® Rheinwerk

First-hand knowledge. Publishing

Reading Sample

Core data services (CDS) play a central role in SAP S/4HANA. With
their technical capabilities for data modeling, they form the basis
of any application. As it is one of the key technologies in the ABAP
RESTful application programming model, we now want to take a
detailed look at CDS and thus lay the foundation for the following
chapters.

“Core Data Services: Data Modeling”

ABAP’ RESTful Applica“t.ion
The Auth
Programming Model 9 € Author

The Comprehensive Guide

Develop ABAP applications for SAP S/4AHANA and SAP BTP
Use key tools and technologies, including core data services Baumbusch, Jager, Lensch

and SAP Flor ABAP RESTful Application Programming Model:

Get step-by-step guidance for modeling data, implementing

behaviors, developing user interfaces, and More The Comprehensive Guide

508 pages, 2023, $89.95
ISBN 978-1-4932-2379-4

Lutz Baumbusch
Matthias Jager

(A Rheinwerk
Michael Lensch Publishing -E WWWwW.sap-press.com/5647

https://www.sap-press.com/abap-restful-application-programming-model_5647/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2379

Chapter 2
Core Data Services: Data Modeling

Core data services (CDS) play a central role in SAP S/4HANA. With their
technical capabilities for data modeling, they form the basis of any appli-
cation. As it is one of the key technologies in the ABAP RESTful application
programming model, we now want to take a detailed look at CDS and thus
lay the foundation for the following chapters.

ABAP core data services (ABAP CDS) have been available since ABAP 7.40
SPO5. They provide you with numerous options when you create applica-
tions. To be able to use them, it’s necessary to work with ABAP develop-
ment tools (ADT) in Eclipse. Editing CDS views using the classic ABAP
Workbench is not supported.

Installing and Configuring ABAP Development Tools
For information on how to install Eclipse and ADT, and how to connect

them to your ABAP backend system, go to https://tools.hana.ondemand.
com/.

In Section 2.1, you'll become familiar with the basic concepts of CDS and
why CDS plays a significant role in development for SAP S/4HANA. Based
on the information in Section 2.2, you'll create your first CDS data model
and gain initial experience with ADT. Section 2.3 will explain how to map
relationships between CDS entities. In Section 2.4, we’ll describe annota-
tions, which are meta-information you can use to enrich your data model.

You can use access controls to restrict access to your CDS data model; this
is described in Section 2.5. In Section 2.6, you'll learn how to enrich CDS
views with additional information without any modification.

You won't always be able to map all requirements standard CDS functional-
ities. Section 2.7 describes how you can still achieve your goals in such a sce-
nario. In Section 2.8, you'll learn about SAP's virtual data model (VDM),
which provides you with another way to access the persisted data of an SAP
S/AHANA system. Finally, in Section 2.9, we’ll introduce some language ele-
ments that you can use when modeling business objects.

2 Core Data Services: Data Modeling

ABAP CDS versus
SAP HANA CDS

Syntax

Significance for
SAP S/4AHANA

Code-to-data
paradigm

2.1 What are Core Data Services?

SAP defines CDS in SAP Help as an “infrastructure that developers can use
to create semantically rich and persistent data models.” The resulting data
models are built on top of existing database tables and are intended to be
easier to understand and utilize. This is achieved by changing the perspec-
tive away from a purely technical view of the database tables to a view of
data oriented toward the business object.

CDS views are used for flexible data retrieval and are the central tool for
data modeling in the ABAP RESTful application programming model. There
are two CDS implementations: ABAP and SAP HANA CDS. While SAP HANA
CDS views are created at the database level, ABAP CDS views are maintained
on the SAP application server or ABAP platform. One of the major advan-
tages of developing ABAP CDS views over native SAP HANA CDS views cre-
ated on the SAP HANA database is the connection to the SAP change and
transport system (CTS). Working on the application server also allows you
to continue working in your familiar ABAP environment while taking
advantage of the capabilities of the SAP HANA database. In the following
sections, we'll only take a look at the concept of ABAP CDS views.

The syntax of CDS is aligned with the SQL standard. CDS is therefore often
referred to as an extension of SQL. In detail, CDS includes the following
domain-specific languages:

® Data definition language (DDL) for data modeling

® Query language (QL) for querying data

m Data control language (DCL) for defining access restrictions

You'll learn how to use these languages in the following sections.

Since CDS plays a central role in SAP S/4HANA, it’s logical that it’s of great
importance for the daily work of SAP S/4AHANA development teams. CDS
plays a crucial role in the implementation of the following basic concepts of
the SAP S/4HANA architecture:

® Code-to-data paradigm
m Virtual data model (VDM)
® Programming models for SAP S/4HANA

The basic idea of the code-to-data paradigm is to move application logic
from the application server to the database (code pushdown, see Figure 2.1).
Calculations should be performed by the database system as much as pos-
sible. The results of these calculations are then delivered to the application
server. This approach reduces the amount of data that must be transferred
from the database to the application server. In addition to the extended

62

2.1 What are Core Data Services?

possibilities of ABAP SQL (formerly Open SQL), which have been available
since ABAP 7.40 SPO5, and the ABAP-managed database procedures
(AMDP), CDS views are excellently suited for implementing the code-to-
data paradigm, for example, by defining calculations or access controls
directly in the data model and thus shifting them to the database level. This
enables you to harness the power of the SAP HANA database and let the
database do the work for you.

Calculations L
Application Layer

Data to Code Code to Data

Database Layer)
Calculations

Figure 2.1 Code-to-Data Paradigm

CDS serve as a tool for data modeling. With the virtual data model (VDM),
SAP provides a data model based on CDS in the standard SAP S/4HANA sys-
tem. VDM was developed by SAP according to extensive, detailed guidelines
and standards regarding hierarchical structure and naming conventions. It
maps the application data of SAP S/4HANA and is used by transactional and
analytical applications and by the APIs provided for SAP S/4HANA. Figure
2.2 shows the hierarchical structure of the VDM using the example of the
SalesOrder business object in ADT’s Dependency Analyzer. This tool is good
for getting an initial overview of a view hierarchy.

{¥(8® A_SalesOrder

¥ | @2 LsalesOrder

~ [§8 SalesDocument ~ @9 E_SalesDocumentBasic

~ [§9 LsalesDocumentBasic ~ (@8 E_SalesDocumentBasic

Figure 2.2 Excerpt from Virtual Data Model: API View of A_SalesOrder in the
Dependency Analyzer of ABAP Development Tools

63

Virtual data model

2 Core Data Services: Data Modeling

CDS as a component
of programming
models

ABAP programming
model for SAP Fiori

ABAP RESTful appli-
cation program-
ming model

The strict adherence to guidelines and standards results in a high degree
of consistency and comprehensibility. Many of the CDS views in SAP
S/AHANA are explicitly enabled for use. For SAP S/4HANA developers, VDM
is another way to obtain data. It can be regarded as an additional data access
layer. In Section 2.8, we’ll go into more detail about the VDM.

The programming models provided by SAP support development teams in
implementing your requirements and making the development process
efficient. Looking at the evolution of ABAP-based programming models
(see Section 1.1.5), the importance of data modeling using CDS becomes
apparent. Classic ABAP development was still based on a data model con-
sisting of ABAP dictionary elements, such as tables, data elements, and
domains. The relationships between the tables were represented by the
definition of foreign keys. Since the introduction of ABAP CDS, on the other
hand, it has been possible to rely on data models based on CDS views, which
define the relationships between the individual CDS views via associations.
These data models are semantically enriched by annotations, which
describe, for example, how a consumer (e.g., a user interface based on SAP
Fiori elements) should interpret the data.

However, classic ABAP applications developed on the basis of such data
models are subject to certain limitations. You can only access the CDS view
in read-only mode, and no transactional processing is possible. For this rea-
son, and also because of the increasing importance of SAP Fiori as an SAP
interface technology, SAP initially developed the ABAP programming
model for SAP Fiori. Here, the transactional behavior is implemented by
annotations that are used to automatically generate a Business Object Pro-
cessing Framework (BOPF) model. The behavior implementation of the
BOPF actions, derivations, and validations are carried out in ABAP.

However, this approach introduces complexity and requires the parallel
use of two modeling frameworks (CDS and BOPF). While type checking is
already performed at design time in the typed CDS framework, errors often
only occur at runtime in the very generic BOPF, which makes troubleshoot-
ing more difficult due to the complexity. The desire to reduce the complex-
ity of the programming model eventually led to the introduction of the
ABAP RESTful application programming model. The ABAP RESTful applica-
tion programming model is also based on a semantic CDS data model. The
transactional logic is expressed by the behavior definition and its imple-
mentation. The entities to be used by the consumer (e.g., an SAP Fiori app)
are defined and published by a business service (see Figure 2.3).

64

2.2 Structure and Syntax of Core Data Services

‘ Service Consumption ‘ Web API

User Interface

SAP Fiori

Business Services

‘ Service Provision ‘ Definition and Binding

(.)
\
A\ /

SAP HANA Database

Figure 2.3 Layers of the ABAP RESTful Application Programming Model

2.2 Structure and Syntax of Core Data Services

In this section, we'll show you how to create your first simple CDS views.
You'll learn how to proceed when developing CDS views, especially how to
use the Eclipse development tool and ADT. You'll also get to know the basic
syntax elements of CDS and some ways to obtain data. Here, we don’t yet
make a concrete reference to the ABAP REST{ul application programming
model. Rather, we intend to lay the foundation to understand the following
chapters. If you already have experience with CDS views, you can skip Chap-
ter 2. In Part II, we show you how you can apply essential CDS concepts in
various scenarios.

The example in this section is based on the ABAP flight reference scenario
provided by SAP. You'll create CDS views that read data from the tables in
this reference scenario, and add simple logic to the CDS views you create.
This way you'll develop an initial, simple CDS data model. In the process,
you’ll also learn about some functions you can use to analyze the created
CDS views.

ABAP Flight Reference Scenario

The ABAP flight reference scenario provides sufficient sample data and
logic to familiarize yourself with the ABAP RESTful application program-
ming model. All information about this reference scenario, especially
about the installation, can be found in a Git repository at http://s-prs.de/
v868501.

65

ABAP flight
reference scenario

[«]

2 Core Data Services: Data Modeling

Basic interface view

Creating a CDS view

The goal of this section is to merge and enrich information from the data-
base table persistence model. Table 2.11ists the database tables of the refer-
ence scenario we use.

/DMO/FLIGHT Flights
/DMO/CARRIER Airlines
/DMO/CONNECTION Flight connections

Table 2.1 Tables Used from the Reference Scenario

As a complementary logic, for example, a simple statement and a currency
conversion are to be performed.

2.2.1 Creating a Basic Interface View

The main task of a basic interface view is to read data from database tables
and to convert the technical names of the database fields into more mean-
ingful names (for this and other CDS view types, Section 2.8).

You can create a basic interface view as the first CDS view by following these

steps:

1. Start Eclipse and open the ABAP perspective via the menu path Window -
Perspective - Open Perspective - Other...

2. Inthe popup window, select the ABAP perspective (see Figure 2.4).

‘S Open Perspective O x

VL npap

e ABAP Connectivity & Integration
P ABAP Profiling

45 Debug

o Git

&JJava {default)
E;JJava Browsing
TgJJa\.-'a Type Hierarchy
L("_-IResource

E0Team Synchranizing
2 ML

coce

Figure 2.4 Selecting the ABAP Perspective

3. Select File - New « Other in the main menu.

66

2.2 Structure and Syntax of Core Data Services

4. In the next popup window, select the entry ABAP - Core Data Services -
Data Definition and confirm the selection by clicking the Next button
(see Figure 2.5).

= Select a wizard O *

Select a wizard [

Create a Data Definition

Wizards:
| type filter text |

= Business Services ~
[= Cloud Communication Managerment
= Cloud ldentity and Access Management
= Connectivity
w [Core Data Services
Access Control
Annotation Definition
Data Definition
Metadata Extension

Variant
= Dictionary
[= Enterprise Services W
@ < Back Finish Cancel

Figure 2.5 Selecting the Type of Development Object to Create

5. This calls a dialog to create a CDS view (see Figure 2.6). Enter the ABAP
project in the Project field and your development package in the Package
field. You should enter the name of the CDS transport object (data defini-
tion language source [DDLS] type) in the Name field (e.g., “ZI_Flight”) and
a description in the Description field (e.g., “Flight”). Then, confirm your
input by clicking the Next button.

