


Kapitel 4

Der Weg zum ersten Programm

Nachdem wir im interaktiven Modus spielerisch einige Grundelemente der Sprache 

Python behandelt haben, möchten wir dieses Wissen jetzt auf ein tatsächliches Pro-

gramm übertragen. Im Gegensatz zum interaktiven Modus, der eine wechselseitige 

Interaktion zwischen Ihnen und dem Interpreter ermöglicht, wird der Quellcode 

eines Programms in eine Datei geschrieben. Diese wird als Ganzes vom Interpreter 

eingelesen und ausgeführt.

In den folgenden Abschnitten lernen Sie die Grundstrukturen eines Python-Pro-

gramms kennen und werden Ihr erstes einfaches Beispielprogramm schreiben.

4.1    Tippen, kompilieren, testen

In diesem Abschnitt werden die Arbeitsabläufe besprochen, die nötig sind, um ein 

Python-Programm zu erstellen und auszuführen. Ganz allgemein sollten Sie sich da-

rauf einstellen, dass wir in einem Großteil des Buchs ausschließlich Konsolenanwen-

dungen schreiben werden. Eine Konsolenanwendung hat eine rein textbasierte 

Schnittstelle zu den Benutzerinnen und Benutzern und läuft in der Konsole (auch 

Shell) des jeweiligen Betriebssystems ab. Für die meisten Beispiele und auch für viele 

reale Anwendungsfälle reicht eine solche textbasierte Schnittstelle aus.1

Grundsätzlich besteht ein Python-Programm aus einer oder mehreren Programmda-

teien. Diese Programmdateien haben die Dateiendung .py und enthalten den Python-

Quelltext. Dabei handelt es sich um nichts anderes als um Textdateien. Programmda-

teien können also mit einem normalen Texteditor bearbeitet werden.

Nachdem eine Programmdatei geschrieben wurde, besteht der nächste Schritt darin, 

sie auszuführen. Wenn Sie IDLE verwenden, kann die Programmdatei bequem über 

den Menüpunkt Run • Run Module ausgeführt werden. Sollten Sie einen Editor ein-

setzen, der keine vergleichbare Funktion unterstützt, müssen Sie in einer Kom-

mandozeile in das Verzeichnis der Programmdatei wechseln und – abhängig von Ih-

rem Betriebssystem – verschiedene Kommandos ausführen.

1 Selbstverständlich ermöglicht Python auch die Programmierung grafischer Benutzerober-

flächen. Dies wird in Kapitel 41 behandelt.
65



4 Der Weg zum ersten Programm
4.1.1    Windows

Unter Windows wechseln Sie in das Verzeichnis, in dem die Programmdatei liegt, und 

starten den Python-Interpreter mit dem Kommando python, gefolgt von dem Namen 

der auszuführenden Programmdatei.2

Abbildung 4.1  Ausführen eines Python-Programms unter Windows

Bei »Dies schreibt Ihnen Ihr Python-Programm« handelt es sich um eine Ausgabe des 

Python-Programms in der Datei programm.py, die beweist, dass das Python-Pro-

gramm tatsächlich ausgeführt wurde.

 

Hinweis

Unter Windows ist es auch möglich, ein Python-Programm durch einen Doppelklick 

auf die jeweilige Programmdatei auszuführen. Das hat aber den Nachteil, dass sich 

das Konsolenfenster sofort nach Beenden des Programms schließt und die Ausgaben 

des Programms somit nicht erkennbar sind.

4.1.2    Linux und macOS

Unter Unix-ähnlichen Betriebssystemen wie Linux oder macOS wechseln Sie ebenfalls 

in das Verzeichnis, in dem die Programmdatei liegt, und starten dann den Python-In-

terpreter mit dem Kommando python, gefolgt von dem Namen der auszuführenden 

Programmdatei. Im folgenden Beispiel wird die Programmdatei programm.py unter 

Linux ausgeführt, die sich im Verzeichnis /home/user/ordner befindet:

2 In älteren Windows-Versionen finden Sie die Konsole unter Start • Programme • Zubehör • 

Eingabeaufforderung. In neueren Windows-Versionen starten Sie die PowerShell.
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4.1 Tippen, kompilieren, testen
user@HOST ~ $ cd ordner 
user@HOST ~/ordner $ python programm.py  
Dies schreibt Ihnen Ihr Python-Programm 

Bitte beachten Sie den Hinweis in Abschnitt 2.4.3, der besagt, dass das Kommando, 

mit dem Sie Python starten, je nach Distribution von dem hier demonstrierten python
abweichen kann.

4.1.3    Shebang

Unter einem Unix-ähnlichen Betriebssystem wie beispielsweise Linux können 

Python-Programmdateien mithilfe eines Shebangs, auch Magic Line genannt, direkt 

ausführbar gemacht werden. Dazu muss die erste Zeile der Programmdatei in der Re-

gel folgendermaßen lauten:

#!/usr/bin/python 

In diesem Fall wird das Betriebssystem dazu angehalten, diese Programmdatei 

immer mit dem Python-Interpreter auszuführen. Unter anderen Betriebssystemen, 

beispielsweise Windows, wird die Shebang-Zeile ignoriert.

Beachten Sie, dass der Python-Interpreter auf Ihrem System in einem anderen Ver-

zeichnis als dem hier angegebenen installiert sein könnte. Allgemein ist daher fol-

gende Shebang-Zeile besser, da sie vom tatsächlichen Installationsort von Python un-

abhängig ist:

#!/usr/bin/env python 

Weitere Details zum Zusammenspiel zwischen der Shebang-Zeile und den virtuellen 

Umgebungen von Anaconda finden Sie in Abschnitt 39.2. Beachten Sie außerdem, 

dass das Executable-Flag der Programmdatei gesetzt werden muss, bevor die Datei 

tatsächlich ausführbar ist. Das geschieht mit folgendem Befehl:

$ chmod +x dateiname 

Die in diesem Buch gezeigten Beispiele enthalten aus Gründen der Übersichtlichkeit 

keine Shebang-Zeile. Das bedeutet aber ausdrücklich nicht, dass vom Einsatz einer 

Shebang-Zeile abzuraten wäre.

4.1.4    Interne Abläufe

Bislang haben Sie eine ungefähre Vorstellung davon, was Python ausmacht und wo 

die Stärken dieser Programmiersprache liegen. Außerdem haben wir Ihnen das 

Grundwissen zum Erstellen und Ausführen einer Python-Programmdatei vermit-
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4 Der Weg zum ersten Programm
telt. Doch in den vorangegangenen Abschnitten sind Begriffe wie »Compiler« oder 

»Interpreter« gefallen, ohne erklärt worden zu sein. In diesem Abschnitt möchten 

wir uns daher den internen Vorgängen widmen, die beim Ausführen einer Python-

Programmdatei ablaufen. Abbildung 4.2 veranschaulicht, was beim Ausführen einer 

Programmdatei namens programm.py geschieht.

Abbildung 4.2  Kompilieren und Interpretieren einer Programmdatei

Wenn die Programmdatei programm.py, wie zu Beginn des Kapitels beschrieben, aus-

geführt wird, passiert sie zunächst den Compiler. Als Compiler wird ein Programm be-

zeichnet, das von einer formalen Sprache in eine andere übersetzt. Im Fall von Python 

übersetzt der Compiler von der Sprache Python in den Byte-Code. Dabei steht es dem 

Compiler frei, den generierten Byte-Code im Arbeitsspeicher zu behalten oder als pro-

gramm.pyc auf der Festplatte zu speichern.

Beachten Sie, dass der vom Compiler generierte Byte-Code nicht direkt auf dem Pro-

zessor ausgeführt werden kann, im Gegensatz etwa zu C- oder C++-Kompilaten. Zur 

Ausführung des Byte-Codes wird eine weitere Abstraktionsschicht, der Interpreter, 

benötigt. Der Interpreter, häufig auch virtuelle Maschine (engl. virtual machine) ge-

nannt, liest den vom Compiler erzeugten Byte-Code ein und führt ihn aus.

Dieses Prinzip einer interpretierten Programmiersprache hat verschiedene Vorteile. 

So kann derselbe Python-Code beispielsweise unmodifiziert auf allen Plattformen 

Compiler

Programmdatei
programm.py

Byte-Code
programm.pyc

Interpreter
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4.2 Grundstruktur eines Python-Programms
ausgeführt werden, für die ein Python-Interpreter existiert. Allerdings laufen Pro-

gramme interpretierter Programmiersprachen aufgrund des zwischengeschalteten 

Interpreters in der Regel auch langsamer als ein vergleichbares C-Programm, das 

direkt auf dem Prozessor ausgeführt wird.3

4.2    Grundstruktur eines Python-Programms

Um Ihnen ein Gefühl für die Sprache Python zu vermitteln, möchten wir Ihnen zu-

nächst einen Überblick über ihre Syntax geben. Das Wort Syntax kommt aus dem 

Griechischen und bedeutet »Satzbau«. Unter der Syntax einer Programmiersprache 

ist die vollständige Beschreibung erlaubter und verbotener Konstruktionen zu ver-

stehen. Die Syntax wird durch eine Grammatik festgelegt, an die Sie sich zu halten ha-

ben. Tun Sie es nicht, so verursachen Sie den allseits bekannten Syntax-Error.

Python macht Ihnen sehr genaue Vorgaben dazu, wie Sie Ihren Quellcode strukturie-

ren müssen. Obwohl erfahrene Programmierer und Programmiererinnen darin eine 

Einschränkung sehen mögen, kommt diese Eigenschaft gerade Neulingen zugute, 

denn unstrukturierter und unübersichtlicher Code ist eine der größten Fehlerquellen 

in der Programmierung.

Grundsätzlich besteht ein Python-Programm aus einzelnen Anweisungen, die im ein-

fachsten Fall genau eine Zeile im Quelltext einnehmen. Folgende Anweisung gibt bei-

spielsweise einen Text auf dem Bildschirm aus:

print("Hallo Welt") 

Einige Anweisungen lassen sich in einen Anweisungskopf und einen Anweisungskör-

per unterteilen, wobei der Körper weitere Anweisungen enthalten kann:

Anweisungskopf: 
    Anweisung 
    … 
    Anweisung 

Das kann in einem konkreten Python-Programm etwa so aussehen:

if x > 10:  
    print("x ist größer als 10") 
    print("Zweite Zeile!") 

3 Diese Aussage stimmt nicht notwendigerweise, wenn der Interpreter Optimierungen zur Lauf-

zeit des Programms durchführt, beispielsweise eine Just-in-Time-Kompilierung.  Aktuelle Versio-

nen von CPython und der alternative Interpreter PyPy (siehe Abschnitt 40.1) führen solche 

Optimierungen durch, um die Programmausführung zu beschleunigen.
69



4 Der Weg zum ersten Programm
Die Zugehörigkeit des Körpers zum Kopf wird in Python durch einen Doppelpunkt 

am Ende des Anweisungskopfs und durch eine tiefere Einrückung des Anweisungs-

körpers festgelegt. Die Einrückung kann sowohl über Tabulatoren als auch über Leer-

zeichen erfolgen, wobei Sie gut beraten sind, beides nicht zu vermischen. Wir emp-

fehlen eine Einrückungstiefe von jeweils vier Leerzeichen.

Python unterscheidet sich hier von vielen gängigen Programmiersprachen, in denen 

die Zuordnung von Anweisungskopf und Anweisungskörper durch geschweifte 

Klammern oder Schlüsselwörter wie »Begin« und »End« erreicht wird.

 

Hinweis

Ein Programm, in dem sowohl Leerzeichen als auch Tabulatoren verwendet wurden, 

kann vom Python-Compiler anstandslos übersetzt werden, da jeder Tabulator intern 

durch acht Leerzeichen ersetzt wird. Dies kann aber zu schwer auffindbaren Fehlern 

führen, denn viele Editoren verwenden standardmäßig eine Tabulatorweite von vier 

Leerzeichen. Dadurch scheinen bestimmte Quellcodeabschnitte gleich weit einge-

rückt zu sein, obwohl sie es de facto nicht sind.

Bitte stellen Sie Ihren Editor so ein, dass jeder Tabulator automatisch durch Leerzei-

chen ersetzt wird, oder verwenden Sie ausschließlich Leerzeichen zur Einrückung Ih-

res Codes.

Möglicherweise fragen Sie sich jetzt, wie Anweisungen, die über mehrere Zeilen ge-

hen, mit dem interaktiven Modus vereinbar sind, in dem ja immer nur eine Zeile be-

arbeitet werden kann. Nun, generell werden wir versuchen, den interaktiven Modus 

zu vermeiden, wenn ein Codebeispiel mehrere Zeilen lang ist. Dennoch ist die Frage 

berechtigt. Die Antwort: Es wird ganz intuitiv zeilenweise eingegeben. Wenn der In-

terpreter erkennt, dass eine Anweisung noch nicht vollendet ist, ändert er den 

Prompt von >>> in .... Geben wir einmal unser oben dargestelltes Beispiel in den in-

teraktiven Modus ein:

>>> x = 123 
>>> if x > 10: 
...     print("Der Interpreter leistet gute Arbeit") 
...     print("Zweite Zeile!") 
... 
Der Interpreter leistet gute Arbeit 
Zweite Zeile! 
>>> 

Beachten Sie, dass Sie die aktuelle Einrückungstiefe berücksichtigen müssen, auch 

wenn eine Zeile mit ... beginnt. Darüber hinaus kann der Interpreter das Ende des 

Anweisungskörpers nicht automatisch erkennen, da dieser beliebig viele Anweisun-
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4.2 Grundstruktur eines Python-Programms
gen enthalten kann. Deswegen muss ein Anweisungskörper im interaktiven Modus 

durch Drücken der (¢)-Taste beendet werden.

4.2.1    Umbrechen langer Zeilen

Prinzipiell können Quellcodezeilen beliebig lang werden. Viele Programmierer be-

schränken die Länge ihrer Quellcodezeilen jedoch, damit beispielsweise mehrere 

Quellcodedateien nebeneinander auf den Bildschirm passen oder der Code auch auf 

Geräten mit einer festen Zeilenbreite angenehm zu lesen ist. Geläufige maximale Zei-

lenlängen sind 80 oder 120 Zeichen. Innerhalb von Klammern dürfen Sie Quellcode 

beliebig umbrechen:

>>> var = ( 
... 10 
... + 
... 10 
... ) 
>>> var 
20 

An vielen anderen Stellen, an denen keine Klammern gesetzt werden dürfen, sind Sie 

an die strengen syntaktischen Regeln von Python gebunden. Durch den Einsatz der 

Backslash-Notation ist es möglich, Quellcode an nahezu beliebigen Stellen in eine 

neue Zeile zu umbrechen:

>>> var \ 
... = \ 
... 10 
>>> var 
10 

Grundsätzlich kann ein Backslash überall da stehen, wo auch ein Leerzeichen hätte 

stehen können. Daher ist ein Backslash innerhalb eines Strings ebenfalls möglich:

>>> "Hallo \ 
... Welt" 
'Hallo Welt' 

Beachten Sie dabei aber, dass eine Einrückung des umbrochenen Teils des Strings 

Leerzeichen in den String schreibt. Aus diesem Grund sollten Sie die folgende Vari-

ante, einen String in mehrere Zeilen zu schreiben, vorziehen:

>>> "Hallo " \ 
... "Welt" 
'Hallo Welt' 
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4 Der Weg zum ersten Programm
4.2.2    Zusammenfügen mehrerer Zeilen

Genauso, wie Sie eine einzeilige Anweisung mithilfe des Backslashs auf mehrere Zei-

len umbrechen, können Sie mehrere einzeilige Anweisungen in einer Zeile zusam-

menfassen. Dazu werden die Anweisungen durch ein Semikolon voneinander ge-

trennt:

>>> print("Hallo"); print("Welt") 
Hallo 
Welt 

Anweisungen, die aus einem Anweisungskopf und einem Anweisungskörper beste-

hen, können auch ohne Einsatz eines Semikolons in eine Zeile gefasst werden, sofern 

der Anweisungskörper selbst aus nicht mehr als einer Zeile besteht:

>>> x = True 
>>> if x: print("Hallo Welt") 
... 
Hallo Welt 

Sollte der Anweisungskörper mehrere Zeilen lang sein, können diese durch ein Semi-

kolon zusammengefasst werden:

>>> x = True 
>>> if x: print("Hallo"); print("Welt") 
... 
Hallo 
Welt 

Alle durch ein Semikolon zusammengefügten Anweisungen werden so behandelt, als 

wären sie gleich weit eingerückt. Allein ein Doppelpunkt vergrößert die Einrückungs-

tiefe. Aus diesem Grund gibt es im oben genannten Beispiel keine Möglichkeit, in der-

selben Zeile eine Anweisung zu schreiben, die nicht mehr im Körper der if-Anwei-

sung steht.

