

Kapitel 4
Der Weg zum ersten Programm

Nachdem wir im interaktiven Modus spielerisch einige Grundelemente der Sprache
Python behandelt haben, mochten wir dieses Wissen jetzt auf ein tatsichliches Pro-
gramm Ubertragen. Im Gegensatz zum interaktiven Modus, der eine wechselseitige
Interaktion zwischen Ihnen und dem Interpreter ermoglicht, wird der Quellcode
eines Programms in eine Datei geschrieben. Diese wird als Ganzes vom Interpreter
eingelesen und ausgefuhrt.

In den folgenden Abschnitten lernen Sie die Grundstrukturen eines Python-Pro-
gramms kennen und werden Ihr erstes einfaches Beispielprogramm schreiben.

4.1 Tippen, kompilieren, testen

In diesem Abschnitt werden die Arbeitsabldufe besprochen, die nétig sind, um ein
Python-Programm zu erstellen und auszufiihren. Ganz allgemein sollten Sie sich da-
rauf einstellen, dass wir in einem Grof3teil des Buchs ausschlie8lich Konsolenanwen-
dungen schreiben werden. Eine Konsolenanwendung hat eine rein textbasierte
Schnittstelle zu den Benutzerinnen und Benutzern und lauft in der Konsole (auch
Shell) des jeweiligen Betriebssystems ab. Flir die meisten Beispiele und auch fiir viele
reale Anwendungsfille reicht eine solche textbasierte Schnittstelle aus.!

Grundsatzlich besteht ein Python-Programm aus einer oder mehreren Programmda-
teien. Diese Programmadateien haben die Dateiendung.py und enthalten den Python-
Quelltext. Dabei handelt es sich um nichts anderes als um Textdateien. Programmda-
teien konnen also mit einem normalen Texteditor bearbeitet werden.

Nachdem eine Programmdatei geschrieben wurde, besteht der nachste Schritt darin,
sie auszufiihren. Wenn Sie IDLE verwenden, kann die Programmdatei bequem tiber
den Meniipunkt RUN « RUN MODULE ausgefliihrt werden. Sollten Sie einen Editor ein-
setzen, der keine vergleichbare Funktion unterstitzt, miissen Sie in einer Kom-
mandozeile in das Verzeichnis der Programmdatei wechseln und — abhédngig von Th-
rem Betriebssystem — verschiedene Kommandos ausfiihren.

1 Selbstverstandlich ermdglicht Python auch die Programmierung grafischer Benutzerober-
flachen. Dies wird in Kapitel 41 behandelt.

65

4 Der Weg zum ersten Programm

411 Windows

Unter Windows wechseln Sie in das Verzeichnis, in dem die Programmadatei liegt, und
starten den Python-Interpreter mit dem Kommando python, gefolgt von dem Namen
der auszufithrenden Programmdatei.?

M Anaconda Powershell Prompt (anaconda3) — O X
(base) PS C:\Ordner> dir

Directory: C:\Ordner

LastWriteTime Length Name

98.05.2020 202 5@ programm.py

(base) PS C:\Ordner> python programm.py
Dies schreibt Ihnen Ihr Python-Programm
(base) PS C:\Ordner>

Abbildung 4.1 Ausflihren eines Python-Programms unter Windows

Bei »Dies schreibt [hnen Ihr Python-Programme« handelt es sich um eine Ausgabe des
Python-Programms in der Datei programm.py, die beweist, dass das Python-Pro-
gramm tatsachlich ausgefiihrt wurde.

Hinweis

Unter Windows ist es auch moglich, ein Python-Programm durch einen Doppelklick
auf die jeweilige Programmdatei auszufiihren. Das hat aber den Nachteil, dass sich
das Konsolenfenster sofort nach Beenden des Programmes schlieRt und die Ausgaben
des Programms somit nicht erkennbar sind.

4.1.2 Linux und macOS

Unter Unix-dhnlichen Betriebssystemen wie Linux oder macOS wechseln Sie ebenfalls
in das Verzeichnis, in dem die Programmdatei liegt, und starten dann den Python-In-
terpreter mit dem Kommando python, gefolgt von dem Namen der auszufiihrenden
Programmdatei. Im folgenden Beispiel wird die Programmdatei programm.py unter
Linux ausgefiihrt, die sich im Verzeichnis /home/user/ordner befindet:

2 In dlteren Windows-Versionen finden Sie die Konsole unter START + PROGRAMME * ZUBEHOR
EINGABEAUFFORDERUNG. In neueren Windows-Versionen starten Sie die PowerShell.

66

4.1 Tippen, kompilieren, testen

user@HOST ~ $ cd ordner
User@HOST ~/ordner $ python programm.py
Dies schreibt Ihnen Ihr Python-Programm

Bitte beachten Sie den Hinweis in Abschnitt 2.4.3, der besagt, dass das Kommando,
mit dem Sie Python starten, je nach Distribution von dem hier demonstrierten python
abweichen kann.

4.1.3 Shebang

Unter einem Unix-dhnlichen Betriebssystem wie beispielsweise Linux konnen
Python-Programmadateien mithilfe eines Shebangs, auch Magic Line genannt, direkt
ausfuihrbar gemacht werden. Dazu muss die erste Zeile der Programmadatei in der Re-
gel folgendermafien lauten:

#1/usr/bin/python

In diesem Fall wird das Betriebssystem dazu angehalten, diese Programmdatei
immer mit dem Python-Interpreter auszufiihren. Unter anderen Betriebssystemen,
beispielsweise Windows, wird die Shebang-Zeile ignoriert.

Beachten Sie, dass der Python-Interpreter auf Ihrem System in einem anderen Ver-
zeichnis als dem hier angegebenen installiert sein konnte. Allgemein ist daher fol-
gende Shebang-Zeile besser, da sie vom tatsachlichen Installationsort von Python un-
abhingig ist:

#!/usr/bin/env python
Weitere Details zum Zusammenspiel zwischen der Shebang-Zeile und den virtuellen
Umgebungen von Anaconda finden Sie in Abschnitt 39.2. Beachten Sie aufierdem,

dass das Executable-Flag der Programmadatei gesetzt werden muss, bevor die Datei
tatsachlich ausfiihrbar ist. Das geschieht mit folgendem Befehl:

$ chmod +x dateiname
Die in diesem Buch gezeigten Beispiele enthalten aus Grinden der Ubersichtlichkeit

keine Shebang-Zeile. Das bedeutet aber ausdriicklich nicht, dass vom Einsatz einer
Shebang-Zeile abzuraten ware.

4.1.4 Interne Ablaufe

Bislang haben Sie eine ungefdahre Vorstellung davon, was Python ausmacht und wo
die Starken dieser Programmiersprache liegen. Aulerdem haben wir Thnen das
Grundwissen zum Erstellen und Ausfihren einer Python-Programmdatei vermit-

67

4 Der Weg zum ersten Programm

telt. Doch in den vorangegangenen Abschnitten sind Begriffe wie »Compiler« oder
»Interpreter« gefallen, ohne erklart worden zu sein. In diesem Abschnitt mochten
wir uns daher den internen Vorgdngen widmen, die beim Ausfiihren einer Python-
Programmdatei ablaufen. Abbildung 4.2 veranschaulicht, was beim Ausfiihren einer
Programmdatei namens programm.py geschieht.

Programmdatei
(o programm.py

l

Compiler

i Byte-Code
(programm.pyc

Interpreter

|
3

Abbildung 4.2 Kompilieren und Interpretieren einer Programmdatei

Wenn die Programmadatei programm.py, wie zu Beginn des Kapitels beschrieben, aus-
gefuhrt wird, passiert sie zunachst den Compiler. Als Compiler wird ein Programm be-
zeichnet, das von einer formalen Sprache in eine andere tibersetzt. Im Fall von Python
ubersetzt der Compiler von der Sprache Python in den Byte-Code. Dabei steht es dem
Compiler frei, den generierten Byte-Code im Arbeitsspeicher zu behalten oder als pro-
gramm.pyc auf der Festplatte zu speichern.

Beachten Sie, dass der vom Compiler generierte Byte-Code nicht direkt auf dem Pro-
zessor ausgefiihrt werden kann, im Gegensatz etwa zu C- oder C++-Kompilaten. Zur
Ausfiihrung des Byte-Codes wird eine weitere Abstraktionsschicht, der Interpreter,
bendtigt. Der Interpreter, hdufig auch virtuelle Maschine (engl. virtual machine) ge-
nannt, liest den vom Compiler erzeugten Byte-Code ein und fihrt ihn aus.

Dieses Prinzip einer interpretierten Programmiersprache hat verschiedene Vorteile.
So kann derselbe Python-Code beispielsweise unmodifiziert auf allen Plattformen

68

4.2 Grundstruktur eines Python-Programms

ausgefiihrt werden, fiir die ein Python-Interpreter existiert. Allerdings laufen Pro-
gramme interpretierter Programmiersprachen aufgrund des zwischengeschalteten
Interpreters in der Regel auch langsamer als ein vergleichbares C-Programm, das
direkt auf dem Prozessor ausgefiihrt wird.3

4.2 Grundstruktur eines Python-Programms

Um Thnen ein Gefiihl fir die Sprache Python zu vermitteln, méchten wir Ihnen zu-
nachst einen Uberblick tiber ihre Syntax geben. Das Wort Syntax kommt aus dem
Griechischen und bedeutet »Satzbau«. Unter der Syntax einer Programmiersprache
ist die vollstandige Beschreibung erlaubter und verbotener Konstruktionen zu ver-
stehen. Die Syntax wird durch eine Grammatik festgelegt, an die Sie sich zu halten ha-
ben. Tun Sie es nicht, so verursachen Sie den allseits bekannten Syntax-Error.

Python macht Thnen sehr genaue Vorgaben dazu, wie Sie Ihren Quellcode strukturie-
ren miissen. Obwohl erfahrene Programmierer und Programmiererinnen darin eine
Einschrankung sehen mogen, kommt diese Eigenschaft gerade Neulingen zugute,
denn unstrukturierter und unubersichtlicher Code ist eine der grofiten Fehlerquellen
in der Programmierung.

Grundsatzlich besteht ein Python-Programm aus einzelnen Anweisungen, die im ein-
fachsten Fall genau eine Zeile im Quelltext einnehmen. Folgende Anweisung gibt bei-
spielsweise einen Text auf dem Bildschirm aus:

print("Hallo Welt")

Einige Anweisungen lassen sich in einen Anweisungskopf und einen Anweisungskor-
per unterteilen, wobei der Korper weitere Anweisungen enthalten kann:
Anweisungskopf:

Anweisung

Anweisung

Das kann in einem konkreten Python-Programm etwa so aussehen:

if x > 10:
print("x ist groRer als 10")
print("Zweite Zeile!")

3 Diese Aussage stimmt nicht notwendigerweise, wenn der Interpreter Optimierungen zur Lauf-
zeit des Programms durchfiihrt, beispielsweise eine Just-in-Time-Kompilierung. Aktuelle Versio-
nen von CPython und der alternative Interpreter PyPy (siehe Abschnitt 40.1) fithren solche
Optimierungen durch, um die Programmausfithrung zu beschleunigen.

69

4 Der Weg zum ersten Programm

Die Zugehorigkeit des Korpers zum Kopf wird in Python durch einen Doppelpunkt
am Ende des Anweisungskopfs und durch eine tiefere Einrtickung des Anweisungs-
korpers festgelegt. Die Einrtickung kann sowohl tiber Tabulatoren als auch tiber Leer-
zeichen erfolgen, wobei Sie gut beraten sind, beides nicht zu vermischen. Wir emp-
fehlen eine Einrtickungstiefe von jeweils vier Leerzeichen.

Python unterscheidet sich hier von vielen gangigen Programmiersprachen, in denen
die Zuordnung von Anweisungskopf und Anweisungskorper durch geschweifte
Klammern oder Schlisselworter wie »Begin« und »End« erreicht wird.

Hinweis

Ein Programm, in dem sowohl Leerzeichen als auch Tabulatoren verwendet wurden,
kann vom Python-Compiler anstandslos tbersetzt werden, da jeder Tabulator intern
durch acht Leerzeichen ersetzt wird. Dies kann aber zu schwer auffindbaren Fehlern
fiihren, denn viele Editoren verwenden standardmaRig eine Tabulatorweite von vier
Leerzeichen. Dadurch scheinen bestimmte Quellcodeabschnitte gleich weit einge-
riickt zu sein, obwohl sie es de facto nicht sind.

Bitte stellen Sie lhren Editor so ein, dass jeder Tabulator automatisch durch Leerzei-
chen ersetzt wird, oder verwenden Sie ausschlieBlich Leerzeichen zur Einrtickung lh-
res Codes.

Moglicherweise fragen Sie sich jetzt, wie Anweisungen, die iiber mehrere Zeilen ge-
hen, mit dem interaktiven Modus vereinbar sind, in dem ja immer nur eine Zeile be-
arbeitet werden kann. Nun, generell werden wir versuchen, den interaktiven Modus
zu vermeiden, wenn ein Codebeispiel mehrere Zeilen lang ist. Dennoch ist die Frage
berechtigt. Die Antwort: Es wird ganz intuitiv zeilenweise eingegeben. Wenn der In-
terpreter erkennt, dass eine Anweisung noch nicht vollendet ist, andert er den
Prompt von >>> in Geben wir einmal unser oben dargestelltes Beispiel in den in-
teraktiven Modus ein:

>>> x = 123

>>> if x > 10:
print("Der Interpreter leistet gute Arbeit")
print("Zweite Zeile!")

Der Interpreter leistet gute Arbeit
Zweite Zeilel
>>>

Beachten Sie, dass Sie die aktuelle Einrtickungstiefe berticksichtigen mussen, auch
wenn eine Zeile mit ... beginnt. Daruber hinaus kann der Interpreter das Ende des
Anweisungskorpers nicht automatisch erkennen, da dieser beliebig viele Anweisun-

70

4.2 Grundstruktur eines Python-Programms

gen enthalten kann. Deswegen muss ein Anweisungskorper im interaktiven Modus
durch Dricken der [<]-Taste beendet werden.

4.21 Umbrechen langer Zeilen

Prinzipiell konnen Quellcodezeilen beliebig lang werden. Viele Programmierer be-
schrinken die Lange ihrer Quellcodezeilen jedoch, damit beispielsweise mehrere
Quellcodedateien nebeneinander auf den Bildschirm passen oder der Code auch auf
Gerdten mit einer festen Zeilenbreite angenehm zu lesen ist. Gelaufige maximale Zei-
lenlangen sind 80 oder 120 Zeichen. Innerhalb von Klammern dirfen Sie Quellcode
beliebig umbrechen:

>>> var = (
. 10
R
... 10
)
>>> var
20

Anvielen anderen Stellen, an denen keine Klammern gesetzt werden diirfen, sind Sie
an die strengen syntaktischen Regeln von Python gebunden. Durch den Einsatz der
Backslash-Notation ist es moglich, Quellcode an nahezu beliebigen Stellen in eine
neue Zeile zu umbrechen:

>>> var \
=\
. 10
>>> var
10

Grundsatzlich kann ein Backslash tiberall da stehen, wo auch ein Leerzeichen hatte
stehen konnen. Daher ist ein Backslash innerhalb eines Strings ebenfalls moglich:

>>> "Hallo \
. Welt"
'"Hallo Welt'

Beachten Sie dabei aber, dass eine Einriickung des umbrochenen Teils des Strings
Leerzeichen in den String schreibt. Aus diesem Grund sollten Sie die folgende Vari-
ante, einen String in mehrere Zeilen zu schreiben, vorziehen:

>>> "Hallo "\
. "Welt"
'Hallo Welt'

n

4 Der Weg zum ersten Programm

4.2.2 Zusammenfiigen mehrerer Zeilen

Genauso, wie Sie eine einzeilige Anweisung mithilfe des Backslashs auf mehrere Zei-
len umbrechen, konnen Sie mehrere einzeilige Anweisungen in einer Zeile zusam-
menfassen. Dazu werden die Anweisungen durch ein Semikolon voneinander ge-
trennt:

>>> print("Hallo"); print("Welt")
Hallo
Welt

Anweisungen, die aus einem Anweisungskopf und einem Anweisungskorper beste-
hen, konnen auch ohne Einsatz eines Semikolons in eine Zeile gefasst werden, sofern
der Anweisungskorper selbst aus nicht mehr als einer Zeile besteht:

>>> x = True
>>> if x: print("Hallo Welt")

Hallo Welt
Sollte der Anweisungskorper mehrere Zeilen lang sein, konnen diese durch ein Semi-
kolon zusammengefasst werden:

>>> x = True

>>> if x: print("Hallo"); print("Welt")

Hallo

Welt

Alle durch ein Semikolon zusammengefligten Anweisungen werden so behandelt, als
waren sie gleich weit eingertickt. Allein ein Doppelpunkt vergréfRert die Einriickungs-
tiefe. Aus diesem Grund gibt es im oben genannten Beispiel keine Moglichkeit, in der-

selben Zeile eine Anweisung zu schreiben, die nicht mehr im Koérper der if-Anwei-
sung steht.

Hinweis
Beim Einsatz des Backslashs und vor allem des Semikolons entsteht schnell unleser-

licher Code. Verwenden Sie beide Notationen daher nur, wenn Sie meinen, dass es der
Lesbarkeit und Ubersichtlichkeit dienlich ist.

72

4.3 Das erste Programm

4.3 Das erste Programm

Als Einstieg in die Programmierung mit Python erstellen wir ein kleines Beispielpro-
gramm, das Spiel »Zahlenraten«. Die Spielidee ist folgende: Der Spieler soll eine im
Programm festgelegte Zahl erraten. Dazu stehen ihm beliebig viele Versuche zur Ver-
fligung. Nach jedem Versuch informiert ihn das Programm dariiber, ob die geratene
Zahl zu grof3, zu klein oder genau richtig gewesen ist. Sobald der Spieler die Zahl erra-
ten hat, gibt das Programm die Anzahl der Versuche aus und wird beendet. Aus Sicht
des Spielers soll das Ganze folgendermafien aussehen:

Raten Sie: 42

Zu klein

Raten Sie: 10000

Zu grof

Raten Sie: 999

Zu klein

Raten Sie: 1337

Super, Sie haben es in 4 Versuchen geschafft!

Kommen wir vom Ablaufprotokoll zur konkreten Implementierung in Python.

Initialisierung:
Hier werden Variablen

angelegt und mit Werten Schleifenkopf:

In einer Schleife werden

versehen.
cheimnis - 1337 so lange Zahlen vom Benutzer
éersuch _— gefordert, wie die geheime
zaehler = 0 Zahl noch nicht erraten ist.

while versuch != geheimnis: /

versuch = int(input("Raten Sie: "))

Schleifenkorper:

Der zur Schleife gehdrige
Block wird durch seine
Einrlickung bestimmt.

if versuch < geheimnis:
print("Zu klein") /
Bildschirmausgabe:
if versuch > geheimnis: Mit der Funktion print
print("Zu groR") konnen Zeichenketten

ausgegeben werden.
zaehler = zaehler + 1

print("Super, Sie haben es in ", zaehler, "Versuchen geschafft!")

Abbildung 4.3 Zahlenraten, ein einfaches Beispiel

Die in Abbildung 4.3 hervorgehobenen Bereiche des Programms werden im Folgen-
den noch einmal ausfiihrlich diskutiert.

3

4 Der Weg zum ersten Programm

4.3.1 |Initialisierung

Bei der Initialisierung werden die flr das Spiel bendtigten Variablen angelegt. Python
unterscheidet zwischen verschiedenen Datentypen, wie etwa Zeichenketten, Ganz-
oder Flief3kommazahlen. Der Typ einer Variablen wird zur Laufzeit des Programms
anhand des ihr zugewiesenen Werts bestimmt. Es ist also nicht notig, einen Datentyp
explizit anzugeben. Eine Variable kann im Laufe des Programms ihren Typ dndern.

In unserem Spiel werden Variablen fiir die gesuchte Zahl (geheimnis), die Benutzerein-
gabe (versuch) und den Versuchszédhler (zaehler) angelegt und mit Anfangswerten
versehen. Dadurch, dass versuch und geheimnis zu Beginn des Programms verschie-
dene Werte haben, ist sichergestellt, dass die Schleife anlauft.

43.2 Schleifenkopf

Eine while-Schleife wird eingeleitet. Eine while-Schleife lduft so lange, wie die im
Schleifenkopf genannte Bedingung (versuch != geheimnis) erfillt ist, also in diesem
Fall, bis die Variablen versuch und geheimnis den gleichen Wert haben. Aus Benutzer-
sicht bedeutet dies: Die Schleife lauft so lange, bis die Benutzereingabe mit der zu er-
ratenden Zahl tibereinstimmt.

Den zum Schleifenkopf gehorigen Schleifenkorper erkennt man daran, dass die nach-
folgenden Zeilen um eine Stufe weiter eingertickt wurden. Sobald die Einrtickung wie-
der um einen Schritt nach links geht, endet der Schleifenkorper.

433 Schleifenkdrper

In der ersten Zeile des Schleifenkorpers wird eine vom Spieler eingegebene Zahl ein-
gelesen und in der Variablen versuch gespeichert. Dabei wird mithilfe von input
("Raten Sie: ") die Eingabe eines Benutzers oder einer Benutzerin eingelesen und
mit int in eine ganze Zahl konvertiert (von engl. integer, »ganze Zahl«). Diese Kon-
vertierung ist wichtig, da Benutzereingaben generell als String eingelesen werden.
In unserem Fall méchten wir die Eingabe jedoch als Zahl weiterverwenden. Der
String "Raten Sie: " wird vor der Eingabe ausgegeben und dient dazu, zur Eingabe
der Zahl aufzufordern.

Nach dem Einlesen wird einzeln gepriift, ob die eingegebene Zahl versuch grofSer oder
kleiner als die gesuchte Zahl geheimnis ist, und mittels print wird eine entsprechende
Meldung ausgegeben. Schliefdlich wird der Versuchszédhler zaehler um eins erhoht.

Nach dem Hochzdhlen des Versuchszdhlers endet der Schleifenkorper, da die nachste
Zeile nicht mehr unter dem Schleifenkopf eingertickt ist.

74

4.4 Kommentare

43.4 Bildschirmausgabe

Die letzte Programmzeile gehort nicht mehr zum Schleifenkorper. Das bedeutet, dass
sie erst ausgefiihrt wird, wenn die Schleife vollstandig durchlaufen, das Spiel also ge-
wonnen ist. In diesem Fall werden eine Erfolgsmeldung sowie die Anzahl der benétig-
ten Versuche ausgegeben. Das Spiel ist beendet.

Erstellen Sie jetzt Ihr erstes Python-Programm, indem Sie den Programmcode in eine
Datei namens spiel.py schreiben und ausfiihren. Andern Sie den Startwert von ge-
heimnis und spielen Sie das Spiel.

4.4 Kommentare

Sie konnen sich sicherlich vorstellen, dass es nicht das Ziel ist, Programme zu schrei-
ben, die auf eine Postkarte passen wiirden. Mit der Zeit wird der Quelltext Ihrer Pro-
gramme umfangreicher und komplexer werden. Irgendwann ist der Zeitpunkt er-
reicht, da blofles Gedédchtnistraining nicht mehr ausreicht, um die Ubersicht zu
bewahren. Spatestens dann kommen Kommentare ins Spiel.

Ein Kommentar ist ein kleiner Text, der eine bestimmte Stelle des Quellcodes erlau-
tert und auf Probleme, offene Aufgaben oder Ahnliches hinweist. Ein Kommentar
wird vom Interpreter einfach ignoriert, andert also am Ablauf des Programms nichts.

Die einfachste Moglichkeit, einen Kommentar zu verfassen, ist der Zeilenkommentar.
Diese Art des Kommentars wird mit dem #-Zeichen begonnen und endet mit dem
Ende der Zeile:

Ein Beispiel mit Kommentaren
print("Hallo Welt!") # Simple Hallo-Welt-Ausgabe

Fir langere Kommentare bietet sich ein Blockkommentar an. Ein Blockkommentar
beginnt und endet mit drei aufeinanderfolgenden Anfiihrungszeichen:*

nun

Dies ist ein Blockkommentar,
er kann sich Uber mehrere Zeilen erstrecken.

nun

Kommentare sollten nur gesetzt werden, wenn sie zum Verstdndnis des Quelltextes
beitragen oder wertvolle Informationen enthalten. Jede noch so unwichtige Zeile zu
kommentieren, fiihrt dazu, dass man den Wald vor lauter Biumen nicht mehr sieht.

4 Eigentlich wird mit dieser Notation kein Blockkommentar erzeugt, sondern ein mehrzeiliger
String, der sich aber auch dazu eignet, grof3ere Quellcodebereiche »auszukommentieren«.

75

4 Der Weg zum ersten Programm

4.5 Der Fehlerfall

Vielleicht haben Sie bereits mit dem Beispielprogramm aus Abschnitt 4.3 gespielt und
sind dabei auf eine solche oder dhnliche Ausgabe des Interpreters gestofien:

File "hallo_welt.py", line 7
if versuch != geheimnis

AN

SyntaxError: expected ':'

Es handelt sich dabei um eine Fehlermeldung, die in diesem Fall auf einen Syntaxfeh-
ler im Programm hinweist. Kénnen Sie erkennen, welcher Fehler hier vorliegt? Rich-
tig, es fehlt der Doppelpunkt am Ende der Zeile.

Python stellt bei der Ausgabe einer Fehlermeldung wichtige Informationen bereit, die
bei der Fehlersuche hilfreich sind:

» Die erste Zeile der Fehlermeldung gibt Aufschluss dartiber, in welcher Zeile inner-
halb welcher Datei der Fehler aufgetreten ist. In diesem Fall handelt es sich um
Zeile 7 in der Datei hallo_welt.py.

» Der mittlere Teil zeigt den betroffenen Ausschnitt des Quellcodes, wobei die ge-
naue Stelle, auf die sich die Meldung bezieht, mit einem kleinen Pfeil markiert ist.
Wichtig ist, dass dies die Stelle ist, an der der Interpreter den Fehler erstmalig fest-
stellen konnte. Das ist nicht unbedingt gleichbedeutend mit der Stelle, an der der
Fehler gemacht wurde.

» Dieletzte Zeile spezifiziert den Typ der Fehlermeldung, in diesem Fall einen Syntax-
Error. Dies sind die am hédufigsten auftretenden Fehlermeldungen. Sie zeigen an,
dass der Compiler das Programm aufgrund eines formalen Fehlers nicht weiter
ubersetzen konnte.

Neben dem Syntaxfehler gibt es eine Reihe weiterer Fehlertypen, die an dieser Stelle
nicht alle im Detail besprochen werden sollen.> Wir méchten jedoch noch auf den
IndentationError (dt. »Einrtickungsfehler«) hinweisen, da er gerade bei Python-An-
fingern und -Anfingerinnen héufig auftritt. Versuchen Sie dazu einmal, folgendes
Programm auszufiihren:

i=10
if i == 10:
print("Falsch eingeriickt")

Sie sehen, dass die letzte Zeile eigentlich einen Schritt weiter eingertickt sein misste.
So, wie das Programm jetzt geschrieben wurde, hat die if-Anweisung keinen Anwei-
sungskorper. Das ist nicht zulassig, und daher tritt ein IndentationError auf:

5 Sie finden eine Ubersicht tiber alle Fehlertypen in Abschnitt A.4, »Eingebaute Exceptions«.

76

4.5 Der Fehlerfall

File "indent.py", line 3
print("Falsch eingeriickt")

ANNAN

IndentationError: expected an indented block after 'if' statement on line 2

Nachdem wir uns mit diesen Grundlagen vertraut gemacht haben, kommen wir zu
den Kontrollstrukturen, die es Thnen erlauben, den Programmfluss zu steuern.

77

Kapitel 11
Numerische Datentypen

In diesem Kapitel besprechen wir mit den numerischen Datentypen die erste grof3e
Gruppe von Datentypen in Python. Tabelle 11.1 listet alle zu dieser Gruppe gehorigen
Datentypen auf und nennt ihren Zweck.

Datentyp Beschreibung Verinderlichkeit” Abschnitt

int ganze Zahlen unverdnderlich Abschnitt 11.4
float Gleitkommazahlen unverdnderlich Abschnitt 11.5
bool boolesche Werte unverdnderlich Abschnitt 11.6
complex komplexe Zahlen unverdnderlich Abschnitt 11.7

" Alle numerischen Datentypen sind unverinderlich. Das bedeutet nicht, dass es keine
Operatoren gibt, die Zahlen verandern, sondern vielmehr, dass nach jeder Verande-

rung eine neue Instanz des jeweiligen Datentyps erzeugt werden muss. Aus Program-
miersicht besteht also zunachst kaum ein Unterschied. Naheres zum Unterschied zwi-
schen veranderlichen und unveranderlichen Datentypen erfahren Sie in Abschnitt 7.3.