= Mew Data Definition O x
Data Definition

Create a data definition .
Project: | Browvse...
Package: * ZRAP_CDS Browsse..,

[J&dd to favorite packages

Marme: * |ZLFI\ghd |

Description: ™ | Flug |

Original Language: | DE |

Referenced Object: Browse...

@ < Back Finish Cancel

Figure 2.6 Properties of the CDS View

67

2 Core Data Services: Data Modeling

Editing the
CDS view

SQL view name,
data source, and
field list

6. In the next screen, select a transport request (if you aren’t working with
local objects) and confirm again by clicking the Next button.

7. In the following screen, you can then select a template for the creation of
your CDS view. The provided templates refer to commonly used CDS
modeling options and simplify the creation of corresponding CDS views.
If you want to work without a template, you must uncheck the Use the
selected template box. To create a simple CDS view, select the Define
View template and confirm your selection by clicking the Finish button
(see Figure 2.7).

= Mew Data Definition O *x

Templates
Select one of the available ternplates. '

Use the selected ternplate
Define Wiew Entity Defines a simple CDS DDIC-based view with one data
Define Root Wiew Entity EielliE=

Define Wiew Entity with To-Parent Association

5] Define Yiew

L Define Wiew with Join

Define “iew weith Association w

>

fikbaplatalog. sqlyicwName: "${sql_view_name}"

[@rbapCatalog. compiler. compareFilter: true

fitbaplatalog. preservekey: true

fikccessControl. authorizationCheck: #EHEEK|

@EndUserTesct. label: "${ddl_source_description}’

define view #{ddl_source name_editable} as select from ${data_source name} {
#{data_source elements}{cursor}

b

® < Back Mext = Cancel

Figure 2.7 Selecting a Template

You'll then be redirected to a source code-based editor where you can edit
the details of your CDS view. Due to the selection of the template, some
basic elements of the code will already be suggested (see Figure 2.8).

(B +[348] ZI_FLIGHT 2

1= fdabapCatalog. sqlviewName: *°
@AbapCatalog. compiler. compareFilter: true
@AbapCatalog. preservekey: true

AaccessControl. authorizationCheck : #CHECK

@EndUserText. label: ‘Flug’

define view ZI_Flight as select from data_source name {

b

[REN. T, R ST

Figure 2.8 Coding Generated by the Template in the Source Code-Based Editor

To complete your first CDS view, perform these steps:

1. You must assign a name for the SQL view in the ABAP dictionary, which
is automatically generated when the CDS view gets activated.

68

2.2 Structure and Syntax of Core Data Services

2. You must also define the data source of your CDS view.

3. Also, you must define the field list (also referred to as an element list or
select list).

Then, you assign the name of the ABAP dictionary representation of your
CDS view using the following annotation:

@ABAPCatalog.sqlViewName: 'ZI FLIGHTV'

Then, you must specify the data source after the language element as
select from:

as select from /DMO/FLICHT

The field list can be defined inside the curly brackets. The easiest way to do
this is to place the cursor in this area and press the keyboard shortcut

+ (Space]. Then, you can include individual elements in the field list,
or select Insert all elements (template), as shown in Figure 2.9.

Clg“’[SdA] ZI_FLIGHT &2

1= @ebapCatalog. sqlviewlame: ZI_FLIGHTY'
fitbapCatalog. compiler. compareFilter: true
{@ibapCataleg. preserveley: true
@AccessControl. suthorizationCheck: #CHECK
@EndUserTesxt. label: "Flug®
define view 7I_Flight as select from /OMO/FLIGHT {

BV U ISR

s 3

:;I Insert all elements (template) ~ Description
SOMOSFLIGHT (data source) Inserts all elements including the visible associations of the data
B canier_id - /DMO/FLIGHT (column) sources into the select list.
F connection_id - /OMOFLIGHT (colurmn)
B currency_code - SOMOFLIGHT (colurmng
B flight_date - /DMO/FLIGHT (calurnn)
F plane_type_id - /DMOSFLIGHT {colurmn)
B price - /DMOSFLIGHT (colurnn) w
<| >
Press "Shift+ Enter' to insert full signature

Figure 2.9 Defining the Field List

Now you must activate your CDS view using the keyboard shortcut
+ [F3]. You have now created your first CDS view, activated it, and made it
available for use. Listing 2.1 shows the complete coding.

@AbapCatalog.sqlViewName: 'ZI FLICHTV'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preservekey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Flight’
define view ZI Flight

as select from /dmo/flight
{

key carrier id as Carrierld,

key connection id as ConnectionId,

69

Activating the
CDS view

2 Core Data Services: Data Modeling 2.2 Structure and Syntax of Core Data Services

key flight date as FlightDate, © When you activated the CDS view, you generated the SQL view ZI
price as Price, FLIGHTV in the ABAP dictionary. You can display this in the dictionary
currency code as CurrencyCode, maintenance Transaction SE11 (see Figure 2.12) and test it using Transac-
plane_type_id as PlaneTypeld, tion SE16. Note that this is a SQL view based on CDS. Changes via Trans-
seats_max as SeatsMax,

action SEIl1 are not possible for this reason. Also, not all CDS entity

seats_occupied as SeatsOccupied information can be represented in Transaction SE11. For example, the

) display and maintenance of meta information and the definition of cal-
Listing 2.1 CDS View ZI_Flight culations or type conversions are only possible in the Eclipse environ-
ment.
2.2.2 Analyzing the Data Model '3 sapd Dictionary: Display View
You should now take a closer look at your first CDS data model. When you v % B % s % 2 oz B & @ Mouev 2 T B
activated it, you created three objects (see Figure 2.10).
CDS Datahase View: ZI_FLIGHTYV Active
— Short Description: | FL
[ProjectBx 52 8 CDSMavie, = O [8) [S48] ZI_FLIGHT 52 FIRIBEESED | T
5% Y § 1—@Abapcatalog.sql\fiewName:e Data Definition: 21_FLIGHT
~ [7% RAP_Buch [544, 900, RAFT, DE] g g:g:gg:z:izg' ;ngziigkzﬁp::ﬁel srErrue Attributes Tableloin Conditions View Fields Selection Conditions Maint.Status
A Local Objects (§TMP) (7) 4 fikccessControl. authorizationCheck: #CHECK
v # Favarite Packages (2) 5 @EndUserText dabelo ‘Elus" = salalal &
v 7 ZRAP_CDS(2) CDS Grundiagen & define vie ﬁ =3 M EIEIEIRRY
v [&] ABAP Dictionary (1) ; as select™From/omof t11ght View field Table Field Key Data elem. Mod DTyp
v [T Wiews (1) t P ; MANDT /DU /FL TGHT CLIENT CLNT
i 9 key carrier_id as CarrierId, ALLAELLGRL LLIERL 4
_ B ZLFLIGHTY Fiug 1@ key connection_id as ConnectionId, CARRIERID /DHO/FLIGHT CARRIER ID 7 /DMO/CARRIER ID CHAR
M ‘i‘_cw[: Datzs:_mfes (1) ! i; key flight date as Elfght["’te’ CONNECTIONID /DMO/FLIGHT CONNECTION ID ' /DMO/CONNECTION ID NUNC
v [T atendefinitionen price as Frice;
DR o 5 currency_code as CurrencyCode, FLIGHTDATE /DUD/FLIGHT FLIGHT DATE | /DMO/FLIGHT DATE DATS
% Favorit O 14 plane type_id as PlaneTypeld, PRICE /DMO/FLIGHT PRICE /DMO/FLIGHT PRICE CURR
B, Systern Library (7) 15 seats max as SeatsMax, CURRENCYCODE /DHO/FLIGHT CURRENCY CODE #DMD/CURRENCY CODE CUKY
h 1? } seats_occupied as SestsOccupied PLANETYPETD /DUD/FLIGHT PLAKE TYPE ID /DUO/PLANE TYPE 1D CHAR
18 SEATSMAK /DUD/FLIGHT SEATS MAL /DMD/PLANE SEATS MAX INT4
SEATSOCCUPTED /DUD/FLIGHT SEATS OCCUPTED /DUD/PLANE SEATS DCCUPTED INT4

Figure 210 Objects of the CDS Data Model Figure 2.12 Representation of the CDS View in the ABAP Dictionary

© The CDS entity ZI Flight represents the properties of your CDS view
(that is, the SQL characteristic and additional metadata). You can refer- Deleting CDS Views [«]
ence this entity as a data source in an ABAP SQL statement, for example.

Deleting only the SQL view isn’t possible. CDS entity and SQL view can’t be

© The DDLS source code object ZI_FLIGHT is the transportable develop- deleted independently. When the CDS entity gets deleted, the generated

ment object that you'll find in your transport request accordingly (see SQL view will also be deleted.
Figure 2.11).
= = For testing and analyzing the CDS view result set, the ADT data preview Data preview
Request/Task: | e Development/Correcti Lo . .
equesiTecc B = L Deveiopmentomection function is useful. This is similar to the classic Transaction SE16 because
Properties Objects Documentation

you don'’t need to execute an SQL statement to test the CDS view. Simply

right-click on the source code to open the context menu of the CDS editor
Q= ® v Qja||=|=] =%

Short Descrigtion Prog... Obje... Object Name

o5tz Detinition Language Source R3TR DDLS Z1.FLIGHT |
=

and select the Open With - Data Preview path (see Figure 2.13).

Figure 2.11 DDLS Transport Object

70 n

2 Core Data Services: Data Modeling

15 @Abaplatalog. sqlviewlame: 2T _FLIGHTY'|

2 (@AbapCatalog.compiler.compareFilter: true

3 fiAbapCataleg. preserveley: true

4 flAccessControl. authorizationCheck : #CHECK

5 ({@EndUserText.label: 'Flug’

& define view ZI_Flight

; . as select from /dmo/flight Undo ez

=l key carrier_id as CarrierId, Rewert File

1@ key connection_id as ConnectionId, Save Ctrles

11 key flight_date as FlightDate,

1z price as Price Open ABAP Type Hierarchy F4

13 currency_code as CurrencyCode, .

14 plane type id as PlaneTypeld, Quick Type Hierarchy Ctrl+T

15 seats_max as Seatshax, Navigate To F3

16 seats_sccupied as SeatsOccupied

17 ¥ Mavigate To Target Alt+Shift+T

18 Show SOL CREATE Statement
Open in Project Ctrl+Alt+P >
Open With » % Data Preview I/\\,
Showe [n Alt+Shift+i > %5 Activation Graph
Quick Outline Ctrl+0 Dictionary Log

Figure 2.13 Data Preview in ABAP Development Tools

By default, the first 100 entries of the result set will be displayed (see Figure
2.14). When you click on the column headers, you can sort the result set. In
addition, the following useful functions are available in the toolbar:

® Add filter restricts the result set.

m Select Columns selects the field list.

® Number of Entries displays the number of hits according to the chosen
selection criteria.

» BZIFLIGHT »

7 Raw Data

(= | @ Showlog | Max Rows:[100 2])

o

1 40 rows retrieved - 2 ms 50l Consale | 77 Mumber of Entries | [F] Select Columns “p Addfilter = 5] -

Carrierld Connectionld FlightDate Price CurrencyCode PlaneTypeld SeatshMax SeatsOccupied o
sQ 00d1 2021-10-27 10818.00 SGD FE7-200 260 223
sQ 00d1 2020-12-31 3930.00 sGD A£340-600 330 168
pe] 0002 2021-10-28 176500 3GD #A7-400 385 350
pe] 0002 2021-M-01 10953.00 3GD #A7-400 385 334
] oot 2021-10-28 2350.00 36D TEF-200 260 132
] oot 2041-01-01 4880.00 SGD A340-600 930 1o
] oot2 2021-10-30 4665.00 SGD TEF-200 260 236
] oot2 2021-01-03 257400 36D TF-400 983 25
L& 0058 2041-10-25 6629.00 USD T67-200 260 200
ua 0058 2040-12-28 49%6.00 UsD F47-400 383 px)l

Figure 2.14 Result Set of the Data Preview
SQLconsole For a more detailed analysis of the data set, you can use the SQL Console

function. It opens another view that displays the SQL statement underlying
the selected records. This statement can also be edited. For example, you
can add a WHERE clause to further restrict the result set. Selecting Run will re-
run the query and display the updated result set (see Figure 2.15).