 

Hinweis

Beim Einsatz des Backslashs und vor allem des Semikolons entsteht schnell unleser-

licher Code. Verwenden Sie beide Notationen daher nur, wenn Sie meinen, dass es der 

Lesbarkeit und Übersichtlichkeit dienlich ist.
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4.3    Das erste Programm

Als Einstieg in die Programmierung mit Python erstellen wir ein kleines Beispielpro-

gramm, das Spiel »Zahlenraten«. Die Spielidee ist folgende: Der Spieler soll eine im 

Programm festgelegte Zahl erraten. Dazu stehen ihm beliebig viele Versuche zur Ver-

fügung. Nach jedem Versuch informiert ihn das Programm darüber, ob die geratene 

Zahl zu groß, zu klein oder genau richtig gewesen ist. Sobald der Spieler die Zahl erra-

ten hat, gibt das Programm die Anzahl der Versuche aus und wird beendet. Aus Sicht 

des Spielers soll das Ganze folgendermaßen aussehen:

Raten Sie: 42 
Zu klein 
Raten Sie: 10000 
Zu groß 
Raten Sie: 999 
Zu klein 
Raten Sie: 1337 
Super, Sie haben es in 4 Versuchen geschafft! 

Kommen wir vom Ablaufprotokoll zur konkreten Implementierung in Python.

Abbildung 4.3  Zahlenraten, ein einfaches Beispiel

Die in Abbildung 4.3 hervorgehobenen Bereiche des Programms werden im Folgen-

den noch einmal ausführlich diskutiert.

geheimnis = 1337
versuch = −1
zaehler = 0

while versuch != geheimnis:

versuch = int(input("Raten Sie: "))

if versuch < geheimnis:
print("Zu klein")

if versuch > geheimnis:
print("Zu groß")

zaehler = zaehler + 1

print("Super, Sie haben es in ", zaehler, "Versuchen geschafft!")

Initialisierung:
Hier werden Variablen 
angelegt und mit Werten 
versehen.

Schleifenkopf:
In einer Schleife werden 
so lange Zahlen vom Benutzer 
gefordert, wie die geheime 
Zahl noch nicht erraten ist.

Schleifenkörper:
Der zur Schleife gehörige 
Block wird durch seine 
Einrückung bestimmt.

Bildschirmausgabe:
Mit der Funktion print
können Zeichenketten 
ausgegeben werden.
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4.3.1    Initialisierung

Bei der Initialisierung werden die für das Spiel benötigten Variablen angelegt. Python 

unterscheidet zwischen verschiedenen Datentypen, wie etwa Zeichenketten, Ganz- 

oder Fließkommazahlen. Der Typ einer Variablen wird zur Laufzeit des Programms 

anhand des ihr zugewiesenen Werts bestimmt. Es ist also nicht nötig, einen Datentyp 

explizit anzugeben. Eine Variable kann im Laufe des Programms ihren Typ ändern.

In unserem Spiel werden Variablen für die gesuchte Zahl (geheimnis), die Benutzerein-

gabe (versuch) und den Versuchszähler (zaehler) angelegt und mit Anfangswerten 

versehen. Dadurch, dass versuch und geheimnis zu Beginn des Programms verschie-

dene Werte haben, ist sichergestellt, dass die Schleife anläuft.

4.3.2    Schleifenkopf

Eine while-Schleife wird eingeleitet. Eine while-Schleife läuft so lange, wie die im 

Schleifenkopf genannte Bedingung (versuch != geheimnis) erfüllt ist, also in diesem 

Fall, bis die Variablen versuch und geheimnis den gleichen Wert haben. Aus Benutzer-

sicht bedeutet dies: Die Schleife läuft so lange, bis die Benutzereingabe mit der zu er-

ratenden Zahl übereinstimmt.

Den zum Schleifenkopf gehörigen Schleifenkörper erkennt man daran, dass die nach-

folgenden Zeilen um eine Stufe weiter eingerückt wurden. Sobald die Einrückung wie-

der um einen Schritt nach links geht, endet der Schleifenkörper.

4.3.3    Schleifenkörper

In der ersten Zeile des Schleifenkörpers wird eine vom Spieler eingegebene Zahl ein-

gelesen und in der Variablen versuch gespeichert. Dabei wird mithilfe von input 

("Raten Sie: ") die Eingabe eines Benutzers oder einer Benutzerin eingelesen und 

mit int in eine ganze Zahl konvertiert (von engl. integer, »ganze Zahl«). Diese Kon-

vertierung ist wichtig, da Benutzereingaben generell als String eingelesen werden. 

In unserem Fall möchten wir die Eingabe jedoch als Zahl weiterverwenden. Der 

String "Raten Sie: " wird vor der Eingabe ausgegeben und dient dazu, zur Eingabe 

der Zahl aufzufordern.

Nach dem Einlesen wird einzeln geprüft, ob die eingegebene Zahl versuch größer oder 

kleiner als die gesuchte Zahl geheimnis ist, und mittels print wird eine entsprechende 

Meldung ausgegeben. Schließlich wird der Versuchszähler zaehler um eins erhöht.

Nach dem Hochzählen des Versuchszählers endet der Schleifenkörper, da die nächste 

Zeile nicht mehr unter dem Schleifenkopf eingerückt ist.
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4.3.4    Bildschirmausgabe

Die letzte Programmzeile gehört nicht mehr zum Schleifenkörper. Das bedeutet, dass 

sie erst ausgeführt wird, wenn die Schleife vollständig durchlaufen, das Spiel also ge-

wonnen ist. In diesem Fall werden eine Erfolgsmeldung sowie die Anzahl der benötig-

ten Versuche ausgegeben. Das Spiel ist beendet.

Erstellen Sie jetzt Ihr erstes Python-Programm, indem Sie den Programmcode in eine 

Datei namens spiel.py schreiben und ausführen. Ändern Sie den Startwert von ge-
heimnis und spielen Sie das Spiel.

4.4    Kommentare

Sie können sich sicherlich vorstellen, dass es nicht das Ziel ist, Programme zu schrei-

ben, die auf eine Postkarte passen würden. Mit der Zeit wird der Quelltext Ihrer Pro-

gramme umfangreicher und komplexer werden. Irgendwann ist der Zeitpunkt er-

reicht, da bloßes Gedächtnistraining nicht mehr ausreicht, um die Übersicht zu 

bewahren. Spätestens dann kommen Kommentare ins Spiel.

Ein Kommentar ist ein kleiner Text, der eine bestimmte Stelle des Quellcodes erläu-

tert und auf Probleme, offene Aufgaben oder Ähnliches hinweist. Ein Kommentar 

wird vom Interpreter einfach ignoriert, ändert also am Ablauf des Programms nichts.

Die einfachste Möglichkeit, einen Kommentar zu verfassen, ist der Zeilenkommentar. 

Diese Art des Kommentars wird mit dem #-Zeichen begonnen und endet mit dem 

Ende der Zeile:

# Ein Beispiel mit Kommentaren 
print("Hallo Welt!") # Simple Hallo-Welt-Ausgabe 

Für längere Kommentare bietet sich ein Blockkommentar an. Ein Blockkommentar 

beginnt und endet mit drei aufeinanderfolgenden Anführungszeichen:4

""" Dies ist ein Blockkommentar,  
er kann sich über mehrere Zeilen erstrecken. """ 

Kommentare sollten nur gesetzt werden, wenn sie zum Verständnis des Quelltextes 

beitragen oder wertvolle Informationen enthalten. Jede noch so unwichtige Zeile zu 

kommentieren, führt dazu, dass man den Wald vor lauter Bäumen nicht mehr sieht.

4 Eigentlich wird mit dieser Notation kein Blockkommentar erzeugt, sondern ein mehrzeiliger 

String, der sich aber auch dazu eignet, größere Quellcodebereiche »auszukommentieren«.
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4.5    Der Fehlerfall

Vielleicht haben Sie bereits mit dem Beispielprogramm aus Abschnitt 4.3 gespielt und 

sind dabei auf eine solche oder ähnliche Ausgabe des Interpreters gestoßen:

  File "hallo_welt.py", line 7 
    if versuch != geheimnis 
                          ^ 
SyntaxError: expected ':' 

Es handelt sich dabei um eine Fehlermeldung, die in diesem Fall auf einen Syntaxfeh-

ler im Programm hinweist. Können Sie erkennen, welcher Fehler hier vorliegt? Rich-

tig, es fehlt der Doppelpunkt am Ende der Zeile.

Python stellt bei der Ausgabe einer Fehlermeldung wichtige Informationen bereit, die 

bei der Fehlersuche hilfreich sind:

▸ Die erste Zeile der Fehlermeldung gibt Aufschluss darüber, in welcher Zeile inner-

halb welcher Datei der Fehler aufgetreten ist. In diesem Fall handelt es sich um 

Zeile 7 in der Datei hallo_welt.py.

▸ Der mittlere Teil zeigt den betroffenen Ausschnitt des Quellcodes, wobei die ge-

naue Stelle, auf die sich die Meldung bezieht, mit einem kleinen Pfeil markiert ist. 

Wichtig ist, dass dies die Stelle ist, an der der Interpreter den Fehler erstmalig fest-

stellen konnte. Das ist nicht unbedingt gleichbedeutend mit der Stelle, an der der 

Fehler gemacht wurde.

▸ Die letzte Zeile spezifiziert den Typ der Fehlermeldung, in diesem Fall einen Syntax-
Error. Dies sind die am häufigsten auftretenden Fehlermeldungen. Sie zeigen an, 

dass der Compiler das Programm aufgrund eines formalen Fehlers nicht weiter 

übersetzen konnte.

Neben dem Syntaxfehler gibt es eine Reihe weiterer Fehlertypen, die an dieser Stelle 

nicht alle im Detail besprochen werden sollen.5 Wir möchten jedoch noch auf den 

IndentationError (dt. »Einrückungsfehler«) hinweisen, da er gerade bei Python-An-

fängern und -Anfängerinnen häufig auftritt. Versuchen Sie dazu einmal, folgendes 

Programm auszuführen:

i = 10 
if i == 10:  
print("Falsch eingerückt") 

Sie sehen, dass die letzte Zeile eigentlich einen Schritt weiter eingerückt sein müsste. 

So, wie das Programm jetzt geschrieben wurde, hat die if-Anweisung keinen Anwei-

sungskörper. Das ist nicht zulässig, und daher tritt ein IndentationError auf:

5 Sie finden eine Übersicht über alle Fehlertypen in Abschnitt A.4, »Eingebaute Exceptions«.
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4.5 Der Fehlerfall
  File "indent.py", line 3 
    print("Falsch eingerückt") 
    ^^^^^ 
IndentationError: expected an indented block after 'if' statement on line 2 

Nachdem wir uns mit diesen Grundlagen vertraut gemacht haben, kommen wir zu 

den Kontrollstrukturen, die es Ihnen erlauben, den Programmfluss zu steuern.
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Kapitel 11

Numerische Datentypen

In diesem Kapitel besprechen wir mit den numerischen Datentypen die erste große 

Gruppe von Datentypen in Python. Tabelle 11.1 listet alle zu dieser Gruppe gehörigen 

Datentypen auf und nennt ihren Zweck.

Die numerischen Datentypen bilden eine Gruppe, weil sie thematisch zusammenge-

hören. Diese Zusammengehörigkeit schlägt sich auch darin nieder, dass die numeri-

schen Datentypen viele gemeinsame Operatoren haben. In den folgenden Abschnit-

ten werden wir diese gemeinsamen Operatoren behandeln und im Anschluss daran 

die numerischen Datentypen int, float, bool und complex detailliert besprechen.

11.1    Arithmetische Operatoren

Unter einem arithmetischen Operator wird ein Operator verstanden, der eine arith-

metische Berechnung vornimmt, beispielsweise eine Addition oder eine Multiplika-

tion. Für alle numerischen Datentypen sind die in Tabelle 11.2 aufgeführten arithme-

tischen Operatoren definiert.

Datentyp Beschreibung Veränderlichkeit* Abschnitt

int ganze Zahlen unveränderlich Abschnitt 11.4

float Gleitkommazahlen unveränderlich Abschnitt 11.5

bool boolesche Werte unveränderlich Abschnitt 11.6

complex komplexe Zahlen unveränderlich Abschnitt 11.7

* Alle numerischen Datentypen sind unveränderlich. Das bedeutet nicht, dass es keine 

Operatoren gibt, die Zahlen verändern, sondern vielmehr, dass nach jeder Verände-

rung eine neue Instanz des jeweiligen Datentyps erzeugt werden muss. Aus Program-

miersicht besteht also zunächst kaum ein Unterschied. Näheres zum Unterschied zwi-

schen veränderlichen und unveränderlichen Datentypen erfahren Sie in Abschnitt 7.3.

Tabelle 11.1  Numerische Datentypen 
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Hinweis

Zwei Anmerkungen für Leser und Leserinnen, die bereits mit einer C-ähnlichen Pro-

grammiersprache vertraut sind:

Es gibt in Python keine Entsprechungen für die Inkrementierungs- und Dekrementie-

rungsoperatoren ++ und -- aus C.

Die Operatoren % und // können folgendermaßen beschrieben werden:

▸ x // y = runden(x / y)
▸ x % y = x - y * runden(x / y)

Python rundet dabei stets ab, während C zur Null hin rundet. Dieser Unterschied tritt 

nur auf, wenn die Operanden gegensätzliche Vorzeichen haben.

11.1.1    Erweiterte Zuweisungen

Neben diesen grundlegenden Operatoren gibt es in Python eine Reihe zusätzlicher 

Operatoren. Oftmals möchte man beispielsweise die Summe von x und y berechnen 

und das Ergebnis in x speichern, x also um y erhöhen. Dazu ist mit den oben genann-

ten Operatoren folgende Anweisung nötig:

x = x + y 

Operator Ergebnis

x + y Summe von x und y

x - y Differenz von x und y

x * y Produkt von x und y

x / y Quotient von x und y

x % y Rest beim Teilen von x durch y*

+x positives Vorzeichen

-x negatives Vorzeichen

x ** y x hoch y

x // y abgerundeter Quotient von x und y*

* Die Operatoren % und // haben für komplexe Zahlen keine mathematische Bedeu-

tung und sind deshalb für den Datentyp complex nicht definiert.

Tabelle 11.2  Gemeinsame Operatoren numerischer Datentypen 
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11.2 Vergleichende Operatoren
Für solche Fälle gibt es in Python sogenannte erweiterte Zuweisungen (engl. augmen-

ted assignments), die als eine Art Abkürzung für die oben genannte Anweisung ange-

sehen werden können. Tabelle 11.3 listet die in Python definierten erweiterten Zuwei-

sungen auf.

Wichtig ist, dass Sie hier für y einen beliebigen arithmetischen Ausdruck einsetzen 

können, während x ein Ausdruck sein muss, der auch als Ziel einer normalen Zuwei-

sung eingesetzt werden könnte, also zum Beispiel ein symbolischer Name oder ein 

Element einer Liste oder eines Dictionarys.

11.2    Vergleichende Operatoren

Ein vergleichender Operator ist ein Operator, der aus zwei Instanzen einen Wahrheits-

wert berechnet. Tabelle 11.4 listet die vergleichenden Operatoren auf, die für numeri-

sche Datentypen definiert sind.

Operator Entsprechung

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x **= y x = x ** y

x //= y x = x // y

Tabelle 11.3  Gemeinsame Operatoren numerischer Datentypen 

Operator Ergebnis

x == y wahr, wenn x und y gleich sind

x != y wahr, wenn x und y verschieden sind

x < y wahr, wenn x kleiner ist als y*

x <= y wahr, wenn x kleiner oder gleich y ist*

Tabelle 11.4  Gemeinsame Operatoren numerischer Datentypen 
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Jeder dieser vergleichenden Operatoren liefert als Ergebnis einen Wahrheitswert. Ein 

solcher Wert wird zum Beispiel als Bedingung einer if-Anweisung erwartet. Die Ope-

ratoren könnten also folgendermaßen verwendet werden:

if x < 4:  
    print("x ist kleiner als 4") 

Sie können beliebig viele der vergleichenden Operatoren zu einer Reihe verketten. 

Das obere Beispiel ist genau genommen nur ein Spezialfall dieser Regel – mit lediglich 

zwei Operanden. Die Bedeutung einer solchen Verkettung entspricht der mathema-

tischen Sichtweise und ist anhand des folgenden Beispiels zu erkennen:

if 2 < x < 4:  
    print("x liegt zwischen 2 und 4") 

Mehr zu booleschen Werten folgt in Abschnitt 11.6.

11.3    Konvertierung zwischen numerischen Datentypen

Numerische Datentypen können über die eingebauten Funktionen int, float, bool
und complex ineinander umgeformt werden. Dabei können je nach Umformung In-

formationen verloren gehen. Als Beispiel betrachten wir einige Konvertierungen im 

interaktiven Modus:

>>> float(33)  
33.0 
>>> int(33.5)  
33 
>>> bool(12)  
True 
>>> complex(True)  
(1+0j) 

x > y wahr, wenn x größer ist als y*

x >= y wahr, wenn x größer oder gleich y ist*

* Da komplexe Zahlen prinzipiell nicht sinnvoll anzuordnen sind, lässt der Datentyp 

complex nur die Verwendung der ersten beiden Operatoren zu.

