

Kapitel 4

Der Weg zum ersten Programm

Nachdem wir im interaktiven Modus spielerisch einige Grundelemente der Sprache

Python behandelt haben, möchten wir dieses Wissen jetzt auf ein tatsächliches Pro-

gramm übertragen. Im Gegensatz zum interaktiven Modus, der eine wechselseitige

Interaktion zwischen Ihnen und dem Interpreter ermöglicht, wird der Quellcode

eines Programms in eine Datei geschrieben. Diese wird als Ganzes vom Interpreter

eingelesen und ausgeführt.

In den folgenden Abschnitten lernen Sie die Grundstrukturen eines Python-Pro-

gramms kennen und werden Ihr erstes einfaches Beispielprogramm schreiben.

4.1 Tippen, kompilieren, testen

In diesem Abschnitt werden die Arbeitsabläufe besprochen, die nötig sind, um ein

Python-Programm zu erstellen und auszuführen. Ganz allgemein sollten Sie sich da-

rauf einstellen, dass wir in einem Großteil des Buchs ausschließlich Konsolenanwen-

dungen schreiben werden. Eine Konsolenanwendung hat eine rein textbasierte

Schnittstelle zu den Benutzerinnen und Benutzern und läuft in der Konsole (auch

Shell) des jeweiligen Betriebssystems ab. Für die meisten Beispiele und auch für viele

reale Anwendungsfälle reicht eine solche textbasierte Schnittstelle aus.1

Grundsätzlich besteht ein Python-Programm aus einer oder mehreren Programmda-

teien. Diese Programmdateien haben die Dateiendung .py und enthalten den Python-

Quelltext. Dabei handelt es sich um nichts anderes als um Textdateien. Programmda-

teien können also mit einem normalen Texteditor bearbeitet werden.

Nachdem eine Programmdatei geschrieben wurde, besteht der nächste Schritt darin,

sie auszuführen. Wenn Sie IDLE verwenden, kann die Programmdatei bequem über

den Menüpunkt Run • Run Module ausgeführt werden. Sollten Sie einen Editor ein-

setzen, der keine vergleichbare Funktion unterstützt, müssen Sie in einer Kom-

mandozeile in das Verzeichnis der Programmdatei wechseln und – abhängig von Ih-

rem Betriebssystem – verschiedene Kommandos ausführen.

1 Selbstverständlich ermöglicht Python auch die Programmierung grafischer Benutzerober-

flächen. Dies wird in Kapitel 41 behandelt.
65

4 Der Weg zum ersten Programm
4.1.1 Windows

Unter Windows wechseln Sie in das Verzeichnis, in dem die Programmdatei liegt, und

starten den Python-Interpreter mit dem Kommando python, gefolgt von dem Namen

der auszuführenden Programmdatei.2

Abbildung 4.1 Ausführen eines Python-Programms unter Windows

Bei »Dies schreibt Ihnen Ihr Python-Programm« handelt es sich um eine Ausgabe des

Python-Programms in der Datei programm.py, die beweist, dass das Python-Pro-

gramm tatsächlich ausgeführt wurde.

Hinweis

Unter Windows ist es auch möglich, ein Python-Programm durch einen Doppelklick

auf die jeweilige Programmdatei auszuführen. Das hat aber den Nachteil, dass sich

das Konsolenfenster sofort nach Beenden des Programms schließt und die Ausgaben

des Programms somit nicht erkennbar sind.

4.1.2 Linux und macOS

Unter Unix-ähnlichen Betriebssystemen wie Linux oder macOS wechseln Sie ebenfalls

in das Verzeichnis, in dem die Programmdatei liegt, und starten dann den Python-In-

terpreter mit dem Kommando python, gefolgt von dem Namen der auszuführenden

Programmdatei. Im folgenden Beispiel wird die Programmdatei programm.py unter

Linux ausgeführt, die sich im Verzeichnis /home/user/ordner befindet:

2 In älteren Windows-Versionen finden Sie die Konsole unter Start • Programme • Zubehör •

Eingabeaufforderung. In neueren Windows-Versionen starten Sie die PowerShell.
66

4.1 Tippen, kompilieren, testen
user@HOST ~ $ cd ordner
user@HOST ~/ordner $ python programm.py
Dies schreibt Ihnen Ihr Python-Programm

Bitte beachten Sie den Hinweis in Abschnitt 2.4.3, der besagt, dass das Kommando,

mit dem Sie Python starten, je nach Distribution von dem hier demonstrierten python
abweichen kann.

4.1.3 Shebang

Unter einem Unix-ähnlichen Betriebssystem wie beispielsweise Linux können

Python-Programmdateien mithilfe eines Shebangs, auch Magic Line genannt, direkt

ausführbar gemacht werden. Dazu muss die erste Zeile der Programmdatei in der Re-

gel folgendermaßen lauten:

#!/usr/bin/python

In diesem Fall wird das Betriebssystem dazu angehalten, diese Programmdatei

immer mit dem Python-Interpreter auszuführen. Unter anderen Betriebssystemen,

beispielsweise Windows, wird die Shebang-Zeile ignoriert.

Beachten Sie, dass der Python-Interpreter auf Ihrem System in einem anderen Ver-

zeichnis als dem hier angegebenen installiert sein könnte. Allgemein ist daher fol-

gende Shebang-Zeile besser, da sie vom tatsächlichen Installationsort von Python un-

abhängig ist:

#!/usr/bin/env python

Weitere Details zum Zusammenspiel zwischen der Shebang-Zeile und den virtuellen

Umgebungen von Anaconda finden Sie in Abschnitt 39.2. Beachten Sie außerdem,

dass das Executable-Flag der Programmdatei gesetzt werden muss, bevor die Datei

tatsächlich ausführbar ist. Das geschieht mit folgendem Befehl:

$ chmod +x dateiname

Die in diesem Buch gezeigten Beispiele enthalten aus Gründen der Übersichtlichkeit

keine Shebang-Zeile. Das bedeutet aber ausdrücklich nicht, dass vom Einsatz einer

Shebang-Zeile abzuraten wäre.

4.1.4 Interne Abläufe

Bislang haben Sie eine ungefähre Vorstellung davon, was Python ausmacht und wo

die Stärken dieser Programmiersprache liegen. Außerdem haben wir Ihnen das

Grundwissen zum Erstellen und Ausführen einer Python-Programmdatei vermit-
67

4 Der Weg zum ersten Programm
telt. Doch in den vorangegangenen Abschnitten sind Begriffe wie »Compiler« oder

»Interpreter« gefallen, ohne erklärt worden zu sein. In diesem Abschnitt möchten

wir uns daher den internen Vorgängen widmen, die beim Ausführen einer Python-

Programmdatei ablaufen. Abbildung 4.2 veranschaulicht, was beim Ausführen einer

Programmdatei namens programm.py geschieht.

Abbildung 4.2 Kompilieren und Interpretieren einer Programmdatei

Wenn die Programmdatei programm.py, wie zu Beginn des Kapitels beschrieben, aus-

geführt wird, passiert sie zunächst den Compiler. Als Compiler wird ein Programm be-

zeichnet, das von einer formalen Sprache in eine andere übersetzt. Im Fall von Python

übersetzt der Compiler von der Sprache Python in den Byte-Code. Dabei steht es dem

Compiler frei, den generierten Byte-Code im Arbeitsspeicher zu behalten oder als pro-

gramm.pyc auf der Festplatte zu speichern.

Beachten Sie, dass der vom Compiler generierte Byte-Code nicht direkt auf dem Pro-

zessor ausgeführt werden kann, im Gegensatz etwa zu C- oder C++-Kompilaten. Zur

Ausführung des Byte-Codes wird eine weitere Abstraktionsschicht, der Interpreter,

benötigt. Der Interpreter, häufig auch virtuelle Maschine (engl. virtual machine) ge-

nannt, liest den vom Compiler erzeugten Byte-Code ein und führt ihn aus.

Dieses Prinzip einer interpretierten Programmiersprache hat verschiedene Vorteile.

So kann derselbe Python-Code beispielsweise unmodifiziert auf allen Plattformen

Compiler

Programmdatei
programm.py

Byte-Code
programm.pyc

Interpreter
68

4.2 Grundstruktur eines Python-Programms
ausgeführt werden, für die ein Python-Interpreter existiert. Allerdings laufen Pro-

gramme interpretierter Programmiersprachen aufgrund des zwischengeschalteten

Interpreters in der Regel auch langsamer als ein vergleichbares C-Programm, das

direkt auf dem Prozessor ausgeführt wird.3

4.2 Grundstruktur eines Python-Programms

Um Ihnen ein Gefühl für die Sprache Python zu vermitteln, möchten wir Ihnen zu-

nächst einen Überblick über ihre Syntax geben. Das Wort Syntax kommt aus dem

Griechischen und bedeutet »Satzbau«. Unter der Syntax einer Programmiersprache

ist die vollständige Beschreibung erlaubter und verbotener Konstruktionen zu ver-

stehen. Die Syntax wird durch eine Grammatik festgelegt, an die Sie sich zu halten ha-

ben. Tun Sie es nicht, so verursachen Sie den allseits bekannten Syntax-Error.

Python macht Ihnen sehr genaue Vorgaben dazu, wie Sie Ihren Quellcode strukturie-

ren müssen. Obwohl erfahrene Programmierer und Programmiererinnen darin eine

Einschränkung sehen mögen, kommt diese Eigenschaft gerade Neulingen zugute,

denn unstrukturierter und unübersichtlicher Code ist eine der größten Fehlerquellen

in der Programmierung.

Grundsätzlich besteht ein Python-Programm aus einzelnen Anweisungen, die im ein-

fachsten Fall genau eine Zeile im Quelltext einnehmen. Folgende Anweisung gibt bei-

spielsweise einen Text auf dem Bildschirm aus:

print("Hallo Welt")

Einige Anweisungen lassen sich in einen Anweisungskopf und einen Anweisungskör-

per unterteilen, wobei der Körper weitere Anweisungen enthalten kann:

Anweisungskopf:
 Anweisung
 …
 Anweisung

Das kann in einem konkreten Python-Programm etwa so aussehen:

if x > 10:
 print("x ist größer als 10")
 print("Zweite Zeile!")

3 Diese Aussage stimmt nicht notwendigerweise, wenn der Interpreter Optimierungen zur Lauf-

zeit des Programms durchführt, beispielsweise eine Just-in-Time-Kompilierung. Aktuelle Versio-

nen von CPython und der alternative Interpreter PyPy (siehe Abschnitt 40.1) führen solche

Optimierungen durch, um die Programmausführung zu beschleunigen.
69

4 Der Weg zum ersten Programm
Die Zugehörigkeit des Körpers zum Kopf wird in Python durch einen Doppelpunkt

am Ende des Anweisungskopfs und durch eine tiefere Einrückung des Anweisungs-

körpers festgelegt. Die Einrückung kann sowohl über Tabulatoren als auch über Leer-

zeichen erfolgen, wobei Sie gut beraten sind, beides nicht zu vermischen. Wir emp-

fehlen eine Einrückungstiefe von jeweils vier Leerzeichen.

Python unterscheidet sich hier von vielen gängigen Programmiersprachen, in denen

die Zuordnung von Anweisungskopf und Anweisungskörper durch geschweifte

Klammern oder Schlüsselwörter wie »Begin« und »End« erreicht wird.

Hinweis

Ein Programm, in dem sowohl Leerzeichen als auch Tabulatoren verwendet wurden,

kann vom Python-Compiler anstandslos übersetzt werden, da jeder Tabulator intern

durch acht Leerzeichen ersetzt wird. Dies kann aber zu schwer auffindbaren Fehlern

führen, denn viele Editoren verwenden standardmäßig eine Tabulatorweite von vier

Leerzeichen. Dadurch scheinen bestimmte Quellcodeabschnitte gleich weit einge-

rückt zu sein, obwohl sie es de facto nicht sind.

Bitte stellen Sie Ihren Editor so ein, dass jeder Tabulator automatisch durch Leerzei-

chen ersetzt wird, oder verwenden Sie ausschließlich Leerzeichen zur Einrückung Ih-

res Codes.

Möglicherweise fragen Sie sich jetzt, wie Anweisungen, die über mehrere Zeilen ge-

hen, mit dem interaktiven Modus vereinbar sind, in dem ja immer nur eine Zeile be-

arbeitet werden kann. Nun, generell werden wir versuchen, den interaktiven Modus

zu vermeiden, wenn ein Codebeispiel mehrere Zeilen lang ist. Dennoch ist die Frage

berechtigt. Die Antwort: Es wird ganz intuitiv zeilenweise eingegeben. Wenn der In-

terpreter erkennt, dass eine Anweisung noch nicht vollendet ist, ändert er den

Prompt von >>> in Geben wir einmal unser oben dargestelltes Beispiel in den in-

teraktiven Modus ein:

>>> x = 123
>>> if x > 10:
... print("Der Interpreter leistet gute Arbeit")
... print("Zweite Zeile!")
...
Der Interpreter leistet gute Arbeit
Zweite Zeile!
>>>

Beachten Sie, dass Sie die aktuelle Einrückungstiefe berücksichtigen müssen, auch

wenn eine Zeile mit ... beginnt. Darüber hinaus kann der Interpreter das Ende des

Anweisungskörpers nicht automatisch erkennen, da dieser beliebig viele Anweisun-
70

4.2 Grundstruktur eines Python-Programms
gen enthalten kann. Deswegen muss ein Anweisungskörper im interaktiven Modus

durch Drücken der (¢)-Taste beendet werden.

4.2.1 Umbrechen langer Zeilen

Prinzipiell können Quellcodezeilen beliebig lang werden. Viele Programmierer be-

schränken die Länge ihrer Quellcodezeilen jedoch, damit beispielsweise mehrere

Quellcodedateien nebeneinander auf den Bildschirm passen oder der Code auch auf

Geräten mit einer festen Zeilenbreite angenehm zu lesen ist. Geläufige maximale Zei-

lenlängen sind 80 oder 120 Zeichen. Innerhalb von Klammern dürfen Sie Quellcode

beliebig umbrechen:

>>> var = (
... 10
... +
... 10
...)
>>> var
20

An vielen anderen Stellen, an denen keine Klammern gesetzt werden dürfen, sind Sie

an die strengen syntaktischen Regeln von Python gebunden. Durch den Einsatz der

Backslash-Notation ist es möglich, Quellcode an nahezu beliebigen Stellen in eine

neue Zeile zu umbrechen:

>>> var \
... = \
... 10
>>> var
10

Grundsätzlich kann ein Backslash überall da stehen, wo auch ein Leerzeichen hätte

stehen können. Daher ist ein Backslash innerhalb eines Strings ebenfalls möglich:

>>> "Hallo \
... Welt"
'Hallo Welt'

Beachten Sie dabei aber, dass eine Einrückung des umbrochenen Teils des Strings

Leerzeichen in den String schreibt. Aus diesem Grund sollten Sie die folgende Vari-

ante, einen String in mehrere Zeilen zu schreiben, vorziehen:

>>> "Hallo " \
... "Welt"
'Hallo Welt'
71

4 Der Weg zum ersten Programm
4.2.2 Zusammenfügen mehrerer Zeilen

Genauso, wie Sie eine einzeilige Anweisung mithilfe des Backslashs auf mehrere Zei-

len umbrechen, können Sie mehrere einzeilige Anweisungen in einer Zeile zusam-

menfassen. Dazu werden die Anweisungen durch ein Semikolon voneinander ge-

trennt:

>>> print("Hallo"); print("Welt")
Hallo
Welt

Anweisungen, die aus einem Anweisungskopf und einem Anweisungskörper beste-

hen, können auch ohne Einsatz eines Semikolons in eine Zeile gefasst werden, sofern

der Anweisungskörper selbst aus nicht mehr als einer Zeile besteht:

>>> x = True
>>> if x: print("Hallo Welt")
...
Hallo Welt

Sollte der Anweisungskörper mehrere Zeilen lang sein, können diese durch ein Semi-

kolon zusammengefasst werden:

>>> x = True
>>> if x: print("Hallo"); print("Welt")
...
Hallo
Welt

Alle durch ein Semikolon zusammengefügten Anweisungen werden so behandelt, als

wären sie gleich weit eingerückt. Allein ein Doppelpunkt vergrößert die Einrückungs-

tiefe. Aus diesem Grund gibt es im oben genannten Beispiel keine Möglichkeit, in der-

selben Zeile eine Anweisung zu schreiben, die nicht mehr im Körper der if-Anwei-

sung steht.

Hinweis

Beim Einsatz des Backslashs und vor allem des Semikolons entsteht schnell unleser-

licher Code. Verwenden Sie beide Notationen daher nur, wenn Sie meinen, dass es der

Lesbarkeit und Übersichtlichkeit dienlich ist.
72

4.3 Das erste Programm
4.3 Das erste Programm

Als Einstieg in die Programmierung mit Python erstellen wir ein kleines Beispielpro-

gramm, das Spiel »Zahlenraten«. Die Spielidee ist folgende: Der Spieler soll eine im

Programm festgelegte Zahl erraten. Dazu stehen ihm beliebig viele Versuche zur Ver-

fügung. Nach jedem Versuch informiert ihn das Programm darüber, ob die geratene

Zahl zu groß, zu klein oder genau richtig gewesen ist. Sobald der Spieler die Zahl erra-

ten hat, gibt das Programm die Anzahl der Versuche aus und wird beendet. Aus Sicht

des Spielers soll das Ganze folgendermaßen aussehen:

Raten Sie: 42
Zu klein
Raten Sie: 10000
Zu groß
Raten Sie: 999
Zu klein
Raten Sie: 1337
Super, Sie haben es in 4 Versuchen geschafft!

Kommen wir vom Ablaufprotokoll zur konkreten Implementierung in Python.

Abbildung 4.3 Zahlenraten, ein einfaches Beispiel

Die in Abbildung 4.3 hervorgehobenen Bereiche des Programms werden im Folgen-

den noch einmal ausführlich diskutiert.

geheimnis = 1337
versuch = −1
zaehler = 0

while versuch != geheimnis:

versuch = int(input("Raten Sie: "))

if versuch < geheimnis:
print("Zu klein")

if versuch > geheimnis:
print("Zu groß")

zaehler = zaehler + 1

print("Super, Sie haben es in ", zaehler, "Versuchen geschafft!")

Initialisierung:
Hier werden Variablen
angelegt und mit Werten
versehen.

Schleifenkopf:
In einer Schleife werden
so lange Zahlen vom Benutzer
gefordert, wie die geheime
Zahl noch nicht erraten ist.

Schleifenkörper:
Der zur Schleife gehörige
Block wird durch seine
Einrückung bestimmt.

Bildschirmausgabe:
Mit der Funktion print
können Zeichenketten
ausgegeben werden.
73

4 Der Weg zum ersten Programm
4.3.1 Initialisierung

Bei der Initialisierung werden die für das Spiel benötigten Variablen angelegt. Python

unterscheidet zwischen verschiedenen Datentypen, wie etwa Zeichenketten, Ganz-

oder Fließkommazahlen. Der Typ einer Variablen wird zur Laufzeit des Programms

anhand des ihr zugewiesenen Werts bestimmt. Es ist also nicht nötig, einen Datentyp

explizit anzugeben. Eine Variable kann im Laufe des Programms ihren Typ ändern.

In unserem Spiel werden Variablen für die gesuchte Zahl (geheimnis), die Benutzerein-

gabe (versuch) und den Versuchszähler (zaehler) angelegt und mit Anfangswerten

versehen. Dadurch, dass versuch und geheimnis zu Beginn des Programms verschie-

dene Werte haben, ist sichergestellt, dass die Schleife anläuft.

4.3.2 Schleifenkopf

Eine while-Schleife wird eingeleitet. Eine while-Schleife läuft so lange, wie die im

Schleifenkopf genannte Bedingung (versuch != geheimnis) erfüllt ist, also in diesem

Fall, bis die Variablen versuch und geheimnis den gleichen Wert haben. Aus Benutzer-

sicht bedeutet dies: Die Schleife läuft so lange, bis die Benutzereingabe mit der zu er-

ratenden Zahl übereinstimmt.

Den zum Schleifenkopf gehörigen Schleifenkörper erkennt man daran, dass die nach-

folgenden Zeilen um eine Stufe weiter eingerückt wurden. Sobald die Einrückung wie-

der um einen Schritt nach links geht, endet der Schleifenkörper.

4.3.3 Schleifenkörper

In der ersten Zeile des Schleifenkörpers wird eine vom Spieler eingegebene Zahl ein-

gelesen und in der Variablen versuch gespeichert. Dabei wird mithilfe von input

("Raten Sie: ") die Eingabe eines Benutzers oder einer Benutzerin eingelesen und

mit int in eine ganze Zahl konvertiert (von engl. integer, »ganze Zahl«). Diese Kon-

vertierung ist wichtig, da Benutzereingaben generell als String eingelesen werden.

In unserem Fall möchten wir die Eingabe jedoch als Zahl weiterverwenden. Der

String "Raten Sie: " wird vor der Eingabe ausgegeben und dient dazu, zur Eingabe

der Zahl aufzufordern.

Nach dem Einlesen wird einzeln geprüft, ob die eingegebene Zahl versuch größer oder

kleiner als die gesuchte Zahl geheimnis ist, und mittels print wird eine entsprechende

Meldung ausgegeben. Schließlich wird der Versuchszähler zaehler um eins erhöht.

Nach dem Hochzählen des Versuchszählers endet der Schleifenkörper, da die nächste

Zeile nicht mehr unter dem Schleifenkopf eingerückt ist.
74

4.4 Kommentare
4.3.4 Bildschirmausgabe

Die letzte Programmzeile gehört nicht mehr zum Schleifenkörper. Das bedeutet, dass

sie erst ausgeführt wird, wenn die Schleife vollständig durchlaufen, das Spiel also ge-

wonnen ist. In diesem Fall werden eine Erfolgsmeldung sowie die Anzahl der benötig-

ten Versuche ausgegeben. Das Spiel ist beendet.

Erstellen Sie jetzt Ihr erstes Python-Programm, indem Sie den Programmcode in eine

Datei namens spiel.py schreiben und ausführen. Ändern Sie den Startwert von ge-
heimnis und spielen Sie das Spiel.

4.4 Kommentare

Sie können sich sicherlich vorstellen, dass es nicht das Ziel ist, Programme zu schrei-

ben, die auf eine Postkarte passen würden. Mit der Zeit wird der Quelltext Ihrer Pro-

gramme umfangreicher und komplexer werden. Irgendwann ist der Zeitpunkt er-

reicht, da bloßes Gedächtnistraining nicht mehr ausreicht, um die Übersicht zu

bewahren. Spätestens dann kommen Kommentare ins Spiel.

Ein Kommentar ist ein kleiner Text, der eine bestimmte Stelle des Quellcodes erläu-

tert und auf Probleme, offene Aufgaben oder Ähnliches hinweist. Ein Kommentar

wird vom Interpreter einfach ignoriert, ändert also am Ablauf des Programms nichts.

Die einfachste Möglichkeit, einen Kommentar zu verfassen, ist der Zeilenkommentar.

Diese Art des Kommentars wird mit dem #-Zeichen begonnen und endet mit dem

Ende der Zeile:

Ein Beispiel mit Kommentaren
print("Hallo Welt!") # Simple Hallo-Welt-Ausgabe

Für längere Kommentare bietet sich ein Blockkommentar an. Ein Blockkommentar

beginnt und endet mit drei aufeinanderfolgenden Anführungszeichen:4

""" Dies ist ein Blockkommentar,
er kann sich über mehrere Zeilen erstrecken. """

Kommentare sollten nur gesetzt werden, wenn sie zum Verständnis des Quelltextes

beitragen oder wertvolle Informationen enthalten. Jede noch so unwichtige Zeile zu

kommentieren, führt dazu, dass man den Wald vor lauter Bäumen nicht mehr sieht.

4 Eigentlich wird mit dieser Notation kein Blockkommentar erzeugt, sondern ein mehrzeiliger

String, der sich aber auch dazu eignet, größere Quellcodebereiche »auszukommentieren«.
75

4 Der Weg zum ersten Programm
4.5 Der Fehlerfall

Vielleicht haben Sie bereits mit dem Beispielprogramm aus Abschnitt 4.3 gespielt und

sind dabei auf eine solche oder ähnliche Ausgabe des Interpreters gestoßen:

 File "hallo_welt.py", line 7
 if versuch != geheimnis
 ^
SyntaxError: expected ':'

Es handelt sich dabei um eine Fehlermeldung, die in diesem Fall auf einen Syntaxfeh-

ler im Programm hinweist. Können Sie erkennen, welcher Fehler hier vorliegt? Rich-

tig, es fehlt der Doppelpunkt am Ende der Zeile.

Python stellt bei der Ausgabe einer Fehlermeldung wichtige Informationen bereit, die

bei der Fehlersuche hilfreich sind:

▸ Die erste Zeile der Fehlermeldung gibt Aufschluss darüber, in welcher Zeile inner-

halb welcher Datei der Fehler aufgetreten ist. In diesem Fall handelt es sich um

Zeile 7 in der Datei hallo_welt.py.

▸ Der mittlere Teil zeigt den betroffenen Ausschnitt des Quellcodes, wobei die ge-

naue Stelle, auf die sich die Meldung bezieht, mit einem kleinen Pfeil markiert ist.

Wichtig ist, dass dies die Stelle ist, an der der Interpreter den Fehler erstmalig fest-

stellen konnte. Das ist nicht unbedingt gleichbedeutend mit der Stelle, an der der

Fehler gemacht wurde.

▸ Die letzte Zeile spezifiziert den Typ der Fehlermeldung, in diesem Fall einen Syntax-
Error. Dies sind die am häufigsten auftretenden Fehlermeldungen. Sie zeigen an,

dass der Compiler das Programm aufgrund eines formalen Fehlers nicht weiter

übersetzen konnte.

Neben dem Syntaxfehler gibt es eine Reihe weiterer Fehlertypen, die an dieser Stelle

nicht alle im Detail besprochen werden sollen.5 Wir möchten jedoch noch auf den

IndentationError (dt. »Einrückungsfehler«) hinweisen, da er gerade bei Python-An-

fängern und -Anfängerinnen häufig auftritt. Versuchen Sie dazu einmal, folgendes

Programm auszuführen:

i = 10
if i == 10:
print("Falsch eingerückt")

Sie sehen, dass die letzte Zeile eigentlich einen Schritt weiter eingerückt sein müsste.

So, wie das Programm jetzt geschrieben wurde, hat die if-Anweisung keinen Anwei-

sungskörper. Das ist nicht zulässig, und daher tritt ein IndentationError auf:

5 Sie finden eine Übersicht über alle Fehlertypen in Abschnitt A.4, »Eingebaute Exceptions«.
76

4.5 Der Fehlerfall
 File "indent.py", line 3
 print("Falsch eingerückt")
 ^^^^^
IndentationError: expected an indented block after 'if' statement on line 2

Nachdem wir uns mit diesen Grundlagen vertraut gemacht haben, kommen wir zu

den Kontrollstrukturen, die es Ihnen erlauben, den Programmfluss zu steuern.
77

Kapitel 11

Numerische Datentypen

In diesem Kapitel besprechen wir mit den numerischen Datentypen die erste große

Gruppe von Datentypen in Python. Tabelle 11.1 listet alle zu dieser Gruppe gehörigen

Datentypen auf und nennt ihren Zweck.

Die numerischen Datentypen bilden eine Gruppe, weil sie thematisch zusammenge-

hören. Diese Zusammengehörigkeit schlägt sich auch darin nieder, dass die numeri-

schen Datentypen viele gemeinsame Operatoren haben. In den folgenden Abschnit-

ten werden wir diese gemeinsamen Operatoren behandeln und im Anschluss daran

die numerischen Datentypen int, float, bool und complex detailliert besprechen.

11.1 Arithmetische Operatoren

Unter einem arithmetischen Operator wird ein Operator verstanden, der eine arith-

metische Berechnung vornimmt, beispielsweise eine Addition oder eine Multiplika-

tion. Für alle numerischen Datentypen sind die in Tabelle 11.2 aufgeführten arithme-

tischen Operatoren definiert.

