result, no cast is required on the
database level.

Supported Type Conversions

Not all type conversions are supported by the CDS syntax. You'll find an
overview of the supported conversions in your ABAP documentation, for
example, at http://s-prs.co/v529402.

Some type conversions aren’t supported by a cast operation and can only
be achieved by applying dedicated CDS conversion functions. For example,
you can only convert a floating point value to a decimal value by using
function fltp to dec.

In a CDS table function implementation, the extended options of native
SAP HANA conversion functions are available. Thus, engaging a CDS table
function may allow you to perform conversions that aren’t supported by
the CDS syntax itself.

Listing 2.3 shows a CDS view with fields that have different type conver-
sions.

define view entity Z ViewWithCasts as select distinct from t000

{
t000.logsys as ProjectedField,

‘20170809 as CharacterField,

cast ('20170809' as abap.dats) as DateField,

cast (cast ('E' as abap.lang) as sylangu preserving type)
as LanguageField,
1.2 as FloatingPointField,

fltp_to_dec(1.2 as abap.dec(4,2)) as DecimalField

}
Listing 2.3 CDS View with Cast Operations

By default, a field keeps the type of its origin if it's simply projected into a
CDS view. For example, field ProjectedField retains the type from its under-
lying base field t000. logsys.

If fields are locally defined, an implicit type assignment is applied. As a
result, field CharacterFieldis defined as a char field of length 8 based on the
literal value 20170809. By explicitly casting the same literal value onto type
dats, field DateField becomes a date field.

You can also nest cast operations. This option is illustrated by expression
cast (cast ('E' as abap.lang) as sylangu preserving type). The value E is
implicitly regarded as a character value of length 1. In a first step, the type

63

Example:
CDS view with type
conversions

Example analysis

2 Fundamentals of CDS Data Modeling

Typed literals

of corresponding field LanguageField is explicitly set to lang. In a second
step, data element sylangu finally determines the type of the field. Because
there is no change of the technical type, this conversion is accompanied by
addition preserving type.

By assigning value 1.2 to field FloatingPoint, this field is implicitly typed by
f1ltp. In addition, field DecimalField is constructed from value 1.2. Due to
this value assignment, it’s implicitly defined as a field of type fltp too. To
convert this field into a field of type dec, function fltp to dec is applied.

Use Explicit Type Assignment

You should always explicitly cast calculated fields onto the desired data
type if feasible from a technical perspective. Otherwise, you may experi-
ence unexpected side effects from implicit type assignments.

If you're not sure about the type of a CDS field, you can position your cursor
on the CDS view or one of its fields and press [F2]. This launches an infor-
mation popup, as shown in Figure 2.1, where you can find the previously
discussed type information.

% Z_viewWithCasts (View) ~
View with Casts

Client Handling
Client dependent
Client session variable used

Column Data Element Data Type Description

g ProjectedField logsys char(10) Logical system

° CharacterField numc(8)

" DateField dats(8)

8 LanguageField sylangu lang(1) Language Key

° FloatingPointField fltp(16,16)

" DecimalField dec(4,2) v
< >

@ & 4

Figure 2.1 Technical Field Information of the CDS View from Listing 2.3

2.5 Typed Literals

Typed literals allow you to specify the technical ABAP type of a constant
value, which you introduce in your CDS model. To make a plain literal
become a typed literal, you have to enclose the actual value in single quota-
tion marks and add the type information as a prefix. Listing 2.4 shows some
examples.

64

2.5 Typed Literals

define view entity Z ViewWithTypedLiterals

as select distinct from t000

" Charl0o

cast(' Charl0 ' as abap.char(10))
abap.char' Charl0 '
cast(abap.char' Chario '

1234.56

abap.fltp'1234.56"

fltp to dec(1234.56 as abap.dec(6,2))
abap.dec'1234.56"
abap.dec'001234.5600'

¥
Listing 2.4 CDS View with Typed Literals

as

as
as
as
as
as

as
as

Example: CDS view
with typed literals

CharacterValue,
CastCharacterValue,
TypedCharacterValue,
Char10 preserving type)
CastTypedCharacterValue,
FloatingPointValue,
TypedFloatingPointValue,
ConvertedDecimalValue,
TypedDecimalValue,
TypedDecimalValue2

In this example, field CharacterValue is derived from literal ' Char10 '.From Example analysis
the CDS perspective, this field is implicitly typed as a character field of

length 8; that is, the leading two spaces are considered, whereas the last two

spaces are ignored.

With an explicit cast, you can enforce the field to have a length of 10 char- Character like
acters. This is shown by field CastCharacterValue. Similarly, field Typed- Vvalues

CharacterValue, which is derived from the typed literal abap.char' Char10 ',

becomes a character field of length 10 automatically. In other words, for

typed literals, the entire value entered in the quotation marks is consid-

ered to be significant.

If you define a field based on a typed literal and want to equip it with addi-

tional metadata such as label texts, you should wrap the typed literal with

an explicit type-preserving cast onto a suitable data element or simple

type. This is illustrated by field CastTypedCharacterValue.

Typed literals become especially important if the literals don’t represent Non-character like

mere character strings. This will be demonstrated by the remaining fields ~Vvalues

that are defined in Listing 2.4.

When defining a value such as 1234.56, it’s implicitly interpreted as a float-

ing point value. Consequently, FloatingPointValue and TypedFloating-

PointValue share the same technical typing. If you want to define a decimal

value instead, you basically have two options: (1) perform an explicit type

conversion of such a floating point value by applying function fltp to dec,
as illustrated for field ConvertedDecimalvalue; or (2) define a typed literal.

Field TypedDecimalvalue in Listing 2.4 is typed accordingly. However, note
that abap.dec'1234.56" is interpreted as a decimal value from the very

65

2 Fundamentals of CDS Data Modeling

Influence type
length

Simple type
definitions

beginning. In contrast, floating point value 1234.56 has to be effectively
converted to a decimal value. This not only implies that there is some over-
head in the processing logic of the value but also may be the reason the
field values returned by a view differ. In our case, TypedDecimalValue
exposes modeled value '1234.56", whereas ConvertedDecimalValue returns
converted value '1234.55".

As mentioned before, the value and its notation are specified within the
typed literal matter. Typed literal abap.dec'1234.56" is associated with a
decimal type of length 6 with 2 decimals. Typed literal abap.dec'001234.
5600" yields from typing field TypedDecimalValue2 as a decimal field of
length 10 with 4 decimals.

Use Typed Literals

We recommend always using typed literals instead of plain literals. They
help you avoid making errors and introducing unnecessary conversions.

As already explained the concrete value defined in a typed literal is deci-
sive. For example, typed literal abap.dec'1234.56" results in field TypedDec-
imalValue having type dec of length 6 with 2 decimals. In contrast, typed
literal abap.dec'001234.5600" results in field TypedDecimalValue2 being
defined as a decimal field with length 10 and 4 decimals.

2.6 Simple Types

CDS simple types can be specified based on different type definitions: Lis-
ting 2.5 illustrates simple type ZBT LanguageA, which is based on elementary
dictionary type lang.

define type ZBT LanguageA : abap.lang;

Listing 2.5 Simple Type Based on an Elementary ABAP Data Dictionary Type
Listing 2.6 shows simple type ZBT LanguageB, which is based on data ele-
ment spras.

define type ZBT LanguageB : spras;

Listing 2.6 Simple Type Based on a Data Element

Listing 2.7 demonstrates the definition of simple type ZBT LanguageC, which
is based on the simple type ZBT LanguageB from Listing 2.6.

66

2.6 Simple Types

@EndUserText.label: '"lLanguage Type C'
@Semantics.language: true
define type ZBT LanguageC : ZBT LanguageB;

Listing 2.7 Simple Type Based on Another Simple Type

In addition, Listing 2.7 shows how you can enrich the mere technical defini-
tion of a simple type with annotations. In the given case, simple type ZBT
LanguageC is classified as a language code by its annotation @Semantics. lan-
guage: true. In addition, it receives the label text 'Language Type C' from its
annotation @EndUserText. label.

You can define multilevel hierarchies of simple types, as shown in Listing
2.8. Therein, simple type ZBT LanguageD is typed by simple type ZBT Lan-

guageC from Listing 2.7.

@EndUserText.label: 'Language Type D'
@0bjectModel.sapObjectNodeTypeReference: 'Language’
define type ZBT LanguageD : ZBT LanguageC;

Listing 2.8 Simple Type Based on Another Simple Type: Multilevel

In this context, the annotations of simple type ZBT LanguageC are propa-
gated to simple type ZBT Language such as the technical properties of the
underlying data element spras. These annotations are overlaid by the local
annotations of simple type ZBT LanguageD. You'll learn more about the
resulting active annotations in Chapter 4, Section 4.3.1.

You can leverage simple types for typing fields and parameters (Section
2.16) of your CDS models. In Listing 2.9, CDS view field Languagel is typed by
simple type ZBT LanguageA, and field Language? is typed by simple type ZBT
LanguageD. These fields take over the technical properties, including the
annotations of their typing simple types.

define view entity Z ViewWithSimpleTypes
as select distinct from t000

{
cast (abap.lang'E' as ZBT LanguageA preserving type) as Languagel,
cast (abap.lang'E' as ZBT_LanguageD preserving type) as Language2
¥

Listing 2.9 CDS View with Fields Typed by Simple Types

67

Enrichment with
annotations

Multilevel defini-
tions of simple

types

Simple types in
CDS models

Fundamentals of CDS Data Modeling

[+] Incorporate Annotations by Simple Types into CDS Models
You can use simple types for incorporating field-specific or type-specific
CDS annotations into your CDS models. In this context, simple types act as
reusable metadata containers, which support you in efficiently defining
consistent CDS models.

2.7 Case Statements

Case statements You can use case statements for defining conditional calculations in your
CDS view logic. Within a single case statement, you can define multiple exe-
cution paths via when-then switches. Based on the when condition, you can
apply dedicated then instructions, which finally determine the calculated
value of a field. At the end of a case statement, you can add an else instruc-
tion without conditions. This branch allows you to handle cases that aren’t
covered by the when conditions. Without this fallback valuation, the calcu-
lated field may have the value null, if none of the explicit when conditions
match.

2.8 Session Variables

1
[] Avoid Non-Null Preserving Expressions

Unconditional else branches with assignments of constant values can
result in non-null preserving expressions. Such expressions may prevent
the SAP HANA optimizer from reordering the execution plan for the most
efficient processing of the select statement, which in turn can result in
performance issues.

Example: Listing 2.10 provides an example for a CDS view with three case statements.

CDS view with
case statements define view entity Z ViewWithCaseStatements

as select from ZI SalesOrder
{
key SalesOrder,
case (SalesOrderType)
when 'TAF' then 'X'
when 'OAF' then 'X'
else "'
end as IsStandardOrder,
cast(case (SalesOrderType)
when 'TAF' then 'X'
when 'OAF' then 'X'

68

else

end as abap.char(3)) as IsStandardOrderAsChar3,
case when SalesOrderType = 'TAF' then 'X'
when SalesOrderType = 'OAF' then 'X'

else
end as IsStandardOrder2

¥
Listing 2.10 CDS View with Case Statements

The first case statement checks the value of field SalesOrderType and sets Example analysis
the value of field IsStandardOrder to the constant X if the sales order type

has a value of TAF or OAF. In all other cases, the value is set to the initial value.

In the given case, the calculation implicitly results in a field of type char

with length 1.

You can influence the resulting type explicitly using a wrapping cast opera-
tion. This is illustrated for the second case statement, which uses the same
logic as the first cast statement. Due to the enclosing cast operation, field
IsStandardOrderAsChar3 receives type char with length 3.

The third case statement contains the same logic as the first case statement.
From a principle perspective, the when conditions of the branches of this
third case statement may also implement complex rules, for example, by
applying pattern comparisons with like as well as by combining multiple
conditions with and and or operators. In contrast, the when conditions in the
first case statement only support simple comparisons of operands.

2.8 Session Variables

CDS session variables allow you to access information regarding the current
runtime session within the CDS view logic. Similar to literal values, you can
use session variables at various places within the implementation of your
data selections.

Some standard usages are depicted in Listing 2.11, in which a filter is defined = Example:

by and fields are derived from session variables. CDS view with
session variables

define view entity Z ViewWithSessionVariables
as select from t000

{
$session.client as (lientField,
$session.system date as SystemDateField,
$session.system language as SystemlLanguageField,

69

2 Fundamentals of CDS Data Modeling

2.9 Client Handling

[»]

$session.user as UserField,

$session.user_date as UserDateField,

$session.user_timezone as UserTimezoneField
where

mandt = $session.client

Listing 2.1 CDS View with Session Variables

Table 2.2 provides you with an overview of the session variables that are

supported by the CDS syntax.

$session.client Current client sy-mandt

$session.system date System date of the sy-datum
application server

$session.system language Logon language sy-langu
$session.user Current user Sy-uname
$session.user date Current user date sy-datlo
$session.user timezone User time zone sy-zonlo

Table 2.2 Session Variables

2.9 Client Handling

When performing standard selections on database tables via the ABAP SQL Standard data
interface, client-specific data is automatically filtered by the current client ~selectionin ABAP
of the ABAP session. To perform cross-client data accesses, either addition

using client or addition client specified must be added to the select state-

ment. Listing 2.12 shows an example of such a selection, where the data is

read from client 001.

SELECT *
FROM zsalesorder
CLIENT SPECIFIED
INTO TABLE @DATA(1lt salesorder)
WHERE client = '001'.

Listing 2.12 Cross-Client Data Selection in ABAP

In CDS view entities, the standard client handling is enforced by the ABAP Client handling in
Data Dictionary infrastructure. This is achieved by automatically augment- View entities

ing the technical view definition on SAP HANA with an additional where

condition, if this is required.

Session Variables versus Parameters

If you use session variables, the data selection of your CDS view is influ-
enced by factors that a consumer of your CDS view may not be able to con-
trol explicitly. This can result in unwanted restrictions and make the
selection results more difficult to interpret.

In many cases, you can replace session variables with parameters (Section
2.16), which eases the error analysis and maintenance of CDS views. How-
ever, introducing parameters may require the consumers of a CDS view to
adapt. In contrast, the introduction of session variables is a local imple-
mentation detail of a view. Typically, from a technical perspective, it's
compatible for ABAP consumers. Only when introducing a client depen-
dency by using session variable $session.client may adaptions be
required.

70

1
Consider Restrictions Imposed by Access Controls []

Cross-client data accesses via CDS views aren’t allowed if the CDS views
are protected by access controls (see Chapter 5).

Listing 2.13 and Listing 2.14 illustrate an example. The CDS view entity ZI Example: Client-

Product in Listing 2.13 selects from a client-dependent table ZPRODUCT. dependent CDS
view entity

define root view entity ZI Product
as select from zproduct

{
key product as Product,
product type as ProductType,
creation _date time as CreationDateTime
¥

Listing 2.13 CDS View Selecting from a Client-Specific Data Source

Even though it doesn’t explicitly handle the client dependency, its gener-
ated database view maps the client field CLIENT onto context variable (DS
CLIENT, as depicted in Listing 2.14. This context variable is associated with
the session variable $session.client, thus the selection result is restricted
accordingly.

n

2 Fundamentals of CDS Data Modeling

Client field

Condense selection
result

Example:
CDS view without
select distinct

CREATE OR REPLACE VIEW "ZI_PRODUCT" AS SELECT
"ZPRODUCT"."CLIENT" AS "MANDT",
"ZPRODUCT". "PRODUCT" AS "PRODUCT",
"ZPRODUCT"."PRODUCT TYPE" AS "PRODUCTTYPE",
"ZPRODUCT"."CREATION DATE TIME" AS "CREATIONDATETIME"

FROM "ZPRODUCT" "ZPRODUCT"

WHERE "ZPRODUCT"."CLIENT" = SESSION_CONTEXT(
'CDS_CLIENT'

)
Listing 2.14 Create Statement of the Database View Generated from Listing 2.13

Because the client is fixed, the client field shouldn’t be included in the pro-
jection lists of the CDS views. However, CDS views, whose records only dif-
fer in their client fields, are an exception.

The client field should also be contained in the signatures of CDS table func-
tions (see Chapter 7) that access client-specific data records. For more infor-
mation about this topic, see the ABAP documentation at http://s-prs.co/
v529403.

2.10 Select Distinct Statements

By applying the select distinct statement (select distinct), you can remove
duplicate records from the selection result list and thus condense it. The
comparison considers the values of all requested fields. Let’s take a look at
the sample CDS views in Listing 2.15 and Listing 2.16.

CDS view Z ViewWithoutSelectDistinct in Listing 2.15 uses table T000, which
contains one record per client. Its implemented logic results in multiple
selected records (one per client), which share the value A for field Fieldl.
Correspondingly, no key can be specified for this CDS view.

define view entity Z ViewWithoutSelectDistinct
as select from t000

{
abap.char'A' as Fieldl

¥
Listing 2.15 CDS View without Select Distinct Statement

In contrast, CDS view Z ViewWithSelectDistinct in Listing 2.16 combines

the previous selection logic with a distinct statement. Independent from
the number of setup clients, that is, the number of records provided by

72

2N

Union Views

table T000, CDS view Z ViewWithSelectDistinct returns a single record
(there is at least one record in table T000). Therefore, Fieldl can be marked
as a key field.

define view entity Z ViewWithSelectDistinct
as select distinct from t000

{
key abap.char'A' as Fieldl

¥
Listing 2.16 CDS View with Select Distinct Statement

2.11 Union Views

Union views combine and unify data records of different data sources. The
outcome of such a union is a results list that comprises all data records of
the unified data sources and that is harmonized from the perspective of its
consumers, providing them with uniform fields and associations. In Sec-
tion 2.11.1, you get an overview about the fundamental modeling of union
CDS views. In Section 2.11.2, we explain the differences between the plain
union and the union all operators.