Operator Ergebnis

Tabelle 11.4  Gemeinsame Operatoren numerischer Datentypen (Forts.)
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11.4 Ganzzahlen – int
Anstelle eines konkreten Literals kann auch eine Referenz eingesetzt bzw. eine Refe-

renz mit dem entstehenden Wert verknüpft werden:

>>> var1 = 12.5 
>>> int(var1)  
12 
>>> var2 = int(40.25)  
>>> var2 
40 

 

Hinweis

Der Datentyp complex nimmt bei den oben vorgestellten Konvertierungen eine Son-

derstellung ein, da er sich nicht sinnvoll in einer pauschalen Weise auf einen einzelnen 

Zahlenwert reduzieren lässt. Aus diesem Grund schlägt eine Konvertierung wie bei-

spielsweise int(1+2j) fehl.

So viel zur allgemeinen Einführung in die numerischen Datentypen. Die folgenden 

Abschnitte werden jeden Datentyp dieser Gruppe im Detail behandeln.

11.4    Ganzzahlen – int

Für die Arbeit mit ganzen Zahlen gibt es in Python den Datentyp int. Im Gegensatz 

zu vielen anderen Programmiersprachen unterliegt dieser Datentyp in seinem Wer-

tebereich keinen prinzipiellen Grenzen, was den Umgang mit großen ganzen Zahlen 

in Python sehr komfortabel macht.1

Wir haben bereits viel mit ganzen Zahlen gearbeitet, sodass die Verwendung von int
eigentlich keiner Demonstration mehr bedarf. Der Vollständigkeit halber sehen Sie 

hier dennoch ein kleines Beispiel:

>>> i = 1234 
>>> i 
1234 
>>> p = int(5678) 
>>> p 
5678 

Seit Python 3.6 kann ein Unterstrich verwendet werden, um die Ziffern eines Literals 

zu gruppieren:

1 In Python 2 existierten noch zwei Datentypen für ganze Zahlen: int für den begrenzten Zahlen-

raum von 32 Bit bzw. 64 Bit sowie long mit einem unbegrenzten Wertebereich.
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>>> 1_000_000 
1000000 
>>> 1_0_0 
100 

Die Gruppierung ändert nichts am Zahlenwert des Literals, sondern dient dazu, die 

Lesbarkeit von Zahlenliteralen zu erhöhen. Ob und wie Sie die Ziffern gruppieren, 

bleibt Ihnen überlassen.

11.4.1    Zahlensysteme

Ganze Zahlen können in Python in mehreren Zahlensystemen geschrieben werden:

▸ Zahlen, die wie im oben dargestellten Beispiel ohne ein spezielles Präfix geschrie-

ben sind, werden im Dezimalsystem (Basis 10) interpretiert. Beachten Sie, dass 

einer solchen Zahl keine führenden Nullen vorangestellt werden dürfen:

v_dez = 1337 

▸ Das Präfix 0o (»Null-o«) kennzeichnet eine Zahl, die im Oktalsystem (Basis 8) ge-

schrieben wurde. Beachten Sie, dass hier nur Ziffern von 0 bis 7 erlaubt sind:

v_okt = 0o2471 

Das kleine »o« im Präfix kann auch durch ein großes »O« ersetzt werden. Wir emp-

fehlen Ihnen jedoch, stets ein kleines »o« zu verwenden, da das große »O« in vielen 

Schriftarten von der Null kaum zu unterscheiden ist.

▸ Die nächste und weitaus gebräuchlichere Variante ist das Hexadezimalsystem (Ba-

sis 16), das durch das Präfix 0x bzw. 0X (Null-x) gekennzeichnet ist. Die Zahl selbst 

darf aus den Ziffern 0–9 und den Buchstaben A–F bzw. a–f gebildet werden:

v_hex = 0x5A3F 

▸ Neben dem Hexadezimalsystem ist in der Informatik das Dualsystem, auch Binär-

system (Basis 2), von entscheidender Bedeutung. Zahlen im Dualsystem werden 

analog zu den vorangegangenen Literalen durch das Präfix 0b eingeleitet:

v_bin = 0b1101 

Im Dualsystem dürfen nur die Ziffern 0 und 1 verwendet werden.

Vielleicht möchten Sie sich nicht auf diese vier Zahlensysteme beschränken, die von 

Python explizit unterstützt werden, sondern ein exotischeres verwenden. Natürlich 

gibt es in Python nicht für jedes mögliche Zahlensystem ein eigenes Literal. Stattdes-

sen können Sie sich folgender Schreibweise bedienen:

v_6 = int("54425", 6) 
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11.4 Ganzzahlen – int
Es handelt sich um eine alternative Methode, eine Instanz des Datentyps int zu erzeu-

gen und mit einem Anfangswert zu versehen. Dazu werden in den Klammern ein 

String, der den gewünschten Initialwert in dem gewählten Zahlensystem enthält, so-

wie die Basis dieses Zahlensystems als ganze Zahl geschrieben. Beide Werte müssen 

durch ein Komma getrennt werden. Im Beispiel wurde das Sechsersystem verwendet.

Python unterstützt Zahlensysteme mit einer Basis von 2 bis 36. Wenn ein Zahlensys-

tem mehr als zehn verschiedene Ziffern zur Darstellung einer Zahl benötigt, werden 

zusätzlich zu den Ziffern 0 bis 9 die Buchstaben A bis Z des englischen Alphabets ver-

wendet.

Die Variable v_6 hat jetzt den Wert 7505 im Dezimalsystem.

Für alle Zahlensystemliterale ist die Verwendung eines negativen Vorzeichens mög-

lich:

>>> -1234 
-1234 
>>> -0o777 
-511 
>>> -0xFF 
-255 
>>> -0b1010101 
-85 

Beachten Sie, dass es sich bei den Zahlensystemen nur um eine alternative Schreib-

weise des gleichen Werts handelt. Der Datentyp int springt beispielsweise nicht in 

eine Art Hexadezimalmodus, sobald er einen solchen Wert enthält, stattdessen ist das 

Zahlensystem nur bei Zuweisungen oder Ausgaben von Bedeutung. Standardmäßig 

werden alle Zahlen im Dezimalsystem ausgegeben:

>>> v1 = 0xFF 
>>> v2 = 0o777 
>>> v1 
255 
>>> v2 
511 

Wir werden später in Abschnitt 12.5 im Zusammenhang mit Strings darauf zurück-

kommen, wie sich Zahlen in anderen Zahlensystemen ausgeben lassen.

11.4.2    Bit-Operationen

Wie bereits gesagt, hat das Dualsystem oder auch Binärsystem in der Informatik eine 

große Bedeutung. Für den Datentyp int sind daher einige zusätzliche Operatoren de-
149
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finiert, die sich explizit auf die binäre Darstellung der Zahl beziehen. Tabelle 11.5 fasst 

diese Bit-Operatoren zusammen.

Da vielleicht nicht jedem unmittelbar klar ist, was die einzelnen Operationen bewir-

ken, möchten wir sie im Folgenden im Detail besprechen.

Bitweises UND

Das bitweise UND zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binärdar-

stellung Bit für Bit miteinander verknüpft werden. Die resultierende Zahl hat in ihrer 

Binärdarstellung genau dort eine 1, wo beide der jeweiligen Bits der Operanden 1 sind, 

und sonst eine 0. Dies veranschaulicht Abbildung 11.1.

Abbildung 11.1  Bitweises UND

Im interaktiven Modus von Python probieren wir aus, ob das bitweise UND mit den 

in der Grafik gewählten Operanden tatsächlich das erwartete Ergebnis zurückgibt:

>>> 107 & 25 
9 
>>> 0b1101011 & 0b11001 

Operator Erweiterte Zuweisung Ergebnis

x & y x &= y bitweises UND von x und y (AND)

x | y x |= y bitweises nicht ausschließendes ODER von x 

und y (OR)

x ^ y x ^= y bitweises ausschließendes ODER von x und y 

(XOR)

~x bitweises Komplement von x

x << n x <<= n Bit-Verschiebung um n Stellen nach links

x >> n x >>= n Bit-Verschiebung um n Stellen nach rechts

Tabelle 11.5  Bit-Operatoren des Datentyps int 

1 1 0 1 0 1 11 1 0 1 0 1 1

0 0 1 1 0 0 10 0 1 1 0 0 1

0 0 0 1 0 0 10 0 0 1 0 0 1

&

107

25

9

Dual Dezimal
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9 
>>> bin(0b1101011 & 0b11001) 
'0b1001' 

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um 

das Ergebnis des bitweisen UND im Binärsystem darzustellen.

Bitweises ODER

Das bitweise ODER zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binärdar-

stellung Bit für Bit miteinander verglichen werden. Die resultierende Zahl hat in ihrer 

Binärdarstellung genau da eine 1, wo mindestens eines der jeweiligen Bits der Operan-

den 1 ist. Abbildung 11.2 veranschaulicht dies.

Abbildung 11.2  Bitweises nicht ausschließendes ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ODER mit den 

in der Grafik gewählten Operanden tatsächlich das erwartete Ergebnis zurückgibt:

>>> 107 | 25 
123 
>>> 0b1101011 | 0b11001 
123 
>>> bin(0b1101011 | 0b11001) 
'0b1111011' 

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um 

das Ergebnis des bitweisen ODER im Binärsystem darzustellen.

Bitweises ausschließendes ODER

Das bitweise ausschließende ODER (auch exklusives ODER) zweier Zahlen wird gebil-

det, indem beide Zahlen in ihrer Binärdarstellung Bit für Bit miteinander verglichen 

werden. Die resultierende Zahl hat in ihrer Binärdarstellung genau da eine 1, wo sich 

die jeweiligen Bits der Operanden voneinander unterscheiden, und eine 0, wo sie 

gleich sind. Dies zeigt Abbildung 11.3.

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 1 1 0 1 11 1 1 1 0 1 1

|

107

25

123

Dual Dezimal

0 0 1 1 0 0 10 0 1 1 0 0 1
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Abbildung 11.3  Bitweises exklusives ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ausschlie-

ßende ODER mit den in der Grafik gewählten Operanden tatsächlich das erwartete Er-

gebnis zurückgibt:

>>> 107 ^ 25 
114 
>>> 0b1101011 ^ 0b11001 
114 
>>> bin(0b1101011 ^ 0b11001) 
'0b1110010' 

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um 

das Ergebnis des bitweisen ausschließenden ODER im Binärsystem darzustellen.

Bitweises Komplement

Das bitweise Komplement bildet das sogenannte Einerkomplement einer Dualzahl, das 

der Negation aller vorkommenden Bits entspricht. In Python ist dies auf Bit-Ebene 

nicht möglich, da eine ganze Zahl in ihrer Länge unbegrenzt ist und das Komplement 

immer in einem abgeschlossenen Zahlenraum gebildet werden muss. Deswegen wird 

die eigentliche Bit-Operation zur arithmetischen Operation und ist folgendermaßen 

definiert:2

~x = –x – 1

Im interaktiven Modus lässt sich die Funktionsweise des bitweisen Komplements ex-

perimentell erproben:

>>> ~9 
-10 
>>> ~0b1001 

2 Das ist sinnvoll, da man zur Darstellung negativer Zahlen in abgeschlossenen Zahlenräumen das 

sogenannte Zweierkomplement verwendet. Dieses erhalten Sie, indem Sie zum Einerkomple-

ment 1 addieren.  

Also: –x = Zweierkomplement von x = ~x + 1. Daraus folgt: ~x = –x – 1

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 1 0 0 1 01 1 1 0 0 1 0

^

107

25

114

Dual Dezimal

0 0 1 1 0 0 10 0 1 1 0 0 1
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11.4 Ganzzahlen – int
-10 
>>> bin(~0b1001) 
'-0b1010' 

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um 

das Ergebnis des bitweisen Komplements im Binärsystem darzustellen.

Bit-Verschiebung

Bei der Bit-Verschiebung (engl. bit shift) wird die Bit-Folge in der binären Darstellung 

des ersten Operanden um die durch den zweiten Operanden gegebene Anzahl Stellen 

nach links bzw. rechts verschoben. Auf der rechten Seite entstehende Lücken werden 

mit Nullen gefüllt, und das Vorzeichen des ersten Operanden bleibt erhalten. Abbil-

dung 11.4 und Abbildung 11.5 veranschaulichen eine Verschiebung um zwei Stellen 

nach links bzw. nach rechts.

Abbildung 11.4  Bit-Verschiebung um zwei Stellen nach links

Abbildung 11.5  Bit-Verschiebung um zwei Stellen nach rechts

Die in der Bit-Darstellung entstehenden Lücken auf der rechten bzw. linken Seite wer-

den mit Nullen aufgefüllt.

Die Bit-Verschiebung ist in Python ähnlich wie der Komplementoperator arithme-

tisch implementiert. Ein Shift um x Stellen nach rechts entspricht einer ganzzahligen 

Division durch 2x. Ein Shift um x Stellen nach links entspricht einer Multiplikation 

mit 2x.

Auch für die bitweisen Verschiebungen können wir die in den Grafiken gezeigten Bei-

spiele im interaktiven Modus nachvollziehen:

>>> 107 << 2 
428 

0 1 0 1 1 0 00 1 0 1 1 0 0

107

428

Dual Dezimal

11

n = 2

1 1 0 1 0 1 11 1 0 1 0 1 1

1 1 0 1 0

107

26

Dual Dezimal

n = 2

1 1 0 1 0 1 11 1 0 1 0 1 1
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>>> 107 >> 2 
26 
>>> bin(0b1101011 << 2) 
'0b110101100' 
>>> bin(0b1101011 >> 2) 
'0b11010' 

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um 

die Ergebnisse der Bit-Verschiebungen im Binärsystem darzustellen.

11.4.3    Die Methode bit_length

Der Datentyp int verfügt über eine Methode, die sich auf die Binärdarstellung der 

ganzen Zahl bezieht. Die Methode bit_length berechnet die Anzahl Stellen, die für die 

Binärdarstellung der Zahl benötigt werden:

>>> (36).bit_length() 
6 
>>> (4345).bit_length() 
13 

Die Binärdarstellung der 36 ist 100100, und die der 4345 ist 1000011111001. Damit be-

nötigen die beiden Zahlen 6 bzw. 13 Stellen für ihre Binärdarstellung.

 

Hinweis

Beachten Sie, dass die Klammern um die Zahlenliterale bei ganzen Zahlen benötigt 

werden, da es sonst zu Doppeldeutigkeiten mit der Syntax für Gleitkommazahlen 

kommen könnte.

11.5    Gleitkommazahlen – float

Zu Beginn dieses Teils sind wir bereits oberflächlich auf Gleitkommazahlen eingegan-

gen, was wir in diesem Abschnitt ein wenig vertiefen möchten. Zum Speichern einer 

Gleitkommazahl mit begrenzter Genauigkeit3 wird der Datentyp float verwendet.

Wie bereits besprochen wurde, sieht das Literal für eine Gleitkommazahl im einfachs-

ten Fall folgendermaßen aus:

v = 3.141 

3 In Abschnitt 11.5.2 besprechen wir einige Details zur Genauigkeit des Datentyps.
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11.5 Gleitkommazahlen – float
Vor- und Nachkommaanteil können dabei weggelassen werden, wenn sie den Wert 0 

haben:

>>> -3.  
-3.0 
>>> .001 
0.001 

Achten Sie dabei darauf, dass der Punkt ein essenzielles Element eines Gleitkomma-

zahl-Literals ist und als solches nicht weggelassen werden darf.

Seit Python 3.6 kann zudem ein Unterstrich verwendet werden, um die Ziffern eines 

Gleitkommazahl-Literals zu gruppieren:

>>> 3.000_000_1 
3.0000001 

11.5.1    Exponentialschreibweise

Python unterstützt außerdem eine Notation, die es ermöglicht, die Exponential-

schreibweise zu verwenden:

v = 3.141e-12 

Durch ein kleines oder großes e wird die Mantisse (3.141) vom Exponenten (-12) ge-

trennt. Übertragen in die mathematische Schreibweise, entspricht dies dem Wert 

3,141 · 10–12. Beachten Sie, dass sowohl die Mantisse als auch der Exponent im Dezimal-

system angegeben werden müssen. Andere Zahlensysteme sind nicht vorgesehen, 

was die gefahrlose Verwendung führender Nullen ermöglicht:

v = 03.141e-0012 

11.5.2    Genauigkeit

Eventuell haben Sie gerade schon etwas mit den Gleitkommazahlen experimentiert 

und sind dabei auf einen vermeintlichen Fehler des Interpreters gestoßen:

>>> 1.1 + 2.2 
3.3000000000000003 

Reelle Zahlen können im Datentyp float nicht unendlich präzise gespeichert werden, 

stattdessen werden sie mit einer bestimmten Genauigkeit angenähert.

Wenn Sie technisch versiert sind und jetzt von anderen Programmiersprachen zu 

Python wechseln, wird es Sie interessieren, dass float-Instanzen in Python IEEE-754-

Gleitkommazahlen mit doppelter Genauigkeit sind. Der Datentyp float in Python ist 

damit mit dem Datentyp double in C, C++ und Java vergleichbar.
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Falls Sie explizit Gleitkommazahlen mit einfacher Genauigkeit verwenden möchten, 

können Sie auf den Datentyp float32 der Drittanbieterbibliothek NumPy (siehe Kapi-

tel 43, »Wissenschaftliches Rechnen und Data Science«) zurückgreifen.