Datentyp Beschreibung Veränderlichkeit* Abschnitt

int ganze Zahlen unveränderlich Abschnitt 11.4

float Gleitkommazahlen unveränderlich Abschnitt 11.5

bool boolesche Werte unveränderlich Abschnitt 11.6

complex komplexe Zahlen unveränderlich Abschnitt 11.7

* Alle numerischen Datentypen sind unveränderlich. Das bedeutet nicht, dass es keine

Operatoren gibt, die Zahlen verändern, sondern vielmehr, dass nach jeder Verände-

rung eine neue Instanz des jeweiligen Datentyps erzeugt werden muss. Aus Program-

miersicht besteht also zunächst kaum ein Unterschied. Näheres zum Unterschied zwi-

schen veränderlichen und unveränderlichen Datentypen erfahren Sie in Abschnitt 7.3.

Tabelle 11.1 Numerische Datentypen
143

11 Numerische Datentypen

Hinweis

Zwei Anmerkungen für Leser und Leserinnen, die bereits mit einer C-ähnlichen Pro-

grammiersprache vertraut sind:

Es gibt in Python keine Entsprechungen für die Inkrementierungs- und Dekrementie-

rungsoperatoren ++ und -- aus C.

Die Operatoren % und // können folgendermaßen beschrieben werden:

▸ x // y = runden(x / y)
▸ x % y = x - y * runden(x / y)

Python rundet dabei stets ab, während C zur Null hin rundet. Dieser Unterschied tritt

nur auf, wenn die Operanden gegensätzliche Vorzeichen haben.

11.1.1 Erweiterte Zuweisungen

Neben diesen grundlegenden Operatoren gibt es in Python eine Reihe zusätzlicher

Operatoren. Oftmals möchte man beispielsweise die Summe von x und y berechnen

und das Ergebnis in x speichern, x also um y erhöhen. Dazu ist mit den oben genann-

ten Operatoren folgende Anweisung nötig:

x = x + y

Operator Ergebnis

x + y Summe von x und y

x - y Differenz von x und y

x * y Produkt von x und y

x / y Quotient von x und y

x % y Rest beim Teilen von x durch y*

+x positives Vorzeichen

-x negatives Vorzeichen

x ** y x hoch y

x // y abgerundeter Quotient von x und y*

* Die Operatoren % und // haben für komplexe Zahlen keine mathematische Bedeu-

tung und sind deshalb für den Datentyp complex nicht definiert.

Tabelle 11.2 Gemeinsame Operatoren numerischer Datentypen
144

11.2 Vergleichende Operatoren
Für solche Fälle gibt es in Python sogenannte erweiterte Zuweisungen (engl. augmen-

ted assignments), die als eine Art Abkürzung für die oben genannte Anweisung ange-

sehen werden können. Tabelle 11.3 listet die in Python definierten erweiterten Zuwei-

sungen auf.

Wichtig ist, dass Sie hier für y einen beliebigen arithmetischen Ausdruck einsetzen

können, während x ein Ausdruck sein muss, der auch als Ziel einer normalen Zuwei-

sung eingesetzt werden könnte, also zum Beispiel ein symbolischer Name oder ein

Element einer Liste oder eines Dictionarys.

11.2 Vergleichende Operatoren

Ein vergleichender Operator ist ein Operator, der aus zwei Instanzen einen Wahrheits-

wert berechnet. Tabelle 11.4 listet die vergleichenden Operatoren auf, die für numeri-

sche Datentypen definiert sind.

Operator Entsprechung

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x **= y x = x ** y

x //= y x = x // y

Tabelle 11.3 Gemeinsame Operatoren numerischer Datentypen

Operator Ergebnis

x == y wahr, wenn x und y gleich sind

x != y wahr, wenn x und y verschieden sind

x < y wahr, wenn x kleiner ist als y*

x <= y wahr, wenn x kleiner oder gleich y ist*

Tabelle 11.4 Gemeinsame Operatoren numerischer Datentypen
145

11 Numerische Datentypen
Jeder dieser vergleichenden Operatoren liefert als Ergebnis einen Wahrheitswert. Ein

solcher Wert wird zum Beispiel als Bedingung einer if-Anweisung erwartet. Die Ope-

ratoren könnten also folgendermaßen verwendet werden:

if x < 4:
 print("x ist kleiner als 4")

Sie können beliebig viele der vergleichenden Operatoren zu einer Reihe verketten.

Das obere Beispiel ist genau genommen nur ein Spezialfall dieser Regel – mit lediglich

zwei Operanden. Die Bedeutung einer solchen Verkettung entspricht der mathema-

tischen Sichtweise und ist anhand des folgenden Beispiels zu erkennen:

if 2 < x < 4:
 print("x liegt zwischen 2 und 4")

Mehr zu booleschen Werten folgt in Abschnitt 11.6.

11.3 Konvertierung zwischen numerischen Datentypen

Numerische Datentypen können über die eingebauten Funktionen int, float, bool
und complex ineinander umgeformt werden. Dabei können je nach Umformung In-

formationen verloren gehen. Als Beispiel betrachten wir einige Konvertierungen im

interaktiven Modus:

>>> float(33)
33.0
>>> int(33.5)
33
>>> bool(12)
True
>>> complex(True)
(1+0j)

x > y wahr, wenn x größer ist als y*

x >= y wahr, wenn x größer oder gleich y ist*

* Da komplexe Zahlen prinzipiell nicht sinnvoll anzuordnen sind, lässt der Datentyp

complex nur die Verwendung der ersten beiden Operatoren zu.

Operator Ergebnis

Tabelle 11.4 Gemeinsame Operatoren numerischer Datentypen (Forts.)
146

11.4 Ganzzahlen – int
Anstelle eines konkreten Literals kann auch eine Referenz eingesetzt bzw. eine Refe-

renz mit dem entstehenden Wert verknüpft werden:

>>> var1 = 12.5
>>> int(var1)
12
>>> var2 = int(40.25)
>>> var2
40

Hinweis

Der Datentyp complex nimmt bei den oben vorgestellten Konvertierungen eine Son-

derstellung ein, da er sich nicht sinnvoll in einer pauschalen Weise auf einen einzelnen

Zahlenwert reduzieren lässt. Aus diesem Grund schlägt eine Konvertierung wie bei-

spielsweise int(1+2j) fehl.

So viel zur allgemeinen Einführung in die numerischen Datentypen. Die folgenden

Abschnitte werden jeden Datentyp dieser Gruppe im Detail behandeln.

11.4 Ganzzahlen – int

Für die Arbeit mit ganzen Zahlen gibt es in Python den Datentyp int. Im Gegensatz

zu vielen anderen Programmiersprachen unterliegt dieser Datentyp in seinem Wer-

tebereich keinen prinzipiellen Grenzen, was den Umgang mit großen ganzen Zahlen

in Python sehr komfortabel macht.1

Wir haben bereits viel mit ganzen Zahlen gearbeitet, sodass die Verwendung von int
eigentlich keiner Demonstration mehr bedarf. Der Vollständigkeit halber sehen Sie

hier dennoch ein kleines Beispiel:

>>> i = 1234
>>> i
1234
>>> p = int(5678)
>>> p
5678

Seit Python 3.6 kann ein Unterstrich verwendet werden, um die Ziffern eines Literals

zu gruppieren:

1 In Python 2 existierten noch zwei Datentypen für ganze Zahlen: int für den begrenzten Zahlen-

raum von 32 Bit bzw. 64 Bit sowie long mit einem unbegrenzten Wertebereich.
147

11 Numerische Datentypen
>>> 1_000_000
1000000
>>> 1_0_0
100

Die Gruppierung ändert nichts am Zahlenwert des Literals, sondern dient dazu, die

Lesbarkeit von Zahlenliteralen zu erhöhen. Ob und wie Sie die Ziffern gruppieren,

bleibt Ihnen überlassen.

11.4.1 Zahlensysteme

Ganze Zahlen können in Python in mehreren Zahlensystemen geschrieben werden:

▸ Zahlen, die wie im oben dargestellten Beispiel ohne ein spezielles Präfix geschrie-

ben sind, werden im Dezimalsystem (Basis 10) interpretiert. Beachten Sie, dass

einer solchen Zahl keine führenden Nullen vorangestellt werden dürfen:

v_dez = 1337

▸ Das Präfix 0o (»Null-o«) kennzeichnet eine Zahl, die im Oktalsystem (Basis 8) ge-

schrieben wurde. Beachten Sie, dass hier nur Ziffern von 0 bis 7 erlaubt sind:

v_okt = 0o2471

Das kleine »o« im Präfix kann auch durch ein großes »O« ersetzt werden. Wir emp-

fehlen Ihnen jedoch, stets ein kleines »o« zu verwenden, da das große »O« in vielen

Schriftarten von der Null kaum zu unterscheiden ist.

▸ Die nächste und weitaus gebräuchlichere Variante ist das Hexadezimalsystem (Ba-

sis 16), das durch das Präfix 0x bzw. 0X (Null-x) gekennzeichnet ist. Die Zahl selbst

darf aus den Ziffern 0–9 und den Buchstaben A–F bzw. a–f gebildet werden:

v_hex = 0x5A3F

▸ Neben dem Hexadezimalsystem ist in der Informatik das Dualsystem, auch Binär-

system (Basis 2), von entscheidender Bedeutung. Zahlen im Dualsystem werden

analog zu den vorangegangenen Literalen durch das Präfix 0b eingeleitet:

v_bin = 0b1101

Im Dualsystem dürfen nur die Ziffern 0 und 1 verwendet werden.

Vielleicht möchten Sie sich nicht auf diese vier Zahlensysteme beschränken, die von

Python explizit unterstützt werden, sondern ein exotischeres verwenden. Natürlich

gibt es in Python nicht für jedes mögliche Zahlensystem ein eigenes Literal. Stattdes-

sen können Sie sich folgender Schreibweise bedienen:

v_6 = int("54425", 6)
148

11.4 Ganzzahlen – int
Es handelt sich um eine alternative Methode, eine Instanz des Datentyps int zu erzeu-

gen und mit einem Anfangswert zu versehen. Dazu werden in den Klammern ein

String, der den gewünschten Initialwert in dem gewählten Zahlensystem enthält, so-

wie die Basis dieses Zahlensystems als ganze Zahl geschrieben. Beide Werte müssen

durch ein Komma getrennt werden. Im Beispiel wurde das Sechsersystem verwendet.

Python unterstützt Zahlensysteme mit einer Basis von 2 bis 36. Wenn ein Zahlensys-

tem mehr als zehn verschiedene Ziffern zur Darstellung einer Zahl benötigt, werden

zusätzlich zu den Ziffern 0 bis 9 die Buchstaben A bis Z des englischen Alphabets ver-

wendet.

Die Variable v_6 hat jetzt den Wert 7505 im Dezimalsystem.

Für alle Zahlensystemliterale ist die Verwendung eines negativen Vorzeichens mög-

lich:

>>> -1234
-1234
>>> -0o777
-511
>>> -0xFF
-255
>>> -0b1010101
-85

Beachten Sie, dass es sich bei den Zahlensystemen nur um eine alternative Schreib-

weise des gleichen Werts handelt. Der Datentyp int springt beispielsweise nicht in

eine Art Hexadezimalmodus, sobald er einen solchen Wert enthält, stattdessen ist das

Zahlensystem nur bei Zuweisungen oder Ausgaben von Bedeutung. Standardmäßig

werden alle Zahlen im Dezimalsystem ausgegeben:

>>> v1 = 0xFF
>>> v2 = 0o777
>>> v1
255
>>> v2
511

Wir werden später in Abschnitt 12.5 im Zusammenhang mit Strings darauf zurück-

kommen, wie sich Zahlen in anderen Zahlensystemen ausgeben lassen.

11.4.2 Bit-Operationen

Wie bereits gesagt, hat das Dualsystem oder auch Binärsystem in der Informatik eine

große Bedeutung. Für den Datentyp int sind daher einige zusätzliche Operatoren de-
149

11 Numerische Datentypen
finiert, die sich explizit auf die binäre Darstellung der Zahl beziehen. Tabelle 11.5 fasst

diese Bit-Operatoren zusammen.

Da vielleicht nicht jedem unmittelbar klar ist, was die einzelnen Operationen bewir-

ken, möchten wir sie im Folgenden im Detail besprechen.

Bitweises UND

Das bitweise UND zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binärdar-

stellung Bit für Bit miteinander verknüpft werden. Die resultierende Zahl hat in ihrer

Binärdarstellung genau dort eine 1, wo beide der jeweiligen Bits der Operanden 1 sind,

und sonst eine 0. Dies veranschaulicht Abbildung 11.1.

Abbildung 11.1 Bitweises UND

Im interaktiven Modus von Python probieren wir aus, ob das bitweise UND mit den

in der Grafik gewählten Operanden tatsächlich das erwartete Ergebnis zurückgibt:

>>> 107 & 25
9
>>> 0b1101011 & 0b11001

Operator Erweiterte Zuweisung Ergebnis

x & y x &= y bitweises UND von x und y (AND)

x | y x |= y bitweises nicht ausschließendes ODER von x

und y (OR)

x ^ y x ^= y bitweises ausschließendes ODER von x und y

(XOR)

~x bitweises Komplement von x

x << n x <<= n Bit-Verschiebung um n Stellen nach links

x >> n x >>= n Bit-Verschiebung um n Stellen nach rechts

Tabelle 11.5 Bit-Operatoren des Datentyps int

1 1 0 1 0 1 11 1 0 1 0 1 1

0 0 1 1 0 0 10 0 1 1 0 0 1

0 0 0 1 0 0 10 0 0 1 0 0 1

&

107

25

9

Dual Dezimal
150

11.4 Ganzzahlen – int
9
>>> bin(0b1101011 & 0b11001)
'0b1001'

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um

das Ergebnis des bitweisen UND im Binärsystem darzustellen.

Bitweises ODER

Das bitweise ODER zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binärdar-

stellung Bit für Bit miteinander verglichen werden. Die resultierende Zahl hat in ihrer

Binärdarstellung genau da eine 1, wo mindestens eines der jeweiligen Bits der Operan-

den 1 ist. Abbildung 11.2 veranschaulicht dies.

Abbildung 11.2 Bitweises nicht ausschließendes ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ODER mit den

in der Grafik gewählten Operanden tatsächlich das erwartete Ergebnis zurückgibt:

>>> 107 | 25
123
>>> 0b1101011 | 0b11001
123
>>> bin(0b1101011 | 0b11001)
'0b1111011'

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um

das Ergebnis des bitweisen ODER im Binärsystem darzustellen.

Bitweises ausschließendes ODER

Das bitweise ausschließende ODER (auch exklusives ODER) zweier Zahlen wird gebil-

det, indem beide Zahlen in ihrer Binärdarstellung Bit für Bit miteinander verglichen

werden. Die resultierende Zahl hat in ihrer Binärdarstellung genau da eine 1, wo sich

die jeweiligen Bits der Operanden voneinander unterscheiden, und eine 0, wo sie

gleich sind. Dies zeigt Abbildung 11.3.

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 1 1 0 1 11 1 1 1 0 1 1

|

107

25

123

Dual Dezimal

0 0 1 1 0 0 10 0 1 1 0 0 1
151

11 Numerische Datentypen
Abbildung 11.3 Bitweises exklusives ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ausschlie-

ßende ODER mit den in der Grafik gewählten Operanden tatsächlich das erwartete Er-

gebnis zurückgibt:

>>> 107 ^ 25
114
>>> 0b1101011 ^ 0b11001
114
>>> bin(0b1101011 ^ 0b11001)
'0b1110010'

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um

das Ergebnis des bitweisen ausschließenden ODER im Binärsystem darzustellen.

Bitweises Komplement

Das bitweise Komplement bildet das sogenannte Einerkomplement einer Dualzahl, das

der Negation aller vorkommenden Bits entspricht. In Python ist dies auf Bit-Ebene

nicht möglich, da eine ganze Zahl in ihrer Länge unbegrenzt ist und das Komplement

immer in einem abgeschlossenen Zahlenraum gebildet werden muss. Deswegen wird

die eigentliche Bit-Operation zur arithmetischen Operation und ist folgendermaßen

definiert:2

~x = –x – 1

Im interaktiven Modus lässt sich die Funktionsweise des bitweisen Komplements ex-

perimentell erproben:

>>> ~9
-10
>>> ~0b1001

2 Das ist sinnvoll, da man zur Darstellung negativer Zahlen in abgeschlossenen Zahlenräumen das

sogenannte Zweierkomplement verwendet. Dieses erhalten Sie, indem Sie zum Einerkomple-

ment 1 addieren.

Also: –x = Zweierkomplement von x = ~x + 1. Daraus folgt: ~x = –x – 1

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 1 0 0 1 01 1 1 0 0 1 0

^

107

25

114

Dual Dezimal

0 0 1 1 0 0 10 0 1 1 0 0 1
152

11.4 Ganzzahlen – int
-10
>>> bin(~0b1001)
'-0b1010'

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um

das Ergebnis des bitweisen Komplements im Binärsystem darzustellen.

Bit-Verschiebung

Bei der Bit-Verschiebung (engl. bit shift) wird die Bit-Folge in der binären Darstellung

des ersten Operanden um die durch den zweiten Operanden gegebene Anzahl Stellen

nach links bzw. rechts verschoben. Auf der rechten Seite entstehende Lücken werden

mit Nullen gefüllt, und das Vorzeichen des ersten Operanden bleibt erhalten. Abbil-

dung 11.4 und Abbildung 11.5 veranschaulichen eine Verschiebung um zwei Stellen

nach links bzw. nach rechts.

Abbildung 11.4 Bit-Verschiebung um zwei Stellen nach links

Abbildung 11.5 Bit-Verschiebung um zwei Stellen nach rechts

Die in der Bit-Darstellung entstehenden Lücken auf der rechten bzw. linken Seite wer-

den mit Nullen aufgefüllt.

Die Bit-Verschiebung ist in Python ähnlich wie der Komplementoperator arithme-

tisch implementiert. Ein Shift um x Stellen nach rechts entspricht einer ganzzahligen

Division durch 2x. Ein Shift um x Stellen nach links entspricht einer Multiplikation

mit 2x.

Auch für die bitweisen Verschiebungen können wir die in den Grafiken gezeigten Bei-

spiele im interaktiven Modus nachvollziehen:

>>> 107 << 2
428

0 1 0 1 1 0 00 1 0 1 1 0 0

107

428

Dual Dezimal

11

n = 2

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 0 1 0

107

26

Dual Dezimal

n = 2

1 1 0 1 0 1 11 1 0 1 0 1 1
153

11 Numerische Datentypen
>>> 107 >> 2
26
>>> bin(0b1101011 << 2)
'0b110101100'
>>> bin(0b1101011 >> 2)
'0b11010'

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um

die Ergebnisse der Bit-Verschiebungen im Binärsystem darzustellen.

11.4.3 Die Methode bit_length

Der Datentyp int verfügt über eine Methode, die sich auf die Binärdarstellung der

ganzen Zahl bezieht. Die Methode bit_length berechnet die Anzahl Stellen, die für die

Binärdarstellung der Zahl benötigt werden:

>>> (36).bit_length()
6
>>> (4345).bit_length()
13

Die Binärdarstellung der 36 ist 100100, und die der 4345 ist 1000011111001. Damit be-

nötigen die beiden Zahlen 6 bzw. 13 Stellen für ihre Binärdarstellung.

Hinweis

Beachten Sie, dass die Klammern um die Zahlenliterale bei ganzen Zahlen benötigt

werden, da es sonst zu Doppeldeutigkeiten mit der Syntax für Gleitkommazahlen

kommen könnte.

11.5 Gleitkommazahlen – float

Zu Beginn dieses Teils sind wir bereits oberflächlich auf Gleitkommazahlen eingegan-

gen, was wir in diesem Abschnitt ein wenig vertiefen möchten. Zum Speichern einer

Gleitkommazahl mit begrenzter Genauigkeit3 wird der Datentyp float verwendet.

Wie bereits besprochen wurde, sieht das Literal für eine Gleitkommazahl im einfachs-

ten Fall folgendermaßen aus:

v = 3.141

3 In Abschnitt 11.5.2 besprechen wir einige Details zur Genauigkeit des Datentyps.
154

11.5 Gleitkommazahlen – float
Vor- und Nachkommaanteil können dabei weggelassen werden, wenn sie den Wert 0

haben:

>>> -3.
-3.0
>>> .001
0.001

Achten Sie dabei darauf, dass der Punkt ein essenzielles Element eines Gleitkomma-

zahl-Literals ist und als solches nicht weggelassen werden darf.

Seit Python 3.6 kann zudem ein Unterstrich verwendet werden, um die Ziffern eines

Gleitkommazahl-Literals zu gruppieren:

>>> 3.000_000_1
3.0000001

11.5.1 Exponentialschreibweise

Python unterstützt außerdem eine Notation, die es ermöglicht, die Exponential-

schreibweise zu verwenden:

v = 3.141e-12

Durch ein kleines oder großes e wird die Mantisse (3.141) vom Exponenten (-12) ge-

trennt. Übertragen in die mathematische Schreibweise, entspricht dies dem Wert

3,141 · 10–12. Beachten Sie, dass sowohl die Mantisse als auch der Exponent im Dezimal-

system angegeben werden müssen. Andere Zahlensysteme sind nicht vorgesehen,

was die gefahrlose Verwendung führender Nullen ermöglicht:

v = 03.141e-0012

11.5.2 Genauigkeit

Eventuell haben Sie gerade schon etwas mit den Gleitkommazahlen experimentiert

und sind dabei auf einen vermeintlichen Fehler des Interpreters gestoßen:

>>> 1.1 + 2.2
3.3000000000000003

Reelle Zahlen können im Datentyp float nicht unendlich präzise gespeichert werden,

stattdessen werden sie mit einer bestimmten Genauigkeit angenähert.

Wenn Sie technisch versiert sind und jetzt von anderen Programmiersprachen zu

Python wechseln, wird es Sie interessieren, dass float-Instanzen in Python IEEE-754-

Gleitkommazahlen mit doppelter Genauigkeit sind. Der Datentyp float in Python ist

damit mit dem Datentyp double in C, C++ und Java vergleichbar.
155

11 Numerische Datentypen
Falls Sie explizit Gleitkommazahlen mit einfacher Genauigkeit verwenden möchten,

können Sie auf den Datentyp float32 der Drittanbieterbibliothek NumPy (siehe Kapi-

tel 43, »Wissenschaftliches Rechnen und Data Science«) zurückgreifen.

11.5.3 Unendlich und Not a Number

Gleitkommazahlen können als float nicht beliebig genau gespeichert werden. Das

impliziert auch, dass es sowohl eine Ober- als auch eine Untergrenze für diesen Da-

tentyp geben muss. Und tatsächlich können Gleitkommazahlen, die in ihrer Größe

ein bestimmtes Limit überschreiten, in Python nicht mehr dargestellt werden. Wenn

das Limit überschritten ist, wird die Zahl als inf gespeichert4 bzw. als –inf, wenn das

untere Limit unterschritten wurde. Es kommt also zu keinem Fehler, und es ist immer

noch möglich, eine übergroße Zahl mit anderen zu vergleichen:

>>> 3.0e999
inf
>>> -3.0e999
-inf
>>> 3.0e999 < 12.0
False
>>> 3.0e999 > 12.0
True
>>> 3.0e999 == 3.0e999999999999
True

Es ist zwar möglich, zwei unendlich große Gleitkommazahlen miteinander zu verglei-

chen, jedoch lässt sich nur bedingt mit ihnen rechnen. Dazu folgendes Beispiel:

>>> 3.0e999 + 1.5e999999
inf
>>> 3.0e999 - 1.5e999999
nan
>>> 3.0e999 * 1.5e999999
inf
>>> 3.0e999 / 1.5e999999
nan
>>> 5 / 1e9999
0.0

Zwei unendlich große Gleitkommazahlen lassen sich problemlos addieren oder mul-

tiplizieren. Das Ergebnis ist in beiden Fällen wieder inf. Ein Problem gibt es aber,

wenn versucht wird, zwei solche Zahlen zu subtrahieren bzw. zu dividieren. Da diese

4 inf steht für infinity (dt. »unendlich«).
156

11.6 Boolesche Werte – bool
Rechenoperationen nicht sinnvoll sind, ergeben sie nan. Der Status nan ist vergleich-

bar mit inf, bedeutet jedoch not a number, also so viel wie »nicht berechenbar«.

Beachten Sie, dass weder inf noch nan eine Konstante ist, die Sie selbst in einem

Python-Programm verwenden könnten. Stattdessen können Sie float-Instanzen mit

den Werten inf und nan folgendermaßen erzeugen:

>>> float("inf")
inf
>>> float("nan")
nan
>>> float("inf") / float("inf")
nan

11.6 Boolesche Werte – bool

Eine Instanz des Datentyps bool5 kann nur zwei verschiedene Werte annehmen:

»wahr« oder »falsch« bzw., um innerhalb der Python-Syntax zu bleiben, True oder

False. Deshalb ist es auf den ersten Blick absurd, bool den numerischen Datentypen

zuzuordnen. Wie in vielen Programmiersprachen üblich, wird in Python True analog

zur 1 und False analog zur 0 gesehen, sodass sich mit booleschen Werten genauso

rechnen lässt wie beispielsweise mit den ganzen Zahlen. Bei den Namen True und

False handelt es sich um Konstanten, die im Quelltext verwendet werden können. Be-

achten Sie besonders, dass die Konstanten mit einem Großbuchstaben beginnen:

v1 = True
v2 = False

11.6.1 Logische Operatoren

Ein oder mehrere boolesche Werte lassen sich mithilfe bestimmter Operatoren zu

einem booleschen Ausdruck kombinieren. Ein solcher Ausdruck resultiert, wenn er

ausgewertet wurde, wieder in einem booleschen Wert, also in True oder False. Bevor

es zu theoretisch wird, folgt hier zunächst die Tabelle der sogenannten logischen Ope-

ratoren6, und darunter sehen Sie weitere Erklärungen mit konkreten Beispielen.

5 Der Name bool geht zurück auf den britischen Mathematiker und Logiker George Boole

(1815–1864).

6 Beachten Sie, dass es einen Unterschied gibt zwischen den logischen Operatoren, die im Zusam-

menhang mit booleschen Werten stehen, und den binären Operatoren, die sich auf die Binärdar-

stellung einer Zahl beziehen.
157

11 Numerische Datentypen
Logische Negierung

Die logische Negierung eines booleschen Werts ist schnell erklärt: Der entsprechende

Operator not macht True zu False und False zu True. In einem konkreten Beispiel

würde das folgendermaßen aussehen:

if not x:
 print("x ist False")
else:
 print("x ist True")

Logisches UND

Das logische UND zwischen zwei Wahrheitswerten ergibt nur dann True, wenn beide

Operanden bereits True sind. In Tabelle 11.7 sind alle möglichen Fälle aufgelistet.

In einem konkreten Beispiel würde die Anwendung des logischen UND so aussehen:

if x and y:
 print("x und y sind True")

Logisches ODER

Das logische ODER zwischen zwei Wahrheitswerten ergibt genau dann eine wahre

Aussage, wenn mindestens einer der beiden Operanden wahr ist. Es handelt sich dem-

nach um ein nicht ausschließendes ODER. Ein Operator für ein logisches ausschlie-

Operator Ergebnis

not x logische Negierung von x

x and y logisches UND zwischen x und y

x or y logisches (nicht ausschließendes) ODER zwischen x und y

Tabelle 11.6 Logische Operatoren des Datentyps bool

x y x and y

True True True

False True False

True False False

False False False

Tabelle 11.7 Mögliche Fälle des logischen UND
158

11.6 Boolesche Werte – bool
ßendes (exklusives) ODER existiert in Python nicht.7 Tabelle 11.8 listet alle möglichen

Fälle auf.

Ein logisches ODER könnte folgendermaßen implementiert werden:

if x or y:
 print("x oder y ist True")

Selbstverständlich können Sie all diese Operatoren miteinander kombinieren und in

einem komplexen Ausdruck verwenden. Das könnte etwa folgendermaßen aussehen:

if x and y or ((y and z) and not x):
 print("Holla die Waldfee")

Wir möchten diesen Ausdruck hier nicht im Einzelnen besprechen. Es sei nur gesagt,

dass der Einsatz von Klammern den erwarteten Effekt hat, nämlich dass umklam-

merte Ausdrücke zuerst ausgewertet werden. Tabelle 11.9 zeigt den Wahrheitswert des

Ausdrucks auf, und zwar in Abhängigkeit von den drei Parametern x, y und z.