72

2.2 Structure and Syntax of Core Data Services

@ Check ‘I Q Run :I‘ Maz. Rows: 100 =] || 77 RawData
1 SELECT ' Brows retrieved -2 ms
2 ZI_FLIGHT~CARRIERID,
3 Z1_FLIGHT~CONNECTICNID, CARRIERID CONMECTIONID: FLIGHTDATE PRICE CURRENCYCODE PLANETYPEID
a ZI_FLIGHT~FLIGHTDATE,
5 2T FLIGHT~PRICE, LH 0400 2021-10-30 5454.00 EUR £340-600
& ZI:FLIGHT-[LIRREN[VEDDE, LH 0400 2021-01-03 264000 EUR T87-200
7 ZI_FLIGHT~PLANETYPEID, LH o401 2021-10-20 3697.00 EUR 747-400
8 ZI_FLIGHT~SEATSHAX,
5| ZiFLioHT-sEATSOCCLPIED LH 0401 2021-01-02 4867.00 EUR £380-500
10 FROM LH 0402 2021-10-25 497100 EUR 767-200
11 ZT FLIGHT LH a0z 2020-12-29 3232.00 EUR 747-400
LH (0] 2021-10-25 2797.00 EUR £340-600
LH 0403 2020-12-29 2486.00 EUR T&7-200

71 Nurber of Entries [5] v

SEATSMAN SEATSOCCURIED
330 306
260 130
385 265
A7 403
260 221
38 31
330 17
260 7

Figure 2.15 SQL Console Within the Data Preview

You can get information about the syntax and meaning of individual lan-
guage elements by placing the cursor on the corresponding language ele-
ment in the source code editor and pressing the F1 key. The context-
sensitive function then opens the ABAP CDS language reference in a sepa-
rate view (see Figure 2.16).

Language reference

tables, DDIC database views,

) [$48] ZUFLIGHT 52 = B @ ABAP Language Help 52 & r*| [& A 4 [[2searchterm P =
15 @bapCatalog. sqlviewlame: 'ZT_FLIGHTY * Definitions > COS DOL - DEFINE VIEW > GDS DDL - DEFINE VIEW ddic besed >
2 ([@AbapCatalog.compiler. comparefilter: true .

3 (@rbapCatalog.preservekey: true
4 @hccessControl. authorizationCheck: #CHECK CDS DDL - SELECT
5 @EndUserText.label: ‘Flug"
& define view ZI_Flight Syntax
; as select from /dmo/flight SELECT [DISTINCT select list
FROM g
5 key carrier_id as CarrierId, associationl sssociation? ...]
1@ key connection_id as ConnectionId, [compositionl compositiond ...J
11 key flight_dste as FlightDate, o parent assoc
12 i Price { FROM data sour
price as 3 association diation2 ...J
13 currency_code as (urrencyCode, ‘compositionl compositiond ...)
14 plane_type_id as PlaneTypeld, to parent assoc)
15 seats_max as SeatsMax, f{selece lise)
15 seats_occupied as SeatsOccupied feleuses
17}
18 Effect
19 |
The szrEcT statement defines a query performed on the data sources specified in daca_source for a COS view,
as part of the statement pEFINE vIEW Possible data sources are DDIC
or ather non-abstract CDS entities

Figure 2.16 ABAP CDS Language Reference

On the other hand, if you need information about the elements used in the
source editor, such as tables, views, or table fields, you can press the
key. This opens a popup window with the corresponding information (see
Figure 2.17).

% 71 Flight [view) a
Flug
Client Handling
« Client dependent
Client session variable used
Column Data Element Data Type Unit/Currency Reference Description
&= Carrierld fdmo/carrier_id char(3)
= Connectionld /dma/connection_id nume(d)
= FlightDate /dmo/flight_date dats(8)
“ Price fdmo/flight_price curr(16,2) currencycode
“ CurrencyCode /dmo/currency_code cuky(5) Flight Reference Scenario: Currency Code
° PlaneTypeld fdmo/plane_type_id char(10)
 SeatsMax fdmo/plane_seats_max int4(10)
° SeatsOccupied /dmo/plane_seats_occupied int4(10) W
@ e £

Figure 2.17 Information About the Selected Code Element

73

Information about
code elements

2 Core Data Services: Data Modeling

Callin ABAP

Callin CDS

2.2.3 Using CDS Views

You can use the CDS view within an ABAP program essentially in the same
way as you are used to using database tables. For example, you can select
data from the CDS view in a SELECT statement, as shown in Listing 2.2, or
refer to the CDS view in the typing of variables. The use of uppercase and
lowercase letters doesn’t matter when using the CDS view, but it’s recom-
mended to use camel case notation for better readability. This notation will
be retained when the development object is created, even if the technical
name is converted to uppercase in the repository and is displayed that way
in the project explorer in Eclipse. When generating OData services based on
CDS views, this notation is preserved.

DATA flights TYPE STANDARD TABLE OF zi flight.

SELECT carrierid, connectionid, flightdate, Price,
CurrencyCode, PlaneTypeld, SeatsMax, SeatsOccupied
FROM ZI Flight
INTO TABLE @flights
WHERE carrierid = 'LH'.

Listing 2.2 Using a CDS View in ABAP

A CDS view can also be called from another CDS view (see Listing 2.3). This
enables a hierarchical structure of CDS-based data models, which is called a
view stack.

@EndUserText.label: 'Flight detail’
define view ZI FlightDetail
as select from ZI Flight

{

key Carrierld,

Listing 2.3 Using a CDS View Within Another CDS View

2.2.4 Extending the Data Model

The created CDS view ZI_Flight accesses the database table /DMO/FLIGHT and
makes its fields available for use. The technical field names of the database
table have been replaced in the CDS view with meaningful labels in camel-
case notation. This kind of naming is the first step from the more technical
view of the database table to a more business-oriented view of the data and,
therefore, one of the most important tasks of basic interface views.

74

2.2 Structure and Syntax of Core Data Services

We now want to extend the data model with additional information by
providing data from additional data sources. We’ll also add descriptive
information (metadata). In addition, we’ll use simple statements and calcu-
lations to move logic to the database level, which is in keeping with the
code-to-data paradigm.

To do this, you must first create another CDS view ZI_FlightDetail, whichis
based on the CDS view ZI Flight, by selecting data from ZI Flight. This
results in a hierarchical structure that’s typical of CDS data models, which
you can see in Listing 2.4.

01 @AbapCatalog.sqlViewName: 'ZI FLIGHTDETAILV'

02 @AbapCatalog.compiler.comparefFilter: true

03 @AbapCatalog.preserveKey: true

04 @AccessControl.authorizationCheck: #NOT_REQUIRED

05 @EndUserText.label: 'Flight detail’

06 define view ZI FlightDetail

07 with parameters

08 P TargetCurrency :abap.cuky(5)

09 as select from ZI Flight

10 association [1] to /DMO/I_Carrier as _Carrier

11 on $projection.Carrierld = Carrier.AirlineID

12 association [1] to /DMO/I Connection as Connection
13 on $projection.ConnectionId = Connection.ConnectionID
14 and $projection.Carrierld = Connection.AirlineID
15 {

16 key CarrierId,

17 key ConnectionId,

18 key FlightDate,

19

20 @Semantics.amount.currencyCode: 'CurrencyCode’
21 Price,

22 @Semantics.currencyCode: true

23 CurrencyCode,

24

25 PlaneTypeld,

26 SeatsMax,

27 SeatsOccupied,

28

29 SeatsMax - SeatsOccupied as SeatsFree,
30

31 case SeatsOccupied

32 when SeatsMax

75

Other data sources
and metadata

CDS view ZI_Flight-
Detail

2 Core Data Services: Data Modeling

Descriptive
annotations

Access control

Calculations

33 then 'X'

34 else '’

35 end as FlightOccupied,

36

37 @Semantics.amount.currencyCode: 'TargetCurrency'
38 currency_conversion(

39 amount => Price,

40 source_currency => CurrencyCode,

41 round => 'X',

42 target currency => :P TargetCurrency,
43 exchange rate date => FlightDate
44) as PricelInTargetCurrency,

45

46 @Semantics.currencyCode: true

47 cast(:P_TargetCurrency

48 as vdm_v_target_currency

49 preserving type) as TargetCurrency,
50

51 _Carrier,

52 _Connection

53 }

54 where

55 FlightDate >= $session.system date

Listing 2.4 CDS View ZI_FlightDetail

Descriptive properties are added in CDS by using annotations. For example,
the annotation @Semantics.currencyCode:true in line 46 identifies the
CurrencyCode field as a currency key. The annotation @Semantics.amount.
currencyCode: 'TargetCurrency' in line 37 identifies the field as an amount
field for which the associated currency key is contained in the referenced
field.

While these two annotations refer to the respective elements of the CDS
view, the scope of the annotation @AccessControl.authorizationCheck:#NOT
REQUIRED in line 4 comprises the view level. This annotation is used if no
access control is currently provided for the CDS view, but appropriate roles
can be defined at a later time.

With SeatsMax - SeatsOccupied as SeatsFree a simple calculation of the num-
ber of unoccupied seats of a flight is done in line 29. Arithmetic expressions
(e.g., addition, subtraction, multiplication, division) can be used in CDS, as
can aggregate functions (e.g., MAX, MIN, AVG, SUM, COUNT).

76

2.2 Structure and Syntax of Core Data Services

Built-in functions provide support for some common requirements. Built-
in functions from a wide range of areas are available for this purpose: string
functions, numeric functions, date and time conversion functions, and
conversion functions. For example, the currency conversion function in
lines 38 to 44 performs a currency conversion for the value passed to the
formal parameter amount.

The target currency is passed as a typed parameter in the example when the
CDS view is called in lines 7 and 8: with parameters P_TargetCurrency :abap.
cuky(5). With cast(:P TargetCurrency as vdm v_target currency preserv-
ing type) a type conversion to the semantic attributes of the data element
vdm v _target currency is performed in line 47 to 49.

An example of a case distinction used in the Select statement can be found
in the statement block case SeatsOccupied when ...

The access to the data of the CDS view /DMO/I _Carrier and /DMO/I_Connec-
tion happens via associations. Associations are used to map relationships
between CDS entities. By expressing association [1] to /DMO/I_Carrier and
explicitly releasing the associated data with Carrier inline 10, a consumer
of the CDS view gains access to these fields.

Last but not least, the Where clause in lines 54 and 55 constrains the rows in
the result set when accessing the CDS view. In the clause where FlightDate >=
$session.system date a session variable is used. Session variables contain
global information about the current context, the contents of which corre-
spond to the value of certain ABAP system fields when accessed. Direct
access to the SY-DATUM system variable is not possible.

When you call the data preview now, a popup window for parameter input
will display (see Figure 2.18). This behavior is determined by specifying the
target currency as a typed parameter.

= Opernwith Data Preview [m} X

Enter Parameter Values
(@) Typecuky(5)

P_TARGETCURRENCY:* | EUF|

®

Figure 2.18 Popup Window for Parameter Input

The result set contains the calculated fields and has been filtered by flight
date (see Figure 2.19).

77

Case distinction

Association

Parameter input

2 Core Data Services: Data Modeling

» [2| FLIGHTDETAIL(.) »

T Raw Data kl5 b ‘ @ Show Log
i 20 rows retrieved - 24 ms b Parameter F S0L Console # MNumber of Entries @ Select Colurmns
Cu Co FlahtDate SeatsMax SeatsOccupied SeatsFree Flight@ccupied Frice Cun PricelnTargetCurrency TargetCurrency
LA, 0058 2021-10-25 260 200 60 6620.00 USD 535486 EUR
LH 402 2021-10-25 280 P 39 401100 EUR 4011.00 EUR
LH 0403 2021-10-25 330 17 159 2797.00 EUR 2797.00 EUR
LA, 0059 2021-10-26 330 181 163 413100 USD 3337.00 EUR
sQ o1 2021-10-27 260 223 7 10818.00 56D 665469 EUR
An omz 2021-10-27 150 129 1 46200 UsD 37320 EUR
50 ooz 2021-10-28 385 350 35 11765.00 SGD 723724 EUR
5Q oo 2021-10-28 260 132 128 2359.00 5GD 145114 EUR
An oms 2021-10-28 475 M 29 3781.00 USD 305427 EUR
ua, 1537 2021-10-29 150 ae 62 o200 UsD 72136 EUR
Al s 2021-10-29 280 137 123 1911.00 UsD 1343.68 EUR
LH 401 2021-10-29 3ms 265 120 3697.00 EUR 3687.00 EUR
I 07 2021-10-29 385 254 131 5346.00 1PV 397413 EUR
AL 0720 2021-10-29 475 441 34 233000 EUR 2520.00 EUR
50 omz 2021-10-30 280 236 24 466500 SGD 2060.67 EUR
Ab 2678 2021-10-30 150 14 9 47300 USD 382.02 EUR
LH 400 2021-10-30 330 330 Q0 x 548400 EUR 5484.00 EUR
oL 0408 2021-10-20 475 432 42 2150.00 IpY 606527 EUR
o7e8 2021-10-20 280 P 39 732000 EUR 7580.00 EUR
Ad 032z 2021-10-11 130 93 7 102,00 USD 891.00 EUR

Tracing associations

Figure 2.19 Data Preview of the Result Set of the ZI_FlightDetail View

If you select the Follow Association entry in the context menu of the result
set, as shown in Figure 2.20, you can display the result set of the selected
navigation target.