11.5.3    Unendlich und Not a Number

Gleitkommazahlen können als float nicht beliebig genau gespeichert werden. Das 

impliziert auch, dass es sowohl eine Ober- als auch eine Untergrenze für diesen Da-

tentyp geben muss. Und tatsächlich können Gleitkommazahlen, die in ihrer Größe 

ein bestimmtes Limit überschreiten, in Python nicht mehr dargestellt werden. Wenn 

das Limit überschritten ist, wird die Zahl als inf gespeichert4 bzw. als –inf, wenn das 

untere Limit unterschritten wurde. Es kommt also zu keinem Fehler, und es ist immer 

noch möglich, eine übergroße Zahl mit anderen zu vergleichen:

>>> 3.0e999 
inf 
>>> -3.0e999 
-inf 
>>> 3.0e999 < 12.0 
False 
>>> 3.0e999 > 12.0 
True 
>>> 3.0e999 == 3.0e999999999999 
True 

Es ist zwar möglich, zwei unendlich große Gleitkommazahlen miteinander zu verglei-

chen, jedoch lässt sich nur bedingt mit ihnen rechnen. Dazu folgendes Beispiel:

>>> 3.0e999 + 1.5e999999 
inf 
>>> 3.0e999 - 1.5e999999 
nan 
>>> 3.0e999 * 1.5e999999 
inf 
>>> 3.0e999 / 1.5e999999 
nan 
>>> 5 / 1e9999 
0.0 

Zwei unendlich große Gleitkommazahlen lassen sich problemlos addieren oder mul-

tiplizieren. Das Ergebnis ist in beiden Fällen wieder inf. Ein Problem gibt es aber, 

wenn versucht wird, zwei solche Zahlen zu subtrahieren bzw. zu dividieren. Da diese 

4 inf steht für infinity (dt. »unendlich«).
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11.6 Boolesche Werte – bool
Rechenoperationen nicht sinnvoll sind, ergeben sie nan. Der Status nan ist vergleich-

bar mit inf, bedeutet jedoch not a number, also so viel wie »nicht berechenbar«.

Beachten Sie, dass weder inf noch nan eine Konstante ist, die Sie selbst in einem 

Python-Programm verwenden könnten. Stattdessen können Sie float-Instanzen mit 

den Werten inf und nan folgendermaßen erzeugen:

>>> float("inf") 
inf 
>>> float("nan") 
nan 
>>> float("inf") / float("inf") 
nan 

11.6    Boolesche Werte – bool

Eine Instanz des Datentyps bool5 kann nur zwei verschiedene Werte annehmen: 

»wahr« oder »falsch« bzw., um innerhalb der Python-Syntax zu bleiben, True oder 

False. Deshalb ist es auf den ersten Blick absurd, bool den numerischen Datentypen 

zuzuordnen. Wie in vielen Programmiersprachen üblich, wird in Python True analog 

zur 1 und False analog zur 0 gesehen, sodass sich mit booleschen Werten genauso 

rechnen lässt wie beispielsweise mit den ganzen Zahlen. Bei den Namen True und 

False handelt es sich um Konstanten, die im Quelltext verwendet werden können. Be-

achten Sie besonders, dass die Konstanten mit einem Großbuchstaben beginnen:

v1 = True 
v2 = False 

11.6.1    Logische Operatoren

Ein oder mehrere boolesche Werte lassen sich mithilfe bestimmter Operatoren zu 

einem booleschen Ausdruck kombinieren. Ein solcher Ausdruck resultiert, wenn er 

ausgewertet wurde, wieder in einem booleschen Wert, also in True oder False. Bevor 

es zu theoretisch wird, folgt hier zunächst die Tabelle der sogenannten logischen Ope-

ratoren6, und darunter sehen Sie weitere Erklärungen mit konkreten Beispielen.

5 Der Name bool geht zurück auf den britischen Mathematiker und Logiker George Boole  

(1815–1864).

6 Beachten Sie, dass es einen Unterschied gibt zwischen den logischen Operatoren, die im Zusam-

menhang mit booleschen Werten stehen, und den binären Operatoren, die sich auf die Binärdar-

stellung einer Zahl beziehen.
157
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Logische Negierung

Die logische Negierung eines booleschen Werts ist schnell erklärt: Der entsprechende 

Operator not macht True zu False und False zu True. In einem konkreten Beispiel 

würde das folgendermaßen aussehen:

if not x:  
    print("x ist False") 
else:  
    print("x ist True") 

Logisches UND

Das logische UND zwischen zwei Wahrheitswerten ergibt nur dann True, wenn beide 

Operanden bereits True sind. In Tabelle 11.7 sind alle möglichen Fälle aufgelistet.

In einem konkreten Beispiel würde die Anwendung des logischen UND so aussehen:

if x and y:  
    print("x und y sind True") 

Logisches ODER

Das logische ODER zwischen zwei Wahrheitswerten ergibt genau dann eine wahre 

Aussage, wenn mindestens einer der beiden Operanden wahr ist. Es handelt sich dem-

nach um ein nicht ausschließendes ODER. Ein Operator für ein logisches ausschlie-

Operator Ergebnis

not x logische Negierung von x

x and y logisches UND zwischen x und y

x or y logisches (nicht ausschließendes) ODER zwischen x und y

Tabelle 11.6  Logische Operatoren des Datentyps bool 

x y x and y

True True True

False True False

True False False

False False False

Tabelle 11.7  Mögliche Fälle des logischen UND 
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ßendes (exklusives) ODER existiert in Python nicht.7 Tabelle 11.8 listet alle möglichen 

Fälle auf.

Ein logisches ODER könnte folgendermaßen implementiert werden:

if x or y:  
    print("x oder y ist True") 

Selbstverständlich können Sie all diese Operatoren miteinander kombinieren und in 

einem komplexen Ausdruck verwenden. Das könnte etwa folgendermaßen aussehen:

if x and y or ((y and z) and not x):  
    print("Holla die Waldfee") 

Wir möchten diesen Ausdruck hier nicht im Einzelnen besprechen. Es sei nur gesagt, 

dass der Einsatz von Klammern den erwarteten Effekt hat, nämlich dass umklam-

merte Ausdrücke zuerst ausgewertet werden. Tabelle 11.9 zeigt den Wahrheitswert des 

Ausdrucks auf, und zwar in Abhängigkeit von den drei Parametern x, y und z.

7 Ein logisches exklusives ODER zwischen x und y lässt sich über (x or y) and not (x and y) nach-

bilden.

x y x or y

True True True

False True True

True False True

False False False

Tabelle 11.8  Mögliche Fälle des logischen ODER 

x y z x and y or ((y and z) and not x)

True True True True

False True True True

True False True False

True True False True

False False True False

False True False False

Tabelle 11.9  Mögliche Ergebnisse des Ausdrucks 
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Die Kombination von logischen und vergleichenden Operatoren

Zu Beginn des Abschnitts über numerische Datentypen haben wir einige verglei-

chende Operatoren eingeführt, die eine Wahrheitsaussage in Form eines booleschen 

Werts ergeben. Das folgende Beispiel zeigt, dass sie ganz selbstverständlich zusam-

men mit den logischen Operatoren verwendet werden können:

if x > y or (y > z and x != 0):  
    print("Mein lieber Schwan") 

In diesem Fall muss es sich bei x, y und z um Instanzen vergleichbarer Typen handeln, 

wie zum Beispiel int, float oder bool.

11.6.2    Wahrheitswerte nicht boolescher Datentypen

Mithilfe der Built-in Function bool lassen sich Instanzen eines jeden Basisdatentyps 

in einen booleschen Wert überführen.

>>> bool([1,2,3]) 
True 
>>> bool("") 
False 
>>> bool(-7) 
True 

Dies ist eine sinnvolle Eigenschaft, da sich eine Instanz der Basisdatentypen häufig in 

zwei Stadien befinden kann: »leer« und »nicht leer«. Oftmals möchte man beispiels-

weise testen, ob ein String Buchstaben enthält oder nicht. Da ein String in einen 

booleschen Wert konvertiert werden kann, wird ein solcher Test sehr einfach durch 

logische Operatoren möglich:

>>> not "" 
True 
>>> not "abc" 
False 

Durch Verwendung eines logischen Operators wird der Operand automatisch als 

Wahrheitswert interpretiert.

True False False False

False False False False

x y z x and y or ((y and z) and not x)

Tabelle 11.9  Mögliche Ergebnisse des Ausdrucks (Forts.)
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Für jeden Basisdatentyp ist ein bestimmter Wert als False definiert. Alle davon abwei-

chenden Werte sind True. Tabelle 11.10 listet für jeden Datentyp den entsprechenden 

False-Wert auf. Einige Datentypen wurden noch nicht eingeführt, an dieser Stelle soll-

ten Sie sich daran nicht weiter stören.

Alle anderen Werte ergeben True.

11.6.3    Auswertung logischer Operatoren

Python wertet logische Ausdrücke grundsätzlich von links nach rechts aus, also im 

folgenden Beispiel zuerst a und dann b:

if a or b:  
    print("a oder b sind True") 

Basisdatentyp False-Wert Beschreibung

NoneType None der Wert None

Numerische Datentypen

int 0 der numerische Wert null

float 0.0 der numerische Wert null

bool False der boolesche Wert False

complex 0 + 0j der numerische Wert null

Sequenzielle Datentypen

str "" ein leerer String

list [] eine leere Liste

tuple () ein leeres Tupel

Assoziative Datentypen

dict {} ein leeres Dictionary

Mengen

set set() eine leere Menge

frozenset frozenset() eine leere Menge

Tabelle 11.10  Wahrheitswerte der Basisdatentypen 
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Es wird aber nicht garantiert, dass jeder Teil des Ausdrucks tatsächlich ausgewertet 

wird. Aus Optimierungsgründen bricht Python die Auswertung des Ausdrucks sofort 

ab, wenn das Ergebnis feststeht. Hat im Beispiel oben also a bereits den Wert True, ist 

der Wert von b nicht weiter von Belang; b würde dann nicht mehr ausgewertet. Das 

folgende Beispiel demonstriert dieses Verhalten, das Lazy Evaluation (dt. »faule Aus-

wertung«) genannt wird.

>>> a = True 
>>> if a or print("Lazy "): 
...    print("Evaluation") 
... 
Evaluation 

Obwohl in der Bedingung der if-Anweisung die print-Funktion aufgerufen wird, wird 

diese Bildschirmausgabe nie durchgeführt, da der Wert der Bedingung bereits nach 

der Auswertung von a feststeht. Dieses Detail scheint unwichtig, kann aber insbeson-

dere im Zusammenhang mit seiteneffektbehafteten8 Funktionen zu schwer auffind-

baren Fehlern führen.

In Abschnitt 11.6.1 wurde gesagt, dass ein boolescher Ausdruck stets einen booleschen 

Wert ergibt, wenn er ausgewertet wurde. Das ist nicht ganz korrekt, denn auch hier 

wurde die Arbeitsweise des Interpreters in einer Weise optimiert, über die man Be-

scheid wissen sollte. Deutlich wird dies an folgendem Beispiel aus dem interaktiven 

Modus:

>>> 0 or 1 
1 

Nach dem, was wir bisher besprochen haben, sollte das Ergebnis des Ausdrucks True
sein, was nicht der Fall ist. Stattdessen gibt Python hier den ersten Operanden mit 

dem Wahrheitswert True zurück. In vielen Fällen macht das keinen Unterschied, denn 

der zurückgegebene Wert wird problemlos automatisch in den Wahrheitswert True
überführt.

Die Auswertung der beiden Operatoren or und and läuft dabei folgendermaßen ab:

Das logische ODER (or) nimmt den Wert des ersten Operanden an, der den Wahrheits-

wert True besitzt, oder – wenn es einen solchen nicht gibt – den Wert des letzten Ope-

randen.

Das logische UND (and) nimmt den Wert des ersten Operanden an, der den Wahrheits-

wert False besitzt, oder – wenn es einen solchen nicht gibt – den Wert des letzten Ope-

randen.

8 siehe dazu Abschnitt 17.10
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Diese Details haben dabei auch durchaus ihren unterhaltsamen Wert:

>>> "Python" or "Java" 
'Python' 

11.7    Komplexe Zahlen – complex

Überraschenderweise findet sich ein Datentyp zur Speicherung komplexer Zahlen

unter Pythons Basisdatentypen. In vielen Programmiersprachen würden komplexe 

Zahlen eher eine Randnotiz in der Standardbibliothek darstellen oder ganz außen vor 

bleiben. Sollten Sie nicht mit komplexen Zahlen vertraut sein, können Sie diesen Ab-

schnitt gefahrlos überspringen. Er behandelt nichts, was für das weitere Erlernen von 

Python vorausgesetzt würde.

Komplexe Zahlen bestehen aus einem reellen Realteil und einem Imaginärteil. Der 

Imaginärteil ist eine reelle Zahl, die mit der imaginären Einheit j multipliziert wird.9

Die imaginäre Einheit j ist als Lösung der Gleichung

j2 = –1

definiert. Im folgenden Beispiel weisen wir einer komplexen Zahl den Namen v zu:

v = 4j 

Wenn man wie im Beispiel nur einen Imaginärteil angibt, wird der Realteil automa-

tisch als 0 angenommen. Um den Realteil festzulegen, wird dieser zum Imaginärteil 

addiert. Die beiden folgenden Schreibweisen sind äquivalent:

v1 = 3 + 4j 
v2 = 4j + 3 

Anstelle des kleinen j ist auch ein großes J als Literal für den Imaginärteil einer kom-

plexen Zahl zulässig. Entscheiden Sie hier ganz nach Ihren Vorlieben, welche der bei-

den Möglichkeiten Sie verwenden möchten.

Sowohl der Real- als auch der Imaginärteil können eine beliebige reelle Zahl sein. Fol-

gende Schreibweise ist demnach auch korrekt:

v3 = 3.4 + 4e2j 

Zu Beginn des Abschnitts über numerische Datentypen wurde bereits angedeutet, 

dass sich komplexe Zahlen von den anderen numerischen Datentypen unterschei-

den. Da für komplexe Zahlen keine mathematische Anordnung definiert ist, können 

9 Das in der Mathematik eigentlich übliche Symbol der imaginären Einheit ist i. Python hält sich 

hier an die Notationen der Elektrotechnik.
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Instanzen des Datentyps complex nur auf Gleichheit oder Ungleichheit überprüft wer-

den. Die Menge der vergleichenden Operatoren ist also auf == und != beschränkt.

Darüber hinaus haben sowohl der Modulo-Operator % als auch der Operator // für 

eine ganzzahlige Division im Komplexen keinen mathematischen Sinn und stehen 

deswegen in Kombination mit komplexen Zahlen nicht zur Verfügung.

Der Datentyp complex besitzt zwei Attribute, die die Arbeit mit ihm erleichtern. Es 

kommt zum Beispiel vor, dass man Berechnungen nur mit dem Realteil oder nur mit 

dem Imaginärteil der gespeicherten Zahl anstellen möchte. Um einen der beiden 

Teile zu isolieren, stellt eine complex-Instanz die in Tabelle 11.11 aufgeführten Attribute 

bereit.

Diese können wie im folgenden Beispiel verwendet werden:

>>> c = 23 + 4j 
>>> c.real 
23.0 
>>> c.imag 
4.0 

Neben seinen zwei Attributen verfügt der Datentyp complex über eine Methode, die 

in Tabelle 11.12 exemplarisch für eine Referenz auf eine komplexe Zahl namens x er-

klärt wird.

Das folgende Beispiel demonstriert die Verwendung der Methode conjugate:

>>> c = 23 + 4j 
>>> c.conjugate() 
(23-4j) 

Attribut Beschreibung

x.real Realteil von x als Gleitkommazahl

x.imag Imaginärteil von x als Gleitkommazahl

Tabelle 11.11  Attribute des Datentyps complex 

Methode Beschreibung

x.conjugate() Liefert die zu x konjugierte komplexe Zahl.

Tabelle 11.12  Methode des Datentyps complex 
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Das Ergebnis von conjugate ist wieder eine komplexe Zahl und verfügt daher eben-

falls über die Methode conjugate:

>>> c = 23 + 4j 
>>> c2 = c.conjugate() 
>>> c2 
(23-4j) 
>>> c3 = c2.conjugate() 
>>> c3 
(23+4j) 

Das Konjugieren einer komplexen Zahl ist eine selbstinverse Operation. Das bedeu-

tet, dass das Ergebnis einer zweifachen Konjugation wieder die Ausgangszahl ist.
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Kapitel 20

Ausnahmebehandlung

Stellen Sie sich einmal ein Programm vor, das über eine vergleichsweise tiefe Aufruf-

hierarchie verfügt. Das heißt, dass Funktionen weitere Unterfunktionen aufrufen, die 

ihrerseits wieder Funktionen aufrufen. Es ist häufig so, dass die übergeordneten 

Funktionen nicht korrekt weiterarbeiten können, wenn in einer ihrer Unterfunktio-

nen ein Fehler aufgetreten ist. Die Information, dass ein Fehler aufgetreten ist, muss 

also durch die Aufrufhierarchie nach oben geschleust werden, damit jede übergeord-

nete Funktion auf den Fehler reagieren und sich daran anpassen kann.