2.11.1 Union Definitions

You define union views by combining multiple select statements with the Maodeling
union statement. Each individual selection branch must define the same union views

fields and associations in the same order. In addition, the corresponding
items of the selection lists must have the same definitions. This implies
that the names of the elements within the individual branches must be the
same. Furthermore, the underlying association definitions must specify
the same on conditions, cardinalities, and target entities. The key defini-
tions must be the same across all branches too. However, the types of the
individual fields of the union view may deviate for each branch, if they are
convertible. In such a case, the effective type of the field of the union view
is derived from the corresponding field of the first select statement.

Similarly, element annotations are determined by the first selection
branch. Therefore, only elements of the first selection branch may be anno-
tated. Element annotations must not be propagated to a union view. This
requires annotating the union view with @Vetadata.ignorePropagatedAnno-
tations: true. Chapter 4, Section 4.3 explains the propagation logic in more
detail.

3

2 Fundamentals of CDS Data Modeling

Example: Let’s look at the following example, which comprises four CDS view defini-
CDS views serving tjons. CDS view Z ViewAsDataSourceA from Listing 2.17 acts as a data source
as data sources for union CDS view Z UnionView from Listing 2.20, later in this chapter.

define view entity Z ViewAsDataSourceA
as select distinct from t000
association [0..1] to Z ViewAsDataSourceC as ViewC
on $projection.FieldA3 = ViewC.FieldCl

{
key cast('A' as abap.char(1)) as FieldAl,

cast('B' as abap.char(1)) as FieldA2,
cast('C' as abap.char(2)) as FieldA3,
_ViewC

}
Listing 2.17 CDS View Z_ViewAsDataSourceA

Likewise, CDS view Z ViewAsDataSourceB from Listing 2.18 acts as a data
source for union CDS view Z UnionView from Listing 2.20.

define view entity Z ViewAsDataSourceB
as select distinct from t000

{
key cast('B X' as abap.char(3)) as FieldBl,

cast('A" as abap.char(l)) as FieldB2
}

Listing 2.18 CDS View Z_ViewAsDataSourceB

Example: CDS view Z ViewAsDataSourceC from Listing 2.19 is used as the association
CDSview servingas target of view 7 ViewAsDataSourceA from Listing 2.17 and union CDS view
association target . . e
Z UnionView from Listing 2.20.

define view entity Z ViewAsDataSourceC
as select distinct from t000

{
key cast('C' as abap.char(2)) as FieldCl,

cast('C2' as abap.char(2)) as FieldC2
¥

Listing 2.19 CDS View Z_ViewAsDataSourceC
Analysis of the Each of the mentioned CDS views defines a single data record. For example,

sampleviews DS view 7 ViewAsDataSourceA selects a single data record from table T00O,
which is always populated, by applying the distinct statement. It returns

74

211 Union Views

the constant values A, B, and C for its FieldAl, FieldA2, and FieldA3, respec-
tively. Similarly, the other two CDS views, Z ViewAsDataSourceB and Z
ViewAsDataSource(, return single records with constant field values. Table
2.3 shows an overview of the data provided by these CDS views.

B C

Z ViewAsDataSourceA A
Z ViewAsDataSourceB B X A =
Z ViewAsDataSourceC C C2 =

Table 2.3 Data Records of the CDS Views from Listing 2.17 to Listing 2.19

Union CDS view Z UnionView in Listing 2.20 combines CDS views Z ViewAs-
DataSourceA and Z ViewAsDataSourceB as its data sources. In addition, it
exposes association ViewC to CDS view Z ViewAsDataSourceC.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionView
as select from Z ViewAsDataSourceA
association [0..1] to Z ViewAsDataSourceC as ViewC on
$projection.UnionFieldl = ViewC.FieldCl
{
@EndUserText.label: 'Label of UnionFieldl'
key FieldAl as UnionFieldl,
key FieldA2 as UnionField2,
key FieldA3 as UnionField3,
_ViewC
¥
union select from Z ViewAsDataSourceB
association [0..1] to Z ViewAsDataSourceC as ViewC on
$projection.UnionFieldl = ViewC.FieldCl
{
key FieldB2 as UnionFieldl,
key FieldBl as UnionField2,
key "' as UnionField3,
_ViewC

}
Listing 2.20 Union CDS View Z_UnionView

To harmonize the element names, the fields contained in the individual

selection branches of union CDS view Z UnionView are mapped to field
names UnionFieldl, UnionField2, and UnionField3 using alias function as. All

75

Example:
Union CDS view

Analysis of sample
union CDS view

2 Fundamentals of CDS Data Modeling

Associations in
union CDS views

Two-layer union
CDS views

fields contained in the field list of the union CDS view have type char with
length 1 or 2. This definition is derived from the definition of underlying
base fields FieldAl, FieldA2, and FieldA3 of the first selection statement of
the union CDS view. Table 2.4 shows the resulting records of the union CDS

view.
A B C
A B Initial value

Table 2.4 Records of the Union CDS View Z_UnionView

Note that FieldB1 of CDS view Z ViewAsDataSourceB, which has a maximum
length of 3, is implicitly shortened when it's mapped onto UnionFieldl.
Therefore, the corresponding data record of the union CDS view contains
value B instead of original value B_X (compare Table 2.3 with Table 2.4). If the
types of the mapped fields aren’t automatically mutually convertible, you
must explicitly define a type conversion. This can typically be achieved by

applying a cast operation (Section 2.4) for the fields in question.

In general, each selection branch of a union view must define the same
number of fields, so UnionField3 must also be inserted into the second
selection branch. Because there is no related information available in
underlying base CDS view Z ViewAsDataSourceB, this field is filled with the
initial value, which corresponds to its type.

In the first selection branch, UnionFieldl is annotated with @EndUserT-
ext.label.... Such annotations are valid for all other branches too; that is,
the annotations of the first branch determine the corresponding annota-
tions of the union CDS view as a whole.

In union CDS view Z UnionView from Listing 2.20, association ViewC to view
Z ViewAsDataSourceCdefined in its base view Z ViewAsDataSourceA can’t sim-
ply be projected into the first selection branch because the definition of
association ViewC in the second selection branch of union view Z Union-
Viewhas a different ON condition than in CDS view Z ViewAsDataSourceA. Due
to the requirement that all selection branches must share the same associ-
ation definitions in union views, this association must be redefined in the
first selection branch too.

To avoid redundancies in association definitions, you could split the defini-
tion of your union CDS views into two CDS views that are built one on top
of the other. Listing 2.21 and Listing 2.22 show an example of such a two-

layer construction.

76

211 Union Views

CDS view Z UnionViewWithoutAssociations from Listing 2.21 implements
union logic.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionViewWithoutAssociations
as select from Z ViewAsDataSourceA
{
@EndUserText.label: 'Label of UnionFieldl'
key FieldAl as UnionFieldl,
key FieldA2 as UnionField2,
key FieldA3 as UnionField3

¥

union select from Z ViewAsDataSourceB

key FieldBl as UnionFieldl,

key FieldB2 as UnionField2,

key "'
}

Listing 2.21 Union CDS View without Associations

as UnionField3

CDS view Z_UnionViewWithAssociations from Listing 2.22, which is based on
this intermediate view, enriches union logic with association ViewC with-
out introducing redundancies in the definition.

define view entity Z UnionViewWithAssociations
as select from Z UnionViewWithoutAssociations

association [0..1] to Z ViewAsDataSourceC as ViewC
on $projection.UnionfFieldl = ViewC.FieldCl

key UnionFieldl,

key UnionField2,

key UnionFields3,
_ViewC

¥
Listing 2.22 CDS View with Association Based on Union CDS View

Association Definitions in Union CDS Views

If you need to define a larger number of associations within your union
CDS view, it may be beneficial to relocate the association definitions to a
separate superordinated CDS view. This CDS view can transfer the field list
of the union CDS view via the regular projection mechanism and define
the required associations once locally.

77

Example:
Union CDS view
without association

Example:
Dependent
CDS view with
association

2 Fundamentals of CDS Data Modeling

Union logic

Union All logic

[]

2.11.2 Union and Union All Logic

When applying union logic, duplicate records, which originate from the dif-
ferent merged data sources, are automatically removed from the results
list. For example, by applying union logic on top of the same data source
7 ViewAsDataSourceA from Listing 2.17, the implementation of CDS view
Z UnionViewWithoutDuplicates from Listing 2.23 leads to a single resulting
data record.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionViewWithoutDuplicates
as select from Z ViewAsDataSourceA

{
key FieldAl

}

union select from Z ViewAsDataSourceA

{
key FieldAl

h
Listing 2.23 Union CDS View without Duplicate Records (Union Logic)

If this isn’t desired, you should use union all logic, which retains the data
records of the data sources involved. In contrast to the selection in Listing
2.23, by applying union all logic, the selection result of CDS view Z Union-
ViewWithDuplicates from Listing 2.24 contains two identical data records.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionViewWithDuplicates
as select from Z ViewAsDataSourceA

{
FieldAl

}

union all select from Z ViewAsDataSourceA

{
FieldAl

}

Listing 2.24 Union CDS View with Duplicate Records (Union All Logic)

Performance Implications

Due to the missing comparison and filtering of data records, union all
logic typically outperforms union logic. If applicable, you should therefore
choose the union all logic.

78

212 Intersect and Except Statements

Merging selection results from various data sources requires a critical
check of the key definitions of the union CDS views. If CDS views that have
their own key definitions are merged, the key of the union CDS view isn’t
necessarily the same as the superset of all key fields of the merged CDS
views. In union CDS view Z_UnionView from Listing 2.20, not only are Union-
Fieldl and UnionField2 part of the key but also UnionField3. In the given
example, UnionField3 is required for a unique differentiation between the
two data records of the selection result (refer to Table 2.4). If the second
selection branch of the union view would set this field to value C instead of
setting it to the initial value, both selection branches would return the
same data record. In this case, you wouldn'’t be able to designate a unique
key for union CDS view Z UnionView as a whole.

In general, a unique key can’t be specified for a CDS view with duplicate
records. Therefore, the key definition should always be omitted in such a
CDS view (refer to Listing 2.24).

2.12 Intersect and Except Statements

Besides merging records of data sources, the CDS syntax also supports you
in defining intersections of and exceptions from data sources, which will be
illustrated in this section.

Listing 2.25 shows CDS view Z UnionViewAsDataSourceA, which will act as a
data source. It returns two records as given in Table 2.5.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionViewAsDataSourceA
as select distinct from t000

{
key 'A' as Fieldl

}
union all select distinct from t100 {

key 'B' as Fieldl
¥

Listing 2.25 CDS View Z_UnionViewAsDataSourceA

A A A B
B C - -

Table 2.5 Values of Field1 of the CDS Views Records from Listing 2.25 to Listing
2.28

79

Key definitions

Example:
CDS views serving
as data sources

2 Fundamentals of CDS Data Modeling

Example:
Intersection

Example:
Exception

Similarly, Listing 2.26 shows CDS view Z_UnionViewAsDataSourceB, which will
act as another data source. It also returns two records, as given in Table 2.5.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z UnionViewAsDataSourceB
as select distinct from t000

key 'A" as Fieldl

¥

union all select distinct from t100 {
key 'C' as Fieldl

}

Listing 2.26 CDS View Z_UnionViewAsDataSourceB

If you want to determine those records that two data sources have in com-
mon, you can use the CDS syntax element intersect. CDS view Z View-
WithIntersect from Listing 2.27 defines such an intersection of CDS view
Z UnionViewAsDataSourceA from Listing 2.26 and CDS view Z UnionView-
AsDataSourceB from Listing 2.25. Both these data sources contain a record
with the value A for Fieldl, which represents the result of the intersection
(refer to Table 2.5).

@Metadata.ignorePropagatedAnnotations: true
define view entity Z ViewWithIntersect
as select from Z UnionViewAsDataSourceA

{
key Fieldl

}

intersect select from Z UnionViewAsDataSourceB

{
key Fieldl

}

Listing 2.27 CDS View with Intersect

If you want to determine those records that are only contained in one of
two data sources, you can use the CDS syntax element except. CDS view
Z ViewWithExcept from Listing 2.28 excepts records of CDS view Z Union-
ViewAsDataSourceB from Listing 2.25 from CDS view Z UnionViewAsData-
SourceA from Listing 2.24. Because both these data sources contain a record
with the value A for Fieldl, the result is defined by the record of CDS view
Z UnionViewAsDataSourceA with the value B for Field1l (refer to Table 2.5).

80

213

Joins

@VMetadata.ignorePropagatedAnnotations: true
define view entity Z ViewWithExcept
as select from Z UnionViewAsDataSourceA

{
key Fieldl

}

except select from Z UnionViewAsDataSourceB

{
key Fieldl

}
Listing 2.28 CDS View with Except

2.13 Joins

Joins allow you to model conditional links between two data sources. The
join conditions describe criteria for linking a data record of the primary
data source with a data record of the secondary data source.

You can use elements of joined data sources for defining elements in the
projection list of your CDS views. In addition, you can use the elements of
joined data sources for enriching the where conditions of your CDS views.

Performance Aspects

Joins make optimizing the execution plan of the selection request at the
database level more difficult. Therefore, you should only integrate those
joins into the logic of your CDS view definition that are essentially required
for the view’s functionality, and avoid unnecessary joins of data sources
resulting in denormalized CDS view models. This particularly applies to
CDS views that you define for reuse purposes. Instead, you should consider
providing appropriate associations between the CDS models. These associ-
ations can be used by the consumers of your model to enrich the data
records in a convenient way, where this is actually necessary. We'll discuss
associations further in Chapter 3.

CDS views support four flavors of joins:

m Left outer joins
These joins relate records of a primary data source with records of a sec-
ondary data source so that the result contains all the data records of the
primary data source.

® Right outer joins
These joins relate records of the secondary data source with the records

81

Using joins

[«]

Types of joins

2 Fundamentals of CDS Data Modeling

Cardinality of joins

Left outer and
inner joins

Example:
CDS views serving
as data sources

of the primary data source so that the result contains all the data records
of the secondary data source.

® Innerjoins
These joins relate records of a primary data source with records of a sec-
ondary data source so that the result contains only those records of the
primary data source for which at least one join partner in the secondary
data source exists.

m Cross joins
These joins combine all records of a primary data source with all records
of a secondary data source. The number of records in the result set is
equal to the number of records of the primary data source multiplied by
the number of records of the secondary data source.

When dealing with joins, you'll often be confronted with the term cardinal-
ity. The cardinality of the join partner specifies the number of data records
that result from the join relationship. For example, if there is more than
one corresponding data record in the secondary data source for a single
record of the primary data source, the number of resulting data records is
multiplied by the cardinality of the join partner when applying the left
outer join logic.

In the following discussion, we’ll focus on the left outer joins and inner
joins, which are the most common join types. Sample CDS views Z View-
WithLeftOuterJoins from Listing 2.31and Z ViewWithInnerJoins from Listing
2.33 (later in this section) will illustrate the various aspects of the join logic.

Both these CDS views use CDS view Z ViewAsDataSourceD from Listing 2.29
as their primary data source.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z ViewAsDataSourceD
as select distinct from t000

key cast('A' as abap.char(l)) as FieldD1,
cast('D' as abap.char(l)) as FieldD2
}
union select distinct from t000
{
key cast('C' as abap.char(l)) as FieldD1,
cast("E' as abap.char(l)) as FieldD2

¥
Listing 2.29 CDS View Z_ViewAsDataSourceD

82

213

Joins

CDSview Z ViewAsDataSourceE from Listing 2.30 acts as their secondary data
source.

@Metadata.ignorePropagatedAnnotations: true
define view entity Z ViewAsDataSourceE
as select distinct from t000

{
key cast('D' as abap.char(l)) as FieldEl,

key cast('H' as abap.char(l)) as FieldE2
}

union select distinct from t000

key cast('D' as abap.char(l)) as FieldEl,
key cast('I' as abap.char(l)) as FieldE2

union select distinct from t000

key cast('F' as abap.char(l)) as FieldEl,
key cast('I' as abap.char(l)) as FieldE2
¥

Listing 2.30 CDS View Z_ViewAsDataSourceE

CDS views Z ViewAsDataSourceD and Z ViewAsDataSourceE return two or
three data records, as shown in Table 2.6.