» [ZLFLIGHTDETAILL.) »
7 Raw Data
1* 20 rows retrieved - 24 ms
. Co FI@htDate Seatshax SeatsOccupied SeatsFree Flig

L&, 0058 260 200 60
LH 0402 eI} el 39
LH 0403 2021-10-25 Quick filter on [2021-10-25] 153
A, 0059 2021-10-26 IE Distinctwalues for [FlightDate] I 16Q
S0 000 2021-10-27 *% Follow Association % |
£a, oa1F 2021-10-27 2 Copy row 11
5 oooz plalgliecg = Copy all rows as ABAP value statement | 3
50 ogm W021-10-28 = — — 128
AR, oma 2021-10-28 475 A6 29

Figure 2.20 Tracing Associations

In the next popup window, you can select one of the displayed associations
(see Figure 2.21).

List of Associations -

3 _Carrier — fDMOS|_Carrier [0., 1]
3 _Connection — /DMO/|_Connection [0..1] I}

To follow the association, choose an association from the lish

Figure 2.21 Selecting an Association

78

2.3 Associations

Figure 2.22 shows the output of the result set of the associated entity.

3 I—E'%ZI,FLIGHTDETAIL » “% Connection — /DMO/]_Connection »

] Raw Data

Y 1rowsretrieved - 0 ms ¥ S0L Consale 71 Mumber of Entries
AjtlinelD ConnectionlD Departuredirport Destinationdirport DepartureTime AprivalTime Distance 0
LH 0402 FRA, EWvR, 07:30:00 P 03:35:00 PM 6217 KM

Figure 2.22 Result Set for the _Connection Association

By creating this simple CDS data model, you have already become familiar
with some of the language elements of the CDS data definition language
(DDL). Due to the large number of available statements and functions, we
can provide only a first overview here. Details on the syntax, which is based
on SQL, can be found, for example, in the ABAP keyword documentation at
http://s-prs.de/v868502.

Due to the use of associations and annotations, you have also already
become familiar with two central concepts of CDS data modeling. Because
of their importance, we’ll discuss these concepts in greater detail in the fol-
lowing sections. We'll also dedicate a separate section to the implementa-
tion of access controls in CDS in Section 2.5.

2.3 Associations

Relationships are often represented as foreign key links at the database
level. You can map relationships between CDS views using associations.
Associations in CDS are thus an important tool for data modeling in the
ABAP RESTful application programming model and a precursor for model-
ing business objects in the behavior definition.

An association links a CDS view (as the source data) to the target data source
specified in the association definition by means of an On condition. Besides
CDS views, database tables or SQL views can also be used as a target data
source.

Warning: Other Target Data Sources

Using target data sources other than CDS views may result in limited func-
tionality when using the CDS view in applications. For this reason, it’s rec-
ommended to use only CDS views as the target data source.

79

Linking CDS views

2 Core Data Services: Data Modeling

Join on demand

Defining an
association

From a technical point of view, associations are similar to a JOIN operation.
However, they don’t merely link multiple data sources; they are used to
clarify the relationships between entities, and they contain additional
semantic properties, such as cardinality information. Basically, an associa-
tion is a description of a possible connection between entities. It’s the con-
ceptual view of the data that is the focus here.

A relationship represented by an association is therefore also referred to as
a functional relationship. The association is necessary only if data from
other entities is needed for a certain functionality. In this context, the term
join on demand is often used.

For clarity, we’ll now extend the CDS view ZI Flight in Listing 2.5 with an
association to the standard CDS view I_Currency.

@AbapCatalog.sqlViewName: 'ZI FLICHTV'
@AbapCatalog.compiler.compareFilter: true
@AbapCatalog.preserveKey: true
@AccessControl.authorizationCheck: #CHECK
@EndUserText.label: 'Flight'
define view ZI Flight
as select from /dmo/flight
association [0..1] to I Currency as _Currency on
$projection.CurrencyCode = _Currency.Currency
{
key carrier id as Carrierld,
key connection id as Connectionld,
key flight date as FlightDate,
price as Price,
currency code as CurrencyCode,
plane type id as PlaneTypeld,
seats_max as SeatsMax,
seats occupied as SeatsOccupied,
_Currency

}

Listing 2.5 Association

By defining the association with association [0..1] to I Currency and
exposing it with Currency as another element in the projection list, all
components from the associated CDS view I_Currency are available for call-
ers. The easiest way to test this again is to select the Follow Association con-
text menu function in the data preview. Figure 2.23 shows the result.

80

2.3 Associations

L3 lI“I:'-I'ZI_FLIGHT » D%_CL,ImancyaI_lCL,lrrency' 3

7 Raw Data

¥ 1 rows retrieved - 36 ms

Curtency Decirnals Currencyl30Code AlternativeCurrencykley
EUR. 2 EUR 978

Figure 2.23 Association in the Data Preview

At the database level, this exposure of the association alone doesn’t define
a join. You can check this by displaying the SQL statement CREATE via the
context menu of the CDS editor. Select the Show SQL CREATE Statement
entry here. The results are displayed in Figure 2.24. Alternatively, you can
view the corresponding SQL view ZI_FLICHTV in Transaction SE1l. The actual
join occurs only when the consumer accesses fields in the data source.
Thus, no preselection of supposedly relevant fields of the data source is
made during data modeling. This task is left to the user of the data model.

CREATE OR REPLACE VIEW "ZI_FLIGHIV" AS SELECT
"/DMO/FLIGHT"."CLIENT" AS "MRNDT",
"/DMO/FLIGHI"."CAERIER_ID" AS "CARRIERID",
"/DMO/FLIGHT". "CONNECTION ID" AS "CONNECTIONID",
"/DMO/FLIGHT"."FLIGHT DATE"™ AS "FLIGHTDATE",
"/DMO/FLIGHI™."PRICE™ A5 "PRICE",
~/DMO/FLIGHT". "CURRENCY CODE™ AS "CURRENCYCODE",
"/DMO/FLIGHT"."PLANE TYPE ID" AS "PLANETYPEID",
"/DMO/FLIGHT". "SEATS MAX" AS "SERTSMAX",
"/DMO/FLIGHT". "SEATS OCCUPIED" AS "SEATSOCCUPIED"

FROM "/DMO/FLIGHT" "/DMO/FLIGHT™

Figure 2.24 Display of the SQL Statement CREATE in
the Popup Window with the Element Information

Access to associations of a CDS view via a higher-level CDS view built on top
of it occurs in exactly the same way as access to the other components of
that view. You can see an example in Listing 2.6. You can access individual
components of the association or, if desired, re-expose the association
under a different name, by assigning an appropriate alias.

define view ZI FlightCurr as select from ZI Flight
{

key Carrierld,

key ConnectionId,

key FlightDate,

CurrencyCode,

_Currency.CurrencyISOCode,

_Currency as _FlightCurrency

¥
Listing 2.6 Using an Exposed Association in CDS

81

SQL statement
CREATE

Accessing
associations

Core Data Services: Data Modeling

Accessing
individual fields

Access from ABAP

Filter conditions

Cardinality

Direct access to individual fields of an association (as is done in Listing 2.6,
to the CurrencyISOCode field) is often referred to as an ad-hoc association. In
this case, the activation of the CDS view creates a corresponding join at the
database level, thus overriding the join on-demand principle.

It’s also possible to access fields of exposed associations from ABAP SQL.
This also applies, for example, to the use in a WHERE condition.

SELECT Price, _Currency-CurrencyISOCode
FROM zi flight

WHERE _Currency-Decimals = O

INTO TABLE @DATA(currencies).

Listing 2.7 Using an Exposed Association in ABAP SQL

As an additional option, you can work with filter conditions when using
associations in CDS-based data modeling, as in the following example:

Currency[Currency = $parameters.P TargetCurrency] as TargetCurrency

This way you can further restrict the associated target records according to
your requirements. When the path expression is converted to a join in the
database, the filter becomes part of the On condition. Using filters in associ-
ations often improves readability and facilitates the interpretation of the
data model. An additional Where clause would be less readable.

When defining associations, you can include the cardinality in square
brackets. It’s the cardinality of the target data source (that is, the possible
number of related target records). This specification is optional. If you don’t
specify the cardinality, the default value [0..1] will be used. However, it’s
recommended to specify the cardinality as precisely as possible. It is pri-
marily used to document the semantics of the data model and thus signifi-
cantly improves the readability of your data model.

Even if the cardinality isn’t validated at runtime, it can lead to warnings and
errors during syntax checking, as shown in the example in Figure 2.25.
Incorrect cardinality specifications can also lead to incorrect data selec-
tions, such as duplicates or missing records in the result set.

@EndUserText.label: 'Fluggesellschaft'

define view ZI_Carrier as select from /DMO/I_Carrier
association [@..*] to /DMO/I_Connection as _Connection
on $projection.AirlineID = _Connection.AirlineID

10 key AirlineID,
@_ _Connection.DeparturedAirport

[The association _Connection can modify the cardinality of the results set]

Figure 2.25 Syntax Warning About Cardinality

82

2.4 Annotations

Just like specifying the cardinality, specifying a name for the association
isn’t mandatory. If a name isn’t specified, the name of the target data
source will be used implicitly. In any case, to ensure that the data model is
readable, you should use the name assignment by means of the alias func-
tion. As a naming convention, SAP recommends an underscore (_) as the
first character; this also helps distinguish associations from the other fields
in the element list.

Tip: Using Associations Instead of Joins

When defining a CDS data model, you should use associations rather than
joins. If possible, you should also avoid the formation of implicit joins (ad-
hoc associations). Instead, try to represent the relationships of the data
using associations. In this way, you can provide the consumer with a fully
comprehensive data image without having to generate an extensive join
for it (and, thus, incurring performance losses).

2.4 Annotations

In the CDS views we've created over the course of this chapter, we've
already used some CDS annotations. For example, in Listing 2.1, we speci-
fied the name of the SQL view created during activation by an annotation:

@AbapCatalog.sqlViewName: 'ZI FLICHTV'

Annotations enable you to add additional information (metadata) to your
CDS data model. Annotations are therefore an essential part of data model-
ing. The information can be evaluated by the users of the data model. It can
be used purely for documentation purposes, but also to activate certain
functions.

According to their usage, the CDS annotations provided by SAP (SAP anno-
tations) can be divided into

ABAP annotations
Framework-specific annotations

ABAP annotations are evaluated when the object defined in the CDS source
code is activated or used. Framework-specific annotations are evaluated by
the framework of another software component; for example, by the OData
or analytics software components.

83

Alias for
associations

[+]

ABAP versus frame-
work annotations

2 Core Data Services: Data Modeling

Annotation
definition

Warning: Use Only SAP Annotations

Currently, only annotations predefined by SAP are to be used in the CDS
source codes. SAP partners and customers aren’t yet allowed to define
their own annotations.

From a technical point of view, CDS annotations (analogous to the CDS
views that use them) are themselves CDS objects (object type DDLA) that
are created and provided by an annotation definition.

The definition of a CDS annotation is done using the following statement:

define annotation

The annotation definition specifies the unique name of the annotation and
describes its technical properties:

Scope
Type
Allowed values (optional)
Default value (optional)

The structure of an annotation definition is illustrated in Listing 2.8. It con-
tains an excerpt from the definition of the SAP annotation Semantics. The
use of uppercase and lowercase letters is relevant here.

@Scope: [H#ELEMENT, #PARAMETER]
define annotation Semantics

{

eMail
{
type : array of String(10) enum
{
HOME ;
WORK;
PREF;
OTHER;

systemDateTime

{

createdAt : Boolean default true;
lastChangedAt : Boolean default true;
localInstancelastChangedAt : Boolean default true;

84

2.4 Annotations

b
@Scope: [#ELEMENT]

currencyCode : Boolean default true;

1
Listing 2.8 Sample Annotation Definition (Excerpt)

Semantics is the main annotation (domain) of this annotation definition.
It’s further structured by subannotations, such as eMail or systemDateTime.
This results in a hierarchical structure. The domains are used to group the-
matically related subannotations. In Table 2.2, some domains and their
field of application are listed (not complete).