7 Ein logisches exklusives ODER zwischen x und y lässt sich über (x or y) and not (x and y) nach-

bilden.

x y x or y

True True True

False True True

True False True

False False False

Tabelle 11.8 Mögliche Fälle des logischen ODER

x y z x and y or ((y and z) and not x)

True True True True

False True True True

True False True False

True True False True

False False True False

False True False False

Tabelle 11.9 Mögliche Ergebnisse des Ausdrucks
159

11 Numerische Datentypen
Die Kombination von logischen und vergleichenden Operatoren

Zu Beginn des Abschnitts über numerische Datentypen haben wir einige verglei-

chende Operatoren eingeführt, die eine Wahrheitsaussage in Form eines booleschen

Werts ergeben. Das folgende Beispiel zeigt, dass sie ganz selbstverständlich zusam-

men mit den logischen Operatoren verwendet werden können:

if x > y or (y > z and x != 0):
 print("Mein lieber Schwan")

In diesem Fall muss es sich bei x, y und z um Instanzen vergleichbarer Typen handeln,

wie zum Beispiel int, float oder bool.

11.6.2 Wahrheitswerte nicht boolescher Datentypen

Mithilfe der Built-in Function bool lassen sich Instanzen eines jeden Basisdatentyps

in einen booleschen Wert überführen.

>>> bool([1,2,3])
True
>>> bool("")
False
>>> bool(-7)
True

Dies ist eine sinnvolle Eigenschaft, da sich eine Instanz der Basisdatentypen häufig in

zwei Stadien befinden kann: »leer« und »nicht leer«. Oftmals möchte man beispiels-

weise testen, ob ein String Buchstaben enthält oder nicht. Da ein String in einen

booleschen Wert konvertiert werden kann, wird ein solcher Test sehr einfach durch

logische Operatoren möglich:

>>> not ""
True
>>> not "abc"
False

Durch Verwendung eines logischen Operators wird der Operand automatisch als

Wahrheitswert interpretiert.

True False False False

False False False False

x y z x and y or ((y and z) and not x)

Tabelle 11.9 Mögliche Ergebnisse des Ausdrucks (Forts.)
160

11.6 Boolesche Werte – bool
Für jeden Basisdatentyp ist ein bestimmter Wert als False definiert. Alle davon abwei-

chenden Werte sind True. Tabelle 11.10 listet für jeden Datentyp den entsprechenden

False-Wert auf. Einige Datentypen wurden noch nicht eingeführt, an dieser Stelle soll-

ten Sie sich daran nicht weiter stören.

Alle anderen Werte ergeben True.

11.6.3 Auswertung logischer Operatoren

Python wertet logische Ausdrücke grundsätzlich von links nach rechts aus, also im

folgenden Beispiel zuerst a und dann b:

if a or b:
 print("a oder b sind True")

Basisdatentyp False-Wert Beschreibung

NoneType None der Wert None

Numerische Datentypen

int 0 der numerische Wert null

float 0.0 der numerische Wert null

bool False der boolesche Wert False

complex 0 + 0j der numerische Wert null

Sequenzielle Datentypen

str "" ein leerer String

list [] eine leere Liste

tuple () ein leeres Tupel

Assoziative Datentypen

dict {} ein leeres Dictionary

Mengen

set set() eine leere Menge

frozenset frozenset() eine leere Menge

Tabelle 11.10 Wahrheitswerte der Basisdatentypen
161

11 Numerische Datentypen
Es wird aber nicht garantiert, dass jeder Teil des Ausdrucks tatsächlich ausgewertet

wird. Aus Optimierungsgründen bricht Python die Auswertung des Ausdrucks sofort

ab, wenn das Ergebnis feststeht. Hat im Beispiel oben also a bereits den Wert True, ist

der Wert von b nicht weiter von Belang; b würde dann nicht mehr ausgewertet. Das

folgende Beispiel demonstriert dieses Verhalten, das Lazy Evaluation (dt. »faule Aus-

wertung«) genannt wird.

>>> a = True
>>> if a or print("Lazy "):
... print("Evaluation")
...
Evaluation

Obwohl in der Bedingung der if-Anweisung die print-Funktion aufgerufen wird, wird

diese Bildschirmausgabe nie durchgeführt, da der Wert der Bedingung bereits nach

der Auswertung von a feststeht. Dieses Detail scheint unwichtig, kann aber insbeson-

dere im Zusammenhang mit seiteneffektbehafteten8 Funktionen zu schwer auffind-

baren Fehlern führen.

In Abschnitt 11.6.1 wurde gesagt, dass ein boolescher Ausdruck stets einen booleschen

Wert ergibt, wenn er ausgewertet wurde. Das ist nicht ganz korrekt, denn auch hier

wurde die Arbeitsweise des Interpreters in einer Weise optimiert, über die man Be-

scheid wissen sollte. Deutlich wird dies an folgendem Beispiel aus dem interaktiven

Modus:

>>> 0 or 1
1

Nach dem, was wir bisher besprochen haben, sollte das Ergebnis des Ausdrucks True
sein, was nicht der Fall ist. Stattdessen gibt Python hier den ersten Operanden mit

dem Wahrheitswert True zurück. In vielen Fällen macht das keinen Unterschied, denn

der zurückgegebene Wert wird problemlos automatisch in den Wahrheitswert True
überführt.

Die Auswertung der beiden Operatoren or und and läuft dabei folgendermaßen ab:

Das logische ODER (or) nimmt den Wert des ersten Operanden an, der den Wahrheits-

wert True besitzt, oder – wenn es einen solchen nicht gibt – den Wert des letzten Ope-

randen.

Das logische UND (and) nimmt den Wert des ersten Operanden an, der den Wahrheits-

wert False besitzt, oder – wenn es einen solchen nicht gibt – den Wert des letzten Ope-

randen.

8 siehe dazu Abschnitt 17.10
162

11.7 Komplexe Zahlen – complex
Diese Details haben dabei auch durchaus ihren unterhaltsamen Wert:

>>> "Python" or "Java"
'Python'

11.7 Komplexe Zahlen – complex

Überraschenderweise findet sich ein Datentyp zur Speicherung komplexer Zahlen

unter Pythons Basisdatentypen. In vielen Programmiersprachen würden komplexe

Zahlen eher eine Randnotiz in der Standardbibliothek darstellen oder ganz außen vor

bleiben. Sollten Sie nicht mit komplexen Zahlen vertraut sein, können Sie diesen Ab-

schnitt gefahrlos überspringen. Er behandelt nichts, was für das weitere Erlernen von

Python vorausgesetzt würde.

Komplexe Zahlen bestehen aus einem reellen Realteil und einem Imaginärteil. Der

Imaginärteil ist eine reelle Zahl, die mit der imaginären Einheit j multipliziert wird.9

Die imaginäre Einheit j ist als Lösung der Gleichung

j2 = –1

definiert. Im folgenden Beispiel weisen wir einer komplexen Zahl den Namen v zu:

v = 4j

Wenn man wie im Beispiel nur einen Imaginärteil angibt, wird der Realteil automa-

tisch als 0 angenommen. Um den Realteil festzulegen, wird dieser zum Imaginärteil

addiert. Die beiden folgenden Schreibweisen sind äquivalent:

v1 = 3 + 4j
v2 = 4j + 3

Anstelle des kleinen j ist auch ein großes J als Literal für den Imaginärteil einer kom-

plexen Zahl zulässig. Entscheiden Sie hier ganz nach Ihren Vorlieben, welche der bei-

den Möglichkeiten Sie verwenden möchten.

Sowohl der Real- als auch der Imaginärteil können eine beliebige reelle Zahl sein. Fol-

gende Schreibweise ist demnach auch korrekt:

v3 = 3.4 + 4e2j

Zu Beginn des Abschnitts über numerische Datentypen wurde bereits angedeutet,

dass sich komplexe Zahlen von den anderen numerischen Datentypen unterschei-

den. Da für komplexe Zahlen keine mathematische Anordnung definiert ist, können

9 Das in der Mathematik eigentlich übliche Symbol der imaginären Einheit ist i. Python hält sich

hier an die Notationen der Elektrotechnik.
163

11 Numerische Datentypen
Instanzen des Datentyps complex nur auf Gleichheit oder Ungleichheit überprüft wer-

den. Die Menge der vergleichenden Operatoren ist also auf == und != beschränkt.

Darüber hinaus haben sowohl der Modulo-Operator % als auch der Operator // für

eine ganzzahlige Division im Komplexen keinen mathematischen Sinn und stehen

deswegen in Kombination mit komplexen Zahlen nicht zur Verfügung.

Der Datentyp complex besitzt zwei Attribute, die die Arbeit mit ihm erleichtern. Es

kommt zum Beispiel vor, dass man Berechnungen nur mit dem Realteil oder nur mit

dem Imaginärteil der gespeicherten Zahl anstellen möchte. Um einen der beiden

Teile zu isolieren, stellt eine complex-Instanz die in Tabelle 11.11 aufgeführten Attribute

bereit.

Diese können wie im folgenden Beispiel verwendet werden:

>>> c = 23 + 4j
>>> c.real
23.0
>>> c.imag
4.0

Neben seinen zwei Attributen verfügt der Datentyp complex über eine Methode, die

in Tabelle 11.12 exemplarisch für eine Referenz auf eine komplexe Zahl namens x er-

klärt wird.

Das folgende Beispiel demonstriert die Verwendung der Methode conjugate:

>>> c = 23 + 4j
>>> c.conjugate()
(23-4j)

Attribut Beschreibung

x.real Realteil von x als Gleitkommazahl

x.imag Imaginärteil von x als Gleitkommazahl

Tabelle 11.11 Attribute des Datentyps complex

Methode Beschreibung

x.conjugate() Liefert die zu x konjugierte komplexe Zahl.

Tabelle 11.12 Methode des Datentyps complex
164

11.7 Komplexe Zahlen – complex
Das Ergebnis von conjugate ist wieder eine komplexe Zahl und verfügt daher eben-

falls über die Methode conjugate:

>>> c = 23 + 4j
>>> c2 = c.conjugate()
>>> c2
(23-4j)
>>> c3 = c2.conjugate()
>>> c3
(23+4j)

Das Konjugieren einer komplexen Zahl ist eine selbstinverse Operation. Das bedeu-

tet, dass das Ergebnis einer zweifachen Konjugation wieder die Ausgangszahl ist.
165

Kapitel 20

Ausnahmebehandlung

Stellen Sie sich einmal ein Programm vor, das über eine vergleichsweise tiefe Aufruf-

hierarchie verfügt. Das heißt, dass Funktionen weitere Unterfunktionen aufrufen, die

ihrerseits wieder Funktionen aufrufen. Es ist häufig so, dass die übergeordneten

Funktionen nicht korrekt weiterarbeiten können, wenn in einer ihrer Unterfunktio-

nen ein Fehler aufgetreten ist. Die Information, dass ein Fehler aufgetreten ist, muss

also durch die Aufrufhierarchie nach oben geschleust werden, damit jede übergeord-

nete Funktion auf den Fehler reagieren und sich daran anpassen kann.

20.1 Exceptions

Bislang konnten wir Fehler, die innerhalb einer Funktion aufgetreten sind, allein an-

hand des Rückgabewerts der Funktion kenntlich machen. Es ist mit viel Aufwand ver-

bunden, einen solchen Rückgabewert durch die Funktionshierarchie nach oben

durchzureichen, zumal es sich dabei um Ausnahmen handelt. Wir würden also sehr

viel Code dafür aufwenden, um seltene Fälle zu behandeln.

Für solche Fälle unterstützt Python ein Programmierkonzept, das Exception Handling

(dt. »Ausnahmebehandlung«) genannt wird. Im Fehlerfall erzeugt unsere Unterfunk-

tion dann eine sogenannte Exception und wirft sie, bildlich gesprochen, nach oben.

Die Ausführung der Funktion ist damit beendet. Jede übergeordnete Funktion hat

jetzt drei Möglichkeiten:

▸ Sie fängt die Exception ab, führt den Code aus, der für den Fehlerfall vorgesehen

ist, und fährt dann normal fort. In einem solchen Fall bemerken weitere überge-

ordnete Funktionen die Exception nicht.

▸ Sie fängt die Exception ab, führt den Code aus, der für den Fehlerfall vorgesehen

ist, und wirft die Exception weiter nach oben. In einem solchen Fall ist auch die

Ausführung dieser Funktion sofort beendet, und die übergeordnete Funktion

steht vor der Wahl, die Exception abzufangen oder nicht.

▸ Sie lässt die Exception passieren, ohne sie abzufangen. In diesem Fall ist die Aus-

führung der Funktion sofort beendet, und die übergeordnete Funktion steht vor

der Wahl, die Exception abzufangen oder nicht.
443

20 Ausnahmebehandlung
Bisher haben wir bei einer solchen Ausgabe

>>> abc
Traceback (most recent call last):
 File "<python-input-0>", line 1, in <module>
 abc
NameError: name 'abc' is not defined. Did you mean: 'abs'? Or did you forget
to import 'abc'?

ganz allgemein von einem »Fehler« oder einer »Fehlermeldung« gesprochen. Dies ist

nicht ganz korrekt: Im Folgenden möchten wir diese Ausgabe als Traceback bezeich-

nen. Welche Informationen ein Traceback enthält und wie sie interpretiert werden

können, wurde bereits in Abschnitt 4.5 behandelt. Ein Traceback wird immer dann an-

gezeigt, wenn eine Exception bis nach ganz oben durchgereicht wurde, ohne abgefan-

gen zu werden. Doch was genau ist eine Exception?

Eine Exception ist ein Objekt, das Attribute und Methoden zur Klassifizierung und Be-

arbeitung eines Fehlers enthält. Einige dieser Informationen werden im Traceback

angezeigt, so etwa die Beschreibung des Fehlers (name 'abc' is not defined). Eine Ex-

ception kann im Programm selbst abgefangen und behandelt werden, ohne dass Nut-

zende etwas davon mitbekommen. Näheres zum Abfangen einer Exception erfahren

Sie im weiteren Verlauf dieses Kapitels. Sollte eine Exception nicht abgefangen wer-

den, wird sie in Form eines Tracebacks ausgegeben, und der Programmablauf wird be-

endet.

20.1.1 Eingebaute Exceptions

In Python existiert eine Reihe eingebauter Exceptions, zum Beispiel die bereits be-

kannten Exceptions SyntaxError, NameError und TypeError. Solche Exceptions werden

von Funktionen der Standardbibliothek oder vom Interpreter selbst geworfen. Sie

sind eingebaut, das bedeutet, dass sie zu jeder Zeit im Quelltext verwendet werden

können:

>>> NameError
<class 'NameError'>
>>> SyntaxError
<class 'SyntaxError'>

Die eingebauten Exceptions sind hierarchisch organisiert, das heißt, sie erben von ge-

meinsamen Basisklassen. Sie sind deswegen in ihrem Attribut- und Methodenum-

fang weitestgehend identisch. Im Anhang (in Abschnitt A.4) finden Sie eine Liste der

eingebauten Exception-Typen mit kurzer Erklärung.
444

20.1 Exceptions
BaseException

Die Klasse BaseException ist die Basisklasse aller Exceptions und stellt damit eine

Grundfunktionalität bereit, die für alle Exception-Typen vorhanden ist. Aus diesem

Grund soll sie hier besprochen werden.

Die Grundfunktionalität, die BaseException bereitstellt, besteht aus einem wesentli-

chen Attribut namens args. Dabei handelt es sich um ein Tupel, in dem alle Parameter

abgelegt werden, die der Exception bei ihrer Instanziierung übergeben wurden. Über

diese Parameter ist es dann später beim Fangen der Exception möglich, detaillierte

Informationen über den aufgetretenen Fehler zu erhalten. Das folgende Beispiel de-

monstriert nun die Verwendung des Attributs args:

>>> e = BaseException("Hallo Welt")
>>> e.args
('Hallo Welt',)
>>> e = BaseException("Hallo Welt",1,2,3,4,5)
>>> e.args
('Hallo Welt', 1, 2, 3, 4, 5)

So viel zunächst zur direkten Verwendung der Exception-Klassen.

20.1.2 Das Werfen einer Exception

Bisher haben wir nur Exceptions betrachtet, die in einem Fehlerfall vom Python-In-

terpreter geworfen wurden. Es ist jedoch auch möglich, mithilfe der raise-Anweisung

selbst eine Exception zu werfen:

>>> raise SyntaxError("Hallo Welt")
Traceback (most recent call last):
 File "<python-input-0>", line 1, in <module>
 raise SyntaxError("Hallo Welt")
SyntaxError: Hallo Welt

Dazu wird das Schlüsselwort raise geschrieben, gefolgt von einer Instanz. Diese darf

nur Instanz einer von BaseException abgeleiteten Klasse sein. Darüber hinaus ist auch

das Werfen einer von BaseException abgeleiteten Klasse möglich, ohne zunächst eine

Instanz zu erstellen. Eine auf diesem Weg geworfene Exception beinhaltet dann keine

Fehlermeldung:

>>> raise SyntaxError
Traceback (most recent call last):
 File "<python-input-0>", line 1, in <module>
 raise SyntaxError
SyntaxError: <no detail available>
445

20 Ausnahmebehandlung
Das Werfen von Instanzen anderer Datentypen, insbesondere von Strings, ist nicht

möglich:

>>> raise "Hallo Welt"
Traceback (most recent call last):
 File "<python-input-0>", line 1, in <module>
 raise "Hallo Welt"
TypeError: exceptions must derive from BaseException

Im folgenden Abschnitt möchten wir besprechen, wie Exceptions im Programm ab-

gefangen werden können, sodass sie nicht in einem Traceback enden, sondern zur

Ausnahmebehandlung eingesetzt werden können. Wir werden sowohl in diesem als

auch im nächsten Abschnitt bei den eingebauten Exceptions bleiben. Selbst defi-

nierte Exception-Typen werden das Thema von Abschnitt 20.1.4 sein.

20.1.3 Das Abfangen einer Exception

In diesem Abschnitt geht es darum, wie eine in einer Unterfunktion geworfene Excep-

tion in den darüberliegenden Aufrufebenen abgefangen werden kann. Das Fangen

einer Exception ist notwendig, um auf den aufgetretenen Fehler reagieren zu können.

Stellen Sie sich ein Programm vor, das Daten aus einer vom Benutzer festgelegten

Datei liest. Dazu verwendet das Programm die folgende im Moment noch sehr simple

Funktion get_file, die das geöffnete Dateiobjekt zurückgibt:

def get_file(name):
 return open(name)

Sollte keine Datei mit dem angegebenen Namen existieren, wirft die eingebaute

Funktion open eine FileNotFoundError-Exception. Da die Funktion get_file nicht auf

diese Exception reagiert, wird sie in der Aufrufhierarchie weiter nach oben gereicht

und verursacht schließlich ein vorzeitiges Beenden des Programms.

Nun sind fehlerhafte Benutzereingaben Probleme, die Sie beim Schreiben eines inter-

aktiven Programms berücksichtigen sollten. Die folgende Variante der Funktion get_
file fängt eine von open geworfene FileNotFoundError-Exception ab und gibt in die-

sem Fall anstelle des geöffneten Dateiobjekts den Wert None zurück:

def get_file(name):
 try:
 return open(name)
 except FileNotFoundError:
 return None

Zum Abfangen einer Exception wird eine try/except-Anweisung verwendet. Eine sol-

che Anweisung besteht zunächst aus zwei Teilen:
446

20.1 Exceptions
▸ Der try-Block wird durch das Schlüsselwort try eingeleitet, gefolgt von einem Dop-

pelpunkt und einem beliebigen Codeblock, der um eine Ebene weiter eingerückt

ist. Dieser Codeblock wird zunächst ausgeführt. Wenn in diesem Codeblock eine

Exception auftritt, wird seine Ausführung sofort beendet und der except-Zweig der

Anweisung ausgeführt.

▸ Der except-Zweig wird durch das Schlüsselwort except eingeleitet, gefolgt von

einer optionalen Liste von Exception-Typen, für die dieser except-Zweig ausge-

führt werden soll. Beachten Sie, dass mehrere Exception-Typen in Form eines Tu-

pels angegeben werden müssen. Dazu werden Sie später noch ein Beispiel sehen.

Hinter der Liste der Exception-Typen kann, ebenfalls optional, das Schlüsselwort

as stehen, gefolgt von einem frei wählbaren Bezeichner. Hier legen Sie fest, unter

welchem Namen Sie auf die gefangene Exception-Instanz im except-Zweig zugrei-

fen können. Auf diesem Weg können Sie beispielsweise auf die in dem args-Attri-

but der Exception-Instanz abgelegten Informationen zugreifen. Auch dazu werden

Sie im Verlauf dieses Kapitels noch Beispiele sehen.

Danach folgen ein Doppelpunkt und, um eine Ebene weiter eingerückt, ein belie-

biger Codeblock. Dieser Codeblock wird nur dann ausgeführt, wenn innerhalb des

try-Blocks eine der aufgelisteten Exceptions geworfen wurde.

Eine grundlegende try/except-Anweisung hat also folgende Struktur:

try:
 Anweisung
 Anweisung
except ExceptionTyp as Bezeichner:
 Anweisung
 Anweisung

Kommen wir zurück zu unserer Beispielfunktion get_file. Es ist durchaus möglich,

dass bei einem Funktionsaufruf für name fälschlicherweise kein String, sondern zum

Beispiel eine Liste übergeben wird. In einem solchen Fall wird kein FileNotFoundError,

sondern ein TypeError geworfen, der von der try/except-Anweisung bislang nicht ab-

gefangen wird:

>>> get_file([1, 2, 3])
Traceback (most recent call last):
 File "<python-input-1>", line 1, in <module>
 get_file([1, 2, 3])
    ~~~~~~~~^^^^^^^^^^^ 
  File "<python-input-0>", line 3, in get_file 
    return open(name) 
TypeError: expected str, bytes or os.PathLike object, not list 
447



20 Ausnahmebehandlung
Die Funktion soll nun dahin gehend erweitert werden, dass auch ein TypeError abge-

fangen und dann ebenfalls None zurückgegeben wird. Dazu haben wir im Wesentli-

chen drei Möglichkeiten. Die erste besteht darin, die Liste der abzufangenden Excep-

tion-Typen im vorhandenen except-Zweig um den TypeError zu erweitern. Beachten 

Sie dabei, dass zwei oder mehr Exception-Typen im Kopf eines except-Zweigs als Tu-

pel angegeben werden müssen:

def get_file(name): 
    try: 
        return open(name) 
    except (FileNotFoundError, TypeError): 
        return None 

 

Hinweis

Mit Python 3.14 wurde die Syntax der try/except-Anweisung dahin gehend überar-

beitet, dass die Klammern beim Abfangen mehrerer Exception-Typen in einem 

except-Zweig nicht mehr notwendig sind:

def get_file(name): 
    try: 
        return open(name) 
    except FileNotFoundError, TypeError: 
        return None 

Die Klammern dürfen nur dann weggelassen werden, wenn der except-Zweig nicht 

gleichzeitig um einen as-Teil ergänzt wird, den wir im Verlauf dieses Abschnitts noch 

kennenlernen werden.

Dies ist einfach und führt im gewählten Beispiel zum gewünschten Resultat. Stellen 

Sie sich jedoch vor, Sie wollten je nach Exception-Typ unterschiedlichen Code ausfüh-

ren. Um ein solches Verhalten zu erreichen, kann eine try/except-Anweisung über be-

liebig viele except-Zweige verfügen:

def get_file(name): 
    try: 
        return open(name) 
    except FileNotFoundError: 
        return None 
    except TypeError: 
        return None 

Die dritte – weniger elegante – Möglichkeit besteht darin, alle Arten von Exceptions 

auf einmal abzufangen. Dazu wird ein except-Zweig ohne Angabe eines Exception-

Typs geschrieben:
448



20.1 Exceptions
def get_file(name): 
    try: 
        return open(name) 
    except: 
        return None 

 

Hinweis

Es ist nur in wenigen Fällen sinnvoll, alle möglichen Exceptions auf einmal abzufan-

gen. Durch diese Art des Exception Handling kann es vorkommen, dass unabsichtlich 

auch Exceptions abgefangen werden, die nichts mit dem oben dargestellten Code zu 

tun haben. Das betrifft zum Beispiel die KeyInterrupt-Exception, die bei einem Pro-

grammabbruch per Tastenkombination geworfen wird.

Sollten Sie einmal jede beliebige Exception fangen wollen, verwenden Sie except Ex-
ception, da Exception die Basisklasse aller Exceptions ist, die das Programm nicht 

zwingend beenden.

Eine Exception ist nichts anderes als eine Instanz einer bestimmten Klasse. Darum 

stellt sich die Frage, ob und wie man innerhalb eines except-Zweigs Zugriff auf die 

geworfene Instanz erlangt. Das ist durch Angabe des bereits angesprochenen

as Bezeichner-Teils im Kopf des except-Zweigs möglich. Unter dem dort angegebe-

nen Namen können Sie nun innerhalb des Codeblocks auf die geworfene Exception-

Instanz zugreifen:1

try: 
    print([1,2,3][10]) 
except (IndexError, TypeError) as e: 
    print("Fehlermeldung:", e.args[0]) 

Die Ausgabe des oben angeführten Beispiels lautet:

Fehlermeldung: list index out of range 

Zusätzlich kann eine try/except-Anweisung über einen else- und einen finally-

Zweig verfügen, die jeweils nur einmal pro Anweisung vorkommen dürfen. Der dem 

else-Zweig zugehörige Codeblock wird ausgeführt, wenn keine Exception aufgetre-

ten ist, und der dem finally-Zweig zugehörige Codeblock wird in jedem Fall nach Be-

handlung aller Exceptions und nach dem Ausführen des entsprechenden else-Zweigs 

ausgeführt – egal, ob Exceptions vorher aufgetreten sind und welche. Dieser finally-

1 Die möglicherweise verwirrende Schreibweise print([1,2,3][10]) ist gleichbedeutend mit: 

lst = [1,2,3] 
print(lst[10])
449



20 Ausnahmebehandlung
Zweig eignet sich daher besonders für Dinge, die in jedem Fall erledigt werden müs-

sen, wie beispielsweise das Schließen eines Dateiobjekts.

Sowohl der else- als auch der finally-Zweig müssen ans Ende der try/except-Anwei-

sung geschrieben werden. Wenn beide Zweige vorkommen, muss der else-Zweig vor 

dem finally-Zweig stehen.

Abbildung 20.1 zeigt eine vollständige try/except-Anweisung.

Abbildung 20.1  Eine vollständige try/except-Anweisung

Abschließend noch einige Bemerkungen dazu, wie eine try/except-Anweisung ausge-

führt wird: Zunächst wird der Code ausgeführt, der zum try-Zweig gehört. Sollte in-

nerhalb dieses Codes eine Exception geworfen werden, wird der Code ausgeführt, der 

zu dem entsprechenden except-Zweig gehört. Ist kein passender except-Zweig vor-

handen, wird die Exception nicht abgefangen und endet, wenn sie auch anderswo 

nicht abgefangen wird, als Traceback auf dem Bildschirm. Sollte im try-Zweig keine 

Exception geworfen werden, wird keiner der except-Zweige ausgeführt, sondern der 

else-Zweig. Der finally-Zweig wird in jedem Fall zum Schluss ausgeführt.

Exceptions, die innerhalb eines except-, else- oder finally-Zweigs geworfen werden, 

können nicht von folgenden except-Zweigen der gleichen Anweisung wieder abge-

fangen werden. Es ist jedoch möglich, try/except-Anweisungen zu verschachteln:

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

try:

except ExceptionTyp as Name1: 

except ExceptionTyp as Name2: 

else:

finally:

Der try-Zweig enthält den Code, 
der ausgeführt werden soll.

Ein oder mehrere except-Zweige 
enthalten den Code, der im Falle 
einer ExceptionTyp-Exception 
ausgeführt werden soll.