D - -

Z ViewAsDataSourceD A
C E = =
Z ViewAsDataSourceE = = D H
= = D I
= = F I
Z ViewWithLeftOuterJoins A D = H
A D = I
C E = null
Z ViewWithInnerJoins A D = H
A D = I

Table 2.6 Records of the Data Sources and the Join CDS Views Built on Top

83

2 Fundamentals of CDS Data Modeling

Example:
CDS view with left
outer join

Example analysis

If these two CDS views are linked as data sources by a left outer join accord-
ing to CDS view Z ViewWithLeftOuterJoins from Listing 2.31, the results list
comprises three data records (see Table 2.6).

define view entity Z ViewWithLeftOuterJoins

as select from Z ViewAsDataSourceD

left outer one to many join Z ViewAsDataSourceE
on Z ViewAsDataSourceD.FieldD2 = 7 ViewAsDataSourceE.FieldEl

{

key Z ViewAsDataSourceD.FieldD1,

key Z ViewAsDataSourceD.FieldD2,

key Z ViewAsDataSourceE.FieldE2

¥
Listing 2.31 CDS View with a Left Outer Join

The first entry of CDS view Z ViewAsDataSourceD, which has value A for key
field FieldD1, is linked to two data records of CDS view Z ViewAsDataSourceE.
Consequently, the results list of CDS view Z ViewWithLeftOuterJoins has
two data records for this entry. This potential increase of the cardinality is
expressed by addition to many in the left outer join statement. If you take a
closer look at the values of FieldEl of the join partner CDS view Z ViewAs-
DataSourcek, you'll recognize that there is no or a single (i.e., at maximum
one) record of CDS view Z ViewAsDataSourceD with a matching value of
FieldD1. Accordingly, source cardinality of the left outer join in CDS view
Z ViewwithLeftOuterJoins is defined as one. Overall, this results in a one-to-
many join.

Specify the Cardinality of Joins

You should always specify the maximum target cardinality (to one or to
exact one or to many) of a join partner. Furthermore, it may be useful to
define the source cardinality (one or exact one or many) too. This specifica-
tion is used both to document the composition of the CDS view and opti-
mize the processing of a selection request in the database. However, if you
maintain the cardinality information, you should make sure that it’s
defined correctly; otherwise, the selection result may become incorrect!

The second record of view Z ViewAsDataSourceD, which has value C for key
field FieldD1, doesn’t have a join partner. According to the semantics of the
left outer join, this data record remains in the results list. However, in this
case, associated FieldE2 of CDS view Z ViewWithLeftOuterJoins receives
value null on the database level.

84

213 Joins

If you transfer the selection result to an internal ABAP table according to
Listing 2.32, the null value is implicitly converted to the initial value of the
corresponding ABAP field. By default, the ABAP runtime environment
doesn’t distinguish between initial values and null values in contrast to the
CDS language and the SQL logic.

SELECT *
FROM z_viewwithleftouterjoins
INTO TABLE @DATA(1t viewwithleftouterjoins).

Listing 2.32 Data Selection from the CDS View from Listing 2.31in ABAP

Required Handling of Null Values

On the SQL level, the difference between initial values and null values is
significant in that null values represent nonvaluated data. In the CDS
views, null values usually result from left outer joins without a matching
join partner.

When modeling your CDS view logic, you must consider this distinction
and handle it if necessary. For example, when comparing field values in
where conditions, you have to consider potential null values. However,
null values won’t simply be replaced by initial values in your CDS logic.
Otherwise, you may experience significant performance issues.

In contrast to a left outer join, an inner join removes source records with-
out a join partner from the selection result.

Accordingly, the selection result of CDS view Z ViewWithInnerJoins from
Listing 2.33 contains only two data records (refer to Table 2.6).

define view entity Z ViewWithInnerJoins
as select from Z ViewAsDataSourceD
inner join Z ViewAsDataSourceE
on Z ViewAsDataSourceD.FieldD2 = Z ViewAsDataSourceE.FieldEl

key Z ViewAsDataSourceD.FieldD1,
key Z ViewAsDataSourceD.FieldD2,
key Z ViewAsDataSourceE.FieldE2

}

Listing 2.33 CDS View with an Inner Join
You can achieve a corresponding selection result using a left outer join rela-

tionship too. In this case, the corresponding left outer join statement must
be accompanied by additional where conditions, which ensure that a data

85

Null and
initial values

Inner joins

Example:
CDS view with
inner join

Left outer joins
without null values

2 Fundamentals of CDS Data Modeling

record of the respective join partner exists. Within these where conditions,
you can validate that an adequate field (usually a key field) of the join part-
ner has a value, which is different from the null value. Listing 2.34 illus-
trates this approach by checking FieldE2 of left outer join partner CDS view
Z ViewAsDataSourceE.

define view entity Z ViewWithLeftOuterJoinsFiltrd

as select from Z ViewAsDataSourceD

left outer one to many join Z ViewAsDataSourceE
on Z ViewAsDataSourceD.FieldD2 = Z ViewAsDataSourceE.FieldEl

{

key Z ViewAsDataSourceD.FieldD1,

key Z ViewAsDataSourceD.FieldD2,

key Z ViewAsDataSourceE.FieldE2

¥

where
Z ViewAsDataSourceE.FieldE2 is not null

Listing 2.34 CDS View with a Left Outer Join and an Additional Existence Check
for the Join Partner

Qualifyingele- If you combine multiple data sources using joins, you must ensure that ref-
ments with their erences to the elements of these data sources remain unique. To achieve
data sources this, you have to prefix the element name with the name of its data source,
separated by a period. In the previous examples, this was realized by using
the name of the data source as a qualifier. However, if the same data source
is included multiple times in the same CDS view, you have to specify suit-
able alias names for each of its occurrences, as shown in Listing 2.35. In this
case, the CDS view Z ViewAsDataSourceD is used twice as a data source. To
distinguish between the two embedments of this CDS view, they are

assigned distinct alias names D1 and D2.

define view entity Z ViewWithJoinsAndDataSrcAlias
as select from Z ViewAsDataSourceD as D1
left outer exact one to exact one join Z_ViewAsDataSourceD as D2
on D1.FieldDl = D2.FieldDl

key D1.FieldD1,
D2.FieldD2
}

Listing 2.35 CDS View with Alias Names for the Same Data Source Joined
Multiple Times

86

214 SQL Aggregation Functions

2.14 SQL Aggregation Functions

SQL aggregation functions allow you to perform calculations of predefined
aggregates efficiently on the database level. You can use these SQL func-
tions within the implementation of your CDS views.

To do this, first define the aggregation level to which you want to aggregate Define aggregations
the result. Enter the aggregation level using syntax element group by, which

should be placed after the projection list. It has to include all fields of the

data sources that are included in the projection list of the CDS view. Fields

whose aggregate is calculated are excluded from this. Within the projection

list of the CDS view, you then apply the envisioned aggregation function to

the fields that are relevant for aggregation.

An example is given by CDS view Z ViewAsDataSourceF from Listing 2.36 and Example:

CDS view 7 ViewWithAggregations from Listing 2.37. Aggregation
CDS view Z_ViewAsDataSourceF acts as the data source for the aggregation. Example:

CDS view serving
@Metadata.ignorePropagatedAnnotations: true as a data source

define view entity Z ViewAsDataSourceF
as select distinct from t000

key abap.char'A' as Fieldl,
key abap.char'A' as Field2,
abap.intl'l' as Field3

union all select distinct from t000
key abap.char'A' as Fieldl,
key abap.char'B' as Field2,
abap.intl'2' as Field3

union all select distinct from t000
key abap.char'A" as Fieldl,

key abap.char'C' as Field2,
abap.intl'3" as Field3

¥
Listing 2.36 CDS View Z_ViewAsDataSourceF

It defines three data records, as depicted in Table 2.7.

87

2 Fundamentals of CDS Data Modeling

Example:
Aggregating
CDS view

Example analysis

Aggregated
field types

A A 1
A B 2
A C 3

Table 2.7 Records of CDS View Z_ViewAsDataSourceF

CDS view Z ViewWithAggregations from Listing 2.37 contains the aggrega-
tion logic. Its group by statement defines that the data source records are to
be aggregated up to the level of the first key field: Fieldl.

define view entity Z ViewWithAggregations
as select from Z ViewAsDataSourceF

{
key Fieldl,

min(Field3) as FieldWithMin,
max(Field3) as FieldWithMax,
avg(Field3 as abap.decfloat34) as FieldWithAvg,
cast(sum(Field3) as abap.int4) as FieldWithSum,
count(distinct Fieldl) as FieldWithCountDistinct,
count(*) as FieldWithCountAll

}

group by Fieldl

Listing 2.37 CDS View with Aggregation Functions

The result of the selection from CDS view Z ViewWithAggregations com-
prises a single data record. The minimum (min) value (FieldWithMin = 1),
maximum (max) value (FieldWithMax = 3), average (avg) value (FieldWithAvg =
2), and summed-up (sum) value (FieldWithSum=6) of Field3 are calculated. In
addition, for each entry in the results list of aggregating view Z ViewWith-
Aggregations, the number (= 1) of its underlying aggregated original data
records that differs in the value of grouping field Fieldl (count distinct)is
calculated and returned by FieldWithCountDistinct. Finally, the total num-
ber (= 3) of underlying aggregated data records (count(*)) is calculated and
returned by FieldwithCountAll.

Note that the fields for minimum value FieldWithMin and maximum value
FieldwithMax retain type intl of underlying base field Field3. By default,
this would also hold true for field FieldwWithSum, which contains the result of
the summation. However, in the example, a cast operation is applied, which
explicitly extends the type to int4. When applying the average function, an

88

215

Projection Fields

explicit type assignment is required. FieldwithAvg is typed as decfloat34.
The fields that expose the result of the count operation—FieldWithCount-
Distinct and FieldwithCountAll—are implicitly assigned ABAP type int4.

Avoid Memory Overflows

To avoid a memory overflow at the execution time of the data selection
when using aggregation functions, you should check the expected value
ranges and existing type assignments of the fields and enhance these
types by explicit type conversions if necessary.

If you use aggregation functions, the grouping fields defined in the group by
statement ideally should not contain any calculated or joined fields. Fur-
thermore, it may be beneficial to perform the required aggregations as
deep as possible within the CDS view stack to reduce the amount of pro-
cessed data to its minimum as soon as possible.

If the values to be aggregated represent amounts or quantities, you must
normalize them before the aggregation is performed. This means that you
may first have to convert them to the same unit or keep the currency and
unit information in the aggregation result to avoid unwanted calculation
errors. We'll explain conversion functions in Section 2.18.

Performance Aspects

If you use conversion functions on nonaggregated single data records, this
can have a negative effect on performance. In such cases, you should con-
sider first aggregating the data records while keeping their units and
applying the conversion functions to the preaggregated data records.

2.15 Projection Fields

Projection fields are defined in the select list of a CDS view. Within the CDS
view definition, you can access these fields by prefixing their names with
operator $projection followed by a dot. You can use projection fields to
refer to calculation results defined within the same view. This allows you to
build up nested calculations with the exposed fields serving as reusable
intermediate results. In addition, you can use projection fields (with some
restrictions) for defining associations (see Chapter 3).

Listing 2.38 illustrates the implementation of CDS view Z ViewWithProjec-
tionFields, which leverages projection fields for further calculations.

89

Performance
aspects

Using conversion
functions

Example:
CDS view with
projection fields

2 Fundamentals of CDS Data Modeling

define view entity Z ViewWithProjectionFields
as select distinct from t000

abap.char'A' as FieldA,

abap.char'B' as FieldB,

concat($projection.FieldA, $projection.FieldB) as FieldC,

concat(abap.char'A', abap.char'B"') as FieldC2,

concat($projection.FieldC, abap.char'D') as FieldD,

concat(concat(abap.char'A', abap.char'B'), abap.char'D')
as FieldD2

¥
Listing 2.38 CDS View with Projection Fields

Example analysis In this example, two fields, FieldAand FieldB, are defined with constant val-
ues A and B, respectively. These locally defined fields are concatenated to
FieldC. The resulting value is the same as when concatenating the original
constants, A and B; that is, FieldC2 holds the same value as FieldC. Similarly,
FieldD and FieldD2 hold the same values, with FieldD reusing the determi-
nation logic of FieldC and with FieldD2 calculating the result from scratch.

From a technical perspective, the modeled reuse on the CDS level is being
expanded when creating the corresponding database view on SAP HANA.
This is shown by the create statement in Listing 2.39, in which the defini-
tions of fields FieldC and FieldC2—which are FieldD and FieldD2, respec-
tively—are identical.

CREATE OR REPLACE VIEW "Z VIEWWITHPROJECTIONFIELDS" AS SELECT
DISTINCT N'A" AS "FIELDA",
N'B' AS "FIELDB",

CONCAT(
N'A',
N'B'
) AS "FIELDC",
CONCAT(
N'A",
N'B'
) AS "FIELDC2",
CONCAT(
RTRIM(
CONCAT(
N'A',
N'B'

90

2.16 Parameters

N'D'
) AS "FIELDD",
CONCAT(
RTRIM(
CONCAT(
N'A',
N'B'
)
)s
N'D'
) AS "FIELDD2"
FROM "T00O" "T00O"

Listing 2.39 Create Statement of the Database View Generated from Listing 2.38

2.16 Parameters

Parameters are constituents of the CDS model signature. They represent
scalar input values that must be supplied by the caller when performing
data selections.

You can access and evaluate parameter values in the logic of your CDS mod-
els. This allows you to equip consumers of your CDS models with pre-
defined control options for their data selections. You can also use
parameters for enforcing a restriction of the selection result by applying
them as predefined filter criteria.

Parameters are listed directly after the name of the CDS model. The param-
eter list is introduced by CDS syntax element with parameters. Each param-
eter has a name and a type separated by a colon. The type can be based on
elementary ABAP types, data elements, and simple types.

The example from Listing 2.40 shows two alternatives for assigning types
to parameters.

define view entity Z ViewWithParameters
with parameters
P KeyDate : abap.dats,
P_Language : sylangu
as select from ..

Listing 2.40 Definition of Parameters

The parameter names must be unique within a CDS model and must be dif-
ferent from the element names.

91

Using parameters

Definition of
parameters

2 Fundamentals of CDS Data Modeling

[+] Parameter Names

You should start the name of parameters with the prefix P_, followed by
the semantic name of the transported value. Following this rule creates a
clear separation of the parameter names from the names of the remaining
elements of the CDS models.

Parametersin Parameters can be used in different places within a CDS model. For exam-
CDSviews ple, you can use parameters to do the following:

® Define where conditions in a CDS view.
® Calculate fields in the projection list of a CDS view.

® Supply parameters of other data sources with the requested values.

Within the implementation of a CDS model, parameters can be accessed by
the preceding syntax element $parameters, which is separated by a dot from
the parameter name.

Let’s now have a look at the potential usages of parameters with the follow-
ing sample CDS views and ABAP code snippets.

Example: In all depicted cases, CDS view Z ViewWithParametersDataSource from Lis-
CDSview servingas ting 2.41 serves as the fundamental data source. According to its definition,
adatasource . .
it returns a single data record.

define view entity Z ViewWithParametersDataSource
as select distinct from t000
{
key abap.char'A’ as KeyField,
key abap.lang't' as Language,
key abap.dats'99580809' as ValidityEndDate,
abap.dats'20111004" as ValidityStartDate

}

Listing 2.41 CDS View Z_ViewWithParametersDataSource

Example: CDS view Z ViewWithParameters in Listing 2.42 uses CDS view Z ViewWith-
CDS view with parametersataSource as its direct base data source. It defines parameters
parameters ¢,y key date P_KeyDate and language P_Language.
define view entity Z ViewWithParameters
with parameters
P_KeyDate : abap.dats,
P_Language : sylangu
as select from Z ViewWithParametersDataSource

92

2.16 Parameters

association [0..*] to Z ViewWithParametersAscTarget as Target
on $projection.KeyField = Target.KeyField

association [0..1] to Z ViewWithParametersAscTarget as FilteredTarget
on $projection.KeyField = FilteredTarget.KeyField
and $projection.language = FilteredTarget.Language

key KeyField,
ValidityEndDate,
ValidityStartDate,
$parameters.P_Language as Language,
_Target(P ValidityDate: $parameters.P_KeyDate)
[1:Language= $parameters.P_Language].KeyField as TargetKeyField,
_FilteredTarget
}
where ValidityEndDate >= $parameters.P_KeyDate
and ValidityStartDate <= $parameters.P_KeyDate
and Language = $parameters.P_Language

Listing 2.42 CDS View with Parameters

These parameters are used in its where condition for restricting the selec- Example analysis
tion result. Parameter P_Language is also added as field Language to the pro-

jection list of the CDS view. This field will have the same value as the

parameter for all data records. As a result, the parameter value can indi-

rectly be used in the definition of association FilteredTarget in expres-

sion $projection.language = FilteredTarget.Llanguage. Alternatively, you

could use the parameter directly on the right-hand side of an expression

such as FilteredTarget.Language = $parameters.P Language.

The target of association FilteredTarget is CDS view Z ViewWithParameter- Example:

sAscTarget with parameter P_ValidityDate, as shown in Listing 2.43. Association target
with parameter

define view entity Z ViewWithParametersAscTarget
with parameters
P_ValidityDate : abap.dats
as select from Z ViewWithParametersDataSource
{
key KeyField,
key Language,
ValidityEndDate,
ValidityStartDate
}
where ValidityEndDate >= $parameters.P_ValidityDate
and ValidityStartDate <= $parameters.P_ValidityDate

Listing 2.43 CDS View with a Parameter Serving as an Association Target

93

2 Fundamentals of CDS Data Modeling

Parameters in path
expressions

Example:
Parameters in
another CDS view

Example:
Parameters in ABAP

When accessing field KeyField of this target CDS view by applying path
expression Target(P_ValidityDate: $parameters.P_KeyDate)[1:language=
$parameters.P_Language].KeyField in CDS view Z ViewWithParameters, its
own parameter P_ValidityDate must be supplied. This is achieved by bind-
ing it to parameter P_KeyDate of CDS view Z ViewWithParameters.