20.1    Exceptions

Bislang konnten wir Fehler, die innerhalb einer Funktion aufgetreten sind, allein an-

hand des Rückgabewerts der Funktion kenntlich machen. Es ist mit viel Aufwand ver-

bunden, einen solchen Rückgabewert durch die Funktionshierarchie nach oben 

durchzureichen, zumal es sich dabei um Ausnahmen handelt. Wir würden also sehr 

viel Code dafür aufwenden, um seltene Fälle zu behandeln.

Für solche Fälle unterstützt Python ein Programmierkonzept, das Exception Handling

(dt. »Ausnahmebehandlung«) genannt wird. Im Fehlerfall erzeugt unsere Unterfunk-

tion dann eine sogenannte Exception und wirft sie, bildlich gesprochen, nach oben. 

Die Ausführung der Funktion ist damit beendet. Jede übergeordnete Funktion hat 

jetzt drei Möglichkeiten:

▸ Sie fängt die Exception ab, führt den Code aus, der für den Fehlerfall vorgesehen 

ist, und fährt dann normal fort. In einem solchen Fall bemerken weitere überge-

ordnete Funktionen die Exception nicht.

▸ Sie fängt die Exception ab, führt den Code aus, der für den Fehlerfall vorgesehen 

ist, und wirft die Exception weiter nach oben. In einem solchen Fall ist auch die 

Ausführung dieser Funktion sofort beendet, und die übergeordnete Funktion 

steht vor der Wahl, die Exception abzufangen oder nicht.

▸ Sie lässt die Exception passieren, ohne sie abzufangen. In diesem Fall ist die Aus-

führung der Funktion sofort beendet, und die übergeordnete Funktion steht vor 

der Wahl, die Exception abzufangen oder nicht.
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Bisher haben wir bei einer solchen Ausgabe

>>> abc 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    abc 
NameError: name 'abc' is not defined. Did you mean: 'abs'? Or did you forget 
to import 'abc'? 

ganz allgemein von einem »Fehler« oder einer »Fehlermeldung« gesprochen. Dies ist 

nicht ganz korrekt: Im Folgenden möchten wir diese Ausgabe als Traceback bezeich-

nen. Welche Informationen ein Traceback enthält und wie sie interpretiert werden 

können, wurde bereits in Abschnitt 4.5 behandelt. Ein Traceback wird immer dann an-

gezeigt, wenn eine Exception bis nach ganz oben durchgereicht wurde, ohne abgefan-

gen zu werden. Doch was genau ist eine Exception?

Eine Exception ist ein Objekt, das Attribute und Methoden zur Klassifizierung und Be-

arbeitung eines Fehlers enthält. Einige dieser Informationen werden im Traceback 

angezeigt, so etwa die Beschreibung des Fehlers (name 'abc' is not defined). Eine Ex-

ception kann im Programm selbst abgefangen und behandelt werden, ohne dass Nut-

zende etwas davon mitbekommen. Näheres zum Abfangen einer Exception erfahren 

Sie im weiteren Verlauf dieses Kapitels. Sollte eine Exception nicht abgefangen wer-

den, wird sie in Form eines Tracebacks ausgegeben, und der Programmablauf wird be-

endet.

20.1.1    Eingebaute Exceptions

In Python existiert eine Reihe eingebauter Exceptions, zum Beispiel die bereits be-

kannten Exceptions SyntaxError, NameError und TypeError. Solche Exceptions werden 

von Funktionen der Standardbibliothek oder vom Interpreter selbst geworfen. Sie 

sind eingebaut, das bedeutet, dass sie zu jeder Zeit im Quelltext verwendet werden 

können:

>>> NameError 
<class 'NameError'> 
>>> SyntaxError 
<class 'SyntaxError'> 

Die eingebauten Exceptions sind hierarchisch organisiert, das heißt, sie erben von ge-

meinsamen Basisklassen. Sie sind deswegen in ihrem Attribut- und Methodenum-

fang weitestgehend identisch. Im Anhang (in Abschnitt A.4) finden Sie eine Liste der 

eingebauten Exception-Typen mit kurzer Erklärung.
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BaseException

Die Klasse BaseException ist die Basisklasse aller Exceptions und stellt damit eine 

Grundfunktionalität bereit, die für alle Exception-Typen vorhanden ist. Aus diesem 

Grund soll sie hier besprochen werden.

Die Grundfunktionalität, die BaseException bereitstellt, besteht aus einem wesentli-

chen Attribut namens args. Dabei handelt es sich um ein Tupel, in dem alle Parameter 

abgelegt werden, die der Exception bei ihrer Instanziierung übergeben wurden. Über 

diese Parameter ist es dann später beim Fangen der Exception möglich, detaillierte 

Informationen über den aufgetretenen Fehler zu erhalten. Das folgende Beispiel de-

monstriert nun die Verwendung des Attributs args:

>>> e = BaseException("Hallo Welt") 
>>> e.args 
('Hallo Welt',) 
>>> e = BaseException("Hallo Welt",1,2,3,4,5) 
>>> e.args 
('Hallo Welt', 1, 2, 3, 4, 5) 

So viel zunächst zur direkten Verwendung der Exception-Klassen.

20.1.2    Das Werfen einer Exception

Bisher haben wir nur Exceptions betrachtet, die in einem Fehlerfall vom Python-In-

terpreter geworfen wurden. Es ist jedoch auch möglich, mithilfe der raise-Anweisung 

selbst eine Exception zu werfen:

>>> raise SyntaxError("Hallo Welt") 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    raise SyntaxError("Hallo Welt") 
SyntaxError: Hallo Welt 

Dazu wird das Schlüsselwort raise geschrieben, gefolgt von einer Instanz. Diese darf 

nur Instanz einer von BaseException abgeleiteten Klasse sein. Darüber hinaus ist auch 

das Werfen einer von BaseException abgeleiteten Klasse möglich, ohne zunächst eine 

Instanz zu erstellen. Eine auf diesem Weg geworfene Exception beinhaltet dann keine 

Fehlermeldung:

>>> raise SyntaxError 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    raise SyntaxError 
SyntaxError: <no detail available> 
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Das Werfen von Instanzen anderer Datentypen, insbesondere von Strings, ist nicht 

möglich:

>>> raise "Hallo Welt" 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    raise "Hallo Welt" 
TypeError: exceptions must derive from BaseException 

Im folgenden Abschnitt möchten wir besprechen, wie Exceptions im Programm ab-

gefangen werden können, sodass sie nicht in einem Traceback enden, sondern zur 

Ausnahmebehandlung eingesetzt werden können. Wir werden sowohl in diesem als 

auch im nächsten Abschnitt bei den eingebauten Exceptions bleiben. Selbst defi-

nierte Exception-Typen werden das Thema von Abschnitt 20.1.4 sein.

20.1.3    Das Abfangen einer Exception

In diesem Abschnitt geht es darum, wie eine in einer Unterfunktion geworfene Excep-

tion in den darüberliegenden Aufrufebenen abgefangen werden kann. Das Fangen

einer Exception ist notwendig, um auf den aufgetretenen Fehler reagieren zu können. 

Stellen Sie sich ein Programm vor, das Daten aus einer vom Benutzer festgelegten 

Datei liest. Dazu verwendet das Programm die folgende im Moment noch sehr simple 

Funktion get_file, die das geöffnete Dateiobjekt zurückgibt:

def get_file(name): 
    return open(name) 

Sollte keine Datei mit dem angegebenen Namen existieren, wirft die eingebaute 

Funktion open eine FileNotFoundError-Exception. Da die Funktion get_file nicht auf 

diese Exception reagiert, wird sie in der Aufrufhierarchie weiter nach oben gereicht 

und verursacht schließlich ein vorzeitiges Beenden des Programms.

Nun sind fehlerhafte Benutzereingaben Probleme, die Sie beim Schreiben eines inter-

aktiven Programms berücksichtigen sollten. Die folgende Variante der Funktion get_
file fängt eine von open geworfene FileNotFoundError-Exception ab und gibt in die-

sem Fall anstelle des geöffneten Dateiobjekts den Wert None zurück:

def get_file(name): 
    try: 
        return open(name) 
    except FileNotFoundError: 
        return None 

Zum Abfangen einer Exception wird eine try/except-Anweisung verwendet. Eine sol-

che Anweisung besteht zunächst aus zwei Teilen:
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▸ Der try-Block wird durch das Schlüsselwort try eingeleitet, gefolgt von einem Dop-

pelpunkt und einem beliebigen Codeblock, der um eine Ebene weiter eingerückt 

ist. Dieser Codeblock wird zunächst ausgeführt. Wenn in diesem Codeblock eine 

Exception auftritt, wird seine Ausführung sofort beendet und der except-Zweig der 

Anweisung ausgeführt.

▸ Der except-Zweig wird durch das Schlüsselwort except eingeleitet, gefolgt von 

einer optionalen Liste von Exception-Typen, für die dieser except-Zweig ausge-

führt werden soll. Beachten Sie, dass mehrere Exception-Typen in Form eines Tu-

pels angegeben werden müssen. Dazu werden Sie später noch ein Beispiel sehen. 

Hinter der Liste der Exception-Typen kann, ebenfalls optional, das Schlüsselwort 

as stehen, gefolgt von einem frei wählbaren Bezeichner. Hier legen Sie fest, unter 

welchem Namen Sie auf die gefangene Exception-Instanz im except-Zweig zugrei-

fen können. Auf diesem Weg können Sie beispielsweise auf die in dem args-Attri-

but der Exception-Instanz abgelegten Informationen zugreifen. Auch dazu werden 

Sie im Verlauf dieses Kapitels noch Beispiele sehen.

Danach folgen ein Doppelpunkt und, um eine Ebene weiter eingerückt, ein belie-

biger Codeblock. Dieser Codeblock wird nur dann ausgeführt, wenn innerhalb des 

try-Blocks eine der aufgelisteten Exceptions geworfen wurde.

Eine grundlegende try/except-Anweisung hat also folgende Struktur:

try: 
    Anweisung 
    Anweisung 
except ExceptionTyp as Bezeichner: 
    Anweisung 
    Anweisung 

Kommen wir zurück zu unserer Beispielfunktion get_file. Es ist durchaus möglich, 

dass bei einem Funktionsaufruf für name fälschlicherweise kein String, sondern zum 

Beispiel eine Liste übergeben wird. In einem solchen Fall wird kein FileNotFoundError, 

sondern ein TypeError geworfen, der von der try/except-Anweisung bislang nicht ab-

gefangen wird:

>>> get_file([1, 2, 3]) 
Traceback (most recent call last): 
  File "<python-input-1>", line 1, in <module> 
    get_file([1, 2, 3]) 
    ~~~~~~~~^^^^^^^^^^^ 
  File "<python-input-0>", line 3, in get_file 
    return open(name) 
TypeError: expected str, bytes or os.PathLike object, not list 
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Die Funktion soll nun dahin gehend erweitert werden, dass auch ein TypeError abge-

fangen und dann ebenfalls None zurückgegeben wird. Dazu haben wir im Wesentli-

chen drei Möglichkeiten. Die erste besteht darin, die Liste der abzufangenden Excep-

tion-Typen im vorhandenen except-Zweig um den TypeError zu erweitern. Beachten 

Sie dabei, dass zwei oder mehr Exception-Typen im Kopf eines except-Zweigs als Tu-

pel angegeben werden müssen:

def get_file(name): 
    try: 
        return open(name) 
    except (FileNotFoundError, TypeError): 
        return None 

 

Hinweis

Mit Python 3.14 wurde die Syntax der try/except-Anweisung dahin gehend überar-

beitet, dass die Klammern beim Abfangen mehrerer Exception-Typen in einem 

except-Zweig nicht mehr notwendig sind:

def get_file(name): 
    try: 
        return open(name) 
    except FileNotFoundError, TypeError: 
        return None 

Die Klammern dürfen nur dann weggelassen werden, wenn der except-Zweig nicht 

gleichzeitig um einen as-Teil ergänzt wird, den wir im Verlauf dieses Abschnitts noch 

kennenlernen werden.

Dies ist einfach und führt im gewählten Beispiel zum gewünschten Resultat. Stellen 

Sie sich jedoch vor, Sie wollten je nach Exception-Typ unterschiedlichen Code ausfüh-

ren. Um ein solches Verhalten zu erreichen, kann eine try/except-Anweisung über be-

liebig viele except-Zweige verfügen:

def get_file(name): 
    try: 
        return open(name) 
    except FileNotFoundError: 
        return None 
    except TypeError: 
        return None 

Die dritte – weniger elegante – Möglichkeit besteht darin, alle Arten von Exceptions 

auf einmal abzufangen. Dazu wird ein except-Zweig ohne Angabe eines Exception-

Typs geschrieben:
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def get_file(name): 
    try: 
        return open(name) 
    except: 
        return None 

 

Hinweis

Es ist nur in wenigen Fällen sinnvoll, alle möglichen Exceptions auf einmal abzufan-

gen. Durch diese Art des Exception Handling kann es vorkommen, dass unabsichtlich 

auch Exceptions abgefangen werden, die nichts mit dem oben dargestellten Code zu 

tun haben. Das betrifft zum Beispiel die KeyInterrupt-Exception, die bei einem Pro-

grammabbruch per Tastenkombination geworfen wird.

Sollten Sie einmal jede beliebige Exception fangen wollen, verwenden Sie except Ex-
ception, da Exception die Basisklasse aller Exceptions ist, die das Programm nicht 

zwingend beenden.

Eine Exception ist nichts anderes als eine Instanz einer bestimmten Klasse. Darum 

stellt sich die Frage, ob und wie man innerhalb eines except-Zweigs Zugriff auf die 

geworfene Instanz erlangt. Das ist durch Angabe des bereits angesprochenen

as Bezeichner-Teils im Kopf des except-Zweigs möglich. Unter dem dort angegebe-

nen Namen können Sie nun innerhalb des Codeblocks auf die geworfene Exception-

Instanz zugreifen:1

try: 
    print([1,2,3][10]) 
except (IndexError, TypeError) as e: 
    print("Fehlermeldung:", e.args[0]) 

Die Ausgabe des oben angeführten Beispiels lautet:

Fehlermeldung: list index out of range 

Zusätzlich kann eine try/except-Anweisung über einen else- und einen finally-

Zweig verfügen, die jeweils nur einmal pro Anweisung vorkommen dürfen. Der dem 

else-Zweig zugehörige Codeblock wird ausgeführt, wenn keine Exception aufgetre-

ten ist, und der dem finally-Zweig zugehörige Codeblock wird in jedem Fall nach Be-

handlung aller Exceptions und nach dem Ausführen des entsprechenden else-Zweigs 

ausgeführt – egal, ob Exceptions vorher aufgetreten sind und welche. Dieser finally-

1 Die möglicherweise verwirrende Schreibweise print([1,2,3][10]) ist gleichbedeutend mit: 

lst = [1,2,3] 
print(lst[10])
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Zweig eignet sich daher besonders für Dinge, die in jedem Fall erledigt werden müs-

sen, wie beispielsweise das Schließen eines Dateiobjekts.

Sowohl der else- als auch der finally-Zweig müssen ans Ende der try/except-Anwei-

sung geschrieben werden. Wenn beide Zweige vorkommen, muss der else-Zweig vor 

dem finally-Zweig stehen.

Abbildung 20.1 zeigt eine vollständige try/except-Anweisung.

Abbildung 20.1  Eine vollständige try/except-Anweisung

Abschließend noch einige Bemerkungen dazu, wie eine try/except-Anweisung ausge-

führt wird: Zunächst wird der Code ausgeführt, der zum try-Zweig gehört. Sollte in-

nerhalb dieses Codes eine Exception geworfen werden, wird der Code ausgeführt, der 

zu dem entsprechenden except-Zweig gehört. Ist kein passender except-Zweig vor-

handen, wird die Exception nicht abgefangen und endet, wenn sie auch anderswo 

nicht abgefangen wird, als Traceback auf dem Bildschirm. Sollte im try-Zweig keine 

Exception geworfen werden, wird keiner der except-Zweige ausgeführt, sondern der 

else-Zweig. Der finally-Zweig wird in jedem Fall zum Schluss ausgeführt.

Exceptions, die innerhalb eines except-, else- oder finally-Zweigs geworfen werden, 

können nicht von folgenden except-Zweigen der gleichen Anweisung wieder abge-

fangen werden. Es ist jedoch möglich, try/except-Anweisungen zu verschachteln:

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

Anweisung

Anweisung

…

try:

except ExceptionTyp as Name1: 

except ExceptionTyp as Name2: 

else:

finally:

Der try-Zweig enthält den Code, 
der ausgeführt werden soll.

