


Kapitel 4
Der Weg zum ersten Programm

Nachdem wir im interaktiven Modus spielerisch einige Grundelemente der Sprache
Python behandelt haben, mochten wir dieses Wissen jetzt auf ein tatsichliches Pro-
gramm Ubertragen. Im Gegensatz zum interaktiven Modus, der eine wechselseitige
Interaktion zwischen Ihnen und dem Interpreter ermoglicht, wird der Quellcode
eines Programms in eine Datei geschrieben. Diese wird als Ganzes vom Interpreter
eingelesen und ausgefuhrt.

In den folgenden Abschnitten lernen Sie die Grundstrukturen eines Python-Pro-
gramms kennen und werden Ihr erstes einfaches Beispielprogramm schreiben.

4.1 Tippen, kompilieren, testen

In diesem Abschnitt werden die Arbeitsabldufe besprochen, die nétig sind, um ein
Python-Programm zu erstellen und auszufiihren. Ganz allgemein sollten Sie sich da-
rauf einstellen, dass wir in einem Grof3teil des Buchs ausschlie8lich Konsolenanwen-
dungen schreiben werden. Eine Konsolenanwendung hat eine rein textbasierte
Schnittstelle zu den Benutzerinnen und Benutzern und lauft in der Konsole (auch
Shell) des jeweiligen Betriebssystems ab. Flir die meisten Beispiele und auch fiir viele
reale Anwendungsfille reicht eine solche textbasierte Schnittstelle aus.!

Grundsatzlich besteht ein Python-Programm aus einer oder mehreren Programmda-
teien. Diese Programmadateien haben die Dateiendung.py und enthalten den Python-
Quelltext. Dabei handelt es sich um nichts anderes als um Textdateien. Programmda-
teien konnen also mit einem normalen Texteditor bearbeitet werden.

Nachdem eine Programmdatei geschrieben wurde, besteht der nachste Schritt darin,
sie auszufiihren. Wenn Sie IDLE verwenden, kann die Programmdatei bequem tiber
den Meniipunkt RUN « RUN MODULE ausgefliihrt werden. Sollten Sie einen Editor ein-
setzen, der keine vergleichbare Funktion unterstitzt, miissen Sie in einer Kom-
mandozeile in das Verzeichnis der Programmdatei wechseln und — abhédngig von Th-
rem Betriebssystem — verschiedene Kommandos ausfiihren.

1 Selbstverstandlich ermdglicht Python auch die Programmierung grafischer Benutzerober-
flachen. Dies wird in Kapitel 41 behandelt.
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4 Der Weg zum ersten Programm

411 Windows

Unter Windows wechseln Sie in das Verzeichnis, in dem die Programmadatei liegt, und
starten den Python-Interpreter mit dem Kommando python, gefolgt von dem Namen
der auszufithrenden Programmdatei.?

M Anaconda Powershell Prompt (anaconda3) — O X
(base) PS C:\Ordner> dir

Directory: C:\Ordner

LastWriteTime Length Name

98.05.2020 202 5@ programm.py

(base) PS C:\Ordner> python programm.py
Dies schreibt Ihnen Ihr Python-Programm
(base) PS C:\Ordner>

Abbildung 4.1 Ausflihren eines Python-Programms unter Windows

Bei »Dies schreibt [hnen Ihr Python-Programme« handelt es sich um eine Ausgabe des
Python-Programms in der Datei programm.py, die beweist, dass das Python-Pro-
gramm tatsachlich ausgefiihrt wurde.

Hinweis

Unter Windows ist es auch moglich, ein Python-Programm durch einen Doppelklick
auf die jeweilige Programmdatei auszufiihren. Das hat aber den Nachteil, dass sich
das Konsolenfenster sofort nach Beenden des Programmes schlieRt und die Ausgaben
des Programms somit nicht erkennbar sind.

4.1.2 Linux und macOS

Unter Unix-dhnlichen Betriebssystemen wie Linux oder macOS wechseln Sie ebenfalls
in das Verzeichnis, in dem die Programmdatei liegt, und starten dann den Python-In-
terpreter mit dem Kommando python, gefolgt von dem Namen der auszufiihrenden
Programmdatei. Im folgenden Beispiel wird die Programmdatei programm.py unter
Linux ausgefiihrt, die sich im Verzeichnis /home/user/ordner befindet:

2 In dlteren Windows-Versionen finden Sie die Konsole unter START + PROGRAMME * ZUBEHOR
EINGABEAUFFORDERUNG. In neueren Windows-Versionen starten Sie die PowerShell.
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4.1 Tippen, kompilieren, testen

user@HOST ~ $ cd ordner
User@HOST ~/ordner $ python programm.py
Dies schreibt Ihnen Ihr Python-Programm

Bitte beachten Sie den Hinweis in Abschnitt 2.4.3, der besagt, dass das Kommando,
mit dem Sie Python starten, je nach Distribution von dem hier demonstrierten python
abweichen kann.

4.1.3 Shebang

Unter einem Unix-dhnlichen Betriebssystem wie beispielsweise Linux konnen
Python-Programmadateien mithilfe eines Shebangs, auch Magic Line genannt, direkt
ausfuihrbar gemacht werden. Dazu muss die erste Zeile der Programmadatei in der Re-
gel folgendermafien lauten:

#1/usr/bin/python

In diesem Fall wird das Betriebssystem dazu angehalten, diese Programmdatei
immer mit dem Python-Interpreter auszufiihren. Unter anderen Betriebssystemen,
beispielsweise Windows, wird die Shebang-Zeile ignoriert.

Beachten Sie, dass der Python-Interpreter auf Ihrem System in einem anderen Ver-
zeichnis als dem hier angegebenen installiert sein konnte. Allgemein ist daher fol-
gende Shebang-Zeile besser, da sie vom tatsachlichen Installationsort von Python un-
abhingig ist:

#!/usr/bin/env python
Weitere Details zum Zusammenspiel zwischen der Shebang-Zeile und den virtuellen
Umgebungen von Anaconda finden Sie in Abschnitt 39.2. Beachten Sie aufierdem,

dass das Executable-Flag der Programmadatei gesetzt werden muss, bevor die Datei
tatsachlich ausfiihrbar ist. Das geschieht mit folgendem Befehl:

$ chmod +x dateiname
Die in diesem Buch gezeigten Beispiele enthalten aus Grinden der Ubersichtlichkeit

keine Shebang-Zeile. Das bedeutet aber ausdriicklich nicht, dass vom Einsatz einer
Shebang-Zeile abzuraten ware.

4.1.4 Interne Ablaufe

Bislang haben Sie eine ungefdahre Vorstellung davon, was Python ausmacht und wo
die Starken dieser Programmiersprache liegen. Aulerdem haben wir Thnen das
Grundwissen zum Erstellen und Ausfihren einer Python-Programmdatei vermit-
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4 Der Weg zum ersten Programm

telt. Doch in den vorangegangenen Abschnitten sind Begriffe wie »Compiler« oder
»Interpreter« gefallen, ohne erklart worden zu sein. In diesem Abschnitt mochten
wir uns daher den internen Vorgdngen widmen, die beim Ausfiihren einer Python-
Programmdatei ablaufen. Abbildung 4.2 veranschaulicht, was beim Ausfiihren einer
Programmdatei namens programm.py geschieht.

Programmdatei
(o programm.py

l

Compiler

i Byte-Code
( programm.pyc

Interpreter

|
3

Abbildung 4.2 Kompilieren und Interpretieren einer Programmdatei

Wenn die Programmadatei programm.py, wie zu Beginn des Kapitels beschrieben, aus-
gefuhrt wird, passiert sie zunachst den Compiler. Als Compiler wird ein Programm be-
zeichnet, das von einer formalen Sprache in eine andere tibersetzt. Im Fall von Python
ubersetzt der Compiler von der Sprache Python in den Byte-Code. Dabei steht es dem
Compiler frei, den generierten Byte-Code im Arbeitsspeicher zu behalten oder als pro-
gramm.pyc auf der Festplatte zu speichern.

Beachten Sie, dass der vom Compiler generierte Byte-Code nicht direkt auf dem Pro-
zessor ausgefiihrt werden kann, im Gegensatz etwa zu C- oder C++-Kompilaten. Zur
Ausfiihrung des Byte-Codes wird eine weitere Abstraktionsschicht, der Interpreter,
bendtigt. Der Interpreter, hdufig auch virtuelle Maschine (engl. virtual machine) ge-
nannt, liest den vom Compiler erzeugten Byte-Code ein und fihrt ihn aus.

Dieses Prinzip einer interpretierten Programmiersprache hat verschiedene Vorteile.
So kann derselbe Python-Code beispielsweise unmodifiziert auf allen Plattformen
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4.2 Grundstruktur eines Python-Programms

ausgefiihrt werden, fiir die ein Python-Interpreter existiert. Allerdings laufen Pro-
gramme interpretierter Programmiersprachen aufgrund des zwischengeschalteten
Interpreters in der Regel auch langsamer als ein vergleichbares C-Programm, das
direkt auf dem Prozessor ausgefiihrt wird.3

4.2 Grundstruktur eines Python-Programms

Um Thnen ein Gefiihl fir die Sprache Python zu vermitteln, méchten wir Ihnen zu-
nachst einen Uberblick tiber ihre Syntax geben. Das Wort Syntax kommt aus dem
Griechischen und bedeutet »Satzbau«. Unter der Syntax einer Programmiersprache
ist die vollstandige Beschreibung erlaubter und verbotener Konstruktionen zu ver-
stehen. Die Syntax wird durch eine Grammatik festgelegt, an die Sie sich zu halten ha-
ben. Tun Sie es nicht, so verursachen Sie den allseits bekannten Syntax-Error.

Python macht Thnen sehr genaue Vorgaben dazu, wie Sie Ihren Quellcode strukturie-
ren miissen. Obwohl erfahrene Programmierer und Programmiererinnen darin eine
Einschrankung sehen mogen, kommt diese Eigenschaft gerade Neulingen zugute,
denn unstrukturierter und unubersichtlicher Code ist eine der grofiten Fehlerquellen
in der Programmierung.

Grundsatzlich besteht ein Python-Programm aus einzelnen Anweisungen, die im ein-
fachsten Fall genau eine Zeile im Quelltext einnehmen. Folgende Anweisung gibt bei-
spielsweise einen Text auf dem Bildschirm aus:

print("Hallo Welt")

Einige Anweisungen lassen sich in einen Anweisungskopf und einen Anweisungskor-
per unterteilen, wobei der Korper weitere Anweisungen enthalten kann:
Anweisungskopf:

Anweisung

Anweisung

Das kann in einem konkreten Python-Programm etwa so aussehen:

if x > 10:
print("x ist groRer als 10")
print("Zweite Zeile!")

3 Diese Aussage stimmt nicht notwendigerweise, wenn der Interpreter Optimierungen zur Lauf-
zeit des Programms durchfiihrt, beispielsweise eine Just-in-Time-Kompilierung. Aktuelle Versio-
nen von CPython und der alternative Interpreter PyPy (siehe Abschnitt 40.1) fithren solche
Optimierungen durch, um die Programmausfithrung zu beschleunigen.
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Die Zugehorigkeit des Korpers zum Kopf wird in Python durch einen Doppelpunkt
am Ende des Anweisungskopfs und durch eine tiefere Einrtickung des Anweisungs-
korpers festgelegt. Die Einrtickung kann sowohl tiber Tabulatoren als auch tiber Leer-
zeichen erfolgen, wobei Sie gut beraten sind, beides nicht zu vermischen. Wir emp-
fehlen eine Einrtickungstiefe von jeweils vier Leerzeichen.

Python unterscheidet sich hier von vielen gangigen Programmiersprachen, in denen
die Zuordnung von Anweisungskopf und Anweisungskorper durch geschweifte
Klammern oder Schlisselworter wie »Begin« und »End« erreicht wird.

Hinweis

Ein Programm, in dem sowohl Leerzeichen als auch Tabulatoren verwendet wurden,
kann vom Python-Compiler anstandslos tbersetzt werden, da jeder Tabulator intern
durch acht Leerzeichen ersetzt wird. Dies kann aber zu schwer auffindbaren Fehlern
fiihren, denn viele Editoren verwenden standardmaRig eine Tabulatorweite von vier
Leerzeichen. Dadurch scheinen bestimmte Quellcodeabschnitte gleich weit einge-
riickt zu sein, obwohl sie es de facto nicht sind.

Bitte stellen Sie lhren Editor so ein, dass jeder Tabulator automatisch durch Leerzei-
chen ersetzt wird, oder verwenden Sie ausschlieBlich Leerzeichen zur Einrtickung lh-
res Codes.

Moglicherweise fragen Sie sich jetzt, wie Anweisungen, die iiber mehrere Zeilen ge-
hen, mit dem interaktiven Modus vereinbar sind, in dem ja immer nur eine Zeile be-
arbeitet werden kann. Nun, generell werden wir versuchen, den interaktiven Modus
zu vermeiden, wenn ein Codebeispiel mehrere Zeilen lang ist. Dennoch ist die Frage
berechtigt. Die Antwort: Es wird ganz intuitiv zeilenweise eingegeben. Wenn der In-
terpreter erkennt, dass eine Anweisung noch nicht vollendet ist, andert er den
Prompt von >>> in . ... Geben wir einmal unser oben dargestelltes Beispiel in den in-
teraktiven Modus ein:

>>> x = 123

>>> if x > 10:
print("Der Interpreter leistet gute Arbeit")
print("Zweite Zeile!")

Der Interpreter leistet gute Arbeit
Zweite Zeilel
>>>

Beachten Sie, dass Sie die aktuelle Einrtickungstiefe berticksichtigen mussen, auch
wenn eine Zeile mit ... beginnt. Daruber hinaus kann der Interpreter das Ende des
Anweisungskorpers nicht automatisch erkennen, da dieser beliebig viele Anweisun-
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4.2 Grundstruktur eines Python-Programms

gen enthalten kann. Deswegen muss ein Anweisungskorper im interaktiven Modus
durch Dricken der [ < ]-Taste beendet werden.

4.21 Umbrechen langer Zeilen

Prinzipiell konnen Quellcodezeilen beliebig lang werden. Viele Programmierer be-
schrinken die Lange ihrer Quellcodezeilen jedoch, damit beispielsweise mehrere
Quellcodedateien nebeneinander auf den Bildschirm passen oder der Code auch auf
Gerdten mit einer festen Zeilenbreite angenehm zu lesen ist. Gelaufige maximale Zei-
lenlangen sind 80 oder 120 Zeichen. Innerhalb von Klammern dirfen Sie Quellcode
beliebig umbrechen:

>>> var = (
. 10
R
... 10
)
>>> var
20

Anvielen anderen Stellen, an denen keine Klammern gesetzt werden diirfen, sind Sie
an die strengen syntaktischen Regeln von Python gebunden. Durch den Einsatz der
Backslash-Notation ist es moglich, Quellcode an nahezu beliebigen Stellen in eine
neue Zeile zu umbrechen:

>>> var \
=\
. 10
>>> var
10

Grundsatzlich kann ein Backslash tiberall da stehen, wo auch ein Leerzeichen hatte
stehen konnen. Daher ist ein Backslash innerhalb eines Strings ebenfalls moglich:

>>> "Hallo \
. Welt"
'"Hallo Welt'

Beachten Sie dabei aber, dass eine Einriickung des umbrochenen Teils des Strings
Leerzeichen in den String schreibt. Aus diesem Grund sollten Sie die folgende Vari-
ante, einen String in mehrere Zeilen zu schreiben, vorziehen:

>>> "Hallo "\
. "Welt"
'Hallo Welt'
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4.2.2 Zusammenfiigen mehrerer Zeilen

Genauso, wie Sie eine einzeilige Anweisung mithilfe des Backslashs auf mehrere Zei-
len umbrechen, konnen Sie mehrere einzeilige Anweisungen in einer Zeile zusam-
menfassen. Dazu werden die Anweisungen durch ein Semikolon voneinander ge-
trennt:

>>> print("Hallo"); print("Welt")
Hallo
Welt

Anweisungen, die aus einem Anweisungskopf und einem Anweisungskorper beste-
hen, konnen auch ohne Einsatz eines Semikolons in eine Zeile gefasst werden, sofern
der Anweisungskorper selbst aus nicht mehr als einer Zeile besteht:

>>> x = True
>>> if x: print("Hallo Welt")

Hallo Welt
Sollte der Anweisungskorper mehrere Zeilen lang sein, konnen diese durch ein Semi-
kolon zusammengefasst werden:

>>> x = True

>>> if x: print("Hallo"); print("Welt")

Hallo

Welt

Alle durch ein Semikolon zusammengefligten Anweisungen werden so behandelt, als
waren sie gleich weit eingertickt. Allein ein Doppelpunkt vergréfRert die Einriickungs-
tiefe. Aus diesem Grund gibt es im oben genannten Beispiel keine Moglichkeit, in der-

selben Zeile eine Anweisung zu schreiben, die nicht mehr im Koérper der if-Anwei-
sung steht.