Tabelle 11.1 Numerische Datentypen

Die numerischen Datentypen bilden eine Gruppe, weil sie thematisch zusammenge-
horen. Diese Zusammengehorigkeit schldgt sich auch darin nieder, dass die numeri-
schen Datentypen viele gemeinsame Operatoren haben. In den folgenden Abschnit-
ten werden wir diese gemeinsamen Operatoren behandeln und im Anschluss daran
die numerischen Datentypen int, float, bool und complex detailliert besprechen.

1.1 Arithmetische Operatoren

Unter einem arithmetischen Operator wird ein Operator verstanden, der eine arith-
metische Berechnung vornimmt, beispielsweise eine Addition oder eine Multiplika-
tion. Fur alle numerischen Datentypen sind die in Tabelle 11.2 aufgefiihrten arithme-
tischen Operatoren definiert.

143

11 Numerische Datentypen

Operator Ergebnis

X+y Summe von x undy

X -y Differenz von x und y

X *y Produkt von x und y

x/y Quotient von x und y

X%y Rest beim Teilen von x durch y’

+X positives Vorzeichen

-X negatives Vorzeichen

X *¥¥y x hochy

x//y abgerundeter Quotient von x und y*

" Die Operatoren % und // haben fiir komplexe Zahlen keine mathematische Bedeu-
tung und sind deshalb fiir den Datentyp complex nicht definiert.

Tabelle 11.2 Gemeinsame Operatoren numerischer Datentypen

Hinweis
Zwei Anmerkungen fiir Leser und Leserinnen, die bereits mit einer C-ahnlichen Pro-

grammiersprache vertraut sind:

Es gibt in Python keine Entsprechungen fiir die Inkrementierungs- und Dekrementie-
rungsoperatoren ++ und -- aus C.

Die Operatoren % und // konnen folgendermaBen beschrieben werden:
» x//y=runden(x/y)
> x%y=x-y*runden(x/y)

Python rundet dabei stets ab, wahrend C zur Null hin rundet. Dieser Unterschied tritt
nur auf, wenn die Operanden gegensatzliche Vorzeichen haben.

11.1.1 Erweiterte Zuweisungen

Neben diesen grundlegenden Operatoren gibt es in Python eine Reihe zusétzlicher
Operatoren. Oftmals mochte man beispielsweise die Summe von x und y berechnen
und das Ergebnis in x speichern, x also um y erh6hen. Dazu ist mit den oben genann-
ten Operatoren folgende Anweisung notig:

X =X+y

144

1.2 Vergleichende Operatoren

Flr solche Fille gibt es in Python sogenannte erweiterte Zuweisungen (engl. augmen-

ted assignments), die als eine Art Abkiirzung fiir die oben genannte Anweisung ange-

sehen werden konnen. Tabelle 11.3 listet die in Python definierten erweiterten Zuwei-

sungen auf.

Operator Entsprechung
X+=y X=X+y
X-=y X=X-Yy

X *=y X=x*y
x/=y x=x/y

X %=y X=xX%y

X ¥¥=y X=x**y
x//=y x=x//y

Tabelle 11.3 Gemeinsame Operatoren numerischer Datentypen

Wichtig ist, dass Sie hier fiir y einen beliebigen arithmetischen Ausdruck einsetzen

konnen, wiahrend x ein Ausdruck sein muss, der auch als Ziel einer normalen Zuwei-

sung eingesetzt werden konnte, also zum Beispiel ein symbolischer Name oder ein
Element einer Liste oder eines Dictionarys.

1.2 Vergleichende Operatoren

Ein vergleichender Operator ist ein Operator, der aus zwei Instanzen einen Wahrheits-

wert berechnet. Tabelle 11.4 listet die vergleichenden Operatoren auf, die fiir numeri-
sche Datentypen definiert sind.

Operator Ergebnis

X==y wahr, wenn x und y gleich sind

xl=y wahr, wenn x und y verschieden sind
X<y wahr, wenn x kleiner ist als y’

X <=y wahr, wenn x kleiner oder gleich y ist’

Tabelle 1.4 Gemeinsame Operatoren numerischer Datentypen

145

11 Numerische Datentypen

Operator Ergebnis
X >y wahr, wenn x groRer ist als y*
X>=y wahr, wenn x groRer oder gleich y ist”

" Da komplexe Zahlen prinzipiell nicht sinnvoll anzuordnen sind, |3sst der Datentyp
complex nur die Verwendung der ersten beiden Operatoren zu.

Tabelle 1.4 Gemeinsame Operatoren numerischer Datentypen (Forts.)

Jeder dieser vergleichenden Operatoren liefert als Ergebnis einen Wahrheitswert. Ein
solcher Wert wird zum Beispiel als Bedingung einer if-Anweisung erwartet. Die Ope-
ratoren konnten also folgendermafien verwendet werden:

if x < 4:
print("x ist kleiner als 4")

Sie konnen beliebig viele der vergleichenden Operatoren zu einer Reihe verketten.
Das obere Beispiel ist genau genommen nur ein Spezialfall dieser Regel - mit lediglich
zwei Operanden. Die Bedeutung einer solchen Verkettung entspricht der mathema-
tischen Sichtweise und ist anhand des folgenden Beispiels zu erkennen:

if 2 < x < 4:
print("x liegt zwischen 2 und 4")

Mehr zu booleschen Werten folgt in Abschnitt 11.6.

1.3 Konvertierung zwischen numerischen Datentypen

Numerische Datentypen konnen tber die eingebauten Funktionen int, float, bool
und complex ineinander umgeformt werden. Dabei konnen je nach Umformung In-
formationen verloren gehen. Als Beispiel betrachten wir einige Konvertierungen im
interaktiven Modus:

>>> float(33)
33.0

>>> int(33.5)

33

>>> bool(12)

True

>>> complex(True)

(1+07)

146

1.4 Ganzzahlen—int

Anstelle eines konkreten Literals kann auch eine Referenz eingesetzt bzw. eine Refe-
renz mit dem entstehenden Wert verkniipft werden:

>>> varl = 12.5

>>> int(varl)

>>> var2 = int(40.25)
>>> var2

Hinweis

Der Datentyp complex nimmt bei den oben vorgestellten Konvertierungen eine Son-
derstellungein, da er sich nicht sinnvoll in einer pauschalen Weise auf einen einzelnen
Zahlenwert reduzieren lasst. Aus diesem Grund schldgt eine Konvertierung wie bei-
spielsweise int(1+2j) fehl.

So viel zur allgemeinen Einfiihrung in die numerischen Datentypen. Die folgenden
Abschnitte werden jeden Datentyp dieser Gruppe im Detail behandeln.

1.4 Ganzzahlen —int

Fir die Arbeit mit ganzen Zahlen gibt es in Python den Datentyp int. Im Gegensatz
zu vielen anderen Programmiersprachen unterliegt dieser Datentyp in seinem Wer-
tebereich keinen prinzipiellen Grenzen, was den Umgang mit groen ganzen Zahlen
in Python sehr komfortabel macht.!

Wir haben bereits viel mit ganzen Zahlen gearbeitet, sodass die Verwendung von int
eigentlich keiner Demonstration mehr bedarf. Der Vollstandigkeit halber sehen Sie
hier dennoch ein kleines Beispiel:

>>> 1 = 1234
>>> 1
1234
>>>p

int(5678)
>>> p
5678

Seit Python 3.6 kann ein Unterstrich verwendet werden, um die Ziffern eines Literals
zu gruppieren:

1 In Python 2 existierten noch zwei Datentypen fiir ganze Zahlen: int fiir den begrenzten Zahlen-
raum von 32 Bit bzw. 64 Bit sowie long mit einem unbegrenzten Wertebereich.

147

n

Numerische Datentypen

>>> 1_000_000
1000000

>>> 1.0.0

100

Die Gruppierung dndert nichts am Zahlenwert des Literals, sondern dient dazu, die

Lesbarkeit von Zahlenliteralen zu erhohen. Ob und wie Sie die Ziffern gruppieren,

bleibt Ihnen tiberlassen.

11.4.1 Zahlensysteme

Ganze Zahlen konnen in Python in mehreren Zahlensystemen geschrieben werden:

>

Zahlen, die wie im oben dargestellten Beispiel ohne ein spezielles Prafix geschrie-
ben sind, werden im Dezimalsystem (Basis 10) interpretiert. Beachten Sie, dass
einer solchen Zahl keine fiihrenden Nullen vorangestellt werden durfen:

v_dez = 1337

Das Prifix 0o (»Null-o«) kennzeichnet eine Zahl, die im Oktalsystem (Basis 8) ge-
schrieben wurde. Beachten Sie, dass hier nur Ziffern von 0 bis 7 erlaubt sind:
v_okt = 002471

Das kleine »o« im Prafix kann auch durch ein grofies »O« ersetzt werden. Wir emp-
fehlen Ihnen jedoch, stets ein kleines »o« zu verwenden, da das grofie »O« in vielen
Schriftarten von der Null kaum zu unterscheiden ist.

Die nédchste und weitaus gebrauchlichere Variante ist das Hexadezimalsystem (Ba-
sis 16), das durch das Préfix 0x bzw. 0X (Null-x) gekennzeichnet ist. Die Zahl selbst
darf aus den Ziffern 0-9 und den Buchstaben A-F bzw. a—f gebildet werden:

v_hex = Ox5A3F

Neben dem Hexadezimalsystem ist in der Informatik das Dualsystem, auch Bindr-
system (Basis 2), von entscheidender Bedeutung. Zahlen im Dualsystem werden
analog zu den vorangegangenen Literalen durch das Prafix Ob eingeleitet:

v_bin = 0b1101

Im Dualsystem durfen nur die Ziffern 0 und 1 verwendet werden.

Vielleicht mdchten Sie sich nicht auf diese vier Zahlensysteme beschranken, die von

Python explizit unterstiitzt werden, sondern ein exotischeres verwenden. Natiirlich
gibt es in Python nicht flr jedes mogliche Zahlensystem ein eigenes Literal. Stattdes-
sen konnen Sie sich folgender Schreibweise bedienen:

v_6 = int("54425", 6)

148

1.4 Ganzzahlen—int

Es handelt sich um eine alternative Methode, eine Instanz des Datentyps int zu erzeu-
gen und mit einem Anfangswert zu versehen. Dazu werden in den Klammern ein
String, der den gewiinschten Initialwert in dem gewidhlten Zahlensystem enthalt, so-
wie die Basis dieses Zahlensystems als ganze Zahl geschrieben. Beide Werte mussen
durch ein Komma getrennt werden. Im Beispiel wurde das Sechsersystem verwendet.

Python unterstiitzt Zahlensysteme mit einer Basis von 2 bis 36. Wenn ein Zahlensys-
tem mehr als zehn verschiedene Ziffern zur Darstellung einer Zahl benétigt, werden
zusatzlich zu den Ziffern O bis 9 die Buchstaben A bis Z des englischen Alphabets ver-
wendet.

Die Variable v_6 hat jetzt den Wert 7505 im Dezimalsystem.

Fir alle Zahlensystemliterale ist die Verwendung eines negativen Vorzeichens mog-
lich:

>>> -1234
-1234

>>> -00777
-511

>>> -0OxFF

-255

>>> -0b1010101
-85

Beachten Sie, dass es sich bei den Zahlensystemen nur um eine alternative Schreib-
weise des gleichen Werts handelt. Der Datentyp int springt beispielsweise nicht in
eine Art Hexadezimalmodus, sobald er einen solchen Wert enthélt, stattdessen ist das
Zahlensystem nur bei Zuweisungen oder Ausgaben von Bedeutung. Standardmagig
werden alle Zahlen im Dezimalsystem ausgegeben:

>>> vl = OxFF
>>> v2 = 00777
>>> vl

255

>>> v2

511

Wir werden spater in Abschnitt 12.5 im Zusammenhang mit Strings darauf zurtck-

kommen, wie sich Zahlen in anderen Zahlensystemen ausgeben lassen.

11.4.2 Bit-Operationen

Wie bereits gesagt, hat das Dualsystem oder auch Binarsystem in der Informatik eine
grofie Bedeutung. Fiir den Datentyp int sind daher einige zusatzliche Operatoren de-

149

11 Numerische Datentypen

finiert, die sich explizit auf die binare Darstellung der Zahl beziehen. Tabelle 11.5 fasst
diese Bit-Operatoren zusammen.

Operator | Erweiterte Zuweisung | Ergebnis

x 8y X 8=y bitweises UND von x und y (AND)

x|y X|=y bitweises nicht ausschliefendes ODER von x
und y (OR)

X"y X "=y bitweises ausschliefendes ODER von x und y
(XOR)

~X bitweises Komplement von x

X<<n X<<=n Bit-Verschiebung um n Stellen nach links

X>>n X >>=n Bit-Verschiebung um n Stellen nach rechts

Tabelle 11.5 Bit-Operatoren des Datentyps int

Da vielleicht nicht jedem unmittelbar klar ist, was die einzelnen Operationen bewir-
ken, mochten wir sie im Folgenden im Detail besprechen.

Bitweises UND

Das bitweise UND zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Binardar-
stellung Bit fiir Bit miteinander verkniipft werden. Die resultierende Zahl hat in ihrer
Bindrdarstellung genau dort eine 1, wo beide der jeweiligen Bits der Operanden 1sind,
und sonst eine O. Dies veranschaulicht Abbildung 11.1.

Dual Dezimal
(tjafofufofefsff w7 |
e flofofafefofofaflf » |
oJololsoJo]| s |

Abbildung 11.1 Bitweises UND

Im interaktiven Modus von Python probieren wir aus, ob das bitweise UND mit den
in der Grafik gewahlten Operanden tatsachlich das erwartete Ergebnis zuriickgibt:

>>> 107 & 25
9
>>> 0b1101011 & 0b11001

150

1.4 Ganzzahlen—int

9
>>> bin(0b1101011 & 0b11001)
'Ob1001"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen UND im Bindrsystem darzustellen.

Bitweises ODER

Das bitweise ODER zweier Zahlen wird gebildet, indem beide Zahlen in ihrer Bindrdar-
stellung Bit flr Bit miteinander verglichen werden. Die resultierende Zahl hat in ihrer
Bindrdarstellung genau da eine 1, wo mindestens eines der jeweiligen Bits der Operan-
den 1ist. Abbildung 11.2 veranschaulicht dies.

Dual Dezimal

11110111011 107
I f{ofolafafoloffif 25 |

1111011\ 13 |

Abbildung 11.2 Bitweises nicht ausschlielendes ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ODER mit den
in der Grafik gewéhlten Operanden tatsachlich das erwartete Ergebnis zurtckgibt:

>>> 107 | 25

123

>>> 0b1101011 | 0Ob11001

123

>>> bin(0b1101011 | 0b11001)
'Ob1111011"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen ODER im Binarsystem darzustellen.

Bitweises ausschlieRendes ODER

Das bitweise ausschliefSende ODER (auch exklusives ODER) zweier Zahlen wird gebil-
det, indem beide Zahlen in ihrer Bindrdarstellung Bit fir Bit miteinander verglichen
werden. Die resultierende Zahl hat in ihrer Binardarstellung genau da eine 1, wo sich
die jeweiligen Bits der Operanden voneinander unterscheiden, und eine O, wo sie
gleich sind. Dies zeigt Abbildung 11.3.

151

11 Numerische Datentypen

Dual Dezimal
HEDRDRE A
lofolafafofof i il » |
1110010\ 14 |

Abbildung 11.3 Bitweises exklusives ODER

Im interaktiven Modus von Python probieren wir aus, ob das bitweise ausschlie-
Bende ODER mit den in der Grafik gewidhlten Operanden tatsdchlich das erwartete Er-
gebnis zurtickgibt:

>>> 107 ~ 25

114

>>> 0b1101011 » 0b11001

114

>>> bin(0b1101011 * 0b11001)
'0b1110010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen ausschlieffenden ODER im Bindrsystem darzustellen.

Bitweises Komplement

Das bitweise Komplement bildet das sogenannte Einerkomplement einer Dualzahl, das
der Negation aller vorkommenden Bits entspricht. In Python ist dies auf Bit-Ebene
nicht moglich, da eine ganze Zahl in ihrer Lange unbegrenzt ist und das Komplement
immer in einem abgeschlossenen Zahlenraum gebildet werden muss. Deswegen wird
die eigentliche Bit-Operation zur arithmetischen Operation und ist folgendermafien
definiert:?

~x=-x-1

Im interaktiven Modus lasst sich die Funktionsweise des bitweisen Komplements ex-
perimentell erproben:

>>> ™9
-10
>>> ~0b1001

2 Das ist sinnvoll, da man zur Darstellung negativer Zahlen in abgeschlossenen Zahlenrdumen das
sogenannte Zweierkomplement verwendet. Dieses erhalten Sie, indem Sie zum Einerkomple-
ment 1 addieren.

Also: —x = Zweierkomplement von x = ~x + 1. Daraus folgt: ~x = —x -1

152

1.4 Ganzzahlen—int

-10
>>> bin(~0b1001)
"-0b1010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
das Ergebnis des bitweisen Komplements im Bindrsystem darzustellen.

Bit-Verschiebung

Bei der Bit-Verschiebung (engl. bit shift) wird die Bit-Folge in der bindren Darstellung
des ersten Operanden um die durch den zweiten Operanden gegebene Anzahl Stellen
nach links bzw. rechts verschoben. Auf der rechten Seite entstehende Liicken werden
mit Nullen gefiillt, und das Vorzeichen des ersten Operanden bleibt erhalten. Abbil-
dung 11.4 und Abbildung 11.5 veranschaulichen eine Verschiebung um zwei Stellen
nach links bzw. nach rechts.

Dual Dezimal
‘1‘1‘0‘1‘0‘1‘1“107‘
n=2
[[rfofaofafafofoff] as |

Dual Dezimal
[lafofifofa]afff awr |
[[efofafofff = |

Abbildung 11.5 Bit-Verschiebung um zwei Stellen nach rechts

Die in der Bit-Darstellung entstehenden Liicken auf der rechten bzw. linken Seite wer-
den mit Nullen aufgeftllt.

Die Bit-Verschiebung ist in Python @hnlich wie der Komplementoperator arithme-
tisch implementiert. Ein Shift um x Stellen nach rechts entspricht einer ganzzahligen
Division durch 2*. Ein Shift um x Stellen nach links entspricht einer Multiplikation
mit 2%,

Auch fiir die bitweisen Verschiebungen konnen wir die in den Grafiken gezeigten Bei-
spiele im interaktiven Modus nachvollziehen:

>>> 107 << 2
428

153

11 Numerische Datentypen

>>> 107 >> 2

26

>>> bin(0b1101011 << 2)
'0b110101100"

>>> bin(0b1101011 >> 2)
'0b11010"

Im Beispiel verwenden wir die eingebaute Funktion bin (siehe Abschnitt 17.14.5), um
die Ergebnisse der Bit-Verschiebungen im Binarsystem darzustellen.

11.4.3 Die Methode bit_length

Der Datentyp int verfiigt iiber eine Methode, die sich auf die Binardarstellung der
ganzen Zahl bezieht. Die Methode bit_length berechnet die Anzahl Stellen, die flr die
Binardarstellung der Zahl benotigt werden:

>>> (36).bit_length()

6

>>> (4345).bit_length()
13

Die Bindrdarstellung der 36 ist 100100, und die der 4345 ist 1000011111001. Damit be-
notigen die beiden Zahlen 6 bzw. 13 Stellen fiir ihre Binardarstellung.

Hinweis
Beachten Sie, dass die Klammern um die Zahlenliterale bei ganzen Zahlen benétigt

werden, da es sonst zu Doppeldeutigkeiten mit der Syntax fiir Gleitkommazahlen
kommen kénnte.

11.5 Gleitkommazahlen — float

Zu Beginn dieses Teils sind wir bereits oberflachlich auf Gleitkommazahlen eingegan-
gen, was wir in diesem Abschnitt ein wenig vertiefen mochten. Zum Speichern einer
Gleitkommazahl mit begrenzter Genauigkeit® wird der Datentyp float verwendet.

Wie bereits besprochen wurde, sieht das Literal fiir eine Gleitkommazahl im einfachs-
ten Fall folgendermafien aus:

v = 3.141

3 In Abschnitt 11.5.2 besprechen wir einige Details zur Genauigkeit des Datentyps.

154

1.5 Gleitkommazahlen —float

Vor- und Nachkommaanteil konnen dabei weggelassen werden, wenn sie den Wert O
haben:

>>> -3,
-3.0

>>> .001
0.001

Achten Sie dabei darauf, dass der Punkt ein essenzielles Element eines Gleitkomma-
zahl-Literals ist und als solches nicht weggelassen werden darf.

Seit Python 3.6 kann zudem ein Unterstrich verwendet werden, um die Ziffern eines
Gleitkommazahl-Literals zu gruppieren:

>>> 3.000_000_1
3.0000001

11.5.1 Exponentialschreibweise

Python unterstiitzt auflerdem eine Notation, die es ermoglicht, die Exponential-
schreibweise zu verwenden:

v = 3.141e-12

Durch ein kleines oder grofRes e wird die Mantisse (3.141) vom Exponenten (-12) ge-
trennt. Ubertragen in die mathematische Schreibweise, entspricht dies dem Wert
3,141-107%2. Beachten Sie, dass sowohl die Mantisse als auch der Exponent im Dezimal-
system angegeben werden miissen. Andere Zahlensysteme sind nicht vorgesehen,
was die gefahrlose Verwendung fihrender Nullen ermdoglicht:

v = 03.141e-0012

11.5.2 Genauigkeit

Eventuell haben Sie gerade schon etwas mit den Gleitkommazahlen experimentiert
und sind dabei auf einen vermeintlichen Fehler des Interpreters gestof3en:

>>> 1.1+ 2.2
3.3000000000000003

Reelle Zahlen konnen im Datentyp float nicht unendlich prazise gespeichert werden,
stattdessen werden sie mit einer bestimmten Genauigkeit angenéhert.

Wenn Sie technisch versiert sind und jetzt von anderen Programmiersprachen zu
Python wechseln, wird es Sie interessieren, dass float-Instanzen in Python IEEE-754-
Gleitkommazahlen mit doppelter Genauigkeit sind. Der Datentyp float in Python ist
damit mit dem Datentyp double in C, C++ und Java vergleichbar.

155

11 Numerische Datentypen

Falls Sie explizit Gleitkommazahlen mit einfacher Genauigkeit verwenden mochten,
konnen Sie auf den Datentyp float32 der Drittanbieterbibliothek NumPy (siehe Kapi-
tel 43, »Wissenschaftliches Rechnen und Data Science«) zuriickgreifen.

11.5.3 Unendlich und Not a Number

Gleitkommazahlen konnen als float nicht beliebig genau gespeichert werden. Das
impliziert auch, dass es sowohl eine Ober- als auch eine Untergrenze fiir diesen Da-
tentyp geben muss. Und tatsdchlich konnen Gleitkommazahlen, die in ihrer Grof3e
ein bestimmtes Limit iiberschreiten, in Python nicht mehr dargestellt werden. Wenn
das Limit iberschritten ist, wird die Zahl als inf gespeichert* bzw. als -inf, wenn das
untere Limit unterschritten wurde. Es kommt also zu keinem Fehler, und es ist immer
noch moglich, eine tibergrof3e Zahl mit anderen zu vergleichen:

>>> 3.0e999

inf

>>> -3.0e999

-inf

>>> 3.0e999 < 12.0

False

>>> 3.0e999 > 12.0

True

>>> 3.0e999 == 3.0e999999999999
True

Esist zwar moglich, zwei unendlich grofie Gleitkommazahlen miteinander zu verglei-
chen, jedoch lasst sich nur bedingt mit ihnen rechnen. Dazu folgendes Beispiel:

>>> 3.0e999 + 1.5e999999
inf
>>> 3.0e999 - 1.5e999999
nan
>>> 3.0e999 * 1.5e999999
inf
>>> 3.0e999 / 1.5e999999

>>> 5 / 19999
0.0

Zweiunendlich grofRe Gleitkommazahlen lassen sich problemlos addieren oder mul-
tiplizieren. Das Ergebnis ist in beiden Fallen wieder inf. Ein Problem gibt es aber,
wenn versucht wird, zwei solche Zahlen zu subtrahieren bzw. zu dividieren. Da diese

4 inf steht fiir infinity (dt. »unendlich«).

156

1.6 Boolesche Werte — bool

Rechenoperationen nicht sinnvoll sind, ergeben sie nan. Der Status nan ist vergleich-
bar mit inf, bedeutet jedoch not a number, also so viel wie »nicht berechenbar«.

Beachten Sie, dass weder inf noch nan eine Konstante ist, die Sie selbst in einem
Python-Programm verwenden konnten. Stattdessen konnen Sie float-Instanzen mit
den Werten inf und nan folgendermafien erzeugen:

>>> float("inf")

inf

>>> float("nan")

nan

>>> float("inf") / float("inf")
nan

11.6 Boolesche Werte — bool

Eine Instanz des Datentyps bool® kann nur zwei verschiedene Werte annehmen:
»wahr« oder »falsch« bzw., um innerhalb der Python-Syntax zu bleiben, True oder
False. Deshalb ist es auf den ersten Blick absurd, bool den numerischen Datentypen
zuzuordnen. Wie in vielen Programmiersprachen tblich, wird in Python True analog
zur 1 und False analog zur 0 gesehen, sodass sich mit booleschen Werten genauso
rechnen lasst wie beispielsweise mit den ganzen Zahlen. Bei den Namen True und
False handelt es sich um Konstanten, die im Quelltext verwendet werden konnen. Be-
achten Sie besonders, dass die Konstanten mit einem Grof8buchstaben beginnen:

vl = True
v2 = False

11.6.1 Logische Operatoren

Ein oder mehrere boolesche Werte lassen sich mithilfe bestimmter Operatoren zu
einem booleschen Ausdruck kombinieren. Ein solcher Ausdruck resultiert, wenn er
ausgewertet wurde, wieder in einem booleschen Wert, also in True oder False. Bevor
es zu theoretisch wird, folgt hier zunachst die Tabelle der sogenannten logischen Ope-
ratoren®, und darunter sehen Sie weitere Erklairungen mit konkreten Beispielen.

5 Der Name bool geht zurtick auf den britischen Mathematiker und Logiker George Boole
(1815-1864).

6 Beachten Sie, dass es einen Unterschied gibt zwischen den logischen Operatoren, die im Zusam-
menhang mit booleschen Werten stehen, und den bindren Operatoren, die sich auf die Binardar-
stellung einer Zahl beziehen.

157

11 Numerische Datentypen

Operator Ergebnis

not x logische Negierung von x

xandy logisches UND zwischen x und y

X 0Ty logisches (nicht ausschlieBendes) ODER zwischen x und y

Tabelle 11.6 Logische Operatoren des Datentyps bool

Logische Negierung

Die logische Negierung eines booleschen Werts ist schnell erklart: Der entsprechende
Operator not macht True zu False und False zu True. In einem konkreten Beispiel
wurde das folgendermafien aussehen:

if not x:

print("x ist False")
else:

print("x ist True")

Logisches UND

Das logische UND zwischen zwei Wahrheitswerten ergibt nur dann True, wenn beide
Operanden bereits True sind. In Tabelle 11.7 sind alle moglichen Falle aufgelistet.

X y xandy
True True True
False True False
True False False
False False False

Tabelle 11.7 Mogliche Falle des logischen UND

In einem konkreten Beispiel wiirde die Anwendung des logischen UND so aussehen:

if x and vy:
print("x und y sind True")

Logisches ODER

Das logische ODER zwischen zwei Wahrheitswerten ergibt genau dann eine wahre
Aussage, wenn mindestens einer der beiden Operanden wahr ist. Es handelt sich dem-
nach um ein nicht ausschlief}endes ODER. Ein Operator fiir ein logisches ausschlie-

158

1.6 Boolesche Werte — bool

Rendes (exklusives) ODER existiert in Python nicht.” Tabelle 11.8 listet alle mdglichen
Falle auf.

X y xory
True True True
False True True
True False True
False False False

Tabelle 11.8 Mogliche Falle des logischen ODER

Ein logisches ODER konnte folgendermafien implementiert werden:

if x or y:
print("x oder y ist True")

Selbstverstandlich konnen Sie all diese Operatoren miteinander kombinieren und in
einem komplexen Ausdruck verwenden. Das konnte etwa folgendermafien aussehen:

if x and y or ((y and z) and not x):
print("Holla die Waldfee")

Wir mochten diesen Ausdruck hier nicht im Einzelnen besprechen. Es sei nur gesagt,
dass der Einsatz von Klammern den erwarteten Effekt hat, ndmlich dass umklam-
merte Ausdriicke zuerst ausgewertet werden. Tabelle 11.9 zeigt den Wahrheitswert des
Ausdrucks auf, und zwar in Abhdngigkeit von den drei Parametern x, y und z.

X y z x andy or ((y and z) and not x)
True True True True

False True True True

True False True False

True True False True

False False True False

False True False False

Tabelle 11.9 Mogliche Ergebnisse des Ausdrucks

7 Einlogisches exklusives ODER zwischen x und y ldsst sich iiber (x or y) and not (x and y) nach-
bilden.

159

11 Numerische Datentypen

X y z xandy or ((y and z) and not x)
True False False False
False False False False

Tabelle 1.9 Mogliche Ergebnisse des Ausdrucks (Forts.)