Ein oder mehrere except-Zweige 
enthalten den Code, der im Falle 
einer ExceptionTyp-Exception 
ausgeführt werden soll.

Ein optionaler else-Zweig 
enthält Code, der nur dann aus-
geführt wird, wenn zuvor keine 
Exception abgefangen wurde.

Ein optionaler finally-Zweig 
enthält Code, der immer abschließend 
ausgeführt wird, egal, ob oder welche 
Exceptions geworfen wurden.
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try: 
    try: 
        raise TypeError 
    except TypeError: 
        raise IndexError 
    except IndexError: 
        print("Innen gefangen") 
except IndexError: 
    print("Außen gefangen") 

Bei der Behandlung der im inneren try-Block geworfenen TypeError-Exception wird 

ein IndexError geworfen, der von der Anweisung selbst nicht abgefangen werden 

kann. Die Exception wandert dann, bildlich gesprochen, eine Ebene höher und durch-

läuft die nächste try/except-Anweisung. In dieser wird der geworfene IndexError ab-

gefangen und eine entsprechende Meldung ausgegeben. Die Ausgabe des Beispiels 

lautet also: »Außen gefangen«.

20.1.4    Eigene Exceptions

Beim Werfen und Abfangen von Exceptions sind Sie nicht auf den eingebauten Satz 

von Exception-Typen beschränkt, vielmehr können Sie selbst neue Typen erstellen. 

Viele Drittanbieterbibliotheken nutzen diese Möglichkeit, um speziell auf die jewei-

lige Anwendung zugeschnittene Exception-Typen anzubieten.

Zum Definieren eines eigenen Exception-Typs brauchen Sie lediglich eine eigene 

Klasse zu erstellen, die von der Exception-Basisklasse Exception erbt, und können 

dann ganz nach Anforderung weitere Attribute und Methoden zum Umgang mit Ih-

rer Exception hinzufügen.

Im Folgenden definieren wir zunächst eine rudimentäre Kontoklasse, die als einzige 

Operation das Abheben eines bestimmten Geldbetrags unterstützt:

class Konto: 
    def __init__(self, betrag): 
        self.kontostand = betrag 
    def abheben(self, betrag): 
        self.kontostand -= betrag 

In dieser Implementierung der Klasse ist es möglich, das Konto beliebig zu überzie-

hen. In einer etwas raffinierteren Variante soll das Überziehen des Kontos unterbun-

den werden, und beim Versuch, mehr Geld abzuheben, als vorhanden ist, soll eine 

selbst definierte Exception geworfen werden. Dazu definieren wir zunächst eine von 

der Basisklasse Exception abgeleitete Klasse und fügen Attribute für den Kontostand 

und den abzuhebenden Betrag hinzu:
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class KontostandException(Exception): 
    def __init__(self, kontostand, betrag): 
        super().__init__(kontostand, betrag) 
        self.kontostand = kontostand 
        self.betrag = betrag 

Dann modifizieren wir die Methode abheben der Klasse Konto dahin gehend, dass bei 

einem ungültigen Abhebevorgang eine KontostandException-Instanz geworfen wird:

class Konto: 
    def __init__(self, betrag): 
        self.kontostand = betrag 
    def abheben(self, betrag): 
        if betrag > self.kontostand: 
            raise KontostandException(self.kontostand, betrag) 
        self.kontostand -= betrag 

Die dem Konstruktor der Klasse übergebenen zusätzlichen Informationen werden im 

Traceback nicht angezeigt:

>>> k = Konto(1000) 
>>> k.abheben(2000) 
Traceback (most recent call last): 
  File "<python-input-3>", line 1, in <module> 
    k.abheben(2000) 
    ~~~~~~~~~^^^^^^ 
  File "<python-input-1>", line 6, in abheben 
    raise KontostandException(self.kontostand, betrag) 
KontostandException: (1000, 2000) 

Sie kommen erst zum Tragen, wenn die Exception abgefangen und bearbeitet wird:

try: 
    k.abheben(2000) 
except KontostandException as e: 
    print(f"Kontostand: {e.kontostand} €") 
    print(f"Abheben von {e.betrag} € nicht möglich.") 

Dieser Code fängt die entstandene Exception ab und gibt daraufhin eine Fehlermel-

dung aus. Anhand der zusätzlichen Informationen, die die Klasse durch die Attribute 

kontostand und betrag bereitstellt, lässt sich der vorausgegangene Abhebevorgang re-

konstruieren. Die Ausgabe des Beispiels lautet:

Kontostand: 1000 € 
Abheben von 2000 € nicht möglich. 
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Damit eine selbst definierte Exception mit weiterführenden Informationen auch 

eine Fehlermeldung enthalten kann, muss sie die Magic Method __str__ implemen-

tieren:

class KontostandException(Exception): 
    def __init__(self, kontostand, betrag): 
        self.kontostand = kontostand 
        self.betrag = betrag 
    def __str__(self): 
        fehlbetrag = self.betrag - self.kontostand 
        return f"Kontostand zu niedrig: Es werden {fehlbetrag} € mehr benötigt" 

Ein Traceback, der durch diese Exception verursacht wird, sieht folgendermaßen aus:

>>> k = Konto(1000) 
>>> k.abheben(2000) 
Traceback (most recent call last): 
  File "<python-input-3>", line 1, in <module> 
    k.abheben(2000) 
    ~~~~~~~~~^^^^^^ 
  File "<python-input-1>", line 6, in abheben 
    raise KontostandException(self.kontostand, betrag) 
KontostandException: Kontostand zu niedrig: Es werden 1000 € mehr benötigt 

20.1.5    Erneutes Werfen einer Exception

In manchen Fällen, gerade bei einer tiefen Funktionshierarchie, ist es sinnvoll, eine 

Exception abzufangen, die für diesen Fall vorgesehene Fehlerbehandlung zu starten 

und die Exception danach erneut zu werfen. Betrachten wir dazu folgendes Beispiel:

def funktion3(): 
    raise TypeError 
def funktion2(): 
    funktion3() 
def funktion1(): 
    funktion2() 
funktion1() 

Im Beispiel wird die Funktion funktion1 aufgerufen, die ihrerseits funktion2 aufruft, 

in der die Funktion funktion3 aufgerufen wird. Es handelt sich also um insgesamt drei 

verschachtelte Funktionsaufrufe. Im Innersten dieser Funktionsaufrufe, in funktion3, 

wird eine TypeError-Exception geworfen. Diese Exception wird nicht abgefangen, des-

halb sieht der dazugehörige Traceback so aus:
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Traceback (most recent call last): 
  File "<python-input-0>", line 7, in <module> 
    funktion1() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 6, in funktion1 
    funktion2() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 4, in funktion2 
    funktion3() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 2, in funktion3 
    raise TypeError 
TypeError 

Der Traceback beschreibt erwartungsgemäß die Funktionshierarchie zum Zeitpunkt 

der raise-Anweisung. Diese Liste wird auch Callstack genannt.

Hinter dem Exception-Prinzip steht der Gedanke, dass sich eine Exception in der Auf-

rufhierarchie nach oben arbeitet und an jeder Station abgefangen werden kann. In 

unserem Beispiel soll die Funktion funktion1 die TypeError-Exception abfangen, da-

mit sie eine spezielle auf den TypeError zugeschnittene Fehlerbehandlung durchfüh-

ren kann. Nachdem funktion1 ihre funktionsinterne Fehlerbehandlung durchgeführt 

hat, soll die Exception weiter nach oben gereicht werden. Dazu wird sie erneut gewor-

fen, und zwar wie im folgenden Beispiel:

def funktion3(): 
    raise TypeError 
def funktion2(): 
    funktion3() 
def funktion1(): 
    try:  
        funktion2() 
    except TypeError:  
        # Fehlerbehandlung 
        raise TypeError 
funktion1() 

Im Gegensatz zum vorangegangenen Beispiel sieht der nun auftretende Traceback so 

aus:

Traceback (most recent call last): 
  File "<python-input-0>", line 11, in <module> 
    funktion1() 
    ~~~~~~~~~^^ 
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  File "<python-input-0>", line 10, in funktion1 
    raise TypeError 
TypeError 

Sie sehen, dass dieser Traceback Informationen über den Kontext der zweiten raise-

Anweisung enthält.2 Diese sind aber gar nicht von Belang, sondern eher ein Neben-

produkt der Fehlerbehandlung innerhalb der Funktion funktion1. Optimal wäre es, 

wenn trotz des temporären Abfangens der Exception in funktion1 der resultierende 

Traceback den Kontext der ursprünglichen raise-Anweisung beschriebe. Um das zu 

erreichen, wird eine raise-Anweisung ohne Angabe eines Exception-Typs geschrie-

ben:

def funktion3(): 
    raise TypeError 
def funktion2(): 
    funktion3() 
def funktion1(): 
    try:  
        funktion2() 
    except TypeError:  
        # Fehlerbehandlung 
        raise 
funktion1() 

Der in diesem Beispiel ausgegebene Traceback sieht folgendermaßen aus:

Traceback (most recent call last): 
  File "<python-input-0>", line 11, in <module> 
    funktion1() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 7, in funktion1 
    funktion2() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 4, in funktion2 
    funktion3() 
    ~~~~~~~~~^^ 
  File "<python-input-0>", line 2, in funktion3 
    raise TypeError 
TypeError 

2 Tatsächlich enthält der ausgegebene Traceback aufgrund des Exception Chaining (siehe 

Abschnitt 20.1.6) auch noch Informationen über die ursprüngliche Exception. Das soll uns  

an dieser Stelle aber nicht weiter interessieren.
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Wie Sie sehen, handelt es sich dabei um den Stacktrace der Stelle, an der die Exception 

ursprünglich geworfen wurde. Der Traceback enthält damit die gewünschten Infor-

mationen über die Stelle, an der der Fehler tatsächlich aufgetreten ist.

20.1.6    Exception Chaining

Gelegentlich kommt es vor, dass man innerhalb eines except-Zweigs in die Verlegen-

heit kommt, eine weitere Exception zu werfen – entweder weil bei der Behandlung 

der Exception ein weiterer Fehler aufgetreten ist oder um die entstandene Exception 

»umzubenennen«.

Wenn innerhalb eines except-Zweigs eine weitere Exception geworfen wird, wendet 

Python automatisch das sogenannte Exception Chaining an. Dabei wird die vorange-

gangene Exception als Kontext an die neu geworfene Exception angehängt, sodass 

ein Maximum an Information weitergegeben wird. Zum Beispiel erzeugt der Code

try: 
    [1,2,3][128] 
except IndexError: 
    raise RuntimeError("Schlimmer Fehler") 

die Ausgabe:

Traceback (most recent call last): 
  File "<python-input-0>", line 2, in <module> 
    [1,2,3][128] 
    ~~~~~~~^^^^^ 
IndexError: list index out of range 
During handling of the above exception, another exception occurred: 
Traceback (most recent call last): 
  File "<python-input-0>", line 4, in <module> 
    raise RuntimeError("Schlimmer Fehler") 
RuntimeError: Schlimmer Fehler 

Es wird auf das 128. Element einer dreielementigen Liste zugegriffen, was eine Index-
Error-Exception provoziert. Diese Exception wird gefangen, und bei der Behandlung 

wird eine RuntimeError-Exception geworfen. Anhand des ausgegebenen Tracebacks 

sehen Sie, dass die ursprüngliche IndexError-Exception an die neue RuntimeError-Ex-

ception angehängt wurde.

Mithilfe der raise/from-Syntax lässt sich das Exception-Chaining-Verhalten steuern. 

Beim Werfen einer Exception kann ein Kontext angegeben werden, der dann im re-

sultierenden Traceback berücksichtigt wird. Dieser Kontext kann zum Beispiel eine 

zweite Exception sein:
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>>> raise IndexError from ValueError 
ValueError 
The above exception was the direct cause of the following exception: 
Traceback (most recent call last): 
  File "<python-input-0>", line 1, in <module> 
    raise IndexError from ValueError 
IndexError 

Es zeigt sich, dass wir mit der raise/from-Syntax das Exception Chaining auslösen 

können. Alternativ kann mit der raise/from-Syntax das automatische Anhängen 

einer Exception verhindert werden:

try: 
    [1,2,3][128] 
except IndexError: 
    raise RuntimeError("Schlimmer Fehler") from None 

In diesem Fall enthält der resultierende Traceback nur die neu entstandene Run-
timeError-Exception. Die ursprüngliche IndexError-Exception geht verloren.

20.1.7    Exception Notes

Die in einer Exception-Instanz gespeicherte Fehlermeldung ist gemeinsam mit dem 

Traceback die wesentliche Informationsgrundlage, um einem aufgetretenen Fehler 

nachzuspüren, ihn zu verstehen und schlussendlich zu beheben. In der Praxis kommt 

es allerdings vor, dass die Fehlermeldung für die Analyse des Problems unzureichend 

ist. Betrachten wir als Beispiel die folgende Funktion zum Auslesen von Metainforma-

tionen eines Bildes im Bitmap-Dateiformat. Dieses Beispiel haben wir in ähnlicher 

Form bereits in Abschnitt 6.4.3 betrachtet:

from struct import unpack 
def lese_infos(dateiname): 
    with open(dateiname, "rb") as f: 
        f.seek(18) 
        breite, hoehe = unpack("ii", f.read(8)) 
        f.seek(2, 1) 
        bpp = unpack("H", f.read(2))[0] 
    return breite, hoehe, bpp 

Im Folgenden verwenden wir die Funktion lese_infos, um eine Reihe von Bildern zu 

analysieren:
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dateien = ["kaffee.bmp", "ohne_daten.bmp"] 
infos = [lese_infos(dateiname) for dateiname in dateien] 
for breite, hoehe, bpp in infos: 
    print(f"Breite: {breite} px") 
    print(f"Höhe: {hoehe} px") 
    print(f"Farbtiefe: {bpp} bpp") 

Während das Auslesen der Metainformation für kaffee.bmp funktioniert, ist ohne_da-
ten.bmp keine gültige Bitmap-Datei, was beim Versuch, die Metadaten zu lesen, zu 

einer Exception führt:

Traceback (most recent call last): 
  File "beispiel_02_exception_notes.py", line 26, in <module> 
    infos = [lese_infos(dateiname) for dateiname in dateien] 
             ~~~~~~~~~~~~^^^^^^^^^^^ 
  File "beispiel_02_exception_notes.py", line 7, in lese_infos_1 
    breite, hoehe = unpack("ii", f.read(8)) 
                    ~~~~~~^^^^^^^^^^^^^^^^^ 
struct.error: unpack requires a buffer of 8 bytes 

Sie sehen, dass Traceback und Fehlermeldung den lokalen Kontext des Problems gut 

beschreiben: Offenbar konnte nicht die erwartete Datenmenge aus der Datei gelesen 

werden. Eine Information, die zum Verständnis des Problems wesentlich beitragen 

würde, fehlt jedoch: Das Lesen welcher Datei löst das Problem aus?

Seit Python 3.11 bieten Exception-Instanzen die Methode add_note an, über die sich 

Exceptions um zusätzliche Informationen (»Notizen«) ergänzen lassen:

def lese_infos(dateiname): 
    try: 
        with open(dateiname, "rb") as f: 
            f.seek(18) 
            breite, hoehe = unpack("ii", f.read(8)) 
            f.seek(2, 1) 
            bpp = unpack("H", f.read(2))[0] 
        return breite, hoehe, bpp 
    except Exception as e: 
        e.add_note(f"Bearbeitete Datei: {dateiname}") 
        raise 

Im Beispiel passen wir die Funktion lese_infos so an, dass jede auftretende Exception 

um eine Notiz ergänzt wird, die den Dateinamen des aktuell betrachteten Bildes an-

gibt. Die einer Exception angefügten Notizen werden gemeinsam mit Fehlermeldung 

und Traceback am Bildschirm ausgegeben:
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Traceback (most recent call last): 
  File "beispiel_02_exception_notes.py", line 26, in <module> 
    infos = [lese_infos_2(dateiname) for dateiname in dateien] 
             ~~~~~~~~~~~~^^^^^^^^^^^ 
  File "beispiel_02_exception_notes.py", line 16, in lese_infos_2 
    breite, hoehe = unpack("ii", f.read(8)) 
                    ~~~~~~^^^^^^^^^^^^^^^^^ 
struct.error: unpack requires a buffer of 8 bytes 
Bearbeitete Datei: ohne_daten.bmp 

Eine Exception kann durch mehrfaches Aufrufen von add_note um beliebig viele No-

tizen ergänzt werden. Innerhalb des Programms kann über das Attribut __notes__
einer Exception-Instanz auf die ihr angefügten Notizen zugegriffen werden.