Hinweis
Beim Einsatz des Backslashs und vor allem des Semikolons entsteht schnell unleser-

licher Code. Verwenden Sie beide Notationen daher nur, wenn Sie meinen, dass es der
Lesbarkeit und Ubersichtlichkeit dienlich ist.

72



4.3 Das erste Programm

4.3 Das erste Programm

Als Einstieg in die Programmierung mit Python erstellen wir ein kleines Beispielpro-
gramm, das Spiel »Zahlenraten«. Die Spielidee ist folgende: Der Spieler soll eine im
Programm festgelegte Zahl erraten. Dazu stehen ihm beliebig viele Versuche zur Ver-
fligung. Nach jedem Versuch informiert ihn das Programm dariiber, ob die geratene
Zahl zu grof3, zu klein oder genau richtig gewesen ist. Sobald der Spieler die Zahl erra-
ten hat, gibt das Programm die Anzahl der Versuche aus und wird beendet. Aus Sicht
des Spielers soll das Ganze folgendermafien aussehen:

Raten Sie: 42

Zu klein

Raten Sie: 10000

Zu grof

Raten Sie: 999

Zu klein

Raten Sie: 1337

Super, Sie haben es in 4 Versuchen geschafft!

Kommen wir vom Ablaufprotokoll zur konkreten Implementierung in Python.

Initialisierung:
Hier werden Variablen

angelegt und mit Werten Schleifenkopf:

In einer Schleife werden

versehen.
cheimnis - 1337 so lange Zahlen vom Benutzer
éersuch _— gefordert, wie die geheime
zaehler = 0 Zahl noch nicht erraten ist.

while versuch != geheimnis: /

versuch = int(input("Raten Sie: "))

Schleifenkorper:

Der zur Schleife gehdrige
Block wird durch seine
Einrlickung bestimmt.

if versuch < geheimnis:
print("Zu klein") /
Bildschirmausgabe:
if versuch > geheimnis: Mit der Funktion print
print("Zu groR") konnen Zeichenketten

ausgegeben werden.
zaehler = zaehler + 1

print("Super, Sie haben es in ", zaehler, "Versuchen geschafft!")

Abbildung 4.3 Zahlenraten, ein einfaches Beispiel

Die in Abbildung 4.3 hervorgehobenen Bereiche des Programms werden im Folgen-
den noch einmal ausfiihrlich diskutiert.

3



4 Der Weg zum ersten Programm

4.3.1 |Initialisierung

Bei der Initialisierung werden die flr das Spiel bendtigten Variablen angelegt. Python
unterscheidet zwischen verschiedenen Datentypen, wie etwa Zeichenketten, Ganz-
oder Flief3kommazahlen. Der Typ einer Variablen wird zur Laufzeit des Programms
anhand des ihr zugewiesenen Werts bestimmt. Es ist also nicht notig, einen Datentyp
explizit anzugeben. Eine Variable kann im Laufe des Programms ihren Typ dndern.

In unserem Spiel werden Variablen fiir die gesuchte Zahl (geheimnis), die Benutzerein-
gabe (versuch) und den Versuchszédhler (zaehler) angelegt und mit Anfangswerten
versehen. Dadurch, dass versuch und geheimnis zu Beginn des Programms verschie-
dene Werte haben, ist sichergestellt, dass die Schleife anlauft.

43.2 Schleifenkopf

Eine while-Schleife wird eingeleitet. Eine while-Schleife lduft so lange, wie die im
Schleifenkopf genannte Bedingung (versuch != geheimnis) erfillt ist, also in diesem
Fall, bis die Variablen versuch und geheimnis den gleichen Wert haben. Aus Benutzer-
sicht bedeutet dies: Die Schleife lauft so lange, bis die Benutzereingabe mit der zu er-
ratenden Zahl tibereinstimmt.

Den zum Schleifenkopf gehorigen Schleifenkorper erkennt man daran, dass die nach-
folgenden Zeilen um eine Stufe weiter eingertickt wurden. Sobald die Einrtickung wie-
der um einen Schritt nach links geht, endet der Schleifenkorper.

433 Schleifenkdrper

In der ersten Zeile des Schleifenkorpers wird eine vom Spieler eingegebene Zahl ein-
gelesen und in der Variablen versuch gespeichert. Dabei wird mithilfe von input
("Raten Sie: ") die Eingabe eines Benutzers oder einer Benutzerin eingelesen und
mit int in eine ganze Zahl konvertiert (von engl. integer, »ganze Zahl«). Diese Kon-
vertierung ist wichtig, da Benutzereingaben generell als String eingelesen werden.
In unserem Fall méchten wir die Eingabe jedoch als Zahl weiterverwenden. Der
String "Raten Sie: " wird vor der Eingabe ausgegeben und dient dazu, zur Eingabe
der Zahl aufzufordern.

Nach dem Einlesen wird einzeln gepriift, ob die eingegebene Zahl versuch grofSer oder
kleiner als die gesuchte Zahl geheimnis ist, und mittels print wird eine entsprechende
Meldung ausgegeben. Schliefdlich wird der Versuchszédhler zaehler um eins erhoht.

Nach dem Hochzdhlen des Versuchszdhlers endet der Schleifenkorper, da die nachste
Zeile nicht mehr unter dem Schleifenkopf eingertickt ist.
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43.4 Bildschirmausgabe

Die letzte Programmzeile gehort nicht mehr zum Schleifenkorper. Das bedeutet, dass
sie erst ausgefiihrt wird, wenn die Schleife vollstandig durchlaufen, das Spiel also ge-
wonnen ist. In diesem Fall werden eine Erfolgsmeldung sowie die Anzahl der benétig-
ten Versuche ausgegeben. Das Spiel ist beendet.

Erstellen Sie jetzt Ihr erstes Python-Programm, indem Sie den Programmcode in eine
Datei namens spiel.py schreiben und ausfiihren. Andern Sie den Startwert von ge-
heimnis und spielen Sie das Spiel.

4.4 Kommentare

Sie konnen sich sicherlich vorstellen, dass es nicht das Ziel ist, Programme zu schrei-
ben, die auf eine Postkarte passen wiirden. Mit der Zeit wird der Quelltext Ihrer Pro-
gramme umfangreicher und komplexer werden. Irgendwann ist der Zeitpunkt er-
reicht, da blofles Gedédchtnistraining nicht mehr ausreicht, um die Ubersicht zu
bewahren. Spatestens dann kommen Kommentare ins Spiel.

Ein Kommentar ist ein kleiner Text, der eine bestimmte Stelle des Quellcodes erlau-
tert und auf Probleme, offene Aufgaben oder Ahnliches hinweist. Ein Kommentar
wird vom Interpreter einfach ignoriert, andert also am Ablauf des Programms nichts.

Die einfachste Moglichkeit, einen Kommentar zu verfassen, ist der Zeilenkommentar.
Diese Art des Kommentars wird mit dem #-Zeichen begonnen und endet mit dem
Ende der Zeile:

# Ein Beispiel mit Kommentaren
print("Hallo Welt!") # Simple Hallo-Welt-Ausgabe

Fir langere Kommentare bietet sich ein Blockkommentar an. Ein Blockkommentar
beginnt und endet mit drei aufeinanderfolgenden Anfiihrungszeichen:*

nun

Dies ist ein Blockkommentar,
er kann sich Uber mehrere Zeilen erstrecken.

nun

Kommentare sollten nur gesetzt werden, wenn sie zum Verstdndnis des Quelltextes
beitragen oder wertvolle Informationen enthalten. Jede noch so unwichtige Zeile zu
kommentieren, fiihrt dazu, dass man den Wald vor lauter Biumen nicht mehr sieht.

4 Eigentlich wird mit dieser Notation kein Blockkommentar erzeugt, sondern ein mehrzeiliger
String, der sich aber auch dazu eignet, grof3ere Quellcodebereiche »auszukommentieren«.
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4.5 Der Fehlerfall

Vielleicht haben Sie bereits mit dem Beispielprogramm aus Abschnitt 4.3 gespielt und
sind dabei auf eine solche oder dhnliche Ausgabe des Interpreters gestofien:

File "hallo_welt.py", line 7
if versuch != geheimnis

AN

SyntaxError: expected ':'

Es handelt sich dabei um eine Fehlermeldung, die in diesem Fall auf einen Syntaxfeh-
ler im Programm hinweist. Kénnen Sie erkennen, welcher Fehler hier vorliegt? Rich-
tig, es fehlt der Doppelpunkt am Ende der Zeile.

Python stellt bei der Ausgabe einer Fehlermeldung wichtige Informationen bereit, die
bei der Fehlersuche hilfreich sind:

» Die erste Zeile der Fehlermeldung gibt Aufschluss dartiber, in welcher Zeile inner-
halb welcher Datei der Fehler aufgetreten ist. In diesem Fall handelt es sich um
Zeile 7 in der Datei hallo_welt.py.

» Der mittlere Teil zeigt den betroffenen Ausschnitt des Quellcodes, wobei die ge-
naue Stelle, auf die sich die Meldung bezieht, mit einem kleinen Pfeil markiert ist.
Wichtig ist, dass dies die Stelle ist, an der der Interpreter den Fehler erstmalig fest-
stellen konnte. Das ist nicht unbedingt gleichbedeutend mit der Stelle, an der der
Fehler gemacht wurde.

» Dieletzte Zeile spezifiziert den Typ der Fehlermeldung, in diesem Fall einen Syntax-
Error. Dies sind die am hédufigsten auftretenden Fehlermeldungen. Sie zeigen an,
dass der Compiler das Programm aufgrund eines formalen Fehlers nicht weiter
ubersetzen konnte.

Neben dem Syntaxfehler gibt es eine Reihe weiterer Fehlertypen, die an dieser Stelle
nicht alle im Detail besprochen werden sollen.> Wir méchten jedoch noch auf den
IndentationError (dt. »Einrtickungsfehler«) hinweisen, da er gerade bei Python-An-
fingern und -Anfingerinnen héufig auftritt. Versuchen Sie dazu einmal, folgendes
Programm auszufiihren:

i=10
if i == 10:
print("Falsch eingeriickt")

Sie sehen, dass die letzte Zeile eigentlich einen Schritt weiter eingertickt sein misste.
So, wie das Programm jetzt geschrieben wurde, hat die if-Anweisung keinen Anwei-
sungskorper. Das ist nicht zulassig, und daher tritt ein IndentationError auf:

5 Sie finden eine Ubersicht tiber alle Fehlertypen in Abschnitt A.4, »Eingebaute Exceptions«.
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File "indent.py", line 3
print("Falsch eingeriickt")

ANNAN

IndentationError: expected an indented block after 'if' statement on line 2

Nachdem wir uns mit diesen Grundlagen vertraut gemacht haben, kommen wir zu
den Kontrollstrukturen, die es Thnen erlauben, den Programmfluss zu steuern.
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Kapitel 11
Numerische Datentypen

In diesem Kapitel besprechen wir mit den numerischen Datentypen die erste grof3e
Gruppe von Datentypen in Python. Tabelle 11.1 listet alle zu dieser Gruppe gehorigen
Datentypen auf und nennt ihren Zweck.

Datentyp Beschreibung Verinderlichkeit” Abschnitt

int ganze Zahlen unverdnderlich Abschnitt 11.4
float Gleitkommazahlen unverdnderlich Abschnitt 11.5
bool boolesche Werte unverdnderlich Abschnitt 11.6
complex komplexe Zahlen unverdnderlich Abschnitt 11.7

" Alle numerischen Datentypen sind unverinderlich. Das bedeutet nicht, dass es keine
Operatoren gibt, die Zahlen verandern, sondern vielmehr, dass nach jeder Verande-

rung eine neue Instanz des jeweiligen Datentyps erzeugt werden muss. Aus Program-
miersicht besteht also zunachst kaum ein Unterschied. Naheres zum Unterschied zwi-
schen veranderlichen und unveranderlichen Datentypen erfahren Sie in Abschnitt 7.3.

Tabelle 11.1 Numerische Datentypen

Die numerischen Datentypen bilden eine Gruppe, weil sie thematisch zusammenge-
horen. Diese Zusammengehorigkeit schldgt sich auch darin nieder, dass die numeri-
schen Datentypen viele gemeinsame Operatoren haben. In den folgenden Abschnit-
ten werden wir diese gemeinsamen Operatoren behandeln und im Anschluss daran
die numerischen Datentypen int, float, bool und complex detailliert besprechen.

1.1 Arithmetische Operatoren

Unter einem arithmetischen Operator wird ein Operator verstanden, der eine arith-
metische Berechnung vornimmt, beispielsweise eine Addition oder eine Multiplika-
tion. Fur alle numerischen Datentypen sind die in Tabelle 11.2 aufgefiihrten arithme-
tischen Operatoren definiert.

143



11 Numerische Datentypen

Operator Ergebnis

X+y Summe von x undy

X -y Differenz von x und y

X *y Produkt von x und y

x/y Quotient von x und y

X%y Rest beim Teilen von x durch y’

+X positives Vorzeichen

-X negatives Vorzeichen

X *¥¥y x hochy

x//y abgerundeter Quotient von x und y*

" Die Operatoren % und // haben fiir komplexe Zahlen keine mathematische Bedeu-
tung und sind deshalb fiir den Datentyp complex nicht definiert.

Tabelle 11.2 Gemeinsame Operatoren numerischer Datentypen

Hinweis
Zwei Anmerkungen fiir Leser und Leserinnen, die bereits mit einer C-ahnlichen Pro-

grammiersprache vertraut sind:

Es gibt in Python keine Entsprechungen fiir die Inkrementierungs- und Dekrementie-
rungsoperatoren ++ und -- aus C.

Die Operatoren % und // konnen folgendermaBen beschrieben werden:
» x//y=runden(x/y)
> x%y=x-y*runden(x/y)

Python rundet dabei stets ab, wahrend C zur Null hin rundet. Dieser Unterschied tritt
nur auf, wenn die Operanden gegensatzliche Vorzeichen haben.

11.1.1  Erweiterte Zuweisungen

Neben diesen grundlegenden Operatoren gibt es in Python eine Reihe zusétzlicher
Operatoren. Oftmals mochte man beispielsweise die Summe von x und y berechnen
und das Ergebnis in x speichern, x also um y erh6hen. Dazu ist mit den oben genann-
ten Operatoren folgende Anweisung notig:

X =X+y
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1.2 Vergleichende Operatoren

Flr solche Fille gibt es in Python sogenannte erweiterte Zuweisungen (engl. augmen-

ted assignments), die als eine Art Abkiirzung fiir die oben genannte Anweisung ange-

sehen werden konnen. Tabelle 11.3 listet die in Python definierten erweiterten Zuwei-

sungen auf.

Operator Entsprechung
X+=y X=X+y
X-=y X=X-Yy

X *=y X=x*y
x/=y x=x/y

X %=y X=xX%y

X ¥¥=y X=x**y
x//=y x=x//y

Tabelle 11.3 Gemeinsame Operatoren numerischer Datentypen

Wichtig ist, dass Sie hier fiir y einen beliebigen arithmetischen Ausdruck einsetzen

konnen, wiahrend x ein Ausdruck sein muss, der auch als Ziel einer normalen Zuwei-

sung eingesetzt werden konnte, also zum Beispiel ein symbolischer Name oder ein
Element einer Liste oder eines Dictionarys.

1.2 Vergleichende Operatoren

Ein vergleichender Operator ist ein Operator, der aus zwei Instanzen einen Wahrheits-

wert berechnet. Tabelle 11.4 listet die vergleichenden Operatoren auf, die fiir numeri-
sche Datentypen definiert sind.

Operator Ergebnis

X==y wahr, wenn x und y gleich sind

xl=y wahr, wenn x und y verschieden sind
X<y wahr, wenn x kleiner ist als y’

X <=y wahr, wenn x kleiner oder gleich y ist’

Tabelle 1.4 Gemeinsame Operatoren numerischer Datentypen
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Operator Ergebnis
X >y wahr, wenn x groRer ist als y*
X>=y wahr, wenn x groRer oder gleich y ist”

" Da komplexe Zahlen prinzipiell nicht sinnvoll anzuordnen sind, |3sst der Datentyp
complex nur die Verwendung der ersten beiden Operatoren zu.

Tabelle 1.4 Gemeinsame Operatoren numerischer Datentypen (Forts.)