Die Kombination von logischen und vergleichenden Operatoren

Zu Beginn des Abschnitts iiber numerische Datentypen haben wir einige verglei-
chende Operatoren eingefiihrt, die eine Wahrheitsaussage in Form eines booleschen
Werts ergeben. Das folgende Beispiel zeigt, dass sie ganz selbstverstandlich zusam-
men mit den logischen Operatoren verwendet werden konnen:

if x >yor (y>zandx !=0):

print("Mein lieber Schwan")

In diesem Fall muss es sich bei x, y und z um Instanzen vergleichbarer Typen handeln,
wie zum Beispiel int, float oder bool.

11.6.2 Wahrheitswerte nicht boolescher Datentypen

Mithilfe der Built-in Function bool lassen sich Instanzen eines jeden Basisdatentyps
in einen booleschen Wert tiberfiihren.

>>> bool([1,2,3])

True
>>> bool("")
False
>>> bool(-7)
True

Dies ist eine sinnvolle Eigenschaft, da sich eine Instanz der Basisdatentypen haufig in
zwei Stadien befinden kann: »leer« und »nicht leer«. Oftmals mochte man beispiels-
weise testen, ob ein String Buchstaben enthalt oder nicht. Da ein String in einen
booleschen Wert konvertiert werden kann, wird ein solcher Test sehr einfach durch
logische Operatoren moglich:

>>> not
True
>>> not "abc
False

Durch Verwendung eines logischen Operators wird der Operand automatisch als
Wahrheitswert interpretiert.

160

1.6 Boolesche Werte — bool

Fiir jeden Basisdatentyp ist ein bestimmter Wert als False definiert. Alle davon abwei-
chenden Werte sind True. Tabelle 11.10 listet fiir jeden Datentyp den entsprechenden
False-Wert auf. Einige Datentypen wurden noch nicht eingefiihrt, an dieser Stelle soll-
ten Sie sich daran nicht weiter storen.

Basisdatentyp False-Wert Beschreibung

NoneType None der Wert None

Numerische Datentypen

int 0 der numerische Wert null
float 0.0 der numerische Wert null
bool False der boolesche Wert False
complex 0+0j der numerische Wert null

Sequenzielle Datentypen

str " ein leerer String
list [] eine leere Liste
tuple O ein leeres Tupel

Assoziative Datentypen

dict {} ein leeres Dictionary
Mengen

set set() eine leere Menge
frozenset frozenset() eine leere Menge

Tabelle 11.10 Wahrheitswerte der Basisdatentypen

Alle anderen Werte ergeben True.

11.6.3 Auswertung logischer Operatoren

Python wertet logische Ausdriicke grundsatzlich von links nach rechts aus, also im
folgenden Beispiel zuerst a und dann b:

if a or b:
print("a oder b sind True")

161

11 Numerische Datentypen

Es wird aber nicht garantiert, dass jeder Teil des Ausdrucks tatsachlich ausgewertet
wird. Aus Optimierungsgriinden bricht Python die Auswertung des Ausdrucks sofort
ab, wenn das Ergebnis feststeht. Hat im Beispiel oben also a bereits den Wert True, ist
der Wert von b nicht weiter von Belang; b wiirde dann nicht mehr ausgewertet. Das
folgende Beispiel demonstriert dieses Verhalten, das Lazy Evaluation (dt. »faule Aus-
wertung«) genannt wird.

>>> a = True
>>> if a or print("Lazy "):
print("Evaluation™)

Evaluation

Obwohl in der Bedingung der if-Anweisung die print-Funktion aufgerufen wird, wird
diese Bildschirmausgabe nie durchgefiihrt, da der Wert der Bedingung bereits nach
der Auswertung von a feststeht. Dieses Detail scheint unwichtig, kann aber insbeson-
dere im Zusammenhang mit seiteneffektbehafteten® Funktionen zu schwer auffind-
baren Fehlern fihren.

In Abschnitt 11.6.1 wurde gesagt, dass ein boolescher Ausdruck stets einen booleschen
Wert ergibt, wenn er ausgewertet wurde. Das ist nicht ganz korrekt, denn auch hier
wurde die Arbeitsweise des Interpreters in einer Weise optimiert, iber die man Be-
scheid wissen sollte. Deutlich wird dies an folgendem Beispiel aus dem interaktiven
Modus:

>>> 0 or 1
1

Nach dem, was wir bisher besprochen haben, sollte das Ergebnis des Ausdrucks True
sein, was nicht der Fall ist. Stattdessen gibt Python hier den ersten Operanden mit
dem Wahrheitswert True zurtick. In vielen Fallen macht das keinen Unterschied, denn
der zurtickgegebene Wert wird problemlos automatisch in den Wahrheitswert True
uberfihrt.

Die Auswertung der beiden Operatoren or und and lauft dabei folgendermafien ab:

Das logische ODER (or) nimmt den Wert des ersten Operanden an, der den Wahrheits-
wert True besitzt, oder —wenn es einen solchen nicht gibt — den Wert des letzten Ope-
randen.

Daslogische UND (and) nimmt den Wert des ersten Operanden an, der den Wahrheits-
wert False besitzt, oder —wenn es einen solchen nicht gibt —den Wert des letzten Ope-
randen.

8 siehe dazu Abschnitt 17.10

162

1.7 Komplexe Zahlen — complex

Diese Details haben dabei auch durchaus ihren unterhaltsamen Wert:

>>> "Python" or "Java"
"Python’

1.7 Komplexe Zahlen — complex

Uberraschenderweise findet sich ein Datentyp zur Speicherung komplexer Zahlen
unter Pythons Basisdatentypen. In vielen Programmiersprachen wirden komplexe
Zahlen eher eine Randnotiz in der Standardbibliothek darstellen oder ganz auf3en vor
bleiben. Sollten Sie nicht mit komplexen Zahlen vertraut sein, kénnen Sie diesen Ab-
schnitt gefahrlos iberspringen. Er behandelt nichts, was fiir das weitere Erlernen von
Python vorausgesetzt wlrde.

Komplexe Zahlen bestehen aus einem reellen Realteil und einem Imaginarteil. Der
Imaginirteil ist eine reelle Zahl, die mit der imaginéren Einheit j multipliziert wird.?
Die imaginédre Einheit j ist als Losung der Gleichung

=1
definiert. Im folgenden Beispiel weisen wir einer komplexen Zahl den Namen v zu:

v = 4]

Wenn man wie im Beispiel nur einen Imaginarteil angibt, wird der Realteil automa-
tisch als 0 angenommen. Um den Realteil festzulegen, wird dieser zum Imaginarteil
addiert. Die beiden folgenden Schreibweisen sind dquivalent:

vl =3 + 4j
v2 =43 + 3

Anstelle des kleinen j ist auch ein grof3es J als Literal fiir den Imaginérteil einer kom-
plexen Zahl zulassig. Entscheiden Sie hier ganz nach Ihren Vorlieben, welche der bei-
den Moglichkeiten Sie verwenden mochten.

Sowohl der Real- als auch der Imaginarteil konnen eine beliebige reelle Zahl sein. Fol-
gende Schreibweise ist demnach auch korrekt:

v3 = 3.4 + 4e2j

Zu Beginn des Abschnitts iiber numerische Datentypen wurde bereits angedeutet,
dass sich komplexe Zahlen von den anderen numerischen Datentypen unterschei-
den. Da fiir komplexe Zahlen keine mathematische Anordnung definiert ist, konnen

9 Das in der Mathematik eigentlich tibliche Symbol der imaginéren Einheit ist i. Python halt sich
hier an die Notationen der Elektrotechnik.

163

11 Numerische Datentypen

Instanzen des Datentyps complex nur auf Gleichheit oder Ungleichheit tiberpriift wer-
den. Die Menge der vergleichenden Operatoren ist also auf == und != beschriankt.

Dariiber hinaus haben sowohl der Modulo-Operator % als auch der Operator // fiir
eine ganzzahlige Division im Komplexen keinen mathematischen Sinn und stehen
deswegen in Kombination mit komplexen Zahlen nicht zur Verfiigung.

Der Datentyp complex besitzt zwei Attribute, die die Arbeit mit ihm erleichtern. Es
kommt zum Beispiel vor, dass man Berechnungen nur mit dem Realteil oder nur mit
dem Imaginarteil der gespeicherten Zahl anstellen mochte. Um einen der beiden
Teile zu isolieren, stellt eine complex-Instanz die in Tabelle 11.11 aufgefiihrten Attribute

bereit.
Attribut Beschreibung
x.real Realteil von x als Gleitkommazahl
x.1imag Imaginarteil von x als Gleitkommazahl

Tabelle 11.11 Attribute des Datentyps complex

Diese konnen wie im folgenden Beispiel verwendet werden:

>>> ¢ =23 + 4]
>>> c.real

23.0

>>> c.imag

4.0

Neben seinen zwei Attributen verfligt der Datentyp complex iiber eine Methode, die
in Tabelle 11.12 exemplarisch fiir eine Referenz auf eine komplexe Zahl namens x er-
klart wird.

Methode Beschreibung

x.conjugate() Liefert die zu x konjugierte komplexe Zahl.

Tabelle 11.12 Methode des Datentyps complex

Das folgende Beispiel demonstriert die Verwendung der Methode conjugate:

>>> C =23 + 4]
>>> c.conjugate()
(23-47)

164

1.7 Komplexe Zahlen — complex

Das Ergebnis von conjugate ist wieder eine komplexe Zahl und verfiigt daher eben-
falls Giber die Methode conjugate:

>>> C =23 + 4]

>>> ¢2 = c.conjugate()
>>> 2

(23-49)

>>> 3 = c2.conjugate()
>>> 3

(23+47)

Das Konjugieren einer komplexen Zahl ist eine selbstinverse Operation. Das bedeu-
tet, dass das Ergebnis einer zweifachen Konjugation wieder die Ausgangszahl ist.

165

Kapitel 20
Ausnahmebehandlung

Stellen Sie sich einmal ein Programm vor, das tber eine vergleichsweise tiefe Aufruf-
hierarchie verfiigt. Das heif3t, dass Funktionen weitere Unterfunktionen aufrufen, die
ihrerseits wieder Funktionen aufrufen. Es ist haufig so, dass die ibergeordneten
Funktionen nicht korrekt weiterarbeiten konnen, wenn in einer ihrer Unterfunktio-
nen ein Fehler aufgetreten ist. Die Information, dass ein Fehler aufgetreten ist, muss
also durch die Aufruthierarchie nach oben geschleust werden, damit jede tibergeord-
nete Funktion auf den Fehler reagieren und sich daran anpassen kann.

20.1 Exceptions

Bislang konnten wir Fehler, die innerhalb einer Funktion aufgetreten sind, allein an-
hand des Riickgabewerts der Funktion kenntlich machen. Es ist mit viel Aufwand ver-
bunden, einen solchen Riickgabewert durch die Funktionshierarchie nach oben
durchzureichen, zumal es sich dabei um Ausnahmen handelt. Wir wiirden also sehr
viel Code dafiir aufwenden, um seltene Fille zu behandeln.

Fir solche Falle unterstiitzt Python ein Programmierkonzept, das Exception Handling
(dt. »Ausnahmebehandlung«) genannt wird. Im Fehlerfall erzeugt unsere Unterfunk-
tion dann eine sogenannte Exception und wirft sie, bildlich gesprochen, nach oben.
Die Ausfihrung der Funktion ist damit beendet. Jede ibergeordnete Funktion hat
jetzt drei Moglichkeiten:

» Sie fangt die Exception ab, fiihrt den Code aus, der fiir den Fehlerfall vorgesehen
ist, und fahrt dann normal fort. In einem solchen Fall bemerken weitere tiberge-
ordnete Funktionen die Exception nicht.

» Sie fingt die Exception ab, fiihrt den Code aus, der flir den Fehlerfall vorgesehen
ist, und wirft die Exception weiter nach oben. In einem solchen Fall ist auch die
Ausfihrung dieser Funktion sofort beendet, und die tbergeordnete Funktion
steht vor der Wahl, die Exception abzufangen oder nicht.

» Sie lasst die Exception passieren, ohne sie abzufangen. In diesem Fall ist die Aus-
fihrung der Funktion sofort beendet, und die iibergeordnete Funktion steht vor
der Wahl, die Exception abzufangen oder nicht.

443

20 Ausnahmebehandlung

Bisher haben wir bei einer solchen Ausgabe

>>> abc
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
abc

NameError: name 'abc
to import 'abc'?

is not defined. Did you mean: 'abs'? Or did you forget

ganz allgemein von einem »Fehler« oder einer »Fehlermeldung« gesprochen. Dies ist
nicht ganz korrekt: Im Folgenden mochten wir diese Ausgabe als Traceback bezeich-
nen. Welche Informationen ein Traceback enthadlt und wie sie interpretiert werden
konnen, wurde bereits in Abschnitt 4.5 behandelt. Ein Traceback wird immer dann an-
gezeigt, wenn eine Exception bis nach ganz oben durchgereicht wurde, ohne abgefan-
gen zu werden. Doch was genau ist eine Exception?

Eine Exception ist ein Objekt, das Attribute und Methoden zur Klassifizierung und Be-
arbeitung eines Fehlers enthalt. Einige dieser Informationen werden im Traceback
angezeigt, so etwa die Beschreibung des Fehlers (name 'abc' is not defined). Eine Ex-
ception kann im Programm selbst abgefangen und behandelt werden, ohne dass Nut-
zende etwas davon mitbekommen. Naheres zum Abfangen einer Exception erfahren
Sie im weiteren Verlauf dieses Kapitels. Sollte eine Exception nicht abgefangen wer-
den, wird sie in Form eines Tracebacks ausgegeben, und der Programmablauf wird be-
endet.

20.1.1 Eingebaute Exceptions

In Python existiert eine Reihe eingebauter Exceptions, zum Beispiel die bereits be-
kannten Exceptions SyntaxError, NameError und TypeError. Solche Exceptions werden
von Funktionen der Standardbibliothek oder vom Interpreter selbst geworfen. Sie
sind eingebaut, das bedeutet, dass sie zu jeder Zeit im Quelltext verwendet werden
konnen:

>>> Namekrror

<class '"NameError'>
>>> SyntaxError
<class 'SyntaxError'>

Die eingebauten Exceptions sind hierarchisch organisiert, das heif3t, sie erben von ge-
meinsamen Basisklassen. Sie sind deswegen in ihrem Attribut- und Methodenum-
fang weitestgehend identisch. Im Anhang (in Abschnitt A.4) finden Sie eine Liste der
eingebauten Exception-Typen mit kurzer Erklarung.

444

20.1 Exceptions

BaseException

Die Klasse BaseException ist die Basisklasse aller Exceptions und stellt damit eine
Grundfunktionalitit bereit, die flr alle Exception-Typen vorhanden ist. Aus diesem
Grund soll sie hier besprochen werden.

Die Grundfunktionalitat, die BaseException bereitstellt, besteht aus einem wesentli-
chen Attribut namens args. Dabei handelt es sich um ein Tupel, in dem alle Parameter
abgelegt werden, die der Exception bei ihrer Instanziierung ibergeben wurden. Uber
diese Parameter ist es dann spater beim Fangen der Exception moglich, detaillierte
Informationen iiber den aufgetretenen Fehler zu erhalten. Das folgende Beispiel de-
monstriert nun die Verwendung des Attributs args:

>>> e = BaseException("Hallo Welt")

>>> e.args

('Hallo Welt',)

>>> e = BaseException("Hallo Welt",1,2,3,4,5)
>>> e.args

('Hallo Welt', 1, 2, 3, 4, 5)

So viel zunédchst zur direkten Verwendung der Exception-Klassen.

20.1.2 Das Werfen einer Exception

Bisher haben wir nur Exceptions betrachtet, die in einem Fehlerfall vom Python-In-
terpreter geworfen wurden. Es ist jedoch auch moglich, mithilfe der raise-Anweisung
selbst eine Exception zu werfen:

>>> raise SyntaxError("Hallo Welt")
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise SyntaxError("Hallo Welt")
SyntaxError: Hallo Welt

Dazu wird das Schlisselwort raise geschrieben, gefolgt von einer Instanz. Diese darf
nur Instanz einer von BaseException abgeleiteten Klasse sein. Dariiber hinaus ist auch
das Werfen einer von BaseException abgeleiteten Klasse moglich, ohne zunachst eine
Instanz zu erstellen. Eine auf diesem Weg geworfene Exception beinhaltet dann keine
Fehlermeldung:

>>> raise SyntaxError
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise SyntaxError
SyntaxError: <no detail available>

445

20 Ausnahmebehandlung

Das Werfen von Instanzen anderer Datentypen, insbesondere von Strings, ist nicht
moglich:

>>> raise "Hallo Welt"
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise "Hallo Welt"
TypeError: exceptions must derive from BaseException

Im folgenden Abschnitt mochten wir besprechen, wie Exceptions im Programm ab-
gefangen werden konnen, sodass sie nicht in einem Traceback enden, sondern zur
Ausnahmebehandlung eingesetzt werden konnen. Wir werden sowohl in diesem als
auch im ndchsten Abschnitt bei den eingebauten Exceptions bleiben. Selbst defi-
nierte Exception-Typen werden das Thema von Abschnitt 20.1.4 sein.

20.1.3 Das Abfangen einer Exception

In diesem Abschnitt geht es darum, wie eine in einer Unterfunktion geworfene Excep-
tion in den daruberliegenden Aufrufebenen abgefangen werden kann. Das Fangen
einer Exception ist notwendig, um auf den aufgetretenen Fehler reagieren zu kénnen.
Stellen Sie sich ein Programm vor, das Daten aus einer vom Benutzer festgelegten
Datei liest. Dazu verwendet das Programm die folgende im Moment noch sehr simple
Funktion get_file, die das gedffnete Dateiobjekt zuriickgibt:

def get_file(name):
return open(name)

Sollte keine Datei mit dem angegebenen Namen existieren, wirft die eingebaute
Funktion open eine FileNotFoundError-Exception. Da die Funktion get_file nicht auf
diese Exception reagiert, wird sie in der Aufrufhierarchie weiter nach oben gereicht
und verursacht schlief8lich ein vorzeitiges Beenden des Programmes.

Nun sind fehlerhafte Benutzereingaben Probleme, die Sie beim Schreiben eines inter-
aktiven Programms berticksichtigen sollten. Die folgende Variante der Funktion get_
file fangt eine von open geworfene FileNotFoundError-Exception ab und gibt in die-
sem Fall anstelle des ge6ffneten Dateiobjekts den Wert None zurtick:

def get_file(name):
try:
return open(name)
except FileNotFoundError:
return None

Zum Abfangen einer Exception wird eine try/except-Anweisung verwendet. Eine sol-
che Anweisung besteht zunachst aus zwei Teilen:

446

20.1 Exceptions

» Der try-Block wird durch das Schliisselwort try eingeleitet, gefolgt von einem Dop-
pelpunkt und einem beliebigen Codeblock, der um eine Ebene weiter eingertickt
ist. Dieser Codeblock wird zundchst ausgefiihrt. Wenn in diesem Codeblock eine
Exception auftritt, wird seine Ausfithrung sofort beendet und der except-Zweig der
Anweisung ausgefiihrt.

» Der except-Zweig wird durch das Schliisselwort except eingeleitet, gefolgt von
einer optionalen Liste von Exception-Typen, fiir die dieser except-Zweig ausge-
fuhrt werden soll. Beachten Sie, dass mehrere Exception-Typen in Form eines Tu-
pels angegeben werden mussen. Dazu werden Sie spater noch ein Beispiel sehen.
Hinter der Liste der Exception-Typen kann, ebenfalls optional, das Schltsselwort
as stehen, gefolgt von einem frei wiahlbaren Bezeichner. Hier legen Sie fest, unter
welchem Namen Sie auf die gefangene Exception-Instanz im except-Zweig zugrei-
fen konnen. Auf diesem Weg konnen Sie beispielsweise auf die in dem args-Attri-
but der Exception-Instanz abgelegten Informationen zugreifen. Auch dazu werden
Sie im Verlauf dieses Kapitels noch Beispiele sehen.

Danach folgen ein Doppelpunkt und, um eine Ebene weiter eingertickt, ein belie-
biger Codeblock. Dieser Codeblock wird nur dann ausgefiihrt, wenn innerhalb des
try-Blocks eine der aufgelisteten Exceptions geworfen wurde.

Eine grundlegende try/except-Anweisung hat also folgende Struktur:

try:
Anweisung
Anweisung
except ExceptionTyp as Bezeichner:
Anweisung
Anweisung

Kommen wir zuriick zu unserer Beispielfunktion get_file. Es ist durchaus maoglich,
dass bei einem Funktionsaufruf fiir name falschlicherweise kein String, sondern zum
Beispiel eine Liste tibergeben wird. In einem solchen Fall wird kein FileNotFoundError,
sondern ein TypeError geworfen, der von der try/except-Anweisung bislang nicht ab-
gefangen wird:

>>> get_file([1, 2, 3])
Traceback (most recent call last):
File "<python-input-1>", line 1, in <module>
get_file([1, 2, 3])
~~~~~~~~ AAAAAAANAAA
File "<python-input-0>", line 3, in get_file
return open(name)
TypeError: expected str, bytes or os.PathLike object, not list

447



20 Ausnahmebehandlung

Die Funktion soll nun dahin gehend erweitert werden, dass auch ein TypeError abge-
fangen und dann ebenfalls None zurtickgegeben wird. Dazu haben wir im Wesentli-
chen drei Moglichkeiten. Die erste besteht darin, die Liste der abzufangenden Excep-
tion-Typen im vorhandenen except-Zweig um den TypeError zu erweitern. Beachten
Sie dabei, dass zwei oder mehr Exception-Typen im Kopf eines except-Zweigs als Tu-
pel angegeben werden missen:

def get_file(name):
try:
return open(name)
except (FileNotFoundError, TypeError):
return None

Hinweis

Mit Python 3.14 wurde die Syntax der try/except-Anweisung dahin gehend liberar-
beitet, dass die Klammern beim Abfangen mehrerer Exception-Typen in einem
except-Zweig nicht mehr notwendig sind:

def get_file(name):
try:
return open(name)
except FileNotFoundError, TypeError:
return None

Die Klammern diirfen nur dann weggelassen werden, wenn der except-Zweig nicht
gleichzeitig um einen as-Teil erganzt wird, den wir im Verlauf dieses Abschnitts noch
kennenlernen werden.

Dies ist einfach und flihrt im gewahlten Beispiel zum gewtinschten Resultat. Stellen
Sie sich jedoch vor, Sie wollten je nach Exception-Typ unterschiedlichen Code ausfiih-
ren. Um ein solches Verhalten zu erreichen, kann eine try/except-Anweisung tiber be-
liebig viele except-Zweige verfiigen:

def get_file(name):
try:
return open(name)
except FileNotFoundError:
return None
except TypeError:
return None

Die dritte — weniger elegante — Moglichkeit besteht darin, alle Arten von Exceptions
auf einmal abzufangen. Dazu wird ein except-Zweig ohne Angabe eines Exception-
Typs geschrieben:

448



20.1 Exceptions

def get_file(name):
try:
return open(name)
except:
return None

Hinweis

Es ist nur in wenigen Fallen sinnvoll, alle moglichen Exceptions auf einmal abzufan-
gen. Durch diese Art des Exception Handling kann es vorkommen, dass unabsichtlich
auch Exceptions abgefangen werden, die nichts mit dem oben dargestellten Code zu
tun haben. Das betrifft zum Beispiel die KeyInterrupt-Exception, die bei einem Pro-
grammabbruch per Tastenkombination geworfen wird.

Sollten Sie einmal jede beliebige Exception fangen wollen, verwenden Sie except Ex-
ception, da Exception die Basisklasse aller Exceptions ist, die das Programm nicht
zwingend beenden.

Eine Exception ist nichts anderes als eine Instanz einer bestimmten Klasse. Darum
stellt sich die Frage, ob und wie man innerhalb eines except-Zweigs Zugriff auf die
geworfene Instanz erlangt. Das ist durch Angabe des bereits angesprochenen
as Bezeichner-Teils im Kopf des except-Zweigs moglich. Unter dem dort angegebe-
nen Namen konnen Sie nun innerhalb des Codeblocks auf die geworfene Exception-
Instanz zugreifen:!

try:
print([1,2,3][10])

except (IndexError, TypeError) as e:
print("Fehlermeldung:", e.args[0])

Die Ausgabe des oben angefiihrten Beispiels lautet:

Fehlermeldung: list index out of range

Zusitzlich kann eine try/except-Anweisung tber einen else- und einen finally-
Zweig verfligen, die jeweils nur einmal pro Anweisung vorkommen diirfen. Der dem
else-Zweig zugehorige Codeblock wird ausgefiihrt, wenn keine Exception aufgetre-
ten ist, und der dem finally-Zweig zugehorige Codeblock wird in jedem Fall nach Be-
handlung aller Exceptions und nach dem Ausfiihren des entsprechenden else-Zweigs
ausgefuhrt — egal, ob Exceptions vorher aufgetreten sind und welche. Dieser finally-

1 Die moglicherweise verwirrende Schreibweise print([1,2,3][10]) ist gleichbedeutend mit:
1st=[1,2,3]
print(1st[10])

449



20 Ausnahmebehandlung

Zweig eignet sich daher besonders fiir Dinge, die in jedem Fall erledigt werden miis-
sen, wie beispielsweise das Schliefien eines Dateiobjekts.

Sowohl der else- als auch der finally-Zweig miissen ans Ende der try/except-Anwei-
sung geschrieben werden. Wenn beide Zweige vorkommen, muss der else-Zweig vor
dem finally-Zweig stehen.

Abbildung 20.1 zeigt eine vollstindige try/except-Anweisung.

Der try-Zweig enthalt den Code,
der ausgefiihrt werden soll.

try:

Anweisung
: Ein oder mehrere except-Zweige

Anweisung enthalten den Code, der im Falle

einer ExceptionTyp-Exception

ausgefiihrt werden soll.

except ExceptionTyp as Namel:

Anweisung
Anweisung
except ExceptionTyp as Name2:
Anweisung Ein optionaler else-Zweig
: enthalt Code, der nur dann aus-
Anweisung gefiihrt wird, wenn zuvor keine
else: Exception abgefangen wurde.
Anweisung /
‘ Ein optionaler finally-Zweig
Anweisung enthilt Code, der immer abschlieRend
finally: ausgefiihrt wird, egal, ob oder welche
Anweisung / Exceptions geworfen wurden.
Anweisung

Abbildung 20.1 Eine vollstidndige try/except-Anweisung

Abschlieflend noch einige Bemerkungen dazu, wie eine try/except-Anweisung ausge-
fihrt wird: Zunachst wird der Code ausgefiihrt, der zum try-Zweig gehort. Sollte in-
nerhalb dieses Codes eine Exception geworfen werden, wird der Code ausgefiihrt, der
zu dem entsprechenden except-Zweig gehort. Ist kein passender except-Zweig vor-
handen, wird die Exception nicht abgefangen und endet, wenn sie auch anderswo
nicht abgefangen wird, als Traceback auf dem Bildschirm. Sollte im try-Zweig keine
Exception geworfen werden, wird keiner der except-Zweige ausgefiihrt, sondern der
else-Zweig. Der finally-Zweig wird in jedem Fall zum Schluss ausgefuhrt.

Exceptions, die innerhalb eines except-, else- oder finally-Zweigs geworfen werden,
konnen nicht von folgenden except-Zweigen der gleichen Anweisung wieder abge-
fangen werden. Es ist jedoch moglich, try/except-Anweisungen zu verschachteln:

450



20.1 Exceptions

try:
try:
raise TypeError
except TypeError:
raise IndexError
except IndexError:
print("Innen gefangen")
except IndexError:
print("AuRen gefangen")

Bei der Behandlung der im inneren try-Block geworfenen TypeError-Exception wird
ein IndexError geworfen, der von der Anweisung selbst nicht abgefangen werden
kann. Die Exception wandert dann, bildlich gesprochen, eine Ebene hoher und durch-
lauft die nachste try/except-Anweisung. In dieser wird der geworfene IndexError ab-
gefangen und eine entsprechende Meldung ausgegeben. Die Ausgabe des Beispiels
lautet also: »Aufien gefangen«.

20.1.4 Eigene Exceptions

Beim Werfen und Abfangen von Exceptions sind Sie nicht auf den eingebauten Satz
von Exception-Typen beschrankt, vielmehr konnen Sie selbst neue Typen erstellen.
Viele Drittanbieterbibliotheken nutzen diese Moglichkeit, um speziell auf die jewei-
lige Anwendung zugeschnittene Exception-Typen anzubieten.

Zum Definieren eines eigenen Exception-Typs brauchen Sie lediglich eine eigene
Klasse zu erstellen, die von der Exception-Basisklasse Exception erbt, und kénnen
dann ganz nach Anforderung weitere Attribute und Methoden zum Umgang mit Th-
rer Exception hinzufligen.

Im Folgenden definieren wir zunéchst eine rudimentire Kontoklasse, die als einzige
Operation das Abheben eines bestimmten Geldbetrags unterstutzt:

class Konto:
def __init__(self, betrag):
self.kontostand = betrag
def abheben(self, betrag):
self.kontostand -= betrag

In dieser Implementierung der Klasse ist es moglich, das Konto beliebig zu tberzie-
hen. In einer etwas raffinierteren Variante soll das Uberziehen des Kontos unterbun-
den werden, und beim Versuch, mehr Geld abzuheben, als vorhanden ist, soll eine
selbst definierte Exception geworfen werden. Dazu definieren wir zunédchst eine von
der Basisklasse Exception abgeleitete Klasse und filigen Attribute fiir den Kontostand
und den abzuhebenden Betrag hinzu:

451



20 Ausnahmebehandlung

class KontostandException(Exception):
def __init__(self, kontostand, betrag):
super().__init__(kontostand, betrag)
self.kontostand = kontostand
self.betrag = betrag

Dann modifizieren wir die Methode abheben der Klasse Konto dahin gehend, dass bei
einem ungiltigen Abhebevorgang eine KontostandException-Instanz geworfen wird:

class Konto:
def __init__(self, betrag):
self.kontostand = betrag
def abheben(self, betrag):
if betrag > self.kontostand:
raise KontostandException(self.kontostand, betrag)
self.kontostand -= betrag

Die dem Konstruktor der Klasse tibergebenen zusatzlichen Informationen werden im
Traceback nicht angezeigt:

>>> k = Konto(1000)
>>> k.abheben(2000)
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
k.abheben(2000)

File "<python-input-1>", line 6, in abheben
raise KontostandException(self.kontostand, betrag)
KontostandException: (1000, 2000)

Sie kommen erst zum Tragen, wenn die Exception abgefangen und bearbeitet wird:

try:
k.abheben(2000)

except KontostandException as e:
print(f"Kontostand: {e.kontostand} €")
print(f"Abheben von {e.betrag} € nicht méglich.")

Dieser Code fiangt die entstandene Exception ab und gibt daraufhin eine Fehlermel-
dung aus. Anhand der zuséatzlichen Informationen, die die Klasse durch die Attribute
kontostand und betrag bereitstellt, lasst sich der vorausgegangene Abhebevorgang re-
konstruieren. Die Ausgabe des Beispiels lautet:

Kontostand: 1000 €
Abheben von 2000 € nicht méglich.

452



20.1 Exceptions

Damit eine selbst definierte Exception mit weiterfiihrenden Informationen auch
eine Fehlermeldung enthalten kann, muss sie die Magic Method __str__ implemen-
tieren:

class KontostandException(Exception):
def __init__(self, kontostand, betrag):
self.kontostand = kontostand
self.betrag = betrag
def __str__(self):
fehlbetrag = self.betrag - self.kontostand
return f"Kontostand zu niedrig: Es werden {fehlbetrag} € mehr benttigt"

Ein Traceback, der durch diese Exception verursacht wird, sieht folgendermafien aus:

>>> k = Konto(1000)
>>> k.abheben(2000)
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
k.abheben(2000)

File "<python-input-1>", line 6, in abheben
raise KontostandException(self.kontostand, betrag)
KontostandException: Kontostand zu niedrig: Es werden 1000 € mehr benotigt

20.1.5 Erneutes Werfen einer Exception

In manchen Fillen, gerade bei einer tiefen Funktionshierarchie, ist es sinnvoll, eine
Exception abzufangen, die fiir diesen Fall vorgesehene Fehlerbehandlung zu starten
und die Exception danach erneut zu werfen. Betrachten wir dazu folgendes Beispiel:

def funktion3():
raise TypeError

def funktion2():
funktion3()

def funktion1():
funktion2()

funktion1()

Im Beispiel wird die Funktion funktionl aufgerufen, die ihrerseits funktion2 aufruft,
inder die Funktion funktion3 aufgerufen wird. Es handelt sich also um insgesamt drei
verschachtelte Funktionsaufrufe. Im Innersten dieser Funktionsaufrufe, in funktion3s,
wird eine TypeError-Exception geworfen. Diese Exception wird nicht abgefangen, des-
halb sieht der dazugehorige Traceback so aus:

453



20 Ausnahmebehandlung

Traceback (most recent call last):
File "<python-input-0>", line 7, in <module>
funktion1()

File "<python-input-0>", line 6, in funktionl
funktion2()

File "<python-input-0>", line 4, in funktion2
funktion3()

File "<python-input-0>", line 2, in funktion3
raise TypeError
TypeError

Der Traceback beschreibt erwartungsgemaf’ die Funktionshierarchie zum Zeitpunkt
der raise-Anweisung. Diese Liste wird auch Callstack genannt.

Hinter dem Exception-Prinzip steht der Gedanke, dass sich eine Exception in der Auf-
rufhierarchie nach oben arbeitet und an jeder Station abgefangen werden kann. In
unserem Beispiel soll die Funktion funktionl die TypeError-Exception abfangen, da-
mit sie eine spezielle auf den TypeError zugeschnittene Fehlerbehandlung durchfiih-
ren kann. Nachdem funktionl ihre funktionsinterne Fehlerbehandlung durchgefiihrt
hat, soll die Exception weiter nach oben gereicht werden. Dazu wird sie erneut gewor-
fen, und zwar wie im folgenden Beispiel:

def funktion3():
raise TypeError
def funktion2():
funktion3()
def funktion1():
try:
funktion2()
except TypeError:
# Fehlerbehandlung
raise TypeError
funktion1()

Im Gegensatz zum vorangegangenen Beispiel sieht der nun auftretende Traceback so
aus:

Traceback (most recent call last):
File "<python-input-0>", line 11, in <module>
funktion1()

454



20.1 Exceptions

File "<python-input-0>", line 10, in funktionl
raise TypeError
TypeError

Sie sehen, dass dieser Traceback Informationen Gber den Kontext der zweiten raise-
Anweisung enthilt.? Diese sind aber gar nicht von Belang, sondern eher ein Neben-
produkt der Fehlerbehandlung innerhalb der Funktion funktionl. Optimal ware es,
wenn trotz des temporaren Abfangens der Exception in funktionl der resultierende
Traceback den Kontext der urspriinglichen raise-Anweisung beschriebe. Um das zu
erreichen, wird eine raise-Anweisung ohne Angabe eines Exception-Typs geschrie-
ben:

def funktion3():
raise TypeError
def funktion2():
funktion3()
def funktion1():
try:
funktion2()
except TypeError:
# Fehlerbehandlung
raise
funktion1()

Der in diesem Beispiel ausgegebene Traceback sieht folgendermafien aus:

Traceback (most recent call last):
File "<python-input-0>", line 11, in <module>
funktion1()

File "<python-input-0>", line 7, in funktionl
funktion2()

File "<python-input-0>", line 4, in funktion2
funktion3()

File "<python-input-0>", line 2, in funktion3
raise TypeError
TypeError

2 Tatsdchlich enthalt der ausgegebene Traceback aufgrund des Exception Chaining (siehe
Abschnitt 20.1.6) auch noch Informationen tiber die urspriingliche Exception. Das soll uns
an dieser Stelle aber nicht weiter interessieren.

455



20 Ausnahmebehandlung

Wie Sie sehen, handelt es sich dabei um den Stacktrace der Stelle, an der die Exception
urspringlich geworfen wurde. Der Traceback enthalt damit die gewiinschten Infor-
mationen uber die Stelle, an der der Fehler tatsachlich aufgetreten ist.

20.1.6 Exception Chaining

Gelegentlich kommt es vor, dass man innerhalb eines except-Zweigs in die Verlegen-
heit kommt, eine weitere Exception zu werfen — entweder weil bei der Behandlung
der Exception ein weiterer Fehler aufgetreten ist oder um die entstandene Exception
»umzubenennenc.

Wenn innerhalb eines except-Zweigs eine weitere Exception geworfen wird, wendet
Python automatisch das sogenannte Exception Chaining an. Dabei wird die vorange-
gangene Exception als Kontext an die neu geworfene Exception angehingt, sodass
ein Maximum an Information weitergegeben wird. Zum Beispiel erzeugt der Code

try:
[1,2,3][128]
except IndexError:
raise RuntimeError("Schlimmer Fehler")

die Ausgabe:

Traceback (most recent call last):
File "<python-input-0>", line 2, in <module>
[1,2,3][128]

IndexError: list index out of range
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<python-input-0>", line 4, in <module>
raise RuntimeError("Schlimmer Fehler")
RuntimeError: Schlimmer Fehler

Es wird auf das 128. Element einer dreielementigen Liste zugegriffen, was eine Index-
Error-Exception provoziert. Diese Exception wird gefangen, und bei der Behandlung
wird eine RuntimeError-Exception geworfen. Anhand des ausgegebenen Tracebacks
sehen Sie, dass die urspriingliche IndexError-Exception an die neue RuntimeError-Ex-
ception angehangt wurde.

Mithilfe der raise/from-Syntax lasst sich das Exception-Chaining-Verhalten steuern.
Beim Werfen einer Exception kann ein Kontext angegeben werden, der dann im re-
sultierenden Traceback berticksichtigt wird. Dieser Kontext kann zum Beispiel eine
zweite Exception sein:

456



20.1 Exceptions

>>> raise IndexError from ValueError
ValueError
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<python-input-0>", line 1, in <module>
raise IndexError from ValueError
IndexError

Es zeigt sich, dass wir mit der raise/from-Syntax das Exception Chaining auslosen
konnen. Alternativ kann mit der raise/from-Syntax das automatische Anhéngen
einer Exception verhindert werden:

try:
[1,2,3][128]
except IndexError:
raise RuntimeError("Schlimmer Fehler") from None

In diesem Fall enthilt der resultierende Traceback nur die neu entstandene Run-
timeError-Exception. Die urspriingliche IndexError-Exception geht verloren.

20.1.7 Exception Notes

Die in einer Exception-Instanz gespeicherte Fehlermeldung ist gemeinsam mit dem
Traceback die wesentliche Informationsgrundlage, um einem aufgetretenen Fehler
nachzuspiiren, ihn zu verstehen und schlussendlich zu beheben. In der Praxis kommt
es allerdings vor, dass die Fehlermeldung fiir die Analyse des Problems unzureichend
ist. Betrachten wir als Beispiel die folgende Funktion zum Auslesen von Metainforma-
tionen eines Bildes im Bitmap-Dateiformat. Dieses Beispiel haben wir in dhnlicher
Form bereits in Abschnitt 6.4.3 betrachtet:

from struct import unpack
def lese_infos(dateiname):
with open(dateiname, "rb") as f:
f.seek(18)
breite, hoehe = unpack("ii", f.read(8))
f.seek(2, 1)
bpp = unpack("H", f.read(2))[0]
return breite, hoehe, bpp

Im Folgenden verwenden wir die Funktion lese_infos, um eine Reihe von Bildern zu
analysieren:

457



20 Ausnahmebehandlung

dateien = ["kaffee.bmp", "ohne_daten.bmp"]
infos = [lese_infos(dateiname) for dateiname in dateien]
for breite, hoehe, bpp in infos:

print(f"Breite: {breite} px")

print(f"Hohe: {hoehe} px")

print(f"Farbtiefe: {bpp} bpp")

Wihrend das Auslesen der Metainformation fiir kaffee.bmp funktioniert, ist ohne_da-
ten.bmp keine giiltige Bitmap-Datei, was beim Versuch, die Metadaten zu lesen, zu
einer Exception fihrt:

Traceback (most recent call last):
File "beispiel_02_exception_notes.py", line 26, in <module>
infos = [lese_infos(dateiname) for dateiname in dateien]
File "beispiel_02_exception_notes.py", line 7, in lese_infos_1
breite, hoehe = unpack("ii", f.read(8))

~~~~~~ ANANNANANNNANNNANN

struct.error: unpack requires a buffer of 8 bytes

Sie sehen, dass Traceback und Fehlermeldung den lokalen Kontext des Problems gut
beschreiben: Offenbar konnte nicht die erwartete Datenmenge aus der Datei gelesen
werden. Eine Information, die zum Verstandnis des Problems wesentlich beitragen
wirde, fehlt jedoch: Das Lesen welcher Datei 16st das Problem aus?

Seit Python 3.11 bieten Exception-Instanzen die Methode add_note an, iber die sich
Exceptions um zusétzliche Informationen (»Notizen«) ergénzen lassen:

def lese_infos(dateiname):
try:
with open(dateiname, "rb") as f:
f.seek(18)
breite, hoehe = unpack("ii", f.read(8))
f.seek(2, 1)
bpp = unpack("H", f.read(2))[0]
return breite, hoehe, bpp
except Exception as e:
e.add_note(f"Bearbeitete Datei: {dateiname}")
raise

Im Beispiel passen wir die Funktion lese_infos so an, dass jede auftretende Exception
um eine Notiz erganzt wird, die den Dateinamen des aktuell betrachteten Bildes an-
gibt. Die einer Exception angefiigten Notizen werden gemeinsam mit Fehlermeldung
und Traceback am Bildschirm ausgegeben:

458

20.2 Zusicherungen —assert

Traceback (most recent call last):
File "beispiel_02_exception_notes.py", line 26, in <module>
infos = [lese_infos_2(dateiname) for dateiname in dateien]
NNNNNNNNNNNN AANNANNNANNNAN
File "beispiel_02_exception_notes.py", line 16, in lese_infos_2
breite, hoehe = unpack("ii", f.read(8))
~~~~~~ ANANNNANNNANNNANN
struct.error: unpack requires a buffer of 8 bytes
Bearbeitete Datei: ohne_daten.bmp

Eine Exception kann durch mehrfaches Aufrufen von add_note um beliebig viele No-
tizen erganzt werden. Innerhalb des Programms kann tber das Attribut __notes__
einer Exception-Instanz auf die ihr angefiigten Notizen zugegriffen werden.

20.2 Zusicherungen —assert

Mithilfe des Schliisselworts assert lassen sich Zusicherungen in ein Python-Pro-
gramm integrieren. Durch das Schreiben einer assert-Anweisung wird beim Pro-
grammieren eine Bedingung festgelegt, die fir die Ausfihrung des Programms
essenziell ist und die bei Erreichen der assert-Anweisung zu jeder Zeit True ergeben
muss. Wenn die Bedingung einer assert-Anweisung False ergibt, wird eine Asserti-
ontrror-Exception geworfen. In der folgenden Sitzung im interaktiven Modus wur-
den mehrere assert-Anweisungen eingegeben:

>>> 1st = [7, 1, 3, 5, -12]
>>> assert max(lst) == 7
>>> assert min(lst) == -12
>>> assert sum(lst) == 0
Traceback (most recent call last):
File "<python-input-3>", line 1, in <module>
assert sum(lst) ==

ANANNNANNNNNNN

AssertionError

In der assert-Anweisung kann auch eine Fehlermeldung spezifiziert werden, die im
Fall eines Fehlschlags in die AssertionError-Exception eingetragen wird. Diese Fehler-
meldung kann, durch ein Komma getrennt, hinter die Bedingung geschrieben wer-
den:

( == 7, "max ist kaputt"
>>> assert min(1 == -12, "min ist kaputt"
>>> assert sum(lst) == 0, "sum ist kaputt"
Traceback (most recent call last):

>>> assert max(lst
st

)
)
)

459



20 Ausnahmebehandlung

File "<python-input-3>", line 1, in <module>
assert sum(lst) == 0, "sum ist kaputt"

ANANNNANNNNNNNN

AssertionError: sum ist kaputt

Die assert-Anweisung ist damit ein praktisches Hilfsmittel zum Aufspiiren von Feh-
lern und ermoglicht es, den Programmlauf zu beenden, wenn bestimmte Vorausset-
zungen nicht erfullt sind. Haufig prift man an Schlusselstellen im Programm mit as-
sert, ob alle Referenzen die erwarteten Werte referenzieren, um eventuelle
Fehlberechnungen rechtzeitig erkennen zu konnen.

Beachten Sie, dass assert-Anweisungen Ublicherweise nur wiahrend der Entwicklung
eines Programms benotigt werden und in einem fertigen Programm eher storen wir-
den. Deswegen werden assert-Anweisungen nur dann ausgefithrt, wenn die globale
Konstante __debug__ den Wert True referenziert. Diese Konstante ist nur dann False,
wenn der Interpreter mit der Kommandozeilenoption -0 gestartet wurde. Wenn die
Konstante __debug__ den Wert False referenziert, werden assert-Anweisungen igno-
riert und haben damit keinen Einfluss mehr auf die Laufzeit Thres Programms.

Hinweis

Beachten Sie, dass Sie den Wert von __debug__ im Programm selbst nicht verandern
diirfen, sondern nur tUber die Kommandozeilenoption -0 bestimmen kénnen, ob as-
sert-Anweisungen ausgefihrt oder ignoriert werden sollen.

20.3 Warnungen

Unter einer Warnung wird eine Exception verstanden, die den Programmablauf nicht
verandert, sondern nur auf dem Standardfehlerstrom stderr (siehe Abschnitt 29.2.2)
erscheint, um Sie Giber einen bedenklichen, aber nicht kritischen Umstand zu infor-
mieren.

Ein typisches Beispiel fiir eine Warnung ist die DeprecationWarning, die den Entwickler
oder die Anwenderin dariiber informiert, dass das laufende Programm eine Funktio-
nalitdt verwendet, die in zukiinftigen Python-Versionen oder zukiinftigen Versionen
einer Bibliothek nicht mehr zur Verfligung stehen wird. Diese Feststellung stellt fiir
den aktuellen Programmlauf kein Problem dar, ist jedoch wichtig genug, um dartiber
zu informieren.

Hinweis
Abschnitt A4 im Anhang listet die in Python standardmafig definierten Typen von
Warnungen auf und erklart ihre Bedeutung.

460



20.4 Exception Groups

Das Modul warnings der Standardbibliothek ermaoglicht es, tiber komplexe Filterre-
geln das Anzeigen bzw. Ignorieren von Warnungen verschiedenen Inhalts und ver-
schiedener Quellen zu steuern. Standardmaf3ig unterdriickt Python einige Warnun-
gen, insbesondere wenn sie aus importierten Modulen stammen. Diese Filterregeln
werden vom Python-Entwicklerteam jedoch haufig an neue Gegebenheiten ange-
passt.

Das Modul warnings enthalt die Funktion simplefilter, die die voreingestellten Filter-
regeln mit einer allgemeinen Regel iiberschreiben kann. Auf diese Weise lassen sich
Warnungen beispielsweise universell unterdriicken:

>>> import warnings
>>> warnings.simplefilter("ignore")

Analog konnen alle Warnungen zu Exceptions gemacht werden, die den Programm-
ablauf unterbrechen. In diesem Fall konnen Warnungen auch gefangen und behan-
delt werden:

>>> warnings.simplefilter("error")

Weitere mogliche Argumente sind "default" fir das Unterdriicken von erneut auftre-
tenden Warnungen aus derselben Quelle, "always" fiir das Ausgeben aller Warnun-
gen, "module" fiir das Ausgeben nur der jeweils ersten Warnung eines Moduls und
"once" fiir das Unterdriicken von erneut auftretenden Warnungstypen.

Hinweis
Warnungen kénnen auch tiber den Kommandozeilenparameter -W des Python-Inter-
preters zu Fehlern gemacht werden. Auf diese Weise lasst sich das Verhalten eines
Python-Programms in Bezug auf Warnungen verandern, ohne den Code anpassen zu
mussen:

$ python -W error programm.py

Analog sind die Argumente default, always, module und once moglich.

20.4 Exception Groups

Die Ausnahmebehandlung, wie wir sie in den vorangegangenen Abschnitten dieses
Kapitels diskutiert haben, stellt eine zentrale Anforderung an den Code: Es kann zu
jedem Zeitpunkt nur eine einzige Exception geworfen und gefangen werden.

Diese Anforderung ist in der Regel nicht problematisch, weshalb die klassische Aus-
nahmebehandlung fiir sehr viele Python-Programme vollig ausreichend ist. Es gibt

461



20 Ausnahmebehandlung

jedoch spezielle Situationen, in denen von diesem Prinzip abgewichen werden muss.
Stellen Sie sich zur Veranschaulichung einmal die folgenden beiden Situationen vor:

» EinBildverarbeitungsprogramm fiihrt eine Bildtransformation parallel auf mehre-
ren Bildern gleichzeitig durch. Das Programm startet die parallelen Operationen
und wartet dann darauf, dass alle Bilder bearbeitet wurden. Eine individuelle Ope-
ration kann mit einer Exception fehlschlagen, zum Beispiel weil eine Datei nicht
gefunden wurde oder das Dateiformat nicht gelesen werden konnte. In dieser Si-
tuation konnen mehrere verschiedene Exceptions gleichzeitig auftreten, und die
aufrufende Ebene sollte diese Exceptions als Gesamtheit fangen und bearbeiten
konnen.

» Ein Programm sendet eine HTTP-Anfrage an einen Webserver, um beispielsweise
eine Web-API zu verwenden. Sollte der Verbindungsaufbau fehlschlagen oder der
Server mit einem Fehler antworten, konnte eine einfache Strategie die Anfrage au-
tomatisch wiederholen. Ein abschliefiender Fehlschlag nach mehreren Versuchen
musste dann in Form von mehreren Exceptions an die aufrufende Ebene propa-
giert werden, denn jedes individuelle Scheitern der Anfrage konnte eine andere Ur-
sache gehabt haben.

Fur diese und ahnliche Anwendungsfille wurde in Python 3.11 das Konzept der Excep-
tion Groups eingefiihrt. Dabei werden eine oder mehrere Exceptions als Gruppe zu-
sammengefasst und gemeinsam geworfen.

Beachten Sie, dass sich eine Exception Group dann eignet, wenn mehrere voneinan-
der unabhingige Exceptions gemeinsam geworfen werden sollen. Mehrere vonei-
nander abhédngige Exceptions kdnnen tber das Exception Chaining (siehe Abschnitt
20.1.6) zu einer einzigen Exception zusammengefiigt werden.

20.4.1 Eine Exception Group

Eine Exception Group besteht aus einer Fehlerbeschreibung und einer Liste von
Exceptions, die in der Gruppe zusammengefasst werden:

group = ExceptionGroup("Zwei Exceptions”, [
TypeError("Ein TypeError"),
SyntaxError("Ein SyntaxError"),

D

DieKlasse ExceptionGroup erbt von Exception, was es insbesondere ermoglicht, Excep-
tion Groups beliebig ineinander zu verschachteln:

group = ExceptionGroup("Operation fehlgeschlagen", [
ValueError("Parameter x hat ungiiltigen Wert"),
ValueError("Parameter y hat ungiiltigen Wert"),

462



20.4 Exception Groups

D

ExceptionGroup("Download von test.png fehlgeschlagen", [
ConnectionRefusedError("Fehler im ersten Versuch"),
TimeoutError("Fehler im zweiten Versuch"),

D,

ExceptionGroup("Speichern von test.png fehlgeschlagen", [
I0Error("Kein freier Speicherplatz"),
RuntimeError("Die Datei ist leer"),

D

In diesem Beispiel erzeugen wir eine fiktive Exception Group, die aus einer Samm-
lung unterschiedlicher Exceptions besteht, die sich in zwei weitere Untergruppen
einsortieren.

Eine Exception Group kann tber die raise-Anweisung wie eine normale Exception
geworfen werden:

raise group

Analog zu einer normalen Exception wird ein Traceback ausgegeben, wenn eine ge-
worfene Exception Group nicht gefangen wird. Dieser enthélt eine Ubersicht tiber die
in der Gruppe enthaltenen Exceptions:

+ Exception Group Traceback (most recent call last):

File "beispiel_O3_exception_groups.py", line 18, in <module>
raise group
ExceptionGroup: Operation fehlgeschlagen (4 sub-exceptions)

R EEE R R 1 -

| ValueError: Parameter x hat ungiiltigen Wert

 EEECEEEEEEEES 2 e
| ValueError: Parameter y hat ungiiltigen Wert
Fomm e 3 e

463



20 Ausnahmebehandlung

Grundsatzlich lasst sich eine Exception Group Uber die try/except-Anweisung
fangen:

try:
raise group

except ExceptionGroup as eg:
print(eg.exceptions)

Das Attribut exceptions einer Exception Group referenziert ein Tupel aller in der
Gruppe enthaltenen Exceptions.

20.4.2 Die try/except*-Anweisung

Eine herkdmmliche try/except-Anweisung ermoglicht das unbedingte Fangen einer
Exception Group, ohne dass sich spezifische except-Zweige abhdngig vom Inhalt der
Exception Group formulieren liefien. Dies ldsst sich mit der in Python 3.11 eingefihr-
ten try/except*-Anweisung umsetzen:

try:

raise group
except* OSError as eg:

print("Behandle alle OSError-Exceptions")
except* RuntimeError as eg:

print("Behandle alle RuntimeError-Exceptions™)

In den except*-Zweigen der try/except*-Anweisung werden zunéchst alle 0SError-
Exceptions der gefangenen Exception Group behandelt. Die in der Exception Group
enthaltenen ConnectionRefusedError- und TimeoutError-Exceptions erben von 0S-
Error und werden daher ebenfalls im ersten except*-Zweig behandelt. Innerhalb
eines except*-Zweigs liegen alle zu behandelnden Exceptions in Form einer aus der
gefangenen Gruppe herausgefilterten Exception Group eg vor.

Im zweiten except*-Zweig werden alle RuntimeError-Exceptions der gefangenen Ex-
ception Group behandelt. Im Gegensatz zu einer herkdmmlichen try/except-Anwei-
sung konnen mehrere except*-Zweige hintereinander ausgefiihrt werden, wenn sie
jeweils auf einen Teil der Exceptions der gefangenen Gruppe passen.

Die beiden except*-Zweige im Beispiel behandeln und filtern alle OSError- und Run-
timeError-Exceptions der gefangenen Gruppe. Nach Abarbeitung der try/except*-An-
weisung und Ausfihrung aller passenden except*-Zweige wird die gefangene Excep-
tion Group, reduziert auf die verbleibenden ValueError-Exceptions, weiter geworfen:

Behandle alle OSError-Exceptions
Behandle alle RuntimeError-Exceptions

464



20.4 Exception Groups

+ Exception Group Traceback (most recent call last):

| File "beispiel_03_exception_groups.py", line 24, in <module>
| raise group

| File "beispiel_03_exception_groups.py", line 19, in <module>
| raise group

| ExceptionGroup: Operation fehlgeschlagen (2 sub-exceptions)

4

+
i
I
]
1
I
I
1
I
I
I
I
1
I
I
1
1

[
1
I
1
1
I
1
I
1
I
I
I
I
I
1
I
l

Wie bei der herkdmmlichen try/except-Anweisung lassen sich except*-Zweige for-
mulieren, die auf mehrere Exception-Typen gleichermafien passen:

try:
raise group
except* (OSError, RuntimeError) as eg:
print("Behandle alle OSError- und RuntimeError-Exceptions")

Hinweis
Analog zur herkommlichen try/except-Anweisung wurde die Syntax der try/
except*-Anweisung mit Python 3.14 dahin gehend Uberarbeitet, dass die Klammern
beim Abfangen mehrerer Exception-Typen in einem except*-Zweig nicht mehr not-
wendig sind:
try:

raise group
except* OSError, RuntimeError:

print("Behandle alle OSError- und RuntimeError-Exceptions")

Die Klammern diirfen nur dann weggelassen werden, wenn der except*-Zweig nicht
gleichzeitig um einen as-Teil erganzt wird.

Zum Schluss sei erwdhnt, dass finally-Zweige analog zur herkdmmlichen try/except-
Anweisung funktionieren. Es darfallerdings keinen except*-Zweig ohne Angabe eines
Exception-Typs geben:

try:
raise group

except*: # <-- SyntaxError
pass

465



20 Ausnahmebehandlung

Die try/except*-Anweisung hat einige weitere Besonderheiten, auf die wir im Folgen-
den kurz eingehen mochten:

» Es dirfen in einer try/except*-Anweisung keine herkdmmlichen except-Zweige
verwendet werden.

» Die Exception-Typen ExceptionGroup und ExceptionBaseGroup, die eine Exception
Group definieren, konnen in except*-Zweigen nicht behandelt werden.

» Ein except*-Zweig darf keine Spriinge im Kontrollfluss tiber break, continue oder
return durchfihren.

In Abschnitt 31.5.6 werden Sie im Kontext des kooperativen Multitaskings eine An-
wendung von Exception Groups kennenlernen.

466



Kapitel 27
Bildschirmausgaben und Logging

An dieser Stelle mochten wir uns mit Modulen der Standardbibliothek befassen, die
die Moglichkeiten der Bildschirmausgabe sinnvoll erganzen. Dabei handelt es sich
um das Modul pprint zur ubersichtlich formatierten Ausgabe komplexer Instanzen,
das wir auch schon in Abschnitt 3.10 kurz verwendet haben, sowie um das Modul log-
ging zur formatierten Ausgabe von Lognachrichten auf dem Bildschirm oder in Log-
dateien.

Diein diesem Kapitel besprochenen Module verstehen sich als Erganzung zur norma-
lerweise verwendeten Built-in Function print, die ausfiihrlich in Abschnitt 17.14.36 be-
schrieben wird.

27.1 Ubersichtliche Ausgabe komplexer Objekte — pprint

In der Standardbibliothek existiert das Modul pprint (fiir pretty print), das flr eine
ubersichtlich formatierte Reprasentation eines Python-Datentyps auf dem Bild-
schirm verwendet werden kann. Das Modul macht insbesondere die Ausgabe kom-
plexer Datentypen, zum Beispiel langer Listen, besser lesbar. Bevor Beispiele ausge-
fihrt werden konnen, muss das Modul eingebunden werden:

>>> import pprint

Das Modul pprint enthdlt im Wesentlichen eine gleichnamige Funktion, die zur Aus-
gabe einer Instanz aufgerufen werden kann.

pprint(object, [stream, indent, width, depth], {compact})

Die Funktion pprint gibt die Instanz object aus, formatiert auf dem Stream stream.
Wenn Sie den Parameter stream nicht tibergeben, wird in den Standardausgabestrom
sys.stdout geschrieben. Uber die Parameter indent, width und depth lasst sich die For-
matierung der Ausgabe steuern. Dabei kann flr indent die Anzahl der Leerzeichen
ubergeben werden, die flr eine Einrtickung verwendet werden sollen. Der Parameter
indent ist mit 1 vorbelegt.

Uber den optionalen Parameter width kann die maximale Anzahl an Zeichen angege-
ben werden, die die Ausgabe breit sein darf. Dieser Parameter ist mit 80 Zeichen vor-
belegt.

589



27 Bildschirmausgaben und Logging

Im folgenden Beispiel erzeugen wir zunachst mit einer willkiirlichen Methode unse-
rer Wahl eine Liste von Strings und geben diese mithilfe von pprint formatiert aus:

>>> strings = [f"Der Wert von {ip**2 ist {i**2}" for i in range(10)]
>>> pprint.pprint(strings)
['Der Wert von 0**2 ist 0',
'Der Wert von 1**2 ist 1',
'Der Wert von 2**2 ist 4',
'Der Wert von 3**2 ist 9',
'Der Wert von 4**2 ist 16',
Der Wert von 5**2 ist 25',
'Der Wert von 6**2 ist 36",
'Der Wert von 7**2 ist 49",
‘Der Wert von 8**2 ist 64",
Der Wert von 9**2 ist 81']

Zum Vergleich geben wir strings noch einmal unformatiert mit print aus:

>>> print(strings)

['Der Wert von 0**2 ist 0', 'Der Wert von 1**2 ist 1', 'Der Wert von 2¥*2 ist
4', 'Der Wert von 3**2 ist 9', 'Der Wert von 4**2 ist 16', 'Der Wert von 5**2
ist 25', 'Der Wert von 6**2 ist 36', 'Der Wert von 7**2 ist 49', 'Der Wert von
8**2 ist 64', 'Der Wert von 9**2 ist 81']

Der Parameter depth ist eine ganze Zahl und bestimmt, bis zu welcher Tiefe Unterins-
tanzen, beispielsweise also verschachtelte Listen, ausgegeben werden sollen. Falls fiir
depth ein anderer Wert als None tibergeben wird, deutet pprint tiefer verschachtelte
Elemente durch drei Punkte ... an.

Uber den Schliisselwortparameter compact lsst sich steuern, wie kompakt umfang-
reiche Strukturen (z. B. lange Listen) dargestellt werden. Wird hier True ibergeben,
wird beispielsweise nicht jedes Element von strings in eine eigene Zeile geschrieben.

Sollten Sie die Ausgabe von pprint weiterverarbeiten wollen, verwenden Sie die Funk-
tion pformat, die die formatierte Reprasentation in Form eines Strings zurtickgibt:

>>> s = pprint.pformat(strings)

>>> print(s)

['Der Wert von 0**2 ist O
'Der Wert von 1**2 ist 1
'Der Wert von 2**2 ist 4',
'Der Wert von 3**2 ist 9
'Der Wert von 4**2 ist 16',
'Der Wert von 5**2 ist 25',
'Der Wert von 6**2 ist 36",
'Der Wert von 7**2 ist 49°',

590



272 Logdateien —logging

'Der Wert von 8**2 ist 64',
'Der Wert von 9**2 ist 81']

Die Funktion pformat hat die gleiche Schnittstelle wie pprint — mit dem Unterschied,
dass der Parameter stream fehlt.

27.2 Logdateien —logging

Das Modul logging stellt ein flexibles Interface zum Protokollieren des Programmab-
laufs bereit. Protokolliert wird der Programmablauf, indem an verschiedenen Stellen
im Programm Meldungen an das logging-Modul abgesetzt werden. Diese Meldungen
konnen unterschiedliche Dringlichkeitsstufen haben. So gibt es beispielsweise Feh-
lermeldungen, Warnungen oder Debug-Informationen. Das Modul logging kann
diese Meldungen auf vielfaltige Weise verarbeiten. Ublich ist es, die Meldung mit
einem Zeitstempel zu versehen und entweder auf dem Bildschirm auszugeben oder
in eine Datei zu schreiben.

In diesem Abschnitt wird die Verwendung des Moduls logging anhand mehrerer Bei-
spiele im interaktiven Modus gezeigt. Um die Beispielprogramme korrekt ausfihren
zu konnen, muss zuvor das Modul logging eingebunden sein:

>>> import logging
Bevor Meldungen an den Logger geschickt werden konnen, muss dieser durch Aufruf

der Funktion basicConfig initialisiert werden. Im folgenden Beispiel wird ein Logger
eingerichtet, der alle eingehenden Meldungen in die Logdatei programm. log schreibt:

>>> logging.basicConfig(filename="programm.log")

Jetzt konnen mithilfe der im Modul enthaltenen Funktion log Meldungen an den Log-
ger ibergeben werden. Die Funktion log bekommt dabei die Dringlichkeitsstufe der
Meldung als ersten und die Meldung selbst in Form eines Strings als zweiten Parame-
ter Ubergeben:

>>> logging.log(logging.ERROR, "Ein Fehler ist aufgetreten")
>>> logging.log(logging.INFO, "Dies ist eine Information")

Durch das Aufrufen der Funktion shutdown wird der Logger korrekt deinitialisiert, und
eventuell noch anstehende Schreiboperationen werden durchgefiihrt:

>>> logging.shutdown()

Nattirlich sind nicht nur die Dringlichkeitsstufen ERROR und INFO verfiigbar. Tabelle 27.1
listet alle vordefinierten Stufen auf, aus denen Sie wahlen kdnnen. Die Tabelle ist dabei
nach Dringlichkeit geordnet, wobei die dringendste Stufe zuletzt aufgefiihrt wird.

591



27 Bildschirmausgaben und Logging

Level Beschreibung

NOTSET keine Dringlichkeitsstufe

DEBUG eine Meldung, die nur fiir die Programmierung zur Fehlersuche interes-
santist
INFO eine Informationsmeldung tiber den Programmstatus

WARNING | eine Warnmeldung, die auf einen moglichen Fehler hinweist

ERROR eine Fehlermeldung, nach der das Programm weiterarbeiten kann

CRITICAL | eine Meldung lber einen kritischen Fehler, der das sofortige Beenden des
Programms oder der aktuell durchgeflihrten Operation zur Folge hat

Tabelle 27.1 Vordefinierte Dringlichkeitsstufen

Aus Grunden des Komforts existiert zu jeder Dringlichkeitsstufe eine eigene Funktion.
So sind die beiden Funktionsaufrufe von log aus dem letzten Beispiel dquivalent zu:

logging.error("Ein Fehler ist aufgetreten")
logging.info("Dies ist eine Information")

Wenn Sie sich die Logdatei nach dem Aufruf dieser beiden Funktionen ansehen, wer-
den Sie feststellen, dass es lediglich einen einzigen Eintrag gibt:

ERROR:root:Ein Fehler ist aufgetreten

Das liegt daran, dass der Logger in seiner Basiskonfiguration nur Meldungen loggt,
deren Dringlichkeit grofier oder gleich der einer Warnung ist. Um auch Debug- und
Info-Meldungen mitzuloggen, miissen Sie beim Aufruf der Funktion basicConfig im
Schliisselwortparameter level einen geeigneten Wert tibergeben:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG)

logging.error("Ein Fehler ist aufgetreten")

logging.info("Dies ist eine Information")

In diesem Beispiel wurde die Mindestdringlichkeit auf DEBUG gesetzt. Das bedeutet,
dass alle Meldungen geloggt werden, die mindestens eine Dringlichkeit von DEBUG ha-
ben. Folglich erscheinen auch beide Meldungen in der Logdatei:

ERROR:root:Ein Fehler ist aufgetreten
INFO:root:Dies ist eine Information

592



272 Logdateien —logging

Tabelle 27.2 listet die wichtigsten Schltsselwortparameter auf, die der Funktion ba-
sicConfig libergeben werden konnen.

Parameter | Beschreibung

datefmt Spezifiziert das Datumsformat. Naheres dazu erfahren Sie im folgenden
Abschnitt.

filemode Gibt den Modus” an, in dem die Logdatei geéffnet werden soll (Standard-
wert: "a").

filename Gibt den Dateinamen der Logdatei an.

format Spezifiziert das Meldungsformat. Naheres dazu erfahren Sie im folgen-
den Abschnitt.

handlers Gibt eine Liste von Handlern an, die registriert werden sollen. Naheres
dazu erfahren Sie in Abschnitt 27.2.2.

level Legt die Mindestdringlichkeit fiir Meldungen fest, damit diese in der Log-
datei erscheinen.

stream Gibt einen Stream an, in den die Logmeldungen geschrieben werden sol-
len. Wenn die Parameter stream und filename gemeinsam angegeben
werden, wird streamignoriert.

style Bestimmt die Formatierungssyntax fiir die Meldung. Der voreingestellte

Wert "%" bedingt die alte %-Syntax aus Python 2, wahrend ein Wert von
"{" die neue Syntax zur String-Formatierung” erzwingt.

" Die verschiedenen Modi, in denen Dateien geoffnet werden kdnnen, sind in Ab-
schnitt 6.2 aufgefuhrt.

" Naheres zur String-Formatierung erfahren Sie in Abschnitt 12.5.9.

Tabelle 27.2 Schliisselwortparameter der Funktion basicConfig

27.21 Das Meldungsformat anpassen

Wie in den vorangegangenen Beispielen zu sehen war, wird ein Eintrag in einer Log-
datei standardmaf3ig nicht mit einem Zeitstempel versehen. Es gibt eine Moglichkeit,
das Format der geloggten Meldung anzupassen. Dazu iibergeben Sie beim Funktions-
aufruf von basicConfig den Schliisselwortparameter format:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG,
style="{",
format="{asctime} [{levelname:8}] {message}")

593



27 Bildschirmausgaben und Logging

logging.error("Ein Fehler ist aufgetreten")
logging.info("Dies ist eine Information")
logging.error("Und schon wieder ein Fehler")

Sie sehen, dass ein Format-String iibergeben wurde, der die Vorlage fiir eine Meldung
enthalt, wie sie spater in der Logdatei stehen soll. Dabei stehen die Bezeichner asctime
fir den Timestamp, levelname fiir die Dringlichkeitsstufe und message fir die Mel-
dung. Die von diesem Beispiel generierten Meldungen sehen folgendermafien aus:

2020-02-05 14:28:55,811 [ERROR ] Ein Fehler ist aufgetreten
2020-02-05 14:29:00,690 [INFO ] Dies ist eine Information
2020-02-05 14:29:12,686 [ERROR ] Und schon wieder ein Fehler

Tabelle 27.3 listet die wichtigsten Bezeichner auf, die innerhalb des format-Format-
Strings verwendet werden diirfen. Je nach Kontext, in dem die Meldung erzeugt wird,
haben einige der Bezeichner keine Bedeutung.

Bezeichner | Beschreibung

asctime Zeitpunkt der Meldung. Das Datums- und Zeitformat kann beim Funk-
tionsaufruf von basicConfig tiber den Parameter datefmt angegeben
werden. Naheres dazu folgt im Anschluss an diese Tabelle.

filename der Dateiname der Programmdatei, in der die Meldung abgesetzt wurde

funcName der Name der Funktion, in der die Meldung abgesetzt wurde

levelname | die Dringlichkeitsstufe der Meldung

lineno die Quellcodezeile, in der die Meldung abgesetzt wurde
message der Text der Meldung
module Der Name des Moduls, in dem die Meldung abgesetzt wurde. Der

Modulname entspricht dem Dateinamen ohne Dateiendung.

pathname der Pfad zur Programmdatei, in der die Meldung abgesetzt wurde
process die ID des Prozesses, in dem die Meldung abgesetzt wurde
thread die ID des Threads, in dem die Meldung abgesetzt wurde

Tabelle 27.3 Bezeichner im Format-String
Es ist moglich, das Format anzupassen, in dem Zeitstempel ausgegeben werden. Bei-

spielsweise konnen wir ein in Deutschland tibliches Datumsformat setzen und aufier-
dem die Ausgabe der Millisekundenanteile abschalten. Das Format des Timestamps

594



272 Logdateien —logging

kann beim Aufrufvon basicConfig iber den Schliisselwortparameter datefmt angege-
ben werden:

logging.basicConfig(
filename="programm.log",
level=logging.DEBUG,
style="{",
format="{asctime} [{levelname:8}] {message}",
datefmt="%d.%m.%Y %H:%M:%S")
logging.error("Ein Fehler ist aufgetreten")

Die in der Vorlage fiir das Datumsformat verwendeten Platzhalter wurden in Ab-
schnitt 15.1 eingefiihrt. Die von diesem Beispiel erzeugte Meldung sieht folgenderma-
Ben aus:

05.02.2020 14:38:49 [ERROR ] Ein Fehler ist aufgetreten

27.2.2 lLogging-Handler

Bisher haben wir ausschlief3lich besprochen, wie das Modul logging dazu verwendet
werden kann, alle eingehenden Meldungen in eine Datei zu schreiben. Tatsdchlich ist
das Modul in dieser Beziehung sehr flexibel und erlaubt es, nicht nur in Dateien, son-
dern beispielsweise auch in Streams zu schreiben oder die Meldungen tiber eine Netz-
werkverbindung zu schicken. Dafiir werden sogenannte Logging-Handler verwendet.
Um genau zu sein, haben wir in den vorangegangenen Abschnitten bereits einen im-
pliziten Handler verwendet, ohne uns dariiber im Klaren zu sein.

Um einen speziellen Handler einzurichten, muss eine Instanz der Handler-Klasse er-
zeugt werden. Diese kann dann vom Logger verwendet werden. Im folgenden Beispiel
sollen alle Meldungen auf einen Stream, namlich sys.stdout, geschrieben werden;
dazu wird die Handler-Klasse logging.StreamHandler verwendet:

import logging

import sys

handler = logging.StreamHandler(sys.stdout)

frm = logging.Formatter("{asctime} {levelname}: {message}",
"%d.%m. %Y BH:%M:%S", style="{")

handler.setFormatter (frm)

logger = logging.getlogger()

logger.addHandler (handler)

logger.setlevel (logging.DEBUG)

logger.critical("Ein wirklich kritischer Fehler")

logger.warning("Und eine Warnung hinterher")

logger.info("Dies hingegen ist nur eine Info")

595



27 Bildschirmausgaben und Logging

Zunachst wird der Handler, in diesem Fall ein StreamHandler, instanziiert. Im nachsten
Schritt wird eine Instanz der Klasse Formatter erzeugt. Diese Klasse kapselt die Forma-
tierungsanweisungen, die wir in den vorangegangenen Beispielen beim Aufruf der
Funktion basicConfig tibergeben haben. Mithilfe der Methode setFormatter werden
dem Handler die Formatierungsanweisungen bekannt gegeben.

Um den Handler beim Logger zu registrieren, benotigen wir Zugriff auf die bisher im-
plizit verwendete Logger-Instanz. Diesen Zugriff erlangen wir tiber die Funktion get-
Logger. Danach wird tiber addHandler der Handler hinzugefiigt und tiber setlevel die
gewlinschte Dringlichkeitsstufe eingestellt.

Die Meldungen werden im Folgenden nicht tiber Funktionen des Moduls logging,
sondern tiber die Methoden critical, warning und info der Logger-Instanz logger ab-
gesetzt. Das Beispielprogramm gibt folgenden Text auf dem Bildschirm aus:

05.02.2020 17:21:46 CRITICAL: Ein wirklich kritischer Fehler
05.02.2020 17:21:46 WARNING: Und eine Warnung hinterher
05.02.2020 17:21:46 INFO: Dies hingegen ist nur eine Info

Im Folgenden sollen die wichtigsten zusatzlichen Handler-Klassen beschrieben wer-
den, die im Paket logging bzw. logging.handlers enthalten sind.

logging.FileHandler(filename, [mode, encoding, delay])

Dieser Handler schreibt die Logeintrage in die Datei filename. Dabei wird die Datei im
Modus mode gedffnet. Der Handler FileHandler kann auch implizit durch Angabe der
Schlisselwortparameter filename und filemode beim Aufruf der Funktion basicCon-
fig verwendet werden.

Der Parameter encoding kann dazu verwendet werden, das zum Schreiben der Datei
genutzte Encoding festzulegen. Wenn Sie flir den delay-Parameter True ibergeben,
wird mit dem Offnen der Datei so lange gewartet, bis tatsichlich Daten geschrieben
werden sollen.

logging.StreamHandler([stream])

Dieser Handler schreibt die Logeintrage in den Stream stream. Beachten Sie, dass der
Handler StreamHandler auch implizit durch Angabe des Schliisselwortparameters
stream beim Aufruf der Funktion basicConfig verwendet werden kann.

logging.handlers.SocketHandler(host, port)
logging.handlers.DatagramHandler(host, port)

Diese Handler senden die Logeintrdge tiber eine TCP-Schnittstelle (SocketHandler)
bzw. iiber eine UDP-Netzwerkschnittstelle (DatagramHandler) an den Rechner mit dem
Hostnamen host unter Verwendung des Ports port.

596



272 Logdateien —logging

logging.handlers.SMTPHandler(mailhost, from, to, subject, [credentials])

Dieser Handler sendet die Logeintrage als E-Mail an die Adresse to. Dabei werden sub-
ject als Betreff und fromals Absenderadresse eingetragen. Uber den Parameter mail-
host geben Sie den zu verwendenden SMTP-Server an. Sollte dieser Server eine Au-
thentifizierung verlangen, konnen Sie ein Tupel, das Benutzername und Passwort
enthalt, fiir den optionalen letzten Parameter credentials tibergeben.

597



Auf einen Blick

Auf einen Blick

TEIL |
Einstiegin PYthon ... 49

TEIL I
Datentypen ...ttt 133

TEIL I
Fortgeschrittene Programmiertechniken ... 309

TEIL IV
Die Standardbibliothek ... 559

TEILV
WeiterfihrendeThemen ... 873



Inhalt

Inhalt

1 Einleitung 31
1.1 Warum haben wir dieses Buch geschrieben? .......... 31
1.2 Wasleistet diesesSBUCh? ... 32
1.3  Wieist dieses Buch aufgebaut? ... 32
1.4 Wersollte dieses Buch wielesen? ... 33
1.5  Beispielprogramme ..........reeiieesessesessessssssesesssssessssssennns 34
1.6  Vorwort zur achten Auflage ... 34
L7 DANKSAGUNE ... seeesssssssssssses s sesssssssssssses s sssssssssnssssssssssssessssnsse 35
2 Die Programmiersprache Python 39
2.1  Geschichte und Entstehung ...............oiiiiiicccssssececcceeenseesssseeee 39
2.2 Grundlegende KONzZepte ...........rrcemnerceminneeeeessisseseessesssssseenes 40
2.3 Einsatzméglichkeiten und Starken ..., 41
2.4 Dielnstallation von PYthon ... 43
241 Installation von Anaconda unter Windows ...........ccceeeeeeevereereeerennennns 44
242 Installation von Anaconda unter MacOS ......eeeeeeeeeeeeeeeeeeeeeennns 44
243 Installation von Anaconda unter LINUX ... 45
2.5 Drittanbietermodule installieren ... 45
2.6 Die Verwendung von PYthon ..............ssnsseceesesesmsesssssees 46
TEILI Einstiegin Python
3  Erste Schritte im interaktiven Modus 51
3.1 GANZEZANIEN ... 52
3.2 Gleitkommazahlen ... 53
3.3 ZeICh@NKELLEN ... 54




Inhalt

B8 LISEEN oottt 55
3.5 DICHIONAIYS ..ot ese bt 55
3.6 Variablen ... 56
3.6.1  Die besondere Bedeutung des Unterstrichs ... 57
3.6.2  BEZEICNNET ..o sesae s 58
3.7  Logische AUSAITICKE .................commmcceirreemmiirssnecccecceeeeseissssseececsesessseassssssescesee 58
3.8  Funktionen und Methoden ... 60
3.8 1 FUNKEIONEN oot sessse s sens s senanas 60
3.82  MEhOdeN ... 61
3.9 BildSchirmausgaben .............ccneseessisseeesssiesessssseeessssssennes 62
3.10  MOUIE ...ttt 63
4 Der Weg zum ersten Programm 65
4.1 Tippen, kompilieren, testen ............m—————— 65
411 WINAOWS .ooomiieceeicceeiirceesecensssscesssesesssesesssessssssssssssssesssssssssssesssesesssseseses 66
412 LinuXUNd MaCOS ... ssssssessesenssesensanens . 66
413 SNEDANG s 67
414 INTerne ADIGUTE ..o esees 67
4.2  Grundstruktur eines Python-Programmes ..............nrecinnensens 69
421  Umbrechen langer Zeilen ....... 71
422  Zusammenfligen mehrerer Zeilen 72
4.3  Daserste Programm ... sssessssesssesesseses 73
431 INIHAISIEIUNEG oot ssae s i ssesesseesssseees 74
432 SCHIEITENKOPT oottt sseeees 74
433 SCHIEIFENKOIPET oot seeen 74
434  BildschirmausSgabe ... seesecsssssesessssesesaeeseees 75
4.4 KOMMENTAIE .......oooooee s ssssss s ssnss s 75
4.5  DerFehlerfall ........ccencnceeeceseesssssessssssssssssssssssseees 76
5 Kontrollstrukturen 79
5.1  Fallunterscheidungen ...........cnseseinsessesssissessssssessessessens 79
511  Di€ if-ANWEISUNEG ..cvoreureicricriiciieeiieeeieseeseessesesssessessssesesseseanes 79
51.2  Bedingte AUSAIUCKE ...ttt seoeseaeesssenians 82




Inhalt

5.2 SCRIGITEIN .........oeieeeeeeeeee e 83
521 Die While-SCNIEITE .ouoeeeeeeee e 83
5.2.2  AbDBruch €iNer SChIEITE ... aene 84
5.2.3 Erkennen eines Schleifenabbruchs ... 85
5.2.4  Abbruch eines Schleifendurchlaufs ..., 86
5.2.5 D€ fOr-SCRIBITE .ot 88
5.3 Di€ PASS-ANWEISUNE .......cooooovvvoeecrreiieecremiessecessssesseesssssssesssssssassssssssssssessssssssnesssssees 91
5.4  Zuweisungsausdriicke ... sssseesessseseens 91
541 IMOTIVATION ettt 93
5.4.2  Das Spiel Zahlenraten mit einem Zuweisungsausdruck 94
6 Dateien 95
6.1  DAteNSEIOME ...t 95
6.2 Daten aus einer Datei auslesen ... 96
6.2.1 Eine Datei 6ffnen und sChliERBen ... 97
6.2.2  Die With-ANWEISUNG ...cocrireiciinecireceieciseesiecsiesssessesecsissssseesesessesesssseces 97
6.2.3 Den Dateiinhalt QUSIESEN ... 98
6.3 Datenin eine Datei schreiben ... 101
6.4 Das Dateiobjekt erzeugen ... 102
6.4.1  Die Built-in Function open ... . 102
6.4.2  Attribute und Methoden eines Dateiobjekts .........cecrnecenecenecnns 104
6.4.3  Die Schreib-/Leseposition verdndern 105
7 Das Datenmodell 109
7.1  Die Struktur VON INSTANZEN ... 111
711 DaAtentyp e 112
7.1.2 Wert ..o 113
7.13 Identitat 114
7.2  Referenzen I0SChen ...t 116
7.3  Mutable vs. immutable Datentypen ..., 118
73.1  Mutable Datentypen und Seiteneffekte ........ 119




Inhalt

8 Funktionen, Methoden und Attribute 123
8.1 Parameter von Funktionen und Methoden ... 123
8.11  Positionsbezogene Parameter ... 124
8.1.2  SchlUsSelWOrtParamMEter ... ceriecrseeiseereseesisesssseesesessessssseees 125
8.1.3  Optionale PAarameter ...t sssesssecens 125
8.1.4  Reine Schllsselwortparameter ... cneceieessecsseceeecnes 126
8.2 ARHDULE ....ooooc sttt 126
9 Informationsquellen zu Python 129
9.1 DieBuilt-in FUnction help ... 129
9.2 Die Onlinedokumentation ... 130
9.3 PEPS ..ot e 130

TEILII Datentypen

10 Basisdatentypen: eine Ubersicht 135
10.1 Das Nichts = NONETYPE ........ccoocvwomrrrmimneermienneesesmiisesssssiesnesssssesnessssssesnesssssesnnens 136
J0.2  OPEratoOren ...ttt sase s saees 137
10.2.1  BINAIGKEIT oo cesseesesanas 138
10.2.2  Auswertungsreinenfolge ..........nerceconeccennns . 139
10.2.3  Verkettung von Vergleichen ........nececensesisesinees 140
11 Numerische Datentypen 143
11.1 Arithmetische Operatoren ... 143
11.1.1 Erweiterte Zuweisungen 144
11.2 Vergleichende Operatoren ... 145
11.3 Konvertierung zwischen numerischen Datentypen ..., 146
11.4 Ganzzahlen —int ... ceeenesssseeceeeee . 147
1141  Zahlensysteme ... sssseseanes 148



Inhalt

11,42 Bit-OPerationNen ...ccnerncrnererieceneeineeieessessesesesssesssessesesssesssesssesssees 149

11.4.3 Die Methode bit_length ... 154

11.5 Gleitkommazahlen = float ... 154

11.51 EXponentialsChreiDWEISE ........cceieceneerieeineceieseisesissesseseceassessaessanees 155

11.52  GENAUIGKETL oottt essessesesessessaessinees 155

11.5.3 Unendlich und Not @ NUMDET ... 156

11.6 Boolesche Werte —bool .............cocrrcriissneceeceseeisiessssssseessssssssessssssses 157

11.6.1  LogiSChe OPeratoren .......eseseseseesssessessssesssesesenns 157

11.6.2 Wahrheitswerte nicht boolescher Datentypen ... 160

11.6.3 Auswertung logischer Operatoren 161

11.7 Komplexe Zahlen — complex ... . 163

12 Sequenzielle Datentypen 167

12.1 Der Unterschied zwischen Text und Bindrdaten .............ccoomccnnccconne. 167

12.2 Operationen auf Instanzen sequenzieller Datentypen ... 169

1221 AufElemente prifen ... 170

1222 VEIKEEEUNG oottt sia s essseeseessasssssessanessanees 171

12.2.3  WICAEINOIUNG oottt esies i sssseessses s esssesssessinees 173

1224 INAIZIEIUNG oo sesss s sss s 174

1225 SHCINE oottt sase e ssasessssssesase st ssaessasss 175

12.2.6 L3NG CINEI SEQUENZ ....orrereeerreereererceseneeeeesssessassssessesssesssessssenssenssessssssees 179

12.2.7 Das kleinste und das grof3te Element 179

12.2.8 Ein Element suchen ... 180

12.2.9  Elemente ZAhIeN ... 181

12,3 LISEEN = TIST .oooon e sssse s 181

12.3.1 Verandern eines Werts innerhalb der Liste — Zuweisung mit ] .......... 182
12.3.2 Ersetzen von Teillisten und Einfligen neuer Elemente —

ZUWEISUNG ML [] cooorrereiereceiesencessesnesseessessesssessesesssssesnsssessennas . 183

12.3.3 Elemente und Teillisten 16schen —del zusammen mit [] .......ccooooeereneaee. 183

12.3.4 Methoden von list-INSTanZzen ... 184

12.3.5 Listen sortieren —s.sort([key, reVerse]) .......mceomerecemenneneens 187

12.3.6 Seiteneffekte . .. 190

12.3.7  List COMPIrEN@NSIONS ...t ssosasssesssesenenas 193

12.4 Unverdnderliche Listen —tuple ... 195

12.41  Packing und UNPACKiNg ........ovceeurcrreumecreenecciierneseeisseceieseseesseessssecsessseeseeanns 196

12.42 Immutabel heiRt nicht zwingend unveranderlich! .......cccccoonevnciices 198



Inhalt

12.5 Strings — str, bytes, bytearray ... 199
1251 STEUEIZEICHEN ... 202
12,52 TrennNen VON STHNES ..o vvieereerererieeieeiesiseseesssesesesssesssessssssssesssessaesssees 204
12.5.3  SUChen VON TEII-STINEGS w.oevvececeiciicieciieeiieceieceiseteessecesesessesssessiees 206
12.5.4 Ersetzen von Teil-StriNgs .......nrnnrcnnecinenes 208
12,55 Entfernen von Prafixen oder Suffixen ... 210
12.5.6  AuSHChtEN VON SEIINES oocieciccrceiccrrecriecsiecriecsisesseesisecseseessessaecsines 212
12.5.7  SEING-TESES oottt saesasesssse e sasesssessseees 213
12.5.8 Verkettung von Elementen in sequenziellen Datentypen ..................... 214
12.5.9  Formatierung von STHNES ... seseesaesssessaesssees 215
12.5.10 Zeichensatze und Sonderzeichen ..........rcncccennn. 227
12.511 TeMPIAate-StrNGS ..ot eieseeiiseesiseesise i esses s essessaessinees 236
13 Zuordnungen und Mengen 239
13.1  DiIctionary — dict .......cccooooiiieieeoiccrrieeeeisssseccreceeeisssss e esesssassss e 239
13.1.1 Erzeugen eines DICtioNarYs ... 239
13.1.2  Schliissel UNd WETTE ... seessessesassesseesenanns 241
1313 HEIALION oo sase s 242
13.1.4 Operatoren ... 243
13.1.5  MethOden ... 246
13.1.6  Dict COMPIENENSIONS .....ovvererercricriecrieeeieesiessiseessesseecsasecssenes 252
13.2 Mengen —set Und froZeNSet .............c..irmriericnneneeriinneceesiiessesessseeecsesssennees 253
1321  Erzeugen €iNes SELS ... sessesessssssesseaes 253
13.2.2  HEIAtiON .o 255
13.2.3  OPEIAtOrEN ... 256
1324 METNOAEN ..o senaaes 261
13.2.5 Veranderliche Mengen — Set ........cornnereincceirneseesseesesseseesseeseeanns 262
13.2.6 Unveranderliche Mengen —frozenset ..........cccccoucvue. 264
14 Collections 267
14.1 Verkettete DIictionarys ... seseesssssesssssssssesessesss 267
14.2 Zahlen von Haufigkeiten .. 268
1421 d.elements() oo 269
1422 d.most_cOMMON([N]) croreveereeereeeeereeeeieeeeseseseseseessseeesssseeessssesesssseseessessssanes 270

10



Inhalt

14.2.3  d.subtract([iterable]) .o 270
1424  d.update([iterable]) .t 271
14.3 Dictionarys mit Standardwerten ... 271
14.4 Doppelt verkettete LiSten ... seseessessesessesns 272
14.5 BeNANNE TUPEI ..ottt ssss s 274
1451 namedtuple(typename, field_names, {rename}) .....occcoomeeeomrrccrnecennnn. 274
15 Datum und Zeit 277
15.1 Elementare Zeitfunktionen —time ... 277
15.1.1 Der Datentyp struct_time ... 278
1512 KONSTANTEN oottt saens 279
15.1.3  FUNKEION@N oot sssss s senenas 280
15.2 Objektorientierte Datumsverwaltung — datetime ..., 286
1521 datetime.date s 286
15.2.2  datelimetime . 288
15.2.3  datetime.datetime ... 289
15.2.4 datetimetimedelta ..., 291
15.2.5 Operationen fiir datetime.datetime und datetime.date 294
15.3  ZeitZonen — ZONEINTO ...ttt esssessis s ssessssses s sssesnes 296
15.3.1 Die IANA-Zeitzonendatenbank ... 296
15.3.2 Zeitangaben in lokalen Zeitzonen ... 297
15.3.3 Rechnen mit Zeitangaben in lokalen Zeitzonen ... 298
16 Enumerationen und Flags 303
16.1 Aufzahlungstypen — ENUM .........ocnninneseesienneessssiessesssssesessesseennees 303
16.2 Aufzdhlungstypen fiir Bitmuster —Flag ... 305
16.3 Ganzzahlige Aufzahlungstypen — INtEnuM ...........ccooverrimnccirmcnnccroncccriinee 306

n



Inhalt

TEILIIl Fortgeschrittene Programmiertechniken

17 Funktionen 311
17.1 Definieren einer FUNKEION .........ccooccnrcrirmiisnnceeeceenmsiessnsssscssessssseessnnsses 313
17.2 RUCKZADEWEITE ...ttt srt s sseeeseees 314
17.3 Funktionsobjekte ... 316
17.4 Optionale Parameter ... ceceeeesseeesseesss s sseseseees 317
17.5 Schliisselwortparameter ... esesseeees 318
17.6 Beliebige Anzahl von Parametern ... 319
17.7 Reine Schliisselwortparameter ..., . 321
17.8 Reine Positionsparameter ... 323
17.9 Unpacking beim Funktionsaufruf ..., . 324
17.10 Seiteneffekte ... 326
17.11 NAMENSTAUME .......cccooeecreeierceesieeeeeeesssssesessssssessessssssaessssssssssssssssssessssssssscsssssssnecs 329
17.11.1 Zugriff auf globale Variablen — global ... 329
17.11.2 Zugriff auf den globalen Namensraum ..........cenerceneceennns 330
17.11.3  Lokale FUNKEIONEN ...t 332
17.11.4 Zugriff auf lbergeordnete Namensraume — nonlocal . 332
17.11.5 Ungebundene lokale Variablen —eine Stolperfalle ... 334
17.12 Anonyme FUNKEIONEN ............cooiriincnnncciinnessessissesesssessesssssessssesseennecs 336
17.13 REKUISION ...t sssisessssssesesesssessssssseens . 337
17.14 Eingebaute FUNKLIONEN ..........cooiicnrcinnescessinneseenneesesssssseoessesseennaes 338
17041 ADS(X) e 341
17.24.2  QlI(IEErADIE) oottt sss st enssenne 342
17.14.3  QNY(ITEIaDIE) oot 342
17.14.4 ascii(object) 342
17.145  bin(X) oo 343
17.14.6  DOOI([X]) cooverrereseeeeeseseeeesseseeeesssseesesssseessessseseesssessesssseeeeessseeeens . 343
17.14.7 bytearray([source, encoding, €rrors]) ..meeeeeemseeeeesssssseeesemsnneees 343
17.14.8 bytes([source, encoding, €ITOIS]) ....cowwereeemrreesreeeseseeeesseeessseseesseeeseanns 344
S TG T () S 345
17.14.10 complex([real, iMag]) ....ccoeeemmrreeeemeeeeeemsneeeeeeesnee . 345
17.14.11 diCt([SOUICE]) wereereeeeeeeeeeeeeeeeeee et seenen 346
17.14.12 diVMOd(8, D) oo 346
17.14.13 enumerate(iterable[, start]) ... 346

12



Inhalt

17.14.14 eval(expression, [globals, [0€alS]) ..o eeeeeseeeeennes 347
17.14.15 exec(object, [globals, 10CAIS]) w..rrereerrereeerreeereeseeeeessssseseeesssseseeesessssneees 348
17.14.16 filter(function, iterable) ... . 348
17,1817 FIOAL([X]) rorerreseeresersseesseeesserssesesesessseesesesseseseeesesesesssesesseseseseesesessesese 348
17.14.18 format(value, [format_SPec]) ..cmeceeemeeeeemeseeessssseseessesssseees 349
17.14.19 frozenset([iterable]) ... . 349
17.14.20 GIODAIS() errveeeemrerereeereeeeesesseeeeesssseseeessseesesssssssessesssssssssssssessssssessses 350
17.14.21 NASN(ODJECL) weorrreeeerceiiiseceeieieeeeseeseeessssseesesssessessssssesesssessssssssesesees 350
17.14.22 help([ODJECL]) crrvvereeeeeereeereeeieeeeieeeeseeesssesessseseesssesess e sesssesesssesesssessssanas 351
17.14.23 NEX(X) croerreersseeseserssessssessssesssessssesesessssessssesesessssessseesssess e sesessessssrs e 351
17.14.24 id(object) .......... . . 351
17.14.25 input([prompt]) 352
17.14.26 iNt([X, DASE]) oot 352
17.14.27 1EN(S) ceoerreereienrreesseressiess s ssss e ssssssssssssss s ss st sss s s 353
17.14.28 [ist([SEQUENCE]) woorveereeeeieeeereeeeieeeeseeeessesessssssesssesessssesesssesssseseessssesssanns 353
17.14.29 10CAIS() ovverrereerereerreeseeeesesees e ssae s ssssssssss s ssssssssss s sss s sa s 353
17.14.30 map(function, [*iterable, Strict]) ..o 354
17.14.31 max(iterable, {default, key}), max(argl, arg2, [*args], {key}) «ccormmerees 356
17.14.32 min(iterable, {default, key}), min(argl, arg2, [*args], {key}) «ccommuueees 356
17,1433 OCE(X) worverreereseeseseessesssseessses e esesesessesesssesssese s esees s eses s eseee s 357
Ry VR 0 DO 357
17.14.35 POW(X, Y, [Z]) worvererrreemeereemieemeseesmienmessessesnmesssssssnmesssssesnmsssssssnmassesssssnmssssssennssees 357
17.14.36 print([*objects], {sep, end, file, flUSh}) ..o 357
17.14.37 range([start], stop, [StEP]) «ereremmeererineeeeeiineeeeesisseseessessssseesssssneeees 358
17.14.38 1EPI(ODJECL) oottt esss st eses st sss s snsesenae 359
17.14.39 reVersed(SEQUENCE) vvwwuurreeeerrreeesessseeeesssssessesssssssssssssssssssssssssssssssssssneees 359
17.14.40 round(X, [N]) e sse s sss s s s 360
17.14.40 Set([ItErable]) .o aenen 360
17.14.42 sorted(iterable, [KeY, reVErse]) ....oeceeeeeeeesnseseeesssseseessesssnneees 360
17.14.43 str([object, encoding, EITOIS]) .....cccccemmmmecermineeeemmemessesssesesessseenessees 361
17.14.44 sum(iterable, [Start]) .o 362
17.14.45 tuple([iterable]) .ccomrrercrreecennns 362
17.14.46 type(object) ... oneccerennnee 362
17.14.47 zip([*iterables], {strict}) 363
18 Module und Pakete 365
18.1 Einbinden globaler Module ... eeeessess 366
18.2 LOKAIE MOUIE ... 368
18.2.1  Namenskonflikte 370

13



Inhalt

18.2.2 Modulinterne REfErenzen ...........cenereesecsesseeceeseesesenns 370
18.2.3  Module aUuSTUNIEN ... seesseases e eeseeanns 371
18.3  PAKELE ...oooorieecrieii i 371
18.3.1 Importieren aller Module eines Pakets ........... 373
18.3.2  NAMESPACE PACKAGES ..ooevurrmrriecricrieecrieceissesiecsisesssesssessssesssssesssnessines 374
18.3.3 Relative IMportanWeisSUNGEN .........cirnrieinerenereneccseseeeseosecesssesiaes 375
18.4 Das Paket importlib ... 376
18.5 Geplante Sprachelemente ... eeessees 377
19 Objektorientierte Programmierung 379
19.1 Beispiel: Ein nicht objektorientiertes Konto ...................... 379
19.1.1 Ein neues KONto anl@gen ........reneceneceiessessesecessessssessanees 380
19.1.2  Geld UDEIWEISEN ...t cesesesesssesesesesesssessssasessessseesesanns 380
19.1.3  Geld ein- und auSzahlen .........necesneseeseeseieseceeeseeseeanns 381
19.1.4 Den Kontostand anz@IZEN ........ienceeinereneseeneseseseseeesssessasesenes 382
19.2  Klassen ... 385
19.2.1 Definieren von Methoden 386
19.2.2  Der KONSTIUKLOL ..o seessecesesesessssecsssssessessseesesenns 387
19.2.3  ANDULE oo 388
19.2.4 Beispiel: Ein objektorientiertes Konto .........ccccccoueeeceee. 388
19.3  VEIEIDUNG ...t sssessesssssssssessssseas s sssasnecs 390
19.3.1  Ein €infaches BEISPIEI .....cuceucrrncriceinecineceirerieceiecsisecssessesecessessanessinees 391
19.3.2  Uberschreiben von MEthoden ... reereeeeeeeeereeeeeeeeeeeeeeseesssessssseenneees 392
19.3.3 Beispiel: Girokonto mit Tagesumsatz ... . 394
19314 AUSDIICK oottt esee s ssse s sassessaessanecs 403
19.4 MehrfachVererbung ............iceinseerinneessesseessesesssiessessssseesecsssssesnees 403
19.41 Mogliche Probleme der Mehrfachvererbung 404
19.5 Property-Attribute ... 404
19.5.1 Setter und Getter 405
19.5.2 Property-Attribute definieren 406
19.6 Statische Methoden 407
19.6.1 Statische Methoden definieren 408
19.7 KIassenmethoden ...........incciieceeninsessessesssesesssesessesssennne 409

14




Inhalt

19.8 Klassenattribute ... . 411
19.9 Built-in Functions fiir die objektorientierte Programmierung ................. 411
19.9.1 Funktionen fir die Verwaltung der Attribute einer Instanz .................. 412
19.9.2 Funktionen fiir Informationen lber die Klassenhierarchie .................. 414
19.10 Erben von eingebauten Datentypen ... 415
19.11 Magic Methods und Magic Attributes ..., 417
19.11.1 Allgemeine Magic Methods ...........ccrinnereencceieineseeseceeseseeeeesseeseeanns 417
19.11.2 Operatoren Gberladen ... . 425
19.11.3 Datentypen emulieren — DUCK-TYPINE ...ccvevvrermeremerreneerrecereceesecrirecrinees 433
19.12 DAtenKIQSSEN ... cessesseesssssessess s ssssies 438
19.12.1 TUPEI UNA LISTEN oottt esssesssesesseessesseessinees 438
19.12.2 DICHIONAIYS oot ssasssss s sss s s sssssssassssens 439
19.12.3 Benannte Tupel .............. 439
19.12.4 Veranderliche Datenklassen ..... ... 440
19.12.5 Unveranderliche Datenklassen 441
19.12.6 Defaultwerte in Datenklassen 441
20 Ausnahmebehandlung 443
20,1 EXCEPLIONS ......ccoict et ssess s s sres s sresesenes 443
20.1.1 Eingebaute Exceptions ....... w444
20.1.2 Das Werfen einer EXCEPLION ...ccceecenecicineceieeiseceiseessseesssecssesesneeees 445
20.1.3 Das Abfangen einer EXCEPION .......corrnccemnneceencceieeeseeesecsiieneseeseneees 446
20.1.4  Eigene EXCEPLIONS ... 451
20.1.5 Erneutes Werfen einer EXCEPLION ....cecerneceincernecrneceiseeiiecseeceineenes 453
20.1.6  EXCePLioN ChAaINING coovceeceeceieeciecieceieciseeiiseesie s esisessssseesessessesssseces 456
20.1.7  EXCEPTION NOTES .coueeiieicicircirecie ettt sisee s sssessecens 457
20.2  ZuSicherungen — assert .............onncereeremmmisiasnseeeesessssssssssssesssesssssssesssnssee 459
20.3  WAINUNGEN ... sass s 460
20.4  EXCEPLION GrOUPS ... cceiiesecessesseessssessessassessssssssesssssessssssssasneas 461
20.41  Eine EXCEPLiON GroUP ....ceceeeeeceecietineneeniesesesessssssseseesnans . 462
20.4.2  Die try/eXCept™ -ANWEISUNG ....cccommrrremreeiereemmeeessseeessmeessssesessssesssssesessssees 464

15



Inhalt

21 Generatoren und lteratoren 467
211 GeNErAtOreN ...t 467
2111 SUDZENEIATOIEN .ot ssseerese s s s sesesssseees 470
21.1.2 Generator Expressions ... 473
21.2  BEEIrAtOreN ...ttt 474
2121  Das Iteratorprotokoll ... 475
21.2.2 Beispiel: Die FIDONACCI-FOIGE .....ovvvuvrcrccrrecricriecreecrinsceieecrenecseessinenes 475
21.2.3 Beispiel: Der Goldene SChNitt .......covcceneenecrneceineeineceneceiseeiseceoseceieeees 477
21.2.4 Ein Generator zur Implementierung von __iter ... 477
21.2.5 Verwendungvon Reratoren ..., 478
21.2.6  Mehrere Iteratoren fir dieselbe Instanz ........ . 481
21.2.7 Nachteile von Iteratoren gegeniiber dem direkten Zugriff
UDEI INAIZES .ottt essse e 483
21.2.8 Alternative Definition flr iterierbare Objekte ... 483
21.2.9  FUNKLIONSITErAtOren ..ot cseecsisseseseeseessenecees 484
21.3 Spezielle Generatoren —itertools ... 485
21.3.1 accumulate(iterable, [fUNC]) coeeeeeeeeeeeeeeee e 487
21.3.2 batched(iterable, n, {Strict}) ..cccooemmremmrrcrmrrrcrerrerreenes 487
21.3.3  chain([*iterables]) e 487
21.3.4  combinations(iterable, 1) . 488
21.3.5 combinations_with_replacement(iterable, r) ..o, 488
21.3.6  compress(data, SEIECLOIS) ... i sess s sssesesssenes 489
21.3.7  coUNt([StArt, SEEP]) wrreeeeemrrrceeeiereeeseseeeessisseeeesssssseseessss s ssssssssssssessnneees 489
21.3.8  CYCIE(ItErabIE) oottt esesn e 490
21.3.9 dropwhile(predicate, iterable) . 490
21.3.10 filterfalse(predicate, iterable) 491
21.3.11 groupby/(iterable, [KEY]) . eeeieceieeeesseeeemeeesesesessseesesseseesseees 491
21.3.12 islice(iterable, [start], stop, [SLEP]) weeeereeerreeesmereemseeeseeesessseeesesseseesseees 492
21.3.13 permutations(iterable, [r]) .o . 492
21.3.14 product([*iterables], [rePEat]) .wrrrrmerreeerienreeersemeeeeesseeseesssssseeees 492
21.3.15 repeat(object, [tIMES]) .o rrreeeeeieeeeesessseeeeesssseeesssssssseeessssessessssssnneees 493