Analytics Generation of evaluations using analytic manager, a system
component that evaluates analytical annotations

OData Generation of an OData service from the data obtained from
a CDS entity.

EndUserText Definition of translatable texts

ul Display of data in user interfaces

VDM Classification of CDS views for the purposes of structuring

and interpretation

Semantics Provision of information on the meaning and use of individ-
ual elements of a CDS View

Search Marking CDS entities as searchable and defining search prop-
erties

ABAPCatalog Determination of technical settings of the CDS entity

AccessControl Access control management

ObjectModel Definitions of structural and transactional aspects of the
data model

Table 2.2 Important Domains for Annotations

Tip: Overview of All Annotations

ABAP _DOCU CDS_ANNOS OVERVIEW program lists all SAP annotations and
their properties.

85

Domain and
subannotations

[+]

2 Core Data Services: Data Modeling

Scope of an
annotation

21

Structure of
annotations

The specification @Scope: [#ELEMENT, #PARAMETER] enables you to define the
scope of an annotation. It determines at which positions of a CDS source
code the annotation may be specified. The specification of a scope is man-
datory. Basically, a distinction is made between annotations with scope at
the level of the entire CDS view and annotations that apply only to individ-
ual elements of a view.

Ifa scope can’t be determined for an annotation or subannotation, a syntax
error will occur. If a scope isn’t specified in subannotations, those subanno-
tations will adopt the scope of the parent annotation. So, in Listing 2.8, for
the currencyCode subannotation, @Scope: [#ELEMENT] specifies a scope that
differs from the Semantics annotation: currencyCode isn’t permitted for use
with parameters. Basically, the top level (CDS view, CDS view extension,
CDS table function, CDS role, or CDS annotation definition) or its sublevels
(elements, parameters, or associations) can be specified as the scope of
annotations.

Example: Scope of the Scope Annotation

The Scope annotation is an annotation definition annotation (scope #ANNO-
TATION) that contains information about the annotation itself. More sim-
ply, it can also be called meta-annotation.

Annotations are typed either as single values, structures, or lists. For exam-
ple, Listing 2.8 shows that you can specify the type of an email address as a
list while the annotation currencyCode can be used to mark an element with
a Boolean scalar value as a currency field.

Allowed values (corresponding to the typing) can be specified in the anno-
tation definition. It’s also possible to set a default value. This value is used
when an annotation is specified without explicitly assigning a value to it as
well. It doesn’t mean that the default value applies if the annotation isn’t
used in the CDS data model.

The way to specify a CDS annotation in a CDS source code in detail is
described by the CDS annotation syntax. That syntax is fixed and is supple-
mented by the CDS annotation definition with rules for using an annotation.

The specification of a CDS annotation for an element within the CDS source
code always starts with an introductory @. This is followed by the specifica-
tion of the domain (main annotation) and, separated by a dot in each case,
the specification of the subannotations. The value of the annotation is then
specified after a colon:

@Semantics.currencyCode: true
currency code as CurrencyCode,

86

2.4 Annotations

Semantics is the domain here, currencyCode is the subannotation, and true
is the value.

Annotation After an Element to be Marked

Specifying annotations after the element to which the annotations are to
be applied in the CDS source code is also possible, but it then starts with
the characters @<:

currency code as CurrencyCode
@<Semantics.currencyCode: true,

For readability, it's best to use the prefixed notation throughout.

Tip: Help Function in ABAP Development Tools

When specifying annotations, ADT supports you with source code coloring
and code completion. To call the help for an ABAP annotation, you should
position the cursor in the DDL source editor on the corresponding annota-

tion and press the key.

When an object that is defined in CDS source code is activated, the annota-
tions specified there with the CDS annotation syntax are stored in database
tables of the ABAP dictionary, which can then be accessed for evaluation.
The DDHEADANNO table contains the annotations that apply at the upper level
(e.g., at the CDS view level). The tables DDFIELDANNO and DDPARAMETERANNO con-
tain the annotations of the individual elements and parameters of a CDS
view, respectively.

The class CL DD DDL ANNOTATION SERVICE is available for the evaluation of
these database tables. When evaluating, it’s essential to note that the actual
value of an annotation isn’t necessarily identical to the value specified in
the CDS source code for the annotation. Possible sources of annotation val-
ues are:

® Direct annotations
Annotations specified directly in the DDL source code of the CDS entity.

® Annotations from metadata extensions
Metadata extensions add further annotations to a CDS entity or override
existing annotations.

® Indirect, inherited annotations
When accessing other CDS entities, their direct and indirect annotations
and the annotations from metadata extensions are inherited. This
applies exclusively to annotations at the element level.

87

[«]

[+]

Saving in the ABAP
Data Dictionary

2 Core Data Services: Data Modeling

Passing on
annotations

®m Indirect, derived annotations
Annotations of the EndUserText domain are derived from the field iden-
tifiers of associated data elements.

The hierarchical structure of CDS data models is reflected in the determina-
tion of annotation values: Higher-level CDS views adopt annotations of
lower-level CDS views. Annotations defined locally in a CDS view override
these inherited annotations. These can be overwritten by annotations from
metadata extensions. The result thus obtained is referred to as the active
annotations of a CDS view.

Tip: Preventing the Annotations from Being Passed On

You can prevent annotations that are propagated in this way from being
considered for a CDS view by specifying the annotation @Metadata.
ignorePropagatedAnnotations: true with the scope ENTITY.

If you right-click on the source code in ADT and select Open With - Active
Annotations in the context menu, the active annotations of the selected
CDS entity will be displayed (see Figure 2.26).

Active Annotations for Entity ZI_Flight

type filter text

Annotated Elements Annotation Yalue Translated Text Origin Data Source Origin Data Element
~ @9 7 Flight
~ (2 Entity annotations
v @AhapCatalog
sqlivienwMarme ‘ZI_FLIGHTY"
w compiler
compareFilter true
preservekey true
v @A ccessControl
authorizationCheck #CHECK
v @EndU serText
label ‘Flug"
w0 Carrierld
v @EndUserText

quickinfa SOMOJFLIGHT (Database Table) /DMO/CARRIER_ID
label SDMO/FLIGHT (Database Table) /DMO/CARRIER_ID
heading SOMOSFLIGHT (Database Table) /DMO/CARRIER_ID

7 Connectionld
 FlightDate
I Price

~ 8 CurrencyCode

- D Sernantics
currencyCode true Z_Flight {(CDS View)

- Endl serText
quickinfa Flight Reference 5. /OMOSFLIGHT (Database Table) /DMOSCURRENCY_CODE
label Currency Code SDMOSFLIGHT iDatabase Table) /DMOSCURREMCY_CODE
heading Currency Cade SDMOJFLIGHT {Database Table; /DMO/CURRENCY_CODE

~ 7 PlaneTypeld

- i

hidden true ZI_Flight {CD3S View)

Figure 2.26 Display of Active Annotations

We’ll describe how to proceed when creating a metadata extension in Sec-
tion 2.6.

88

2.5 Access Controls

2.5 Access Controls

Access controls ensure that only authorized persons are granted access to
protected data.

Corresponding access restrictions can take place at different levels:

® Application level
A user doesn’t have the authorization to perform a specific function (e.g.,
a transaction).

® Record level
Despite the authorization for a function, access to a subset of the data
records is restricted.

® Field level
A user is only granted access to individual elements of the authorized
data records.

Protection against unauthorized data access is implemented in ABAP CDS
by an authorization concept, which is based on a data control language
(DCL). The define role statement allows you to define CDS roles for CDS
entities. These roles contain access conditions that allow you to restrict the
result of the data selections. These access conditions are implicitly evalu-
ated each time the CDS entity for which the CDS role was defined is directly
accessed (using ABAP SQL, service adaptation description language [SADL]
query, or entity manipulation language [EML]). However, if this CDS entity
only forms the data source for CDS views of a higher hierarchy level, the
access control of the CDS entity remains without effect. Therefore, when
modeling, you must be careful to create a separate CDS role for each CDS
entity for which protection is required.

Warning: No Access Control for SQL Views
When you access the generated SQL view, the CDS access conditions won't

be evaluated. For this reason, you should always use the CDS view in the
ABAP SQL statements instead of the generated SQL view.

To create access control for a CDS view, you must select a package in the
ADT project explorer and choose the path New - Other ABAP Repository
Object - Core Data Services - Access Control from the context menu. Con-
cerning the name of the CDS role, it’s best to choose the same name as for
the CDS view to which the access control is to apply. As usual, you'll be sup-
ported by templates (see Figure 2.27).

89

Access control levels

CDS roles

[1]

Creating access
control

2 Core Data Services: Data Modeling

Characteristics of
the CDS role

User-dependent
and user-indepen-
dent check

= Mew Access Control O *

Templates N
Select one of the available ternplates, -

Use the selected termplate

@DEfiHE Role with Simple Conditions # | |Defines a role that grants instance-specific access to a
K& Define Role with PFCG Aspect CcDg enti.ty based on authorizations derived from PFCG
t-E?Define Role with Inherited Conditions rales assigned to the cutrent user.

t‘-__:‘h%Define Role with Generic Aspect

[Define Generic Aspect

EZ Define Role with Unrestricted Access w

@EndUserText.label: "#{dcl_source descriptionl}’
[HappingRole: true
define role ${dcl_source name} {

grant
select
on
${cds_entity}
where
(${entity element_ 1}, $#{entity element _2}) = aspect pfcg_auth(${
#{cursor}
¥
< >
'/?j' Mext = Finish Cancel

Figure 2.27 Templates Available When Creating a CDS Role

Once you've created the role using the wizard, you must define the charac-
teristic of the CDS role in the source code editor. Listing 2.9 shows this using
the example of the ZI Flight role. When the CDS role is activated, a trans-
portable ABAP development object of type DCLS (data control language
source) is created.

@EndUserText.label: 'CDS role for ZI Flight'
@MappingRole: true
define role ZI Flight {
grant select on ZI Flight
where (CarrierId) = aspect pfcg auth(Z DMO CAR,
CARRIER ID,
ACTVT = '03')
and ConnectionId like '04%"';
}

Listing 2.9 CDS Role for CDS View ZI_Flight

In Listing 2.9, a user-dependent check for the CDS view ZI Flight is com-
bined with a user-independent check. For the user-dependent check, the
classic SAP authorization concept is used, which is based on authorization
objects and their assignment to authorization roles in Transaction PFCG.
Authorizations are assigned to the user via these authorization roles. In
addition, user-independent checks are made against the value of the Con-
nectionID element (linked by the logical AND operator).

20

2.5 Access Controls

A user who is assigned the PFCG authorization role Z DMO CARRIER from
Figure 2.28 would, for example, receive the result from Figure 2.29 as the
result of selecting the CDS view ZI_Flight (without further restriction of the
selection conditions).

Role Z DMO_CARRIER
Maint. 0 unmaint. org. levels, 0 open fields
Status: Unchanged
M Status | |Edit ¥ |A||F v ||B|v||HSearch |~ | |EEValues
Group/Object/Authorization/Field Maintenance Sta.. A.. Value Text
~ 13 oom Object Class BC_A Manual Basis: Administration
13 com Authorization Object Z_DMO_CAR Manual Z_DMOQ_CAR
v 13 com Authorization T-SA81004200 Manual Z_DMO_CAR
/7 W CARRIER_ID Manual &a 0 AAJL LH, UA Flight Reference Scenario: Carrier ID
7 M ACTVT Manual &5 Add or Create, Change, Display Activity

Figure 2.28 Classic PFCG Authorization Role Z DMO_CARRIER

b FEZLFLIGHT »
= R Data (5~ | (D showlog | Max Rowsi[100]
L 12 rows retrieved - 7 ms ¥ 30L Consale 11 Mumber of Entries | SelectCu\umns ‘ wr bddfilter v 5]
Carrierld Connectionld FlightDate Price CurrencyCaode PlaneTypeld Seatshlax SeatsOccupied
LH 400 2021-10-30 548400 EUR A340-600 330 330
LH 0400 2021-01-02 2840.00 EUR T67-200 260 120
LH 401 2021-10-29 3697.00 EUR 747-400 388 265
LH o 2021-01-02 426700 EUR A280-200 475 403
LH 0402 2021-10-25 491100 EUR T67-200 260 m
LH 02 2020-12-29 323200 EUR TA7-400 383 231
LH 0402 2021-10-25 2797.00 EUR A340-600 330 1
LH 0403 2020-12-29 2486.00 EUR 767-200 280 n7
L 407 2021-10-29 534600 JPYV T47-400 38 254
I 0407 2021-01-02 403200 PV A340-600 330 165
I 408 2021-10-30 8159.00 JPY A~380-800 475 432
L 0402 2021-01-02 8471.00 JpY TAT-400 385 206

Figure 2.29 Selection Result After Querying CDS View ZI_Flight

By implicitly evaluating the access condition when reading records from CDS access control
the database, the SQL statement is augmented with the WHERE condition runtime simulator
derived from the access conditions, as you can see in the SQL trace of Trans-

action SACMSEL (the CDS access control runtime simulator) (see Figure

2.30).