Within the depicted path expression, the second local parameter P _Lan-
guage of the source view Z ViewWithParameters is also used for applying a fil-
ter condition on associated target field Language. This means that the key
and thus the associated data record of target CDS view Z ViewWithParame-
tersAscTarget are uniquely identified. As a result, the maximum cardinal-
ity of the path expression is defined as 1.

Missing Support for Specifying Target Parameters in Association
Definitions

Parameters of association targets can’t be supplied within the definition
of an association. Among other things, this means you can’t explicitly bind
parameters of associated CDS models. Therefore, a coupling of the param-
eters in CDS models can’t be enforced. Instead, the consumer has to supply
the parameters consistently when selecting data from the associated CDS
models.

If you want to use CDS model Z ViewWithParameters as a data source within
a select statement, its parameters must be supplied with values. For exam-
ple, Listing 2.44 shows CDS view Z ViewWithParametersConsumer, which sup-
plies parameters P_KeyDate and P_Language of its data source with session
variable $session.system date and constant value E, respectively.

define view entity Z ViewWithParametersConsumer
as select from Z ViewWithParameters(
P_KeyDate: $session.system date,
P_Language: 'E')
{
key KeyField
}

Listing 2.44 CDS View Supplying Parameters of Its Data Source

Listing 2.45 shows a corresponding selection in ABAP code. In this example,
ABAP system field sy-datumis used for supplying parameter P_KeyDate.

SELECT keyfield
FROM z_viewwithparameters(
p_keydate = @sy-datum,

94

2.16 Parameters

p_language = 'E')
INTO TABLE @DATA(1t viewwithparameters).

Listing 2.45 Data Selection in ABAP Corresponding to the CDS Modeling in
Listing 2.44

Within the CDS view stack, parameters must always be supplied. In con-
trast, the ABAP SQL interface supports the automatic supply of parameters,
which are annotated with @Environment.systemField... The permitted values
of this annotation, such as SYSTEM DATE and SYSTEM_LANGUAGE, correspond to
the values of the ABAP system fields, such as sy-datumand sy-1langu. If such
an annotated parameter isn’t supplied explicitly with a value when select-
ing data via the ABAP SQL interface, the ABAP runtime automatically fills
the parameter with the value of the corresponding ABAP system field. As a
result, the corresponding parameter of the CDS model becomes optional
from an ABAP perspective.

This is demonstrated by the following example, which comprises the CDS
view Z ViewWithOptionalParameters in Listing 2.46 and the two data selec-
tions in Listing 2.47 and Listing 2.48.

define view entity Z ViewWithOptionalParameters
with parameters
@Environment.systemField: #SYSTEM DATE
P KeyDate : abap.dats
as select distinct from Z ViewWithParametersDataSource

{
key KeyField
¥
where ValidityEndDate >= $parameters.P KeyDate

and ValidityStartDate <= $parameters.P KeyDate

Listing 2.46 CDS View with a Specially Annotated Parameter

Parameter P_KeyDate of CDS view Z ViewWithOptionalParameters is anno-
tated with @Environment.systemField: #SYSTEM DATE. It’s explicitly supplied
in Listing 2.47 with system field sy-datum.

SELECT *
FROM z_viewwithoptionalparameters(p_keydate = @sy-datum)
INTO TABLE @DATA(1t viewwithoptionalparameters).

Listing 2.47 Data Selection in ABAP with Explicit Supply of the CDS View
Parameter

95

Mandatory and
optional supply of
parameter values

Example:
Data selection in
ABAP

2 Fundamentals of CDS Data Modeling

Defining amount
and quantity fields

Example:

CDS view with
amount and
quantity fields

In contrast, the data selection in Listing 2.48 doesn’t supply this parameter
explicitly.

SELECT *
FROM z_viewwithoptionalparameters
INTO TABLE @DATA(1t viewwithoptionalparameters).

Listing 2.48 Data Selection in ABAP with Implicit Supply of the CDS View
Parameter

Nevertheless, both selections yield the same result.

2.17 Reference Fields

@Semantics.quantity.unitOfMeasure: 'QuantityUnit’
abap.quan'1234.56" as Quantity,
abap.unit'PC’ as QuantityUnit,
@Semantics.amount.currencyCode: 'Currency’

abap.curr'1234.56' as Amount,
abap.cuky'USD' as Currency

¥
Listing 2.49 CDS View with Amount and Quantity Fields

Check Usage of Parameters

Because parameters typically force consumers of a CDS model to supply
them with values, the consumers must know the lists of permitted values
to carry out data selections successfully. Therefore, a simple data selection
may not be possible without this knowledge. Furthermore, the addition,
modification, or removal of a parameter is usually incompatible for con-
sumers of the affected CDS model because consumers have to react to
these changes. Therefore, you should only define parameters in your CDS
models if they are essential for the functionality of the corresponding CDS
models.

2.17 Reference Fields

Reference fields are amount and quantity fields that define references to
currency and unit fields, respectively. Such a reference is technically
enforced for fields that have the ABAP type curr or quan.

In CDS models, references to currencies and units are established by means
of annotations @Semantics.amount.currencyCode... and @Semantics.quan-
tity.unitOfMeasure. .., respectively. Therein, the assigned annotation val-
ues represent the respective currency and unit fields that the annotated
fields refer to. The referenced currency and unit fields with fields of type
curr and quan have to be defined as fields of type cuky or unit. The currency
codes themselves originate from table TCURC. The quantity units are defined
by table T006.

Listing 2.49 shows sample CDS view Z ViewWithReferenceFieldsAwith quan-
tity and amount fields.

define view entity Z ViewWithReferenceFieldsA
as select distinct from t000

96

Use Curr Fields with Two Decimals Only

When defining curr fields, you should always define them with two deci-
mals. Otherwise, the currency shift logic may not work properly.

You’ll learn more about the currency shift logic in Chapter 17, Section 17.2.3.

Besides plain quantities referring to units of table T006, the CDS models also
support defining quantities that are calculated from other quantities and
amounts. For regular quantities, for example, the units of such calculated
quantities are referenced by @Semantics.quantity.unitOfMeasure. ... These
units can represent complex expressions involving various base units and
currencies. Accordingly, they are defined as character fields. Typically, such
fields are modeled as virtual fields in the CDS models and populated by
ABAP code. Of course, if technically feasible, you could also construct the
unit values by applying suitable string operations, as depicted earlier in Lis-

ting 2.46.

If a curr field will be incorporated into a calculation, it first must be con-
verted into a plain value without its currency reference by using function
get numeric_value. Similarly, if you want to decouple quantities from their
unit, you can use the same function. For a curr field, this function not only
removes the reference and converts the curr value to a value of type dec-
float34 but also applies an implicit decimal shift.

If you only want to convert the type of an amount field from curr to dec-
float while keeping its reference field nature, you can use function curr
to decfloat amount. Because the resulting field is to be considered an
amount, it has to specify a reference to its currency via @Semantics.amount.
currencyCode....

CDS view Z ViewWithReferenceFieldsB from Listing 2.50, which is based on
CDS view Z ViewWithReferenceFieldsA from Listing 2.49, illustrates the
usage of the aforementioned conversion functions and the definition of a
calculated quantity, including its unit.

97

Calculated
quantities

Type conversions of
reference fields

Example:

CDS view with type
conversions of
reference fields

2 Fundamentals of CDS Data Modeling

2.18 Conversion Functions for Currencies and Quantity Units

Display reference

information

define view entity Z ViewWithReferenceFieldsB
as select from Z ViewWithReferenceFieldsA

{
@Semantics.quantity.unitOfMeasure: 'QuantityUnit’
Quantity,
QuantityUnit,
@Semantics.amount.currencyCode: 'Currency’
Amount,
Currency,
get_numeric_value(Amount)
get_numeric_value(Quantity)
@Semantics.amount.currencyCode: 'Currency'
curr_to_decfloat_amount(Amount) as DecfloatAmount,
@Semantics.quantity.unitOfMeasure: 'CalculatedUnit’
get_numeric_value(Amount) / $projection.quantity

as AmountPerQuantity,

as AmountWithoutReference,
as QuantityWithoutReference,

cast(concat(Currency,
concat('/", QuantityUnit)
) as abap.char(50)) as Calculatedunit
}

Listing 2.50 CDS View with Converted Amount and Quantity Fields

If you want to get an overview about the reference fields of your CDS enti-
ties, you can place the cursor on the CDS entity name and press [F2]. This
will open up a popup that lists the fields along with their types and refer-
ences, as illustrated in Figure 2.2 for CDS view Z ViewWithReferenceFieldsB

from Listing 2.50.

Client Handling

Client dependent

fd Z ViewWithReferenceFieldsB (View)
View with Reference Fields

Client session variable used

Column

Quantity
QuantityUnit
Amount
Currency

AmountWithoutReference
QuantityWithoutReference

DecfloatAmount
AmountPerQuantity
CalculatedUnit

Data Element Data Type Unit/Currency Reference Description
quan(6,2) quantityunit
unit(2)
curr(6,2) currency
cuky(5)
decfloat34(34)

decfloat34(34)
decfloat34(34) currency
decfloat34(34) calculatedunit

dd_cds_calculated_unit char(50) DD: CDS Calculated Unit

>

Figure 2.2 Technical Field Information of the CDS View from Listing 2.50

98

2.18 Conversion Functions for Currencies and
Quantity Units

Conversion functions for the conversion of currencies and units of measure

are based on several sets of persistent data records. These data records are

included in the evaluation logic during processing of the conversion logic.

The corresponding persistency captures, for example, the time-dependent

conversion factors between currencies of different countries. This informa-

tion must be integrated into the conversion logic based on the relevant key

date.

The CDS syntax allows you to embed conversion functions directly into the Conversion func-

implementation of your CDS views.

Listing 2.51 depicts such an embodiment for a unit conversion.

define view entity Z ViewWithUnitConversions
with parameters
P DisplayUnit : msehi
as select from ZI SalesOrderItem
{
key SalesOrder,
key SalesOrderItem,
@Semantics.quantity.unitOfMeasure: 'OrderQuantityUnit’
OrderQuantity,
OrderQuantityUnit,
@Semantics.quantity.unitOfMeasure: 'OrderQuantityDisplayUnit
unit_conversion(quantity => OrderQuantity,
source_unit => OrderQuantityUnit,
target_unit => $parameters.P_DisplayUnit,
error_handling => 'FAIL ON_ERROR')
as OrderQuantityInDisplayUnit,
$parameters.P DisplayUnit as OrderQuantityDisplayUnit

¥
Listing 2.51 CDS View with Unit Conversion

Listing 2.52 shows a corresponding example of a currency conversion.

define view entity Z ViewWithCurrencyConversions
with parameters
P DisplayCurrency : waers_curc,
P_ExchangeRateDate : sydatum
as select from ZI SalesOrderItem

{
key SalesOrder,

tions in CDS views

Example:
Unit conversion

Example:
Currency conversion

99

2 Fundamentals of CDS Data Modeling

Analysis of the
examples

Unit conversion

Currency conversion

key SalesOrderItem,
@Semantics.amount.currencyCode: 'TransactionCurrency'
NetAmount,
TransactionCurrency,
@Semantics.amount.currencyCode: 'DisplayCurrency’
currency_conversion(

amount => NetAmount,
source_currency => TransactionCurrency,
target_currency => $parameters.P_DisplayCurrency,

exchange rate_date => $parameters.P_ExchangeRateDate,
exchange_rate_type => 'M',

round = X',
decimal_shift = 'X',
decimal_shift back => 'X',
error_handling => 'SET_TO NULL')

as NetAmountInDisplayCurrency,
$parameters.P DisplayCurrency as DisplayCurrency

}

Listing 2.52 CDS View with Currency Conversion

The conversion functions have mandatory input parameters as well as
optional parameters. The latter only need to be supplied if you want to
override the default values that are assigned to them automatically.
Depending on the concrete input parameter of the chosen conversion
function, you can supply it with a literal value, with an actual value from
the respective data record, or with a parameter value.

The unit conversion uses function unit _conversion. Earlier in Listing 2.47,
the quantity (quantity) and its unit (source unit) are provided as input pa-
rameters to the conversion function. These input parameters are bound to
fields OrderQuantity and OrderQuantityUnit of CDS view Z ViewWithUnit-
Conversions. The semantic correlation between these two fields is ex-
pressed by annotation @Semantics.quantity.unitOfMeasure: 'OrderQuanti-
tyUnit' of field OrderQuantity.

The target unit of conversion target unit is defined by CDS parameter
P DisplayUnit. The result of the conversion is returned via field OrderQuan-
tityInDisplayUnit. This field is related to unit field OrderQuantityDisplayUnit,
which is derived from CDS parameter P DisplayUnit via its annotation
@Semantics.quantity.unitOfMeasure: 'OrderQuantityDisplayUnit'.

The currency conversion (currency conversion) from Listing 2.48 essen-
tially corresponds to the previously discussed unit conversion. However,
more input parameters are included in the calculation. Besides the amount

100

2.18 Conversion Functions for Currencies and Quantity Units

(amount), which is filled with the actual value of field NetAmount, the currency
(source currency), which is filled with the actual value of field Transaction-
Currency, and target currency (target currency), which is specified by CDS
parameter P DisplayCurrency, in particular, the key date of conversion
exchange rate date must be specified by the function’s caller. In our case,
this is specified by CDS parameter P_ExchangeRateDate. Furthermore, the
exchange rate type (exchange rate type) is set to fixed value M.

The currency conversion function allows you to activate or deactivate the
business rounding (round) and the usage of shifts of decimal places before
(decimal shift)and after the calculation (decimal shift back).Inthe exam-
ple described here, all these parameters are filled with constant literal value
X. This valuation corresponds to the default values of the supplied parame-
ters.

The relationships between the amount fields and their currency fields are
expressed by annotations @Semantics.amount.currencyCode:....

Particular attention must be paid to the handling of possible errors when
dealing with conversion functions. The two examples just described apply
error handling FAIL ON_ERROR. This corresponds to the default value of the
corresponding input parameter and causes a runtime error in the database
processing if the conversion can’t be carried out successfully.

There are many possible root causes for such errors. For example, the unit
conversion can’t be executed successfully if the value of the target unit,
which is supplied by the related input parameter, doesn’t exist. Error han-
dling FAIL ON_ERROR therefore requires a high degree of data consistency
and data completeness, as well as its own prevalidations of the supplied
input parameters, for keeping possible error situations to a minimum.

Besides error-handling value FAIL ON_ERROR, the conversion functions also
support error-handling values KEEP_UNCONVERTED and SET TO NULL. Value
KEEP_UNCONVERTED can be used for preserving the original value as the target
value if problems occur in the context of the conversion. Value SET _T0 _NULL
can be used for setting the target value to null in case of issues. If you
require any of these error-handling strategies, you should define the corre-
sponding input parameter of the conversion function accordingly. How-
ever, note that you might not be able to detect issues easily if you choose an
error-handling strategy that is different from FAIL ON_ERROR.

Conversion Functions in Analytical Queries

In analytical query CDS views, the conversion functions for currencies and
quantities are performed by the analytic engine after the records are
aggregated. This can significantly improve the performance compared to

101

Error handling

2 Fundamentals of CDS Data Modeling

applying the same conversion functions already in the underlying data
sources.

In addition, the analytic engine implements its own handling for conver-
sion errors: when applying the conversion in an analytical query view, the
original value with its unit is preserved if the requested conversion fails.

You'll find more information about analytical queries and the analytical
engine in Chapter 10, Section 10.3.

2.19 Provider Contracts

Background CDS provider contracts formally define rules that the definition of a CDS

information model, which is classified accordingly, must follow. The rules consider pre-
defined usage scenarios of the CDS models. Content-wise, the provider con-
tracts correspond to the modeling patterns captured by annotation
@bjectModel.modelingPattern. Within a composition hierarchy of CDS
models, only the root CDS model may be assigned a provider contract.
Compositional children inherit the provider contract from their root.

The underlying rules of the provider contracts will ensure that CDS entities
can actually be used as specified. They may result in both restricting the
admissible modeling options and enabling framework-specific functions.
Major parts of the rules are enforced by the CDS syntax check and as such
may impact the activation of the CDS models, which means if you assign a
provider contract to a CDS model but contradict its rules, it may not be pos-
sible to activate the CDS model. In contrast to the provider contract being
defined by the corresponding CDS syntax elements, the aforementioned
annotation @0bjectModel.modelingPattern doesn't influence the activation
but serves documentation purposes only.

overview Table 2.8 presents on overview of the provider contracts and their intended

usages.
transactional This CDS projection view serves as a programmatic
interface and modeled interface of the functionality of business

objects in the ABAP RESTful application programming
model context. Only simple projections of the under-
lying entities are supported.

Table 2.8 Provider Contracts

102

2.19 Provider Contracts

transactional query This CDS projection view defines a service interface on
top of a CDS view model for transactional processing.
CDS projection views with this provider contract may
be defined on top of regular CDS views without a pro-
vider contract or on top of CDS projection views with
provider contract transactional interface.

analytical query This transient query CDS projection view is executed
by the analytical infrastructure.

Table 2.8 Provider Contracts (Cont.)