Jeder dieser vergleichenden Operatoren liefert als Ergebnis einen Wahrheitswert. Ein
solcher Wert wird zum Beispiel als Bedingung einer if-Anweisung erwartet. Die Ope-
ratoren konnten also folgendermafien verwendet werden:

if x < 4:
print("x ist kleiner als 4")

Sie konnen beliebig viele der vergleichenden Operatoren zu einer Reihe verketten.
Das obere Beispiel ist genau genommen nur ein Spezialfall dieser Regel - mit lediglich
zwei Operanden. Die Bedeutung einer solchen Verkettung entspricht der mathema-
tischen Sichtweise und ist anhand des folgenden Beispiels zu erkennen:

if 2 < x < 4:
print("x liegt zwischen 2 und 4")

Mehr zu booleschen Werten folgt in Abschnitt 11.6.

1.3 Konvertierung zwischen numerischen Datentypen

Numerische Datentypen konnen tber die eingebauten Funktionen int, float, bool
und complex ineinander umgeformt werden. Dabei konnen je nach Umformung In-
formationen verloren gehen. Als Beispiel betrachten wir einige Konvertierungen im
interaktiven Modus:

>>> float(33)
33.0

>>> int(33.5)

33

>>> bool(12)

True

>>> complex(True)

(1+07)
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1.4 Ganzzahlen—int

Anstelle eines konkreten Literals kann auch eine Referenz eingesetzt bzw. eine Refe-
renz mit dem entstehenden Wert verkniipft werden:

>>> varl = 12.5

>>> int(varl)

>>> var2 = int(40.25)
>>> var2

Hinweis

Der Datentyp complex nimmt bei den oben vorgestellten Konvertierungen eine Son-
derstellungein, da er sich nicht sinnvoll in einer pauschalen Weise auf einen einzelnen
Zahlenwert reduzieren lasst. Aus diesem Grund schldgt eine Konvertierung wie bei-
spielsweise int(1+2j) fehl.

So viel zur allgemeinen Einfiihrung in die numerischen Datentypen. Die folgenden
Abschnitte werden jeden Datentyp dieser Gruppe im Detail behandeln.

1.4 Ganzzahlen —int

Fir die Arbeit mit ganzen Zahlen gibt es in Python den Datentyp int. Im Gegensatz
zu vielen anderen Programmiersprachen unterliegt dieser Datentyp in seinem Wer-
tebereich keinen prinzipiellen Grenzen, was den Umgang mit groen ganzen Zahlen
in Python sehr komfortabel macht.!

Wir haben bereits viel mit ganzen Zahlen gearbeitet, sodass die Verwendung von int
eigentlich keiner Demonstration mehr bedarf. Der Vollstandigkeit halber sehen Sie
hier dennoch ein kleines Beispiel:

>>> 1 = 1234
>>> 1
1234
>>>p

int(5678)
>>> p
5678

Seit Python 3.6 kann ein Unterstrich verwendet werden, um die Ziffern eines Literals
zu gruppieren:

1 In Python 2 existierten noch zwei Datentypen fiir ganze Zahlen: int fiir den begrenzten Zahlen-
raum von 32 Bit bzw. 64 Bit sowie long mit einem unbegrenzten Wertebereich.
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Numerische Datentypen

>>> 1_000_000
1000000

>>> 1.0.0

100

Die Gruppierung dndert nichts am Zahlenwert des Literals, sondern dient dazu, die

Lesbarkeit von Zahlenliteralen zu erhohen. Ob und wie Sie die Ziffern gruppieren,

bleibt Ihnen tiberlassen.

11.4.1 Zahlensysteme

Ganze Zahlen konnen in Python in mehreren Zahlensystemen geschrieben werden:

>

Zahlen, die wie im oben dargestellten Beispiel ohne ein spezielles Prafix geschrie-
ben sind, werden im Dezimalsystem (Basis 10) interpretiert. Beachten Sie, dass
einer solchen Zahl keine fiihrenden Nullen vorangestellt werden durfen:

v_dez = 1337

Das Prifix 0o (»Null-o«) kennzeichnet eine Zahl, die im Oktalsystem (Basis 8) ge-
schrieben wurde. Beachten Sie, dass hier nur Ziffern von 0 bis 7 erlaubt sind:
v_okt = 002471

Das kleine »o« im Prafix kann auch durch ein grofies »O« ersetzt werden. Wir emp-
fehlen Ihnen jedoch, stets ein kleines »o« zu verwenden, da das grofie »O« in vielen
Schriftarten von der Null kaum zu unterscheiden ist.

Die nédchste und weitaus gebrauchlichere Variante ist das Hexadezimalsystem (Ba-
sis 16), das durch das Préfix 0x bzw. 0X (Null-x) gekennzeichnet ist. Die Zahl selbst
darf aus den Ziffern 0-9 und den Buchstaben A-F bzw. a—f gebildet werden:

v_hex = Ox5A3F

Neben dem Hexadezimalsystem ist in der Informatik das Dualsystem, auch Bindr-
system (Basis 2), von entscheidender Bedeutung. Zahlen im Dualsystem werden
analog zu den vorangegangenen Literalen durch das Prafix Ob eingeleitet:

v_bin = 0b1101

Im Dualsystem durfen nur die Ziffern 0 und 1 verwendet werden.

Vielleicht mdchten Sie sich nicht auf diese vier Zahlensysteme beschranken, die von

Python explizit unterstiitzt werden, sondern ein exotischeres verwenden. Natiirlich
gibt es in Python nicht flr jedes mogliche Zahlensystem ein eigenes Literal. Stattdes-
sen konnen Sie sich folgender Schreibweise bedienen:

v_6 = int("54425", 6)
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1.4 Ganzzahlen—int

Es handelt sich um eine alternative Methode, eine Instanz des Datentyps int zu erzeu-
gen und mit einem Anfangswert zu versehen. Dazu werden in den Klammern ein
String, der den gewiinschten Initialwert in dem gewidhlten Zahlensystem enthalt, so-
wie die Basis dieses Zahlensystems als ganze Zahl geschrieben. Beide Werte mussen
durch ein Komma getrennt werden. Im Beispiel wurde das Sechsersystem verwendet.

Python unterstiitzt Zahlensysteme mit einer Basis von 2 bis 36. Wenn ein Zahlensys-
tem mehr als zehn verschiedene Ziffern zur Darstellung einer Zahl benétigt, werden
zusatzlich zu den Ziffern O bis 9 die Buchstaben A bis Z des englischen Alphabets ver-
wendet.

Die Variable v_6 hat jetzt den Wert 7505 im Dezimalsystem.

Fir alle Zahlensystemliterale ist die Verwendung eines negativen Vorzeichens mog-
lich:

>>> -1234
-1234

>>> -00777
-511

>>> -0OxFF

-255

>>> -0b1010101
-85

Beachten Sie, dass es sich bei den Zahlensystemen nur um eine alternative Schreib-
weise des gleichen Werts handelt. Der Datentyp int springt beispielsweise nicht in
eine Art Hexadezimalmodus, sobald er einen solchen Wert enthélt, stattdessen ist das
Zahlensystem nur bei Zuweisungen oder Ausgaben von Bedeutung. Standardmagig
werden alle Zahlen im Dezimalsystem ausgegeben:

>>> vl = OxFF
>>> v2 = 00777
>>> vl

255

>>> v2

511

Wir werden spater in Abschnitt 12.5 im Zusammenhang mit Strings darauf zurtck-

kommen, wie sich Zahlen in anderen Zahlensystemen ausgeben lassen.

11.4.2 Bit-Operationen

Wie bereits gesagt, hat das Dualsystem oder auch Binarsystem in der Informatik eine
grofie Bedeutung. Fiir den Datentyp int sind daher einige zusatzliche Operatoren de-
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11 Numerische Datentypen

finiert, die sich explizit auf die binare Darstellung der Zahl beziehen. Tabelle 11.5 fasst
diese Bit-Operatoren zusammen.

Operator | Erweiterte Zuweisung | Ergebnis

x 8y X 8=y bitweises UND von x und y (AND)

x|y X|=y bitweises nicht ausschliefendes ODER von x
und y (OR)

X"y X "=y bitweises ausschliefendes ODER von x und y
(XOR)

~X bitweises Komplement von x

X<<n X<<=n Bit-Verschiebung um n Stellen nach links

X>>n X >>=n Bit-Verschiebung um n Stellen nach rechts

Tabelle 11.5 Bit-Operatoren des Datentyps int

Da vielleicht nicht jedem unmittelbar klar ist, was die einzelnen Operationen bewir-
ken, mochten wir sie im Folgenden im Detail besprechen.

Bitweises UND

Das bitweise UND zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binardar-
stellung Bit fiir Bit miteinander verkniipft werden. Die resultierende Zahl hat in ihrer
Bindrdarstellung genau dort eine 1, wo beide der jeweiligen Bits der Operanden 1sind,
und sonst eine O. Dies veranschaulicht Abbildung 11.1.

Dual Dezimal
(tjafofufofefsff w7 |
e flofofafefofofaflf » |
oJololsoJo ]| s |

Abbildung 11.1 Bitweises UND

Im interaktiven Modus von Python probieren wir aus, ob das bitweise UND mit den
in der Grafik gewahlten Operanden tatsachlich das erwartete Ergebnis zuriickgibt:

>>> 107 & 25
9
>>> 0b1101011 & 0b11001
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9
>>> bin(0b1101011 & 0b11001)
'Ob1001"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen UND im Bindrsystem darzustellen.

Bitweises ODER

Das bitweise ODER zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Bindrdar-
stellung Bit flr Bit miteinander verglichen werden. Die resultierende Zahl hat in ihrer
Bindrdarstellung genau da eine 1, wo mindestens eines der jeweiligen Bits der Operan-
den 1ist. Abbildung 11.2 veranschaulicht dies.

Dual Dezimal

11110111011 107
I f{ofolafafoloffif 25 |

1111011\ 13 |

Abbildung 11.2 Bitweises nicht ausschlielendes ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ODER mit den
in der Grafik gewéhlten Operanden tatsachlich das erwartete Ergebnis zurtckgibt:

>>> 107 | 25

123

>>> 0b1101011 | 0Ob11001

123

>>> bin(0b1101011 | 0b11001)
'Ob1111011"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen ODER im Binarsystem darzustellen.

Bitweises ausschlieRendes ODER

Das bitweise ausschliefSende ODER (auch exklusives ODER) zweier Zahlen wird gebil-
det, indem beide Zahlen in ihrer Bindrdarstellung Bit fir Bit miteinander verglichen
werden. Die resultierende Zahl hat in ihrer Binardarstellung genau da eine 1, wo sich
die jeweiligen Bits der Operanden voneinander unterscheiden, und eine O, wo sie
gleich sind. Dies zeigt Abbildung 11.3.
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Dual Dezimal
HEDRDRE A
lofolafafofof i il » |
1110010\ 14 |

Abbildung 11.3 Bitweises exklusives ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ausschlie-
Bende ODER mit den in der Grafik gewidhlten Operanden tatsdchlich das erwartete Er-
gebnis zurtickgibt:

>>> 107 ~ 25

114

>>> 0b1101011 » 0b11001

114

>>> bin(0b1101011 * 0b11001)
'0b1110010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen ausschlieffenden ODER im Bindrsystem darzustellen.

Bitweises Komplement

Das bitweise Komplement bildet das sogenannte Einerkomplement einer Dualzahl, das
der Negation aller vorkommenden Bits entspricht. In Python ist dies auf Bit-Ebene
nicht moglich, da eine ganze Zahl in ihrer Lange unbegrenzt ist und das Komplement
immer in einem abgeschlossenen Zahlenraum gebildet werden muss. Deswegen wird
die eigentliche Bit-Operation zur arithmetischen Operation und ist folgendermafien
definiert:?

~x=-x-1

Im interaktiven Modus lasst sich die Funktionsweise des bitweisen Komplements ex-
perimentell erproben:

>>> ™9
-10
>>> ~0b1001

2 Das ist sinnvoll, da man zur Darstellung negativer Zahlen in abgeschlossenen Zahlenrdumen das
sogenannte Zweierkomplement verwendet. Dieses erhalten Sie, indem Sie zum Einerkomple-
ment 1 addieren.

Also: —x = Zweierkomplement von x = ~x + 1. Daraus folgt: ~x = —x -1
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1.4 Ganzzahlen—int

-10
>>> bin(~0b1001)
"-0b1010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen Komplements im Bindrsystem darzustellen.

Bit-Verschiebung

Bei der Bit-Verschiebung (engl. bit shift) wird die Bit-Folge in der bindren Darstellung
des ersten Operanden um die durch den zweiten Operanden gegebene Anzahl Stellen
nach links bzw. rechts verschoben. Auf der rechten Seite entstehende Liicken werden
mit Nullen gefiillt, und das Vorzeichen des ersten Operanden bleibt erhalten. Abbil-
dung 11.4 und Abbildung 11.5 veranschaulichen eine Verschiebung um zwei Stellen
nach links bzw. nach rechts.

Dual Dezimal
‘1‘1‘0‘1‘0‘1‘1“107‘
n=2
[ [rfofaofafafofoff] as |

Dual Dezimal
[lafofifofa]afff awr |
[ [efofafofff = |

Abbildung 11.5 Bit-Verschiebung um zwei Stellen nach rechts

Die in der Bit-Darstellung entstehenden Liicken auf der rechten bzw. linken Seite wer-
den mit Nullen aufgeftllt.

Die Bit-Verschiebung ist in Python @hnlich wie der Komplementoperator arithme-
tisch implementiert. Ein Shift um x Stellen nach rechts entspricht einer ganzzahligen
Division durch 2*. Ein Shift um x Stellen nach links entspricht einer Multiplikation
mit 2%,

Auch fiir die bitweisen Verschiebungen konnen wir die in den Grafiken gezeigten Bei-
spiele im interaktiven Modus nachvollziehen:

>>> 107 << 2
428
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>>> 107 >> 2

26

>>> bin(0b1101011 << 2)
'0b110101100"

>>> bin(0b1101011 >> 2)
'0b11010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
die Ergebnisse der Bit-Verschiebungen im Binarsystem darzustellen.

11.4.3 Die Methode bit_length

Der Datentyp int verfiigt iiber eine Methode, die sich auf die Binardarstellung der
ganzen Zahl bezieht. Die Methode bit_length berechnet die Anzahl Stellen, die flr die
Binardarstellung der Zahl benotigt werden:

>>> (36).bit_length()

6

>>> (4345).bit_length()
13

Die Bindrdarstellung der 36 ist 100100, und die der 4345 ist 1000011111001. Damit be-
notigen die beiden Zahlen 6 bzw. 13 Stellen fiir ihre Binardarstellung.

Hinweis
Beachten Sie, dass die Klammern um die Zahlenliterale bei ganzen Zahlen benétigt

werden, da es sonst zu Doppeldeutigkeiten mit der Syntax fiir Gleitkommazahlen
kommen kénnte.

11.5 Gleitkommazahlen — float

Zu Beginn dieses Teils sind wir bereits oberflachlich auf Gleitkommazahlen eingegan-
gen, was wir in diesem Abschnitt ein wenig vertiefen mochten. Zum Speichern einer
Gleitkommazahl mit begrenzter Genauigkeit® wird der Datentyp float verwendet.

Wie bereits besprochen wurde, sieht das Literal fiir eine Gleitkommazahl im einfachs-
ten Fall folgendermafien aus:

v = 3.141

3 In Abschnitt 11.5.2 besprechen wir einige Details zur Genauigkeit des Datentyps.
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Vor- und Nachkommaanteil konnen dabei weggelassen werden, wenn sie den Wert O
haben:

>>> -3,
-3.0

>>> .001
0.001

Achten Sie dabei darauf, dass der Punkt ein essenzielles Element eines Gleitkomma-
zahl-Literals ist und als solches nicht weggelassen werden darf.

Seit Python 3.6 kann zudem ein Unterstrich verwendet werden, um die Ziffern eines
Gleitkommazahl-Literals zu gruppieren:

>>> 3.000_000_1
3.0000001

11.5.1 Exponentialschreibweise

Python unterstiitzt auflerdem eine Notation, die es ermoglicht, die Exponential-
schreibweise zu verwenden:

v = 3.141e-12

Durch ein kleines oder grofRes e wird die Mantisse (3.141) vom Exponenten (-12) ge-
trennt. Ubertragen in die mathematische Schreibweise, entspricht dies dem Wert
3,141-107%2. Beachten Sie, dass sowohl die Mantisse als auch der Exponent im Dezimal-
system angegeben werden miissen. Andere Zahlensysteme sind nicht vorgesehen,
was die gefahrlose Verwendung fihrender Nullen ermdoglicht:

v = 03.141e-0012

11.5.2 Genauigkeit

Eventuell haben Sie gerade schon etwas mit den Gleitkommazahlen experimentiert
und sind dabei auf einen vermeintlichen Fehler des Interpreters gestof3en:

>>> 1.1+ 2.2
3.3000000000000003

Reelle Zahlen konnen im Datentyp float nicht unendlich prazise gespeichert werden,
stattdessen werden sie mit einer bestimmten Genauigkeit angenéhert.