20.2    Zusicherungen – assert

Mithilfe des Schlüsselworts assert lassen sich Zusicherungen in ein Python-Pro-

gramm integrieren. Durch das Schreiben einer assert-Anweisung wird beim Pro-

grammieren eine Bedingung festgelegt, die für die Ausführung des Programms 

essenziell ist und die bei Erreichen der assert-Anweisung zu jeder Zeit True ergeben 

muss. Wenn die Bedingung einer assert-Anweisung False ergibt, wird eine Asserti-
onError-Exception geworfen. In der folgenden Sitzung im interaktiven Modus wur-

den mehrere assert-Anweisungen eingegeben:

>>> lst = [7, 1, 3, 5, -12] 
>>> assert max(lst) == 7 
>>> assert min(lst) == -12 
>>> assert sum(lst) == 0 
Traceback (most recent call last): 
  File "<python-input-3>", line 1, in <module> 
    assert sum(lst) == 0 
           ^^^^^^^^^^^^^ 
AssertionError 

In der assert-Anweisung kann auch eine Fehlermeldung spezifiziert werden, die im 

Fall eines Fehlschlags in die AssertionError-Exception eingetragen wird. Diese Fehler-

meldung kann, durch ein Komma getrennt, hinter die Bedingung geschrieben wer-

den:

>>> assert max(lst) == 7, "max ist kaputt" 
>>> assert min(lst) == -12, "min ist kaputt" 
>>> assert sum(lst) == 0, "sum ist kaputt" 
Traceback (most recent call last): 
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  File "<python-input-3>", line 1, in <module> 
    assert sum(lst) == 0, "sum ist kaputt" 
           ^^^^^^^^^^^^^ 
AssertionError: sum ist kaputt 

Die assert-Anweisung ist damit ein praktisches Hilfsmittel zum Aufspüren von Feh-

lern und ermöglicht es, den Programmlauf zu beenden, wenn bestimmte Vorausset-

zungen nicht erfüllt sind. Häufig prüft man an Schlüsselstellen im Programm mit as-
sert, ob alle Referenzen die erwarteten Werte referenzieren, um eventuelle 

Fehlberechnungen rechtzeitig erkennen zu können.

Beachten Sie, dass assert-Anweisungen üblicherweise nur während der Entwicklung 

eines Programms benötigt werden und in einem fertigen Programm eher stören wür-

den. Deswegen werden assert-Anweisungen nur dann ausgeführt, wenn die globale 

Konstante __debug__ den Wert True referenziert. Diese Konstante ist nur dann False, 

wenn der Interpreter mit der Kommandozeilenoption -O gestartet wurde. Wenn die 

Konstante __debug__ den Wert False referenziert, werden assert-Anweisungen igno-

riert und haben damit keinen Einfluss mehr auf die Laufzeit Ihres Programms.

 

Hinweis

Beachten Sie, dass Sie den Wert von __debug__ im Programm selbst nicht verändern 

dürfen, sondern nur über die Kommandozeilenoption -O bestimmen können, ob as-
sert-Anweisungen ausgeführt oder ignoriert werden sollen.

20.3    Warnungen

Unter einer Warnung wird eine Exception verstanden, die den Programmablauf nicht 

verändert, sondern nur auf dem Standardfehlerstrom stderr (siehe Abschnitt 29.2.2) 

erscheint, um Sie über einen bedenklichen, aber nicht kritischen Umstand zu infor-

mieren.

Ein typisches Beispiel für eine Warnung ist die DeprecationWarning, die den Entwickler 

oder die Anwenderin darüber informiert, dass das laufende Programm eine Funktio-

nalität verwendet, die in zukünftigen Python-Versionen oder zukünftigen Versionen 

einer Bibliothek nicht mehr zur Verfügung stehen wird. Diese Feststellung stellt für 

den aktuellen Programmlauf kein Problem dar, ist jedoch wichtig genug, um darüber 

zu informieren.

 

Hinweis

Abschnitt A.4 im Anhang listet die in Python standardmäßig definierten Typen von 

Warnungen auf und erklärt ihre Bedeutung.
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Das Modul warnings der Standardbibliothek ermöglicht es, über komplexe Filterre-

geln das Anzeigen bzw. Ignorieren von Warnungen verschiedenen Inhalts und ver-

schiedener Quellen zu steuern. Standardmäßig unterdrückt Python einige Warnun-

gen, insbesondere wenn sie aus importierten Modulen stammen. Diese Filterregeln 

werden vom Python-Entwicklerteam jedoch häufig an neue Gegebenheiten ange-

passt.

Das Modul warnings enthält die Funktion simplefilter, die die voreingestellten Filter-

regeln mit einer allgemeinen Regel überschreiben kann. Auf diese Weise lassen sich 

Warnungen beispielsweise universell unterdrücken:

>>> import warnings 
>>> warnings.simplefilter("ignore") 

Analog können alle Warnungen zu Exceptions gemacht werden, die den Programm-

ablauf unterbrechen. In diesem Fall können Warnungen auch gefangen und behan-

delt werden:

>>> warnings.simplefilter("error") 

Weitere mögliche Argumente sind "default" für das Unterdrücken von erneut auftre-

tenden Warnungen aus derselben Quelle, "always" für das Ausgeben aller Warnun-

gen, "module" für das Ausgeben nur der jeweils ersten Warnung eines Moduls und 

"once" für das Unterdrücken von erneut auftretenden Warnungstypen.

 

Hinweis

Warnungen können auch über den Kommandozeilenparameter -W des Python-Inter-

preters zu Fehlern gemacht werden. Auf diese Weise lässt sich das Verhalten eines 

Python-Programms in Bezug auf Warnungen verändern, ohne den Code anpassen zu 

müssen:

$ python –W error programm.py 

Analog sind die Argumente default, always, module und once möglich.

20.4    Exception Groups

Die Ausnahmebehandlung, wie wir sie in den vorangegangenen Abschnitten dieses 

Kapitels diskutiert haben, stellt eine zentrale Anforderung an den Code: Es kann zu 

jedem Zeitpunkt nur eine einzige Exception geworfen und gefangen werden.

Diese Anforderung ist in der Regel nicht problematisch, weshalb die klassische Aus-

nahmebehandlung für sehr viele Python-Programme völlig ausreichend ist. Es gibt 
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jedoch spezielle Situationen, in denen von diesem Prinzip abgewichen werden muss. 

Stellen Sie sich zur Veranschaulichung einmal die folgenden beiden Situationen vor:

▸ Ein Bildverarbeitungsprogramm führt eine Bildtransformation parallel auf mehre-

ren Bildern gleichzeitig durch. Das Programm startet die parallelen Operationen 

und wartet dann darauf, dass alle Bilder bearbeitet wurden. Eine individuelle Ope-

ration kann mit einer Exception fehlschlagen, zum Beispiel weil eine Datei nicht 

gefunden wurde oder das Dateiformat nicht gelesen werden konnte. In dieser Si-

tuation können mehrere verschiedene Exceptions gleichzeitig auftreten, und die 

aufrufende Ebene sollte diese Exceptions als Gesamtheit fangen und bearbeiten 

können.

▸ Ein Programm sendet eine HTTP-Anfrage an einen Webserver, um beispielsweise 

eine Web-API zu verwenden. Sollte der Verbindungsaufbau fehlschlagen oder der 

Server mit einem Fehler antworten, könnte eine einfache Strategie die Anfrage au-

tomatisch wiederholen. Ein abschließender Fehlschlag nach mehreren Versuchen 

müsste dann in Form von mehreren Exceptions an die aufrufende Ebene propa-

giert werden, denn jedes individuelle Scheitern der Anfrage könnte eine andere Ur-

sache gehabt haben.

Für diese und ähnliche Anwendungsfälle wurde in Python 3.11 das Konzept der Excep-

tion Groups eingeführt. Dabei werden eine oder mehrere Exceptions als Gruppe zu-

sammengefasst und gemeinsam geworfen.

Beachten Sie, dass sich eine Exception Group dann eignet, wenn mehrere voneinan-

der unabhängige Exceptions gemeinsam geworfen werden sollen. Mehrere vonei-

nander abhängige Exceptions können über das Exception Chaining (siehe Abschnitt 

20.1.6) zu einer einzigen Exception zusammengefügt werden.

20.4.1    Eine Exception Group

Eine Exception Group besteht aus einer Fehlerbeschreibung und einer Liste von 

Exceptions, die in der Gruppe zusammengefasst werden:

group = ExceptionGroup("Zwei Exceptions", [ 
    TypeError("Ein TypeError"), 
    SyntaxError("Ein SyntaxError"), 
]) 

Die Klasse ExceptionGroup erbt von Exception, was es insbesondere ermöglicht, Excep-

tion Groups beliebig ineinander zu verschachteln:

group = ExceptionGroup("Operation fehlgeschlagen", [ 
    ValueError("Parameter x hat ungültigen Wert"), 
    ValueError("Parameter y hat ungültigen Wert"), 
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    ExceptionGroup("Download von test.png fehlgeschlagen", [ 
        ConnectionRefusedError("Fehler im ersten Versuch"), 
        TimeoutError("Fehler im zweiten Versuch"), 
    ]), 
    ExceptionGroup("Speichern von test.png fehlgeschlagen", [ 
        IOError("Kein freier Speicherplatz"), 
        RuntimeError("Die Datei ist leer"), 
    ]) 
]) 

In diesem Beispiel erzeugen wir eine fiktive Exception Group, die aus einer Samm-

lung unterschiedlicher Exceptions besteht, die sich in zwei weitere Untergruppen 

einsortieren.

Eine Exception Group kann über die raise-Anweisung wie eine normale Exception 

geworfen werden:

raise group 

Analog zu einer normalen Exception wird ein Traceback ausgegeben, wenn eine ge-

worfene Exception Group nicht gefangen wird. Dieser enthält eine Übersicht über die 

in der Gruppe enthaltenen Exceptions:

  + Exception Group Traceback (most recent call last): 
  |   File "beispiel_03_exception_groups.py", line 18, in <module> 
  |     raise group 
  | ExceptionGroup: Operation fehlgeschlagen (4 sub-exceptions) 
  +-+---------------- 1 ---------------- 
    | ValueError: Parameter x hat ungültigen Wert 
    +---------------- 2 ---------------- 
    | ValueError: Parameter y hat ungültigen Wert 
    +---------------- 3 ---------------- 
    | ExceptionGroup: Download von test.png fehlgeschlagen (2 sub-exceptions) 
    +-+---------------- 1 ---------------- 
      | ConnectionRefusedError: Fehler im ersten Versuch 
      +---------------- 2 ---------------- 
      | TimeoutError: Fehler im zweiten Versuch 
      +------------------------------------ 
    +---------------- 4 ---------------- 
    | ExceptionGroup: Speichern test.png fehlgeschlagen (2 sub-exceptions) 
    +-+---------------- 1 ---------------- 
      | OSError: Kein freier Speicherplatz 
      +---------------- 2 ---------------- 
      | RuntimeError: Die Datei ist leer 
      +------------------------------------ 
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Grundsätzlich lässt sich eine Exception Group über die try/except-Anweisung 

fangen:

try: 
    raise group 
except ExceptionGroup as eg: 
    print(eg.exceptions) 

Das Attribut exceptions einer Exception Group referenziert ein Tupel aller in der 

Gruppe enthaltenen Exceptions.

20.4.2    Die try/except*-Anweisung

Eine herkömmliche try/except-Anweisung ermöglicht das unbedingte Fangen einer 

Exception Group, ohne dass sich spezifische except-Zweige abhängig vom Inhalt der 

Exception Group formulieren ließen. Dies lässt sich mit der in Python 3.11 eingeführ-

ten try/except*-Anweisung umsetzen:

try: 
    raise group 
except* OSError as eg: 
    print("Behandle alle OSError-Exceptions") 
except* RuntimeError as eg: 
    print("Behandle alle RuntimeError-Exceptions") 

In den except*-Zweigen der try/except*-Anweisung werden zunächst alle OSError-

Exceptions der gefangenen Exception Group behandelt. Die in der Exception Group 

enthaltenen ConnectionRefusedError- und TimeoutError-Exceptions erben von OS-
Error und werden daher ebenfalls im ersten except*-Zweig behandelt. Innerhalb 

eines except*-Zweigs liegen alle zu behandelnden Exceptions in Form einer aus der 

gefangenen Gruppe herausgefilterten Exception Group eg vor.

Im zweiten except*-Zweig werden alle RuntimeError-Exceptions der gefangenen Ex-

ception Group behandelt. Im Gegensatz zu einer herkömmlichen try/except-Anwei-

sung können mehrere except*-Zweige hintereinander ausgeführt werden, wenn sie 

jeweils auf einen Teil der Exceptions der gefangenen Gruppe passen.

Die beiden except*-Zweige im Beispiel behandeln und filtern alle OSError- und Run-
timeError-Exceptions der gefangenen Gruppe. Nach Abarbeitung der try/except*-An-

weisung und Ausführung aller passenden except*-Zweige wird die gefangene Excep-

tion Group, reduziert auf die verbleibenden ValueError-Exceptions, weiter geworfen:

Behandle alle OSError-Exceptions 
Behandle alle RuntimeError-Exceptions 
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  + Exception Group Traceback (most recent call last): 
  |   File "beispiel_03_exception_groups.py", line 24, in <module> 
  |     raise group 
  |   File "beispiel_03_exception_groups.py", line 19, in <module> 
  |     raise group 
  | ExceptionGroup: Operation fehlgeschlagen (2 sub-exceptions) 
  +-+---------------- 1 ---------------- 
    | ValueError: Parameter x hat ungültigen Wert 
    +---------------- 2 ---------------- 
    | ValueError: Parameter y hat ungültigen Wert 
    +------------------------------------ 

Wie bei der herkömmlichen try/except-Anweisung lassen sich except*-Zweige for-

mulieren, die auf mehrere Exception-Typen gleichermaßen passen:

try: 
    raise group 
except* (OSError, RuntimeError) as eg: 
    print("Behandle alle OSError- und RuntimeError-Exceptions") 

 

Hinweis

Analog zur herkömmlichen try/except-Anweisung wurde die Syntax der try/

except*-Anweisung mit Python 3.14 dahin gehend überarbeitet, dass die Klammern 

beim Abfangen mehrerer Exception-Typen in einem except*-Zweig nicht mehr not-

wendig sind:

try: 
    raise group 
except* OSError, RuntimeError: 
    print("Behandle alle OSError- und RuntimeError-Exceptions") 

Die Klammern dürfen nur dann weggelassen werden, wenn der except*-Zweig nicht 

gleichzeitig um einen as-Teil ergänzt wird.

Zum Schluss sei erwähnt, dass finally-Zweige analog zur herkömmlichen try/except-

Anweisung funktionieren. Es darf allerdings keinen except*-Zweig ohne Angabe eines 

Exception-Typs geben:

try: 
    raise group 
except*:  # <-- SyntaxError 
    pass 
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Die try/except*-Anweisung hat einige weitere Besonderheiten, auf die wir im Folgen-

den kurz eingehen möchten:

▸ Es dürfen in einer try/except*-Anweisung keine herkömmlichen except-Zweige 

verwendet werden.

▸ Die Exception-Typen ExceptionGroup und ExceptionBaseGroup, die eine Exception 

Group definieren, können in except*-Zweigen nicht behandelt werden.

▸ Ein except*-Zweig darf keine Sprünge im Kontrollfluss über break, continue oder 

return durchführen.

In Abschnitt 31.5.6 werden Sie im Kontext des kooperativen Multitaskings eine An-

wendung von Exception Groups kennenlernen.
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Kapitel 27

Bildschirmausgaben und Logging

An dieser Stelle möchten wir uns mit Modulen der Standardbibliothek befassen, die 

die Möglichkeiten der Bildschirmausgabe sinnvoll ergänzen. Dabei handelt es sich 

um das Modul pprint zur übersichtlich formatierten Ausgabe komplexer Instanzen, 

das wir auch schon in Abschnitt 3.10 kurz verwendet haben, sowie um das Modul log-
ging zur formatierten Ausgabe von Lognachrichten auf dem Bildschirm oder in Log-

dateien.

Die in diesem Kapitel besprochenen Module verstehen sich als Ergänzung zur norma-

lerweise verwendeten Built-in Function print, die ausführlich in Abschnitt 17.14.36 be-

schrieben wird.

27.1    Übersichtliche Ausgabe komplexer Objekte – pprint

In der Standardbibliothek existiert das Modul pprint (für pretty print), das für eine 

übersichtlich formatierte Repräsentation eines Python-Datentyps auf dem Bild-

schirm verwendet werden kann. Das Modul macht insbesondere die Ausgabe kom-

plexer Datentypen, zum Beispiel langer Listen, besser lesbar. Bevor Beispiele ausge-

führt werden können, muss das Modul eingebunden werden:

>>> import pprint 

Das Modul pprint enthält im Wesentlichen eine gleichnamige Funktion, die zur Aus-

gabe einer Instanz aufgerufen werden kann.

pprint(object, [stream, indent, width, depth], {compact})

Die Funktion pprint gibt die Instanz object aus, formatiert auf dem Stream stream. 

Wenn Sie den Parameter stream nicht übergeben, wird in den Standardausgabestrom 

sys.stdout geschrieben. Über die Parameter indent, width und depth lässt sich die For-

matierung der Ausgabe steuern. Dabei kann für indent die Anzahl der Leerzeichen 

übergeben werden, die für eine Einrückung verwendet werden sollen. Der Parameter 

indent ist mit 1 vorbelegt.