Listing 2.53 to Listing 2.55 demonstrate an example for the usage of the Example:

provider contracts in a CDS view stack. Fundamental CDS view Z ViewWith- DS views with
provider contracts

ProviderContractA from Listing 2.53 acts as the root CDS view of a composi-
tional hierarchy.

define root view entity Z ViewWithProviderContractA
as select distinct from t000

key abap.char'A' as KeyField
}

Listing 2.53 CDS View Z_ViewWithProviderContractA

CDS view Z ViewWithProviderContractB from Listing 2.54 leverages CDS view
Z ViewwithProviderContractA as its data source. It’s defined as a root CDS
projection view with provider contract transactional interface via the cor-
responding syntax element. In addition, this CDS view is annotated with
@0bjectModel.modelingPattern: #TRANSACTIONAL INTERFACE.

@0bjectModel.modelingPattern: #TRANSACTIONAL INTERFACE
define root view entity Z ViewWithProviderContractB
provider contract transactional interface
as projection on Z ViewWithProviderContractA

{
key KeyField
}

Listing 2.54 CDS Projection View Z_ViewWithProviderContractB

CDS view Z ViewwithProviderContractB itself is used as a data source of the
transactional query CDS view Z ViewWithProviderContractC from Listing

103

2 Fundamentals of CDS Data Modeling

2.55, which is assigned CDS provider contract transactional query and is
annotated accordingly too.

@0bjectModel.modelingPattern: #TRANSACTIONAL_QUERY
define root view entity Z ViewWithProviderContractC
provider contract transactional query
as projection on Z ViewWithProviderContractB

{
key KeyField
}

Listing 2.55 CDS Projection View Z_ViewWithProviderContractC

2.20 Entity Buffer Definitions

Use cases Entity buffer definitions allow you to speed up selections from CDS views in
ABAP. This is achieved by processing selection requests directly on the
ABAP application server instead of delegating them to the SAP HANA data-
base.

Bufferable To be able to buffer a CDS view, the implemented logic of the CDS view is

CDSviews syubject to several restrictions. For example, CDS views with parameters and
CDS views that use functions with varying results such as utcl current
can’t be buffered. Those responsible for the CDS views need to document by
means of annotation @AbapCatalog.entityBuffer.definitionAllowed:true
that they are aware of these technical limitations and that they will con-
sider these restrictions during the further lifecycle of the annotated CDS
views.

Example: Listing 2.56 shows CDS view Z ViewWithBufferA, which is annotated

CDSview with 5ccordingly. It selects directly from table T000.
buffer option

@AbapCatalog.entityBuffer.definitionAllowed: true
define view entity Z ViewWithBufferA as select from t000

{
key mandt as KeyField,

mtext as Field

}
Listing 2.56 CDS View Z_ViewWithBufferA with Buffer Option

Buffering of stacked If you want to enable a buffer for a CDS view, which uses another CDS view

CDSviews g3 jts data source, not only the CDS view itself but also all the underlying
CDS views must support buffers in principle.

104

2.20 Entity Buffer Definitions

CDS view Z ViewWithBufferB from Listing 2.57 also supports buffering. This Example:
is technically feasible because its own data source—CDS view Z ViewWith- CDSview hierarchy

BufferA—also offers a buffer option. with buffer option

@AbapCatalog.entityBuffer.definitionAllowed: true
define view entity Z ViewWithBufferB as select from Z ViewWithBufferA

{
key KeyField,
Field
}

Listing 2.57 CDS View Z_ViewWithBufferB with Buffer Option

We now want to create an entity buffer definition. Entity buffer definitions Create entity buffer
can be created from within the ADT Project Explorer view. Therein, select ~definitions

the CDS view to be buffered and call function New Entity Buffer from its

context menu. Enter the requested information in the dialog that is

launched and confirm the creation.

In our case, we want to create a buffer entity definition for CDS view Z View- Example:

WithBufferA from Listing 2.56 that is named equally. This entity buffer defi- Entity buffer
nition will be assigned to the lowest definition layer core and specify a definition
buffer strategy on a single record level (type single). Listing 2.58 demon-

strates the corresponding definition.

define view entity buffer on Z ViewWithBufferA
layer core
type single

Listing 2.58 Entity Buffer Definition for CDS View Z_ViewWithBufferA in the
Layer Core

There are multiple logical layers to which buffer definitions can be Layering of entity
assigned. This allows specifying multiple entity buffer definitions for a sin- buffer definitions
gle CDS view. However, in a single layer, there may at maximum be a single

entity buffer definition per CDS view. The entity buffer definition of the

highest layer determines the effective buffer handling.

Imagine that CDS view Z ViewWithBufferA from Listing 2.56 and its buffer Example:
definition from Listing 2.58 could not be redefined (e.g., because they were Overruling buffer
shipped by SAP), but you would like to disable the buffer. You can achieve definitions

this by creating your own entity buffer definition for CDS view Z ViewWith-

BufferAin a higher layer and deactivate the standard buffering from there.

Listing 2.59 illustrates the corresponding entity buffer definition 771 View-

WithBufferA.

105

2 Fundamentals of CDS Data Modeling

define view entity buffer on Z ViewWithBufferA
layer customer
type none

Listing 2.59 Entity Buffer Definition for CDS View Z_ViewWithBufferA in Layer
Customer

It's assigned the highest layer customer and specifies via the declaration
type none that no buffering will be applied. This setting overrules the entity
buffer definition from Listing 2.58.

[»] Buffer Handling

The definition and application of buffers will always be aligned with the
actual data selections: on one side, buffers may restrict the further evolu-
tion of the buffered CDS views, and on the other side, you have to be
aware that even if a buffer exists, not all selections can be executed on the
ABAP application server. Furthermore, the administration of the buffers
can imply a significant overhead and negatively impact resource consump-
tion and performance. This is especially true if a huge amount of data is
buffered, if the control settings of the buffers aren’t chosen in an optimal
way, or if the buffered data is invalidated frequently. You should also con-
sider that entity buffers may be built up in parallel to existing table buf-
fers. In such cases, you should evaluate whether both buffers are actually
required or whether you could switch your selections for leveraging a sin-
gle buffer only.

2.21 Summary

In this chapter, you learned how data provisioning can be implemented by
leveraging SQL concepts such as joins, unions, and aggregation functions,
as well as specialized CDS functions such as entity buffers. You also were
introduced to CDS parameters. CDS parameters can be applied for enforc-
ing user input as well as for providing context information that can be used
for implementing selection logic.

In the next chapter, you’ll learn more about associations, which were only
briefly introduced in this chapter.

106

Contents

Preface 17
1 Modeling Your First CDS Views 23
1.1 Define the Data Model of the Application 24
1.2 Implement the Data Model of the Application ... 26

121 Create Database Tables 28

1.2.2 Createa CDS View 31

123 Edit a CDS View 37

124 Create a Hierarchy of CDS Views 40
1.3 Summary 52
2 Fundamentals of CDS Data Modeling 53
2.1 Overview of CDS Models 54
2.2 Overview of CDS View Syntax 58
2.3 Key Fields 61
2.4 Cast Operations 62
2.5 Typed Literals 64
2.6 Simple Types 66
2.7 Case Statements 68
2.8 Session Variables 69
2.9 Client Handling 71
2.10 Select Distinct Statements 72
2.11 Union Views 73

2.11.1 Union Definitions 73

2.11.2 Union and Union All Logic 78
2.12 Intersect and Except Statements 79
2.13 Joins 81
2.14 SQLl Aggregation Functions 87

Contents

Contents

2.15 Projection Fields ... 89
2.16 Parameters ... 91
2.17 Reference Fieldsinercrinissssseeesesssssssessnssssseeee 96
2.18 Conversion Functions for Currencies and Quantity Units 99
2.19 Provider Contracts ..., 102
2.20 Entity Buffer Definitions ... 104
2.21 SUMMATYooiiciceieceieeeieeesesessesessssessaessaessasessanes 106
3 Associations 107
3.1 Define Associations ... 108
3.2 EXPO0Se ASSOCIAtiONSccooorreerreeceiec st 111
3.3 Model Compositional Relations ... 111
3.4 Model M:N Relations ... 114
3.5 Project Associations ... 117
3.6 Use Associations in CDS VIE@WScccooocomreenmmreenneeeeennnseeessnesesesnneens 118
3.6.1 Define Path EXPressionscneenecsnseesnsscsssesenees 118
3.6.2 IMPlCITJOINS ..o 121
3.6.3 Cardinality Changes Resulting from Path Expressions 124
3.6.4 Restrictions for Defining Path EXpressions ... 127
3.7 Use Associations in ABAP COdecooooommrrennmereeinnneeesneeeeisnenens 129
3.8 SUMMAIY ... sesse e es s seee s 129
4 Annotations 131
4.1 Annotation Definitions ..., 132
411 SYNtaX OVEIVIEW ..ecoiieeceeeceecireeeeeeenesssesssssasessesssessaenesensens 132
412 Annotation NameSnrncrereeneeneniseeieessereseneens 136
413 Annotation Types and Valuesincnnenenn. 139
414 Enumeration Values ceeveras 140
4.1.5 Annotation Default Values ... 141
416 AnNOTAtion SCOPES ...cevrevereeerienerineriesieenseeisenisessasesaseseenanens 142
4.2 Effects of Annotations ..., 143

4.3 Propagation Logic for Annotations ... 145
4.3.1 Propagation Logic within Simple Type Hierarchies 145
4.3.2 Propagation Logic of Element Annotations ..., 147
433 CoNSiStenCy ASPECES ... ceceieseeeeeaenees 152
4.4 Metadata EXLENSIONSccooomiiriimrcncieeeeeneisseseesseeseseenns 155
4.5 Active ANnotations ... 158
4.6 SUMMAIY ... s 160
5 Access Controls 161
5.1 Fundamentals of Access Controlsccmcccerconcecerenne 162
5.2 Mode of Action of Access Controlscmccrconcccernnne 166
5.3 Implementation Patterns for Access Controls ..., 171
5.3.1 Implement Access Controls with Path Expressions 171
5.3.2 Inherit Implementation of Access Controlsccccomeeeene. 180
5.3.3 Implement Access Controls without Using
Authorization ODJECES ... 189
5.3.4 Implement Access Controls for Analytical Queries 194
5.3.5 Implement Access Controls for Transactional
APPLICATIONS oo 196
5.3.6 Implement Access Controls on the Field Level 199
5.3.7 Change Access Controls of SAP-Delivered CDS Models 200
5.3.8 Block Standard Data Selections from CDS Models 203
5.3.9 Decouple Access Controls from User Inputccccovvceeeneveene. 205
5.3.10 Map CDS Fields onto Fields of Authorization Objects
USING INAITECHION oo ereseesieeseseesiees 207
5.4 Test Access CONtrolsomrccronnnecceriinneceennes 207
5.5 SUMMANY ... sssss s sssss s sssssesins 210
6 Business Services 211
6.1 Projection VIEWScooomrmrcemnrceneceenreceneseeceee 212
6.2 Service Definitions ... 216
6.3 Service BINAiNGScccoorrirnccreiinneccceeiinseeeeeseessessesssesessecsessnens 221
6.3.1 ODAta Ul SEIVICES .oeeerereerirerieciecreereereseriesasesssesesenssesssesens 222
9

Contents

Contents

6.3.2 OData Web APl SEIVICEScceeeeeeeeererirerirerireseseeeseeisesssecnone 227
6.3.3 INA UISEIVICES ..o 228
6.3.4 SQLWED API SEIVICESouveeerrerereceeicsemieseesseceneseesesssesensanesens 230
6.4 Testing Business SEIVICescrcrimcnnneeeemiennecesssiesesesnnns 230
6.4.1 Use OData Service URLSeeeernernernerirecesneeesensenssecsone 231
6.4.2 Use Ul Previews ... 231
6.5 SUMMATY ...t esesessies s st sassssanes 233
7 Native SAP HANA Functions in CDS 235
7.1 Implementation of a CDS Table Functioncccooovoorrcrnceenn. 236
7.2 Application SCENATIOS ... eeese e eeeeeens 244
7.3 Improve Performance and Avoid Errorsocconeecnmrcernnneennn. 245
T4 SUMMACY ..o ess s sss s esse s 247
8 Modeling Application Data 249
8.1 Application Architecture in SAP S/4HANA ... 250
8.2 Field Labels ... sesssssesssssssssesse 253
8.2.1 Determination of a Field Label ... 254
822 Length of a Field Label ... 255
8.3 Field SEMANTiCS ... seesiiessesssies 257
8.3.1 Quantities and AMOUNTS ... 257
8.3.2 Aggregation BENaViorrnnecnecnecneceinecrsecsiennes 258
8.3.3 System Times ... 260
8.3.4 Textandlanguages 261
8.3.5 Information for the Fiscal Yearconernnecennecnnecnns 262
8.4 Foreign Key Relationsccomimnrcceneceessecceeeseeecenene 262
8.5 TeXt RElAtioNs ... sessssssseess s 267
8.6 Composition Relations ... 270
8.7 Time-Dependent Data ... 272
8.8 SUMMANYoooviiiccecteteieteeie et sase s saseesses 274

10

9 The Virtual Data Model of SAP S/4HANA 275
9.1 Why aVirtual Data Model? ... 276
9.2 SAP Object Types and Object Node Typescccccrvvceuumurcrunnecccce 277
9.3 Categories of CDS Entities in the Virtual Data Model 280
9.3.1 BasicInterface VIEWScncrnecineceisenseecsasennes 280

9.3.2 Composite Interface Views 281

9.3.3 ConSUMPLION VIBWS ...uouererrerieceneieereerirenieresesseesieriseesaesans 283

9.3.4 Other Types of VDIMScornrvmccmmnneceesseceieeneeeesssseseeasesens 284

9.4 Namingin the Virtual Data Model ..., 285
9.5 288
951 288

9.5.2 Structure of the Sales Order VIiewc.croncceeinnecens 292

9.5.3 SPECialiZation ..o seenen 293

9.54 Element ANNotations ... 294

9.6 Tips for Finding Virtual Data Model Views ..., 295
9.6.1 SAP Business Accelerator Hub and View Browser App 295

9.6.2 Search in ABAP Development TOOISooccncncernecrnecrinennes 298

9.6.3 Search Views with Specific Annotations ..., 300

9.6.4 ABAP Where-Used Listccournincenrernccinserirecnsecricnnes 301

9.7 SUMMATY ..ttt ssesessssse s seses st esesessassesssecsinses 301
10 Modeling Analytical Applications 303
10.1 Analytics in SAP S/AHANAoooooiimreeeeeeeesissssseessessssssssssns 303
10.2 Analytical VIews ... 305
10.2.1 First Analytical Cube View ..., 305

10.2.2 Test Environment for Analytical Views ... 307

10.2.3 Analytical CUDE VIEWScecerceecrrecrieceiecrneceinesesinecsineees 311

10.2.4 Analytical DIMENSIioN VIEWSoceuneceenneeimnecrineeeieeisneeeieees 314

10.2.5 Analytical Model in the Test Environment ... 320

10.2.6 Consistency of the Analytical Model ... 322

10.3 Analytical QUETIESrrrsccenrrceeeememnssceeneeeeeenssssssnnas 325
10.3.1 Definition of an Analytical QUerycccronccecnncriene 325

10.3.2 Initial Layout of a Query 329

10.3.3 Filter, Select Options, Parameters 332

10.3.4 Calculation of Measures 338

n

Contents

Contents

10.3.5 Restricted MEASUIESccvvurienceireeiecereeinecieeieersesiresseesssesenenes 342
10.3.6 Exception Aggregation ... 344
10.3.7 Currencies and CONVErSIONcemnnreemmseceemseecenennas 351
10.3.8 Analytical Query Selecting from Dimension Views 355
10.4 Analytical Infrastructure ... 356
10.5 SUMMANY ... ssss s s 359
11 Modeling Transactional Applications 361
11.1 Transactional Applications ..., 362
11.2 Transactional Infrastructure in SAP S/4HANAcccoooeevevnaee... 363
11.3 Transactional Object Models 366
11.3. 1 ODJECt MOTEISoomeeceieeieciecriecrieeriecriesieseeseseesisseeseessinses 366
11.3.2 ACCESS CONTIOIS w.oomiimceirecieciicrieeiiseerieesieeeisseesssessssssesesessinees 370
11.4 Behavior Definitions ... 372
11.41 Create Behavior Definition ..., 372
11.4.2 Behavior Pool and Handler Implementationcccccoecuunee. 381
11.4.3 Consumption Via EMLcnenecnecieeiseneseesssseenenes 385
11.4.4 Static Field CONtrolcncneenecieeiserrecieceseeeenenes 386
1145 NUMDEMNG oo sssissineas 387
11.4.6 Exclusive Locks 393
11.4.7 Authorization Checks 397
11.4.8 Authorization Contexts and Privileged Access 401
11.49 Associations 403
11.410 Actions 407
11411 FUNCHIONS cviricvimcrierieciecineieerienisessssssesssesisessasesssesssesssesssnsesnenes 421
11.4.12 Data Determinations and Validations ... 427
11.4.13 Dynamic Feature Control ..., 437
11,414 MAPPINES cvoriermerieceeriesiassreessessessssesssesssesssesssssssesssesssesssssssenes 442
11.4.15 Calculated FIelds ... cnececeiecisecsisseenisecsisessenees 444
11.4.16 Prech@ckscneenerncrireriecieeeinesineciesieenane 445
11.4.17 HTTPETAES oo 447
11418 Draft . cesieesenens .. 449
11.4.19 Side Effects ...oooreeerierecceieeceeiseceeiisescessecsssesessesssecssssseesssennas 458
11.4.20 Change DOCUMENTScoccmirecieneeeceimeciiecsiseeseeseaeeenans 461
11421 EVENTS oottt sans 464
11.5 Transactional Projection Object Modelsccoooccoonvrmrrcrnncnnnn. 467
11.5.1 Projection Object MOdelscneenecrneceieserseceineees 467
11.5.2 ACCESS CONTION ottt seenes 471