Wenn Sie technisch versiert sind und jetzt von anderen Programmiersprachen zu
Python wechseln, wird es Sie interessieren, dass float-Instanzen in Python IEEE-754-
Gleitkommazahlen mit doppelter Genauigkeit sind. Der Datentyp float in Python ist
damit mit dem Datentyp double in C, C++ und Java vergleichbar.
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Falls Sie explizit Gleitkommazahlen mit einfacher Genauigkeit verwenden mochten,
konnen Sie auf den Datentyp float32 der Drittanbieterbibliothek NumPy (siehe Kapi-
tel 43, »Wissenschaftliches Rechnen und Data Science«) zuriickgreifen.

11.5.3 Unendlich und Not a Number

Gleitkommazahlen konnen als float nicht beliebig genau gespeichert werden. Das
impliziert auch, dass es sowohl eine Ober- als auch eine Untergrenze fiir diesen Da-
tentyp geben muss. Und tatsdchlich konnen Gleitkommazahlen, die in ihrer Grof3e
ein bestimmtes Limit iiberschreiten, in Python nicht mehr dargestellt werden. Wenn
das Limit iberschritten ist, wird die Zahl als inf gespeichert* bzw. als -inf, wenn das
untere Limit unterschritten wurde. Es kommt also zu keinem Fehler, und es ist immer
noch moglich, eine tibergrof3e Zahl mit anderen zu vergleichen:

>>> 3.0e999

inf

>>> -3.0e999

-inf

>>> 3.0e999 < 12.0

False

>>> 3.0e999 > 12.0

True

>>> 3.0e999 == 3.0e999999999999
True

Esist zwar moglich, zwei unendlich grofie Gleitkommazahlen miteinander zu verglei-
chen, jedoch lasst sich nur bedingt mit ihnen rechnen. Dazu folgendes Beispiel:

>>> 3.0e999 + 1.5e999999
inf
>>> 3.0e999 - 1.5e999999
nan
>>> 3.0e999 * 1.5e999999
inf
>>> 3.0e999 / 1.5e999999

>>> 5 / 19999
0.0

Zweiunendlich grofRe Gleitkommazahlen lassen sich problemlos addieren oder mul-
tiplizieren. Das Ergebnis ist in beiden Fallen wieder inf. Ein Problem gibt es aber,
wenn versucht wird, zwei solche Zahlen zu subtrahieren bzw. zu dividieren. Da diese

4 inf steht fiir infinity (dt. »unendlich«).
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Rechenoperationen nicht sinnvoll sind, ergeben sie nan. Der Status nan ist vergleich-
bar mit inf, bedeutet jedoch not a number, also so viel wie »nicht berechenbar«.

Beachten Sie, dass weder inf noch nan eine Konstante ist, die Sie selbst in einem
Python-Programm verwenden konnten. Stattdessen konnen Sie float-Instanzen mit
den Werten inf und nan folgendermafien erzeugen:

>>> float("inf")

inf

>>> float("nan")

nan

>>> float("inf") / float("inf")
nan

11.6 Boolesche Werte — bool

Eine Instanz des Datentyps bool® kann nur zwei verschiedene Werte annehmen:
»wahr« oder »falsch« bzw., um innerhalb der Python-Syntax zu bleiben, True oder
False. Deshalb ist es auf den ersten Blick absurd, bool den numerischen Datentypen
zuzuordnen. Wie in vielen Programmiersprachen tblich, wird in Python True analog
zur 1 und False analog zur 0 gesehen, sodass sich mit booleschen Werten genauso
rechnen lasst wie beispielsweise mit den ganzen Zahlen. Bei den Namen True und
False handelt es sich um Konstanten, die im Quelltext verwendet werden konnen. Be-
achten Sie besonders, dass die Konstanten mit einem Grof8buchstaben beginnen:

vl = True
v2 = False

11.6.1 Logische Operatoren

Ein oder mehrere boolesche Werte lassen sich mithilfe bestimmter Operatoren zu
einem booleschen Ausdruck kombinieren. Ein solcher Ausdruck resultiert, wenn er
ausgewertet wurde, wieder in einem booleschen Wert, also in True oder False. Bevor
es zu theoretisch wird, folgt hier zunachst die Tabelle der sogenannten logischen Ope-
ratoren®, und darunter sehen Sie weitere Erklairungen mit konkreten Beispielen.

5 Der Name bool geht zurtick auf den britischen Mathematiker und Logiker George Boole
(1815-1864).

6 Beachten Sie, dass es einen Unterschied gibt zwischen den logischen Operatoren, die im Zusam-
menhang mit booleschen Werten stehen, und den bindren Operatoren, die sich auf die Binardar-
stellung einer Zahl beziehen.
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11 Numerische Datentypen

Operator Ergebnis

not x logische Negierung von x

xandy logisches UND zwischen x und y

X 0Ty logisches (nicht ausschlieBendes) ODER zwischen x und y

Tabelle 11.6 Logische Operatoren des Datentyps bool

Logische Negierung

Die logische Negierung eines booleschen Werts ist schnell erklart: Der entsprechende
Operator not macht True zu False und False zu True. In einem konkreten Beispiel
wurde das folgendermafien aussehen:

if not x:

print("x ist False")
else:

print("x ist True")

Logisches UND

Das logische UND zwischen zwei Wahrheitswerten ergibt nur dann True, wenn beide
Operanden bereits True sind. In Tabelle 11.7 sind alle moglichen Falle aufgelistet.

X y xandy
True True True
False True False
True False False
False False False

Tabelle 11.7 Mogliche Falle des logischen UND

In einem konkreten Beispiel wiirde die Anwendung des logischen UND so aussehen:

if x and vy:
print("x und y sind True")

Logisches ODER

Das logische ODER zwischen zwei Wahrheitswerten ergibt genau dann eine wahre
Aussage, wenn mindestens einer der beiden Operanden wahr ist. Es handelt sich dem-
nach um ein nicht ausschlief}endes ODER. Ein Operator fiir ein logisches ausschlie-
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1.6 Boolesche Werte — bool

Rendes (exklusives) ODER existiert in Python nicht.” Tabelle 11.8 listet alle mdglichen
Falle auf.

X y xory
True True True
False True True
True False True
False False False

Tabelle 11.8 Mogliche Falle des logischen ODER

Ein logisches ODER konnte folgendermafien implementiert werden:

if x or y:
print("x oder y ist True")

Selbstverstandlich konnen Sie all diese Operatoren miteinander kombinieren und in
einem komplexen Ausdruck verwenden. Das konnte etwa folgendermafien aussehen:

if x and y or ((y and z) and not x):
print("Holla die Waldfee")

Wir mochten diesen Ausdruck hier nicht im Einzelnen besprechen. Es sei nur gesagt,
dass der Einsatz von Klammern den erwarteten Effekt hat, ndmlich dass umklam-
merte Ausdriicke zuerst ausgewertet werden. Tabelle 11.9 zeigt den Wahrheitswert des
Ausdrucks auf, und zwar in Abhdngigkeit von den drei Parametern x, y und z.

X y z x andy or ((y and z) and not x)
True True True True

False True True True

True False True False

True True False True

False False True False

False True False False

Tabelle 11.9 Mogliche Ergebnisse des Ausdrucks

7 Einlogisches exklusives ODER zwischen x und y ldsst sich iiber (x or y) and not (x and y) nach-
bilden.
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X y z xandy or ((y and z) and not x)
True False False False
False False False False

Tabelle 1.9 Mogliche Ergebnisse des Ausdrucks (Forts.)

Die Kombination von logischen und vergleichenden Operatoren

Zu Beginn des Abschnitts iiber numerische Datentypen haben wir einige verglei-
chende Operatoren eingefiihrt, die eine Wahrheitsaussage in Form eines booleschen
Werts ergeben. Das folgende Beispiel zeigt, dass sie ganz selbstverstandlich zusam-
men mit den logischen Operatoren verwendet werden konnen:

if x >yor (y>zandx !=0):

print("Mein lieber Schwan")

In diesem Fall muss es sich bei x, y und z um Instanzen vergleichbarer Typen handeln,
wie zum Beispiel int, float oder bool.

11.6.2 Wahrheitswerte nicht boolescher Datentypen

Mithilfe der Built-in Function bool lassen sich Instanzen eines jeden Basisdatentyps
in einen booleschen Wert tiberfiihren.

>>> bool([1,2,3])

True
>>> bool("")
False
>>> bool(-7)
True

Dies ist eine sinnvolle Eigenschaft, da sich eine Instanz der Basisdatentypen haufig in
zwei Stadien befinden kann: »leer« und »nicht leer«. Oftmals mochte man beispiels-
weise testen, ob ein String Buchstaben enthalt oder nicht. Da ein String in einen
booleschen Wert konvertiert werden kann, wird ein solcher Test sehr einfach durch
logische Operatoren moglich:

>>> not
True
>>> not "abc
False

Durch Verwendung eines logischen Operators wird der Operand automatisch als
Wahrheitswert interpretiert.
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Fiir jeden Basisdatentyp ist ein bestimmter Wert als False definiert. Alle davon abwei-
chenden Werte sind True. Tabelle 11.10 listet fiir jeden Datentyp den entsprechenden
False-Wert auf. Einige Datentypen wurden noch nicht eingefiihrt, an dieser Stelle soll-
ten Sie sich daran nicht weiter storen.

Basisdatentyp False-Wert Beschreibung

NoneType None der Wert None

Numerische Datentypen

int 0 der numerische Wert null
float 0.0 der numerische Wert null
bool False der boolesche Wert False
complex 0+0j der numerische Wert null

Sequenzielle Datentypen

str " ein leerer String
list [] eine leere Liste
tuple O ein leeres Tupel

Assoziative Datentypen

dict {} ein leeres Dictionary
Mengen

set set() eine leere Menge
frozenset frozenset() eine leere Menge

Tabelle 11.10 Wahrheitswerte der Basisdatentypen

Alle anderen Werte ergeben True.

11.6.3 Auswertung logischer Operatoren

Python wertet logische Ausdriicke grundsatzlich von links nach rechts aus, also im
folgenden Beispiel zuerst a und dann b:

if a or b:
print("a oder b sind True")
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Es wird aber nicht garantiert, dass jeder Teil des Ausdrucks tatsachlich ausgewertet
wird. Aus Optimierungsgriinden bricht Python die Auswertung des Ausdrucks sofort
ab, wenn das Ergebnis feststeht. Hat im Beispiel oben also a bereits den Wert True, ist
der Wert von b nicht weiter von Belang; b wiirde dann nicht mehr ausgewertet. Das
folgende Beispiel demonstriert dieses Verhalten, das Lazy Evaluation (dt. »faule Aus-
wertung«) genannt wird.

>>> a = True
>>> if a or print("Lazy "):
print("Evaluation™)

Evaluation

Obwohl in der Bedingung der if-Anweisung die print-Funktion aufgerufen wird, wird
diese Bildschirmausgabe nie durchgefiihrt, da der Wert der Bedingung bereits nach
der Auswertung von a feststeht. Dieses Detail scheint unwichtig, kann aber insbeson-
dere im Zusammenhang mit seiteneffektbehafteten® Funktionen zu schwer auffind-
baren Fehlern fihren.

In Abschnitt 11.6.1 wurde gesagt, dass ein boolescher Ausdruck stets einen booleschen
Wert ergibt, wenn er ausgewertet wurde. Das ist nicht ganz korrekt, denn auch hier
wurde die Arbeitsweise des Interpreters in einer Weise optimiert, iber die man Be-
scheid wissen sollte. Deutlich wird dies an folgendem Beispiel aus dem interaktiven
Modus:

>>> 0 or 1
1

Nach dem, was wir bisher besprochen haben, sollte das Ergebnis des Ausdrucks True
sein, was nicht der Fall ist. Stattdessen gibt Python hier den ersten Operanden mit
dem Wahrheitswert True zurtick. In vielen Fallen macht das keinen Unterschied, denn
der zurtickgegebene Wert wird problemlos automatisch in den Wahrheitswert True
uberfihrt.

Die Auswertung der beiden Operatoren or und and lauft dabei folgendermafien ab:

Das logische ODER (or) nimmt den Wert des ersten Operanden an, der den Wahrheits-
wert True besitzt, oder —wenn es einen solchen nicht gibt — den Wert des letzten Ope-
randen.

Daslogische UND (and) nimmt den Wert des ersten Operanden an, der den Wahrheits-
wert False besitzt, oder —wenn es einen solchen nicht gibt —den Wert des letzten Ope-
randen.

8 siehe dazu Abschnitt 17.10
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Diese Details haben dabei auch durchaus ihren unterhaltsamen Wert:

>>> "Python" or "Java"
"Python’

1.7 Komplexe Zahlen — complex

Uberraschenderweise findet sich ein Datentyp zur Speicherung komplexer Zahlen
unter Pythons Basisdatentypen. In vielen Programmiersprachen wirden komplexe
Zahlen eher eine Randnotiz in der Standardbibliothek darstellen oder ganz auf3en vor
bleiben. Sollten Sie nicht mit komplexen Zahlen vertraut sein, kénnen Sie diesen Ab-
schnitt gefahrlos iberspringen. Er behandelt nichts, was fiir das weitere Erlernen von
Python vorausgesetzt wlrde.

Komplexe Zahlen bestehen aus einem reellen Realteil und einem Imaginarteil. Der
Imaginirteil ist eine reelle Zahl, die mit der imaginéren Einheit j multipliziert wird.?
Die imaginédre Einheit j ist als Losung der Gleichung

=1
definiert. Im folgenden Beispiel weisen wir einer komplexen Zahl den Namen v zu:

v = 4]

Wenn man wie im Beispiel nur einen Imaginarteil angibt, wird der Realteil automa-
tisch als 0 angenommen. Um den Realteil festzulegen, wird dieser zum Imaginarteil
addiert. Die beiden folgenden Schreibweisen sind dquivalent:

vl =3 + 4j
v2 =43 + 3

Anstelle des kleinen j ist auch ein grof3es J als Literal fiir den Imaginérteil einer kom-
plexen Zahl zulassig. Entscheiden Sie hier ganz nach Ihren Vorlieben, welche der bei-
den Moglichkeiten Sie verwenden mochten.

Sowohl der Real- als auch der Imaginarteil konnen eine beliebige reelle Zahl sein. Fol-
gende Schreibweise ist demnach auch korrekt:

v3 = 3.4 + 4e2j

Zu Beginn des Abschnitts iiber numerische Datentypen wurde bereits angedeutet,
dass sich komplexe Zahlen von den anderen numerischen Datentypen unterschei-
den. Da fiir komplexe Zahlen keine mathematische Anordnung definiert ist, konnen

9 Das in der Mathematik eigentlich tibliche Symbol der imaginéren Einheit ist i. Python halt sich
hier an die Notationen der Elektrotechnik.
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11 Numerische Datentypen

Instanzen des Datentyps complex nur auf Gleichheit oder Ungleichheit tiberpriift wer-
den. Die Menge der vergleichenden Operatoren ist also auf == und != beschriankt.

Dariiber hinaus haben sowohl der Modulo-Operator % als auch der Operator // fiir
eine ganzzahlige Division im Komplexen keinen mathematischen Sinn und stehen
deswegen in Kombination mit komplexen Zahlen nicht zur Verfiigung.

Der Datentyp complex besitzt zwei Attribute, die die Arbeit mit ihm erleichtern. Es
kommt zum Beispiel vor, dass man Berechnungen nur mit dem Realteil oder nur mit
dem Imaginarteil der gespeicherten Zahl anstellen mochte. Um einen der beiden
Teile zu isolieren, stellt eine complex-Instanz die in Tabelle 11.11 aufgefiihrten Attribute

bereit.
Attribut Beschreibung
x.real Realteil von x als Gleitkommazahl
x.1imag Imaginarteil von x als Gleitkommazahl

Tabelle 11.11 Attribute des Datentyps complex

Diese konnen wie im folgenden Beispiel verwendet werden:

>>> ¢ =23 + 4]
>>> c.real

23.0

>>> c.imag

4.0

Neben seinen zwei Attributen verfligt der Datentyp complex iiber eine Methode, die
in Tabelle 11.12 exemplarisch fiir eine Referenz auf eine komplexe Zahl namens x er-
klart wird.

Methode Beschreibung

x.conjugate() Liefert die zu x konjugierte komplexe Zahl.