SQL-Trace

SELECT
/™ CDS access control applied =/
"MANDT" , "CARRIERID" , "COMNECTIONID" , "FLIGHTDATE" , "PRICE" , "CURRENCYCODE" ,
"PLANETYPEID" , "SEATSMAX" , "SEATSOCCUPIED"

FROM
/* Entity name: ZI_FLIGHT CDS access controlled =/ "ZI_FLIGHTY" "ZI_FLIGHT"

WHERE
"MANDT" = '90@' AND "CARRIERID" INM ('AA' , 'JL' , 'LH' , 'UA') AND "CONNECTIQNID"
LIKE '04%' LIMIT 208

Figure 2.30 SQL Statement When Reading Records from the ZI_Flight View with
CDS Role ZI_Flight

91

2 Core Data Services: Data Modeling

Authorization logic
at database level

AccessControl.
authorizationCheck

In contrast, when indirectly accessing CDS view ZI_Flight, for example, via
CDS view ZI_FlightDetail from Listing 2.4, which is based on it, the access
conditions defined in CDS role ZI Flight wouldn’t be evaluated. Transac-
tion SACMSEL allows you to test your CDS roles in detail. In addition to the
executed SQL statement, you can see the result of the data selection and
information about the underlying PFCG authorization roles.

Unlike when you perform authorization checks in the classic ABAP pro-
gramming model (where you first read the records to be checked from the
database to the application server so that you can check them there at the
individual record level using the AUTHORITY-CHECK statement), here you
move the authorization logic to the database level by using CDS roles. This
approach allows you to achieve significant performance gains.

You can store information about documenting and controlling access
using CDS roles in a CDS entity with the annotation AccessControl.authori-
zationCheck. In the following list, we’ll describe the possible expressions of
the annotation values:

= #CHECK
Access control is to be performed for the CDS entity via a CDS role
(default value of the annotation). If no CDS role exists for the CDS entity,
the syntax check generates a warning message.

= #NOT_REQUIRED
Access control isn't strictly required for the CDS entity. However, access
control is performed if a CDS role is available. The syntax check warning
message about a missing CDS role is omitted.

= #NOT_ALLOWED
There’s no access control, even if a CDS role does exist.

® #PRIVILEGED_ONLY
This value is used in CDS entities for which direct access to the data
should generally not be allowed (implemented by a condition in the CDS
role that’s never met). Access control for direct access to the CDS entity
can be bypassed by specifying a special ABAP SQL statement (WITH
PRIVILEGED ACCESS), but is otherwise performed.

To illustrate the use of the #PRIVILEGED ONLY annotation value, let's look at
the corresponding specification in the standard SAP CDS view I USER:

@AccessControl.authorizationCheck: #PRIVILEGED ONLY
define view I User
as select from usr21

92

2.5 Access Controls

The CDS role I_USER with the same name exists for this view (see Listing
2.10).

@MappingRole: true
//Deny ALL direct access to I USER. Only privileged access allowed.
define role I User {

grant select on I USER

where UserID is null and UserID is not null;

¥
Listing 2.10 CDS Role |_USER (Excerpt)

Because the condition where UserID is null and UserID is not null in the
Where clause of the CDS role is never met, no records are selected in a direct
call. A corresponding message is displayed in the ADT data preview (see
Figure 2.31).

» FI_USER »
7 Raw Data
I Mo rows retrieved - 3 ms I 50L Console

UserlD UserDescription IsTechnicalllser BusinessPartnerlUID

Figure 2.31 Data Preview for CDS View |_USER

In ABAP, this access control can be bypassed by adding WITH PRIVILEGED
ACCESS (see the debugger excerpt in Figure 2.32). Access control is not exe-
cuted and the records are selected from CDS view I USER according to the
selection in ABAP SQL.

» O ZPRIILEGEDACCESS » Mame Walue
1 Mmoo @ <Entervariable>
2 :8. Report zprivilegedaccess @ SY-SUBRC a
i *: ______________________________ v O Globals
B M ool o oo ________ v @ USER [198:4(202)]5tandard Table
& REPORT zprivilegedaccess. w [[1..100]
7 W[5 [1..10]
g SEE?; :R;\RFCITE;:E;S:ECESS v @ [1] Structure: flat, not charlike
18 INTO TAELE @DATA{user). = LISERID SAP_WSRT
11 T2 USERDESCRIPTION
1z T ISTECHMICALUSER ¥
13 2 BUSIMESSPARTMERUUID 000000000000000000000000000..,

Figure 2.32 Debugger for the WITH PRIVILEGED ACCESS Statement

It's also possible to create multiple CDS roles for one CDS entity. These are Multiple CDS roles
then linked by an OR condition. The result of the selection can be extended

by additional CDS roles, but not restricted. For clarity, however, you should

create only one CDS role per CDS entity.

93

Contents

Foreword 15
Preface 17
PART | Basic Concepts and Technical Components
1 Introduction 23
1.1 Whatis the ABAP RESTful Application Programming Model? ... 24
111 The Purpose of the Programming Modelcccueccemeceune. 24
11.2 The REST Architectural Style 29
113 OData 34
1.1.4 Technological Innovations with SAP S/4HANAc.... 36
115 Evolution of ABAP-Based Programming Models 38
1.2 Architecture and Concepts 42
121 Transaction Model 42
1.2.2 Implementation Types 43
1.2.3 Entity Manipulation Language 45
124 Technical Context of Applications and
Runtime Environment 45
1.3 Development Objects 48
13.1 Data Modeling with Core Data Services ... 48
1.3.2 Behavior Definition 49
1.3.3 Behavior Implementation 50
134 Projection Layer 51
1.3.5 Business Services 51
1.3.6 Interaction of the Artifacts 52
1.4 ABAP Development Tools 53
1.5 AQuality Attributes of the ABAP RESTful Application
Programming Model 54
151 Evolution Capability 54
15.2 Development Efficiency 55
153 Testability 57
154 Separation between Business and Technologycc....... 57

Contents Contents

1.6 Availability of the ABAP RESTful Application Programming 3.3 Implementation TyPesmncrrmmmiisnensesesmsseaesssssees 136
IMMOEI ..ottt 58 3.3.1 MaNaged SCENATIO ...ovveecerereeiecrreeeeseesesesesesesssssesesesesennes 138
1.6.1 SAP BTP, ABAP ENVIronment ... 58 3.3.2 UNMaNaged SCENATIOccuceemreemeceieeeierimesseecsisesseeerissessanees 140
162 ABAP Platform for SAP S/4HANA On-Premise 59 3.4 StrCt Mode ... 141
3.5 Entity Behavior Definition ..., 142
. . 3.6 Defining a Behavior Pool ... 143
2 Core Data Services: Data Modellng 61 3.6.1 Behavior Pool for Behavior Definition ... 143
3.6.2 Behavior Pool for the CDS ENtitycccoueeneeunecrnvecrnecrnscninees 144
2.1 What are Core Data Services?comncccrccecemmmsnnnseceenn 62 3.6.3 Behavior Pool for the Implementation Group 144
2.2 Structure and Syntax of Core Data Services ... 65 3.7 NUMDEIINGcccceiesseeeeercceeeeesisssseeessssssssssssss s sesesssssssnnns 146
2.2.1 Creatinga Basic Interface View 66 3.71 Early, External NUMDEIING ...ooomereeeomererriirnenecrmieesecsseenesseens 147
2.2.2 Analyzing the Data Modelcoconcvninnennane. 70 372 Early, Internal Numbering 147
223 USING CDS VIBWS ..cueeeveceecieciieensennesaesasesssssssesssesssssssssnns 74 373 Late Numbering 149
224 Extending the Data Model ... 74 . .
3.8 Field Properties 150
2.3 ASSOCIALIONS ... 79 381 Mandatory Fields 150
2.4 ANNOtAtiONS ... 83 3.8.2 Protection Against Write ACCESS ...oovvrrmviirrsrrsns 151
2.5 ACCESS CONTIONS ...t ee e s 89 383 Cor.nbmat|on:. N\a.ndatory Field in Case of Creation,
Write Protection in Case of Updatesccnccnnccinecnns 152
2.6 Extensibility of CDS Entities 94 . X
,) 3.9 Field MapPINGSccomromrcriiineeermiineseessiosessssseessssssensssssssesns 153
2.6.1 CDS View Extensions 94
262 CDS Metadata EXtENSIioN 98 3.10 Standard Operations for a CDS Entitycccccocmmcccomnccccenncnnn. 155
., . . 3.10.1 Create, Read, Update, and Deleteccccooveovernernecernerncrnncens 155
2.7 Additional CDS Functionality . 101 reate, Read, Lpdate arT elete o
. 3.10.2 Create and Read Operation by Association ... 156
271 Virtual EI@mMeNntsoicceercesecceieecesieecenesesesssescenaneeees 101
272 CDS CUSLOM ENEILIES oo 105 3.11 Specific Operations fora CDS ENtity ... 159
28 Virtual Data Model 109 3111 Actlor?s ... 159
3.11.2 FUNCHIONS e sassssssssssases 166
2.9 CDS Language Elements for Modeling Business Objects 113 . .
3.12 Concurrency and Locking Behavior ..., 168
3.12.1 PessimistiC LOCKING .ocuceerreieriecieceicrieeciiecrisessenecsisensenees 169
3122 Optimistic LOCKING w.couucveneeereereciireceinecineciieceieesisessiseessasensenees 171
3 Behavior Definition 117 3.13 Internal Business LOGICcocccccuumrermmmnenecemminencensieeecessseesnecessseons 173
3.13.1 Determinations ... 173
3.1 Whatis a Behavior Definition? ... 117 3.13.2 Validations 179
3.11 Context and Structure of a Behavior Definition 118 3.13.3 Calling Determinations via an Action 182
3‘1’2 iynt:j ogahBehawor DEINIHON o 12 3.14 Authorization Checksmcennceericnseeseessenees 184
3.13 055ible BENAVION ... 3141 Authorization Master 185
3.2 Editing a Behavior Definition in ABAP Development Tools 129 3.14.2 Authorization-Dependenteerrsmssseerssssnnne 187
3.21 Creatinga Behavior Definition ... w129 3.14.3 Delegating Authorization Checksmmemmeeennns 188
322 Changing and Actvating 2 Behavior Defintor 122 315 DRft HANGING ... 189
- INCing and Lpening a BENAVIOr DEHTHON s 3.15.1 Enabling Draft Handling w.........oemoeoscssesossensoesore 190
3.24 Documenting Behavior Definitions and Relationships 134

Contents

3.15.2 Draft Handling in the Business Object Composition

Contents

Tree ... 191
3.15.3 Draft Lifecycle and Draft Actions 193
3.16 Overarching CoNCEPLSccoccmrreicmnecermiincceerineesesssssessessseees 196
3.16.1 Dynamic Feature Controlnccineeceenscceies 196
3.16.2 Preliminary Checks of Operations .. 200
3.16.3 Internal Visibility of Operations 201
4 Entity Manipulation Language:
Accessing Business Logic 205
4.1 DAtaTYPES ... 206
411 Derived Data TYPESccincrineeeiseeieseiseseessevsessssesennns 206
412 Implicit Return Parameters 209
4.2 EMLODPEIAtions ... seesssssesessssesesssesseas 210
421 READ ENTITIES .o sseeseons 210
422 MODIFY ENTITIES ot sessasenaeenes 213
423 GET PERMISSIONS 216
424 SET LOCKS 217
425 COMMIT ENTITES oo sssesseeseesenns 218
4.2.6 ROLLBACK ENTITIES .o cecnsenesessenaenns 219
4.3 Using EML Outside of Behavioral Implementations 220
431 Useinthe Context of an ABAP Reporteoneceneceann. 220
432 Implementation in the Context of a Test Classcccece.... 222
5 Behavior Implementation 225
5.1 Business Object Provider API 225
5.2 Runtime Behavior of the ABAP RESTful Application
Programming Modelc...orirmncneeeinesseeeisseessesseessesseens 226
5.2.1 Interaction Phase and Transaction Bufferccccuceuueune. 227
5.2.2 Save Sequence 228
5.3 Interfaces for the Interaction Handler and the Save Handler ... 229
5.4 Interaction Handler 230
541 FOR MODIFY 231
542 FORINSTANCE AUTHORIZATIONoccoiviieiriiceeeereencrsceecenens 234