Ein optionaler else-Zweig 
enthält Code, der nur dann aus-
geführt wird, wenn zuvor keine 
Exception abgefangen wurde.

Ein optionaler finally-Zweig 
enthält Code, der immer abschließend 
ausgeführt wird, egal, ob oder welche 
Exceptions geworfen wurden.
450



20.1 Exceptions
try: 
    try: 
        raise TypeError 
    except TypeError: 
        raise IndexError 
    except IndexError: 
        print("Innen gefangen") 
except IndexError: 
    print("Außen gefangen") 

Bei der Behandlung der im inneren try-Block geworfenen TypeError-Exception wird 

ein IndexError geworfen, der von der Anweisung selbst nicht abgefangen werden 

kann. Die Exception wandert dann, bildlich gesprochen, eine Ebene höher und durch-

läuft die nächste try/except-Anweisung. In dieser wird der geworfene IndexError ab-

gefangen und eine entsprechende Meldung ausgegeben. Die Ausgabe des Beispiels 

lautet also: »Außen gefangen«.

20.1.4    Eigene Exceptions

Beim Werfen und Abfangen von Exceptions sind Sie nicht auf den eingebauten Satz 

von Exception-Typen beschränkt, vielmehr können Sie selbst neue Typen erstellen. 

Viele Drittanbieterbibliotheken nutzen diese Möglichkeit, um speziell auf die jewei-

lige Anwendung zugeschnittene Exception-Typen anzubieten.

Zum Definieren eines eigenen Exception-Typs brauchen Sie lediglich eine eigene 

Klasse zu erstellen, die von der Exception-Basisklasse Exception erbt, und können 

dann ganz nach Anforderung weitere Attribute und Methoden zum Umgang mit Ih-

rer Exception hinzufügen.

Im Folgenden definieren wir zunächst eine rudimentäre Kontoklasse, die als einzige 

Operation das Abheben eines bestimmten Geldbetrags unterstützt:

class Konto: 
    def __init__(self, betrag): 
        self.kontostand = betrag 
    def abheben(self, betrag): 
        self.kontostand -= betrag 

In dieser Implementierung der Klasse ist es möglich, das Konto beliebig zu überzie-

hen. In einer etwas raffinierteren Variante soll das Überziehen des Kontos unterbun-

den werden, und beim Versuch, mehr Geld abzuheben, als vorhanden ist, soll eine 

selbst definierte Exception geworfen werden. Dazu definieren wir zunächst eine von 

der Basisklasse Exception abgeleitete Klasse und fügen Attribute für den Kontostand 

und den abzuhebenden Betrag hinzu:
451



20 Ausnahmebehandlung
class KontostandException(Exception): 
    def __init__(self, kontostand, betrag): 
        super().__init__(kontostand, betrag) 
        self.kontostand = kontostand 
        self.betrag = betrag 

Dann modifizieren wir die Methode abheben der Klasse Konto dahin gehend, dass bei 

einem ungültigen Abhebevorgang eine KontostandException-Instanz geworfen wird:

class Konto: 
    def __init__(self, betrag): 
        self.kontostand = betrag 
    def abheben(self, betrag): 
        if betrag > self.kontostand: 
            raise KontostandException(self.kontostand, betrag) 
        self.kontostand -= betrag 

Die dem Konstruktor der Klasse übergebenen zusätzlichen Informationen werden im 

Traceback nicht angezeigt:

>>> k = Konto(1000) 
>>> k.abheben(2000) 
Traceback (most recent call last): 
  File "<python-input-3>", line 1, in <module> 
    k.abheben(2000) 
    ~~~~~~~~~^^^^^^ 
 File "<python-input-1>", line 6, in abheben
 raise KontostandException(self.kontostand, betrag)
KontostandException: (1000, 2000)

Sie kommen erst zum Tragen, wenn die Exception abgefangen und bearbeitet wird:

try:
 k.abheben(2000)
except KontostandException as e:
 print(f"Kontostand: {e.kontostand} €")
 print(f"Abheben von {e.betrag} € nicht möglich.")

Dieser Code fängt die entstandene Exception ab und gibt daraufhin eine Fehlermel-

dung aus. Anhand der zusätzlichen Informationen, die die Klasse durch die Attribute

kontostand und betrag bereitstellt, lässt sich der vorausgegangene Abhebevorgang re-

konstruieren. Die Ausgabe des Beispiels lautet:

Kontostand: 1000 €
Abheben von 2000 € nicht möglich.
452

20.1 Exceptions
Damit eine selbst definierte Exception mit weiterführenden Informationen auch

eine Fehlermeldung enthalten kann, muss sie die Magic Method __str__ implemen-

tieren:

class KontostandException(Exception):
 def __init__(self, kontostand, betrag):
 self.kontostand = kontostand
 self.betrag = betrag
 def __str__(self):
 fehlbetrag = self.betrag - self.kontostand
 return f"Kontostand zu niedrig: Es werden {fehlbetrag} € mehr benötigt"

Ein Traceback, der durch diese Exception verursacht wird, sieht folgendermaßen aus:

>>> k = Konto(1000)
>>> k.abheben(2000)
Traceback (most recent call last):
 File "<python-input-3>", line 1, in <module>
 k.abheben(2000)
    ~~~~~~~~~^^^^^^ 
  File "<python-input-1>", line 6, in abheben 
    raise KontostandException(self.kontostand, betrag) 
KontostandException: Kontostand zu niedrig: Es werden 1000 € mehr benötigt 

20.1.5    Erneutes Werfen einer Exception

In manchen Fällen, gerade bei einer tiefen Funktionshierarchie, ist es sinnvoll, eine 

Exception abzufangen, die für diesen Fall vorgesehene Fehlerbehandlung zu starten 

und die Exception danach erneut zu werfen. Betrachten wir dazu folgendes Beispiel:

def funktion3(): 
    raise TypeError 
def funktion2(): 
    funktion3() 
def funktion1(): 
    funktion2() 
funktion1() 

Im Beispiel wird die Funktion funktion1 aufgerufen, die ihrerseits funktion2 aufruft, 

in der die Funktion funktion3 aufgerufen wird. Es handelt sich also um insgesamt drei 

verschachtelte Funktionsaufrufe. Im Innersten dieser Funktionsaufrufe, in funktion3, 

wird eine TypeError-Exception geworfen. Diese Exception wird nicht abgefangen, des-

halb sieht der dazugehörige Traceback so aus:
453



20 Ausnahmebehandlung
Traceback (most recent call last): 
  File "<python-input-0>", line 7, in <module> 
    funktion1() 
    ~~~~~~~~~^^ 
 File "<python-input-0>", line 6, in funktion1
 funktion2()
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 4, in funktion2 
    funktion3() 
    ~~~~~~~~~^^ 
 File "<python-input-0>", line 2, in funktion3
 raise TypeError
TypeError

Der Traceback beschreibt erwartungsgemäß die Funktionshierarchie zum Zeitpunkt

der raise-Anweisung. Diese Liste wird auch Callstack genannt.

Hinter dem Exception-Prinzip steht der Gedanke, dass sich eine Exception in der Auf-

rufhierarchie nach oben arbeitet und an jeder Station abgefangen werden kann. In

unserem Beispiel soll die Funktion funktion1 die TypeError-Exception abfangen, da-

mit sie eine spezielle auf den TypeError zugeschnittene Fehlerbehandlung durchfüh-

ren kann. Nachdem funktion1 ihre funktionsinterne Fehlerbehandlung durchgeführt

hat, soll die Exception weiter nach oben gereicht werden. Dazu wird sie erneut gewor-

fen, und zwar wie im folgenden Beispiel:

def funktion3():
 raise TypeError
def funktion2():
 funktion3()
def funktion1():
 try:
 funktion2()
 except TypeError:
 # Fehlerbehandlung
 raise TypeError
funktion1()

Im Gegensatz zum vorangegangenen Beispiel sieht der nun auftretende Traceback so

aus:

Traceback (most recent call last):
 File "<python-input-0>", line 11, in <module>
 funktion1()
    ~~~~~~~~~^^ 
454



20.1 Exceptions
  File "<python-input-0>", line 10, in funktion1 
    raise TypeError 
TypeError 

Sie sehen, dass dieser Traceback Informationen über den Kontext der zweiten raise-

Anweisung enthält.2 Diese sind aber gar nicht von Belang, sondern eher ein Neben-

produkt der Fehlerbehandlung innerhalb der Funktion funktion1. Optimal wäre es, 

wenn trotz des temporären Abfangens der Exception in funktion1 der resultierende 

Traceback den Kontext der ursprünglichen raise-Anweisung beschriebe. Um das zu 

erreichen, wird eine raise-Anweisung ohne Angabe eines Exception-Typs geschrie-

ben:

def funktion3(): 
    raise TypeError 
def funktion2(): 
    funktion3() 
def funktion1(): 
    try:  
        funktion2() 
    except TypeError:  
        # Fehlerbehandlung 
        raise 
funktion1() 

Der in diesem Beispiel ausgegebene Traceback sieht folgendermaßen aus:

Traceback (most recent call last): 
  File "<python-input-0>", line 11, in <module> 
    funktion1() 
    ~~~~~~~~~^^ 
 File "<python-input-0>", line 7, in funktion1
 funktion2()
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 4, in funktion2 
    funktion3() 
    ~~~~~~~~~^^ 
 File "<python-input-0>", line 2, in funktion3
 raise TypeError
TypeError

2 Tatsächlich enthält der ausgegebene Traceback aufgrund des Exception Chaining (siehe

Abschnitt 20.1.6) auch noch Informationen über die ursprüngliche Exception. Das soll uns

an dieser Stelle aber nicht weiter interessieren.
455

20 Ausnahmebehandlung
Wie Sie sehen, handelt es sich dabei um den Stacktrace der Stelle, an der die Exception

ursprünglich geworfen wurde. Der Traceback enthält damit die gewünschten Infor-

mationen über die Stelle, an der der Fehler tatsächlich aufgetreten ist.

20.1.6 Exception Chaining

Gelegentlich kommt es vor, dass man innerhalb eines except-Zweigs in die Verlegen-

heit kommt, eine weitere Exception zu werfen – entweder weil bei der Behandlung

der Exception ein weiterer Fehler aufgetreten ist oder um die entstandene Exception

»umzubenennen«.

Wenn innerhalb eines except-Zweigs eine weitere Exception geworfen wird, wendet

Python automatisch das sogenannte Exception Chaining an. Dabei wird die vorange-

gangene Exception als Kontext an die neu geworfene Exception angehängt, sodass

ein Maximum an Information weitergegeben wird. Zum Beispiel erzeugt der Code

try:
 [1,2,3][128]
except IndexError:
 raise RuntimeError("Schlimmer Fehler")

die Ausgabe:

Traceback (most recent call last):
 File "<python-input-0>", line 2, in <module>
 [1,2,3][128]
    ~~~~~~~^^^^^ 
IndexError: list index out of range 
During handling of the above exception, another exception occurred: 
Traceback (most recent call last): 
  File "<python-input-0>", line 4, in <module> 
    raise RuntimeError("Schlimmer Fehler") 
RuntimeError: Schlimmer Fehler 

Es wird auf das 128. Element einer dreielementigen Liste zugegriffen, was eine Index-
Error-Exception provoziert. Diese Exception wird gefangen, und bei der Behandlung 

wird eine RuntimeError-Exception geworfen. Anhand des ausgegebenen Tracebacks 

sehen Sie, dass die ursprüngliche IndexError-Exception an die neue RuntimeError-Ex-

ception angehängt wurde.

Mithilfe der raise/from-Syntax lässt sich das Exception-Chaining-Verhalten steuern. 

Beim Werfen einer Exception kann ein Kontext angegeben werden, der dann im re-

sultierenden Traceback berücksichtigt wird. Dieser Kontext kann zum Beispiel eine 

zweite Exception sein:
456



20.1 Exceptions
>>> raise IndexError from ValueError 
ValueError 
The above exception was the direct cause of the following exception: 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    raise IndexError from ValueError 
IndexError 

Es zeigt sich, dass wir mit der raise/from-Syntax das Exception Chaining auslösen 

können. Alternativ kann mit der raise/from-Syntax das automatische Anhängen 

einer Exception verhindert werden:

try: 
    [1,2,3][128] 
except IndexError: 
    raise RuntimeError("Schlimmer Fehler") from None 

In diesem Fall enthält der resultierende Traceback nur die neu entstandene Run-
timeError-Exception. Die ursprüngliche IndexError-Exception geht verloren.

20.1.7    Exception Notes

Die in einer Exception-Instanz gespeicherte Fehlermeldung ist gemeinsam mit dem 

Traceback die wesentliche Informationsgrundlage, um einem aufgetretenen Fehler 

nachzuspüren, ihn zu verstehen und schlussendlich zu beheben. In der Praxis kommt 

es allerdings vor, dass die Fehlermeldung für die Analyse des Problems unzureichend 

ist. Betrachten wir als Beispiel die folgende Funktion zum Auslesen von Metainforma-

tionen eines Bildes im Bitmap-Dateiformat. Dieses Beispiel haben wir in ähnlicher 

Form bereits in Abschnitt 6.4.3 betrachtet:

from struct import unpack 
def lese_infos(dateiname): 
    with open(dateiname, "rb") as f: 
        f.seek(18) 
        breite, hoehe = unpack("ii", f.read(8)) 
        f.seek(2, 1) 
        bpp = unpack("H", f.read(2))[0] 
    return breite, hoehe, bpp 

Im Folgenden verwenden wir die Funktion lese_infos, um eine Reihe von Bildern zu 

analysieren:
457



20 Ausnahmebehandlung
dateien = ["kaffee.bmp", "ohne_daten.bmp"] 
infos = [lese_infos(dateiname) for dateiname in dateien] 
for breite, hoehe, bpp in infos: 
    print(f"Breite: {breite} px") 
    print(f"Höhe: {hoehe} px") 
    print(f"Farbtiefe: {bpp} bpp") 

Während das Auslesen der Metainformation für kaffee.bmp funktioniert, ist ohne_da-
ten.bmp keine gültige Bitmap-Datei, was beim Versuch, die Metadaten zu lesen, zu 

einer Exception führt:

Traceback (most recent call last): 
  File "beispiel_02_exception_notes.py", line 26, in <module> 
    infos = [lese_infos(dateiname) for dateiname in dateien] 
             ~~~~~~~~~~~~^^^^^^^^^^^ 
 File "beispiel_02_exception_notes.py", line 7, in lese_infos_1
 breite, hoehe = unpack("ii", f.read(8))
                    ~~~~~~^^^^^^^^^^^^^^^^^ 
struct.error: unpack requires a buffer of 8 bytes 

Sie sehen, dass Traceback und Fehlermeldung den lokalen Kontext des Problems gut 

beschreiben: Offenbar konnte nicht die erwartete Datenmenge aus der Datei gelesen 

werden. Eine Information, die zum Verständnis des Problems wesentlich beitragen 

würde, fehlt jedoch: Das Lesen welcher Datei löst das Problem aus?

Seit Python 3.11 bieten Exception-Instanzen die Methode add_note an, über die sich 

Exceptions um zusätzliche Informationen (»Notizen«) ergänzen lassen:

def lese_infos(dateiname): 
    try: 
        with open(dateiname, "rb") as f: 
            f.seek(18) 
            breite, hoehe = unpack("ii", f.read(8)) 
            f.seek(2, 1) 
            bpp = unpack("H", f.read(2))[0] 
        return breite, hoehe, bpp 
    except Exception as e: 
        e.add_note(f"Bearbeitete Datei: {dateiname}") 
        raise 

Im Beispiel passen wir die Funktion lese_infos so an, dass jede auftretende Exception 

um eine Notiz ergänzt wird, die den Dateinamen des aktuell betrachteten Bildes an-

gibt. Die einer Exception angefügten Notizen werden gemeinsam mit Fehlermeldung 

und Traceback am Bildschirm ausgegeben:
458



20.2 Zusicherungen – assert
Traceback (most recent call last): 
  File "beispiel_02_exception_notes.py", line 26, in <module> 
    infos = [lese_infos_2(dateiname) for dateiname in dateien] 
             ~~~~~~~~~~~~^^^^^^^^^^^ 
 File "beispiel_02_exception_notes.py", line 16, in lese_infos_2
 breite, hoehe = unpack("ii", f.read(8))
                    ~~~~~~^^^^^^^^^^^^^^^^^ 
struct.error: unpack requires a buffer of 8 bytes 
Bearbeitete Datei: ohne_daten.bmp 

Eine Exception kann durch mehrfaches Aufrufen von add_note um beliebig viele No-

tizen ergänzt werden. Innerhalb des Programms kann über das Attribut __notes__
einer Exception-Instanz auf die ihr angefügten Notizen zugegriffen werden.

20.2    Zusicherungen – assert

Mithilfe des Schlüsselworts assert lassen sich Zusicherungen in ein Python-Pro-

gramm integrieren. Durch das Schreiben einer assert-Anweisung wird beim Pro-

grammieren eine Bedingung festgelegt, die für die Ausführung des Programms 

essenziell ist und die bei Erreichen der assert-Anweisung zu jeder Zeit True ergeben 

muss. Wenn die Bedingung einer assert-Anweisung False ergibt, wird eine Asserti-
onError-Exception geworfen. In der folgenden Sitzung im interaktiven Modus wur-

den mehrere assert-Anweisungen eingegeben:

>>> lst = [7, 1, 3, 5, -12] 
>>> assert max(lst) == 7 
>>> assert min(lst) == -12 
>>> assert sum(lst) == 0 
Traceback (most recent call last): 
  File "<python-input-3>", line 1, in <module> 
    assert sum(lst) == 0 
           ^^^^^^^^^^^^^ 
AssertionError 

In der assert-Anweisung kann auch eine Fehlermeldung spezifiziert werden, die im 

Fall eines Fehlschlags in die AssertionError-Exception eingetragen wird. Diese Fehler-

meldung kann, durch ein Komma getrennt, hinter die Bedingung geschrieben wer-

den:

>>> assert max(lst) == 7, "max ist kaputt" 
>>> assert min(lst) == -12, "min ist kaputt" 
>>> assert sum(lst) == 0, "sum ist kaputt" 
Traceback (most recent call last): 
459



20 Ausnahmebehandlung
  File "<python-input-3>", line 1, in <module> 
    assert sum(lst) == 0, "sum ist kaputt" 
           ^^^^^^^^^^^^^ 
AssertionError: sum ist kaputt 

Die assert-Anweisung ist damit ein praktisches Hilfsmittel zum Aufspüren von Feh-

lern und ermöglicht es, den Programmlauf zu beenden, wenn bestimmte Vorausset-

zungen nicht erfüllt sind. Häufig prüft man an Schlüsselstellen im Programm mit as-
sert, ob alle Referenzen die erwarteten Werte referenzieren, um eventuelle 

Fehlberechnungen rechtzeitig erkennen zu können.

Beachten Sie, dass assert-Anweisungen üblicherweise nur während der Entwicklung 

eines Programms benötigt werden und in einem fertigen Programm eher stören wür-

den. Deswegen werden assert-Anweisungen nur dann ausgeführt, wenn die globale 

Konstante __debug__ den Wert True referenziert. Diese Konstante ist nur dann False, 

wenn der Interpreter mit der Kommandozeilenoption -O gestartet wurde. Wenn die 

Konstante __debug__ den Wert False referenziert, werden assert-Anweisungen igno-

riert und haben damit keinen Einfluss mehr auf die Laufzeit Ihres Programms.

 

Hinweis

Beachten Sie, dass Sie den Wert von __debug__ im Programm selbst nicht verändern 

dürfen, sondern nur über die Kommandozeilenoption -O bestimmen können, ob as-
sert-Anweisungen ausgeführt oder ignoriert werden sollen.

20.3    Warnungen

Unter einer Warnung wird eine Exception verstanden, die den Programmablauf nicht 

verändert, sondern nur auf dem Standardfehlerstrom stderr (siehe Abschnitt 29.2.2) 

erscheint, um Sie über einen bedenklichen, aber nicht kritischen Umstand zu infor-

mieren.

Ein typisches Beispiel für eine Warnung ist die DeprecationWarning, die den Entwickler 

oder die Anwenderin darüber informiert, dass das laufende Programm eine Funktio-

nalität verwendet, die in zukünftigen Python-Versionen oder zukünftigen Versionen 

einer Bibliothek nicht mehr zur Verfügung stehen wird. Diese Feststellung stellt für 

den aktuellen Programmlauf kein Problem dar, ist jedoch wichtig genug, um darüber 

zu informieren.

 

Hinweis

Abschnitt A.4 im Anhang listet die in Python standardmäßig definierten Typen von 

Warnungen auf und erklärt ihre Bedeutung.
460



20.4 Exception Groups
Das Modul warnings der Standardbibliothek ermöglicht es, über komplexe Filterre-

geln das Anzeigen bzw. Ignorieren von Warnungen verschiedenen Inhalts und ver-

schiedener Quellen zu steuern. Standardmäßig unterdrückt Python einige Warnun-

gen, insbesondere wenn sie aus importierten Modulen stammen. Diese Filterregeln 

werden vom Python-Entwicklerteam jedoch häufig an neue Gegebenheiten ange-

passt.

Das Modul warnings enthält die Funktion simplefilter, die die voreingestellten Filter-

regeln mit einer allgemeinen Regel überschreiben kann. Auf diese Weise lassen sich 

Warnungen beispielsweise universell unterdrücken:

>>> import warnings 
>>> warnings.simplefilter("ignore") 

Analog können alle Warnungen zu Exceptions gemacht werden, die den Programm-

ablauf unterbrechen. In diesem Fall können Warnungen auch gefangen und behan-

delt werden:

>>> warnings.simplefilter("error") 

Weitere mögliche Argumente sind "default" für das Unterdrücken von erneut auftre-

tenden Warnungen aus derselben Quelle, "always" für das Ausgeben aller Warnun-

gen, "module" für das Ausgeben nur der jeweils ersten Warnung eines Moduls und 

"once" für das Unterdrücken von erneut auftretenden Warnungstypen.

 

Hinweis

Warnungen können auch über den Kommandozeilenparameter -W des Python-Inter-

preters zu Fehlern gemacht werden. Auf diese Weise lässt sich das Verhalten eines 

Python-Programms in Bezug auf Warnungen verändern, ohne den Code anpassen zu 

müssen:

$ python –W error programm.py 

Analog sind die Argumente default, always, module und once möglich.

20.4    Exception Groups

Die Ausnahmebehandlung, wie wir sie in den vorangegangenen Abschnitten dieses 

Kapitels diskutiert haben, stellt eine zentrale Anforderung an den Code: Es kann zu 

jedem Zeitpunkt nur eine einzige Exception geworfen und gefangen werden.

Diese Anforderung ist in der Regel nicht problematisch, weshalb die klassische Aus-

nahmebehandlung für sehr viele Python-Programme völlig ausreichend ist. Es gibt 
461



20 Ausnahmebehandlung
jedoch spezielle Situationen, in denen von diesem Prinzip abgewichen werden muss. 

Stellen Sie sich zur Veranschaulichung einmal die folgenden beiden Situationen vor:

▸ Ein Bildverarbeitungsprogramm führt eine Bildtransformation parallel auf mehre-

ren Bildern gleichzeitig durch. Das Programm startet die parallelen Operationen 

und wartet dann darauf, dass alle Bilder bearbeitet wurden. Eine individuelle Ope-

ration kann mit einer Exception fehlschlagen, zum Beispiel weil eine Datei nicht 

gefunden wurde oder das Dateiformat nicht gelesen werden konnte. In dieser Si-

tuation können mehrere verschiedene Exceptions gleichzeitig auftreten, und die 

aufrufende Ebene sollte diese Exceptions als Gesamtheit fangen und bearbeiten 

können.

▸ Ein Programm sendet eine HTTP-Anfrage an einen Webserver, um beispielsweise 

eine Web-API zu verwenden. Sollte der Verbindungsaufbau fehlschlagen oder der 

Server mit einem Fehler antworten, könnte eine einfache Strategie die Anfrage au-

tomatisch wiederholen. Ein abschließender Fehlschlag nach mehreren Versuchen 

müsste dann in Form von mehreren Exceptions an die aufrufende Ebene propa-

giert werden, denn jedes individuelle Scheitern der Anfrage könnte eine andere Ur-

sache gehabt haben.

Für diese und ähnliche Anwendungsfälle wurde in Python 3.11 das Konzept der Excep-

tion Groups eingeführt. Dabei werden eine oder mehrere Exceptions als Gruppe zu-

sammengefasst und gemeinsam geworfen.

Beachten Sie, dass sich eine Exception Group dann eignet, wenn mehrere voneinan-

der unabhängige Exceptions gemeinsam geworfen werden sollen. Mehrere vonei-

nander abhängige Exceptions können über das Exception Chaining (siehe Abschnitt 

20.1.6) zu einer einzigen Exception zusammengefügt werden.

20.4.1    Eine Exception Group

Eine Exception Group besteht aus einer Fehlerbeschreibung und einer Liste von 

Exceptions, die in der Gruppe zusammengefasst werden:

group = ExceptionGroup("Zwei Exceptions", [ 
    TypeError("Ein TypeError"), 
    SyntaxError("Ein SyntaxError"), 
]) 

Die Klasse ExceptionGroup erbt von Exception, was es insbesondere ermöglicht, Excep-

tion Groups beliebig ineinander zu verschachteln:

group = ExceptionGroup("Operation fehlgeschlagen", [ 
    ValueError("Parameter x hat ungültigen Wert"), 
    ValueError("Parameter y hat ungültigen Wert"), 
462



20.4 Exception Groups
    ExceptionGroup("Download von test.png fehlgeschlagen", [ 
        ConnectionRefusedError("Fehler im ersten Versuch"), 
        TimeoutError("Fehler im zweiten Versuch"), 
    ]), 
    ExceptionGroup("Speichern von test.png fehlgeschlagen", [ 
        IOError("Kein freier Speicherplatz"), 
        RuntimeError("Die Datei ist leer"), 
    ]) 
]) 

In diesem Beispiel erzeugen wir eine fiktive Exception Group, die aus einer Samm-

lung unterschiedlicher Exceptions besteht, die sich in zwei weitere Untergruppen 

einsortieren.

Eine Exception Group kann über die raise-Anweisung wie eine normale Exception 

geworfen werden:

raise group 

Analog zu einer normalen Exception wird ein Traceback ausgegeben, wenn eine ge-

worfene Exception Group nicht gefangen wird. Dieser enthält eine Übersicht über die 

in der Gruppe enthaltenen Exceptions:

  + Exception Group Traceback (most recent call last): 
  |   File "beispiel_03_exception_groups.py", line 18, in <module> 
  |     raise group 
  | ExceptionGroup: Operation fehlgeschlagen (4 sub-exceptions) 
  +-+---------------- 1 ---------------- 
    | ValueError: Parameter x hat ungültigen Wert 
    +---------------- 2 ---------------- 
    | ValueError: Parameter y hat ungültigen Wert 
    +---------------- 3 ---------------- 
    | ExceptionGroup: Download von test.png fehlgeschlagen (2 sub-exceptions) 
    +-+---------------- 1 ---------------- 
      | ConnectionRefusedError: Fehler im ersten Versuch 
      +---------------- 2 ---------------- 
      | TimeoutError: Fehler im zweiten Versuch 
      +------------------------------------ 
    +---------------- 4 ---------------- 
    | ExceptionGroup: Speichern test.png fehlgeschlagen (2 sub-exceptions) 
    +-+---------------- 1 ---------------- 
      | OSError: Kein freier Speicherplatz 
      +---------------- 2 ---------------- 
      | RuntimeError: Die Datei ist leer 
      +------------------------------------ 
463



20 Ausnahmebehandlung
Grundsätzlich lässt sich eine Exception Group über die try/except-Anweisung 

fangen:

try: 
    raise group 
except ExceptionGroup as eg: 
    print(eg.exceptions) 

Das Attribut exceptions einer Exception Group referenziert ein Tupel aller in der 

Gruppe enthaltenen Exceptions.