Tabelle 11.12 Methode des Datentyps complex

Das folgende Beispiel demonstriert die Verwendung der Methode conjugate:

>>> C =23 + 4]
>>> c.conjugate()
(23-47)
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Das Ergebnis von conjugate ist wieder eine komplexe Zahl und verfiigt daher eben-
falls Giber die Methode conjugate:

>>> C =23 + 4]

>>> ¢2 = c.conjugate()
>>> 2

(23-49)

>>> 3 = c2.conjugate()
>>> 3

(23+47)

Das Konjugieren einer komplexen Zahl ist eine selbstinverse Operation. Das bedeu-
tet, dass das Ergebnis einer zweifachen Konjugation wieder die Ausgangszahl ist.
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Kapitel 20
Ausnahmebehandlung

Stellen Sie sich einmal ein Programm vor, das tber eine vergleichsweise tiefe Aufruf-
hierarchie verfiigt. Das heif3t, dass Funktionen weitere Unterfunktionen aufrufen, die
ihrerseits wieder Funktionen aufrufen. Es ist haufig so, dass die ibergeordneten
Funktionen nicht korrekt weiterarbeiten konnen, wenn in einer ihrer Unterfunktio-
nen ein Fehler aufgetreten ist. Die Information, dass ein Fehler aufgetreten ist, muss
also durch die Aufruthierarchie nach oben geschleust werden, damit jede tibergeord-
nete Funktion auf den Fehler reagieren und sich daran anpassen kann.

20.1 Exceptions

Bislang konnten wir Fehler, die innerhalb einer Funktion aufgetreten sind, allein an-
hand des Riickgabewerts der Funktion kenntlich machen. Es ist mit viel Aufwand ver-
bunden, einen solchen Riickgabewert durch die Funktionshierarchie nach oben
durchzureichen, zumal es sich dabei um Ausnahmen handelt. Wir wiirden also sehr
viel Code dafiir aufwenden, um seltene Fille zu behandeln.

Fir solche Falle unterstiitzt Python ein Programmierkonzept, das Exception Handling
(dt. »Ausnahmebehandlung«) genannt wird. Im Fehlerfall erzeugt unsere Unterfunk-
tion dann eine sogenannte Exception und wirft sie, bildlich gesprochen, nach oben.
Die Ausfihrung der Funktion ist damit beendet. Jede ibergeordnete Funktion hat
jetzt drei Moglichkeiten:

» Sie fangt die Exception ab, fiihrt den Code aus, der fiir den Fehlerfall vorgesehen
ist, und fahrt dann normal fort. In einem solchen Fall bemerken weitere tiberge-
ordnete Funktionen die Exception nicht.

» Sie fingt die Exception ab, fiihrt den Code aus, der flir den Fehlerfall vorgesehen
ist, und wirft die Exception weiter nach oben. In einem solchen Fall ist auch die
Ausfihrung dieser Funktion sofort beendet, und die tbergeordnete Funktion
steht vor der Wahl, die Exception abzufangen oder nicht.

» Sie lasst die Exception passieren, ohne sie abzufangen. In diesem Fall ist die Aus-
fihrung der Funktion sofort beendet, und die iibergeordnete Funktion steht vor
der Wahl, die Exception abzufangen oder nicht.
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20 Ausnahmebehandlung

Bisher haben wir bei einer solchen Ausgabe

>>> abc
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
abc

NameError: name 'abc
to import 'abc'?

is not defined. Did you mean: 'abs'? Or did you forget

ganz allgemein von einem »Fehler« oder einer »Fehlermeldung« gesprochen. Dies ist
nicht ganz korrekt: Im Folgenden mochten wir diese Ausgabe als Traceback bezeich-
nen. Welche Informationen ein Traceback enthadlt und wie sie interpretiert werden
konnen, wurde bereits in Abschnitt 4.5 behandelt. Ein Traceback wird immer dann an-
gezeigt, wenn eine Exception bis nach ganz oben durchgereicht wurde, ohne abgefan-
gen zu werden. Doch was genau ist eine Exception?

Eine Exception ist ein Objekt, das Attribute und Methoden zur Klassifizierung und Be-
arbeitung eines Fehlers enthalt. Einige dieser Informationen werden im Traceback
angezeigt, so etwa die Beschreibung des Fehlers (name 'abc' is not defined). Eine Ex-
ception kann im Programm selbst abgefangen und behandelt werden, ohne dass Nut-
zende etwas davon mitbekommen. Naheres zum Abfangen einer Exception erfahren
Sie im weiteren Verlauf dieses Kapitels. Sollte eine Exception nicht abgefangen wer-
den, wird sie in Form eines Tracebacks ausgegeben, und der Programmablauf wird be-
endet.

20.1.1 Eingebaute Exceptions

In Python existiert eine Reihe eingebauter Exceptions, zum Beispiel die bereits be-
kannten Exceptions SyntaxError, NameError und TypeError. Solche Exceptions werden
von Funktionen der Standardbibliothek oder vom Interpreter selbst geworfen. Sie
sind eingebaut, das bedeutet, dass sie zu jeder Zeit im Quelltext verwendet werden
konnen:

>>> Namekrror

<class '"NameError'>
>>> SyntaxError
<class 'SyntaxError'>

Die eingebauten Exceptions sind hierarchisch organisiert, das heif3t, sie erben von ge-
meinsamen Basisklassen. Sie sind deswegen in ihrem Attribut- und Methodenum-
fang weitestgehend identisch. Im Anhang (in Abschnitt A.4) finden Sie eine Liste der
eingebauten Exception-Typen mit kurzer Erklarung.
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BaseException

Die Klasse BaseException ist die Basisklasse aller Exceptions und stellt damit eine
Grundfunktionalitit bereit, die flr alle Exception-Typen vorhanden ist. Aus diesem
Grund soll sie hier besprochen werden.

Die Grundfunktionalitat, die BaseException bereitstellt, besteht aus einem wesentli-
chen Attribut namens args. Dabei handelt es sich um ein Tupel, in dem alle Parameter
abgelegt werden, die der Exception bei ihrer Instanziierung ibergeben wurden. Uber
diese Parameter ist es dann spater beim Fangen der Exception moglich, detaillierte
Informationen iiber den aufgetretenen Fehler zu erhalten. Das folgende Beispiel de-
monstriert nun die Verwendung des Attributs args:

>>> e = BaseException("Hallo Welt")

>>> e.args

('Hallo Welt',)

>>> e = BaseException("Hallo Welt",1,2,3,4,5)
>>> e.args

('Hallo Welt', 1, 2, 3, 4, 5)

So viel zunédchst zur direkten Verwendung der Exception-Klassen.

20.1.2 Das Werfen einer Exception

Bisher haben wir nur Exceptions betrachtet, die in einem Fehlerfall vom Python-In-
terpreter geworfen wurden. Es ist jedoch auch moglich, mithilfe der raise-Anweisung
selbst eine Exception zu werfen:

>>> raise SyntaxError("Hallo Welt")
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise SyntaxError("Hallo Welt")
SyntaxError: Hallo Welt

Dazu wird das Schlisselwort raise geschrieben, gefolgt von einer Instanz. Diese darf
nur Instanz einer von BaseException abgeleiteten Klasse sein. Dariiber hinaus ist auch
das Werfen einer von BaseException abgeleiteten Klasse moglich, ohne zunachst eine
Instanz zu erstellen. Eine auf diesem Weg geworfene Exception beinhaltet dann keine
Fehlermeldung:

>>> raise SyntaxError
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise SyntaxError
SyntaxError: <no detail available>
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Das Werfen von Instanzen anderer Datentypen, insbesondere von Strings, ist nicht
moglich:

>>> raise "Hallo Welt"
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise "Hallo Welt"
TypeError: exceptions must derive from BaseException

Im folgenden Abschnitt mochten wir besprechen, wie Exceptions im Programm ab-
gefangen werden konnen, sodass sie nicht in einem Traceback enden, sondern zur
Ausnahmebehandlung eingesetzt werden konnen. Wir werden sowohl in diesem als
auch im ndchsten Abschnitt bei den eingebauten Exceptions bleiben. Selbst defi-
nierte Exception-Typen werden das Thema von Abschnitt 20.1.4 sein.

20.1.3 Das Abfangen einer Exception

In diesem Abschnitt geht es darum, wie eine in einer Unterfunktion geworfene Excep-
tion in den daruberliegenden Aufrufebenen abgefangen werden kann. Das Fangen
einer Exception ist notwendig, um auf den aufgetretenen Fehler reagieren zu kénnen.
Stellen Sie sich ein Programm vor, das Daten aus einer vom Benutzer festgelegten
Datei liest. Dazu verwendet das Programm die folgende im Moment noch sehr simple
Funktion get_file, die das gedffnete Dateiobjekt zuriickgibt:

def get_file(name):
return open(name)

Sollte keine Datei mit dem angegebenen Namen existieren, wirft die eingebaute
Funktion open eine FileNotFoundError-Exception. Da die Funktion get_file nicht auf
diese Exception reagiert, wird sie in der Aufrufhierarchie weiter nach oben gereicht
und verursacht schlief8lich ein vorzeitiges Beenden des Programmes.

Nun sind fehlerhafte Benutzereingaben Probleme, die Sie beim Schreiben eines inter-
aktiven Programms berticksichtigen sollten. Die folgende Variante der Funktion get_
file fangt eine von open geworfene FileNotFoundError-Exception ab und gibt in die-
sem Fall anstelle des ge6ffneten Dateiobjekts den Wert None zurtick:

def get_file(name):
try:
return open(name)
except FileNotFoundError:
return None

Zum Abfangen einer Exception wird eine try/except-Anweisung verwendet. Eine sol-
che Anweisung besteht zunachst aus zwei Teilen:
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» Der try-Block wird durch das Schliisselwort try eingeleitet, gefolgt von einem Dop-
pelpunkt und einem beliebigen Codeblock, der um eine Ebene weiter eingertickt
ist. Dieser Codeblock wird zundchst ausgefiihrt. Wenn in diesem Codeblock eine
Exception auftritt, wird seine Ausfithrung sofort beendet und der except-Zweig der
Anweisung ausgefiihrt.

» Der except-Zweig wird durch das Schliisselwort except eingeleitet, gefolgt von
einer optionalen Liste von Exception-Typen, fiir die dieser except-Zweig ausge-
fuhrt werden soll. Beachten Sie, dass mehrere Exception-Typen in Form eines Tu-
pels angegeben werden mussen. Dazu werden Sie spater noch ein Beispiel sehen.
Hinter der Liste der Exception-Typen kann, ebenfalls optional, das Schltsselwort
as stehen, gefolgt von einem frei wiahlbaren Bezeichner. Hier legen Sie fest, unter
welchem Namen Sie auf die gefangene Exception-Instanz im except-Zweig zugrei-
fen konnen. Auf diesem Weg konnen Sie beispielsweise auf die in dem args-Attri-
but der Exception-Instanz abgelegten Informationen zugreifen. Auch dazu werden
Sie im Verlauf dieses Kapitels noch Beispiele sehen.

Danach folgen ein Doppelpunkt und, um eine Ebene weiter eingertickt, ein belie-
biger Codeblock. Dieser Codeblock wird nur dann ausgefiihrt, wenn innerhalb des
try-Blocks eine der aufgelisteten Exceptions geworfen wurde.

Eine grundlegende try/except-Anweisung hat also folgende Struktur:

try:
Anweisung
Anweisung
except ExceptionTyp as Bezeichner:
Anweisung
Anweisung

Kommen wir zuriick zu unserer Beispielfunktion get_file. Es ist durchaus maoglich,
dass bei einem Funktionsaufruf fiir name falschlicherweise kein String, sondern zum
Beispiel eine Liste tibergeben wird. In einem solchen Fall wird kein FileNotFoundError,
sondern ein TypeError geworfen, der von der try/except-Anweisung bislang nicht ab-
gefangen wird:

>>> get_file([1, 2, 3])
Traceback (most recent call last):
File "<python-input-1>", line 1, in <module>
get_file([1, 2, 3])
~~~~~~~~ AAAAAAANAAA
File "<python-input-0>", line 3, in get_file
return open(name)
TypeError: expected str, bytes or os.PathLike object, not list
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Die Funktion soll nun dahin gehend erweitert werden, dass auch ein TypeError abge-
fangen und dann ebenfalls None zurtickgegeben wird. Dazu haben wir im Wesentli-
chen drei Moglichkeiten. Die erste besteht darin, die Liste der abzufangenden Excep-
tion-Typen im vorhandenen except-Zweig um den TypeError zu erweitern. Beachten
Sie dabei, dass zwei oder mehr Exception-Typen im Kopf eines except-Zweigs als Tu-
pel angegeben werden missen:

def get_file(name):
try:
return open(name)
except (FileNotFoundError, TypeError):
return None

Hinweis

Mit Python 3.14 wurde die Syntax der try/except-Anweisung dahin gehend liberar-
beitet, dass die Klammern beim Abfangen mehrerer Exception-Typen in einem
except-Zweig nicht mehr notwendig sind:

def get_file(name):
try:
return open(name)
except FileNotFoundError, TypeError:
return None

Die Klammern diirfen nur dann weggelassen werden, wenn der except-Zweig nicht
gleichzeitig um einen as-Teil erganzt wird, den wir im Verlauf dieses Abschnitts noch
kennenlernen werden.

Dies ist einfach und flihrt im gewahlten Beispiel zum gewtinschten Resultat. Stellen
Sie sich jedoch vor, Sie wollten je nach Exception-Typ unterschiedlichen Code ausfiih-
ren. Um ein solches Verhalten zu erreichen, kann eine try/except-Anweisung tiber be-
liebig viele except-Zweige verfiigen:

def get_file(name):
try:
return open(name)
except FileNotFoundError:
return None
except TypeError:
return None

Die dritte — weniger elegante — Moglichkeit besteht darin, alle Arten von Exceptions
auf einmal abzufangen. Dazu wird ein except-Zweig ohne Angabe eines Exception-
Typs geschrieben:
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def get_file(name):
try:
return open(name)
except:
return None

Hinweis

Es ist nur in wenigen Fallen sinnvoll, alle moglichen Exceptions auf einmal abzufan-
gen. Durch diese Art des Exception Handling kann es vorkommen, dass unabsichtlich
auch Exceptions abgefangen werden, die nichts mit dem oben dargestellten Code zu
tun haben. Das betrifft zum Beispiel die KeyInterrupt-Exception, die bei einem Pro-
grammabbruch per Tastenkombination geworfen wird.

Sollten Sie einmal jede beliebige Exception fangen wollen, verwenden Sie except Ex-
ception, da Exception die Basisklasse aller Exceptions ist, die das Programm nicht
zwingend beenden.

Eine Exception ist nichts anderes als eine Instanz einer bestimmten Klasse. Darum
stellt sich die Frage, ob und wie man innerhalb eines except-Zweigs Zugriff auf die
geworfene Instanz erlangt. Das ist durch Angabe des bereits angesprochenen
as Bezeichner-Teils im Kopf des except-Zweigs moglich. Unter dem dort angegebe-
nen Namen konnen Sie nun innerhalb des Codeblocks auf die geworfene Exception-
Instanz zugreifen:!

try:
print([1,2,3][10])

except (IndexError, TypeError) as e:
print("Fehlermeldung:", e.args[0])

Die Ausgabe des oben angefiihrten Beispiels lautet:

Fehlermeldung: list index out of range

Zusitzlich kann eine try/except-Anweisung tber einen else- und einen finally-
Zweig verfligen, die jeweils nur einmal pro Anweisung vorkommen diirfen. Der dem
else-Zweig zugehorige Codeblock wird ausgefiihrt, wenn keine Exception aufgetre-
ten ist, und der dem finally-Zweig zugehorige Codeblock wird in jedem Fall nach Be-
handlung aller Exceptions und nach dem Ausfiihren des entsprechenden else-Zweigs
ausgefuhrt — egal, ob Exceptions vorher aufgetreten sind und welche. Dieser finally-

1 Die moglicherweise verwirrende Schreibweise print([1,2,3][10]) ist gleichbedeutend mit:
1st=[1,2,3]
print(1st[10])
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Zweig eignet sich daher besonders fiir Dinge, die in jedem Fall erledigt werden miis-
sen, wie beispielsweise das Schliefien eines Dateiobjekts.

Sowohl der else- als auch der finally-Zweig miissen ans Ende der try/except-Anwei-
sung geschrieben werden. Wenn beide Zweige vorkommen, muss der else-Zweig vor
dem finally-Zweig stehen.

Abbildung 20.1 zeigt eine vollstindige try/except-Anweisung.

Der try-Zweig enthalt den Code,
der ausgefiihrt werden soll.

try:

Anweisung
: Ein oder mehrere except-Zweige

Anweisung enthalten den Code, der im Falle

einer ExceptionTyp-Exception

ausgefiihrt werden soll.

except ExceptionTyp as Namel:

Anweisung
Anweisung
except ExceptionTyp as Name2:
Anweisung Ein optionaler else-Zweig
: enthalt Code, der nur dann aus-
Anweisung gefiihrt wird, wenn zuvor keine
else: Exception abgefangen wurde.
Anweisung /
‘ Ein optionaler finally-Zweig
Anweisung enthilt Code, der immer abschlieRend
finally: ausgefiihrt wird, egal, ob oder welche
Anweisung / Exceptions geworfen wurden.
Anweisung

Abbildung 20.1 Eine vollstidndige try/except-Anweisung

Abschlieflend noch einige Bemerkungen dazu, wie eine try/except-Anweisung ausge-
fihrt wird: Zunachst wird der Code ausgefiihrt, der zum try-Zweig gehort. Sollte in-
nerhalb dieses Codes eine Exception geworfen werden, wird der Code ausgefiihrt, der
zu dem entsprechenden except-Zweig gehort. Ist kein passender except-Zweig vor-
handen, wird die Exception nicht abgefangen und endet, wenn sie auch anderswo
nicht abgefangen wird, als Traceback auf dem Bildschirm. Sollte im try-Zweig keine
Exception geworfen werden, wird keiner der except-Zweige ausgefiihrt, sondern der
else-Zweig. Der finally-Zweig wird in jedem Fall zum Schluss ausgefuhrt.

Exceptions, die innerhalb eines except-, else- oder finally-Zweigs geworfen werden,
konnen nicht von folgenden except-Zweigen der gleichen Anweisung wieder abge-
fangen werden. Es ist jedoch moglich, try/except-Anweisungen zu verschachteln:
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try:
try:
raise TypeError
except TypeError:
raise IndexError
except IndexError:
print("Innen gefangen")
except IndexError:
print("AuRen gefangen")

Bei der Behandlung der im inneren try-Block geworfenen TypeError-Exception wird
ein IndexError geworfen, der von der Anweisung selbst nicht abgefangen werden
kann. Die Exception wandert dann, bildlich gesprochen, eine Ebene hoher und durch-
lauft die nachste try/except-Anweisung. In dieser wird der geworfene IndexError ab-
gefangen und eine entsprechende Meldung ausgegeben. Die Ausgabe des Beispiels
lautet also: »Aufien gefangen«.

20.1.4 Eigene Exceptions

Beim Werfen und Abfangen von Exceptions sind Sie nicht auf den eingebauten Satz
von Exception-Typen beschrankt, vielmehr konnen Sie selbst neue Typen erstellen.
Viele Drittanbieterbibliotheken nutzen diese Moglichkeit, um speziell auf die jewei-
lige Anwendung zugeschnittene Exception-Typen anzubieten.

Zum Definieren eines eigenen Exception-Typs brauchen Sie lediglich eine eigene
Klasse zu erstellen, die von der Exception-Basisklasse Exception erbt, und kénnen
dann ganz nach Anforderung weitere Attribute und Methoden zum Umgang mit Th-
rer Exception hinzufligen.

Im Folgenden definieren wir zunéchst eine rudimentire Kontoklasse, die als einzige
Operation das Abheben eines bestimmten Geldbetrags unterstutzt:

class Konto:
def __init__(self, betrag):
self.kontostand = betrag
def abheben(self, betrag):
self.kontostand -= betrag

In dieser Implementierung der Klasse ist es moglich, das Konto beliebig zu tberzie-
hen. In einer etwas raffinierteren Variante soll das Uberziehen des Kontos unterbun-
den werden, und beim Versuch, mehr Geld abzuheben, als vorhanden ist, soll eine
selbst definierte Exception geworfen werden. Dazu definieren wir zunédchst eine von
der Basisklasse Exception abgeleitete Klasse und filigen Attribute fiir den Kontostand
und den abzuhebenden Betrag hinzu:
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class KontostandException(Exception):
def __init__(self, kontostand, betrag):
super().__init__(kontostand, betrag)
self.kontostand = kontostand
self.betrag = betrag

Dann modifizieren wir die Methode abheben der Klasse Konto dahin gehend, dass bei
einem ungiltigen Abhebevorgang eine KontostandException-Instanz geworfen wird:

class Konto:
def __init__(self, betrag):
self.kontostand = betrag
def abheben(self, betrag):
if betrag > self.kontostand:
raise KontostandException(self.kontostand, betrag)
self.kontostand -= betrag

Die dem Konstruktor der Klasse tibergebenen zusatzlichen Informationen werden im
Traceback nicht angezeigt:

>>> k = Konto(1000)
>>> k.abheben(2000)
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
k.abheben(2000)

File "<python-input-1>", line 6, in abheben
raise KontostandException(self.kontostand, betrag)
KontostandException: (1000, 2000)

Sie kommen erst zum Tragen, wenn die Exception abgefangen und bearbeitet wird:

try:
k.abheben(2000)

except KontostandException as e:
print(f"Kontostand: {e.kontostand} €")
print(f"Abheben von {e.betrag} € nicht méglich.")

Dieser Code fiangt die entstandene Exception ab und gibt daraufhin eine Fehlermel-
dung aus. Anhand der zuséatzlichen Informationen, die die Klasse durch die Attribute
kontostand und betrag bereitstellt, lasst sich der vorausgegangene Abhebevorgang re-
konstruieren. Die Ausgabe des Beispiels lautet:

Kontostand: 1000 €
Abheben von 2000 € nicht méglich.
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Damit eine selbst definierte Exception mit weiterfiihrenden Informationen auch
eine Fehlermeldung enthalten kann, muss sie die Magic Method __str__ implemen-
tieren:

class KontostandException(Exception):
def __init__(self, kontostand, betrag):
self.kontostand = kontostand
self.betrag = betrag
def __str__(self):
fehlbetrag = self.betrag - self.kontostand
return f"Kontostand zu niedrig: Es werden {fehlbetrag} € mehr benttigt"

Ein Traceback, der durch diese Exception verursacht wird, sieht folgendermafien aus:

>>> k = Konto(1000)
>>> k.abheben(2000)
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
k.abheben(2000)

File "<python-input-1>", line 6, in abheben
raise KontostandException(self.kontostand, betrag)
KontostandException: Kontostand zu niedrig: Es werden 1000 € mehr benotigt

20.1.5 Erneutes Werfen einer Exception

In manchen Fillen, gerade bei einer tiefen Funktionshierarchie, ist es sinnvoll, eine
Exception abzufangen, die fiir diesen Fall vorgesehene Fehlerbehandlung zu starten
und die Exception danach erneut zu werfen. Betrachten wir dazu folgendes Beispiel:

def funktion3():
raise TypeError

def funktion2():
funktion3()

def funktion1():
funktion2()

funktion1()

Im Beispiel wird die Funktion funktionl aufgerufen, die ihrerseits funktion2 aufruft,
inder die Funktion funktion3 aufgerufen wird. Es handelt sich also um insgesamt drei
verschachtelte Funktionsaufrufe. Im Innersten dieser Funktionsaufrufe, in funktion3s,
wird eine TypeError-Exception geworfen. Diese Exception wird nicht abgefangen, des-
halb sieht der dazugehorige Traceback so aus:
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Traceback (most recent call last):
File "<python-input-0>", line 7, in <module>
funktion1()

File "<python-input-0>", line 6, in funktionl
funktion2()

File "<python-input-0>", line 4, in funktion2
funktion3()

File "<python-input-0>", line 2, in funktion3
raise TypeError
TypeError

Der Traceback beschreibt erwartungsgemaf’ die Funktionshierarchie zum Zeitpunkt
der raise-Anweisung. Diese Liste wird auch Callstack genannt.

Hinter dem Exception-Prinzip steht der Gedanke, dass sich eine Exception in der Auf-
rufhierarchie nach oben arbeitet und an jeder Station abgefangen werden kann. In
unserem Beispiel soll die Funktion funktionl die TypeError-Exception abfangen, da-
mit sie eine spezielle auf den TypeError zugeschnittene Fehlerbehandlung durchfiih-
ren kann. Nachdem funktionl ihre funktionsinterne Fehlerbehandlung durchgefiihrt
hat, soll die Exception weiter nach oben gereicht werden. Dazu wird sie erneut gewor-
fen, und zwar wie im folgenden Beispiel:

def funktion3():
raise TypeError
def funktion2():
funktion3()
def funktion1():
try:
funktion2()
except TypeError:
# Fehlerbehandlung
raise TypeError
funktion1()

Im Gegensatz zum vorangegangenen Beispiel sieht der nun auftretende Traceback so
aus:

Traceback (most recent call last):
File "<python-input-0>", line 11, in <module>
funktion1()
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File "<python-input-0>", line 10, in funktionl
raise TypeError
TypeError

Sie sehen, dass dieser Traceback Informationen Gber den Kontext der zweiten raise-
Anweisung enthilt.? Diese sind aber gar nicht von Belang, sondern eher ein Neben-
produkt der Fehlerbehandlung innerhalb der Funktion funktionl. Optimal ware es,
wenn trotz des temporaren Abfangens der Exception in funktionl der resultierende
Traceback den Kontext der urspriinglichen raise-Anweisung beschriebe. Um das zu
erreichen, wird eine raise-Anweisung ohne Angabe eines Exception-Typs geschrie-
ben:

def funktion3():
raise TypeError
def funktion2():
funktion3()
def funktion1():
try:
funktion2()
except TypeError:
# Fehlerbehandlung
raise
funktion1()

Der in diesem Beispiel ausgegebene Traceback sieht folgendermafien aus:

Traceback (most recent call last):
File "<python-input-0>", line 11, in <module>
funktion1()

File "<python-input-0>", line 7, in funktionl
funktion2()

File "<python-input-0>", line 4, in funktion2
funktion3()

File "<python-input-0>", line 2, in funktion3
raise TypeError
TypeError

2 Tatsdchlich enthalt der ausgegebene Traceback aufgrund des Exception Chaining (siehe
Abschnitt 20.1.6) auch noch Informationen tiber die urspriingliche Exception. Das soll uns
an dieser Stelle aber nicht weiter interessieren.
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Wie Sie sehen, handelt es sich dabei um den Stacktrace der Stelle, an der die Exception
urspringlich geworfen wurde. Der Traceback enthalt damit die gewiinschten Infor-
mationen uber die Stelle, an der der Fehler tatsachlich aufgetreten ist.

20.1.6 Exception Chaining

Gelegentlich kommt es vor, dass man innerhalb eines except-Zweigs in die Verlegen-
heit kommt, eine weitere Exception zu werfen — entweder weil bei der Behandlung
der Exception ein weiterer Fehler aufgetreten ist oder um die entstandene Exception
»umzubenennenc.

Wenn innerhalb eines except-Zweigs eine weitere Exception geworfen wird, wendet
Python automatisch das sogenannte Exception Chaining an. Dabei wird die vorange-
gangene Exception als Kontext an die neu geworfene Exception angehingt, sodass
ein Maximum an Information weitergegeben wird. Zum Beispiel erzeugt der Code

try:
[1,2,3][128]
except IndexError:
raise RuntimeError("Schlimmer Fehler")

die Ausgabe:

Traceback (most recent call last):
File "<python-input-0>", line 2, in <module>
[1,2,3][128]

IndexError: list index out of range
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<python-input-0>", line 4, in <module>
raise RuntimeError("Schlimmer Fehler")
RuntimeError: Schlimmer Fehler

Es wird auf das 128. Element einer dreielementigen Liste zugegriffen, was eine Index-
Error-Exception provoziert. Diese Exception wird gefangen, und bei der Behandlung
wird eine RuntimeError-Exception geworfen. Anhand des ausgegebenen Tracebacks
sehen Sie, dass die urspriingliche IndexError-Exception an die neue RuntimeError-Ex-
ception angehangt wurde.

Mithilfe der raise/from-Syntax lasst sich das Exception-Chaining-Verhalten steuern.
Beim Werfen einer Exception kann ein Kontext angegeben werden, der dann im re-
sultierenden Traceback berticksichtigt wird. Dieser Kontext kann zum Beispiel eine
zweite Exception sein:
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>>> raise IndexError from ValueError
ValueError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise IndexError from ValueError
IndexError

Es zeigt sich, dass wir mit der raise/from-Syntax das Exception Chaining auslosen
konnen. Alternativ kann mit der raise/from-Syntax das automatische Anhéngen
einer Exception verhindert werden:

try:
[1,2,3][128]
except IndexError:
raise RuntimeError("Schlimmer Fehler") from None

In diesem Fall enthilt der resultierende Traceback nur die neu entstandene Run-
timeError-Exception. Die urspriingliche IndexError-Exception geht verloren.

20.1.7 Exception Notes

Die in einer Exception-Instanz gespeicherte Fehlermeldung ist gemeinsam mit dem
Traceback die wesentliche Informationsgrundlage, um einem aufgetretenen Fehler
nachzuspiiren, ihn zu verstehen und schlussendlich zu beheben. In der Praxis kommt
es allerdings vor, dass die Fehlermeldung fiir die Analyse des Problems unzureichend
ist. Betrachten wir als Beispiel die folgende Funktion zum Auslesen von Metainforma-
tionen eines Bildes im Bitmap-Dateiformat. Dieses Beispiel haben wir in dhnlicher
Form bereits in Abschnitt 6.4.3 betrachtet:

from struct import unpack
def lese_infos(dateiname):
with open(dateiname, "rb") as f:
f.seek(18)
breite, hoehe = unpack("ii", f.read(8))
f.seek(2, 1)
bpp = unpack("H", f.read(2))[0]
return breite, hoehe, bpp

Im Folgenden verwenden wir die Funktion lese_infos, um eine Reihe von Bildern zu
analysieren:
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dateien = ["kaffee.bmp", "ohne_daten.bmp"]
infos = [lese_infos(dateiname) for dateiname in dateien]
for breite, hoehe, bpp in infos:

print(f"Breite: {breite} px")

print(f"Hohe: {hoehe} px")

print(f"Farbtiefe: {bpp} bpp")

Wihrend das Auslesen der Metainformation fiir kaffee.bmp funktioniert, ist ohne_da-
ten.bmp keine giiltige Bitmap-Datei, was beim Versuch, die Metadaten zu lesen, zu
einer Exception fihrt:

Traceback (most recent call last):
File "beispiel_02_exception_notes.py", line 26, in <module>
infos = [lese_infos(dateiname) for dateiname in dateien]
File "beispiel_02_exception_notes.py", line 7, in lese_infos_1
breite, hoehe = unpack("ii", f.read(8))

~~~~~~ ANANNANANNNANNNANN

struct.error: unpack requires a buffer of 8 bytes

Sie sehen, dass Traceback und Fehlermeldung den lokalen Kontext des Problems gut
beschreiben: Offenbar konnte nicht die erwartete Datenmenge aus der Datei gelesen
werden. Eine Information, die zum Verstandnis des Problems wesentlich beitragen
wirde, fehlt jedoch: Das Lesen welcher Datei 16st das Problem aus?