Über den optionalen Parameter width kann die maximale Anzahl an Zeichen angege-

ben werden, die die Ausgabe breit sein darf. Dieser Parameter ist mit 80 Zeichen vor-

belegt.
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Im folgenden Beispiel erzeugen wir zunächst mit einer willkürlichen Methode unse-

rer Wahl eine Liste von Strings und geben diese mithilfe von pprint formatiert aus:

>>> strings = [f"Der Wert von {i}**2 ist {i**2}" for i in range(10)] 
>>> pprint.pprint(strings) 
['Der Wert von 0**2 ist 0', 
 'Der Wert von 1**2 ist 1', 
 'Der Wert von 2**2 ist 4', 
 'Der Wert von 3**2 ist 9', 
 'Der Wert von 4**2 ist 16', 
 'Der Wert von 5**2 ist 25', 
 'Der Wert von 6**2 ist 36', 
 'Der Wert von 7**2 ist 49', 
 'Der Wert von 8**2 ist 64', 
 'Der Wert von 9**2 ist 81'] 

Zum Vergleich geben wir strings noch einmal unformatiert mit print aus:

>>> print(strings) 
['Der Wert von 0**2 ist 0', 'Der Wert von 1**2 ist 1', 'Der Wert von 2**2 ist 
4', 'Der Wert von 3**2 ist 9', 'Der Wert von 4**2 ist 16', 'Der Wert von 5**2 
ist 25', 'Der Wert von 6**2 ist 36', 'Der Wert von 7**2 ist 49', 'Der Wert von 
8**2 ist 64', 'Der Wert von 9**2 ist 81'] 

Der Parameter depth ist eine ganze Zahl und bestimmt, bis zu welcher Tiefe Unterins-

tanzen, beispielsweise also verschachtelte Listen, ausgegeben werden sollen. Falls für 

depth ein anderer Wert als None übergeben wird, deutet pprint tiefer verschachtelte 

Elemente durch drei Punkte ... an.

Über den Schlüsselwortparameter compact lässt sich steuern, wie kompakt umfang-

reiche Strukturen (z. B. lange Listen) dargestellt werden. Wird hier True übergeben, 

wird beispielsweise nicht jedes Element von strings in eine eigene Zeile geschrieben.

Sollten Sie die Ausgabe von pprint weiterverarbeiten wollen, verwenden Sie die Funk-

tion pformat, die die formatierte Repräsentation in Form eines Strings zurückgibt:

>>> s = pprint.pformat(strings) 
>>> print(s) 
['Der Wert von 0**2 ist 0', 
 'Der Wert von 1**2 ist 1', 
 'Der Wert von 2**2 ist 4', 
 'Der Wert von 3**2 ist 9', 
 'Der Wert von 4**2 ist 16', 
 'Der Wert von 5**2 ist 25', 
 'Der Wert von 6**2 ist 36', 
 'Der Wert von 7**2 ist 49', 
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 'Der Wert von 8**2 ist 64', 
 'Der Wert von 9**2 ist 81'] 

Die Funktion pformat hat die gleiche Schnittstelle wie pprint – mit dem Unterschied, 

dass der Parameter stream fehlt.

27.2    Logdateien – logging

Das Modul logging stellt ein flexibles Interface zum Protokollieren des Programmab-

laufs bereit. Protokolliert wird der Programmablauf, indem an verschiedenen Stellen 

im Programm Meldungen an das logging-Modul abgesetzt werden. Diese Meldungen 

können unterschiedliche Dringlichkeitsstufen haben. So gibt es beispielsweise Feh-

lermeldungen, Warnungen oder Debug-Informationen. Das Modul logging kann 

diese Meldungen auf vielfältige Weise verarbeiten. Üblich ist es, die Meldung mit 

einem Zeitstempel zu versehen und entweder auf dem Bildschirm auszugeben oder 

in eine Datei zu schreiben.

In diesem Abschnitt wird die Verwendung des Moduls logging anhand mehrerer Bei-

spiele im interaktiven Modus gezeigt. Um die Beispielprogramme korrekt ausführen 

zu können, muss zuvor das Modul logging eingebunden sein:

>>> import logging 

Bevor Meldungen an den Logger geschickt werden können, muss dieser durch Aufruf 

der Funktion basicConfig initialisiert werden. Im folgenden Beispiel wird ein Logger 

eingerichtet, der alle eingehenden Meldungen in die Logdatei programm.log schreibt:

>>> logging.basicConfig(filename="programm.log") 

Jetzt können mithilfe der im Modul enthaltenen Funktion log Meldungen an den Log-

ger übergeben werden. Die Funktion log bekommt dabei die Dringlichkeitsstufe der 

Meldung als ersten und die Meldung selbst in Form eines Strings als zweiten Parame-

ter übergeben:

>>> logging.log(logging.ERROR, "Ein Fehler ist aufgetreten") 
>>> logging.log(logging.INFO, "Dies ist eine Information") 

Durch das Aufrufen der Funktion shutdown wird der Logger korrekt deinitialisiert, und 

eventuell noch anstehende Schreiboperationen werden durchgeführt:

>>> logging.shutdown() 

Natürlich sind nicht nur die Dringlichkeitsstufen ERROR und INFO verfügbar. Tabelle 27.1

listet alle vordefinierten Stufen auf, aus denen Sie wählen können. Die Tabelle ist dabei 

nach Dringlichkeit geordnet, wobei die dringendste Stufe zuletzt aufgeführt wird.
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Aus Gründen des Komforts existiert zu jeder Dringlichkeitsstufe eine eigene Funktion. 

So sind die beiden Funktionsaufrufe von log aus dem letzten Beispiel äquivalent zu:

logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 

Wenn Sie sich die Logdatei nach dem Aufruf dieser beiden Funktionen ansehen, wer-

den Sie feststellen, dass es lediglich einen einzigen Eintrag gibt:

ERROR:root:Ein Fehler ist aufgetreten 

Das liegt daran, dass der Logger in seiner Basiskonfiguration nur Meldungen loggt, 

deren Dringlichkeit größer oder gleich der einer Warnung ist. Um auch Debug- und 

Info-Meldungen mitzuloggen, müssen Sie beim Aufruf der Funktion basicConfig im 

Schlüsselwortparameter level einen geeigneten Wert übergeben:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG)  
logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 

In diesem Beispiel wurde die Mindestdringlichkeit auf DEBUG gesetzt. Das bedeutet, 

dass alle Meldungen geloggt werden, die mindestens eine Dringlichkeit von DEBUG ha-

ben. Folglich erscheinen auch beide Meldungen in der Logdatei:

ERROR:root:Ein Fehler ist aufgetreten 
INFO:root:Dies ist eine Information 

Level Beschreibung

NOTSET keine Dringlichkeitsstufe

DEBUG eine Meldung, die nur für die Programmierung zur Fehlersuche interes-

sant ist

INFO eine Informationsmeldung über den Programmstatus

WARNING eine Warnmeldung, die auf einen möglichen Fehler hinweist

ERROR eine Fehlermeldung, nach der das Programm weiterarbeiten kann

CRITICAL eine Meldung über einen kritischen Fehler, der das sofortige Beenden des 

Programms oder der aktuell durchgeführten Operation zur Folge hat

Tabelle 27.1  Vordefinierte Dringlichkeitsstufen 
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Tabelle 27.2 listet die wichtigsten Schlüsselwortparameter auf, die der Funktion ba-
sicConfig übergeben werden können.

27.2.1    Das Meldungsformat anpassen

Wie in den vorangegangenen Beispielen zu sehen war, wird ein Eintrag in einer Log-

datei standardmäßig nicht mit einem Zeitstempel versehen. Es gibt eine Möglichkeit, 

das Format der geloggten Meldung anzupassen. Dazu übergeben Sie beim Funktions-

aufruf von basicConfig den Schlüsselwortparameter format:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG,  
    style="{", 
    format="{asctime} [{levelname:8}] {message}") 

Parameter Beschreibung

datefmt Spezifiziert das Datumsformat. Näheres dazu erfahren Sie im folgenden 

Abschnitt.

filemode Gibt den Modus* an, in dem die Logdatei geöffnet werden soll (Standard-

wert: "a").

filename Gibt den Dateinamen der Logdatei an.

format Spezifiziert das Meldungsformat. Näheres dazu erfahren Sie im folgen-

den Abschnitt.

handlers Gibt eine Liste von Handlern an, die registriert werden sollen. Näheres 

dazu erfahren Sie in Abschnitt 27.2.2.

level Legt die Mindestdringlichkeit für Meldungen fest, damit diese in der Log-

datei erscheinen.

stream Gibt einen Stream an, in den die Logmeldungen geschrieben werden sol-

len. Wenn die Parameter stream und filename gemeinsam angegeben 

werden, wird stream ignoriert.

style Bestimmt die Formatierungssyntax für die Meldung. Der voreingestellte 

Wert "%" bedingt die alte %-Syntax aus Python 2, während ein Wert von 

"{" die neue Syntax zur String-Formatierung** erzwingt.

* Die verschiedenen Modi, in denen Dateien geöffnet werden können, sind in Ab-

schnitt 6.2 aufgeführt.

** Näheres zur String-Formatierung erfahren Sie in Abschnitt 12.5.9.

Tabelle 27.2  Schlüsselwortparameter der Funktion basicConfig 
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logging.error("Ein Fehler ist aufgetreten") 
logging.info("Dies ist eine Information") 
logging.error("Und schon wieder ein Fehler") 

Sie sehen, dass ein Format-String übergeben wurde, der die Vorlage für eine Meldung 

enthält, wie sie später in der Logdatei stehen soll. Dabei stehen die Bezeichner asctime
für den Timestamp, levelname für die Dringlichkeitsstufe und message für die Mel-

dung. Die von diesem Beispiel generierten Meldungen sehen folgendermaßen aus:

2020-02-05 14:28:55,811 [ERROR   ] Ein Fehler ist aufgetreten 
2020-02-05 14:29:00,690 [INFO    ] Dies ist eine Information 
2020-02-05 14:29:12,686 [ERROR   ] Und schon wieder ein Fehler 

Tabelle 27.3 listet die wichtigsten Bezeichner auf, die innerhalb des format-Format-

Strings verwendet werden dürfen. Je nach Kontext, in dem die Meldung erzeugt wird, 

haben einige der Bezeichner keine Bedeutung.

Es ist möglich, das Format anzupassen, in dem Zeitstempel ausgegeben werden. Bei-

spielsweise können wir ein in Deutschland übliches Datumsformat setzen und außer-

dem die Ausgabe der Millisekundenanteile abschalten. Das Format des Timestamps 

Bezeichner Beschreibung

asctime Zeitpunkt der Meldung. Das Datums- und Zeitformat kann beim Funk-

tionsaufruf von basicConfig über den Parameter datefmt angegeben 

werden. Näheres dazu folgt im Anschluss an diese Tabelle.

filename der Dateiname der Programmdatei, in der die Meldung abgesetzt wurde

funcName der Name der Funktion, in der die Meldung abgesetzt wurde

levelname die Dringlichkeitsstufe der Meldung

lineno die Quellcodezeile, in der die Meldung abgesetzt wurde

message der Text der Meldung

module Der Name des Moduls, in dem die Meldung abgesetzt wurde. Der 

Modulname entspricht dem Dateinamen ohne Dateiendung.

pathname der Pfad zur Programmdatei, in der die Meldung abgesetzt wurde

process die ID des Prozesses, in dem die Meldung abgesetzt wurde

thread die ID des Threads, in dem die Meldung abgesetzt wurde

Tabelle 27.3  Bezeichner im Format-String 
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kann beim Aufruf von basicConfig über den Schlüsselwortparameter datefmt angege-

ben werden:

logging.basicConfig( 
    filename="programm.log", 
    level=logging.DEBUG,  
    style="{", 
    format="{asctime} [{levelname:8}] {message}", 
    datefmt="%d.%m.%Y %H:%M:%S") 
logging.error("Ein Fehler ist aufgetreten") 

Die in der Vorlage für das Datumsformat verwendeten Platzhalter wurden in Ab-

schnitt 15.1 eingeführt. Die von diesem Beispiel erzeugte Meldung sieht folgenderma-

ßen aus:

05.02.2020 14:38:49 [ERROR   ] Ein Fehler ist aufgetreten 

27.2.2    Logging-Handler

Bisher haben wir ausschließlich besprochen, wie das Modul logging dazu verwendet 

werden kann, alle eingehenden Meldungen in eine Datei zu schreiben. Tatsächlich ist 

das Modul in dieser Beziehung sehr flexibel und erlaubt es, nicht nur in Dateien, son-

dern beispielsweise auch in Streams zu schreiben oder die Meldungen über eine Netz-

werkverbindung zu schicken. Dafür werden sogenannte Logging-Handler verwendet. 

Um genau zu sein, haben wir in den vorangegangenen Abschnitten bereits einen im-

pliziten Handler verwendet, ohne uns darüber im Klaren zu sein.

Um einen speziellen Handler einzurichten, muss eine Instanz der Handler-Klasse er-

zeugt werden. Diese kann dann vom Logger verwendet werden. Im folgenden Beispiel 

sollen alle Meldungen auf einen Stream, nämlich sys.stdout, geschrieben werden; 

dazu wird die Handler-Klasse logging.StreamHandler verwendet:

import logging 
import sys 
handler = logging.StreamHandler(sys.stdout)  
frm = logging.Formatter("{asctime} {levelname}: {message}", 
                        "%d.%m.%Y %H:%M:%S", style="{") 
handler.setFormatter(frm) 
logger = logging.getLogger() 
logger.addHandler(handler)  
logger.setLevel(logging.DEBUG) 
logger.critical("Ein wirklich kritischer Fehler") 
logger.warning("Und eine Warnung hinterher") 
logger.info("Dies hingegen ist nur eine Info") 
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27 Bildschirmausgaben und Logging
Zunächst wird der Handler, in diesem Fall ein StreamHandler, instanziiert. Im nächsten 

Schritt wird eine Instanz der Klasse Formatter erzeugt. Diese Klasse kapselt die Forma-

tierungsanweisungen, die wir in den vorangegangenen Beispielen beim Aufruf der 

Funktion basicConfig übergeben haben. Mithilfe der Methode setFormatter werden 

dem Handler die Formatierungsanweisungen bekannt gegeben.

Um den Handler beim Logger zu registrieren, benötigen wir Zugriff auf die bisher im-

plizit verwendete Logger-Instanz. Diesen Zugriff erlangen wir über die Funktion get-
Logger. Danach wird über addHandler der Handler hinzugefügt und über setLevel die 

gewünschte Dringlichkeitsstufe eingestellt.

Die Meldungen werden im Folgenden nicht über Funktionen des Moduls logging, 

sondern über die Methoden critical, warning und info der Logger-Instanz logger ab-

gesetzt. Das Beispielprogramm gibt folgenden Text auf dem Bildschirm aus:

05.02.2020 17:21:46 CRITICAL: Ein wirklich kritischer Fehler 
05.02.2020 17:21:46 WARNING: Und eine Warnung hinterher 
05.02.2020 17:21:46 INFO: Dies hingegen ist nur eine Info 

Im Folgenden sollen die wichtigsten zusätzlichen Handler-Klassen beschrieben wer-

den, die im Paket logging bzw. logging.handlers enthalten sind.

logging.FileHandler(filename, [mode, encoding, delay])

Dieser Handler schreibt die Logeinträge in die Datei filename. Dabei wird die Datei im 

Modus mode geöffnet. Der Handler FileHandler kann auch implizit durch Angabe der 

Schlüsselwortparameter filename und filemode beim Aufruf der Funktion basicCon-
fig verwendet werden.

Der Parameter encoding kann dazu verwendet werden, das zum Schreiben der Datei 

genutzte Encoding festzulegen. Wenn Sie für den delay-Parameter True übergeben, 

wird mit dem Öffnen der Datei so lange gewartet, bis tatsächlich Daten geschrieben 

werden sollen.

logging.StreamHandler([stream])

Dieser Handler schreibt die Logeinträge in den Stream stream. Beachten Sie, dass der 

Handler StreamHandler auch implizit durch Angabe des Schlüsselwortparameters 

stream beim Aufruf der Funktion basicConfig verwendet werden kann.

logging.handlers.SocketHandler(host, port)  

logging.handlers.DatagramHandler(host, port)

Diese Handler senden die Logeinträge über eine TCP-Schnittstelle (SocketHandler) 

bzw. über eine UDP-Netzwerkschnittstelle (DatagramHandler) an den Rechner mit dem 

Hostnamen host unter Verwendung des Ports port.
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27.2 Logdateien – logging
logging.handlers.SMTPHandler(mailhost, from, to, subject, [credentials])

Dieser Handler sendet die Logeinträge als E-Mail an die Adresse to. Dabei werden sub-
ject als Betreff und from als Absenderadresse eingetragen. Über den Parameter mail-
host geben Sie den zu verwendenden SMTP-Server an. Sollte dieser Server eine Au-

thentifizierung verlangen, können Sie ein Tupel, das Benutzername und Passwort 

enthält, für den optionalen letzten Parameter credentials übergeben.
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