20.4.2    Die try/except*-Anweisung

Eine herkömmliche try/except-Anweisung ermöglicht das unbedingte Fangen einer 

Exception Group, ohne dass sich spezifische except-Zweige abhängig vom Inhalt der 

Exception Group formulieren ließen. Dies lässt sich mit der in Python 3.11 eingeführ-

ten try/except*-Anweisung umsetzen:

try: 
    raise group 
except* OSError as eg: 
    print("Behandle alle OSError-Exceptions") 
except* RuntimeError as eg: 
    print("Behandle alle RuntimeError-Exceptions") 

In den except*-Zweigen der try/except*-Anweisung werden zunächst alle OSError-

Exceptions der gefangenen Exception Group behandelt. Die in der Exception Group 

enthaltenen ConnectionRefusedError- und TimeoutError-Exceptions erben von OS-
Error und werden daher ebenfalls im ersten except*-Zweig behandelt. Innerhalb 

eines except*-Zweigs liegen alle zu behandelnden Exceptions in Form einer aus der 

gefangenen Gruppe herausgefilterten Exception Group eg vor.

Im zweiten except*-Zweig werden alle RuntimeError-Exceptions der gefangenen Ex-

ception Group behandelt. Im Gegensatz zu einer herkömmlichen try/except-Anwei-

sung können mehrere except*-Zweige hintereinander ausgeführt werden, wenn sie 

jeweils auf einen Teil der Exceptions der gefangenen Gruppe passen.

Die beiden except*-Zweige im Beispiel behandeln und filtern alle OSError- und Run-
timeError-Exceptions der gefangenen Gruppe. Nach Abarbeitung der try/except*-An-

weisung und Ausführung aller passenden except*-Zweige wird die gefangene Excep-

tion Group, reduziert auf die verbleibenden ValueError-Exceptions, weiter geworfen:

Behandle alle OSError-Exceptions 
Behandle alle RuntimeError-Exceptions 
464



20.4 Exception Groups
  + Exception Group Traceback (most recent call last): 
  |   File "beispiel_03_exception_groups.py", line 24, in <module> 
  |     raise group 
  |   File "beispiel_03_exception_groups.py", line 19, in <module> 
  |     raise group 
  | ExceptionGroup: Operation fehlgeschlagen (2 sub-exceptions) 
  +-+---------------- 1 ---------------- 
    | ValueError: Parameter x hat ungültigen Wert 
    +---------------- 2 ---------------- 
    | ValueError: Parameter y hat ungültigen Wert 
    +------------------------------------ 

Wie bei der herkömmlichen try/except-Anweisung lassen sich except*-Zweige for-

mulieren, die auf mehrere Exception-Typen gleichermaßen passen:

try: 
    raise group 
except* (OSError, RuntimeError) as eg: 
    print("Behandle alle OSError- und RuntimeError-Exceptions") 

 

Hinweis

Analog zur herkömmlichen try/except-Anweisung wurde die Syntax der try/

except*-Anweisung mit Python 3.14 dahin gehend überarbeitet, dass die Klammern 

beim Abfangen mehrerer Exception-Typen in einem except*-Zweig nicht mehr not-

wendig sind:

try: 
    raise group 
except* OSError, RuntimeError: 
    print("Behandle alle OSError- und RuntimeError-Exceptions") 

Die Klammern dürfen nur dann weggelassen werden, wenn der except*-Zweig nicht 

gleichzeitig um einen as-Teil ergänzt wird.

Zum Schluss sei erwähnt, dass finally-Zweige analog zur herkömmlichen try/except-

Anweisung funktionieren. Es darf allerdings keinen except*-Zweig ohne Angabe eines 

Exception-Typs geben:

try: 
    raise group 
except*:  # <-- SyntaxError 
    pass 
465



20 Ausnahmebehandlung
Die try/except*-Anweisung hat einige weitere Besonderheiten, auf die wir im Folgen-

den kurz eingehen möchten:

▸ Es dürfen in einer try/except*-Anweisung keine herkömmlichen except-Zweige 

verwendet werden.

▸ Die Exception-Typen ExceptionGroup und ExceptionBaseGroup, die eine Exception 

Group definieren, können in except*-Zweigen nicht behandelt werden.

▸ Ein except*-Zweig darf keine Sprünge im Kontrollfluss über break, continue oder 

return durchführen.

In Abschnitt 31.5.6 werden Sie im Kontext des kooperativen Multitaskings eine An-

wendung von Exception Groups kennenlernen.
466



Kapitel 27

Bildschirmausgaben und Logging

An dieser Stelle möchten wir uns mit Modulen der Standardbibliothek befassen, die 

die Möglichkeiten der Bildschirmausgabe sinnvoll ergänzen. Dabei handelt es sich 

um das Modul pprint zur übersichtlich formatierten Ausgabe komplexer Instanzen, 

das wir auch schon in Abschnitt 3.10 kurz verwendet haben, sowie um das Modul log-
ging zur formatierten Ausgabe von Lognachrichten auf dem Bildschirm oder in Log-

dateien.

Die in diesem Kapitel besprochenen Module verstehen sich als Ergänzung zur norma-

lerweise verwendeten Built-in Function print, die ausführlich in Abschnitt 17.14.36 be-

schrieben wird.

27.1    Übersichtliche Ausgabe komplexer Objekte – pprint

In der Standardbibliothek existiert das Modul pprint (für pretty print), das für eine 

übersichtlich formatierte Repräsentation eines Python-Datentyps auf dem Bild-

schirm verwendet werden kann. Das Modul macht insbesondere die Ausgabe kom-

plexer Datentypen, zum Beispiel langer Listen, besser lesbar. Bevor Beispiele ausge-

führt werden können, muss das Modul eingebunden werden:

>>> import pprint 

Das Modul pprint enthält im Wesentlichen eine gleichnamige Funktion, die zur Aus-

gabe einer Instanz aufgerufen werden kann.

pprint(object, [stream, indent, width, depth], {compact})

Die Funktion pprint gibt die Instanz object aus, formatiert auf dem Stream stream. 

Wenn Sie den Parameter stream nicht übergeben, wird in den Standardausgabestrom 

sys.stdout geschrieben. Über die Parameter indent, width und depth lässt sich die For-

matierung der Ausgabe steuern. Dabei kann für indent die Anzahl der Leerzeichen 

übergeben werden, die für eine Einrückung verwendet werden sollen. Der Parameter 

indent ist mit 1 vorbelegt.

Über den optionalen Parameter width kann die maximale Anzahl an Zeichen angege-

ben werden, die die Ausgabe breit sein darf. Dieser Parameter ist mit 80 Zeichen vor-

belegt.
589



27 Bildschirmausgaben und Logging
Im folgenden Beispiel erzeugen wir zunächst mit einer willkürlichen Methode unse-

rer Wahl eine Liste von Strings und geben diese mithilfe von pprint formatiert aus:

>>> strings = [f"Der Wert von {i}**2 ist {i**2}" for i in range(10)] 
>>> pprint.pprint(strings) 
['Der Wert von 0**2 ist 0', 
 'Der Wert von 1**2 ist 1', 
 'Der Wert von 2**2 ist 4', 
 'Der Wert von 3**2 ist 9', 
 'Der Wert von 4**2 ist 16', 
 'Der Wert von 5**2 ist 25', 
 'Der Wert von 6**2 ist 36', 
 'Der Wert von 7**2 ist 49', 
 'Der Wert von 8**2 ist 64', 
 'Der Wert von 9**2 ist 81'] 

Zum Vergleich geben wir strings noch einmal unformatiert mit print aus:

>>> print(strings) 
['Der Wert von 0**2 ist 0', 'Der Wert von 1**2 ist 1', 'Der Wert von 2**2 ist 
4', 'Der Wert von 3**2 ist 9', 'Der Wert von 4**2 ist 16', 'Der Wert von 5**2 
ist 25', 'Der Wert von 6**2 ist 36', 'Der Wert von 7**2 ist 49', 'Der Wert von 
8**2 ist 64', 'Der Wert von 9**2 ist 81'] 

Der Parameter depth ist eine ganze Zahl und bestimmt, bis zu welcher Tiefe Unterins-

tanzen, beispielsweise also verschachtelte Listen, ausgegeben werden sollen. Falls für 

depth ein anderer Wert als None übergeben wird, deutet pprint tiefer verschachtelte 

Elemente durch drei Punkte ... an.

Über den Schlüsselwortparameter compact lässt sich steuern, wie kompakt umfang-

reiche Strukturen (z. B. lange Listen) dargestellt werden. Wird hier True übergeben, 

wird beispielsweise nicht jedes Element von strings in eine eigene Zeile geschrieben.

Sollten Sie die Ausgabe von pprint weiterverarbeiten wollen, verwenden Sie die Funk-

tion pformat, die die formatierte Repräsentation in Form eines Strings zurückgibt:

>>> s = pprint.pformat(strings) 
>>> print(s) 
['Der Wert von 0**2 ist 0', 
 'Der Wert von 1**2 ist 1', 
 'Der Wert von 2**2 ist 4', 
 'Der Wert von 3**2 ist 9', 
 'Der Wert von 4**2 ist 16', 
 'Der Wert von 5**2 ist 25', 
 'Der Wert von 6**2 ist 36', 
 'Der Wert von 7**2 ist 49', 
590



27.2 Logdateien – logging
 'Der Wert von 8**2 ist 64', 
 'Der Wert von 9**2 ist 81'] 

Die Funktion pformat hat die gleiche Schnittstelle wie pprint – mit dem Unterschied, 

dass der Parameter stream fehlt.

27.2    Logdateien – logging

Das Modul logging stellt ein flexibles Interface zum Protokollieren des Programmab-

laufs bereit. Protokolliert wird der Programmablauf, indem an verschiedenen Stellen 

im Programm Meldungen an das logging-Modul abgesetzt werden. Diese Meldungen 

können unterschiedliche Dringlichkeitsstufen haben. So gibt es beispielsweise Feh-

lermeldungen, Warnungen oder Debug-Informationen. Das Modul logging kann 

diese Meldungen auf vielfältige Weise verarbeiten. Üblich ist es, die Meldung mit 

einem Zeitstempel zu versehen und entweder auf dem Bildschirm auszugeben oder 

in eine Datei zu schreiben.

In diesem Abschnitt wird die Verwendung des Moduls logging anhand mehrerer Bei-

spiele im interaktiven Modus gezeigt. Um die Beispielprogramme korrekt ausführen 

zu können, muss zuvor das Modul logging eingebunden sein:

>>> import logging 

Bevor Meldungen an den Logger geschickt werden können, muss dieser durch Aufruf 

der Funktion basicConfig initialisiert werden. Im folgenden Beispiel wird ein Logger 

eingerichtet, der alle eingehenden Meldungen in die Logdatei programm.log schreibt:

>>> logging.basicConfig(filename="programm.log") 

Jetzt können mithilfe der im Modul enthaltenen Funktion log Meldungen an den Log-

ger übergeben werden. Die Funktion log bekommt dabei die Dringlichkeitsstufe der 

Meldung als ersten und die Meldung selbst in Form eines Strings als zweiten Parame-

ter übergeben:

>>> logging.log(logging.ERROR, "Ein Fehler ist aufgetreten") 
>>> logging.log(logging.INFO, "Dies ist eine Information") 

Durch das Aufrufen der Funktion shutdown wird der Logger korrekt deinitialisiert, und 

eventuell noch anstehende Schreiboperationen werden durchgeführt:

>>> logging.shutdown() 

Natürlich sind nicht nur die Dringlichkeitsstufen ERROR und INFO verfügbar. Tabelle 27.1

listet alle vordefinierten Stufen auf, aus denen Sie wählen können. Die Tabelle ist dabei 

nach Dringlichkeit geordnet, wobei die dringendste Stufe zuletzt aufgeführt wird.
591



27 Bildschirmausgaben und Logging
Aus Gründen des Komforts existiert zu jeder Dringlichkeitsstufe eine eigene Funktion. 

So sind die beiden Funktionsaufrufe von log aus dem letzten Beispiel äquivalent zu:

logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 

Wenn Sie sich die Logdatei nach dem Aufruf dieser beiden Funktionen ansehen, wer-

den Sie feststellen, dass es lediglich einen einzigen Eintrag gibt:

ERROR:root:Ein Fehler ist aufgetreten 

Das liegt daran, dass der Logger in seiner Basiskonfiguration nur Meldungen loggt, 

deren Dringlichkeit größer oder gleich der einer Warnung ist. Um auch Debug- und 

Info-Meldungen mitzuloggen, müssen Sie beim Aufruf der Funktion basicConfig im 

Schlüsselwortparameter level einen geeigneten Wert übergeben:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG)  
logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 

In diesem Beispiel wurde die Mindestdringlichkeit auf DEBUG gesetzt. Das bedeutet, 

dass alle Meldungen geloggt werden, die mindestens eine Dringlichkeit von DEBUG ha-

ben. Folglich erscheinen auch beide Meldungen in der Logdatei:

ERROR:root:Ein Fehler ist aufgetreten 
INFO:root:Dies ist eine Information 

Level Beschreibung

NOTSET keine Dringlichkeitsstufe

DEBUG eine Meldung, die nur für die Programmierung zur Fehlersuche interes-

sant ist

INFO eine Informationsmeldung über den Programmstatus

WARNING eine Warnmeldung, die auf einen möglichen Fehler hinweist

ERROR eine Fehlermeldung, nach der das Programm weiterarbeiten kann

CRITICAL eine Meldung über einen kritischen Fehler, der das sofortige Beenden des 

Programms oder der aktuell durchgeführten Operation zur Folge hat

Tabelle 27.1  Vordefinierte Dringlichkeitsstufen 
592



27.2 Logdateien – logging
Tabelle 27.2 listet die wichtigsten Schlüsselwortparameter auf, die der Funktion ba-
sicConfig übergeben werden können.

27.2.1    Das Meldungsformat anpassen

Wie in den vorangegangenen Beispielen zu sehen war, wird ein Eintrag in einer Log-

datei standardmäßig nicht mit einem Zeitstempel versehen. Es gibt eine Möglichkeit, 

das Format der geloggten Meldung anzupassen. Dazu übergeben Sie beim Funktions-

aufruf von basicConfig den Schlüsselwortparameter format:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG,  
    style="{", 
    format="{asctime} [{levelname:8}] {message}") 

Parameter Beschreibung

datefmt Spezifiziert das Datumsformat. Näheres dazu erfahren Sie im folgenden 

Abschnitt.

filemode Gibt den Modus* an, in dem die Logdatei geöffnet werden soll (Standard-

wert: "a").

filename Gibt den Dateinamen der Logdatei an.

format Spezifiziert das Meldungsformat. Näheres dazu erfahren Sie im folgen-

den Abschnitt.

handlers Gibt eine Liste von Handlern an, die registriert werden sollen. Näheres 

dazu erfahren Sie in Abschnitt 27.2.2.

level Legt die Mindestdringlichkeit für Meldungen fest, damit diese in der Log-

datei erscheinen.

stream Gibt einen Stream an, in den die Logmeldungen geschrieben werden sol-

len. Wenn die Parameter stream und filename gemeinsam angegeben 

werden, wird stream ignoriert.

style Bestimmt die Formatierungssyntax für die Meldung. Der voreingestellte 

Wert "%" bedingt die alte %-Syntax aus Python 2, während ein Wert von 

"{" die neue Syntax zur String-Formatierung** erzwingt.

* Die verschiedenen Modi, in denen Dateien geöffnet werden können, sind in Ab-

schnitt 6.2 aufgeführt.

** Näheres zur String-Formatierung erfahren Sie in Abschnitt 12.5.9.

Tabelle 27.2  Schlüsselwortparameter der Funktion basicConfig 
593



27 Bildschirmausgaben und Logging
logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 
logging.error("Und schon wieder ein Fehler") 

Sie sehen, dass ein Format-String übergeben wurde, der die Vorlage für eine Meldung 

enthält, wie sie später in der Logdatei stehen soll. Dabei stehen die Bezeichner asctime
für den Timestamp, levelname für die Dringlichkeitsstufe und message für die Mel-

dung. Die von diesem Beispiel generierten Meldungen sehen folgendermaßen aus:

2020-02-05 14:28:55,811 [ERROR   ] Ein Fehler ist aufgetreten 
2020-02-05 14:29:00,690 [INFO    ] Dies ist eine Information 
2020-02-05 14:29:12,686 [ERROR   ] Und schon wieder ein Fehler 

Tabelle 27.3 listet die wichtigsten Bezeichner auf, die innerhalb des format-Format-

Strings verwendet werden dürfen. Je nach Kontext, in dem die Meldung erzeugt wird, 

haben einige der Bezeichner keine Bedeutung.

Es ist möglich, das Format anzupassen, in dem Zeitstempel ausgegeben werden. Bei-

spielsweise können wir ein in Deutschland übliches Datumsformat setzen und außer-

dem die Ausgabe der Millisekundenanteile abschalten. Das Format des Timestamps 

Bezeichner Beschreibung

asctime Zeitpunkt der Meldung. Das Datums- und Zeitformat kann beim Funk-

tionsaufruf von basicConfig über den Parameter datefmt angegeben 

werden. Näheres dazu folgt im Anschluss an diese Tabelle.

filename der Dateiname der Programmdatei, in der die Meldung abgesetzt wurde

funcName der Name der Funktion, in der die Meldung abgesetzt wurde

levelname die Dringlichkeitsstufe der Meldung

lineno die Quellcodezeile, in der die Meldung abgesetzt wurde

message der Text der Meldung

module Der Name des Moduls, in dem die Meldung abgesetzt wurde. Der 

Modulname entspricht dem Dateinamen ohne Dateiendung.

pathname der Pfad zur Programmdatei, in der die Meldung abgesetzt wurde

process die ID des Prozesses, in dem die Meldung abgesetzt wurde

thread die ID des Threads, in dem die Meldung abgesetzt wurde

Tabelle 27.3  Bezeichner im Format-String 
594



27.2 Logdateien – logging
kann beim Aufruf von basicConfig über den Schlüsselwortparameter datefmt angege-

ben werden:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG,  
    style="{", 
    format="{asctime} [{levelname:8}] {message}", 
    datefmt="%d.%m.%Y %H:%M:%S") 
logging.error("Ein Fehler ist aufgetreten") 

Die in der Vorlage für das Datumsformat verwendeten Platzhalter wurden in Ab-

schnitt 15.1 eingeführt. Die von diesem Beispiel erzeugte Meldung sieht folgenderma-

ßen aus:

05.02.2020 14:38:49 [ERROR   ] Ein Fehler ist aufgetreten 

27.2.2    Logging-Handler

Bisher haben wir ausschließlich besprochen, wie das Modul logging dazu verwendet 

werden kann, alle eingehenden Meldungen in eine Datei zu schreiben. Tatsächlich ist 

das Modul in dieser Beziehung sehr flexibel und erlaubt es, nicht nur in Dateien, son-

dern beispielsweise auch in Streams zu schreiben oder die Meldungen über eine Netz-

werkverbindung zu schicken. Dafür werden sogenannte Logging-Handler verwendet. 

Um genau zu sein, haben wir in den vorangegangenen Abschnitten bereits einen im-

pliziten Handler verwendet, ohne uns darüber im Klaren zu sein.

Um einen speziellen Handler einzurichten, muss eine Instanz der Handler-Klasse er-

zeugt werden. Diese kann dann vom Logger verwendet werden. Im folgenden Beispiel 

sollen alle Meldungen auf einen Stream, nämlich sys.stdout, geschrieben werden; 

dazu wird die Handler-Klasse logging.StreamHandler verwendet:

import logging 
import sys 
handler = logging.StreamHandler(sys.stdout)  
frm = logging.Formatter("{asctime} {levelname}: {message}", 
                        "%d.%m.%Y %H:%M:%S", style="{") 
handler.setFormatter(frm) 
logger = logging.getLogger() 
logger.addHandler(handler)  
logger.setLevel(logging.DEBUG) 
logger.critical("Ein wirklich kritischer Fehler") 
logger.warning("Und eine Warnung hinterher") 
logger.info("Dies hingegen ist nur eine Info") 
595



27 Bildschirmausgaben und Logging
Zunächst wird der Handler, in diesem Fall ein StreamHandler, instanziiert. Im nächsten 

Schritt wird eine Instanz der Klasse Formatter erzeugt. Diese Klasse kapselt die Forma-

tierungsanweisungen, die wir in den vorangegangenen Beispielen beim Aufruf der 

Funktion basicConfig übergeben haben. Mithilfe der Methode setFormatter werden 

dem Handler die Formatierungsanweisungen bekannt gegeben.

Um den Handler beim Logger zu registrieren, benötigen wir Zugriff auf die bisher im-

plizit verwendete Logger-Instanz. Diesen Zugriff erlangen wir über die Funktion get-
Logger. Danach wird über addHandler der Handler hinzugefügt und über setLevel die 

gewünschte Dringlichkeitsstufe eingestellt.

Die Meldungen werden im Folgenden nicht über Funktionen des Moduls logging, 

sondern über die Methoden critical, warning und info der Logger-Instanz logger ab-

gesetzt. Das Beispielprogramm gibt folgenden Text auf dem Bildschirm aus:

05.02.2020 17:21:46 CRITICAL: Ein wirklich kritischer Fehler 
05.02.2020 17:21:46 WARNING: Und eine Warnung hinterher 
05.02.2020 17:21:46 INFO: Dies hingegen ist nur eine Info 

Im Folgenden sollen die wichtigsten zusätzlichen Handler-Klassen beschrieben wer-

den, die im Paket logging bzw. logging.handlers enthalten sind.

logging.FileHandler(filename, [mode, encoding, delay])

Dieser Handler schreibt die Logeinträge in die Datei filename. Dabei wird die Datei im 

Modus mode geöffnet. Der Handler FileHandler kann auch implizit durch Angabe der 

Schlüsselwortparameter filename und filemode beim Aufruf der Funktion basicCon-
fig verwendet werden.

Der Parameter encoding kann dazu verwendet werden, das zum Schreiben der Datei 

genutzte Encoding festzulegen. Wenn Sie für den delay-Parameter True übergeben, 

wird mit dem Öffnen der Datei so lange gewartet, bis tatsächlich Daten geschrieben 

werden sollen.

logging.StreamHandler([stream])

Dieser Handler schreibt die Logeinträge in den Stream stream. Beachten Sie, dass der 

Handler StreamHandler auch implizit durch Angabe des Schlüsselwortparameters 

stream beim Aufruf der Funktion basicConfig verwendet werden kann.

logging.handlers.SocketHandler(host, port)  

logging.handlers.DatagramHandler(host, port)

Diese Handler senden die Logeinträge über eine TCP-Schnittstelle (SocketHandler) 

bzw. über eine UDP-Netzwerkschnittstelle (DatagramHandler) an den Rechner mit dem 

Hostnamen host unter Verwendung des Ports port.
596



27.2 Logdateien – logging
logging.handlers.SMTPHandler(mailhost, from, to, subject, [credentials])

Dieser Handler sendet die Logeinträge als E-Mail an die Adresse to. Dabei werden sub-
ject als Betreff und from als Absenderadresse eingetragen. Über den Parameter mail-
host geben Sie den zu verwendenden SMTP-Server an. Sollte dieser Server eine Au-

thentifizierung verlangen, können Sie ein Tupel, das Benutzername und Passwort 

enthält, für den optionalen letzten Parameter credentials übergeben.
597



Auf einen Blick

Auf einen Blick

TEIL I 

Einstieg in Python ................................................................................................ 49

TEIL II 

Datentypen ................................................................................................................ 133

TEIL III 

Fortgeschrittene Programmiertechniken ................................... 309

TEIL IV 

Die Standardbibliothek .................................................................................. 559

TEIL V 

Weiterführende Themen ............................................................................. 873



Inhalt
Inhalt

1 Einleitung 31

1.1 Warum haben wir dieses Buch geschrieben? ......................................................... 31

1.2 Was leistet dieses Buch? .................................................................................................. 32

1.3 Wie ist dieses Buch aufgebaut? .................................................................................... 32

1.4 Wer sollte dieses Buch wie lesen? ............................................................................... 33

1.5 Beispielprogramme ............................................................................................................ 34

1.6 Vorwort zur achten Auflage ........................................................................................... 34

1.7 Danksagung ........................................................................................................................... 35

2 Die Programmiersprache Python 39

2.1 Geschichte und Entstehung ............................................................................................ 39

2.2 Grundlegende Konzepte .................................................................................................. 40

2.3 Einsatzmöglichkeiten und Stärken ............................................................................. 41

2.4 Die Installation von Python ............................................................................................ 43

2.4.1 Installation von Anaconda unter Windows ................................................ 44

2.4.2 Installation von Anaconda unter macOS ..................................................... 44

2.4.3 Installation von Anaconda unter Linux ......................................................... 45

2.5 Drittanbietermodule installieren ................................................................................. 45

2.6 Die Verwendung von Python ......................................................................................... 46

TEIL I Einstieg in Python

3 Erste Schritte im interaktiven Modus 51

3.1 Ganze Zahlen ......................................................................................................................... 52

3.2 Gleitkommazahlen ............................................................................................................. 53

3.3 Zeichenketten ....................................................................................................................... 54
5



Inhalt
3.4 Listen ......................................................................................................................................... 55

3.5 Dictionarys .............................................................................................................................. 55

3.6 Variablen ................................................................................................................................. 56

3.6.1 Die besondere Bedeutung des Unterstrichs ............................................... 57

3.6.2 Bezeichner .............................................................................................................. 58

3.7 Logische Ausdrücke ............................................................................................................ 58

3.8 Funktionen und Methoden ............................................................................................. 60

3.8.1 Funktionen ............................................................................................................. 60

3.8.2 Methoden ............................................................................................................... 61

3.9 Bildschirmausgaben ........................................................................................................... 62

3.10  Module .................................................................................................................................... 63

4 Der Weg zum ersten Programm 65

4.1 Tippen, kompilieren, testen ........................................................................................... 65

4.1.1 Windows ................................................................................................................. 66

4.1.2 Linux und macOS .................................................................................................. 66

4.1.3 Shebang ................................................................................................................... 67

4.1.4 Interne Abläufe ..................................................................................................... 67

4.2 Grundstruktur eines Python-Programms ................................................................. 69

4.2.1 Umbrechen langer Zeilen .................................................................................. 71

4.2.2 Zusammenfügen mehrerer Zeilen ................................................................. 72

4.3 Das erste Programm ........................................................................................................... 73

4.3.1 Initialisierung ......................................................................................................... 74

4.3.2 Schleifenkopf ......................................................................................................... 74

4.3.3 Schleifenkörper ..................................................................................................... 74

4.3.4 Bildschirmausgabe .............................................................................................. 75

4.4 Kommentare .......................................................................................................................... 75

4.5 Der Fehlerfall ......................................................................................................................... 76

5 Kontrollstrukturen 79

5.1 Fallunterscheidungen ........................................................................................................ 79

5.1.1 Die if-Anweisung .................................................................................................. 79

5.1.2 Bedingte Ausdrücke ............................................................................................. 82
6



Inhalt
5.2 Schleifen .................................................................................................................................. 83

5.2.1 Die while-Schleife ................................................................................................ 83

5.2.2 Abbruch einer Schleife ........................................................................................ 84

5.2.3 Erkennen eines Schleifenabbruchs ................................................................ 85

5.2.4 Abbruch eines Schleifendurchlaufs ............................................................... 86

5.2.5 Die for-Schleife ...................................................................................................... 88

5.3 Die pass-Anweisung ........................................................................................................... 91

5.4 Zuweisungsausdrücke ....................................................................................................... 91

5.4.1 Motivation .............................................................................................................. 93

5.4.2 Das Spiel Zahlenraten mit einem Zuweisungsausdruck ........................ 94

6 Dateien 95

6.1 Datenströme .......................................................................................................................... 95

6.2 Daten aus einer Datei auslesen .................................................................................... 96

6.2.1 Eine Datei öffnen und schließen ..................................................................... 97

6.2.2 Die with-Anweisung ............................................................................................ 97

6.2.3 Den Dateiinhalt auslesen .................................................................................. 98

6.3 Daten in eine Datei schreiben ........................................................................................ 101

6.4 Das Dateiobjekt erzeugen ............................................................................................... 102