Seit Python 3.11 bieten Exception-Instanzen die Methode add_note an, iber die sich
Exceptions um zusétzliche Informationen (»Notizen«) ergénzen lassen:

def lese_infos(dateiname):
try:
with open(dateiname, "rb") as f:
f.seek(18)
breite, hoehe = unpack("ii", f.read(8))
f.seek(2, 1)
bpp = unpack("H", f.read(2))[0]
return breite, hoehe, bpp
except Exception as e:
e.add_note(f"Bearbeitete Datei: {dateiname}")
raise

Im Beispiel passen wir die Funktion lese_infos so an, dass jede auftretende Exception
um eine Notiz erganzt wird, die den Dateinamen des aktuell betrachteten Bildes an-
gibt. Die einer Exception angefiigten Notizen werden gemeinsam mit Fehlermeldung
und Traceback am Bildschirm ausgegeben:
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Traceback (most recent call last):
File "beispiel_02_exception_notes.py", line 26, in <module>
infos = [lese_infos_2(dateiname) for dateiname in dateien]
NNNNNNNNNNNN AANNANNNANNNAN
File "beispiel_02_exception_notes.py", line 16, in lese_infos_2
breite, hoehe = unpack("ii", f.read(8))
~~~~~~ ANANNNANNNANNNANN
struct.error: unpack requires a buffer of 8 bytes
Bearbeitete Datei: ohne_daten.bmp

Eine Exception kann durch mehrfaches Aufrufen von add_note um beliebig viele No-
tizen erganzt werden. Innerhalb des Programms kann tber das Attribut __notes__
einer Exception-Instanz auf die ihr angefiigten Notizen zugegriffen werden.

20.2 Zusicherungen —assert

Mithilfe des Schliisselworts assert lassen sich Zusicherungen in ein Python-Pro-
gramm integrieren. Durch das Schreiben einer assert-Anweisung wird beim Pro-
grammieren eine Bedingung festgelegt, die fir die Ausfihrung des Programms
essenziell ist und die bei Erreichen der assert-Anweisung zu jeder Zeit True ergeben
muss. Wenn die Bedingung einer assert-Anweisung False ergibt, wird eine Asserti-
ontrror-Exception geworfen. In der folgenden Sitzung im interaktiven Modus wur-
den mehrere assert-Anweisungen eingegeben:

>>> 1st = [7, 1, 3, 5, -12]
>>> assert max(lst) == 7
>>> assert min(lst) == -12
>>> assert sum(lst) == 0
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
assert sum(lst) ==

ANANNNANNNNNNN

AssertionError

In der assert-Anweisung kann auch eine Fehlermeldung spezifiziert werden, die im
Fall eines Fehlschlags in die AssertionError-Exception eingetragen wird. Diese Fehler-
meldung kann, durch ein Komma getrennt, hinter die Bedingung geschrieben wer-
den:

( == 7, "max ist kaputt"
>>> assert min(1 == -12, "min ist kaputt"
>>> assert sum(lst) == 0, "sum ist kaputt"
Traceback (most recent call last):

>>> assert max(lst
st

)
)
)
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File "<python-input-3>", line 1, in <module>
assert sum(lst) == 0, "sum ist kaputt"

ANANNNANNNNNNNN

AssertionError: sum ist kaputt

Die assert-Anweisung ist damit ein praktisches Hilfsmittel zum Aufspiiren von Feh-
lern und ermoglicht es, den Programmlauf zu beenden, wenn bestimmte Vorausset-
zungen nicht erfullt sind. Haufig prift man an Schlusselstellen im Programm mit as-
sert, ob alle Referenzen die erwarteten Werte referenzieren, um eventuelle
Fehlberechnungen rechtzeitig erkennen zu konnen.

Beachten Sie, dass assert-Anweisungen Ublicherweise nur wiahrend der Entwicklung
eines Programms benotigt werden und in einem fertigen Programm eher storen wir-
den. Deswegen werden assert-Anweisungen nur dann ausgefithrt, wenn die globale
Konstante __debug__ den Wert True referenziert. Diese Konstante ist nur dann False,
wenn der Interpreter mit der Kommandozeilenoption -0 gestartet wurde. Wenn die
Konstante __debug__ den Wert False referenziert, werden assert-Anweisungen igno-
riert und haben damit keinen Einfluss mehr auf die Laufzeit Thres Programms.

Hinweis

Beachten Sie, dass Sie den Wert von __debug__ im Programm selbst nicht verandern
diirfen, sondern nur tUber die Kommandozeilenoption -0 bestimmen kénnen, ob as-
sert-Anweisungen ausgefihrt oder ignoriert werden sollen.

20.3 Warnungen

Unter einer Warnung wird eine Exception verstanden, die den Programmablauf nicht
verandert, sondern nur auf dem Standardfehlerstrom stderr (siehe Abschnitt 29.2.2)
erscheint, um Sie Giber einen bedenklichen, aber nicht kritischen Umstand zu infor-
mieren.

Ein typisches Beispiel fiir eine Warnung ist die DeprecationWarning, die den Entwickler
oder die Anwenderin dariiber informiert, dass das laufende Programm eine Funktio-
nalitdt verwendet, die in zukiinftigen Python-Versionen oder zukiinftigen Versionen
einer Bibliothek nicht mehr zur Verfligung stehen wird. Diese Feststellung stellt fiir
den aktuellen Programmlauf kein Problem dar, ist jedoch wichtig genug, um dartiber
zu informieren.

Hinweis
Abschnitt A4 im Anhang listet die in Python standardmafig definierten Typen von
Warnungen auf und erklart ihre Bedeutung.

460



20.4 Exception Groups

Das Modul warnings der Standardbibliothek ermaoglicht es, tiber komplexe Filterre-
geln das Anzeigen bzw. Ignorieren von Warnungen verschiedenen Inhalts und ver-
schiedener Quellen zu steuern. Standardmaf3ig unterdriickt Python einige Warnun-
gen, insbesondere wenn sie aus importierten Modulen stammen. Diese Filterregeln
werden vom Python-Entwicklerteam jedoch haufig an neue Gegebenheiten ange-
passt.

Das Modul warnings enthalt die Funktion simplefilter, die die voreingestellten Filter-
regeln mit einer allgemeinen Regel iiberschreiben kann. Auf diese Weise lassen sich
Warnungen beispielsweise universell unterdriicken:

>>> import warnings
>>> warnings.simplefilter("ignore")

Analog konnen alle Warnungen zu Exceptions gemacht werden, die den Programm-
ablauf unterbrechen. In diesem Fall konnen Warnungen auch gefangen und behan-
delt werden:

>>> warnings.simplefilter("error")

Weitere mogliche Argumente sind "default" fir das Unterdriicken von erneut auftre-
tenden Warnungen aus derselben Quelle, "always" fiir das Ausgeben aller Warnun-
gen, "module" fiir das Ausgeben nur der jeweils ersten Warnung eines Moduls und
"once" fiir das Unterdriicken von erneut auftretenden Warnungstypen.

Hinweis
Warnungen kénnen auch tiber den Kommandozeilenparameter -W des Python-Inter-
preters zu Fehlern gemacht werden. Auf diese Weise lasst sich das Verhalten eines
Python-Programms in Bezug auf Warnungen verandern, ohne den Code anpassen zu
mussen:

$ python -W error programm.py

Analog sind die Argumente default, always, module und once moglich.

20.4 Exception Groups

Die Ausnahmebehandlung, wie wir sie in den vorangegangenen Abschnitten dieses
Kapitels diskutiert haben, stellt eine zentrale Anforderung an den Code: Es kann zu
jedem Zeitpunkt nur eine einzige Exception geworfen und gefangen werden.

Diese Anforderung ist in der Regel nicht problematisch, weshalb die klassische Aus-
nahmebehandlung fiir sehr viele Python-Programme vollig ausreichend ist. Es gibt
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jedoch spezielle Situationen, in denen von diesem Prinzip abgewichen werden muss.
Stellen Sie sich zur Veranschaulichung einmal die folgenden beiden Situationen vor:

» EinBildverarbeitungsprogramm fiihrt eine Bildtransformation parallel auf mehre-
ren Bildern gleichzeitig durch. Das Programm startet die parallelen Operationen
und wartet dann darauf, dass alle Bilder bearbeitet wurden. Eine individuelle Ope-
ration kann mit einer Exception fehlschlagen, zum Beispiel weil eine Datei nicht
gefunden wurde oder das Dateiformat nicht gelesen werden konnte. In dieser Si-
tuation konnen mehrere verschiedene Exceptions gleichzeitig auftreten, und die
aufrufende Ebene sollte diese Exceptions als Gesamtheit fangen und bearbeiten
konnen.

» Ein Programm sendet eine HTTP-Anfrage an einen Webserver, um beispielsweise
eine Web-API zu verwenden. Sollte der Verbindungsaufbau fehlschlagen oder der
Server mit einem Fehler antworten, konnte eine einfache Strategie die Anfrage au-
tomatisch wiederholen. Ein abschliefiender Fehlschlag nach mehreren Versuchen
musste dann in Form von mehreren Exceptions an die aufrufende Ebene propa-
giert werden, denn jedes individuelle Scheitern der Anfrage konnte eine andere Ur-
sache gehabt haben.

Fur diese und ahnliche Anwendungsfille wurde in Python 3.11 das Konzept der Excep-
tion Groups eingefiihrt. Dabei werden eine oder mehrere Exceptions als Gruppe zu-
sammengefasst und gemeinsam geworfen.

Beachten Sie, dass sich eine Exception Group dann eignet, wenn mehrere voneinan-
der unabhingige Exceptions gemeinsam geworfen werden sollen. Mehrere vonei-
nander abhédngige Exceptions kdnnen tber das Exception Chaining (siehe Abschnitt
20.1.6) zu einer einzigen Exception zusammengefiigt werden.

20.4.1 Eine Exception Group

Eine Exception Group besteht aus einer Fehlerbeschreibung und einer Liste von
Exceptions, die in der Gruppe zusammengefasst werden:

group = ExceptionGroup("Zwei Exceptions”, [
TypeError("Ein TypeError"),
SyntaxError("Ein SyntaxError"),

D

DieKlasse ExceptionGroup erbt von Exception, was es insbesondere ermoglicht, Excep-
tion Groups beliebig ineinander zu verschachteln:

group = ExceptionGroup("Operation fehlgeschlagen", [
ValueError("Parameter x hat ungiiltigen Wert"),
ValueError("Parameter y hat ungiiltigen Wert"),
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D

ExceptionGroup("Download von test.png fehlgeschlagen", [
ConnectionRefusedError("Fehler im ersten Versuch"),
TimeoutError("Fehler im zweiten Versuch"),

D,

ExceptionGroup("Speichern von test.png fehlgeschlagen", [
I0Error("Kein freier Speicherplatz"),
RuntimeError("Die Datei ist leer"),

D

In diesem Beispiel erzeugen wir eine fiktive Exception Group, die aus einer Samm-
lung unterschiedlicher Exceptions besteht, die sich in zwei weitere Untergruppen
einsortieren.

Eine Exception Group kann tber die raise-Anweisung wie eine normale Exception
geworfen werden:

raise group

Analog zu einer normalen Exception wird ein Traceback ausgegeben, wenn eine ge-
worfene Exception Group nicht gefangen wird. Dieser enthélt eine Ubersicht tiber die
in der Gruppe enthaltenen Exceptions:

+ Exception Group Traceback (most recent call last):

File "beispiel_O3_exception_groups.py", line 18, in <module>
raise group
ExceptionGroup: Operation fehlgeschlagen (4 sub-exceptions)

R EEE R R 1 -

| ValueError: Parameter x hat ungiiltigen Wert

 EEECEEEEEEEES 2 e
| ValueError: Parameter y hat ungiiltigen Wert
Fomm e 3 e
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Grundsatzlich lasst sich eine Exception Group Uber die try/except-Anweisung
fangen:

try:
raise group

except ExceptionGroup as eg:
print(eg.exceptions)

Das Attribut exceptions einer Exception Group referenziert ein Tupel aller in der
Gruppe enthaltenen Exceptions.

20.4.2 Die try/except*-Anweisung

Eine herkdmmliche try/except-Anweisung ermoglicht das unbedingte Fangen einer
Exception Group, ohne dass sich spezifische except-Zweige abhdngig vom Inhalt der
Exception Group formulieren liefien. Dies ldsst sich mit der in Python 3.11 eingefihr-
ten try/except*-Anweisung umsetzen:

try:

raise group
except* OSError as eg:

print("Behandle alle OSError-Exceptions")
except* RuntimeError as eg:

print("Behandle alle RuntimeError-Exceptions™)

In den except*-Zweigen der try/except*-Anweisung werden zunéchst alle 0SError-
Exceptions der gefangenen Exception Group behandelt. Die in der Exception Group
enthaltenen ConnectionRefusedError- und TimeoutError-Exceptions erben von 0S-
Error und werden daher ebenfalls im ersten except*-Zweig behandelt. Innerhalb
eines except*-Zweigs liegen alle zu behandelnden Exceptions in Form einer aus der
gefangenen Gruppe herausgefilterten Exception Group eg vor.

Im zweiten except*-Zweig werden alle RuntimeError-Exceptions der gefangenen Ex-
ception Group behandelt. Im Gegensatz zu einer herkdmmlichen try/except-Anwei-
sung konnen mehrere except*-Zweige hintereinander ausgefiihrt werden, wenn sie
jeweils auf einen Teil der Exceptions der gefangenen Gruppe passen.

Die beiden except*-Zweige im Beispiel behandeln und filtern alle OSError- und Run-
timeError-Exceptions der gefangenen Gruppe. Nach Abarbeitung der try/except*-An-
weisung und Ausfihrung aller passenden except*-Zweige wird die gefangene Excep-
tion Group, reduziert auf die verbleibenden ValueError-Exceptions, weiter geworfen:

Behandle alle OSError-Exceptions
Behandle alle RuntimeError-Exceptions
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+ Exception Group Traceback (most recent call last):

| File "beispiel_03_exception_groups.py", line 24, in <module>
| raise group

| File "beispiel_03_exception_groups.py", line 19, in <module>
| raise group

| ExceptionGroup: Operation fehlgeschlagen (2 sub-exceptions)

4

+
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Wie bei der herkdmmlichen try/except-Anweisung lassen sich except*-Zweige for-
mulieren, die auf mehrere Exception-Typen gleichermafien passen:

try:
raise group
except* (OSError, RuntimeError) as eg:
print("Behandle alle OSError- und RuntimeError-Exceptions")

Hinweis
Analog zur herkommlichen try/except-Anweisung wurde die Syntax der try/
except*-Anweisung mit Python 3.14 dahin gehend Uberarbeitet, dass die Klammern
beim Abfangen mehrerer Exception-Typen in einem except*-Zweig nicht mehr not-
wendig sind:
try:

raise group
except* OSError, RuntimeError:

print("Behandle alle OSError- und RuntimeError-Exceptions")

Die Klammern diirfen nur dann weggelassen werden, wenn der except*-Zweig nicht
gleichzeitig um einen as-Teil erganzt wird.

Zum Schluss sei erwdhnt, dass finally-Zweige analog zur herkdmmlichen try/except-
Anweisung funktionieren. Es darfallerdings keinen except*-Zweig ohne Angabe eines
Exception-Typs geben:

try:
raise group

except*: # <-- SyntaxError
pass
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Die try/except*-Anweisung hat einige weitere Besonderheiten, auf die wir im Folgen-
den kurz eingehen mochten:

» Es dirfen in einer try/except*-Anweisung keine herkdmmlichen except-Zweige
verwendet werden.

» Die Exception-Typen ExceptionGroup und ExceptionBaseGroup, die eine Exception
Group definieren, konnen in except*-Zweigen nicht behandelt werden.

» Ein except*-Zweig darf keine Spriinge im Kontrollfluss tiber break, continue oder
return durchfihren.

In Abschnitt 31.5.6 werden Sie im Kontext des kooperativen Multitaskings eine An-
wendung von Exception Groups kennenlernen.
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Kapitel 27
Bildschirmausgaben und Logging

An dieser Stelle mochten wir uns mit Modulen der Standardbibliothek befassen, die
die Moglichkeiten der Bildschirmausgabe sinnvoll erganzen. Dabei handelt es sich
um das Modul pprint zur ubersichtlich formatierten Ausgabe komplexer Instanzen,
das wir auch schon in Abschnitt 3.10 kurz verwendet haben, sowie um das Modul log-
ging zur formatierten Ausgabe von Lognachrichten auf dem Bildschirm oder in Log-
dateien.

Diein diesem Kapitel besprochenen Module verstehen sich als Erganzung zur norma-
lerweise verwendeten Built-in Function print, die ausfiihrlich in Abschnitt 17.14.36 be-
schrieben wird.

27.1 Ubersichtliche Ausgabe komplexer Objekte — pprint

In der Standardbibliothek existiert das Modul pprint (fiir pretty print), das flr eine
ubersichtlich formatierte Reprasentation eines Python-Datentyps auf dem Bild-
schirm verwendet werden kann. Das Modul macht insbesondere die Ausgabe kom-
plexer Datentypen, zum Beispiel langer Listen, besser lesbar. Bevor Beispiele ausge-
fihrt werden konnen, muss das Modul eingebunden werden:

>>> import pprint

Das Modul pprint enthdlt im Wesentlichen eine gleichnamige Funktion, die zur Aus-