10

543 FOR GLOBAL AUTHORIZATION ...vueireeireneeeeeeireineireerenseeneaens 237

54.4 FOR FEATURES 239

54.5 FOR GLOBAL FEATURES ..cvuiirircreieeeeerceeireeencesensesseeene 242

5.4.6 FOR LOCK 243

5.4.7 FOR READ ..ttt seasens 245

5.4.8 FOR READ BY ASSOCIATION 246

54.9 FOR DETERMINEouviiiicicercintineereieeieeenciesessessencaessesseaens 249

5410 FOR VALIDATE ..ottt setsessessessessessessesssans 250

5411 FORNUMBERING ...cooiiiiiiireinineieieeeieieeeiseeetseeseisesseisessesseaneans 250

5412 FORPRECHECK 252

5.5 Save Handlercenneceeeinseceseeneseeseeeseonne 253
551 FINALIZE ettt ssesnessesscssessens 254

552 CHECK BEFORE_SAVE w...oooooooeesceessceessceessseessoeesseees s 256

553 ADJUST_NUMBERS 257

554 SAVE 258

555 CLEANUP ...ttt senaennes 260

5.5.6 CLEANUP_FINALIZE ..o 262

6 Business Services 263
6.1 Projection LAYercemmneceemineessessesessssssssneesssssesseeseens 264
6.1.1 CDS Projection VIEWcrnereceneesneseserisessssessnesens 265

6.1.2 Projection Behavior Definition ... 266

6.2 Service Definition 267
6.3 Service Binding 268
6.4 Testing Business Services in the SAP Gateway Client 272
6.5 Testing Ul Services with SAP Fiori Elements Preview 275
7 User Interfaces and SAP Fiori Elements 277
7.1 Development Tools . 277
7.1.1 SAP Business Application STtUdiIOcoccmvemecmneceneccnnecinecnns 278

7.1.2 Visual STudio COdeciiencrnecreciecsessesieereesisenene 280

7.2 SAP Fiori Elements 281
7.2.1 Floorplansin SAP Fiori Elements ... 281

722 Selected UL ANNOTAtIONScocereieceecerecrccneceeceieciiecens 283

n

Contents

Contents

7.2.3 Defining Ul Annotations in a CDS Viewc.cocenecennncces 285
7.24 Generating Annotations via the Service Modeler 302
PART Il Practical Application Development
8 Use Cases 315
8.1 APPlcations TYPEScccccumrrumimeerriineseeeiinseeseesiessesesssesssesssssesnsesseens 315
8.2 Implementation Types .. 316
8.3 Selecting the Appropriate Implementation Type ..o 318
9 Managed Scenario: Developing an
Application with SAP Fiori Elements 321
9.1 Description of the Use Case 321
9.2 Building the Data Model 322
9.21 Database Tables ... 322
9.2.2 CDS MOEIING corverrieerierieeieecsineesissesisecsieeeisessssesssessssesssnesees 326
9.3 Creating Behavior Definitions ... 334
9.3.1 Creating Behavior Definitions for Certificate
Management 334
9.3.2 Enabling Draft Handlingcccccoveceneceunecrneceneces 339
9.4 Defining a BUSiN@ss SEIVICecccomrmmnrreionneneericnneseensinseeseens 340
9.4.1 Creatinga Service Definition 341
9.4.2 Creatingthe Service Binding 342
9.5 Creating an SAP Fiori Elements User Interface ..., 344
9.6 Enrichment with a Determination ... 352
9.7 Enrichment with a Validation ... 356
9.8 Enrichment with an Action ..., 360
9.9 Generation and Deployment of the Application ... 362

12

10 Managed Scenario with Unmanaged Save:
Integrating an Existing Application 371
10.1 Description of the Use Case ... seeeeeeneeens 371
10.2 Building the Data Model ... 375
10.2.1 Overview of the Logical Data Modelc.cccocceommereonccrun. 375
10.2.2 Database Tables ... 377
10.2.3 CDS MOEIING ..cuvereicrieceieeieciecrreeeiesseessieesissessenecsissessenees 379
10.3 Creating a Behavior Definition ..., 385
10.4 Implementing the Create Purchase Order Function 387
10.4.1 Declaring Late Numbering 387
10.4.2 Setting Field Properties ..., 388
10.4.3 Creating the Behavior PoOlcccccouciinicnnciinnncnees 390
10.4.4 Implementing Determinationscenecnscenees 391
10.4.5 Save Sequence: Implementing the Creation via BAPI 398
10.4.6 Implementing Validations 403
10.5 Implementing the Delete Purchase Order Function 409
10.5.1 Save Sequence: Implementing the Deletion via BAPI 409
10.5.2 Implementing a Validation ... 414
10.6 Defining Business Services 416
10.6.1 Setting up the Projection Layer for the My Purchase
Orders AppliCationccnececeeeiseereseceeeseseecseseseenne 416
10.6.2 Creating a Service Definitioncnecnnecnecensennnees 418
10.6.3 Creating a Service Bindingccccccccoveenccensccecnccunecnnns 419
10.7 Implementing Authorization Checks 419
10.7.1 Access Controls for Read ACCESScccovurvunercernnnccenicrinannns 419
10.7.2 Access Controls for Write ACCESScoreumnereeereeeerersccenennas 421
10.8 Creating an SAP Fiori Elements User Interfaceccccecccce 424
10.8.1 Creating a Metadata EXteNSioncocccncinccinncienes 424
10.8.2 Generating and Deploying the Application ... 427
11 Unmanaged Scenario: Reusing Existing
Source Code 429
11.1 Description of the Use Case ... 430
11.2 Description of the Existing Application ..., 431
1121 Database Tablescrinneceeseceeeseceesessesesssecsseenns 431
13

Contents

11.2.2 Source Code of the Existing Applicationccouecencces 434
11.3 Extending the Data Model 437
11.4 Creating a Behavior Definition 443
11.5 Creating a Behavior Implementation 447
11.5.1 Implementing the Interaction Phase 450
11.5.2 Implementing the Save Sequence 458
11.6 Defining a Business Service 462

12 Specific Features for the SAP BTP,

ABAP Environment 465
12.1 Technical Fundamentals 466
12.1.1 ABAP for Cloud Development 469
12.1.2 Technical Infrastructure Componentsccouceoncennccenecnns 470
12.1.3 Migrating Legacy Code 472
12.2 Identity and Access Management 473
12.3 Deploying SAP Fiori Apps and Assigning Authorizations 476
12.31 Creating an IAM App and Business Catalog ... 477
12.3.2 Creating an IAM Business Role 479
12.3.3 Integration in SAP Fiori Launchpad 480
12.4 Consuming Business Services 484
13 Outlook 491
13.1 Build 492
13.2 Extensibility 492
13.3 Integration and Reusability 494
Appendices 497
A Bibliography 497
B Authors 499
Index 501

14

Index

.env file
/IWEND/GW_CLIENTc....
/IWFND/ MAINT_SERVICE
%CID
%CONTROL ...
%DATA
%ELEMENT
%FAIL
%ISDRAFT
%MSG
%PARAM
%PID
%TKY

A

ABAP
classic application development ... 38
for cloud development
package
programming models
report
ABAP annotation
ABAP development tools
ABAP Dictionary 39
ABAP Environment — SAP BTP,
ABAP Environment
ABAP Flight Reference Scenario ... 34
ABAP PaaS— SAP BTP, ABAP Environment
ABAP programming model for

SAP Fiori 41
ABAP Repository 26
ABAP RESTful application programming

model 23

API 493

availability 58

development ObJectscceeunnn. 48

extensibility 492

further developmentc..... 492

history

properties

quality featuresccees

request

runtime behavior
transaction model

use cases 315
ABAP Unit 57,222
abapGit 468

Access control ...
Access, concurrent ...
Action
creating
defining
executing
factory
function import
input parameter
iNStance-basedcoconeceenen.
navigation
static
Additional Save ...
Ad-hoc association
ADJUST_NUMBERS
ADT — ABAP development tools
Alias
Annotation
ABAP
AbapCatalog
AccessControl
active
database tables ...
framework-specific
grouping
metadata extension
ObjectModel
scope
Semantics
syntax
API
direct call
framework-based
legacy application
local
reusing
Application generator ... 363
Application programming interface — API
as projectionon ... 115

159, 200

142
............................. 35, 64, 83, 283

Association
accessing 81
cardinality 82
draftable 193
name 83
standard operation ... 156

Authorization check 184, 234,419
delegating 188
excluding 189

501

Index

Authorization check (Cont.)
global
instance-based

Authorization concept

Authorization dependent

Authorization handlerccoeeee.

Authorization master ...

Authorization object

Authorization trace ...

Auto-completion

.. 184,237,423

B
BAPI 373,399
Basic interface Viewcccomererenne 66,110
creating 326,438
BDL 49
Before-image 234
Behavior 49
transactional 123
Behavior definition 49,115,117, 385
actions 299
activating 133
changing 132
creating 129
syntax 121
Behavior definition language 49,118
syntax 121
Behavior implementation ... 50,225,230,
352,390

Behavior Interface .. . 494
Behavior pool . 143,225

creating 390, 448
Behavior projection ... 51
Binding typeccoccevvecnnnneces 268, 269, 343
BO consumer 45
BO framework 47
BO provider 43
BO runtime 225
BOPF 40, 495
BOPF managed 317
Brownfield approach 25,318,429
BSP 477
BSP application 369
Built-in function 77
Business application, architecture 26

Business logic, internal

Business object
COMPOSILION LT€E ...
field
interface

502

Business Object Framework 47
Business Object Processing Framework —
BOPF

Business Object Provider API 50, 225
Business Server Pages ... 477
Business service ... 51,115, 263
consuming 484
defining 340,416
test 272
transporting 270
versioning 269
Business user 468
C
Calendar 296
Camel-case notation ... 74
Cardinality 82,162
CDS 37,61, 62

CDS behavior definition — Behavior
definition

CDS custom entity ... 319, 487
CDS entity
abstract 161
custom 105
extending 94
instances 156

CDS metadata extension — metadata
extension
CDS projection view ..

creating ...

virtual element ...
CDS role
CDS root entity
CDS view

annotations 285

creating 66

SAP HANA 62

types 110
CDS view entity 113
Change operation ... 231
CHECK_BEFORE_SAVE ... 228,256
CL_ABAP_BEHAVIOR_HANDLER 229
CL_ABAP_BEHAVIOR_SAVER ... 229
CL ABAP BEHV ...vvecrverecrveireceerrneens 229
CLEANUP 260
CLEANUP_FINALIZEooomcrrivicrrnnccnnes 262
Client API 486
Client/server architecture 30
Cloud CONNECLOT ...vevermrervernrerrerrerianan 467
Cloud readyness 28
Code completioncncenecennes 132

Index

Code pushdowncccoueeemeceennennene 28,37,62
Code-to-data paradigmcccccomeeeeennees 62
Comment 122
COMMIIT ENTITIES ... 218,228
Communication agreement 476, 485
Communication scenario ... 475, 485, 488
Communication, stateless ... 30
Composite interface viewcoeec.... 111
Composition ... 114,214, 328
composition [J Of coeceeeeernnreecereeenne 114

CompoSition treeencreeneccnnn.
Constructor expression
Consumer
Consumption View ...
Content area
Content ID
Content type
Control flow
Control structure ..