6.4.1 Die Built-in Function open ................................................................................ 102

6.4.2 Attribute und Methoden eines Dateiobjekts .............................................. 104

6.4.3 Die Schreib-/Leseposition verändern ............................................................ 105

7 Das Datenmodell 109

7.1 Die Struktur von Instanzen ............................................................................................. 111

7.1.1 Datentyp .................................................................................................................. 112

7.1.2 Wert .......................................................................................................................... 113

7.1.3 Identität ................................................................................................................... 114

7.2 Referenzen löschen ............................................................................................................ 116

7.3 Mutable vs. immutable Datentypen .......................................................................... 118

7.3.1 Mutable Datentypen und Seiteneffekte ...................................................... 119
7



Inhalt
8 Funktionen, Methoden und Attribute 123

8.1 Parameter von Funktionen und Methoden ............................................................. 123

8.1.1 Positionsbezogene Parameter ......................................................................... 124

8.1.2 Schlüsselwortparameter .................................................................................... 125

8.1.3 Optionale Parameter ........................................................................................... 125

8.1.4 Reine Schlüsselwortparameter ........................................................................ 126

8.2 Attribute .................................................................................................................................. 126

9 Informationsquellen zu Python 129

9.1 Die Built-in Function help ................................................................................................ 129

9.2 Die Onlinedokumentation .............................................................................................. 130

9.3 PEPs ............................................................................................................................................ 130

TEIL II Datentypen

10 Basisdatentypen: eine Übersicht 135

10.1 Das Nichts – NoneType ..................................................................................................... 136

10.2 Operatoren ............................................................................................................................. 137

10.2.1 Bindigkeit ................................................................................................................ 138

10.2.2 Auswertungsreihenfolge ................................................................................... 139

10.2.3 Verkettung von Vergleichen ............................................................................. 140

11 Numerische Datentypen 143

11.1 Arithmetische Operatoren .............................................................................................. 143

11.1.1 Erweiterte Zuweisungen ................................................................................... 144

11.2 Vergleichende Operatoren .............................................................................................. 145

11.3 Konvertierung zwischen numerischen Datentypen ............................................ 146

11.4 Ganzzahlen – int .................................................................................................................. 147

11.4.1 Zahlensysteme ...................................................................................................... 148
8



Inhalt
11.4.2 Bit-Operationen .................................................................................................... 149

11.4.3 Die Methode bit_length .................................................................................... 154

11.5 Gleitkommazahlen – float .............................................................................................. 154

11.5.1 Exponentialschreibweise ................................................................................... 155

11.5.2 Genauigkeit ............................................................................................................ 155

11.5.3 Unendlich und Not a Number .......................................................................... 156

11.6 Boolesche Werte – bool .................................................................................................... 157

11.6.1 Logische Operatoren ........................................................................................... 157

11.6.2 Wahrheitswerte nicht boolescher Datentypen ......................................... 160

11.6.3 Auswertung logischer Operatoren ................................................................. 161

11.7 Komplexe Zahlen – complex .......................................................................................... 163

12 Sequenzielle Datentypen 167

12.1 Der Unterschied zwischen Text und Binärdaten ................................................... 167

12.2 Operationen auf Instanzen sequenzieller Datentypen ...................................... 169

12.2.1 Auf Elemente prüfen ........................................................................................... 170

12.2.2 Verkettung .............................................................................................................. 171

12.2.3 Wiederholung ........................................................................................................ 173

12.2.4 Indizierung .............................................................................................................. 174

12.2.5 Slicing ....................................................................................................................... 175

12.2.6 Länge einer Sequenz ........................................................................................... 179

12.2.7 Das kleinste und das größte Element ............................................................ 179

12.2.8 Ein Element suchen ............................................................................................. 180

12.2.9 Elemente zählen ................................................................................................... 181

12.3 Listen – list .............................................................................................................................. 181

12.3.1 Verändern eines Werts innerhalb der Liste – Zuweisung mit [] ........... 182

12.3.2 Ersetzen von Teillisten und Einfügen neuer Elemente –  

Zuweisung mit [] .................................................................................................. 183

12.3.3 Elemente und Teillisten löschen – del zusammen mit [] ........................ 183

12.3.4 Methoden von list-Instanzen ........................................................................... 184

12.3.5 Listen sortieren – s.sort([key, reverse]) ......................................................... 187

12.3.6 Seiteneffekte .......................................................................................................... 190

12.3.7 List Comprehensions ........................................................................................... 193

12.4 Unveränderliche Listen – tuple ..................................................................................... 195

12.4.1 Packing und Unpacking ...................................................................................... 196

12.4.2 Immutabel heißt nicht zwingend unveränderlich! .................................. 198
9



Inhalt
12.5 Strings – str, bytes, bytearray ........................................................................................ 199

12.5.1 Steuerzeichen ........................................................................................................ 202

12.5.2 Trennen von Strings ............................................................................................ 204

12.5.3 Suchen von Teil-Strings ...................................................................................... 206

12.5.4 Ersetzen von Teil-Strings ................................................................................... 208

12.5.5 Entfernen von Präfixen oder Suffixen ........................................................... 210

12.5.6 Ausrichten von Strings ....................................................................................... 212

12.5.7 String-Tests ............................................................................................................ 213

12.5.8 Verkettung von Elementen in sequenziellen Datentypen ..................... 214

12.5.9 Formatierung von Strings .................................................................................. 215

12.5.10 Zeichensätze und Sonderzeichen ................................................................... 227

12.5.11 Template-Strings .................................................................................................. 236

13 Zuordnungen und Mengen 239

13.1 Dictionary – dict ................................................................................................................... 239

13.1.1 Erzeugen eines Dictionarys ............................................................................... 239

13.1.2 Schlüssel und Werte ............................................................................................ 241

13.1.3 Iteration ................................................................................................................... 242

13.1.4 Operatoren ............................................................................................................. 243

13.1.5 Methoden ............................................................................................................... 246

13.1.6 Dict Comprehensions .......................................................................................... 252

13.2 Mengen – set und frozenset ........................................................................................... 253

13.2.1 Erzeugen eines Sets ............................................................................................. 253

13.2.2 Iteration ................................................................................................................... 255

13.2.3 Operatoren ............................................................................................................. 256

13.2.4 Methoden ............................................................................................................... 261

13.2.5 Veränderliche Mengen – set ............................................................................. 262

13.2.6 Unveränderliche Mengen – frozenset ........................................................... 264

14 Collections 267

14.1 Verkettete Dictionarys ...................................................................................................... 267

14.2 Zählen von Häufigkeiten ................................................................................................. 268

14.2.1 d.elements() ........................................................................................................... 269

14.2.2 d.most_common([n]) .......................................................................................... 270
10



Inhalt
14.2.3 d.subtract([iterable]) ........................................................................................... 270

14.2.4 d.update([iterable]) ............................................................................................. 271

14.3 Dictionarys mit Standardwerten .................................................................................. 271

14.4 Doppelt verkettete Listen ................................................................................................ 272

14.5 Benannte Tupel .................................................................................................................... 274

14.5.1 namedtuple(typename, field_names, {rename}) ...................................... 274

15 Datum und Zeit 277

15.1 Elementare Zeitfunktionen – time .............................................................................. 277

15.1.1 Der Datentyp struct_time ................................................................................. 278

15.1.2 Konstanten ............................................................................................................. 279

15.1.3 Funktionen ............................................................................................................. 280

15.2 Objektorientierte Datumsverwaltung – datetime .............................................. 286

15.2.1 datetime.date ........................................................................................................ 286

15.2.2 datetime.time ........................................................................................................ 288

15.2.3 datetime.datetime ............................................................................................... 289

15.2.4 datetime.timedelta .............................................................................................. 291

15.2.5 Operationen für datetime.datetime und datetime.date ........................ 294

15.3 Zeitzonen – zoneinfo ......................................................................................................... 296

15.3.1 Die IANA-Zeitzonendatenbank ........................................................................ 296

15.3.2 Zeitangaben in lokalen Zeitzonen .................................................................. 297

15.3.3 Rechnen mit Zeitangaben in lokalen Zeitzonen ........................................ 298

16 Enumerationen und Flags 303

16.1 Aufzählungstypen – Enum .............................................................................................. 303

16.2 Aufzählungstypen für Bitmuster – Flag .................................................................... 305

16.3 Ganzzahlige Aufzählungstypen – IntEnum ............................................................. 306
11



Inhalt
TEIL III Fortgeschrittene Programmiertechniken

17 Funktionen 311

17.1 Definieren einer Funktion ............................................................................................... 313

17.2 Rückgabewerte ..................................................................................................................... 314

17.3 Funktionsobjekte ................................................................................................................ 316

17.4 Optionale Parameter ......................................................................................................... 317

17.5 Schlüsselwortparameter .................................................................................................. 318

17.6 Beliebige Anzahl von Parametern ............................................................................... 319

17.7 Reine Schlüsselwortparameter ..................................................................................... 321

17.8 Reine Positionsparameter ............................................................................................... 323

17.9 Unpacking beim Funktionsaufruf ................................................................................ 324

17.10 Seiteneffekte ......................................................................................................................... 326

17.11 Namensräume ...................................................................................................................... 329

17.11.1 Zugriff auf globale Variablen – global ........................................................ 329

17.11.2 Zugriff auf den globalen Namensraum ...................................................... 330

17.11.3 Lokale Funktionen .............................................................................................. 332

17.11.4 Zugriff auf übergeordnete Namensräume – nonlocal .......................... 332

17.11.5 Ungebundene lokale Variablen – eine Stolperfalle ................................ 334

17.12 Anonyme Funktionen ........................................................................................................ 336

17.13 Rekursion ................................................................................................................................ 337

17.14 Eingebaute Funktionen .................................................................................................... 338

17.14.1 abs(x) ...................................................................................................................... 341

17.14.2 all(iterable) ........................................................................................................... 342

17.14.3 any(iterable) ......................................................................................................... 342

17.14.4 ascii(object) .......................................................................................................... 342

17.14.5 bin(x) ...................................................................................................................... 343

17.14.6 bool([x]) ................................................................................................................. 343

17.14.7 bytearray([source, encoding, errors]) .......................................................... 343

17.14.8 bytes([source, encoding, errors]) ................................................................... 344

17.14.9 chr(i) ........................................................................................................................ 345

17.14.10 complex([real, imag]) ........................................................................................ 345

17.14.11 dict([source]) ........................................................................................................ 346

17.14.12 divmod(a, b) ......................................................................................................... 346

17.14.13 enumerate(iterable[, start]) ............................................................................ 346
12



Inhalt
17.14.14 eval(expression, [globals, locals]) ................................................................. 347

17.14.15 exec(object, [globals, locals]) .......................................................................... 348

17.14.16 filter(function, iterable) ................................................................................... 348

17.14.17 float([x]) ................................................................................................................. 348

17.14.18 format(value, [format_spec]) ........................................................................ 349

17.14.19 frozenset([iterable]) .......................................................................................... 349

17.14.20 globals() ................................................................................................................. 350

17.14.21 hash(object) ......................................................................................................... 350

17.14.22 help([object]) ....................................................................................................... 351

17.14.23 hex(x) ...................................................................................................................... 351

17.14.24 id(object) ............................................................................................................... 351

17.14.25 input([prompt]) ................................................................................................... 352

17.14.26 int([x, base]) ......................................................................................................... 352

17.14.27 len(s) ....................................................................................................................... 353

17.14.28 list([sequence]) ................................................................................................... 353

17.14.29 locals() .................................................................................................................... 353

17.14.30 map(function, [*iterable, strict]) ................................................................... 354

17.14.31 max(iterable, {default, key}), max(arg1, arg2, [*args], {key}) ............... 356

17.14.32 min(iterable, {default, key}), min(arg1, arg2, [*args], {key}) ................ 356

17.14.33 oct(x) ....................................................................................................................... 357

17.14.34 ord(c) ....................................................................................................................... 357

17.14.35 pow(x, y, [z]) ......................................................................................................... 357

17.14.36 print([*objects], {sep, end, file, flush}) ......................................................... 357

17.14.37 range([start], stop, [step]) ............................................................................... 358

17.14.38 repr(object) ........................................................................................................... 359

17.14.39 reversed(sequence) ............................................................................................ 359

17.14.40 round(x, [n]) ......................................................................................................... 360

17.14.41 set([iterable]) ....................................................................................................... 360

17.14.42 sorted(iterable, [key, reverse]) ....................................................................... 360

17.14.43 str([object, encoding, errors]) ......................................................................... 361

17.14.44 sum(iterable, [start]) ......................................................................................... 362

17.14.45 tuple([iterable]) ................................................................................................... 362

17.14.46 type(object) .......................................................................................................... 362

17.14.47 zip([*iterables], {strict}) .................................................................................... 363

18 Module und Pakete 365

18.1 Einbinden globaler Module ............................................................................................. 366

18.2 Lokale Module ....................................................................................................................... 368

18.2.1 Namenskonflikte ................................................................................................ 370
13



Inhalt
18.2.2 Modulinterne Referenzen ................................................................................. 370

18.2.3 Module ausführen ............................................................................................... 371

18.3 Pakete ....................................................................................................................................... 371

18.3.1 Importieren aller Module eines Pakets ......................................................... 373

18.3.2 Namespace Packages .......................................................................................... 374

18.3.3 Relative Importanweisungen ........................................................................... 375

18.4 Das Paket importlib ............................................................................................................ 376

18.5 Geplante Sprachelemente ............................................................................................... 377

19 Objektorientierte Programmierung 379

19.1 Beispiel: Ein nicht objektorientiertes Konto ........................................................... 379

19.1.1 Ein neues Konto anlegen ................................................................................... 380

19.1.2 Geld überweisen ................................................................................................... 380

19.1.3 Geld ein- und auszahlen .................................................................................... 381

19.1.4 Den Kontostand anzeigen ................................................................................. 382

19.2 Klassen ..................................................................................................................................... 385

19.2.1 Definieren von Methoden ................................................................................. 386

19.2.2 Der Konstruktor .................................................................................................... 387

19.2.3 Attribute .................................................................................................................. 388

19.2.4 Beispiel: Ein objektorientiertes Konto ........................................................... 388

19.3 Vererbung ............................................................................................................................... 390

19.3.1 Ein einfaches Beispiel .......................................................................................... 391

19.3.2 Überschreiben von Methoden ......................................................................... 392

19.3.3 Beispiel: Girokonto mit Tagesumsatz ........................................................... 394

19.3.4 Ausblick .................................................................................................................... 403

19.4 Mehrfachvererbung ........................................................................................................... 403

19.4.1 Mögliche Probleme der Mehrfachvererbung .............................................. 404

19.5 Property-Attribute .............................................................................................................. 404

19.5.1 Setter und Getter .................................................................................................. 405

19.5.2 Property-Attribute definieren .......................................................................... 406

19.6 Statische Methoden ........................................................................................................... 407

19.6.1 Statische Methoden definieren ....................................................................... 408

19.7 Klassenmethoden ............................................................................................................... 409
14



Inhalt
19.8 Klassenattribute .................................................................................................................. 411

19.9 Built-in Functions für die objektorientierte Programmierung ....................... 411

19.9.1 Funktionen für die Verwaltung der Attribute einer Instanz .................. 412

19.9.2 Funktionen für Informationen über die Klassenhierarchie ................... 414

19.10 Erben von eingebauten Datentypen .......................................................................... 415

19.11 Magic Methods und Magic Attributes ....................................................................... 417

19.11.1 Allgemeine Magic Methods .............................................................................. 417

19.11.2 Operatoren überladen ........................................................................................ 425

19.11.3 Datentypen emulieren – Duck-Typing .......................................................... 433

19.12 Datenklassen ......................................................................................................................... 438

19.12.1 Tupel und Listen ................................................................................................... 438

19.12.2 Dictionarys .............................................................................................................. 439

19.12.3 Benannte Tupel ..................................................................................................... 439

19.12.4 Veränderliche Datenklassen ............................................................................. 440

19.12.5 Unveränderliche Datenklassen ....................................................................... 441

19.12.6 Defaultwerte in Datenklassen ......................................................................... 441

20 Ausnahmebehandlung 443

20.1 Exceptions ............................................................................................................................... 443

20.1.1 Eingebaute Exceptions ....................................................................................... 444

20.1.2 Das Werfen einer Exception ............................................................................. 445

20.1.3 Das Abfangen einer Exception ......................................................................... 446

20.1.4 Eigene Exceptions ................................................................................................ 451

20.1.5 Erneutes Werfen einer Exception ................................................................... 453

20.1.6 Exception Chaining .............................................................................................. 456

20.1.7 Exception Notes .................................................................................................... 457

20.2 Zusicherungen – assert ..................................................................................................... 459

20.3 Warnungen ............................................................................................................................ 460

20.4 Exception Groups ................................................................................................................ 461

20.4.1 Eine Exception Group .......................................................................................... 462

20.4.2 Die try/except*-Anweisung .............................................................................. 464
15



Inhalt
21 Generatoren und Iteratoren 467

21.1 Generatoren ........................................................................................................................... 467

21.1.1 Subgeneratoren .................................................................................................... 470

21.1.2 Generator Expressions ........................................................................................ 473

21.2 Iteratoren ................................................................................................................................ 474

21.2.1 Das Iteratorprotokoll ........................................................................................... 475

21.2.2 Beispiel: Die Fibonacci-Folge ............................................................................ 475

21.2.3 Beispiel: Der Goldene Schnitt ........................................................................... 477

21.2.4 Ein Generator zur Implementierung von __iter__ ................................... 477

21.2.5 Verwendung von Iteratoren ............................................................................. 478

21.2.6 Mehrere Iteratoren für dieselbe Instanz ...................................................... 481

21.2.7 Nachteile von Iteratoren gegenüber dem direkten Zugriff  

über Indizes ............................................................................................................ 483

21.2.8 Alternative Definition für iterierbare Objekte ............................................ 483

21.2.9 Funktionsiteratoren ............................................................................................. 484

21.3 Spezielle Generatoren – itertools ................................................................................ 485

21.3.1 accumulate(iterable, [func]) ............................................................................. 487

21.3.2 batched(iterable, n, {strict}) .............................................................................. 487

21.3.3 chain([*iterables]) ................................................................................................. 487

21.3.4 combinations(iterable, r) ................................................................................... 488

21.3.5 combinations_with_replacement(iterable, r) ............................................ 488

21.3.6 compress(data, selectors) .................................................................................. 489

21.3.7 count([start, step]) ............................................................................................... 489

21.3.8 cycle(iterable) ........................................................................................................ 490

21.3.9 dropwhile(predicate, iterable) ......................................................................... 490

21.3.10 filterfalse(predicate, iterable) .......................................................................... 491

21.3.11 groupby(iterable, [key]) ...................................................................................... 491

21.3.12 islice(iterable, [start], stop, [step]) .................................................................. 492

21.3.13 permutations(iterable, [r]) ................................................................................ 492

21.3.14 product([*iterables], [repeat]) .......................................................................... 492

21.3.15 repeat(object, [times]) ........................................................................................ 493

21.3.16 starmap(function, iterable) ............................................................................... 493

21.3.17 takewhile(predicate, iterable) .......................................................................... 494

21.3.18 tee(iterable, [n]) .................................................................................................... 494

21.3.19 zip_longest([*iterables], {fillvalue}) ................................................................ 494

21.4 Generatoren als Konsumenten ..................................................................................... 495

21.4.1 Auslösen von Exceptions in einem Generator ............................................ 497

21.4.2 Ein Anwendungsbeispiel für konsumierende  

Generatorfunktionen .......................................................................................... 498
16



Inhalt
22 Kontext-Manager 501

22.1 Die with-Anweisung .......................................................................................................... 501

22.1.1 __enter__(self) ...................................................................................................... 504

22.1.2 __exit__(self, exc_type, exc_value, traceback) .......................................... 504

22.2 Hilfsfunktionen für with-Kontexte – contextlib ................................................... 504

22.2.1 Dynamisch zusammengestellte Kontextkombinationen –  

ExitStack .................................................................................................................. 504

22.2.2 Bestimmte Exception-Typen unterdrücken ................................................ 505

22.2.3 Den Standardausgabestrom umleiten ......................................................... 506

22.2.4 Optionale Kontexte ............................................................................................. 506

22.2.5 Einfache Funktionen als Kontext-Manager ................................................. 507

22.2.6 Das Arbeitsverzeichnis vorübergehend wechseln .................................... 508

23 Dekoratoren 509

23.1 Funktionsdekoratoren ...................................................................................................... 509

23.1.1 Das Dekorieren von Funktionen und Methoden ....................................... 511

23.1.2 Name und Docstring nach Anwendung eines Dekorators ..................... 512

23.1.3 Verschachtelte Dekoratoren ............................................................................. 512

23.1.4 Beispiel: Ein Cache-Dekorator .......................................................................... 513

23.2 Klassendekoratoren ........................................................................................................... 515

23.3 Das Modul functools .......................................................................................................... 516

23.3.1 Funktionsschnittstellen vereinfachen .......................................................... 516

23.3.2 Methodenschnittstellen vereinfachen ......................................................... 518

23.3.3 Caches ...................................................................................................................... 518

23.3.4 Ordnungsrelationen vervollständigen .......................................................... 520

23.3.5 Überladen von Funktionen ............................................................................... 520

24 Annotationen und statische Typprüfung 523

24.1 Annotationen ........................................................................................................................ 525

24.1.1 Die Annotation von Funktionen und Methoden ....................................... 526

24.1.2 Die Annotation von Variablen und Attributen ........................................... 527

24.1.3 Der Zugriff auf Annotationen zur Laufzeit .................................................. 529

24.1.4 Wann werden Annotationen evaluiert? ....................................................... 530
17



Inhalt
24.2 Type Hints – das Modul typing ..................................................................................... 532

24.2.1 Gültige Type Hints ............................................................................................... 533

24.2.2 Container-Typen ................................................................................................... 533

24.2.3 Abstrakte Container-Typen ............................................................................... 534

24.2.4 Typ-Aliasse .............................................................................................................. 535

24.2.5 Type Unions und optionale Werte ................................................................. 536

24.2.6 Literale ..................................................................................................................... 537

24.2.7 Typvariablen ........................................................................................................... 538

24.3 Statische Typprüfung in Python – mypy ................................................................... 539

24.3.1 Installation ............................................................................................................. 539

24.3.2 Beispiel ..................................................................................................................... 539

25 Structural Pattern Matching 541

25.1 Die match-Anweisung ....................................................................................................... 541

25.2 Arten von Mustern in der case-Anweisung ............................................................. 542

25.2.1 Literal- und Wertmuster .................................................................................... 543

25.2.2 ODER-Muster ......................................................................................................... 543

25.2.3 Muster mit Typprüfung ...................................................................................... 544

25.2.4 Bedingungen für Matches formulieren ........................................................ 545

25.2.5 Teilmuster gruppieren ........................................................................................ 546

25.2.6 Capture- und Wildcard-Muster ....................................................................... 546

25.2.7 Sequenzmuster ..................................................................................................... 548

25.2.8 Zuordnungsmuster .............................................................................................. 550

25.2.9 Muster für Objekte und ihre Attributwerte ................................................ 553

TEIL IV Die Standardbibliothek

26 Mathematik 561

26.1 Mathematische Funktionen – math, cmath ........................................................... 561

26.1.1 Allgemeine mathematische Funktionen ...................................................... 562

26.1.2 Exponential- und Logarithmusfunktionen .................................................. 565

26.1.3 Trigonometrische und hyperbolische Funktionen .................................... 566

26.1.4 Distanzen und Normen ...................................................................................... 566
18



Inhalt
26.1.5 Umrechnen von Winkeln ................................................................................... 567

26.1.6 Darstellungsformen komplexer Zahlen ....................................................... 567

26.2 Zufallszahlengenerator – random ............................................................................... 568

26.2.1 Den Status des Zufallszahlengenerators speichern und laden ............ 569

26.2.2 Zufällige ganze Zahlen erzeugen .................................................................... 569

26.2.3 Zufällige Gleitkommazahlen erzeugen ........................................................ 569

26.2.4 Zufallsgesteuerte Operationen auf Sequenzen ......................................... 570

26.2.5 SystemRandom([seed]) ...................................................................................... 572

26.3 Statistische Berechnungen – statistics ...................................................................... 572

26.4 Intuitive Dezimalzahlen – decimal .............................................................................. 574

26.4.1 Verwendung des Datentyps ............................................................................. 574

26.4.2 Nichtnumerische Werte ..................................................................................... 577

26.4.3 Das Context-Objekt ............................................................................................. 578

26.5 Hash-Funktionen – hashlib ............................................................................................. 580

26.5.1 Verwendung des Moduls ................................................................................... 582

26.5.2 Weitere Hash-Algorithmen ............................................................................... 583

26.5.3 Vergleich großer Dateien ................................................................................... 583

26.5.4 Passwörter .............................................................................................................. 585

27 Bildschirmausgaben und Logging 589

27.1 Übersichtliche Ausgabe komplexer Objekte – pprint ......................................... 589

27.2 Logdateien – logging ......................................................................................................... 591

27.2.1 Das Meldungsformat anpassen ...................................................................... 593

27.2.2 Logging-Handler ................................................................................................... 595

28 Reguläre Ausdrücke 599

28.1 Die Syntax regulärer Ausdrücke ................................................................................... 599

28.1.1 Beliebige Zeichen ................................................................................................. 600

28.1.2 Zeichenklassen ...................................................................................................... 600

28.1.3 Quantoren .............................................................................................................. 601

28.1.4 Vordefinierte Zeichenklassen ........................................................................... 603

28.1.5 Weitere Sonderzeichen ...................................................................................... 605

28.1.6 Genügsame Quantoren ...................................................................................... 606

28.1.7 Gruppen ................................................................................................................... 607
19



Inhalt
28.1.8 Alternativen ........................................................................................................... 608

28.1.9 Extensions ............................................................................................................... 608

28.2 Verwendung des Moduls re ............................................................................................ 611

28.2.1 Searching ................................................................................................................. 611

28.2.2 Matching ................................................................................................................. 612

28.2.3 Einen String aufspalten ...................................................................................... 613

28.2.4 Teile eines Strings ersetzen .............................................................................. 613

28.2.5 Problematische Zeichen ersetzen ................................................................... 614

28.2.6 Einen regulären Ausdruck kompilieren ......................................................... 615

28.2.7 Flags .......................................................................................................................... 615

28.2.8 Das Match-Objekt ................................................................................................ 617

28.3 Ein einfaches Beispielprogramm – Searching ........................................................ 618

28.4 Ein komplexeres Beispielprogramm – Matching .................................................. 620

28.5 Kommentare in regulären Ausdrücken ..................................................................... 623

28.6 Katastrophales Backtracking ......................................................................................... 624

28.6.1 Atomare Gruppen und possessive Quantoren ........................................... 625

29 Schnittstellen zum Betriebssystem und  
zur Laufzeitumgebung 627

29.1 Funktionen des Betriebssystems – os ........................................................................ 627

29.1.1 environ ..................................................................................................................... 628

29.1.2 getpid() ..................................................................................................................... 628

29.1.3 cpu_count() ............................................................................................................ 628

29.1.4 system(cmd) ........................................................................................................... 629

29.1.5 popen(command, [mode, buffering]) ............................................................ 629

29.2 Starten von Subprozessen – subprocess ................................................................... 630

29.2.1 Einen Subprozess starten .................................................................................. 630

29.2.2 Die Standardströme stdin, stdout und stderr ............................................ 631

29.2.3 Der Return Code .................................................................................................... 632

29.2.4 Umgebungsvariablen ......................................................................................... 633

29.3 Zugriff auf die Laufzeitumgebung – sys ................................................................... 633

29.3.1 Kommandozeilenparameter ............................................................................ 633

29.3.2 Standardpfade ....................................................................................................... 634

29.3.3 Standardein- und -ausgabeströme ................................................................ 634

29.3.4 Das Programm beenden .................................................................................... 634

29.3.5 Details zur Python-Version ............................................................................... 635
20



Inhalt
29.3.6 Details zum Betriebssystem ............................................................................. 636

29.3.7 Hooks ........................................................................................................................ 637