21.3.16 starmap(function, iterable) ... seseeeeees 493
21.3.17 takewhile(predicate, iterable) ... 494
21.3.18 tee(iterable, [N]) coroeeeeeeeeeeeeeereeeeeee e 494
21.3.19 zip_longest([*iterables], {fillvalue}) .....cccommrueeces 494
21.4 Generatoren als KOnsumenten .............eceeeeenseeseeeseseeeees 495
21.4.1 Auslosen von Exceptions in einem Generator 497
21.4.2 Ein Anwendungsbeispiel fiir konsumierende
Generatorfunktionen .........cececrececieeseeennns . 498

16




Inhalt

22 Kontext-Manager 501

22.1 Die with-AnWeisung ... . 501

2211 NI (SEH) ettt 504

2212 exit  (self, exc_type, exc_value, traceback) .. 504

22.2 Hilfsfunktionen fiir with-Kontexte — contextlib ..., 504
2221 Dynamisch zusammengestellte Kontextkombinationen —

EXITSTACK oottt seeesassesseesaneees . 504

22.2.2 Bestimmte Exception-Typen unterdricken ... 505

22.2.3 Den Standardausgabestrom umleiten ........... . 506

2224 Optionale KONTeXTE ... sssae s 506

22.2.5 Einfache Funktionen als Kontext-Manager ... 507

22.2.6 Das Arbeitsverzeichnis vorlibergehend wechseln ... 508

23 Dekoratoren 509

23.1 Funktionsdekoratoren ... 509

23.1.1 Das Dekorieren von Funktionen und Methoden ........cccovnvcnnenecnecen. 511

23.1.2 Name und Docstring nach Anwendung eines Dekorators ..................... 512

23.1.3  Verschachtelte Dekoratoren .......ccnecneeieessecsseceeeeees 512

23.1.4 Beispiel: Ein Cache-Dekorator ... ceeeeneceneeeisecieseeseeseeseces 513

23.2  Klassendekoratoren ... sssesmsesssssssessssssssssssssssses 515

23.3 Das Modul functools ... . 516

23.3.1 Funktionsschnittstellen vereinfachen ... 516

23.3.2 Methodenschnittstellen vereinfachen ... 518

23.3.3  CACNES ettt bbb 518

23.3.4 Ordnungsrelationen vervollstandigen ... 520

23.3.5  Uberladen von FUNKEIONEN ...oooooooiooeooeeeeeeeeeessssesssssssssssssssssssnnes 520

24 Annotationen und statische Typpriifung 523

24.1 ANNOLAtiONEN ... 525

24.1.1 Die Annotation von Funktionen und Methoden ... 526

24.1.2 Die Annotation von Variablen und Attributen ..., 527

24.1.3 Der Zugriff auf Annotationen zur Laufzeit .. 529

24.1.4 Wann werden Annotationen evaluiert? ... 530

17



Inhalt

24.2 Type Hints —das Modul typing ... . 532
2421  GUIIEE TYPE HINTS woooeeeececrereectseeieceiesise s sseesssesseseessaesseesees 533
2422 CONTAINEI-TYPEN ..o ceesssessssesssesasesasesssssssssssesssssssssssesssesssesess 533
24.2.3  Abstrakte CONtaiNer-TYPEN ....ecmenecineeeiseerisecsisesisseeseseesessesseees 534
2424 TYP-AlIASSE oottt 535
24.2.5 Type Unions und optionale Werte . 536
24.2.6  LITEIAIE oottt 537
24.2.7  TYPVANADIEN oot ssse st sbsseeseses i esseees 538
24.3 Statische Typpriifung in Python —mypy ... . 539
2431 INSTAHATION oot 539
2432 BRISPICI ottt sttt 539
25 Structural Pattern Matching 541
25.1 Die MatCh-ANWEISUNG ... ssssesesssssessesssssesessssssennens 541
25.2 Arten von Mustern in der case-ANWEISUNG ............cooccvcwcommccrmmicnnccermmeonneccereeene 542
25.21 Literal- und Wertmuster 543
2522 ODER-MUSEEY ... ssssasseas 543
25.2.3  Muster mit TYPPrUfUNG ccreceeneeirecrieceiseesiecsieessseeseessesessssenes 544
25.2.4 Bedingungen fiir Matches formulieren ... 545
25.2.5 Teilmuster GrUPPIEreN ... reereceiineceesseeeeeeeessseeesesssseessseeseesseens 546
25.2.6  Capture- und Wildcard-MUSEEI ........coccereenernecieeinrreineeieeiseseceseseecens 546
25.2.7  SEQUENZMUSTEL ..o 548
25.2.8  Zuordnungsmuster 550
25.2.9 Muster fiir Objekte und ihre Attributwerte 553
TEILIV Die Standardbibliothek
26 Mathematik 561
26.1 Mathematische Funktionen — math, cmath ... . 561
26.1.1 Allgemeine mathematische Funktionen ........ . 562
26.1.2 Exponential- und Logarithmusfunktionen ... 565
26.1.3 Trigonometrische und hyperbolische Funktionen ... 566
26.1.4  Distanzen und NOIMEN ... sessesesss s sssesesseees 566

18




Inhalt

26.1.5 Umrechnen von WiInKeln .........ecenseceieseesesssecessseseesneees 567
26.1.6 Darstellungsformen komplexer Zahlen ..., 567
26.2 Zufallszahlengenerator —random ... 568
26.2.1 Den Status des Zufallszahlengenerators speichern und laden ............ 569
26.2.2  Zufallige ganze Zahlen erzeugen ....cnecrnseernecssecseseseineees 569
26.2.3 Zufdllige Gleitkommazahlen erzeugen .........cronccceinneens 569
26.2.4 Zufallsgesteuerte Operationen auf Sequenzen ... 570
26.2.5  SystemRANAOM([SEEA]) weurrreeeemrrreeeeseeecesesseeeeeseseseessenssesseessssssessssseneees 572
26.3 Statistische Berechnungen — statistics ..., 572
26.4 Intuitive Dezimalzahlen —decimal ... 574
26.41 Verwendung des Datentyps .........rcrenceeinneseessecesiseseesseens 574
26.4.2 Nichtnumerische Werte ... . 577
26.4.3  Das CONTEXT-ODJEKL ...t ssise s seneeees 578
26.5 Hash-Funktionen —hashlib ... 580
26.5.1  Verwendung des MOTUIS ........eeriecinecsieeiseesissssssseessssessessseeees 582
26.5.2 Weitere Hash-Algorithmen ... 583
26.5.3 Vergleich grofer Dateien .........rinenceineecinnns 583
26.5.4  PASSWOILET ... sss s ssss s sasanens 585
27 Bildschirmausgaben und Logging 589
27.1 Ubersichtliche Ausgabe komplexer Objekte — pprint ..o 589
27.2 Logdateien = IOZGINE ...........comririnnnecriisnenecsiisseessessiessessssssessessssseenessssssennes 591
27.21 Das Meldungsformat anpassen ........cemsnereensecemineseeseens 593
27.2.2  LOGEING-HANAIEK ...t esee e eseees 595
28 Regulare Ausdriicke 599
28.1 Die Syntax regularer AuSAricke .............ceceeceeeseseseeeees 599
28.1.1 Beliehige ZEICNEN ... eseseeseseeseesseeees 600
28.1.2  ZeiChenKIQSSEN ...t seiiecseseee s siessesessseesesasesceseeees 600
28.1.3  QUANTOIEN o 601
28.1.4 Vordefinierte Zeichenklassen ..., 603
28.1.5 Weitere SONAErzeichen .........cnecensccemesesessseeensssescesseees 605
28.1.6 Genugsame QUANTOTEN ... sesesesss e sesesesseees 606
28.1.7  GIUPPEN ottt et st saseseses 607

19



Inhalt

28.1.8  AHEINATIVEN .o sessse e ssesesesssees s ceseeees 608
28.1.9  EXEENSIONS ..ottt sss st ess s 608
28.2 Verwendung des ModulS Ie ...........cenrceiennseeesissesesssessssesesssssssssessssss 611
28.2. 1 SATCNING et sseeesaessessesssessanses . 611
28.2.2  MALCNING vt ssse b sese s esesee et eas 612
28.2.3  EiNen String aufspalten ... 613
28.2.4 Teile eines Strings ersetzen 613
28.2.5 Problematische Zeichen ersetzen 614
28.2.6  Einen reguldren Ausdruck kompilieren 615
28.2.7  FIAES oottt 615
28.2.8  Das MatCh-ODbjekt ... ssseesesessesesesseees 617
28.3 Ein einfaches Beispielprogramm —Searching .............omecconnecceenne 618
28.4 Ein komplexeres Beispielprogramm — Matching ... 620
28.5 Kommentare in regularen Ausdriicken ... 623
28.6 Katastrophales Backtracking ... 624
28.6.1 Atomare Gruppen und possessive QUaANTOren .............cneees 625
29 Schnittstellen zum Betriebssystem und
zur Laufzeitumgebung 627
29.1 Funktionen des Betriebssystems — 0s ..........ccorcnnccrmmonneccerminneceesienes 627
29.1. 1 BNIVIOM it ses s 628
29.1.2  @ELPIA() orevrrreercererieereersiseseesseseses e ssses st 628
29.1.3 cpu_count() ... . . J— S 628
29.1.4  SYSEEM(CMIA) oottt eess st sess st ess st sesseeees 629
29.1.5 popen(command, [mode, bUuffering]) .......ccmcceemcmmececemeomcsecesenneenees 629
29.2 Starten von Subprozessen —subprocess ... . 630
29.2.1  EiNen SUbprozess starten ..., 630
29.2.2 Die Standardstrome stdin, stdout und stderr ..., 631
29.2.3  Der RETUIN COAE ......oouieeucieiieriiecceeeseceeisecseasseseseseesesssecesesesessssessssssesceseneees 632
29.2.4  Umgebungsvariablen ... 633
29.3 Zugriff auf die Laufzeitumgebung —sys ... . 633
29.3.1 Kommandozeilenparameter ..........creecrcemeesesessesesssnenes 633
29.3.2  StANAArdpfade ...t ees 634
29.3.3 Standardein- und -ausgabestrome 634
29.3.4 Das Programm beenden 634
29.3.5 Details Zur PythOn-Version ........ccreseessesseesseseses 635

20




Inhalt

29.3.6  Details zum BetriebssyStem .....meecinecieeieceneeeisecesecioseceieeees 636
29.3.7  HOOKS .ottt ettt 637
29.4 Kommandozeilenparameter —argparse ...........oorcinnnneennns . 638
29.4.1 Taschenrechner —ein einfaches Beispiel ........ . 639
29.4.2  Ein komplexeres BEISPIEl ........ccencrmecrnecrieerenecsisesesseesssecseecssneeees 644
30 Das Dateisystem 647
30.1 Grundlegendes zu Dateisystemen und Pfaden ..............cmcconccccuonnee 647
30.1.1  PFAdNAMEN ettt et saen 647
30.1.2  DAteINAMEN .ottt ettt et saees 648
30.1.3 Absolute und relative Pfade ... eeeesesesseessseseeeeees 648
30.1.4  ZUGIITISIECNTE ..o 648
30.2 Die moderne Losung — pathlib ... 649
30.2.1  Die KIasse Path ...t 650
30.2.2  Pfade KOMDINIEIEN .....iciceeccriecrieeieeceiecsineesiecsieesisesssessesesesssesssessanes 650
30.2.3 Attribute eines Pfads .. 651
30.2.4 Pfadeigenschaften prifen ... 651
30.2.5 Dateien lesen und SChreibeN ... 652
30.2.6  Dateien UMDENENNEN .....icrcciecceicrieceieseeeesisessesseessesseessinees 653
30.2.7 Dateien kopieren und verschieben ... 653
30.2.8  Dateien [0SCNEN ...ttt eees 654
30.2.9 Verzeichnisse erstellen und I6schen .......... . 654
30.2.10 LINKS ooreerrerreeeeeecieeese e ceeeesesssess s ssses st st ssse s ss s ss s sessessanessneen 654
30.2. 11 GlODDING oottt sieseesesessissessses s s essessssesesssessanessinees 655
30.3 Zugriff auf das Dateisystem mit 0s ... 656
30.3.1  acCess(Path, MOAE) ...t ssse s ensssenns 658
30.3.2  chmOod(Path, MOAE) ..cceueereeeeeeeeeeeieeeeees s sesesssss s esssssssesssss e 659
30.3.3 listdir([path]) ... 660
30.3.4 mkdir(path, [mode]) und makedirs(path, [mode]) ..ccoooveorrreernerceerrarrennne. 660
30.3.5  rEMOVE(PALN) oottt 661
30.3.6  remMOVEdirs(Path) ....cocceeeeeeeeeeeeeeeereseeeses s seesssseeseseeenes . 661
30.3.7 rename(src, dst) und renames(old, NEW) .....ccoooveerveeeeveeereeeeeeeeeeeeeeeee 661
30.3.8  walk(top, [topdOwn, ONEITON]) ...coorreeereeeeceeieeeeeseeese s seeesssseeeesseneesanns 662
30.4 Dateipfade —0S.path ... 664
3041 abspath(Path) s 665
30.4.2  baseNAME(PAth) ..ot ene st esenee 666
30.4.3 commonprefix(list) . 666

21



Inhalt

30.4.4  dirNAME(PAth) oot 666

30.4.5  jOIN(PAth, *PAths) ccccrinecceniineecrssineeesseeesssssesessesssesesessseeneseens 667

30.4.6  NOrMEASE(PALN) corvvveeerrrieeiecreiieeeeses et esessis s sssss s sssesseseees 667

B0 Sy AT 11 (3114 1) O 667

30.4.8  SPHEArIVE(PAth) cooeeeceeeeceeeeeeei et ese st seess s 668

30.4.9  SPHEEXE(PATN) oottt 668

30.5 Zugriff auf das Dateisystem — shutil 668

30.5.1 Verzeichnis- und Dateioperationen .. 670

30.5.2  ArchiVOPEIatioNEN .....ccieceicieciiecieeiiseeeisseesieceies s s esssesssessinees 672

30.6 Temporire Dateien —tempfile ... 674
30.6.1 tempfile.TemporaryFile([mode, buffering, encoding, newline,

suffix, prefix, dir], {€rrors}) e . 675

30.6.2 tempfile.TemporaryDirectory([suffix, prefiX, dir]) ..oomrecrnmecen. 676

31 Parallele Programmierung 677

31.1 Prozesse, Multitasking und Threads ... 677

31.1.1 Die Leichtgewichte unter den Prozessen — Threads .........c.cccccooucvuoncruuce 678

31.1.2 Das Global Interpreter Lock (GIL) oe..ceeeeeeceeeeseeeeeesseseeeseseseeesssnseeees 680

31.1.3  Threads 0der PrOZESSE? ..........reccmmeseemesesssesessssessssssssesssesesanns 680

31.1.4 Kooperatives MUIItaSKING ......cccovcmirnceneceiecineceneeeinnecineciosecesssessssessinees 681

31.2 Pythons Schnittstellen zur Parallelisierung ... 682

31.3 Die abstrakte Schnittstelle — concurrent.futures ... 683

31.3.1 Ein Beispiel mit einem futures.ThreadPoolExecutor ... 683

31.3.2 Executor-Instanzen als Kontext-Manager ......cneconecrnees 686

31.3.3 Die Verwendung von futures.ProcessPOOlEXecUtor ... 686

31.3.4 Die Verwaltung der Aufgaben eines EXeCutors ........ncrens 687

31.4 Die flexible Schnittstelle — threading und multiprocessing ........................... 694

31.41 Threads in Python —threading ... 694

31.4.2 Prozesse in Python — MUltiproCessing .......eeneenecenecenseesnecrnees 704

31.5 Die kooperative Schnittstelle —asyncio ..., 706

31.5.1 Kooperative Funktionen — Koroutinen .........cnencenecnecinees 707

31.5.2  Erwartbare ODJekte .......cerecieceeseeesieceeeceaesssesianees 708

31.5.3 Die Kooperation von Koroutinen — Tasks 709

31.5.4 Ein kooperativer Webcrawler ... e 712

31.5.5 Blockierende Operationen in Koroutinen 720

31.5.6  Weitere asynchrone Sprachmerkmale ..., 722

22




Inhalt

31.6 Fazit: Welche Schnittstelle ist die richtige? ... 725
31.6.1 Istdas kooperative Multitasking eine Option? ........coriinneninnnn. 725
31.6.2 Abstraktion oder FIEXiDIlIEET? ... 726
31.6.3  Threads Oder PrOZESSE? .......cceeieerneerieeieeesiseesinssessseessesessssessesssessines 726
32 Datenspeicherung 727
32.1 Das Datenaustauschformat JSON —json ... 727
32.2 Serialisierung von Instanzen — pickle ... 729
32.2.1 Funktionale Schnittstelle ... .. 730
32.2.2 Objektorientierte Schnittstelle ... 731
32.3 Das Tabellenformat CSV — €SV .........cccormnricrinneseeriinnecesssiensesessseenecsssseannees 733
32.3.1 reader-Objekte —Daten aus einer CSV-Datei lesen ......cocmecnnecunees 733
32.3.2 Dialect-Objekte — eigene Dialekte verwenden ..., 736
32.4 Komprimierte Dateien und Archive ... 739
3241 gzip.open(filename, [mode, compresslevel]) ...reeeonnreeeennnnneens 739
32.4.2 Andere Module fiir den Zugriff auf komprimierte Daten .......ccovccuunee. 740
32.5  DAtenbanken ... 741
32,51 Pythons eingebaute Datenbank —sqlite3 ..., 745
32,6 XML ..o seesessesssssssse s ssssase s . 761
32.6.1  EIEMENETICE ..o sesse s 763
32.6.2  SAX =SIimMple APl FOr XIVIL ..cceuucreeeiecrieciiesineesieeeinssessseessesessseessesssnesssnes 771
33 Netzwerkkommunikation 777
33,1 D@ SOCKEE API ...t ssses s ssse s 778
33.11 779
33.1.2 782
33.13 783
33.14 785
33.1.5 Erzeugen €ines SOCKETS .........incinncninecisereesieeseiseseeesesssessseseanes 787
33.1.6  Die SOCKEL-KIASSE ... 788
33.1.7  Netzwerk-BYte-Order ... ncneceiseeneceneceisesssesseesesssessssessinees 791
33.1.8 Multiplexende Server — Selectors ........eeneeneeneeeerseeneeisesisecieees 792
33.1.9 Objektorientierte Serverentwicklung — socketserver ..........ccouconevunees 795

23



Inhalt

33,2 XIML-RPC ..ot esssse s essss s ssses s st seni s 797
33.2. 1 DI SEIVE .o 798
33.2.2 DI CHENT oo sessse s sena e senaaas 801
3323 MUIICAID ettt esse s 803
33.2.4  EinSChrankungen ... sesesessecssones . 804
34 Zugriff auf Ressourcen im Internet 807
34.1  Protokolle ............riicinnennesseesesieenssessessssssssssssssessessssssssssnnns 807
34.1.1 Hypertext Transfer Protocol —HTTP .......... . 807
34.1.2  File Transfer Protocol = FTP .....cecceinecrneceisessecsseceeesessesssecsinees 808
34,2 LOSUNGEN ... essi e e sessse oo 808
34.2.1 Veraltete Losungen flir Python 2 ... 808
34.2.2 Losungen der Standardbibliothek ... 808
34.2.3 Loésungen von Drittanbietern 809
34.3 Der einfache Weg —requests .............rnnecmmnnecemminnesessseeecsesssennes 809
343.1 Einfache Anfragen via GET und POST 809
3432 WED-APIS ot ssssesise s seanes . 810
34.4 URLS = UFIlID ...t sesssssessssssesesssssesseesssssasneos 812
34.4.1 Zugriff auf entfernte Ressourcen — urllib.request ... 813
34.42 Das Einlesen und Verarbeiten von URLs — urllib.parse ... 816
345 FTP = FEPIID oottt 820
3451 Miteinem FTP-Server verbinden ... 821
34.5.2  FTP-Kommandos auSTUNIen .........creceseceneseseessecennanns 822
34.5.3 Mit Dateien und Verzeichnissen arbeiten .......nennecnnecnes 823
34.5.4  UDertragen von DAateiBN ...ooooeeeeeeeeeeeeeeeseeeseesessssssssssssssssssssseees 824
35 E-Mail 829
35,1 SMTP = SIMEPIID ...oooor et 829
35.1.1 SMTP([host, port, local_hostname, timeout, source_address]) ........... 830
35.1.2 Eine Verbindung aufbauen und beenden .........ncnccnnecnonees 831
35.1.3  Eine E-Mail VEISENAEN ..ooioeieecrieciieeieeciieceiseeieceieesesseessesssssesssesssessinees 831
3514 BEISPIE ettt 832

24



Inhalt

35.2 POP3 = POPIb ..ot seceeesssssseeeesssessssssss s sssssssss e 832
35.2.1  POP3(host, [port, tIMEOUL]) cicceueeerereeecreriineeeeeeseeeeesisssseseesssssssseessssseeees 833
35.2.2 Eine Verbindung aufbauen und beenden ..........cncennecnonees 834
35.2.3  Vorhandene E-Mails auflisten ... 834
35.2.4  E-Mails abrufen und 10SCheN .........ccoccennerieineceinseseerecseiseeceeeeeceeanns 835
3525 BEISPIEI ettt 836
35.3  IMAPE = iMAPIib ...t 837
35.3.1 IMAP4([host, port, timeout]) ......cccoeveermereeen. ... 838
35.3.2 Eine Verbindung aufbauen und beenden ............onercnnecrin 838
35.3.3 Eine Mailbox suchen und auswahlen ... 839
35.3.4 Operationen Mit MailDOXeN ........cerneenecenecrreeeiseceseeeisesssessenees 840
35.3.5  E-MailS SUCNEN ..o esesesesssee s cesssessesanas 840
35.3.6  E-Mails @DrUTEN ... sesanas 841
35.3.7  BEISPIEI ottt 842
35.4 Erstellen komplexer E-Mails —email ... 843
35.4.1 Eine einfache E-Mail erstellen ... 843
35.4.2 Eine E-Mail mit Anhangen erstellen 844
35.4.3 Eine E-Mail einlesen .. 846
36 Debugging und Qualitatssicherung 847
36.1 DEIDEDUGEET ...ttt cess s sssis s 847
36.2 Automatisiertes Testen ... seeseseessssnes 850
36.2.1 Testfalle in Docstrings — dOCteST ... 850
36.2.2  Unit Tests — unittest ... 855
36.3 Analyse des Laufzeitverhaltens ... 858
36.3.1 Laufzeitmessung —timeit ... 859
36.3.2  Profiling — CProfile .....recnceiecnecreceineesneceinenns .. 862
36.3.3  TraCiNgG —TrACE e ssses s sssessseees 866
37 Dokumentation 869
37,1 DOCSTINGS ...ooonneiiceriiccerieeeeesiees s sssee s sssese s ssses s asess st ssses s sssennace 869
37.2 Automatisches Erstellen einer Dokumentation — pydoc ..........cccooccvvuunne. 871

25



Inhalt

TEILV Weiterfiihrende Themen

38 Distribution von Python-Projekten 875
38.1 Eine Geschichte der Distributionen in Python ... 875
38.1.1 Der klassische Ansatz —distutils ... 876
38.1.2 Der neue Standard — SELUPLOOIS ......ovcvuuceereeinecrieceieeeieceneceieeceneeiecnies 876
38.1.3  Der Paketindex — PYPI ......cc.iesccineeeineeiieseieseesesesesesssessessaeseanes 877
38.2 Erstellen von Distributionen — setuptools ..., 877
38.2. 1 INSLAIlAtION oot 877
38.2.2  Schreiben des Moduls ...........cceneseensecemeseseesseeseseeesesseesesanns 878
38.2.3  Das Installationsskript ... 879
38.2.4 Erstellen einer Quellcodedistribution ..........ccccoeovvunnne. 884
38.2.5 Erstellen einer Binardistribution ... 884
38.2.6 Distributionen inStallieren ..........ccesesseceseseseeeseeseeens 885
38.3 Erstellen von EXE-Dateien — cx_Freeze .................nnncccccceeminsssnnnne 886
38.3. 1 INSEAlATION oo 886
38.3.2  ANWENAUNE coorvirrirecriceiecriscrisesisseesesessissssasessasessssessasessasessssnessanes 887
38.4  PaKetMAaNQAEET ...t ssseseesesssasesssssse s sssesseesssssesnecs 888
38.4.1 Der Python-Paketmanager — PiP ..ocencrneeneeineceneceisecsesssnecsinees 888
38.4.2 Der Paketmanager conda ........inereeseenecesesesseesssesesseseaees 890
38.5 Lokalisierung von Programmen — gettext ... 893
38.5.1 Beispiel flir die Verwendung von gettext ... 894
38.5.2  Erstellen des Sprachkompilats ... 895
39 Virtuelle Umgebungen 899
39.1 Das Arbeiten mit virtuellen Umgebungen —venv ... 900
39.1.1 Einevirtuelle Umgebung aktivieren ...........

39.1.2 Ineinervirtuellen Umgebung arbeiten

39.1.3 Einevirtuelle Umgebung deaktivieren

39.2 Virtuelle Umgebungen in Anaconda ...

26




Inhalt

40 Alternative Interpreter und Compiler 903
40.1 Just-in-Time-Kompilierung = PYPY ..........ccomrnecrnnesceseesnoeseesssecssenns 903
40.1.1  Installation und VErWEeNAUNE .....cveeceneceecinecreceiecrnecsiseesenecsisessineeees 904
40.1.2 Beispiel 904
B0.2  NUMDA ...ttt esses st ssse s sesee s 905
40.2.1  INSTAHETION s 905
40.2.2  BEISPIEI oottt ees 906
40.3 Anbindung an Cund C++ = Cython ... 907
40.3. 1 INSTAHAION ittt eees 907
40.3.2 Die Funktionsweise vOn Cython ..........rneeeceeseesseseoesees 908
40.3.3  Ein Cython-Programm KOMPilieren .........cnecenneernecsneceineeees 909
40.3.4 Ein Cython-Programm mit statischer Typisierung .......ccncneees 911
40.3.5 Eine C-Bibliothek vErwenden ........cnceneceeseceneceineeees 912
40.4 Die interaktive Python-Shell = IPython ... 914
4041 INSTAlETION e 915
40.4.2 Dieinteraktive Shell ... 915
40.4.3  Das JUPYLEr NOLEDOOK ... csiseeseseeseseesesssesseees 918
41 Grafische Benutzeroberflachen 923
BL.1 TOOIKIES ....ooooomceeeiecceceiirceiies s sssesssesssses st ssses s sssssesssessseesees 923
4111 TKINEEE (TK) werrivererieeeeeieeesesseesssesesssssesssssessssssessssssessssssessssssssssssssssssesssssneneses 924
4112 PYGODJECE (GLK) weoorereeeeereeeeeeeseeeeeessseseeessssssseessssssesesssssssssssssssssesssssssssesssssesns 924
41.1.3  QtfOr PYthon (QL) c.ooeeeeeceeeeeeeeeeieeeesseeeesseeessssesessseeeessssessssssssessssesssssseseses 924
41.1.4  WXPYEhON (WXWIAEELS) w..cvvvveumcrrmiemcermmicseesieneseesssesesesssssnessssssessnessessees 925
41.2 EinfUhrung in thinter ... 925
41.2.1 Eineinfaches BEiSPiel ........cnecenecencrinecrecrisessenecsasecnnes . 926
41.2.2 Steuerelementvariablen ... 928
41.2.3 Der Packer 930
AL24  EVENTS oottt st 935
41.2.5 StEUErEIEMENTE ..o 941
41.2.6 Zeichnungen —das Canvas-Widget ........cncrnneerneceneceieeees 961
41.2.7  Wetere MOAUIE ..ot sisss et esseees 969
41.3 EinfUhrungin PySide6 .............cooommcccrrreiiissnneecccreceeesessssssseceeeee . 972
4131 INSTAlEtION e 973
41.3.2 Grundlegende Konzepte von Qt ..........ceccenenceenecsenseeeenns 973

27



Inhalt

41.3.3  Der ENtWicklUNGSProzess ......ceeerineciinseeisesressssiseesessessnesssnns
41.3.4  SigNale UNd SIOLS ...
4135 Wichtige Widgets ...,

41.3.6 Die Zeichenfunktionalitat von Qt

41.3.7 Die Model-VieW-Archite€KEUF ...

42 Python als serverseitige Programmiersprache
im WWW - ein Einstieg in Django 1021
42.1 Konzepte und Besonderheiten von Django ................ccocommceeconcccernonnn. 1022
42.2 Installation VON DJAangO .............ccriinceeiminnscesmineseesieesssssisnessesssennens 1023
42.3 Ein neues Django-Projekt erstellen ..., 1024
42.3.1 Der Entwicklungswebserver ... 1026
42.3.2 Konfiguration des Projekts ........crcnccrnecnnns . 1027
42.4 Eine Applikation erstellen ... 1028
42.4.1 Die Applikation in das Projekt einbinden .........cocconecnnecroneceneceann. 1030
4242 Ein Model defiNieren ... cceneceisneceeeseesesseeessessessesseessaenns 1031
42.4.3 Beziehungen zwischen Models ... 1032
42.4.4 Ubertragung des Models in die Datenbank ..........ccoeeceeeeeensssnnne. 1032
4245  Die MOAEI-APL ...ttt ssssessisss st s s siessines 1034
42.4.6 Unser Projekt bekommt ein Gesicht ... . 1039
42.47 Djangos Template-System ..., . 1046
42.4.8 Verarbeitung von Formulardaten ........ncnenecenecnne. 1059
42.4.9 Djangos Administrationsoberflache ... 1062
43 Wissenschaftliches Rechnen und Data Science 1069
43.1  INSTAlAtION ... 1070
43.2 Das Modellprogramm ... 1071
43.2.1 DerImport von numpy, scipy und matplotlib .......ccccocnioneinennane. 1072
43.2.2 Vektorisierung und der Datentyp numpy.ndarray .......coneceene. 1073
43.2.3 Visualisieren von Daten mit matplotlib.pyplot .......cmconecneceann. 1077
43.3 Uberblick iiber die Module numpy und SCIPY ..........ccooccmmeveorssscorssinennns 1080
43.3.1 Uberblick Gber den Datentyp NUMPY.NAAITAY ... 1080
43.3.2  UDErblick UDEI SCIPY .ovvvvvvvveeevvevevveeveeseesessssssssssssssssssssssssssssssssssssssssssssssssssssssnns 1088

28




Inhalt

43.4 Eine Einfiihrung in die Datenanalyse mit pandas ..., 1090
43.41 Das DataFrame-ODbjekt ... cnecnecinesieeeicssisesseeseeeenes 1091
43.4.2  Selektiver Datenzugriff .....cccrececriecrisecsisesesesecsesessisenes 1093
43.4.3 Loschen von Zeilen und SPalten .....ccenecnecineeeisecsseceineeees 1098
43.4.4 Einfligen von Zeilen und Spalten ........ccnneeenseceisseceees 1099
43.45 Llogische Ausdriicke auf Datensatzen ........ccneee. . 1100
43.4.6  Manipulation von Datensatzen ........ccrecnecreesnecssessieeees 1101
43.4.7  EiN-UN AUSBADE ..ot ssase st s sssessssseces 1103
43.4.8  VISUBLISIEIUNG ..ccooeeiiiceierecieceescte st sssessses s sesesees 1104
44 Insiderwissen 1107
44.1 URLs im Standardbrowser 6ffnen — webbrowser 1107
4411  open(url, [new, autoraise]) ....ceeemereeeeeseseeeeeennne . 1107
44.2 Interpretieren von Bindrdaten — struct ... 1107
44.3 Versteckte Passworteingabe — getpass ............ccrcomcrcrrcnneneceiinnennens 1110
4431 getpass([prompt, stream], {echo_char}) 1110
44.3.2  getpass.GELUSEI() orrrrreeeerrieseeeeesieeseesseessesesssesesssessesns . 1110
44.4 Kommandozeilen-Interpreter —cmd ... 1110
44.5 Dateiinterface fiir Strings —i0.StringlO ... 1113
44.6 Kopieren von INStanzen — CoPY .........cccmeceonnecennnecernnecens . 1114
44.6.1  Zurlck zum EiNgangsbeispiel .........cncrnecneceicernecresessieeees 1117
44.7 Bildverarbeitung — PilloW .............cccoiiciinccrrinnecceeisneesessiissessssseasessens 1118
4471 INSTAIAEION ittt eees 1118
44.7.2 Bilddateien laden und speichern ..., . 1119
44.7.3  Zugriff auf @iNZelNe PiXel .......ccirecrrecncecireceiecvecseeceieneesiessiecnes 1120
44.7.4  Manipulation VON BIlAEIN .......cncecnecieesineeresecsiseeseseeseessisneees 1120
44.7.5  INTEroperabilitat ...t eees 1127
45 Eine Geschichte der Python-Versionen 1129
45.1 Die Versionshistorie ...............esessissssssseessssssssesssssees 1129
45.2 Der Sprung nach PYthon 3 ... seseeesssssesessseseseees 1132
4521 EiN-/AUSZADE ...t eseses s esesesssaseseses 1133
45.2.2  TEIATOIEN ..ot 1134

29



Inhalt

45.2.3  SEMNES vt sssssese e ssse s ssss s i st bae s e s sssssasssanenanc 1135
4524 GANZE ZANIEN ..ot 1136
45.2.5 EXCePion HANAIING ..ot ssisesesseesesessaesees 1137
45.2.6  Standardbibliothek ... ccceseeeseeseseniesenes 1137
Anhang 1139
Al RESEIVIEIEE WOILET .........oooecrerveccreiiicceesieiecensienesesssisnessesssasesssssessessssssesnesssssees 1139
A2 OPeratorrangfolge ... ccincrceineseeesnseesessiessessesseesesssssseenesssssees 1139
A.3  Eingebaute FUNKLIONEN ... sesseeseessnnees 1141
A4 Eingebaute EXCEPLIONS ............oicccriiincccinnceeceinsessceniissessessieseessssseenessssnees 1145
A5 PYERON-IDES ....occcirecccetincecssiieceesseesssssisessssssissesssssiasssssessesssssssssessssssseen 1150
INAEX oot 1153

30




Python 3

Das Standardwerk zu Python 3