12

11.5.3 Denormalized Fieldsc.ncnnceneees 471

11.5.4 Localized EIEmMENTS ... seseceeceeeeseees 472

11.5.5 Calculated Fields/Virtual Elementscccovvreeeeveeeereennnee 473

11.6 Define Interface Behavior Definition ..., 477
11.6.1 Create Interface Behavior Definition ... 477

11.6.2 Static Feature Control ... w479

11.6.3 Operationseneeeciecseseseceeseeenes . 480

11.6.4 Draft, ETag, and Side Effects ... 481

11.6.5 EVENTS ot 482

11.6.6 Consumption via EMLccooeeemmivncncrnecnerncnns 483

11.6.7 Release for CONSUMPLIONcvcvvcreerrenecrinecnieeriesrieesenecsinecns 483

11.7 Define Projection Behavior Definition ..., 484
11.7.1 Create Projection Behavior Definition ... 484

11.7.2 Actions and FUNCLIONScvnineincnerecnecnecisereceeceeceseeees 485

11.7.3 Prechecks 487

11.7.4 Augmentation 488

11.7.5 Side Effects 491

1176 EVeNts e 492

11.7.7 Consumption via EML ... 492

11.8 Runtime Orchestration 492
11.8.1 Interaction Phase Operation Flow 493

11.8.2 Save Phase Operation FIOWccnecneceneceneeinenes 494

11.8.3 Runtime Component OVEIVIEWiriinncenncins 496

11.8.4 Consumption via ODatacccccocomevmerererunnnce. 497

11.9 SAP Fiori and OData Consumption ... 498
11.9.1 OData Service for Web APl Consumptionccceeecemeceneces 498

11.9.2 OData Service for Ul CONSUMPLIONocvueeeeenneeenereereecerneeeienes 499

11.10 SAP Event Mesh and Local Event Handlers ... 510
11.10.1 Local Event Handler ... 510
11.10.2 SAP EVENt MESH ..cccooiieecceieerecceieerceeecenieescesesessssses s 512

11,11 SUMMALY ... sssssesons 513
12 Hierarchies in CDS 515
12.1 Hierarchy Categories and Basicscccooecconrveunnee. .. 516
12.2 Annotation-Based Parent-Child Hierarchies 517
12.2.1 Example of a Parent-Child Hierarchy ... 519

12.2.2 Determination of a Hierarchy ... 522

13

Contents

Contents

15 Extensions of CDS Views and

12.2.3 Testa Hierarchy 524
12.3 CDS Hierarchiescccccccoocccccccomvessmsicisssssssccsssscsscccessccees . 526
12.3.1 Data for an Example of a Reporting Line Hierarchy 526
12.3.2 Define the CDS Hi€rarchycceneconsceinecrneceinnees 529
12.3.3 Hierarchy AtEHDULES ...t 531
12.3.4 Visualization of a Hierarchy 533
12.3.5 Hierarchy with an Orphaned Node 536
12.3.6 Hierarchy with Multiple Parent Nodescccomunecrnecernnces 537
12.3.7 Hierarchy With CYClesmrncnecirecinecrisseeiisecsiseninees 539
12.3.8 Further Options for Defining Hierarchiesccccomecuune. 540
12.3.9 CDS Hierarchies in ABAP SQLccconvveeneemrecriseerrecrisernnees 541
12.3.10 OData Service for CDS Hierarchiescccccuucvueunnee. 543
12,4 SUMMANY ..ot senes 548
13 CDS-Based Search Functionality 549
13.1 Modeling Value Helps ... 550
13.1.1 Modeling Elementary Value Helpsccrconeceoneens 550
13.1.2 Integrating Value Help CDS VIEWSccccovevemmrerneceirmscrneceineees 553
13.1.3 Collective Value Helpsenecneneenecineeiecrnecineceneesenenes 556
13.1.4 Exposing Value Helps in OData Services ..., 558
13.1.5 UsingValue Helps 559
13.2 Free-Text Search Functionality in OData Services 570
13.3 Enterprise Search Functionality ..., 578
13.3.1 Define Enterprise Search Modelsccoovencnmeenecenecennnes 578
13.3.2 Adapt Enterprise Search Models from SAP ... 580
13.4 SUMMAIY ..ooiiecceecieceecease s ssese i ssssessesessesesses 583
14 Lifecycle and Stability 585
14.1 Stability CONtracts ... scsseeescssieaes 586
14.2 Lifecycle of Development Objectsccorrcmmrceicmncercernrnnen. 590
14.3 Deprecation of Development Objects ..., 592
14.4 Use of CDS Models and Supported Capabilities 594
145 SUMMACY ..o ass s esse e 598

14

Other Entities 599

15.1 Solution Variants and ABAP Language Versions ... 600
15.2 Stable CDS EXTENSIONScoorieriomrrcriinecermmieessessieecseessescseessennns 602
15.2.1 Stable Extensions of CDS VIEWScccveureeeeneeenereenneeesnneeneees 603

15.2.2 Example: Stable Extension POINtsrnnccnecenncns 604

15.2.3 Example: Extension with Custom Fieldsccocconvcrneceneces 609

15.2.4 CDS Extensions in Product Variants ... 613

15.3 Extensions of Transactional Models ... 615
153.1 Add Fieldsto an Entity ..., 615

15.3.2 Add Application LOGICcccvuucruecrumerrnecrineerieerineceenesessnecsinecns 618

15.3.3 Extend Action and Function Parameters and Results 620

15.3.4 EXteNnd BENAVIOL ..ttt seseceseceseeseenes 620

15.3.5 Add Composition Child Entity 622

154 SUMMATY ..ot esese s esee st sasessanes 628
16 Automated Testing 631
16.1 Test Logic of Data Selectionscoommcccnmcccerconcscernnne 631
16.1.1 Fundamentals of the Test Double Framework 632

16.1.2 Test Sample OVEIVIEWrrieenieiencesesissseseananns 633

16.1.3 Test Implementations of CDS VIEWScceomeennecrnecenenes 636

16.1.4 Test ABAP Logic with SQL Accesses to CDS Views 650

16.1.5 Test Code Generation Functions 653

16.2 Test Logic of Transactional Applicationsccoovcrncrcceennnn. 658
16.2.1 Test Behavior Handler ..., .. 658

16.2.2 Test Events and Event Payloadscoecenneceneceneces 661

16.2.3 Test Event Handler ... nenenececscenceneceeceinenes 667

16.2.4 Testsvia EMLInterface ..., 669

16.3 SUMMATY ..o ssae s esee s sasessanes 670
17 Troubleshooting 671
17.1 Performance ASPECLS ... rcermomecemmineessssieseseessieessesseonns 671
17.1.1 Static View Complexity ..., 672

15

Contents

17.1.2 Calculated Fields 675
17.1.3 CDS Models in ABAP Code 678
17.1.4 Performance Tests 678
17.1.5 Analysis Tools 679
17.2 Pitfalls 687
17.21 Null Values 688
17.2.2 Data Types 691
17.2.3 Decimal Shift Logic for Amounts 696
17.3 Troubleshoot Implementations of CDS Models 698
17.3.1 Syntax Checks 698
17.3.2 Consistency Checks of Frameworks 702
17.4 Troubleshoot Activation Issues 706
17.41 Online Activation 707
17.42 Mass Checks and Repairs 708
17.5 Examine ABAP RESTful Application Programming Model
Applications 711
17.6 Summary 714
Appendices 715
A CDS Annotation Reference 717
Migration to the ABAP RESTful Application Programming
Model 729
C The Authors 737
Index 739

Service Pages
Legal Notes

16

Index

A\\[@TESEING oooormerrrrrerecrerrriirrseceenns 639, 657
?= operator 193
@AbapCatalog.compiler.

compareFilterconnecnns 717

@AbapCatalog.enhancement ... 605,717
@AbapCatalog.entityBuffer.
definitionAllowedcccoeeeees 104,717
@AbapCatalog.extensibility ... 607,717
@AbapCatalog.extensibility.

datasSources 608
@AbapCatalog.extensibility.

extensible 221
@AbapCatalog.preserveKey ... 717
@AbapCatalog.

sqlViewAppendNameccccooecceuees 717
@AbapCatalog.sqlViewName 717
@AbapCatalog.typeSpec.

conversionEXit ... 145,717
@AccessControl.auditing.

specification 191
@AccessControl.auditing.type ... 191
@AccessControl.authorization-

Check ... 60, 170, 200, 702-704, 718
@AccessControl.privileged-

AssSOCIatioNnS ..o 205,718
@Aggregation 259
@Aggregation.default ... 311,718
@Aggregation.default\

#FORMULA 342
@Analytics.dataCategory ... 195, 311,

314,320,718

#CUBE 306

@Analytics.internalName ccooecccee.. 295,
359,719

@Analytics.query ... 194, 549, 704,
705,719

@Analytics.technicalName 307,327,

328,358,719
@AnalyticsDetails.

exceptionAggregationSteps ... 346, 719
@AnalyticsDetails.query.axis ... 331,719
@AnalyticsDetails.query.

display 331,719
@AnalyticsDetails.query.
formula 340,719

@AnalyticsDetails.query.hidden 719
@AnalyticsDetails.query.
sortDirection ..o 331,719

@AnalyticsDetails.query.

totals 331,719
@APILelement.releaseState 593,719
@APLelement.successor ... 594,719

@ClientHandling.algorithm ... 720

@ClientHandling.type ... 720
@CompatibilityContract
@Consumption.dbHints
@Consumption.defaultValue 336,720
@Consumption.derivationco.... 337,
596, 720
@Consumption.deriviation.
lookupEntity 195
@Consumption filter 336, 549, 720
@Consumption.hidden ... 144, 335,
575,720
@Consumption.ranked ... 577
@Consumption.valueHelp 552
@Consumption.valueHelpDefault.
binding.usage ... 553,566
@Consumption. valueHelpDefault.
display 720
@Consumption.valueHelpDefault.
display ..o 553,563, 566
@Consumption.valueHelp-
Definitioncceeee. 195, 216, 336, 549,
552,556
@Consumption.valueHelpDefinition.
additionalBinding ... 555,557
@Consumption.valueHelpDefinition.
additionalBinding.element 721

@Consumption.valueHelpDefinition.
additionalBinding.localElement ...
@Consumption.valueHelpDefinition.
additionalBinding.usage 564
@Consumption.valueHelpDefinition.
assSOCIatioN ..o 555,720
@Consumption.valueHelpDefinition.
entity
@Consumption.valueHelpDefinition.
entity.element ... 555,558, 721
@Consumption.valueHelpDefinition.
entity.name ... 555,721
@Consumption valueHelpDefault.
binding 720
@DefaultAggregation 259,311,
356,721
@ENAUSEITEXE .ooooeeeeeeiesccecceeererereennns 51,145

721

556

739

Index

@EndUserText.headingccccoeeeeee. 721
@EndUserText label ... 34,60, 67,76,149,
151,157,232, 253, 254, 699, 721

@EndUserText.quickInfo 255,721
@EnterpriseSearch.enabled 579,
581,721

@EnterpriseSearch.freeStyleField 579,
580, 721

@EnterpriseSearch.model 578,

580,721
@EnterpriseSearch.modelName 722
@EnterpriseSearch.

modelNamePluralcocomemreenne. 722
@EnterpriseSearch.navigation 722
@EnterpriseSearch.

responseFieldecennn. 579,722
@EnterpriseSearch.

responseltemkKey ..., 722
@EnterpriseSearch.

resultltemKeycrrveeneee. 579,580
@EnterpriseSearch.title ... 722
@Environment.systemField 95, 144,

335,336,722
@Hierarchy.parentChild 518,722
@Hierarchy.parentChild.directory ... 196
@MappingRole ... 166, 722
@Metadata.allowExtensions 156,

157,722
@Metadata.

ignorePropagatedAnnotations 73,

148,152,155, 159, 722
@Metadata.layer ... 156,157,723
@MetadataExtension.

usageAllowedcccommececrneccenens 158,723

@ObjectModel.alternativeKey ... 138,139
@ObjectModel.alternativeKey.

element 139,723
@ObjectModel.alternativeKey.

id 139,723
@ObjectModel.alternativeKey.

uniqueness 723
@ObjectModel.association.type ... 270
@ObjectModel.collectiveValueHelp.

for.element 556

@ObjectModel.compositionRoot 271
@ObjectModel.dataCategory ... 140,196,
316,551,723

#HIERARCHY ..o 518

#TEXT 269
@ObjectModel filter.enabled 723
@ObjectModel filter.

transformedBy ... 723

740

@ObjectModel.foreignKey.

association ... 264,549,723
@ObjectModel hierarchy.

ASSOCIAtION e 518,723
@ObjectModellifecycle.enqueue.

expirationInterval ... 723

@ObjectModel.modelingPattern 102,
103,595,723

@ObjectModel.representativeKey 266,
269, 314, 316,551, 724

@ObjectModel.sapObjectNodeType.
name 724

@ObjectModel.
sapObjectNodeTypeReference ... 146,
280,724

@ObjectModel.semanticKey 581
@ObjectModel.sort.enabled 724
@ObjectModel.sort.transformedBy ... 724
@ObjectModel.supported-

Capabilities 291,551,594, 673,724
@ObjectModel.textowmererrecrnnes 315
@ObjectModel.text.association 267,

316,724
@ObjectModel.text.element 267,

318,724
@ObjectModel.usageTypecooeeweee. 291
@ObjectModel.usageType.

dataClass ... 145,291, 724
@ObjectModel.usageType.

serviceQuality ... 144,291, 724
@ObjectModel.usageType.

serviceQUAlity... ooconneceennecerinneens 672
@ObjectModel.usageType.

sizeCategory ... 144,291,724
@ObjectModel.virtualElement 724
@ObjectModel.

virtualElementCalculatedBy 473,

474,724
@OData.entityType.name 143, 220,

221,724
@OData.publishccoovvcveeeneccns 212,724
@Scope 134,724
@Search 570
@Search.defaultSearchElement 571,

581, 583,725
@Search.fuzzinessThreshold 571,

574,725
@Search.ranking

@Search.searchable
@Semantics.amount

Index

@Semantics.amount.
currencyCode 96,97, 101, 339,
697,725
@Semantics.booleanIndicator 693, 725
@Semantics.businessDate.from 273,725
@Semantics.businessDate.to 273,725
@Semantics.currencyCode ... 257,725
@Semantics.dateTimeccooeeeeernee 725
@Semantics.fiscal
@Semantics.fiscal.dayOfYear ..
@Semantics.fiscal.period
@Semantics.fiscal.quarter
@Semantics.fiscal. week
@Semantics.fiscal.year
@Semantics.fiscal.yearPeriod .
@Semantics.fiscal.yearQuarter
@Semantics.fiscal.yearVariant 726
@Semantics.fiscal.yearWeek 726
@Semantics.language
@Semantics.quantity
@Semantics.quantity.
unitOfMeasure 96,97,100, 134, 135,
142,149, 151,154,342
@Semantics.systemDate ...
@Semantics.systemDate.
createdAt ... 134,135,139, 141, 142,
149,151,726
@Semantics.systemDate.

.. 260

lastChangedAtcnnccecnnecnns 726
@Semantics.systemDateTime 260
@Semantics.systemDateTime.

createdAt 726
@Semantics.systemDateTime.

lastChangedAtcmnececnnecens 726
@Semantics.systemTime ... 260
@Semantics.systemTime.

createdAt 726
@Semantics.systemTime.

lastChangedAtciinrrrvennnnn. 726
@SemanticS.teXtooeveeeeienns 261,726
@Semantics.unitOfMeasure 257,726
@Semantics.user.createdBy 726
@Semantics.user.JastChangedBy ... 726
@Semantics.uuidcocoovevineneee. 693,727
@Ulfacet 727
@ULLieldGIoupcocmcemneeereerineceineens 727
@ULheaderInfo ..o 727
@UlLhidden 727
@UlLidentification ... 500, 727
@ULlineltem 232,500, 556, 727
@Ullineltem.importance 157,727

@UlselectionField 232,500, 556, 727

@ULtextArrangement 331,727
@VDM.lifecycle.contract.type ... 284,285,
591, 727

@VDM.llifecycle.status 593,594, 728
@VDM.lifecycle.successor ... 593,

594,728
@VDM.PIIVateccoomevevenseieenns 284,728
@VDM .private\

true 591
@VDM.USAGETYPE .ovveercrrerrrverrnres 728
@VDM.VieWEXtension ... 728
@VDM.viewExtension\

true 613
@VDM.viewType ... 280, 281, 283,728
@VDM.viewType\

#EXTENSION 607
#AVG 259, 344
#COUNT 344
#DEPRECATED ... 593, 594
#FIRST 344
#LAST 345
#MAX 311, 344
#MIN 311, 344
#NONE 311
#NOP 311
#PUBLIC_LOCAL_API ..o 591
#SAP_INTERNAL API ... 591
#STD 344
#SUM 311, 344
Snode 531
Sparameters 92
Sprojection 89
$session.clientoveeennee. 70,71, 238
Ssession.system_date ... 70,94
$session.system_language ... 70
SSESSIONLUSET ..o 70,189
Ssession.user date ... 70
$session.user_timezone ... 70
A
A2A communication ... 361
ABAP application

infrastructure ... 253,277
ABAP application server 364, 365
ABAP Cloud ..o 601, 613,729
ABAP Cloud Development ccoec.... 617
ABAP Cross traceceveeveenne 671,711
ABAP Data Dictionary 262,409,410

domain 145

structure 409

741

Index

ABAP Development Tools (ADT) 19,23,
28,31, 162, 365, 632, 698

editor 132
environment 653
test classes 653
ABAP documentation ... 50
ABAP for Cloud Development 601
ABAP host variablecccccoeeiercererieennnns 45
ABAP in Eclipse ...ccoomeceronnccerrnnccenns 19, 365

ABAP infrastructure ... 396,401, 408,428,
432,437,443, 452, 466,491, 499

ABAP languageoceneceeeneenens

ABAP language version
2

5
ABAP-Managed Database Procedures
(AMDP) 235
class method 238
procedure 239
ABAP platform 17,365, 461,472,492
ABAP programming model
fOr SAP FiOIi oo 364, 729
ABAP RESTful application programming
model ... 17,57,102, 211, 361, 364,
385,447,662,671,711,729
runtime component 497
ABAP session 450

ABAP SQL ... 23,24, 36,44, 58,71, 95, 365,
397,650
interface ... 144,166, 194, 633, 642, 678

new syntax 45
test double framework 633, 650
trace 680, 686
ABAP system fieldcoommrcinnecceinnens 95
ABAP unit testooveeveeeeeeeens 633,638
ABAP Workbenchcccooveveeunne. 28,30, 31
Access condition ... 163,173,186
default true 183
literal values 192

Access control 71,113,161, 172, 290,
370, 397,471

analytical QUeTIES ... 194
aspect 190
block standard data selection 203
creation template ... 162
decoupling from input ... 205
field level 199
fields 199
iImplementation ... 171
inheritance

language

mode of ACtioN —........cccooevvvveiiirnnen, 166

742

Access control (Cont.)