29.4 Kommandozeilenparameter – argparse ................................................................... 638

29.4.1 Taschenrechner – ein einfaches Beispiel ...................................................... 639

29.4.2 Ein komplexeres Beispiel ................................................................................... 644

30 Das Dateisystem 647

30.1 Grundlegendes zu Dateisystemen und Pfaden ..................................................... 647

30.1.1 Pfadnamen ............................................................................................................. 647

30.1.2 Dateinamen ........................................................................................................... 648

30.1.3 Absolute und relative Pfade ............................................................................. 648

30.1.4 Zugriffsrechte ........................................................................................................ 648

30.2 Die moderne Lösung – pathlib ...................................................................................... 649

30.2.1 Die Klasse Path ...................................................................................................... 650

30.2.2 Pfade kombinieren ............................................................................................... 650

30.2.3 Attribute eines Pfads ........................................................................................... 651

30.2.4 Pfadeigenschaften prüfen ................................................................................. 651

30.2.5 Dateien lesen und schreiben ............................................................................ 652

30.2.6 Dateien umbenennen ......................................................................................... 653

30.2.7 Dateien kopieren und verschieben ................................................................ 653

30.2.8 Dateien löschen .................................................................................................... 654

30.2.9 Verzeichnisse erstellen und löschen .............................................................. 654

30.2.10 Links .......................................................................................................................... 654

30.2.11 Globbing .................................................................................................................. 655

30.3 Zugriff auf das Dateisystem mit os ............................................................................. 656

30.3.1 access(path, mode) .............................................................................................. 658

30.3.2 chmod(path, mode) ............................................................................................. 659

30.3.3 listdir([path]) .......................................................................................................... 660

30.3.4 mkdir(path, [mode]) und makedirs(path, [mode]) .................................... 660

30.3.5 remove(path) ......................................................................................................... 661

30.3.6 removedirs(path) .................................................................................................. 661

30.3.7 rename(src, dst) und renames(old, new) ..................................................... 661

30.3.8 walk(top, [topdown, onerror]) ......................................................................... 662

30.4 Dateipfade – os.path ......................................................................................................... 664

30.4.1 abspath(path) ........................................................................................................ 665

30.4.2 basename(path) ................................................................................................... 666

30.4.3 commonprefix(list) .............................................................................................. 666
21



Inhalt
30.4.4 dirname(path) ....................................................................................................... 666

30.4.5 join(path, *paths) .................................................................................................. 667

30.4.6 normcase(path) ..................................................................................................... 667

30.4.7 split(path) ............................................................................................................... 667

30.4.8 splitdrive(path) ...................................................................................................... 668

30.4.9 splitext(path) ......................................................................................................... 668

30.5 Zugriff auf das Dateisystem – shutil .......................................................................... 668

30.5.1 Verzeichnis- und Dateioperationen ............................................................... 670

30.5.2 Archivoperationen ............................................................................................... 672

30.6 Temporäre Dateien – tempfile ...................................................................................... 674

30.6.1 tempfile.TemporaryFile([mode, buffering, encoding, newline,  

suffix, prefix, dir], {errors}) ................................................................................ 675

30.6.2 tempfile.TemporaryDirectory([suffix, prefix, dir]) .................................... 676

31 Parallele Programmierung 677

31.1 Prozesse, Multitasking und Threads ........................................................................... 677

31.1.1 Die Leichtgewichte unter den Prozessen – Threads ................................. 678

31.1.2 Das Global Interpreter Lock (GIL) .................................................................... 680

31.1.3 Threads oder Prozesse? ...................................................................................... 680

31.1.4 Kooperatives Multitasking ................................................................................ 681

31.2 Pythons Schnittstellen zur Parallelisierung ............................................................. 682

31.3 Die abstrakte Schnittstelle – concurrent.futures .................................................. 683

31.3.1 Ein Beispiel mit einem futures.ThreadPoolExecutor ................................ 683

31.3.2 Executor-Instanzen als Kontext-Manager ................................................... 686

31.3.3 Die Verwendung von futures.ProcessPoolExecutor ................................. 686

31.3.4 Die Verwaltung der Aufgaben eines Executors ......................................... 687

31.4 Die flexible Schnittstelle – threading und multiprocessing ............................ 694

31.4.1 Threads in Python – threading ........................................................................ 694

31.4.2 Prozesse in Python – multiprocessing ........................................................... 704

31.5 Die kooperative Schnittstelle – asyncio .................................................................... 706

31.5.1 Kooperative Funktionen – Koroutinen .......................................................... 707

31.5.2 Erwartbare Objekte ............................................................................................. 708

31.5.3 Die Kooperation von Koroutinen – Tasks ..................................................... 709

31.5.4 Ein kooperativer Webcrawler ........................................................................... 712

31.5.5 Blockierende Operationen in Koroutinen .................................................... 720

31.5.6 Weitere asynchrone Sprachmerkmale .......................................................... 722
22



Inhalt
31.6 Fazit: Welche Schnittstelle ist die richtige? ............................................................. 725

31.6.1 Ist das kooperative Multitasking eine Option? .......................................... 725

31.6.2 Abstraktion oder Flexibilität? ........................................................................... 726

31.6.3 Threads oder Prozesse? ...................................................................................... 726

32 Datenspeicherung 727

32.1 Das Datenaustauschformat JSON – json .................................................................. 727

32.2 Serialisierung von Instanzen – pickle ......................................................................... 729

32.2.1 Funktionale Schnittstelle ................................................................................... 730

32.2.2 Objektorientierte Schnittstelle ........................................................................ 731

32.3 Das Tabellenformat CSV – csv ....................................................................................... 733

32.3.1 reader-Objekte – Daten aus einer CSV-Datei lesen .................................. 733

32.3.2 Dialect-Objekte – eigene Dialekte verwenden ........................................... 736

32.4 Komprimierte Dateien und Archive ............................................................................ 739

32.4.1 gzip.open(filename, [mode, compresslevel]) .............................................. 739

32.4.2 Andere Module für den Zugriff auf komprimierte Daten ....................... 740

32.5 Datenbanken ......................................................................................................................... 741

32.5.1 Pythons eingebaute Datenbank – sqlite3 .................................................... 745

32.6 XML ............................................................................................................................................ 761

32.6.1 ElementTree ........................................................................................................... 763

32.6.2 SAX – Simple API for XML .................................................................................. 771

33 Netzwerkkommunikation 777

33.1 Die Socket API ....................................................................................................................... 778

33.1.1 Client-Server-Systeme ........................................................................................ 779

33.1.2 UDP ........................................................................................................................... 782

33.1.3 TCP ............................................................................................................................. 783

33.1.4 Blockierende und nichtblockierende Sockets ............................................. 785

33.1.5 Erzeugen eines Sockets ...................................................................................... 787

33.1.6 Die Socket-Klasse ................................................................................................. 788

33.1.7 Netzwerk-Byte-Order .......................................................................................... 791

33.1.8 Multiplexende Server – selectors .................................................................... 792

33.1.9 Objektorientierte Serverentwicklung – socketserver ............................... 795
23



Inhalt
33.2 XML-RPC .................................................................................................................................. 797

33.2.1 Der Server ................................................................................................................ 798

33.2.2 Der Client ................................................................................................................ 801

33.2.3 Multicall ................................................................................................................... 803

33.2.4 Einschränkungen .................................................................................................. 804

34 Zugriff auf Ressourcen im Internet 807

34.1 Protokolle ................................................................................................................................ 807

34.1.1 Hypertext Transfer Protocol – HTTP .............................................................. 807

34.1.2 File Transfer Protocol – FTP ............................................................................... 808

34.2 Lösungen ................................................................................................................................. 808

34.2.1 Veraltete Lösungen für Python 2 .................................................................... 808

34.2.2 Lösungen der Standardbibliothek .................................................................. 808

34.2.3 Lösungen von Drittanbietern ........................................................................... 809

34.3 Der einfache Weg – requests ......................................................................................... 809

34.3.1 Einfache Anfragen via GET und POST ............................................................ 809

34.3.2 Web-APIs ................................................................................................................. 810

34.4 URLs – urllib ........................................................................................................................... 812

34.4.1 Zugriff auf entfernte Ressourcen – urllib.request ..................................... 813

34.4.2 Das Einlesen und Verarbeiten von URLs – urllib.parse ............................ 816

34.5 FTP – ftplib .............................................................................................................................. 820

34.5.1 Mit einem FTP-Server verbinden ..................................................................... 821

34.5.2 FTP-Kommandos ausführen ............................................................................. 822

34.5.3 Mit Dateien und Verzeichnissen arbeiten ................................................... 823

34.5.4 Übertragen von Dateien .................................................................................... 824

35 E-Mail 829

35.1 SMTP – smtplib ..................................................................................................................... 829

35.1.1 SMTP([host, port, local_hostname, timeout, source_address]) ........... 830

35.1.2 Eine Verbindung aufbauen und beenden .................................................... 831

35.1.3 Eine E-Mail versenden ........................................................................................ 831

35.1.4 Beispiel ..................................................................................................................... 832
24



Inhalt
35.2 POP3 – poplib ........................................................................................................................ 832

35.2.1 POP3(host, [port, timeout]) ............................................................................... 833

35.2.2 Eine Verbindung aufbauen und beenden .................................................... 834

35.2.3 Vorhandene E-Mails auflisten ......................................................................... 834

35.2.4 E-Mails abrufen und löschen ............................................................................ 835

35.2.5 Beispiel ..................................................................................................................... 836

35.3 IMAP4 – imaplib ................................................................................................................... 837

35.3.1 IMAP4([host, port, timeout]) ............................................................................ 838

35.3.2 Eine Verbindung aufbauen und beenden .................................................... 838

35.3.3 Eine Mailbox suchen und auswählen ............................................................ 839

35.3.4 Operationen mit Mailboxen ............................................................................. 840

35.3.5 E-Mails suchen ...................................................................................................... 840

35.3.6 E-Mails abrufen ..................................................................................................... 841

35.3.7 Beispiel ..................................................................................................................... 842

35.4 Erstellen komplexer E-Mails – email .......................................................................... 843

35.4.1 Eine einfache E-Mail erstellen .......................................................................... 843

35.4.2 Eine E-Mail mit Anhängen erstellen .............................................................. 844

35.4.3 Eine E-Mail einlesen ............................................................................................ 846

36 Debugging und Qualitätssicherung 847

36.1 Der Debugger ........................................................................................................................ 847

36.2 Automatisiertes Testen .................................................................................................... 850

36.2.1 Testfälle in Docstrings – doctest ..................................................................... 850

36.2.2 Unit Tests – unittest ............................................................................................ 855

36.3 Analyse des Laufzeitverhaltens .................................................................................... 858

36.3.1 Laufzeitmessung – timeit .................................................................................. 859

36.3.2 Profiling – cProfile ................................................................................................ 862

36.3.3 Tracing – trace ....................................................................................................... 866

37 Dokumentation 869

37.1 Docstrings ............................................................................................................................... 869

37.2 Automatisches Erstellen einer Dokumentation – pydoc ................................... 871
25



Inhalt
TEIL V Weiterführende Themen

38 Distribution von Python-Projekten 875

38.1 Eine Geschichte der Distributionen in Python ....................................................... 875

38.1.1 Der klassische Ansatz – distutils ..................................................................... 876

38.1.2 Der neue Standard – setuptools ..................................................................... 876

38.1.3 Der Paketindex – PyPI ......................................................................................... 877

38.2 Erstellen von Distributionen – setuptools ............................................................... 877

38.2.1 Installation ............................................................................................................. 877

38.2.2 Schreiben des Moduls ......................................................................................... 878

38.2.3 Das Installationsskript ........................................................................................ 879

38.2.4 Erstellen einer Quellcodedistribution ........................................................... 884

38.2.5 Erstellen einer Binärdistribution ..................................................................... 884

38.2.6 Distributionen installieren ................................................................................ 885

38.3 Erstellen von EXE-Dateien – cx_Freeze ..................................................................... 886

38.3.1 Installation ............................................................................................................. 886

38.3.2 Anwendung ............................................................................................................ 887

38.4 Paketmanager ...................................................................................................................... 888

38.4.1 Der Python-Paketmanager – pip ..................................................................... 888

38.4.2 Der Paketmanager conda .................................................................................. 890

38.5 Lokalisierung von Programmen – gettext ............................................................... 893

38.5.1 Beispiel für die Verwendung von gettext .................................................... 894

38.5.2 Erstellen des Sprachkompilats ......................................................................... 895

39 Virtuelle Umgebungen 899

39.1 Das Arbeiten mit virtuellen Umgebungen – venv ................................................ 900

39.1.1 Eine virtuelle Umgebung aktivieren .............................................................. 900

39.1.2 In einer virtuellen Umgebung arbeiten ........................................................ 900

39.1.3 Eine virtuelle Umgebung deaktivieren ......................................................... 901

39.2 Virtuelle Umgebungen in Anaconda .......................................................................... 901
26



Inhalt
40 Alternative Interpreter und Compiler 903

40.1 Just-in-Time-Kompilierung – PyPy .............................................................................. 903

40.1.1 Installation und Verwendung .......................................................................... 904

40.1.2 Beispiel ..................................................................................................................... 904

40.2 Numba ...................................................................................................................................... 905

40.2.1 Installation ............................................................................................................. 905

40.2.2 Beispiel ..................................................................................................................... 906

40.3 Anbindung an C und C++ – Cython ............................................................................. 907

40.3.1 Installation ............................................................................................................. 907

40.3.2 Die Funktionsweise von Cython ...................................................................... 908

40.3.3 Ein Cython-Programm kompilieren ............................................................... 909

40.3.4 Ein Cython-Programm mit statischer Typisierung ................................... 911

40.3.5 Eine C-Bibliothek verwenden ........................................................................... 912

40.4 Die interaktive Python-Shell – IPython ..................................................................... 914

40.4.1 Installation ............................................................................................................. 915

40.4.2 Die interaktive Shell ............................................................................................ 915

40.4.3 Das Jupyter Notebook ......................................................................................... 918

41 Grafische Benutzeroberflächen 923

41.1 Toolkits ..................................................................................................................................... 923

41.1.1 Tkinter (Tk) .............................................................................................................. 924

41.1.2 PyGObject (Gtk) ..................................................................................................... 924

41.1.3 Qt for Python (Qt) ................................................................................................. 924

41.1.4 wxPython (wxWidgets) ...................................................................................... 925

41.2 Einführung in tkinter ......................................................................................................... 925

41.2.1 Ein einfaches Beispiel .......................................................................................... 926

41.2.2 Steuerelementvariablen .................................................................................... 928

41.2.3 Der Packer ............................................................................................................... 930

41.2.4 Events ....................................................................................................................... 935

41.2.5 Steuerelemente .................................................................................................... 941

41.2.6 Zeichnungen – das Canvas-Widget ............................................................... 961

41.2.7 Weitere Module .................................................................................................... 969

41.3 Einführung in PySide6 ....................................................................................................... 972

41.3.1 Installation ............................................................................................................. 973

41.3.2 Grundlegende Konzepte von Qt ...................................................................... 973
27



Inhalt
41.3.3 Der Entwicklungsprozess .................................................................................. 975

41.3.4 Signale und Slots .................................................................................................. 982

41.3.5 Wichtige Widgets ................................................................................................. 985

41.3.6 Die Zeichenfunktionalität von Qt ................................................................... 992

41.3.7 Die Model-View-Architektur ............................................................................ 1005

42 Python als serverseitige Programmiersprache  
im WWW – ein Einstieg in Django 1021

42.1 Konzepte und Besonderheiten von Django ............................................................. 1022

42.2 Installation von Django .................................................................................................... 1023

42.3 Ein neues Django-Projekt erstellen ............................................................................. 1024

42.3.1 Der Entwicklungswebserver ............................................................................. 1026

42.3.2 Konfiguration des Projekts ................................................................................ 1027

42.4 Eine Applikation erstellen ............................................................................................... 1028

42.4.1 Die Applikation in das Projekt einbinden ..................................................... 1030

42.4.2 Ein Model definieren ........................................................................................... 1031

42.4.3 Beziehungen zwischen Models ....................................................................... 1032

42.4.4 Übertragung des Models in die Datenbank ................................................ 1032

42.4.5 Die Model-API ........................................................................................................ 1034

42.4.6 Unser Projekt bekommt ein Gesicht .............................................................. 1039

42.4.7 Djangos Template-System ................................................................................ 1046

42.4.8 Verarbeitung von Formulardaten ................................................................... 1059

42.4.9 Djangos Administrationsoberfläche .............................................................. 1062

43 Wissenschaftliches Rechnen und Data Science 1069

43.1 Installation ............................................................................................................................. 1070

43.2 Das Modellprogramm ....................................................................................................... 1071

43.2.1 Der Import von numpy, scipy und matplotlib ............................................ 1072

43.2.2 Vektorisierung und der Datentyp numpy.ndarray .................................... 1073

43.2.3 Visualisieren von Daten mit matplotlib.pyplot .......................................... 1077

43.3 Überblick über die Module numpy und scipy ......................................................... 1080

43.3.1 Überblick über den Datentyp numpy.ndarray ............................................ 1080

43.3.2 Überblick über scipy ............................................................................................ 1088
28



Inhalt
43.4 Eine Einführung in die Datenanalyse mit pandas ................................................ 1090

43.4.1 Das DataFrame-Objekt ....................................................................................... 1091

43.4.2 Selektiver Datenzugriff ...................................................................................... 1093

43.4.3 Löschen von Zeilen und Spalten ...................................................................... 1098

43.4.4 Einfügen von Zeilen und Spalten .................................................................... 1099

43.4.5 Logische Ausdrücke auf Datensätzen ........................................................... 1100

43.4.6 Manipulation von Datensätzen ....................................................................... 1101

43.4.7 Ein- und Ausgabe ................................................................................................. 1103

43.4.8 Visualisierung ........................................................................................................ 1104

44 Insiderwissen 1107

44.1 URLs im Standardbrowser öffnen – webbrowser ................................................. 1107

44.1.1 open(url, [new, autoraise]) ................................................................................ 1107

44.2 Interpretieren von Binärdaten – struct ..................................................................... 1107

44.3 Versteckte Passworteingabe – getpass ..................................................................... 1110

44.3.1 getpass([prompt, stream], {echo_char}) ...................................................... 1110

44.3.2 getpass.getuser() .................................................................................................. 1110

44.4 Kommandozeilen-Interpreter – cmd .......................................................................... 1110

44.5 Dateiinterface für Strings – io.StringIO ..................................................................... 1113

44.6 Kopieren von Instanzen – copy ..................................................................................... 1114

44.6.1 Zurück zum Eingangsbeispiel .......................................................................... 1117

44.7 Bildverarbeitung – Pillow ................................................................................................ 1118

44.7.1 Installation ............................................................................................................. 1118

44.7.2 Bilddateien laden und speichern .................................................................... 1119

44.7.3 Zugriff auf einzelne Pixel ................................................................................... 1120

44.7.4 Manipulation von Bildern .................................................................................. 1120

44.7.5 Interoperabilität ................................................................................................... 1127

45 Eine Geschichte der Python-Versionen 1129

45.1 Die Versionshistorie ........................................................................................................... 1129

45.2 Der Sprung nach Python 3 ............................................................................................... 1132

45.2.1 Ein-/Ausgabe ......................................................................................................... 1133

45.2.2 Iteratoren ................................................................................................................ 1134
29



Inhalt
45.2.3 Strings ...................................................................................................................... 1135

45.2.4 Ganze Zahlen ......................................................................................................... 1136

45.2.5 Exception Handling ............................................................................................. 1137

45.2.6 Standardbibliothek .............................................................................................. 1137

Anhang 1139

A.1 Reservierte Wörter .............................................................................................................. 1139

A.2 Operatorrangfolge .............................................................................................................. 1139

A.3 Eingebaute Funktionen .................................................................................................... 1141

A.4 Eingebaute Exceptions ...................................................................................................... 1145

A.5 Python-IDEs ............................................................................................................................ 1150

Index ........................................................................................................................................................ 1153
30




	Titelseite
	Aus dem Lektorat
	Hinweise
	Impressum
	1 Einleitung
	1.1 Warum haben wir dieses Buch geschrieben?
	1.2 Was leistet dieses Buch?
	1.3 Wie ist dieses Buch aufgebaut?
	1.4 Wer sollte dieses Buch wie lesen?
	1.5 Beispielprogramme
	1.6 Vorwort zur achten Auflage
	1.7 Danksagung

	2 Die Programmiersprache Python
	2.1 Geschichte und Entstehung
	2.2 Grundlegende Konzepte
	2.3 Einsatzmöglichkeiten und Stärken
	2.4 Die Installation von Python
	2.4.1 Installation von Anaconda unter Windows
	2.4.2 Installation von Anaconda unter macOS
	2.4.3 Installation von Anaconda unter Linux

	2.5 Drittanbietermodule installieren
	2.6 Die Verwendung von Python

	TEIL I Einstieg in Python
	3 Erste Schritte im interaktiven Modus
	3.1 Ganze Zahlen
	3.2 Gleitkommazahlen
	3.3 Zeichenketten
	3.4 Listen
	3.5 Dictionarys
	3.6 Variablen
	3.6.1 Die besondere Bedeutung des Unterstrichs
	3.6.2 Bezeichner

	3.7 Logische Ausdrücke
	3.8 Funktionen und Methoden
	3.8.1 Funktionen
	3.8.2 Methoden

	3.9 Bildschirmausgaben
	3.10  Module

	4 Der Weg zum ersten Programm
	4.1 Tippen, kompilieren, testen
	4.1.1 Windows
	4.1.2 Linux und macOS
	4.1.3 Shebang
	4.1.4 Interne Abläufe

	4.2 Grundstruktur eines Python-Programms
	4.2.1 Umbrechen langer Zeilen
	4.2.2 Zusammenfügen mehrerer Zeilen

	4.3 Das erste Programm
	4.3.1 Initialisierung
	4.3.2 Schleifenkopf
	4.3.3 Schleifenkörper
	4.3.4 Bildschirmausgabe

	4.4 Kommentare
	4.5 Der Fehlerfall

	5 Kontrollstrukturen
	5.1 Fallunterscheidungen
	5.1.1 Die if-Anweisung
	5.1.2 Bedingte Ausdrücke

	5.2 Schleifen
	5.2.1 Die while-Schleife
	5.2.2 Abbruch einer Schleife
	5.2.3 Erkennen eines Schleifenabbruchs
	5.2.4 Abbruch eines Schleifendurchlaufs
	5.2.5 Die for-Schleife

	5.3 Die pass-Anweisung
	5.4 Zuweisungsausdrücke
	5.4.1 Motivation
	5.4.2 Das Spiel Zahlenraten mit einem Zuweisungsausdruck


	6 Dateien
	6.1 Datenströme
	6.2 Daten aus einer Datei auslesen
	6.2.1 Eine Datei öffnen und schließen
	6.2.2 Die with-Anweisung
	6.2.3 Den Dateiinhalt auslesen

	6.3 Daten in eine Datei schreiben
	6.4 Das Dateiobjekt erzeugen
	6.4.1 Die Built-in Function open
	6.4.2 Attribute und Methoden eines Dateiobjekts
	6.4.3 Die Schreib-/Leseposition verändern


	7 Das Datenmodell
	7.1 Die Struktur von Instanzen
	7.1.1 Datentyp
	7.1.2 Wert
	7.1.3 Identität

	7.2 Referenzen löschen
	7.3 Mutable vs. immutable Datentypen
	7.3.1 Mutable Datentypen und Seiteneffekte


	8 Funktionen, Methoden und Attribute
	8.1 Parameter von Funktionen und Methoden
	8.1.1 Positionsbezogene Parameter
	8.1.2 Schlüsselwortparameter
	8.1.3 Optionale Parameter
	8.1.4 Reine Schlüsselwortparameter

	8.2 Attribute

	9 Informationsquellen zu Python
	9.1 Die Built-in Function help
	9.2 Die Onlinedokumentation
	9.3 PEPs

	TEIL II Datentypen
	10 Basisdatentypen: eine Übersicht
	10.1 Das Nichts – NoneType
	10.2 Operatoren
	10.2.1 Bindigkeit
	10.2.2 Auswertungsreihenfolge
	10.2.3 Verkettung von Vergleichen


	11 Numerische Datentypen
	11.1 Arithmetische Operatoren
	11.1.1 Erweiterte Zuweisungen

	11.2 Vergleichende Operatoren
	11.3 Konvertierung zwischen numerischen Datentypen
	11.4 Ganzzahlen – int
	11.4.1 Zahlensysteme
	11.4.2 Bit-Operationen
	11.4.3 Die Methode bit_length

	11.5 Gleitkommazahlen – float
	11.5.1 Exponentialschreibweise
	11.5.2 Genauigkeit
	11.5.3 Unendlich und Not a Number

	11.6 Boolesche Werte – bool
	11.6.1 Logische Operatoren
	11.6.2 Wahrheitswerte nicht boolescher Datentypen
	11.6.3 Auswertung logischer Operatoren

	11.7 Komplexe Zahlen – complex

	12 Sequenzielle Datentypen
	12.1 Der Unterschied zwischen Text und Binärdaten
	12.2 Operationen auf Instanzen sequenzieller Datentypen
	12.2.1 Auf Elemente prüfen
	12.2.2 Verkettung
	12.2.3 Wiederholung
	12.2.4 Indizierung
	12.2.5 Slicing
	12.2.6 Länge einer Sequenz
	12.2.7 Das kleinste und das größte Element
	12.2.8 Ein Element suchen
	12.2.9 Elemente zählen

	12.3 Listen – list
	12.3.1 Verändern eines Werts innerhalb der Liste – Zuweisung mit []
	12.3.2 Ersetzen von Teillisten und Einfügen neuer Elemente – Zuweisung mit []
	12.3.3 Elemente und Teillisten löschen – del zusammen mit []
	12.3.4 Methoden von list-Instanzen
	12.3.5 Listen sortieren – s.sort([key, reverse])
	12.3.6 Seiteneffekte
	12.3.7 List Comprehensions

	12.4 Unveränderliche Listen – tuple
	12.4.1 Packing und Unpacking
	12.4.2 Immutabel heißt nicht zwingend unveränderlich!

	12.5 Strings – str, bytes, bytearray
	12.5.1 Steuerzeichen
	12.5.2 Trennen von Strings
	12.5.3 Suchen von Teil-Strings
	12.5.4 Ersetzen von Teil-Strings
	12.5.5 Entfernen von Präfixen oder Suffixen
	12.5.6 Ausrichten von Strings
	12.5.7 String-Tests
	12.5.8 Verkettung von Elementen in sequenziellen Datentypen
	12.5.9 Formatierung von Strings
	12.5.10 Zeichensätze und Sonderzeichen
	12.5.11 Template-Strings


	13 Zuordnungen und Mengen
	13.1 Dictionary – dict
	13.1.1 Erzeugen eines Dictionarys
	13.1.2 Schlüssel und Werte
	13.1.3 Iteration
	13.1.4 Operatoren
	13.1.5 Methoden
	13.1.6 Dict Comprehensions

	13.2 Mengen – set und frozenset
	13.2.1 Erzeugen eines Sets
	13.2.2 Iteration
	13.2.3 Operatoren
	13.2.4 Methoden
	13.2.5 Veränderliche Mengen – set
	13.2.6 Unveränderliche Mengen – frozenset


	14 Collections
	14.1 Verkettete Dictionarys
	14.2 Zählen von Häufigkeiten
	14.2.1 d.elements()
	14.2.2 d.most_common([n])
	14.2.3 d.subtract([iterable])
	14.2.4 d.update([iterable])

	14.3 Dictionarys mit Standardwerten
	14.4 Doppelt verkettete Listen
	14.5 Benannte Tupel
	14.5.1 namedtuple(typename, field_names, {rename})


	15 Datum und Zeit
	15.1 Elementare Zeitfunktionen – time
	15.1.1 Der Datentyp struct_time
	15.1.2 Konstanten
	15.1.3 Funktionen

	15.2 Objektorientierte Datumsverwaltung – datetime
	15.2.1 datetime.date
	15.2.2 datetime.time
	15.2.3 datetime.datetime
	15.2.4 datetime.timedelta
	15.2.5 Operationen für datetime.datetime und datetime.date