gabe einer Instanz aufgerufen werden kann.

pprint(object, [stream, indent, width, depth], {compact})

Die Funktion pprint gibt die Instanz object aus, formatiert auf dem Stream stream.
Wenn Sie den Parameter stream nicht tibergeben, wird in den Standardausgabestrom
sys.stdout geschrieben. Uber die Parameter indent, width und depth lasst sich die For-
matierung der Ausgabe steuern. Dabei kann flr indent die Anzahl der Leerzeichen
ubergeben werden, die flr eine Einrtickung verwendet werden sollen. Der Parameter
indent ist mit 1 vorbelegt.

Uber den optionalen Parameter width kann die maximale Anzahl an Zeichen angege-
ben werden, die die Ausgabe breit sein darf. Dieser Parameter ist mit 80 Zeichen vor-
belegt.
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Im folgenden Beispiel erzeugen wir zunachst mit einer willkiirlichen Methode unse-
rer Wahl eine Liste von Strings und geben diese mithilfe von pprint formatiert aus:

>>> strings = [f"Der Wert von {ip**2 ist {i**2}" for i in range(10)]
>>> pprint.pprint(strings)
['Der Wert von 0**2 ist 0',
'Der Wert von 1**2 ist 1',
'Der Wert von 2**2 ist 4',
'Der Wert von 3**2 ist 9',
'Der Wert von 4**2 ist 16',
Der Wert von 5**2 ist 25',
'Der Wert von 6**2 ist 36",
'Der Wert von 7**2 ist 49",
‘Der Wert von 8**2 ist 64",
Der Wert von 9**2 ist 81']

Zum Vergleich geben wir strings noch einmal unformatiert mit print aus:

>>> print(strings)

['Der Wert von 0**2 ist 0', 'Der Wert von 1**2 ist 1', 'Der Wert von 2¥*2 ist
4', 'Der Wert von 3**2 ist 9', 'Der Wert von 4**2 ist 16', 'Der Wert von 5**2
ist 25', 'Der Wert von 6**2 ist 36', 'Der Wert von 7**2 ist 49', 'Der Wert von
8**2 ist 64', 'Der Wert von 9**2 ist 81']

Der Parameter depth ist eine ganze Zahl und bestimmt, bis zu welcher Tiefe Unterins-
tanzen, beispielsweise also verschachtelte Listen, ausgegeben werden sollen. Falls fiir
depth ein anderer Wert als None tibergeben wird, deutet pprint tiefer verschachtelte
Elemente durch drei Punkte ... an.

Uber den Schliisselwortparameter compact lsst sich steuern, wie kompakt umfang-
reiche Strukturen (z. B. lange Listen) dargestellt werden. Wird hier True ibergeben,
wird beispielsweise nicht jedes Element von strings in eine eigene Zeile geschrieben.

Sollten Sie die Ausgabe von pprint weiterverarbeiten wollen, verwenden Sie die Funk-
tion pformat, die die formatierte Reprasentation in Form eines Strings zurtickgibt:

>>> s = pprint.pformat(strings)

>>> print(s)

['Der Wert von 0**2 ist O
'Der Wert von 1**2 ist 1
'Der Wert von 2**2 ist 4',
'Der Wert von 3**2 ist 9
'Der Wert von 4**2 ist 16',
'Der Wert von 5**2 ist 25',
'Der Wert von 6**2 ist 36",
'Der Wert von 7**2 ist 49°',
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'Der Wert von 8**2 ist 64',
'Der Wert von 9**2 ist 81']

Die Funktion pformat hat die gleiche Schnittstelle wie pprint — mit dem Unterschied,
dass der Parameter stream fehlt.

27.2 Logdateien —logging

Das Modul logging stellt ein flexibles Interface zum Protokollieren des Programmab-
laufs bereit. Protokolliert wird der Programmablauf, indem an verschiedenen Stellen
im Programm Meldungen an das logging-Modul abgesetzt werden. Diese Meldungen
konnen unterschiedliche Dringlichkeitsstufen haben. So gibt es beispielsweise Feh-
lermeldungen, Warnungen oder Debug-Informationen. Das Modul logging kann
diese Meldungen auf vielfaltige Weise verarbeiten. Ublich ist es, die Meldung mit
einem Zeitstempel zu versehen und entweder auf dem Bildschirm auszugeben oder
in eine Datei zu schreiben.

In diesem Abschnitt wird die Verwendung des Moduls logging anhand mehrerer Bei-
spiele im interaktiven Modus gezeigt. Um die Beispielprogramme korrekt ausfihren
zu konnen, muss zuvor das Modul logging eingebunden sein:

>>> import logging
Bevor Meldungen an den Logger geschickt werden konnen, muss dieser durch Aufruf

der Funktion basicConfig initialisiert werden. Im folgenden Beispiel wird ein Logger
eingerichtet, der alle eingehenden Meldungen in die Logdatei programm. log schreibt:

>>> logging.basicConfig(filename="programm.log")

Jetzt konnen mithilfe der im Modul enthaltenen Funktion log Meldungen an den Log-
ger ibergeben werden. Die Funktion log bekommt dabei die Dringlichkeitsstufe der
Meldung als ersten und die Meldung selbst in Form eines Strings als zweiten Parame-
ter Ubergeben:

>>> logging.log(logging.ERROR, "Ein Fehler ist aufgetreten")
>>> logging.log(logging.INFO, "Dies ist eine Information")

Durch das Aufrufen der Funktion shutdown wird der Logger korrekt deinitialisiert, und
eventuell noch anstehende Schreiboperationen werden durchgefiihrt:

>>> logging.shutdown()

Nattirlich sind nicht nur die Dringlichkeitsstufen ERROR und INFO verfiigbar. Tabelle 27.1
listet alle vordefinierten Stufen auf, aus denen Sie wahlen kdnnen. Die Tabelle ist dabei
nach Dringlichkeit geordnet, wobei die dringendste Stufe zuletzt aufgefiihrt wird.
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Level Beschreibung

NOTSET keine Dringlichkeitsstufe

DEBUG eine Meldung, die nur fiir die Programmierung zur Fehlersuche interes-
santist
INFO eine Informationsmeldung tiber den Programmstatus

WARNING | eine Warnmeldung, die auf einen moglichen Fehler hinweist

ERROR eine Fehlermeldung, nach der das Programm weiterarbeiten kann

CRITICAL | eine Meldung lber einen kritischen Fehler, der das sofortige Beenden des
Programms oder der aktuell durchgeflihrten Operation zur Folge hat

Tabelle 27.1 Vordefinierte Dringlichkeitsstufen

Aus Grunden des Komforts existiert zu jeder Dringlichkeitsstufe eine eigene Funktion.
So sind die beiden Funktionsaufrufe von log aus dem letzten Beispiel dquivalent zu:

logging.error("Ein Fehler ist aufgetreten")
logging.info("Dies ist eine Information")

Wenn Sie sich die Logdatei nach dem Aufruf dieser beiden Funktionen ansehen, wer-
den Sie feststellen, dass es lediglich einen einzigen Eintrag gibt:

ERROR:root:Ein Fehler ist aufgetreten

Das liegt daran, dass der Logger in seiner Basiskonfiguration nur Meldungen loggt,
deren Dringlichkeit grofier oder gleich der einer Warnung ist. Um auch Debug- und
Info-Meldungen mitzuloggen, miissen Sie beim Aufruf der Funktion basicConfig im
Schliisselwortparameter level einen geeigneten Wert tibergeben:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG)

logging.error("Ein Fehler ist aufgetreten")

logging.info("Dies ist eine Information")

In diesem Beispiel wurde die Mindestdringlichkeit auf DEBUG gesetzt. Das bedeutet,
dass alle Meldungen geloggt werden, die mindestens eine Dringlichkeit von DEBUG ha-
ben. Folglich erscheinen auch beide Meldungen in der Logdatei:

ERROR:root:Ein Fehler ist aufgetreten
INFO:root:Dies ist eine Information
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Tabelle 27.2 listet die wichtigsten Schltsselwortparameter auf, die der Funktion ba-
sicConfig libergeben werden konnen.

Parameter | Beschreibung

datefmt Spezifiziert das Datumsformat. Naheres dazu erfahren Sie im folgenden
Abschnitt.

filemode Gibt den Modus” an, in dem die Logdatei geéffnet werden soll (Standard-
wert: "a").

filename Gibt den Dateinamen der Logdatei an.

format Spezifiziert das Meldungsformat. Naheres dazu erfahren Sie im folgen-
den Abschnitt.

handlers Gibt eine Liste von Handlern an, die registriert werden sollen. Naheres
dazu erfahren Sie in Abschnitt 27.2.2.

level Legt die Mindestdringlichkeit fiir Meldungen fest, damit diese in der Log-
datei erscheinen.

stream Gibt einen Stream an, in den die Logmeldungen geschrieben werden sol-
len. Wenn die Parameter stream und filename gemeinsam angegeben
werden, wird streamignoriert.

style Bestimmt die Formatierungssyntax fiir die Meldung. Der voreingestellte

Wert "%" bedingt die alte %-Syntax aus Python 2, wahrend ein Wert von
"{" die neue Syntax zur String-Formatierung” erzwingt.

" Die verschiedenen Modi, in denen Dateien geoffnet werden kdnnen, sind in Ab-
schnitt 6.2 aufgefuhrt.

" Naheres zur String-Formatierung erfahren Sie in Abschnitt 12.5.9.

Tabelle 27.2 Schliisselwortparameter der Funktion basicConfig

27.21 Das Meldungsformat anpassen

Wie in den vorangegangenen Beispielen zu sehen war, wird ein Eintrag in einer Log-
datei standardmaf3ig nicht mit einem Zeitstempel versehen. Es gibt eine Moglichkeit,
das Format der geloggten Meldung anzupassen. Dazu iibergeben Sie beim Funktions-
aufruf von basicConfig den Schliisselwortparameter format:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG,
style="{",
format="{asctime} [{levelname:8}] {message}")
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logging.error("Ein Fehler ist aufgetreten")
logging.info("Dies ist eine Information")
logging.error("Und schon wieder ein Fehler")

Sie sehen, dass ein Format-String iibergeben wurde, der die Vorlage fiir eine Meldung
enthalt, wie sie spater in der Logdatei stehen soll. Dabei stehen die Bezeichner asctime
fir den Timestamp, levelname fiir die Dringlichkeitsstufe und message fir die Mel-
dung. Die von diesem Beispiel generierten Meldungen sehen folgendermafien aus:

2020-02-05 14:28:55,811 [ERROR ] Ein Fehler ist aufgetreten
2020-02-05 14:29:00,690 [INFO ] Dies ist eine Information
2020-02-05 14:29:12,686 [ERROR ] Und schon wieder ein Fehler

Tabelle 27.3 listet die wichtigsten Bezeichner auf, die innerhalb des format-Format-
Strings verwendet werden diirfen. Je nach Kontext, in dem die Meldung erzeugt wird,
haben einige der Bezeichner keine Bedeutung.

Bezeichner | Beschreibung

asctime Zeitpunkt der Meldung. Das Datums- und Zeitformat kann beim Funk-
tionsaufruf von basicConfig tiber den Parameter datefmt angegeben
werden. Naheres dazu folgt im Anschluss an diese Tabelle.

filename der Dateiname der Programmdatei, in der die Meldung abgesetzt wurde

funcName der Name der Funktion, in der die Meldung abgesetzt wurde

levelname | die Dringlichkeitsstufe der Meldung

lineno die Quellcodezeile, in der die Meldung abgesetzt wurde
message der Text der Meldung
module Der Name des Moduls, in dem die Meldung abgesetzt wurde. Der

Modulname entspricht dem Dateinamen ohne Dateiendung.

pathname der Pfad zur Programmdatei, in der die Meldung abgesetzt wurde
process die ID des Prozesses, in dem die Meldung abgesetzt wurde
thread die ID des Threads, in dem die Meldung abgesetzt wurde

Tabelle 27.3 Bezeichner im Format-String
Es ist moglich, das Format anzupassen, in dem Zeitstempel ausgegeben werden. Bei-

spielsweise konnen wir ein in Deutschland tibliches Datumsformat setzen und aufier-
dem die Ausgabe der Millisekundenanteile abschalten. Das Format des Timestamps
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kann beim Aufrufvon basicConfig iber den Schliisselwortparameter datefmt angege-
ben werden:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG,
style="{",
format="{asctime} [{levelname:8}] {message}",
datefmt="%d.%m.%Y %H:%M:%S")
logging.error("Ein Fehler ist aufgetreten")

Die in der Vorlage fiir das Datumsformat verwendeten Platzhalter wurden in Ab-
schnitt 15.1 eingefiihrt. Die von diesem Beispiel erzeugte Meldung sieht folgenderma-
Ben aus:

05.02.2020 14:38:49 [ERROR ] Ein Fehler ist aufgetreten

27.2.2 lLogging-Handler

Bisher haben wir ausschlief3lich besprochen, wie das Modul logging dazu verwendet
werden kann, alle eingehenden Meldungen in eine Datei zu schreiben. Tatsdchlich ist
das Modul in dieser Beziehung sehr flexibel und erlaubt es, nicht nur in Dateien, son-
dern beispielsweise auch in Streams zu schreiben oder die Meldungen tiber eine Netz-
werkverbindung zu schicken. Dafiir werden sogenannte Logging-Handler verwendet.
Um genau zu sein, haben wir in den vorangegangenen Abschnitten bereits einen im-
pliziten Handler verwendet, ohne uns dariiber im Klaren zu sein.

Um einen speziellen Handler einzurichten, muss eine Instanz der Handler-Klasse er-
zeugt werden. Diese kann dann vom Logger verwendet werden. Im folgenden Beispiel
sollen alle Meldungen auf einen Stream, namlich sys.stdout, geschrieben werden;
dazu wird die Handler-Klasse logging.StreamHandler verwendet:

import logging

import sys

handler = logging.StreamHandler(sys.stdout)

frm = logging.Formatter("{asctime} {levelname}: {message}",
"%d.%m. %Y BH:%M:%S", style="{")

handler.setFormatter (frm)

logger = logging.getlogger()

logger.addHandler (handler)

logger.setlevel (logging.DEBUG)

logger.critical("Ein wirklich kritischer Fehler")

logger.warning("Und eine Warnung hinterher")

logger.info("Dies hingegen ist nur eine Info")
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Zunachst wird der Handler, in diesem Fall ein StreamHandler, instanziiert. Im nachsten
Schritt wird eine Instanz der Klasse Formatter erzeugt. Diese Klasse kapselt die Forma-
tierungsanweisungen, die wir in den vorangegangenen Beispielen beim Aufruf der
Funktion basicConfig tibergeben haben. Mithilfe der Methode setFormatter werden
dem Handler die Formatierungsanweisungen bekannt gegeben.

Um den Handler beim Logger zu registrieren, benotigen wir Zugriff auf die bisher im-
plizit verwendete Logger-Instanz. Diesen Zugriff erlangen wir tiber die Funktion get-
Logger. Danach wird tiber addHandler der Handler hinzugefiigt und tiber setlevel die
gewlinschte Dringlichkeitsstufe eingestellt.

Die Meldungen werden im Folgenden nicht tiber Funktionen des Moduls logging,
sondern tiber die Methoden critical, warning und info der Logger-Instanz logger ab-
gesetzt. Das Beispielprogramm gibt folgenden Text auf dem Bildschirm aus:

05.02.2020 17:21:46 CRITICAL: Ein wirklich kritischer Fehler
05.02.2020 17:21:46 WARNING: Und eine Warnung hinterher
05.02.2020 17:21:46 INFO: Dies hingegen ist nur eine Info

Im Folgenden sollen die wichtigsten zusatzlichen Handler-Klassen beschrieben wer-
den, die im Paket logging bzw. logging.handlers enthalten sind.

logging.FileHandler(filename, [mode, encoding, delay])

Dieser Handler schreibt die Logeintrage in die Datei filename. Dabei wird die Datei im
Modus mode gedffnet. Der Handler FileHandler kann auch implizit durch Angabe der
Schlisselwortparameter filename und filemode beim Aufruf der Funktion basicCon-
fig verwendet werden.

Der Parameter encoding kann dazu verwendet werden, das zum Schreiben der Datei
genutzte Encoding festzulegen. Wenn Sie flir den delay-Parameter True ibergeben,
wird mit dem Offnen der Datei so lange gewartet, bis tatsichlich Daten geschrieben
werden sollen.

logging.StreamHandler([stream])

Dieser Handler schreibt die Logeintrage in den Stream stream. Beachten Sie, dass der
Handler StreamHandler auch implizit durch Angabe des Schliisselwortparameters
stream beim Aufruf der Funktion basicConfig verwendet werden kann.

logging.handlers.SocketHandler(host, port)
logging.handlers.DatagramHandler(host, port)

Diese Handler senden die Logeintrdge tiber eine TCP-Schnittstelle (SocketHandler)
bzw. iiber eine UDP-Netzwerkschnittstelle (DatagramHandler) an den Rechner mit dem
Hostnamen host unter Verwendung des Ports port.
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logging.handlers.SMTPHandler(mailhost, from, to, subject, [credentials])

Dieser Handler sendet die Logeintrage als E-Mail an die Adresse to. Dabei werden sub-
ject als Betreff und fromals Absenderadresse eingetragen. Uber den Parameter mail-
host geben Sie den zu verwendenden SMTP-Server an. Sollte dieser Server eine Au-
thentifizierung verlangen, konnen Sie ein Tupel, das Benutzername und Passwort
enthalt, fiir den optionalen letzten Parameter credentials tibergeben.
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