Path eXpressionecnneeeeenn. 171
redefine 200
SAP-delivered models 200
testing 207
unique key 168
without authorization objects 189
Access rule 163
Action ... 361, 363, 372, 397,407, 491, 620
parameters 409
Activation log 701
Activation problemcccoccconecens 40,111
Active and inactive CDS models 40
Aggregation
hierarchical
level
type
All quantifier
ALV Tree Control ...

Amount calculation
Amount field ...
ANALYTICAL CUBE
ANALYTICAL_DIMENSION ... 596
ANALYTICAL_PARENT CHILD
HIERARCHY _NODE ... 597
ANALYTICAL PROVIDER ... 596
ANALYTICAL QUERY ... 103,194, 215,
230, 549, 596
Analytical application ... 303
Analytical cube
Analytical engine ...
Analytical formula
Analytical measure ..., 259
Analytic dimension view ... 314
Analytic engine 194, 253,357,515
Analytic interfacenccecnnecnns
Analytic modelccovevvonecrvenens
Analytic processor ...
Analytic query
228,325
calculate measures ...
define
define variables
exception aggregation
extension
layout
restricted measures
select from dimension views
Analytics
data category
modeling
tools

Index

Annotated formula ... 341

Annotate view ... 55,143,156

Annotation .. 54,131, 463,499
ACLIVE oo, 50, 132,149, 151, 155,

157,158

aggregation behavior ... 258
array 138,148
array of 138
artifacts 143
AULNOYIZALION ..o

composition relations ...
consistency aspects .
default value 141

definitionccceeeeeveeriene. 132,587
document 144
domain ..., 132,134,136, 158
effect 143
enum 140
errors 705
explicit 254
field 257
fiscal year 262
foreign key 264
fully qualified name 136
grouping 137
main 136
name 136
propagation 367
propagation logic ... 51,140,142, 147,
254,312
root 136
runtime environment ... 144
scope 142
search 574
stability 587
SUbanNotationcccecnneeeennn. 136
system times 260
text and language ... 261
text relations 267
type 139
undefined 699
value 136,139
annotation
definition 587
Annotation-based hierarchy 517
API state 588, 590
Application architecture . 249
Application data modeling ... e 249
Application infrastructure 249

Application performance e 671
testing 678

Application programming

interface (API) ..ocoomvvoervvorerreens 227,276
state 290
as 35
AS PARENT CHILD HIERARCHY
keyword 530
Aspect 190
self-defined 191
aspect pfcg_auth 207
aspect user 189
Assert statement ... 642
Association
annotations 142
cardinality 109
composition 111
default filternccennn. 126,127
define 77,108
exposure 111
in ABAP code 129
in CDS view 117
name 108, 288
projected 117
redirected to composition child ... 214

redirected to parent
remove
stability
target
tO PATENT o
Audit
Augmentation
Authority check
Authorization ...
CONLTOL s
database [eVelcconeceeenn.
extension fields ...,
field
map fields
master
(012 1< ol SO 163, 397, 401
protection 170
role 167
Authorization check 170, 195, 207,
397,401
change 203
documentationcccineenee, 171
Authorization context
own
privileged
Automated testing
Average calculation
avg

743

Index

B

Basic interface views 280, 288, 367
redundancies 281

Behavior definition 361,372, 658

Buffer
layer core 105
layer cuStomerceeeccnnecreeenne 106
type none 106
type single 105

Business add-in (BAdI)ccco..... 618, 620,
621,711

Business logic ... 361-363, 365,366,372,
429, 467

Business object 270,362,366, 372,
467,492
node 270
Business Object Processing Framework
[1210) 233} TR 390, 428, 729
BUSINESs Process ecn 362,467
Business services
benefits 211
INA UI SETVICES oo 228
OData Ul services 222
OData Web API service ... 227
testing 231
Bypass when statement ..o 178
C
Calculated field
value 675
Camel case notation ... 35,237
Cardinality 25,109,114,122,124,
125,179
exact one 84
foreign key association ... 264
one to many 84
to exact one 84
to many 84
to one 84
Case statementcocceeveveeveeneerennne 68, 691
Cast function 62,76,148,151, 254
nest 63
Cast operation ... 155,159
CDS_CLIENT .o 71,237,289
CDS_MODELING_ASSOCIATION _
TARGET 595
CDS_MODELING DATA SOURCE 595
CDS abstract entity 409, 411, 464
CDS access controloeeeeene. 636, 678
testing 643
744

CDS €ditOr ..oveeevereeecreererereies 34, 36, 236
Auto-COMPIELION ... 40
code completion ... 135,700

CDS entity
abstract entity 55
custom entity 55
hierarchy 55
Projection VIEWcnncceneninnns 54
SEMANLIC NAMES ...ouueeeerereeereererecrnnne 219
specialized 219
table function 55
transient view 54
type 53,54
view entity 54,55

CDS extension 602, 604,612,614

CDS extension include 604, 606,
610,614

CDS extension include view 608

CDS hierarchy 526
entity 57

CDS metadata extension ... 54,55

CDS model ..o 23, 54,249
ABAP 678
activate 35
activation l0giccomeceeenneceenes 708
create
denormalize
error message
inconsistencies
inheritance
key
names
parameters
propogation l0gic ecweunnne. 155
readability 155
reuse 672
SAP-delivered 158
SQL-friendly 672
static complexityoeeeen. 672
template 33
transparency 62
troubleshoot 698
versions 39

CDS role 162-164
can’t be fulfilled .. 203
direct reference .. 189
inheritance 184
mapping role 166
multiple roles 171
optional elements .. 186
path expressions .. 179
redefinition 201

Index

CDS simple type 62
CDS table function .. 57,72, 235,363,677
associations and annotations 238
client-dependentmcerconecen. 237
components 237
implement 236
test 241
CDS test double framework 633, 639
CDS view 23,363
activation 370
aggregating 87
client field 61
create 31, 40,45
definition 41
display with extensions ... 613
edit 37
explicit joins 122
extension 246
fields 61
hierarchy 40
internal logic 107
model 60
Path eXpresSionsccecnseeeenens 120
projection 212
SEATCH ..o
StACR oo 46,47, 148,159, 638
static complexity ...,
syntax
test
Vi
vz

with inner join
Change document object ..
Change documents
Characteristic
Check
Check table
Child node
CHILD TO PARENT ASSOCIATION 530
CL_ABAP BEHV TEST

ENVIRONMENT ..o
CL_ABAP_UNIT ASSERT ..
CL_CDS_TEST DATA ..
CL_CDS_TEST _ENVIRONMENT ...
CL_RAP EVENT TEST

ENVIRONMENT ..o 662
Class method 238
Class setup methodocmecerennccens 639
Class teardown methodcccocoevveeeee 643
Client 61,70,71

field 72

handling 71,289

Client-dependent datacoceeennees 289
client specified 71
Cloud developmentcooovvuueeeee. 592,601
coalesce 691
Code 287
COMPIELION oo 135,700
collapsed 547
Collective value helpemercercnneces 556
combination mode and statement ... 202
combination mode or statement 201
Comment
COMMIT ENTITIES ...
IN SIMULATION MODE
COMMIT WORK cccvvvvirnnrvrrinnnens
Compatible change ...
Complexity Metrics ...
Composite interface view 281,282
Composition 623
association 270
hierarchy 112
relationship 362
restrictions 114
COMPOSItiON...0f ..o 112
concat 60
Consistency check ..., 306
Consistency condition ... 324
Consumption VIEWccoveeeeeeeneceinenns
compatabilityececoneceenon.

not released
Contains function ...
Content ID references ...

Conversion exit 62, 145, 694, 695

Conversion function 89,99, 636, 646
analytical QUeries ..., 101
error handlingcececoneceennn. 101
parameters 100
performance aspects ... 89

Core data services (CDS) ..cocccoervvennee 17,363
abstract entity ... 57,409
associations 27
CUSEOM ENLILIES oo 57
data access in ABAP ... 44
element 107
embed conversion functions 99
hierarchies 541
implementation errors ... 687
modeling

PrOJECtiON VIEWcceeueerenecveervneeeens
repair tool
service-specific views .
session variable ...,

supported capabilities ... 594

745

Index

Core data services (CDS) (Cont.)

syntax 58
LYPE CONVETSIONS ..ccoceuuereecrrnerersereienes 63
version 2 366
Cost center 522
hierarchy 519
count(*) 60, 88
COUNT different valuescccccooeueee. 258
count distinctcoceeeeeeeeveeennne 88,259, 690
COUNLET oo 287,345, 355
Create, read, update, delete (CRUD) ... 729
operations ... 361, 363,372,376,497
Create object 667
Create statement 90,121, 124,125
Creation dialogcmcceonnecens 216,222
Creation wizard 28
Cross-client data accessooeeveervees 71
Cube 312
Cube VIEW ..o 303, 305, 311
analytic 306
define 305
cuky 96
curr 96, 97, 696
fields 97

curr_to_decfloat_amount ... 97,342, 355
Currency conversion ... 99,100,351, 353,
355,635, 647

Currency field 257
Currency shift 97
Custom entities 445
Customer NamMespPacCeceecerereenns 26
Custom field 246
Cycle 540
D
DATA STRUCTURE ... 595
Database procedurecrnecnens 240
Database table
create 28
editor 29
simplify 31
Database view 36
implicit join 121
Data control language (DCL)ccoouueeeee 162
Data definition language (DDL) 53
Data definition language
source (DDLS) 32, 33, 36, 54, 60
Data element 62
field label 255
medium text 256

746

Data model
define 24
implement 26
Data preview 42
Data record 42
duplicate 110
missing 110
Data redundancy ... 179
Data selection 53
privilegedonceonecinnnn. 193,204
DCLS 162,171,191
dd_cds_calculated unit ... 342
DDLA 132
DDLX 54,57
Decimal shift 97
logic 696
DECOMMISSIONED ... 591
Decommissioning ... 592,594
Default filter 126,127
define abstract entity ... 55

define accesspolicy
define custom entity
define hierarchy entity
define statement
define table function
define type
define view
BNLILY e
projection entitycccnnes
transient entityonceenn.
Delegation approach .

Denormalization ...
Denormalized fields ...,
Dependency Analyzer
DEPRECATEDcovvvvuummreccrvvviinnsseeens
Deprecation ...
period 591
propagation 593
SAP-internal 593
types 592
Derivation 337
DERIVATION_FUNCTIONcccooouumne. 596
Descendants
Design phase 24

Determination 383,428,432,445,452,
454,618

exXecution timeseveereeeernnnn. 429
Determine action 429, 436,452,619
Developer extensibility 601, 604,

610,613
Dimension ..., 107, 308, 311

analytic 314

Index

Dimension (Cont.)
consistency
field
multiple key fields
replace
view

Directory..filter by ...

Display attribute

Display authorization ..

Display currency

Distinct statement ... 74
Draft 361, 625
Draft concept 449
Draft data 603
Draft lifecycle handlerconcees 453

Draft orchestration ..
Draft query view

exceptionAggregationBehavior 344
exceptionAggregationSteps 347
Exchange rate typencenes 351
EXClusive 10CK e 362,372
expanded 547
extend abstract entity ...t 55
extend custom entity ...t 55
Extend View ... 55,57,142, 200
entity 55,57
Extension 599
SAP standard fields ... 608
Extension association 246, 604, 607,
608, 614
Extension category ... 605
Extension field
suffix 605
Extension include ... 604

Draft table Extension include view 111, 203, 293
DrillState Extension object 602
DRTY Extension of software ... 602
Duplicate record Extension point ... 602
Duration 287 persistence 603
Dynamic variable ... 336 stable 604, 614
EXTRACTION_DATA SOURCE ... 596
E
F
Element annotations 311
Embedded analytics . 304 F2help 50, 64, 98
Enqueue function modules 395 Factory action 418
Enqueue object 361,437,450 Factory calendar ... 244
Enterprise search 578-580 Fact view 320
adapt models Feature control ... 438,621
model 550 dynamic ... 361, 385,427,437
Entity buffer definition 55,58, 104 static 385
Entity Data Model (EDM)cccoovvveecceccenns 691 Field
Entity key 273 abbreviation 286
Entity Manipulation ANNOLALION ..o, 257,294
Language (EML) 385,401, 405,410, control 620
417,437,458, 480, 483, 488, 492, 493, denormalizedeeeeeceeeeeeerennnn, 488
497,615, 625, 667, 670, 729 length extension ... 588
Entity relationship model (ERM) ... 27,41 variable 336
Entity view 263 Field label 253
Enumeration value ... 140 determine 254
ETag i 447,453,484, 624 length 255,256
Event ... 361,492,510,621,661 Filter criteriaeveevennnee 675,677
Event binding 512 Fiscal year 262
Event handler Foreign key ..., 262,263
Event payload table 263
Except element 80 view 263
Exception aggregation 344,349,355 Foreign key association 110,264, 266,
aggregation behavior ... 344 314,317
steps 346 define 265
747

Index

Foreign key association (Cont.)

use 267
Formula in QUErYccmcrrcnnecnnns 340
for testing 640
Free-text search ... 549,570,571
From statementc.cncnnnenne 123
Full access rule 202

Function 361,363, 372,397,421, 620
CUTTEeNCY CONVEISION ..ccveeeeresnccn,
JItD_t0_deC ..
UNIE_CONVETSION ..o

Fundamental data model

Fuzziness 571
Fuzzy search 550
G

get_nuUMeric_value ... 97

Globally unique identifier (GUID) 390,
432

Group by statementccc....... 59, 87-89

H

Handler 658

Helper field 575

Hierarchy ... 515, 596, 597
ABAP SQL 541
aggregation 543
association 518
AETIDULES e 531, 532
base entity 518
cache 541
create 40
CYCle e 516, 533,539
data source 530
define 529
depth 541
descendants 542
determine 522
directory ... 517,521, 522,524, 541
error source 523
generate SPANtree ... 541
load 541
mixed 523
multiple parent nodes 537
navigation functions ... 541, 542
node type 541
node view 518
ODAtQ SETVICES ..o 543
ordinal number ... 533,538
orphaned NOdecceconeceennnn. 536

748

Hierarchy (Cont.)
parameters 541
relational data model 517
strict 516
structure 518
syntax limitations ... 530
test 524
time-dependent ... 541
view 518
VISUQLIZALIONS oo 533

HIERARCHY DESCENDANTS ... 542

hierarchy is_cycle ...
hierarchy is orphan
hierarchy level

hierarchy parent rank ... 533
hierarchy rank ... 533,538
hierarchy tree size ... 533
Hierarchy engine 517,531, 533,541
cycle 540
Hierarchy nodecccconevecnnecnenen. 516,522
level 517
HierarchyNodesconcriennees 546
HierarchyQualifier ... 546
HTTP 363,383
|
I CalendarDate 333
Identifier field 286

IF_ABAP_BEHAVIOR_TESTDOUBLE ... 667
IF_CDS_ACCESS_CONTROL DOUBLE->

DISABLE_ACCESS_CONTROL 645
IF_CDS_ACCESS_CONTROL DOUBLE-

>ENABLE_ACCESS_CONTROL ... 644
IF_CDS_TEST ENVIRONMENT ... 659
IF_CDS_TEST ENVIRONMENT->

CLEAR _DOUBLES ... 640
IF_CDS_TEST ENVIRONMENT->

DESTROY 643
ina 230
Inconsistency 152

remove 153

technical 154
Indicator 287
indicators null structurecccoueeeeee. 688
InfoObject name cc.cooeeveervecvennne 322,358

local 295
Information Access (INA) ..cooovvvcveervveennns 358

protocol 358
Information Access (InA) Ul

SEIVICE oo 218,222,228

Index

Infrastructure Limit statementevinereviienenes 684
analytics Localized ..o 214,216, 269, 331
transactional . elements 472

Inheritance mechanism ... 182 Local naming 358
side effects 182 Lock 624

Instance authorizationvvvvuueeee. 161 node level 397

Integration test ... 207,638,670 Lock object 393

Interface behavior definition 361,478 Logical unit of work (LUW) 447,495

Interface view 282

Intersect element ... 80 M

is initial 695

is not null 650,690 Machine learning ... 245

isnull 690 MANAGED ... 618, 621, 622

Manual test 207

J Mapping 620

MAX 88, 259

Join 47,81 Maximum 258
cardinality 82,84 Measure 311, 346
cross 82 analytic 306
NN oo 82,123,124, 169 calculate 338
left outer ... 59,81, 84, 85,123, 650, 689 restricted 342
multiple data sources. ... 86 Memory overflow ... 89
performance aspects ... 81 Metadata 143,252
right outer 81 Metadata extension 57,131, 155,

500, 622
K create 156
layer assignmentcwconecveennn. 157

Key s 35,50, 60, 61,72 names 156
alternative 138 permitted annotations ... 158
definitions 79 Metainformationeeeeeeee 249
representative.ccvonnecens 291 MIN 88, 259

Key field 61 Minimum 258
representative ... 314,316 M-Nrelationship ... 114

Key performance indicator (KPI) 304 Model CONSIStENCY ...covveerecrveererereenne 322

Key user 304,600 Modeling errors

Key user application . . 592,600,614 Modeling pattern .