	15.3 Zeitzonen – zoneinfo
	15.3.1 Die IANA-Zeitzonendatenbank
	15.3.2 Zeitangaben in lokalen Zeitzonen
	15.3.3 Rechnen mit Zeitangaben in lokalen Zeitzonen


	16 Enumerationen und Flags
	16.1 Aufzählungstypen – Enum
	16.2 Aufzählungstypen für Bitmuster – Flag
	16.3 Ganzzahlige Aufzählungstypen – IntEnum

	TEIL III Fortgeschrittene Programmiertechniken
	17 Funktionen
	17.1 Definieren einer Funktion
	17.2 Rückgabewerte
	17.3 Funktionsobjekte
	17.4 Optionale Parameter
	17.5 Schlüsselwortparameter
	17.6 Beliebige Anzahl von Parametern
	17.7 Reine Schlüsselwortparameter
	17.8 Reine Positionsparameter
	17.9 Unpacking beim Funktionsaufruf
	17.10 Seiteneffekte
	17.11 Namensräume
	17.11.1 Zugriff auf globale Variablen – global
	17.11.2 Zugriff auf den globalen Namensraum
	17.11.3 Lokale Funktionen
	17.11.4 Zugriff auf übergeordnete Namensräume – nonlocal
	17.11.5 Ungebundene lokale Variablen – eine Stolperfalle

	17.12 Anonyme Funktionen
	17.13 Rekursion
	17.14 Eingebaute Funktionen
	17.14.1 abs(x)
	17.14.2 all(iterable)
	17.14.3 any(iterable)
	17.14.4 ascii(object)
	17.14.5 bin(x)
	17.14.6 bool([x])
	17.14.7 bytearray([source, encoding, errors])
	17.14.8 bytes([source, encoding, errors])
	17.14.9 chr(i)
	17.14.10 complex([real, imag])
	17.14.11 dict([source])
	17.14.12 divmod(a, b)
	17.14.13 enumerate(iterable[, start])
	17.14.14 eval(expression, [globals, locals])
	17.14.15 exec(object, [globals, locals])
	17.14.16 filter(function, iterable)
	17.14.17 float([x])
	17.14.18 format(value, [format_spec])
	17.14.19 frozenset([iterable])
	17.14.20 globals()
	17.14.21 hash(object)
	17.14.22 help([object])
	17.14.23 hex(x)
	17.14.24 id(object)
	17.14.25 input([prompt])
	17.14.26 int([x, base])
	17.14.27 len(s)
	17.14.28 list([sequence])
	17.14.29 locals()
	17.14.30 map(function, [*iterable, strict])
	17.14.31 max(iterable, {default, key}), max(arg1, arg2, [*args], {key})
	17.14.32 min(iterable, {default, key}), min(arg1, arg2, [*args], {key})
	17.14.33 oct(x)
	17.14.34 ord(c)
	17.14.35 pow(x, y, [z])
	17.14.36 print([*objects], {sep, end, file, flush})
	17.14.37 range([start], stop, [step])
	17.14.38 repr(object)
	17.14.39 reversed(sequence)
	17.14.40 round(x, [n])
	17.14.41 set([iterable])
	17.14.42 sorted(iterable, [key, reverse])
	17.14.43 str([object, encoding, errors])
	17.14.44 sum(iterable, [start])
	17.14.45 tuple([iterable])
	17.14.46 type(object)
	17.14.47 zip([*iterables], {strict})


	18 Module und Pakete
	18.1 Einbinden globaler Module
	18.2 Lokale Module
	18.2.1 Namenskonflikte
	18.2.2 Modulinterne Referenzen
	18.2.3 Module ausführen

	18.3 Pakete
	18.3.1 Importieren aller Module eines Pakets
	18.3.2 Namespace Packages
	18.3.3 Relative Importanweisungen

	18.4 Das Paket importlib
	18.5 Geplante Sprachelemente

	19 Objektorientierte Programmierung
	19.1 Beispiel: Ein nicht objektorientiertes Konto
	19.1.1 Ein neues Konto anlegen
	19.1.2 Geld überweisen
	19.1.3 Geld ein- und auszahlen
	19.1.4 Den Kontostand anzeigen

	19.2 Klassen
	19.2.1 Definieren von Methoden
	19.2.2 Der Konstruktor
	19.2.3 Attribute
	19.2.4 Beispiel: Ein objektorientiertes Konto

	19.3 Vererbung
	19.3.1 Ein einfaches Beispiel
	19.3.2 Überschreiben von Methoden
	19.3.3 Beispiel: Girokonto mit Tagesumsatz
	19.3.4 Ausblick

	19.4 Mehrfachvererbung
	19.4.1 Mögliche Probleme der Mehrfachvererbung

	19.5 Property-Attribute
	19.5.1 Setter und Getter
	19.5.2 Property-Attribute definieren

	19.6 Statische Methoden
	19.6.1 Statische Methoden definieren

	19.7 Klassenmethoden
	19.8 Klassenattribute
	19.9 Built-in Functions für die objektorientierte Programmierung
	19.9.1 Funktionen für die Verwaltung der Attribute einer Instanz
	19.9.2 Funktionen für Informationen über die Klassenhierarchie

	19.10 Erben von eingebauten Datentypen
	19.11 Magic Methods und Magic Attributes
	19.11.1 Allgemeine Magic Methods
	19.11.2 Operatoren überladen
	19.11.3 Datentypen emulieren – Duck-Typing

	19.12 Datenklassen
	19.12.1 Tupel und Listen
	19.12.2 Dictionarys
	19.12.3 Benannte Tupel
	19.12.4 Veränderliche Datenklassen
	19.12.5 Unveränderliche Datenklassen
	19.12.6 Defaultwerte in Datenklassen


	20 Ausnahmebehandlung
	20.1 Exceptions
	20.1.1 Eingebaute Exceptions
	20.1.2 Das Werfen einer Exception
	20.1.3 Das Abfangen einer Exception
	20.1.4 Eigene Exceptions
	20.1.5 Erneutes Werfen einer Exception
	20.1.6 Exception Chaining
	20.1.7 Exception Notes

	20.2 Zusicherungen – assert
	20.3 Warnungen
	20.4 Exception Groups
	20.4.1 Eine Exception Group
	20.4.2 Die try/except*-Anweisung


	21 Generatoren und Iteratoren
	21.1 Generatoren
	21.1.1 Subgeneratoren
	21.1.2 Generator Expressions

	21.2 Iteratoren
	21.2.1 Das Iteratorprotokoll
	21.2.2 Beispiel: Die Fibonacci-Folge
	21.2.3 Beispiel: Der Goldene Schnitt
	21.2.4 Ein Generator zur Implementierung von __iter__
	21.2.5 Verwendung von Iteratoren
	21.2.6 Mehrere Iteratoren für dieselbe Instanz
	21.2.7 Nachteile von Iteratoren gegenüber dem direkten Zugriff über Indizes
	21.2.8 Alternative Definition für iterierbare Objekte
	21.2.9 Funktionsiteratoren

	21.3 Spezielle Generatoren – itertools
	21.3.1 accumulate(iterable, [func])
	21.3.2 batched(iterable, n, {strict})
	21.3.3 chain([*iterables])
	21.3.4 combinations(iterable, r)
	21.3.5 combinations_with_replacement(iterable, r)
	21.3.6 compress(data, selectors)
	21.3.7 count([start, step])
	21.3.8 cycle(iterable)
	21.3.9 dropwhile(predicate, iterable)
	21.3.10 filterfalse(predicate, iterable)
	21.3.11 groupby(iterable, [key])
	21.3.12 islice(iterable, [start], stop, [step])
	21.3.13 permutations(iterable, [r])
	21.3.14 product([*iterables], [repeat])
	21.3.15 repeat(object, [times])
	21.3.16 starmap(function, iterable)
	21.3.17 takewhile(predicate, iterable)
	21.3.18 tee(iterable, [n])
	21.3.19 zip_longest([*iterables], {fillvalue})

	21.4 Generatoren als Konsumenten
	21.4.1 Auslösen von Exceptions in einem Generator
	21.4.2 Ein Anwendungsbeispiel für konsumierende Generatorfunktionen


	22 Kontext-Manager
	22.1 Die with-Anweisung
	22.1.1 __enter__(self)
	22.1.2 __exit__(self, exc_type, exc_value, traceback)

	22.2 Hilfsfunktionen für with-Kontexte – contextlib
	22.2.1 Dynamisch zusammengestellte Kontextkombinationen – ExitStack
	22.2.2 Bestimmte Exception-Typen unterdrücken
	22.2.3 Den Standardausgabestrom umleiten
	22.2.4 Optionale Kontexte
	22.2.5 Einfache Funktionen als Kontext-Manager
	22.2.6 Das Arbeitsverzeichnis vorübergehend wechseln


	23 Dekoratoren
	23.1 Funktionsdekoratoren
	23.1.1 Das Dekorieren von Funktionen und Methoden
	23.1.2 Name und Docstring nach Anwendung eines Dekorators
	23.1.3 Verschachtelte Dekoratoren
	23.1.4 Beispiel: Ein Cache-Dekorator

	23.2 Klassendekoratoren
	23.3 Das Modul functools
	23.3.1 Funktionsschnittstellen vereinfachen
	23.3.2 Methodenschnittstellen vereinfachen
	23.3.3 Caches
	23.3.4 Ordnungsrelationen vervollständigen
	23.3.5 Überladen von Funktionen


	24 Annotationen und statische Typprüfung
	24.1 Annotationen
	24.1.1 Die Annotation von Funktionen und Methoden
	24.1.2 Die Annotation von Variablen und Attributen
	24.1.3 Der Zugriff auf Annotationen zur Laufzeit
	24.1.4 Wann werden Annotationen evaluiert?

	24.2 Type Hints – das Modul typing
	24.2.1 Gültige Type Hints
	24.2.2 Container-Typen
	24.2.3 Abstrakte Container-Typen
	24.2.4 Typ-Aliasse
	24.2.5 Type Unions und optionale Werte
	24.2.6 Literale
	24.2.7 Typvariablen

	24.3 Statische Typprüfung in Python – mypy
	24.3.1 Installation
	24.3.2 Beispiel


	25 Structural Pattern Matching
	25.1 Die match-Anweisung
	25.2 Arten von Mustern in der case-Anweisung
	25.2.1 Literal- und Wertmuster
	25.2.2 ODER-Muster
	25.2.3 Muster mit Typprüfung
	25.2.4 Bedingungen für Matches formulieren
	25.2.5 Teilmuster gruppieren
	25.2.6 Capture- und Wildcard-Muster
	25.2.7 Sequenzmuster
	25.2.8 Zuordnungsmuster
	25.2.9 Muster für Objekte und ihre Attributwerte


	TEIL IV Die Standardbibliothek
	26 Mathematik
	26.1 Mathematische Funktionen – math, cmath
	26.1.1 Allgemeine mathematische Funktionen
	26.1.2 Exponential- und Logarithmusfunktionen
	26.1.3 Trigonometrische und hyperbolische Funktionen
	26.1.4 Distanzen und Normen
	26.1.5 Umrechnen von Winkeln
	26.1.6 Darstellungsformen komplexer Zahlen

	26.2 Zufallszahlengenerator – random
	26.2.1 Den Status des Zufallszahlengenerators speichern und laden
	26.2.2 Zufällige ganze Zahlen erzeugen
	26.2.3 Zufällige Gleitkommazahlen erzeugen
	26.2.4 Zufallsgesteuerte Operationen auf Sequenzen
	26.2.5 SystemRandom([seed])

	26.3 Statistische Berechnungen – statistics
	26.4 Intuitive Dezimalzahlen – decimal
	26.4.1 Verwendung des Datentyps
	26.4.2 Nichtnumerische Werte
	26.4.3 Das Context-Objekt

	26.5 Hash-Funktionen – hashlib
	26.5.1 Verwendung des Moduls
	26.5.2 Weitere Hash-Algorithmen
	26.5.3 Vergleich großer Dateien
	26.5.4 Passwörter


	27 Bildschirmausgaben und Logging
	27.1 Übersichtliche Ausgabe komplexer Objekte – pprint
	27.2 Logdateien – logging
	27.2.1 Das Meldungsformat anpassen
	27.2.2 Logging-Handler


	28 Reguläre Ausdrücke
	28.1 Die Syntax regulärer Ausdrücke
	28.1.1 Beliebige Zeichen
	28.1.2 Zeichenklassen
	28.1.3 Quantoren
	28.1.4 Vordefinierte Zeichenklassen
	28.1.5 Weitere Sonderzeichen
	28.1.6 Genügsame Quantoren
	28.1.7 Gruppen
	28.1.8 Alternativen
	28.1.9 Extensions

	28.2 Verwendung des Moduls re
	28.2.1 Searching
	28.2.2 Matching
	28.2.3 Einen String aufspalten
	28.2.4 Teile eines Strings ersetzen
	28.2.5 Problematische Zeichen ersetzen
	28.2.6 Einen regulären Ausdruck kompilieren
	28.2.7 Flags
	28.2.8 Das Match-Objekt

	28.3 Ein einfaches Beispielprogramm – Searching
	28.4 Ein komplexeres Beispielprogramm – Matching
	28.5 Kommentare in regulären Ausdrücken
	28.6 Katastrophales Backtracking
	28.6.1 Atomare Gruppen und possessive Quantoren


	29 Schnittstellen zum Betriebssystem und zur Laufzeitumgebung
	29.1 Funktionen des Betriebssystems – os
	29.1.1 environ
	29.1.2 getpid()
	29.1.3 cpu_count()
	29.1.4 system(cmd)
	29.1.5 popen(command, [mode, buffering])

	29.2 Starten von Subprozessen – subprocess
	29.2.1 Einen Subprozess starten
	29.2.2 Die Standardströme stdin, stdout und stderr
	29.2.3 Der Return Code
	29.2.4 Umgebungsvariablen

	29.3 Zugriff auf die Laufzeitumgebung – sys
	29.3.1 Kommandozeilenparameter
	29.3.2 Standardpfade
	29.3.3 Standardein- und -ausgabeströme
	29.3.4 Das Programm beenden
	29.3.5 Details zur Python-Version
	29.3.6 Details zum Betriebssystem
	29.3.7 Hooks

	29.4 Kommandozeilenparameter – argparse
	29.4.1 Taschenrechner – ein einfaches Beispiel
	29.4.2 Ein komplexeres Beispiel


	30 Das Dateisystem
	30.1 Grundlegendes zu Dateisystemen und Pfaden
	30.1.1 Pfadnamen
	30.1.2 Dateinamen
	30.1.3 Absolute und relative Pfade
	30.1.4 Zugriffsrechte

	30.2 Die moderne Lösung – pathlib
	30.2.1 Die Klasse Path
	30.2.2 Pfade kombinieren
	30.2.3 Attribute eines Pfads
	30.2.4 Pfadeigenschaften prüfen
	30.2.5 Dateien lesen und schreiben
	30.2.6 Dateien umbenennen
	30.2.7 Dateien kopieren und verschieben
	30.2.8 Dateien löschen
	30.2.9 Verzeichnisse erstellen und löschen
	30.2.10 Links
	30.2.11 Globbing

	30.3 Zugriff auf das Dateisystem mit os
	30.3.1 access(path, mode)
	30.3.2 chmod(path, mode)
	30.3.3 listdir([path])
	30.3.4 mkdir(path, [mode]) und makedirs(path, [mode])
	30.3.5 remove(path)
	30.3.6 removedirs(path)
	30.3.7 rename(src, dst) und renames(old, new)
	30.3.8 walk(top, [topdown, onerror])

	30.4 Dateipfade – os.path
	30.4.1 abspath(path)
	30.4.2 basename(path)
	30.4.3 commonprefix(list)
	30.4.4 dirname(path)
	30.4.5 join(path, *paths)
	30.4.6 normcase(path)
	30.4.7 split(path)
	30.4.8 splitdrive(path)
	30.4.9 splitext(path)

	30.5 Zugriff auf das Dateisystem – shutil
	30.5.1 Verzeichnis- und Dateioperationen
	30.5.2 Archivoperationen

	30.6 Temporäre Dateien – tempfile
	30.6.1 tempfile.TempTemporaryFile([mode, buffering, encoding, newline, suffix, prefix, dir], {errors})
	30.6.2 tempfile.TemporaryDirectory([suffix, prefix, dir])


	31 Parallele Programmierung
	31.1 Prozesse, Multitasking und Threads
	31.1.1 Die Leichtgewichte unter den Prozessen – Threads
	31.1.2 Das Global Interpreter Lock (GIL)
	31.1.3 Threads oder Prozesse?
	31.1.4 Kooperatives Multitasking

	31.2 Pythons Schnittstellen zur Parallelisierung
	31.3 Die abstrakte Schnittstelle – concurrent.futures
	31.3.1 Ein Beispiel mit einem futures.ThreadPoolExecutor
	31.3.2 Executor-Instanzen als Kontext-Manager
	31.3.3 Die Verwendung von futures.ProcessPoolExecutor
	31.3.4 Die Verwaltung der Aufgaben eines Executors

	31.4 Die flexible Schnittstelle – threading und multiprocessing
	31.4.1 Threads in Python – threading
	31.4.2 Prozesse in Python – multiprocessing

	31.5 Die kooperative Schnittstelle – asyncio
	31.5.1 Kooperative Funktionen – Koroutinen
	31.5.2 Erwartbare Objekte
	31.5.3 Die Kooperation von Koroutinen – Tasks
	31.5.4 Ein kooperativer Webcrawler
	31.5.5 Blockierende Operationen in Koroutinen
	31.5.6 Weitere asynchrone Sprachmerkmale

	31.6 Fazit: Welche Schnittstelle ist die richtige?
	31.6.1 Ist das kooperative Multitasking eine Option?
	31.6.2 Abstraktion oder Flexibilität?
	31.6.3 Threads oder Prozesse?


	32 Datenspeicherung
	32.1 Das Datenaustauschformat JSON – json
	32.2 Serialisierung von Instanzen – pickle
	32.2.1 Funktionale Schnittstelle
	32.2.2 Objektorientierte Schnittstelle

	32.3 Das Tabellenformat CSV – csv
	32.3.1 reader-Objekte – Daten aus einer CSV-Datei lesen
	32.3.2 Dialect-Objekte – eigene Dialekte verwenden

	32.4 Komprimierte Dateien und Archive
	32.4.1 gzip.open(filename, [mode, compresslevel])
	32.4.2 Andere Module für den Zugriff auf komprimierte Daten

	32.5 Datenbanken
	32.5.1 Pythons eingebaute Datenbank – sqlite3

	32.6 XML
	32.6.1 ElementTree
	32.6.2 SAX – Simple API for XML


	33 Netzwerkkommunikation
	33.1 Die Socket API
	33.1.1 Client-Server-Systeme
	33.1.2 UDP
	33.1.3 TCP
	33.1.4 Blockierende und nichtblockierende Sockets
	33.1.5 Erzeugen eines Sockets
	33.1.6 Die Socket-Klasse
	33.1.7 Netzwerk-Byte-Order
	33.1.8 Multiplexende Server – selectors
	33.1.9 Objektorientierte Serverentwicklung – socketserver

	33.2 XML-RPC
	33.2.1 Der Server
	33.2.2 Der Client
	33.2.3 Multicall
	33.2.4 Einschränkungen


	34 Zugriff auf Ressourcen im Internet
	34.1 Protokolle
	34.1.1 Hypertext Transfer Protocol – HTTP
	34.1.2 File Transfer Protocol – FTP

	34.2 Lösungen
	34.2.1 Veraltete Lösungen für Python 2
	34.2.2 Lösungen der Standardbibliothek
	34.2.3 Lösungen von Drittanbietern

	34.3 Der einfache Weg – requests
	34.3.1 Einfache Anfragen via GET und POST
	34.3.2 Web-APIs

	34.4 URLs – urllib
	34.4.1 Zugriff auf entfernte Ressourcen – urllib.request
	34.4.2 Das Einlesen und Verarbeiten von URLs – urllib.parse

	34.5 FTP – ftplib
	34.5.1 Mit einem FTP-Server verbinden
	34.5.2 FTP-Kommandos ausführen
	34.5.3 Mit Dateien und Verzeichnissen arbeiten
	34.5.4 Übertragen von Dateien


	35 E-Mail
	35.1 SMTP – smtplib
	35.1.1 SMTP([host, port, local_hostname, timeout, source_address])
	35.1.2 Eine Verbindung aufbauen und beenden
	35.1.3 Eine E-Mail versenden
	35.1.4 Beispiel

	35.2 POP3 – poplib
	35.2.1 POP3(host, [port, timeout])
	35.2.2 Eine Verbindung aufbauen und beenden
	35.2.3 Vorhandene E-Mails auflisten
	35.2.4 E-Mails abrufen und löschen
	35.2.5 Beispiel

	35.3 IMAP4 – imaplib
	35.3.1 IMAP4([host, port, timeout])
	35.3.2 Eine Verbindung aufbauen und beenden
	35.3.3 Eine Mailbox suchen und auswählen
	35.3.4 Operationen mit Mailboxen
	35.3.5 E-Mails suchen
	35.3.6 E-Mails abrufen
	35.3.7 Beispiel

	35.4 Erstellen komplexer E-Mails – email
	35.4.1 Eine einfache E-Mail erstellen
	35.4.2 Eine E-Mail mit Anhängen erstellen
	35.4.3 Eine E-Mail einlesen


	36 Debugging und Qualitätssicherung
	36.1 Der Debugger
	36.2 Automatisiertes Testen
	36.2.1 Testfälle in Docstrings – doctest
	36.2.2 Unit Tests – unittest

	36.3 Analyse des Laufzeitverhaltens
	36.3.1 Laufzeitmessung – timeit
	36.3.2 Profiling – cProfile
	36.3.3 Tracing – trace


	37 Dokumentation
	37.1 Docstrings
	37.2 Automatisches Erstellen einer Dokumentation – pydoc

	TEIL V Weiterführende Themen
	38 Distribution von Python-Projekten
	38.1 Eine Geschichte der Distributionen in Python
	38.1.1 Der klassische Ansatz – distutils
	38.1.2 Der neue Standard – setuptools
	38.1.3 Der Paketindex – PyPI

	38.2 Erstellen von Distributionen – setuptools
	38.2.1 Installation
	38.2.2 Schreiben des Moduls
	38.2.3 Das Installationsskript
	38.2.4 Erstellen einer Quellcodedistribution
	38.2.5 Erstellen einer Binärdistribution
	38.2.6 Distributionen installieren

	38.3 Erstellen von EXE-Dateien – cx_Freeze
	38.3.1 Installation
	38.3.2 Anwendung

	38.4 Paketmanager
	38.4.1 Der Python-Paketmanager – pip
	38.4.2 Der Paketmanager conda

	38.5 Lokalisierung von Programmen – gettext
	38.5.1 Beispiel für die Verwendung von gettext
	38.5.2 Erstellen des Sprachkompilats


	39 Virtuelle Umgebungen
	39.1 Das Arbeiten mit virtuellen Umgebungen – venv
	39.1.1 Eine virtuelle Umgebung aktivieren
	39.1.2 In einer virtuellen Umgebung arbeiten
	39.1.3 Eine virtuelle Umgebung deaktivieren

	39.2 Virtuelle Umgebungen in Anaconda

	40 Alternative Interpreter und Compiler
	40.1 Just-in-Time-Kompilierung – PyPy
	40.1.1 Installation und Verwendung
	40.1.2 Beispiel

	40.2 Numba
	40.2.1 Installation
	40.2.2 Beispiel

	40.3 Anbindung an C und C++ – Cython
	40.3.1 Installation
	40.3.2 Die Funktionsweise von Cython
	40.3.3 Ein Cython-Programm kompilieren
	40.3.4 Ein Cython-Programm mit statischer Typisierung
	40.3.5 Eine C-Bibliothek verwenden

	40.4 Die interaktive Python-Shell – IPython
	40.4.1 Installation
	40.4.2 Die interaktive Shell
	40.4.3 Das Jupyter Notebook


	41 Grafische Benutzeroberflächen
	41.1 Toolkits
	41.1.1 Tkinter (Tk)
	41.1.2 PyGObject (Gtk)
	41.1.3 Qt for Python (Qt)
	41.1.4 wxPython (wxWidgets)

	41.2 Einführung in tkinter
	41.2.1 Ein einfaches Beispiel
	41.2.2 Steuerelementvariablen
	41.2.3 Der Packer
	41.2.4 Events
	41.2.5 Steuerelemente
	41.2.6 Zeichnungen – das Canvas-Widget
	41.2.7 Weitere Module

	41.3 Einführung in PySide6
	41.3.1 Installation
	41.3.2 Grundlegende Konzepte von Qt
	41.3.3 Der Entwicklungsprozess
	41.3.4 Signale und Slots
	41.3.5 Wichtige Widgets
	41.3.6 Die Zeichenfunktionalität von Qt
	41.3.7 Die Model-View-Architektur


	42 Python als serverseitige Programmiersprache im WWW – ein Einstieg in Django
	42.1 Konzepte und Besonderheiten von Django
	42.2 Installation von Django
	42.3 Ein neues Django-Projekt erstellen
	42.3.1 Der Entwicklungswebserver
	42.3.2 Konfiguration des Projekts

	42.4 Eine Applikation erstellen
	42.4.1 Die Applikation in das Projekt einbinden
	42.4.2 Ein Model definieren
	42.4.3 Beziehungen zwischen Models
	42.4.4 Übertragung des Models in die Datenbank
	42.4.5 Die Model-API
	42.4.6 Unser Projekt bekommt ein Gesicht
	42.4.7 Djangos Template-System
	42.4.8 Verarbeitung von Formulardaten
	42.4.9 Djangos Administrationsoberfläche


	43 Wissenschaftliches Rechnen und Data Science
	43.1 Installation
	43.2 Das Modellprogramm
	43.2.1 Der Import von numpy, scipy und matplotlib
	43.2.2 Vektorisierung und der Datentyp numpy.ndarray
	43.2.3 Visualisieren von Daten mit matplotlib.pyplot

	43.3 Überblick über die Module numpy und scipy
	43.3.1 Überblick über den Datentyp numpy.ndarray
	43.3.2 Überblick über scipy

	43.4 Eine Einführung in die Datenanalyse mit pandas
	43.4.1 Das DataFrame-Objekt
	43.4.2 Selektiver Datenzugriff
	43.4.3 Löschen von Zeilen und Spalten
	43.4.4 Einfügen von Zeilen und Spalten
	43.4.5 Logische Ausdrücke auf Datensätzen
	43.4.6 Manipulation von Datensätzen
	43.4.7 Ein- und Ausgabe
	43.4.8 Visualisierung


	44 Insiderwissen
	44.1 URLs im Standardbrowser öffnen – webbrowser
	44.1.1 open(url, [new, autoraise])

	44.2 Interpretieren von Binärdaten – struct
	44.3 Versteckte Passworteingabe – getpass
	44.3.1 getpass([prompt, stream], {echo_char})
	44.3.2 getpass.getuser()

	44.4 Kommandozeilen-Interpreter – cmd
	44.5 Dateiinterface für Strings – io.StringIO
	44.6 Kopieren von Instanzen – copy
	44.6.1 Zurück zum Eingangsbeispiel

	44.7 Bildverarbeitung – Pillow
	44.7.1 Installation
	44.7.2 Bilddateien laden und speichern
	44.7.3 Zugriff auf einzelne Pixel
	44.7.4 Manipulation von Bildern
	44.7.5 Interoperabilität


	45 Eine Geschichte der Python-Versionen
	45.1 Die Versionshistorie
	45.2 Der Sprung nach Python 3
	45.2.1 Ein-/Ausgabe
	45.2.2 Iteratoren
	45.2.3 Strings
	45.2.4 Ganze Zahlen
	45.2.5 Exception Handling
	45.2.6 Standardbibliothek


	Anhang
	A.1 Reservierte Wörter
	A.2 Operatorrangfolge
	A.3 Eingebaute Funktionen
	A.4 Eingebaute Exceptions
	A.5 Python-IDEs
	A.5.1 PyCharm
	A.5.2 Visual Studio Code
	A.5.3 Spyder


	Index
	Serviceseiten
	Rechtliche Hinweise
	Über die Autoren