Detail view
Determination ...
action
creating
declaring
iIMmplementingcececonneceennn.
infinite loop
method
side effects
times
determination
determine action ...
Dev space
Development efficiency
Development flowcccomecomneccrcnnecnenns
Development 0bjectcececrneceenns
Displaying a button ...
Domain
Domain-specific language

CONVERT KEY ..corvvirrreccrrveiiinssseens Draft actioncennccceceennnns
Core Data Services RCDSccccecrmereeunnens 61 Draft handlingocccomeceeenn.
create enabling 190, 339
CREATE FIELDS Draft instance 190
Create-by-association Draft lifecycle 193
CRUD operationcceenns Draft table 191, 339
Custom Field and Logic (App) .ccccorsmeeeee 98 DSL— Domain-specific language
Custom query 487 dynamic feature control 126, 196
Dynamic page header ... 282
D Dynpro 39
Data CONSISteNCYcoovvvvvrcrvvrcrirnnninns 168 F
Data Control Language 89
Data Definition Languagecccoeeee. 27 Early numbering ... 147
Data model 34 Eclipse Theia 278
extending 74 Element, virtualccocee...
logical 375 Embedded deployment .
Data source 69 Embedded Steampunk
Data type 39 EML 45,47, 205, 206
derived 206, 446 operations 210
Database table ..o 322,378 Enqueue server 169
Date field 296 Entity 34,48
DDL 27 Entity behavior definition 120, 142
Default Authorization Value 474 Entity Manipulation Language — EML
Default filter 287 Entity set 35
define behavior for 115,120,142 Entity tag— ETag
define service 115 EITOr MESSALE ..oooocveeemcererrccererecenens 300, 403
define view 113 ETag 171
define view entityocmececnneecenns 113 dependent 172
delete 156, 409 field 192
DELETE (HTTP) 34 handling 192
Deployment 362 master 171
Destination 484

503

Index

Evolution capability ... 54 @G
Exception class 358
Extension 281 GET 33
Extension include viewcvnnne. 96 GET PERMISSIONSooommevrecrenirecrnnnnne 216
Git client 278
F Global feature control ... 242
Greenfield approach
Facet 290,346 Guided development ...
Factory actionrceonneces 164, 203
FAILED 209 H
Feature 122
Feature control 239 Handler class 448
dynamic 196 HATEOS 32
global 196 Header toolbar 282
instance-basedneceeenn. 196 Help view 381
static 197 HTTP 29,31
Field client
business objectconneenncicnnns 125 endpoint
extension 97 method
MAPPING ..o 126,153,401 request
name 112 response
property 150, 388 server
virtual 102 service
Filter bar 286 Hubdeployment ...
Filter condition ..., 286,417 Hyperlink
FINALIZE 228,254 Hypertext Transfer Protocol — HTTP
Flight data model, newcrvvvueeee. 34
Floorplan 281 |
Follow-up screen 297
Footer toolbar 282]AM — Identity and Access Management
FOR CREATE 452 Identity and Access Management 473
FOR DETERMINEiriniinricinne 249 app 474,477
FOR FEATURES 239 business catalog
FOR GLOBAL FEATUREScoeevrerenene 242 business role ... 473,475,479
FOR INSTANCE AUTHORIZATION ... 234 Implementation class . 352,448
FORLOCK Implementation group ... 144
FOR MODIFY implementation in class .. 143
FOR NUMBERING Implementation type 43,49, 120,
FOR PRECHECK 136,316
FOR READ abstract 141
FOR READ by association ... 246 BOPF managed .. 317
FOR UPDATE 454 choosing 386
FOR VALIDATE 250 managed 317
Framework-specific annotation 83 selecting 318
Function unmanaged 429
Function group IN SIMULATION MODEocovrmrrern 219
Function import InA 269
Function Module Inbound navigation .. 476
Function module Infinite loop 177
Function, built-in Information Access .. 269
Functional relationship ... Infrastructure component 470
inheriting conditions fromccc..... 420

504

Index

Inner join 382 Locking behavior ... 168, 409
Input help 295,440 Logical Unit of WOrk ..cooeovvvvveeeccereeciennnne 43
Input parameter
action 160 M
data type 160
Instance Maintain Business Roles (App) 479
active 190 Managedemecerinneenns 120,138,316
draft 190 Managed BO provider 44,138, 261
Integration 494 Managed QUeIY ..coveeeernnecens 44,105,316
Interaction handler 228, 230,392,450 Managed scenario ... 43,138
Interaction phase 42,227,386,450 Managed scenario — Managed scenario
Interface view layer MesSage Classoceewereeverecerienenns 357,403
internal 201 Meta-annotation 86
Metadata 75, 346
J Metadata extension 87,98, 344, 424, 440
MODIFY ENTITIES oovevereiecccicrinennne 213
Join 81 Modularization 39
Join on Demand 80
N
K
Name, external 142
Key field 385 Navigation 297
Key user extension ... 98 Number range
Key value interval 149
permanent 146 management 471
temporary 146 Numbering 146
Key, semantic 228 (<72 1) SN 146, 147, 250
Knowledge Transfer Document 134 external 146,147
KTD 134 internal 146, 147
lateeene. 146, 149, 229, 373, 387
L managed 148
Late numbering ... 149,229,388 (O
Launchpad page 480
Launchpad spacemccecnneccenes 480 ODbject Pageccmeemneecemnnecerinnecns 276,282
Layering, systems annotations 289
Legacy code section 289
Link 30 OData 34,37,47
List report 276,281 query 35
annotations 285 V2 268
creating 304, 363 V4 268
Local API 316 vocabulary 35
Lock OData service 34
exclusive 192 ABAP Environment ... 468
explicit 217 metadata 274
optimistic 171 publication 270
pessimistic 169 testing 272
Lock dependency .. on modify 174
Lock mastereeennee. O SAVE eeeeeeereeereeeteerevereveserenens 174,178,179
Lock object Open Data Protocol — OData
Lock table Operation
Lock-dependent specific 125

505

Index

Operation (Cont.) Required field 150
Standard ...eeeeeeeveeeeeeeenne. 50,124,155 Resource 29,30
visibility 201 REST 29,30
writing 124 architecture principles ... 25,30

Optimistic lock 171 compliant software architecture 32

Orchestration framework 47,266 RESTful API 33

Outbound serviceocennecens 485 result 162

Output parameter — return parameter Return parameter ... 162

implicit 209

P Reusability 494

RFC 468

PATCH 34 Roadmap 491

Persistent tableccoccevivevivinne 138,153 role 89

Pessimistic locking ROLLBACK ENTITIES ... 219

Point of no return root 114

POST ROOt eNtity ..o 118,382

Precheck 200,252 Root URL 270

Pretty Printer 380 Runtime component ... 46

Private view 112

Programming language, domain- S
specific 27

Programming modelc..... 24,38 SACMSEL 91

Projection behavior definition 119, SADL frameworko.oomeveeenen 47,266
266,418 SAP Annotation 83

Projection layercnccens 51,416 SAP APIBusiness HUbcomncrenen. 36

Projection view — CDS projection view SAP BTP COCKPIt .coverricrrrirecrreereccenennne 279

Property, transactionalccccoueeee. 123 SAP BTP, ABAP environment 58,465

Proxy 31 architecture 466

PUT 34 use cases 466

SAP Business Application Studio 278

Q SAP Business Technology Platform ... 278

SAP Destination Service 467,484
Query 44,316 SAP Fiori 37,277
Quick fix 339 SAP Fioriapp 315
SAP Fiori design guidelines 277

R SAP Fiori elements 28,277,344,424

draft handling

RAP — ABAP RESTful application floorplan
programming model preview 275, 344

READ ENTITIES SAP Fiori launchpad

Read-by-association ABAP environment ...

Reference parameter page

Relation Explorer space

Relationship, functional ... SAP Fiori TOOIS ..o

Release contract C1ccovommerereverernnenne SAP Fiori user experience ... 28

Remote API SAP Gateway 37,47

Remote API view SAP Gateway Client ... 104, 272

Remote Function Call SAP HANA 28,37

REPORTED SAP HANA CDS VIEW ... 62

Repository object, released SAP NetWeaver Application Server

Representation ABAP 38

Required entry fieldccccererersenenene SAP S/4AHANA 36

506

Index

SAPUI5 37,277 T

SAVE 259

Save handler ... 229,253,458 Table

Save option customer-specificconveceennn. 431
CDS entity 140 Table expression 39
managed SCeNQArio ... 138 Target data SOUICEmerrcereemiseennnnns 79

Save SEQUENCEoccereeeumeerercnene 43,228,398 Test class 222
determinations ... 178 Testability 57
iIMmplementation ..., 458 Text, translation ... 300

SAVE_MODIFIED ... 258 Time 253

Saver class 448,458 Time stamp 173

SCM 486 Total ETag 192

Search help ..., 295,425 process 173

Search property ... 287 Transaction

selective 164, 168 /IWFND/GW _CLIENTccccermmmcerrrnne 272

Semantic Objectcmecrcennccernneccenns 476 /IWFND/MAINT SERVICE ... 104,272

Separation of Concerns c... 57,100 SACMSEL 91

Server STAUTHTRACE ... 422

Service binding .. Transaction buffer ... 42,226, 260
binding typecomneeeeconnens Transaction control ... 374
creating Transaction model ... 42
editor Transaction OWner ... 228
publishing ... Transactional behavior ... 123
versioning Transactional key

Service consumer Translation

Service Consumption Model 486 Trigger condition

Service definition ... 51,263, 267, 341, 418 combinationeeceeennne.

Service documentcccecenneceeccceinonnnne 35 determination

Service endpoint, localccouevvrnecneee. 270 field

Service metadatareeeenns 34,274 standard operation ... 174,179

Service Modeler validation 179

Service provider Trigger — trigger condition

Service URL Type conversion 77

Session variable

SET LOCKS 217 Y

Side effect 182,302

Side-by-side extension ... 466 Ul annotation ... 41, 283,309

Software architecture, Ul service 269, 275
REST-compliantcooeeeeveeccrmemecerrenecnens 32 Ulfacet 284

sSQL 269 UlLfieldGroup 284

SQL Console 72 ULheaderInfo 284

SQL view 68 ULidentification ... 284

Standard operation 50,124,155 ULlineltem 284

Standardization 26 ULselectionFieldoommccrccecenes 284

Stateless communication ... 30 Unified Resource Identifier — URI

STAUTHTRACE 422 Uniform Resource Locator 29

Steampunk — SAP BTP, ABAP Uniqueness check ... 147
environment Unmanaged 316

Strict mode 141 Unmanaged qQUery ... 105, 316

Syntax 62 Unmanaged Save ... 139,317,371

Syntax checkcnnccecnnecnnns 141,469 Unmanaged scenario ... 44,140, 429

update

156

507

Index

URI 29 Visibility 201
URI option 274 Visual Studio Code 278,280, 281
URL 29
use 266 \W
Use case 315
User experience 37 Web API 269, 316
UUID 148 where-used list 420
UX 37 Whitelisted API 469
With additional save ... 140
V With unmanaged save 139
World Wide Web 29
Validation ... 179, 250,403 Write lock — lock
creating 356 Write protection 151
defining 300, 403
implementing ... X
notification
Variant control XCO library 470
VDM XML file 308
View stack
View-Browser Z
Virtual data model
Virtual element Z table 431

508

First-hand knowledge.

® Rheinwerk

Publishing

2 ol L o
ABAP’ RESTful Application
Programming Model

The Comprehensive Guide

p ABAP applications for SAP S/4AHANA and SAP BTP
uding core data services

Develo
Use key tools and technologies, incl
and SAP Fiori

Get step-by-step guidance for modeling data, impl
behaviors, developing user interfaces, and more

Lutz Baumbusch .
Matthias Jager Q Rhelr?werk
Michael Lensch Publishing

Baumbusch, Jager, Lensch

ABAP RESTful Application Programming Model:
The Comprehensive Guide

ementing

1I@Poin Buiuuuweaboad uoljedijddy 1Nn31s3auy .Advav

508 pages, 2023, $89.95
ISBN 978-1-4932-2379-4

¥ www.sap-press.com/5647

Lutz Baumbusch has been working as an SAP developer since
2000 and has been responsible for international SAP projects
in various roles and areas. At All for One Group SE, he prepares
current developer topics for internal and external training in
the SAP S/4HANA development team. He studied at the
Karlsruhe Institute of Technology.

Matthias Jager is a freelance SAP developer of software pro-
ducts based on the ABAP platform. In addition to his work as
a developer, he works as an architect and coach, designs cross-
product, technical aspects, and leads training courses. In 2004
he started his career as an SAP developer and as a developer
of Java-based software products. Since then, he has worked as
a developer, development manager, and trainer in different
SAP implementation projects in the logistics sector. He has been a regular guest
lecturer at DHBW Stuttgart, where he teaches ABAP programming and the use
of system analysis methods. He studied business informatics in Heidenheim as
part of a dual degree program.

Michael Lensch leads a team of SAP developers at All for One
Group SE. As development manager, he is responsible for de-
velopment in SAP S/4HANA implementation projects in Ger-
many and abroad. Since 2014, he has also led a technical team
that deals with development for SAP HANA and SAP S/4HANA.
He studied computer science at Trier University of Applied
Sciences.

We hope you have enjoyed this reading sample. You may recommend or pass it
on to others, but only in its entirety, including all pages. This reading sample and
all its parts are protected by copyright law. All usage and exploitation rights are
reserved by the author and the publisher.

https://www.sap-press.com/abap-restful-application-programming-model_5647/?utm_source=AWS&utm_medium=Browse+the+Book&utm_campaign=readingsample&utm_content=2379