Key user extensibility . Modification

MODIFY ENTITY

L Multiple parents

Label text 62 N

LANGUAGE_DEPENDENT TEXT ... 595

Leading model 277 Naming colliSionscccoeeeemmrrrrrrrrcvnnnns 612

leaf 547 Naming rules 219

Leaf of a hierarchy ... 516 Node
node 517 business object ..., 270

Leveled hierarchy ... 516 distance from root ... 517

Levels 546 object 270

Lifecycle .. 585, 588, 590 orphanedcounecvennnn. 533,536
periods 591 type 523
stability contract CO ... 602 view 520

LimitedDescendantCount 547 node_id 533

749

Index

NodeProperty 546 Open dialog bOXcccmmeeveervcvreeercrenennee 298
NONE 259 Operation 658
Non-null preserving expression 68 interaction phase ... 493
NOT_RELEASED ... 590 save phase 494
NOT _TO_BE_RELEASED ... 590 Optimistic concurrency control 447
NOT TO _BE RELEASED STABLE ... 590 Optional elementceoncceunnne. 186
Null preserving expression 691 Orphaned 533
Null value 68, 84, 86,101, 140,146, orphans 536
148,151, 193, 636, 649, 650, 638, 690 OUTPUT EMAIL DATA
annotating 140 PROVIDER 597
handling 85 OUTPUT FORM_DATA
Numberingonrrcvvemininnnns 361, 372 PROVIDER 597
early 387 OUTPUT_PARAMETER DETERMINA-
external 387,401 TION_DATA_SOURCEccccoummnnuues 597
internal 388 Output node ... 533,538,539
late 388
Number rangeccceceeeenn. 388,390,495 P
object 391
Parameter ... 70,91,178, 332
(0] association definitions ce.. 94
names 92
Object 270 variable 336
model 366 PARENT CHILD HIERARCHY
node 270 NODE_PROVIDER .
Object type PARENT ID 533
code 278 Parent association 529, 530
DDLX 155 Parent-child hierarchy 516,519
STOB 61 Parentnode ... 270,519
OData 17,358,364, 365,377,383,447, multiple 537
449,473, 480, 484, 492, 493, 497-499 Parent relation 516

ABAP €COAE EXILS ..verreevrrrneccerrrecerrenne 676
publication 225
SADL-based 676
ur 499
Ul definition 231
4 497
V4 497
version 224
Web API 498
OData entity 143
property 220
set 57,62,219
type 143,220
OData navigation property 224,226
OData service 35, 143, 251, 499,
616, 622, 626, 730
hierarchical 544
metadataeeeceeeevneenne. 559, 626
search 570
OLAP processor 357
On condition 41,108,113,118,121,

122,125,127

750

Path expression 44,45,107,108,111,
118,121, 123,129,173, 205

CDS role 179

parameters 94
Performance 58,68, 78,84,89,101,

104,110, 144

aspects 183,193

Optimizationoneeee. 109,122
Performance aspects 168, 180, 671

testing 678
Period From...TOcoooveererreerereereeeaee 541
Persisted field valueccooovereerreennnne. 675

Persistency model
pfcg _mapping

Placeholder
Pointintime ...
Precheck
Prediction procedureoomcenne 245
Predictive analytics ... 245
Prefix
C_ 283
p 284

Index

Prefix (Cont.)
R 282
Preserving typecnccecneens 64,128
statement 62
Principle of least privilegeccccccouecen. 161
Privileged access ... 170, 204, 205
Problems tab
Programming model ... 250
Projected associations ... 117
Project Explorer ... 36, 38, 56, 105, 222
Projection 467
field 89
VIEW oo 211,212, 269
Projection behavior
actions 486
definitionsceconecercnnecens 361,484
operations 480
precheck 487
Projection object model
define 467
Propagation logiccc..c.. 131, 145, 155
Provider contract 102, 194, 197, 215,
230,471,477, 484, 549
analytical _query 326
Provider implementation 381
Proxy object 632
Q
Quualifier 287
Quualifier of a name
quan
Quantity field ... 257,287
Query
analytic 303, 325
display attribute 195
layout 329, 330
monitor 326
settings 325
variable 195
Quick Assist 657
Quick info 255
Quota rules for extension fields 605
R
Readability
Read access
READ ENTITY 663
Redefinition 200
Redundancy ... 281, 293

Reference data modelcciiinnnnnceens 24
entities 24
IMplementation ... 26

Reference fieldscocveeeevevcnennee 96, 258

Regression 207
issue 631, 638

Regular eXpression ... 244

Release 585

Release CONLIACtccreeeeereeeenencenineees 585

RELEASED 590

RELEASED WITH_FEATURE
TOGGLE 590

Release state ..., 588, 590, 605
deprecated 592

Remote API VIEW ... 283

Replacing conditions withccceee. 188

Replacing root with statement 183

Replacing with statementccccceeeees 188

Report RUTDDLSV2MIGRATION 56

Representational State Transfer
(REST) oo 362, 365, 450

Representation termcceneceenenes 286

Representative key field 266, 269

Responsive design
Restricted reuse view

ROLLBACK WORK ...

Root node 112,114, 270, 279, 516
Root view 112
Runtime behavior ..., 291

Runtime orchestration 361,397,398,
408, 492

S

SAP Analysis for Microsoft Office 328
SAP API Deprecation Policy
SAP BTP, ABAP environment

SAP Business Accelerator Hub 295
SAP Business Technology Platform

(SAP BTP) 600
SAP CDS View Deprecation Policy 590
SAP client 237
SAP Event Mesh ... 362,510,512

SAP FiorIi ... 250, 364, 449, 463, 484,
498, 730
application ... 17,499, 500
architecture 250
SAP Fiori apps reference library 298

SAP Fiori elements 231,252,362,376,
436,450, 458, 499, 503, 510, 566, 628
SAP Gateway 253
SAP Gateway Service Builder 212,735

751

Index

SAP GUI 694
SAPHANA ..o 277,290, 364
CONVersion functions ... 63
database 17
exXecution Planconeceeenn. 672
native functions ... 235
OPLIMIZET ..o, 68,109, 675
SQLScript 57
table function ..., 235, 239
SAP HANA Studio ...coocevveevvereeereerresrs 241
SAP List Viewer (ALV) .o 533
SAP object node type ... 146,275,279
SAP object typeccccereevueenn. 275,277,513
root node 279
SAP S/4HANA ... 17,361, 363, 364
analytics 303
Architectureeceeeveeneane. 250, 253
programming model 249
virtual data model
SAPUI5
Search
check
field
request 573
results 573
scope 575
SEARCHABLE _ENTITY ..o 596
Select distinct statementcccccoeeeeeee. 72
Select from statement ... 34, 59
Select statement 43,58,62,107,166
associations 107
change 44
optimize 675
SAP HANA database 678
Semantic NOAecooeveeeveeereeenns 533,539

Service Adaptation Definition
Language (SADL) ... 35,54,57,143, 205,
212,365,473,549, 557,558,571, 682

Service binding 211, 221,497, 628
name 223
type 223

Service definition 211,216,626
names 218
specialized CDS entities ... 219

Service endpointceeereereeninnens 225

Service infrastructureoeeee.. 253

Service provider contract ... 230

Session variable 69, 70, 237, 238, 243
CDS _CLIENT 289

Setup method 640, 645

SIBLINGS ORDER ooererrrrrrrnrinns 530,531

752

Side effect ... 361, 427,437,458, 491,
494, 619, 620
Simple Object Access Protocol

(SOAP) 492
Simple type s 54,55, 58,66, 253, 463
SITUATION_ANCHORccoomincrirecnnnn. 597
SITUATION_DATACONTEXT 597

SITUATION_TRIGGERcccooumerrrvvrrrn.
Smart control
Smart template
SOURCE
SQL_DATA_SOURCE ...
SQL aggregation function

performance aspects. ...

SQL Console

SQLSCTIPL oooeereecererecreeerecenenne

SQL Web API S€TVICEvveeeeeeeeeeae.

Stability contract 483,585, 586, 588
co .. 586, 588, 599, 602, 604-607, 615
Cl e 281, 290, 483, 586, 588, 608
c2 586, 588
C3 586
4 586

Stable data source ... 608

Stable extension ... 608

Standard aggregation ... 258
behavior
types

Standard query

Standard selection
standard traversal
Star schema

Start authorization ... 161
Start condition 530
START WHERE ... 530,531
statement inheriting conditions

from super 201
Static COMPIeXitycoovveciiinnrrrrieriicinnens 672
Static field control ... 386,479
Static operation control ... 386
STRING_AGG 244
Structured query language (SQL) 23,

53,235,473

CREATE statementccowwcevmeeeeunne. 36

dependency graph

dependency tree

functions

select request
Structure include

610,611, 614
Subannotation 136
Successor 592

Index

Suffix for extension fields 605

SUM 88, 259

Summation 258

Supported capability ... 280, 585, 594

sy-datlo 70

sy-datum 70,94

sy-langu

sy-mandt

Syntax check

System fieldccomcronnecricnneccenns

System load

System time-dependency

System times

sy-uname

sy-zonlo

T

Table buffer 58

Table definition 30

Table function 63

Template CDS modelcoovmeceemecrnncnes 33

Temporal data 272

Test ABAP code 650

Test automation ... 631

Test classes 653
adaptation 657
Quick Assist 657

Test double 659
behavior 667,668
event 662

Test double framework 632, 636, 651
decoupling option 637,638

Test environment
analytic views

Text

ASSOCIALION oo

denormalizationceceennnne 214

relations 267

VIEW .o 269, 315, 316, 320
Time-dependent dataccoueeemecu
TopLevels

Trace Configurations tab
Trace Results tab

Transaction

/IWFND/GW _CLIENTccocemmmevvvrrnne 545
/IWFND/MAINT_SERVICE .

/IWFND/V4_ADMIN .. 226
CDS_REPAIR ..o 708,711
PFCG 164
RSRT 326,328
RSRTS ODP 524

Transaction (Cont.)
RSRTS _ODP_DIS ... 307,318, 321,524

SA38 308
SACMSEL 207
SEI1 28
SE38 308
SEGW 212
STO5 680, 684
TRANSACTIONAL INTERFACE ... 102,
103,197,212,597
TRANSACTIONAL PROVIDER ... 597
TRANSACTIONAL QUERY ... 103,104,
212,597
Transactional applicationcc.... 361
Transactional consistency 362
Transactional object model 361,366,
445, 467
calculated fieldscomeceennnn. 444
data determinations and
A7 115 [o 1 L) 1 -3 O 427
locks 393
restrict 467
Transactional projection
model 361, 445
Transactional view layerc.... 367
Transient projection view 328, 341, 350
Transient Viewcoveeveereeecnenne. 215,228
Transport object 33
Tree table 544
Trigger condition 428,432,436, 459
Troubleshooting 671
activation issues 706
incorrect annotation ... 700
Type category 278
Typed literal 64
Type extension ... 603,611,614
Type-preserving cast ... 65
U
Ul annotationeeveeeeenn. 252,499
Ul orchestration ... 452
Ul service 218,222
Union All logic 78
Union statementcccoocovvveecvrrerennene 73,78
Union views 73
association definitions ... 77
two-layer conStruction ... 76
Unit CONVErsSionoevevveeenenne 99, 100
Unit field 96, 257
Unit test 662, 669

753

Index

Universally unique identifier View (Cont.)

(UUID) 287 I SalesOrder 292
Upgrade issues 602 migration 56
using client 71 outline 48
utcl current 104 project explorer ... 36,217,222,

654, 656
\Vi properties 39
relation explorercnecceeenn. 49
Validation 383,387,428, 433,452, reuse 123

454,618 search 48
VALUE_HELP_PROVIDER ... 596 SQL CONSOIE oo 684, 686
Value help ... 549, 575, 596 static complexity 122,123,179

associated VIEWcccvnccnecvvnnnns 555 structure 292

expose 558 View Browser

integrate 553 View entity

MOAeliNG ... 549,550 virtual 342

nested 552,562 Virtual data model (VDM) 17,26,218,

OData 559 275, 305, 363,578

service binding type ... 558 deprecation 592

UI applications ..., 566 layers 280

usage 559 naming 285
ValueListMappingceeeeeeenne 561 principles 277
ValueListParameterDisplay- structure 280

Only 562, 563 types 284
ValueListParameterInOut ... 562, 563,566 Virtual element 474
ValueListParameterOut ... 564 Virtual field 97
Value view 263 Visibility 602
Variable 332 void 188

analytic 332

derivation 337 W

values 335
VDM view Web API

find 295 OData

private 284 service

reuse 277 Where statement
View Where-used list ...

ABAP CrOSS tTACE ..o 711 With optional elements

active annotations 50,146,152 with parameters

analytic 303,305 with privileged access ...

annotation 288 with user elementcccocooooeeeiuccccceeneees

CDS navigator 49 Wrapper view

data preview ... 685,704 Write access

754

First-hand knowledge.

® Rheinwerk

Publishing

Core Data Services
for ABAP

> Develop data models with ABAP core data services
Create and extend models for analytical and transactional applications

iati i work
Define annotations and associations, implement access controls,

with hierarchies, and more

AT ENT AO) SDIIINADSG eje d Do

Renzo Colle
Ralf Dentzer
Jan Hrastnik

(A Rheir_lwerk
Publishing

Colle, Dentzer, Hrastnik

Core Data Services for ABAP

754 pages | 10/2023 | $89.95 | ISBN 978-1-4932-2376-3
¥ www.sap-press.com/5642

Renzo Colle is currently responsible for the end-to-end programming
model of SAP S/4HANA in the central architecture group. He studied
business mathematics at the Karlsruhe Institute of Technology (https://
www.kit.edu/english) and has worked at SAP for more than 25 yearsin a
wide variety of areas and roles. He started his career at SAP as a develop-
er in strategic customer development. In SAP Business ByDesign, he was
responsible for logistics and lead architect of the SAP ByDesign platform
for cloud applications. As the inventor of the Business Object Process-
ing Framework (BOPF) and lead architect of the ABAP RESTful application programming
model, hehasworkedonmodel-drivensoftwaredevelopmentandtransactionalapplications
for morethan 20 years. Further information about Renzo can be found at https://de.linked-
in.com/in/renzo-colle-30804ba1/de.

Ralf Dentzer has been working for several years in the central archi-
tecture group of the SAP S/4HANA suite with a focus on the use of
core data services (CDS) in SAP S/4HANA. He joined SAP more than 25
years ago. He developed HR applications for SAP R/3, SAP ERP, and SAP
Business ByDesign. After that, his tasks shifted to questions of overall
architecture for new solutions. Ralf studied mathematics and received
his doctorate from the University of Heidelberg. He is married and has
two adult sons.

Jan Hrastnik is a member of the SAP S/4HANA cross architecture team,
where he focuses on the virtual data model (VDM) and the use of CDS
in ABAP applications. He has worked in various SAP development areas
for more than 20 years. At the beginning of his career, he supported
numerous customer projects in the automotive industry. Subsequently,
he worked in the supply chain management development of SAP Busi-
ness ByDesign. Jan’'s work initially focused on developing the master
data required for the production processes before he took on overarch-
ing expert tasks for central architecture topics. He then worked on the SAP SuccessFactors
Employee Central solution and native SAP HANA application development.

We hope you have enjoyed this reading sample. You may recommend or pass it on to
others, but only in its entirety, including all pages. This reading sample and all its parts are
protected by copyright law. All usage and exploitation rights are reserved by the author
and the publisher.

https://www.sap-press.com/core-data-services-for-abap_5642/?utm_source=AWS&utm_medium=referral&utm_campaign=Browse+the+Book&utm_content=2376
https://www.kit.edu/english
https://www.kit.edu/english
https://de.linkedin.com/in/renzo-colle-30804ba1/de
https://de.linkedin.com/in/renzo-colle-30804ba1/de