»Bestnote!«

Hier finden Sie alles, was Sie zum Programmieren mit Python 3 wissen miissen: von den
Sprachgrundlagen (ber die wichtigsten Teile der Standardbibliothek bis hin zu Data Science.
Netzwerkkommunikation, Debugging, GUI-Entwicklung - die Python-Experten lassen

kein Thema aus. Mit diesem Buch werden Sie zum Python-Profi!

Das Python-Programm
wird vom Interpreter
ausgefilhrt.

Python-Programm
Standardbibliothek

Python-Interpreter

Dabei wird eine umfangreiche
Standardbibliothek zur Verfiigung
gestellt, die das Programm
verwenden kann.

Python kann iiber die Python API

von diesen verwendet werden.

Built-in Function

Beschreibung

Abschnitt

hasattr

Uberpriift, ob eine Instanz iber ein
bestimmtes Attribut verfiigt.

Abschnitt 19.9

hash

Gibt den Hash-Wert einer Instanz zuriick.

Abschnitt 17.14.21

help

Startet die eingebaute interaktive Hilfe von
Python.

Abschnitt 17.14.22

durch C-Programme erweitert oder

Gibt den Hexadezimalwert einer ganzen
Zahl in Form eines Strings zuriick.

Abschnitt 17.14.23

Gibt die Identitat einer Instanz zuriick.

Abschnitt 7.1.3
Abschnitt 17.14.24]

Liest einen String von der Tastatur ein.

Abschnitt 17.14.25

Betriebssystem

1} (1)

Hardware |

Leichter Einstieg in Python

CProgramm | | per
1) 1) ’Jabst_rahiert vom

und der Hardware.

Erzeugt eine ganze Zahl

Abschnitt 11.4
Abschnitt 17.14.26

isinstance

ten Klasse ist.

Priift, ob ein Objekt Instanz einer bestimm-

Abschnitt 19.9.2

issubclass

Priift, ob eine Klasse von einer bestimmten

Abschnitt 19.9.2

Umfassende Sprachreferenz

Learning by Doing: So gelingt der Einstieg!
Sie erhalten eine griindliche EinfUhrung in Python, bei der Sie

sofort erste eigene Programme schreiben und testen. Ausfihrlich
widmen sich die Autoren den Grundlagen der Python-Program-
mierung und der Objektorientierung.

Programmieren mit der Standardbibliothek
Das Buch fuhrt Sie in alle wichtigen Module und Funktionen der
Standardbibliothek ein: reguldre Ausdriicke, parallele Programmie-
rung, Datenspeicherung, mathematische Funktionen, Netzwerk-

kommunikation u.v.m.

Alles fiir anspruchsvolle Python-Projekte

GUls, Webentwicklung, Interoperabilitat, wissenschaftliches

Rechnen mit C/C++ — mehr Python-Praxis geht nicht! Ein unver-
zichtbares Nachschlagewerk fiir Ausbildung, Studium und Beruf,

inklusive Funktionsreferenz.

@ Der Quellcode der Beispiele steht zum Download bereit.

Dr. Johannes Ernesti und Dr. Peter Kaiser
entwickeln seit Gber 20 Jahren Python-Soft-
ware — zur Zeit im Rahmen ihrer Forschung
zur neuronalen maschinellen Ubersetzung
bei Deepl. Dieses Buch dient als Grundlage
fir Schulungen und Python-Vorlesungen.

Viele Beispielprojekte

Aus dem Inhalt

¢ Einflhrung in Python

e Sprachgrundlagen

e Modularisierung

¢ Objektorientierung

e Structural Pattern Matching
e Mathematische Module

e Reguldre Ausdriicke

e Datums- und Zeitfunktionen

e Schnittstellen zum Betriebs-
system

¢ Parallele Programmierung
e Datenspeicherung
* Netzwerkkommunikation
¢ Fehlerbehandlung

¢ Distribution von Python-
Projekten

e GUI-Programmierung
¢ Webentwicklung mit Django
e Wissenschaftliches Rechnen
¢ Anbindung an C/C++

€49,90 [D] €51,30 [A]

Fir Windows, macOS und Linux

Gedruckt in Deutschland Programmierung
Mineralélfreie Druckfarben ISBN 978-3-367-10406-2

Zertifiziertes Papier ||| ‘ I ||| |||||| |

® Rheinwerk

"

Computing




	Titelseite
	Aus dem Lektorat
	Hinweise
	Impressum
	1 Einleitung
	1.1 Warum haben wir dieses Buch geschrieben?
	1.2 Was leistet dieses Buch?
	1.3 Wie ist dieses Buch aufgebaut?
	1.4 Wer sollte dieses Buch wie lesen?
	1.5 Beispielprogramme
	1.6 Vorwort zur achten Auflage
	1.7 Danksagung

	2 Die Programmiersprache Python
	2.1 Geschichte und Entstehung
	2.2 Grundlegende Konzepte
	2.3 Einsatzmöglichkeiten und Stärken
	2.4 Die Installation von Python
	2.4.1 Installation von Anaconda unter Windows
	2.4.2 Installation von Anaconda unter macOS
	2.4.3 Installation von Anaconda unter Linux

	2.5 Drittanbietermodule installieren
	2.6 Die Verwendung von Python

	TEIL I Einstieg in Python
	3 Erste Schritte im interaktiven Modus
	3.1 Ganze Zahlen
	3.2 Gleitkommazahlen
	3.3 Zeichenketten
	3.4 Listen
	3.5 Dictionarys
	3.6 Variablen
	3.6.1 Die besondere Bedeutung des Unterstrichs
	3.6.2 Bezeichner

	3.7 Logische Ausdrücke
	3.8 Funktionen und Methoden
	3.8.1 Funktionen
	3.8.2 Methoden

	3.9 Bildschirmausgaben
	3.10  Module

	4 Der Weg zum ersten Programm
	4.1 Tippen, kompilieren, testen
	4.1.1 Windows
	4.1.2 Linux und macOS
	4.1.3 Shebang
	4.1.4 Interne Abläufe

	4.2 Grundstruktur eines Python-Programms
	4.2.1 Umbrechen langer Zeilen
	4.2.2 Zusammenfügen mehrerer Zeilen

	4.3 Das erste Programm
	4.3.1 Initialisierung
	4.3.2 Schleifenkopf
	4.3.3 Schleifenkörper
	4.3.4 Bildschirmausgabe

	4.4 Kommentare
	4.5 Der Fehlerfall

	5 Kontrollstrukturen
	5.1 Fallunterscheidungen
	5.1.1 Die if-Anweisung
	5.1.2 Bedingte Ausdrücke

	5.2 Schleifen
	5.2.1 Die while-Schleife
	5.2.2 Abbruch einer Schleife
	5.2.3 Erkennen eines Schleifenabbruchs
	5.2.4 Abbruch eines Schleifendurchlaufs
	5.2.5 Die for-Schleife

	5.3 Die pass-Anweisung
	5.4 Zuweisungsausdrücke
	5.4.1 Motivation
	5.4.2 Das Spiel Zahlenraten mit einem Zuweisungsausdruck


	6 Dateien
	6.1 Datenströme
	6.2 Daten aus einer Datei auslesen
	6.2.1 Eine Datei öffnen und schließen
	6.2.2 Die with-Anweisung
	6.2.3 Den Dateiinhalt auslesen

	6.3 Daten in eine Datei schreiben
	6.4 Das Dateiobjekt erzeugen
	6.4.1 Die Built-in Function open
	6.4.2 Attribute und Methoden eines Dateiobjekts
	6.4.3 Die Schreib-/Leseposition verändern


	7 Das Datenmodell
	7.1 Die Struktur von Instanzen
	7.1.1 Datentyp
	7.1.2 Wert
	7.1.3 Identität

	7.2 Referenzen löschen
	7.3 Mutable vs. immutable Datentypen
	7.3.1 Mutable Datentypen und Seiteneffekte


	8 Funktionen, Methoden und Attribute
	8.1 Parameter von Funktionen und Methoden
	8.1.1 Positionsbezogene Parameter
	8.1.2 Schlüsselwortparameter
	8.1.3 Optionale Parameter
	8.1.4 Reine Schlüsselwortparameter

	8.2 Attribute

	9 Informationsquellen zu Python
	9.1 Die Built-in Function help
	9.2 Die Onlinedokumentation
	9.3 PEPs

	TEIL II Datentypen
	10 Basisdatentypen: eine Übersicht
	10.1 Das Nichts – NoneType
	10.2 Operatoren
	10.2.1 Bindigkeit
	10.2.2 Auswertungsreihenfolge
	10.2.3 Verkettung von Vergleichen


	11 Numerische Datentypen
	11.1 Arithmetische Operatoren
	11.1.1 Erweiterte Zuweisungen

	11.2 Vergleichende Operatoren
	11.3 Konvertierung zwischen numerischen Datentypen
	11.4 Ganzzahlen – int
	11.4.1 Zahlensysteme
	11.4.2 Bit-Operationen
	11.4.3 Die Methode bit_length

	11.5 Gleitkommazahlen – float
	11.5.1 Exponentialschreibweise
	11.5.2 Genauigkeit
	11.5.3 Unendlich und Not a Number

	11.6 Boolesche Werte – bool
	11.6.1 Logische Operatoren
	11.6.2 Wahrheitswerte nicht boolescher Datentypen
	11.6.3 Auswertung logischer Operatoren

	11.7 Komplexe Zahlen – complex

	12 Sequenzielle Datentypen
	12.1 Der Unterschied zwischen Text und Binärdaten
	12.2 Operationen auf Instanzen sequenzieller Datentypen
	12.2.1 Auf Elemente prüfen
	12.2.2 Verkettung
	12.2.3 Wiederholung
	12.2.4 Indizierung
	12.2.5 Slicing
	12.2.6 Länge einer Sequenz
	12.2.7 Das kleinste und das größte Element
	12.2.8 Ein Element suchen
	12.2.9 Elemente zählen

	12.3 Listen – list
	12.3.1 Verändern eines Werts innerhalb der Liste – Zuweisung mit []
	12.3.2 Ersetzen von Teillisten und Einfügen neuer Elemente – Zuweisung mit []
	12.3.3 Elemente und Teillisten löschen – del zusammen mit []
	12.3.4 Methoden von list-Instanzen
	12.3.5 Listen sortieren – s.sort([key, reverse])
	12.3.6 Seiteneffekte
	12.3.7 List Comprehensions

	12.4 Unveränderliche Listen – tuple
	12.4.1 Packing und Unpacking
	12.4.2 Immutabel heißt nicht zwingend unveränderlich!

	12.5 Strings – str, bytes, bytearray
	12.5.1 Steuerzeichen
	12.5.2 Trennen von Strings
	12.5.3 Suchen von Teil-Strings
	12.5.4 Ersetzen von Teil-Strings
	12.5.5 Entfernen von Präfixen oder Suffixen
	12.5.6 Ausrichten von Strings
	12.5.7 String-Tests
	12.5.8 Verkettung von Elementen in sequenziellen Datentypen
	12.5.9 Formatierung von Strings
	12.5.10 Zeichensätze und Sonderzeichen
	12.5.11 Template-Strings


	13 Zuordnungen und Mengen
	13.1 Dictionary – dict
	13.1.1 Erzeugen eines Dictionarys
	13.1.2 Schlüssel und Werte
	13.1.3 Iteration
	13.1.4 Operatoren
	13.1.5 Methoden
	13.1.6 Dict Comprehensions

	13.2 Mengen – set und frozenset
	13.2.1 Erzeugen eines Sets
	13.2.2 Iteration
	13.2.3 Operatoren
	13.2.4 Methoden
	13.2.5 Veränderliche Mengen – set
	13.2.6 Unveränderliche Mengen – frozenset


	14 Collections
	14.1 Verkettete Dictionarys
	14.2 Zählen von Häufigkeiten
	14.2.1 d.elements()
	14.2.2 d.most_common([n])
	14.2.3 d.subtract([iterable])
	14.2.4 d.update([iterable])

	14.3 Dictionarys mit Standardwerten
	14.4 Doppelt verkettete Listen
	14.5 Benannte Tupel
	14.5.1 namedtuple(typename, field_names, {rename})


	15 Datum und Zeit
	15.1 Elementare Zeitfunktionen – time
	15.1.1 Der Datentyp struct_time
	15.1.2 Konstanten
	15.1.3 Funktionen

	15.2 Objektorientierte Datumsverwaltung – datetime
	15.2.1 datetime.date
	15.2.2 datetime.time
	15.2.3 datetime.datetime
	15.2.4 datetime.timedelta
	15.2.5 Operationen für datetime.datetime und datetime.date

	15.3 Zeitzonen – zoneinfo
	15.3.1 Die IANA-Zeitzonendatenbank
	15.3.2 Zeitangaben in lokalen Zeitzonen
	15.3.3 Rechnen mit Zeitangaben in lokalen Zeitzonen


	16 Enumerationen und Flags
	16.1 Aufzählungstypen – Enum
	16.2 Aufzählungstypen für Bitmuster – Flag
	16.3 Ganzzahlige Aufzählungstypen – IntEnum

	TEIL III Fortgeschrittene Programmiertechniken
	17 Funktionen
	17.1 Definieren einer Funktion
	17.2 Rückgabewerte
	17.3 Funktionsobjekte
	17.4 Optionale Parameter
	17.5 Schlüsselwortparameter
	17.6 Beliebige Anzahl von Parametern
	17.7 Reine Schlüsselwortparameter
	17.8 Reine Positionsparameter
	17.9 Unpacking beim Funktionsaufruf
	17.10 Seiteneffekte
	17.11 Namensräume
	17.11.1 Zugriff auf globale Variablen – global
	17.11.2 Zugriff auf den globalen Namensraum
	17.11.3 Lokale Funktionen
	17.11.4 Zugriff auf übergeordnete Namensräume – nonlocal
	17.11.5 Ungebundene lokale Variablen – eine Stolperfalle

	17.12 Anonyme Funktionen
	17.13 Rekursion
	17.14 Eingebaute Funktionen
	17.14.1 abs(x)
	17.14.2 all(iterable)
	17.14.3 any(iterable)
	17.14.4 ascii(object)
	17.14.5 bin(x)
	17.14.6 bool([x])
	17.14.7 bytearray([source, encoding, errors])
	17.14.8 bytes([source, encoding, errors])
	17.14.9 chr(i)
	17.14.10 complex([real, imag])
	17.14.11 dict([source])
	17.14.12 divmod(a, b)
	17.14.13 enumerate(iterable[, start])
	17.14.14 eval(expression, [globals, locals])
	17.14.15 exec(object, [globals, locals])
	17.14.16 filter(function, iterable)
	17.14.17 float([x])
	17.14.18 format(value, [format_spec])
	17.14.19 frozenset([iterable])
	17.14.20 globals()
	17.14.21 hash(object)
	17.14.22 help([object])
	17.14.23 hex(x)
	17.14.24 id(object)
	17.14.25 input([prompt])
	17.14.26 int([x, base])
	17.14.27 len(s)
	17.14.28 list([sequence])
	17.14.29 locals()
	17.14.30 map(function, [*iterable, strict])
	17.14.31 max(iterable, {default, key}), max(arg1, arg2, [*args], {key})
	17.14.32 min(iterable, {default, key}), min(arg1, arg2, [*args], {key})
	17.14.33 oct(x)
	17.14.34 ord(c)
	17.14.35 pow(x, y, [z])
	17.14.36 print([*objects], {sep, end, file, flush})
	17.14.37 range([start], stop, [step])
	17.14.38 repr(object)
	17.14.39 reversed(sequence)
	17.14.40 round(x, [n])
	17.14.41 set([iterable])
	17.14.42 sorted(iterable, [key, reverse])
	17.14.43 str([object, encoding, errors])
	17.14.44 sum(iterable, [start])
	17.14.45 tuple([iterable])
	17.14.46 type(object)
	17.14.47 zip([*iterables], {strict})


	18 Module und Pakete
	18.1 Einbinden globaler Module
	18.2 Lokale Module
	18.2.1 Namenskonflikte
	18.2.2 Modulinterne Referenzen
	18.2.3 Module ausführen

	18.3 Pakete
	18.3.1 Importieren aller Module eines Pakets
	18.3.2 Namespace Packages
	18.3.3 Relative Importanweisungen

	18.4 Das Paket importlib
	18.5 Geplante Sprachelemente

	19 Objektorientierte Programmierung
	19.1 Beispiel: Ein nicht objektorientiertes Konto
	19.1.1 Ein neues Konto anlegen
	19.1.2 Geld überweisen
	19.1.3 Geld ein- und auszahlen
	19.1.4 Den Kontostand anzeigen

	19.2 Klassen
	19.2.1 Definieren von Methoden
	19.2.2 Der Konstruktor
	19.2.3 Attribute
	19.2.4 Beispiel: Ein objektorientiertes Konto

	19.3 Vererbung
	19.3.1 Ein einfaches Beispiel
	19.3.2 Überschreiben von Methoden
	19.3.3 Beispiel: Girokonto mit Tagesumsatz
	19.3.4 Ausblick

	19.4 Mehrfachvererbung
	19.4.1 Mögliche Probleme der Mehrfachvererbung

	19.5 Property-Attribute
	19.5.1 Setter und Getter
	19.5.2 Property-Attribute definieren

	19.6 Statische Methoden
	19.6.1 Statische Methoden definieren

	19.7 Klassenmethoden
	19.8 Klassenattribute
	19.9 Built-in Functions für die objektorientierte Programmierung
	19.9.1 Funktionen für die Verwaltung der Attribute einer Instanz
	19.9.2 Funktionen für Informationen über die Klassenhierarchie

	19.10 Erben von eingebauten Datentypen
	19.11 Magic Methods und Magic Attributes
	19.11.1 Allgemeine Magic Methods
	19.11.2 Operatoren überladen
	19.11.3 Datentypen emulieren – Duck-Typing

	19.12 Datenklassen
	19.12.1 Tupel und Listen
	19.12.2 Dictionarys
	19.12.3 Benannte Tupel
	19.12.4 Veränderliche Datenklassen
	19.12.5 Unveränderliche Datenklassen
	19.12.6 Defaultwerte in Datenklassen


	20 Ausnahmebehandlung
	20.1 Exceptions
	20.1.1 Eingebaute Exceptions
	20.1.2 Das Werfen einer Exception
	20.1.3 Das Abfangen einer Exception
	20.1.4 Eigene Exceptions
	20.1.5 Erneutes Werfen einer Exception
	20.1.6 Exception Chaining
	20.1.7 Exception Notes

	20.2 Zusicherungen – assert
	20.3 Warnungen
	20.4 Exception Groups
	20.4.1 Eine Exception Group
	20.4.2 Die try/except*-Anweisung


	21 Generatoren und Iteratoren
	21.1 Generatoren
	21.1.1 Subgeneratoren
	21.1.2 Generator Expressions

	21.2 Iteratoren
	21.2.1 Das Iteratorprotokoll
	21.2.2 Beispiel: Die Fibonacci-Folge
	21.2.3 Beispiel: Der Goldene Schnitt
	21.2.4 Ein Generator zur Implementierung von __iter__
	21.2.5 Verwendung von Iteratoren
	21.2.6 Mehrere Iteratoren für dieselbe Instanz
	21.2.7 Nachteile von Iteratoren gegenüber dem direkten Zugriff über Indizes
	21.2.8 Alternative Definition für iterierbare Objekte
	21.2.9 Funktionsiteratoren

	21.3 Spezielle Generatoren – itertools
	21.3.1 accumulate(iterable, [func])
	21.3.2 batched(iterable, n, {strict})
	21.3.3 chain([*iterables])
	21.3.4 combinations(iterable, r)
	21.3.5 combinations_with_replacement(iterable, r)
	21.3.6 compress(data, selectors)
	21.3.7 count([start, step])
	21.3.8 cycle(iterable)
	21.3.9 dropwhile(predicate, iterable)
	21.3.10 filterfalse(predicate, iterable)
	21.3.11 groupby(iterable, [key])
	21.3.12 islice(iterable, [start], stop, [step])
	21.3.13 permutations(iterable, [r])
	21.3.14 product([*iterables], [repeat])
	21.3.15 repeat(object, [times])
	21.3.16 starmap(function, iterable)
	21.3.17 takewhile(predicate, iterable)
	21.3.18 tee(iterable, [n])
	21.3.19 zip_longest([*iterables], {fillvalue})

	21.4 Generatoren als Konsumenten
	21.4.1 Auslösen von Exceptions in einem Generator
	21.4.2 Ein Anwendungsbeispiel für konsumierende Generatorfunktionen


	22 Kontext-Manager
	22.1 Die with-Anweisung
	22.1.1 __enter__(self)
	22.1.2 __exit__(self, exc_type, exc_value, traceback)

	22.2 Hilfsfunktionen für with-Kontexte – contextlib
	22.2.1 Dynamisch zusammengestellte Kontextkombinationen – ExitStack
	22.2.2 Bestimmte Exception-Typen unterdrücken
	22.2.3 Den Standardausgabestrom umleiten
	22.2.4 Optionale Kontexte
	22.2.5 Einfache Funktionen als Kontext-Manager
	22.2.6 Das Arbeitsverzeichnis vorübergehend wechseln


	23 Dekoratoren
	23.1 Funktionsdekoratoren
	23.1.1 Das Dekorieren von Funktionen und Methoden
	23.1.2 Name und Docstring nach Anwendung eines Dekorators
	23.1.3 Verschachtelte Dekoratoren
	23.1.4 Beispiel: Ein Cache-Dekorator

	23.2 Klassendekoratoren
	23.3 Das Modul functools
	23.3.1 Funktionsschnittstellen vereinfachen
	23.3.2 Methodenschnittstellen vereinfachen
	23.3.3 Caches
	23.3.4 Ordnungsrelationen vervollständigen
	23.3.5 Überladen von Funktionen


	24 Annotationen und statische Typprüfung
	24.1 Annotationen
	24.1.1 Die Annotation von Funktionen und Methoden
	24.1.2 Die Annotation von Variablen und Attributen
	24.1.3 Der Zugriff auf Annotationen zur Laufzeit
	24.1.4 Wann werden Annotationen evaluiert?

	24.2 Type Hints – das Modul typing
	24.2.1 Gültige Type Hints
	24.2.2 Container-Typen
	24.2.3 Abstrakte Container-Typen
	24.2.4 Typ-Aliasse
	24.2.5 Type Unions und optionale Werte
	24.2.6 Literale
	24.2.7 Typvariablen

	24.3 Statische Typprüfung in Python – mypy
	24.3.1 Installation
	24.3.2 Beispiel


	25 Structural Pattern Matching
	25.1 Die match-Anweisung
	25.2 Arten von Mustern in der case-Anweisung
	25.2.1 Literal- und Wertmuster
	25.2.2 ODER-Muster
	25.2.3 Muster mit Typprüfung
	25.2.4 Bedingungen für Matches formulieren
	25.2.5 Teilmuster gruppieren
	25.2.6 Capture- und Wildcard-Muster
	25.2.7 Sequenzmuster
	25.2.8 Zuordnungsmuster
	25.2.9 Muster für Objekte und ihre Attributwerte


	TEIL IV Die Standardbibliothek
	26 Mathematik
	26.1 Mathematische Funktionen – math, cmath
	26.1.1 Allgemeine mathematische Funktionen
	26.1.2 Exponential- und Logarithmusfunktionen
	26.1.3 Trigonometrische und hyperbolische Funktionen
	26.1.4 Distanzen und Normen
	26.1.5 Umrechnen von Winkeln
	26.1.6 Darstellungsformen komplexer Zahlen

	26.2 Zufallszahlengenerator – random
	26.2.1 Den Status des Zufallszahlengenerators speichern und laden
	26.2.2 Zufällige ganze Zahlen erzeugen
	26.2.3 Zufällige Gleitkommazahlen erzeugen
	26.2.4 Zufallsgesteuerte Operationen auf Sequenzen
	26.2.5 SystemRandom([seed])

	26.3 Statistische Berechnungen – statistics
	26.4 Intuitive Dezimalzahlen – decimal
	26.4.1 Verwendung des Datentyps
	26.4.2 Nichtnumerische Werte
	26.4.3 Das Context-Objekt

	26.5 Hash-Funktionen – hashlib
	26.5.1 Verwendung des Moduls
	26.5.2 Weitere Hash-Algorithmen
	26.5.3 Vergleich großer Dateien
	26.5.4 Passwörter


	27 Bildschirmausgaben und Logging
	27.1 Übersichtliche Ausgabe komplexer Objekte – pprint
	27.2 Logdateien – logging
	27.2.1 Das Meldungsformat anpassen
	27.2.2 Logging-Handler


	28 Reguläre Ausdrücke
	28.1 Die Syntax regulärer Ausdrücke
	28.1.1 Beliebige Zeichen
	28.1.2 Zeichenklassen
	28.1.3 Quantoren
	28.1.4 Vordefinierte Zeichenklassen
	28.1.5 Weitere Sonderzeichen
	28.1.6 Genügsame Quantoren
	28.1.7 Gruppen
	28.1.8 Alternativen
	28.1.9 Extensions

	28.2 Verwendung des Moduls re
	28.2.1 Searching
	28.2.2 Matching
	28.2.3 Einen String aufspalten
	28.2.4 Teile eines Strings ersetzen
	28.2.5 Problematische Zeichen ersetzen
	28.2.6 Einen regulären Ausdruck kompilieren
	28.2.7 Flags
	28.2.8 Das Match-Objekt

	28.3 Ein einfaches Beispielprogramm – Searching
	28.4 Ein komplexeres Beispielprogramm – Matching
	28.5 Kommentare in regulären Ausdrücken
	28.6 Katastrophales Backtracking
	28.6.1 Atomare Gruppen und possessive Quantoren


	29 Schnittstellen zum Betriebssystem und zur Laufzeitumgebung
	29.1 Funktionen des Betriebssystems – os
	29.1.1 environ
	29.1.2 getpid()
	29.1.3 cpu_count()
	29.1.4 system(cmd)
	29.1.5 popen(command, [mode, buffering])

	29.2 Starten von Subprozessen – subprocess
	29.2.1 Einen Subprozess starten
	29.2.2 Die Standardströme stdin, stdout und stderr
	29.2.3 Der Return Code
	29.2.4 Umgebungsvariablen

	29.3 Zugriff auf die Laufzeitumgebung – sys
	29.3.1 Kommandozeilenparameter
	29.3.2 Standardpfade
	29.3.3 Standardein- und -ausgabeströme
	29.3.4 Das Programm beenden
	29.3.5 Details zur Python-Version
	29.3.6 Details zum Betriebssystem
	29.3.7 Hooks

	29.4 Kommandozeilenparameter – argparse
	29.4.1 Taschenrechner – ein einfaches Beispiel
	29.4.2 Ein komplexeres Beispiel


	30 Das Dateisystem
	30.1 Grundlegendes zu Dateisystemen und Pfaden
	30.1.1 Pfadnamen
	30.1.2 Dateinamen
	30.1.3 Absolute und relative Pfade
	30.1.4 Zugriffsrechte

	30.2 Die moderne Lösung – pathlib
	30.2.1 Die Klasse Path
	30.2.2 Pfade kombinieren
	30.2.3 Attribute eines Pfads
	30.2.4 Pfadeigenschaften prüfen
	30.2.5 Dateien lesen und schreiben
	30.2.6 Dateien umbenennen
	30.2.7 Dateien kopieren und verschieben
	30.2.8 Dateien löschen
	30.2.9 Verzeichnisse erstellen und löschen
	30.2.10 Links
	30.2.11 Globbing

	30.3 Zugriff auf das Dateisystem mit os
	30.3.1 access(path, mode)
	30.3.2 chmod(path, mode)
	30.3.3 listdir([path])
	30.3.4 mkdir(path, [mode]) und makedirs(path, [mode])
	30.3.5 remove(path)
	30.3.6 removedirs(path)
	30.3.7 rename(src, dst) und renames(old, new)
	30.3.8 walk(top, [topdown, onerror])

	30.4 Dateipfade – os.path
	30.4.1 abspath(path)
	30.4.2 basename(path)
	30.4.3 commonprefix(list)
	30.4.4 dirname(path)
	30.4.5 join(path, *paths)
	30.4.6 normcase(path)
	30.4.7 split(path)
	30.4.8 splitdrive(path)
	30.4.9 splitext(path)

	30.5 Zugriff auf das Dateisystem – shutil
	30.5.1 Verzeichnis- und Dateioperationen
	30.5.2 Archivoperationen

	30.6 Temporäre Dateien – tempfile
	30.6.1 tempfile.TempTemporaryFile([mode, buffering, encoding, newline, suffix, prefix, dir], {errors})
	30.6.2 tempfile.TemporaryDirectory([suffix, prefix, dir])


	31 Parallele Programmierung
	31.1 Prozesse, Multitasking und Threads
	31.1.1 Die Leichtgewichte unter den Prozessen – Threads
	31.1.2 Das Global Interpreter Lock (GIL)
	31.1.3 Threads oder Prozesse?
	31.1.4 Kooperatives Multitasking

	31.2 Pythons Schnittstellen zur Parallelisierung
	31.3 Die abstrakte Schnittstelle – concurrent.futures
	31.3.1 Ein Beispiel mit einem futures.ThreadPoolExecutor
	31.3.2 Executor-Instanzen als Kontext-Manager
	31.3.3 Die Verwendung von futures.ProcessPoolExecutor
	31.3.4 Die Verwaltung der Aufgaben eines Executors

	31.4 Die flexible Schnittstelle – threading und multiprocessing
	31.4.1 Threads in Python – threading
	31.4.2 Prozesse in Python – multiprocessing

	31.5 Die kooperative Schnittstelle – asyncio
	31.5.1 Kooperative Funktionen – Koroutinen
	31.5.2 Erwartbare Objekte
	31.5.3 Die Kooperation von Koroutinen – Tasks
	31.5.4 Ein kooperativer Webcrawler
	31.5.5 Blockierende Operationen in Koroutinen
	31.5.6 Weitere asynchrone Sprachmerkmale

	31.6 Fazit: Welche Schnittstelle ist die richtige?
	31.6.1 Ist das kooperative Multitasking eine Option?
	31.6.2 Abstraktion oder Flexibilität?
	31.6.3 Threads oder Prozesse?


	32 Datenspeicherung
	32.1 Das Datenaustauschformat JSON – json
	32.2 Serialisierung von Instanzen – pickle
	32.2.1 Funktionale Schnittstelle
	32.2.2 Objektorientierte Schnittstelle

	32.3 Das Tabellenformat CSV – csv
	32.3.1 reader-Objekte – Daten aus einer CSV-Datei lesen
	32.3.2 Dialect-Objekte – eigene Dialekte verwenden

	32.4 Komprimierte Dateien und Archive
	32.4.1 gzip.open(filename, [mode, compresslevel])
	32.4.2 Andere Module für den Zugriff auf komprimierte Daten

	32.5 Datenbanken
	32.5.1 Pythons eingebaute Datenbank – sqlite3

	32.6 XML
	32.6.1 ElementTree
	32.6.2 SAX – Simple API for XML


	33 Netzwerkkommunikation
	33.1 Die Socket API
	33.1.1 Client-Server-Systeme
	33.1.2 UDP
	33.1.3 TCP
	33.1.4 Blockierende und nichtblockierende Sockets
	33.1.5 Erzeugen eines Sockets
	33.1.6 Die Socket-Klasse
	33.1.7 Netzwerk-Byte-Order
	33.1.8 Multiplexende Server – selectors
	33.1.9 Objektorientierte Serverentwicklung – socketserver

	33.2 XML-RPC
	33.2.1 Der Server
	33.2.2 Der Client
	33.2.3 Multicall
	33.2.4 Einschränkungen


	34 Zugriff auf Ressourcen im Internet
	34.1 Protokolle
	34.1.1 Hypertext Transfer Protocol – HTTP
	34.1.2 File Transfer Protocol – FTP

	34.2 Lösungen
	34.2.1 Veraltete Lösungen für Python 2
	34.2.2 Lösungen der Standardbibliothek
	34.2.3 Lösungen von Drittanbietern

	34.3 Der einfache Weg – requests
	34.3.1 Einfache Anfragen via GET und POST
	34.3.2 Web-APIs

	34.4 URLs – urllib
	34.4.1 Zugriff auf entfernte Ressourcen – urllib.request
	34.4.2 Das Einlesen und Verarbeiten von URLs – urllib.parse

	34.5 FTP – ftplib
	34.5.1 Mit einem FTP-Server verbinden
	34.5.2 FTP-Kommandos ausführen
	34.5.3 Mit Dateien und Verzeichnissen arbeiten
	34.5.4 Übertragen von Dateien


	35 E-Mail
	35.1 SMTP – smtplib
	35.1.1 SMTP([host, port, local_hostname, timeout, source_address])
	35.1.2 Eine Verbindung aufbauen und beenden
	35.1.3 Eine E-Mail versenden
	35.1.4 Beispiel

	35.2 POP3 – poplib
	35.2.1 POP3(host, [port, timeout])
	35.2.2 Eine Verbindung aufbauen und beenden
	35.2.3 Vorhandene E-Mails auflisten
	35.2.4 E-Mails abrufen und löschen
	35.2.5 Beispiel

	35.3 IMAP4 – imaplib
	35.3.1 IMAP4([host, port, timeout])
	35.3.2 Eine Verbindung aufbauen und beenden
	35.3.3 Eine Mailbox suchen und auswählen
	35.3.4 Operationen mit Mailboxen
	35.3.5 E-Mails suchen
	35.3.6 E-Mails abrufen
	35.3.7 Beispiel

	35.4 Erstellen komplexer E-Mails – email
	35.4.1 Eine einfache E-Mail erstellen
	35.4.2 Eine E-Mail mit Anhängen erstellen
	35.4.3 Eine E-Mail einlesen


	36 Debugging und Qualitätssicherung
	36.1 Der Debugger
	36.2 Automatisiertes Testen
	36.2.1 Testfälle in Docstrings – doctest
	36.2.2 Unit Tests – unittest

	36.3 Analyse des Laufzeitverhaltens
	36.3.1 Laufzeitmessung – timeit
	36.3.2 Profiling – cProfile
	36.3.3 Tracing – trace


	37 Dokumentation
	37.1 Docstrings
	37.2 Automatisches Erstellen einer Dokumentation – pydoc

	TEIL V Weiterführende Themen
	38 Distribution von Python-Projekten
	38.1 Eine Geschichte der Distributionen in Python
	38.1.1 Der klassische Ansatz – distutils
	38.1.2 Der neue Standard – setuptools
	38.1.3 Der Paketindex – PyPI

	38.2 Erstellen von Distributionen – setuptools
	38.2.1 Installation
	38.2.2 Schreiben des Moduls
	38.2.3 Das Installationsskript
	38.2.4 Erstellen einer Quellcodedistribution
	38.2.5 Erstellen einer Binärdistribution
	38.2.6 Distributionen installieren

	38.3 Erstellen von EXE-Dateien – cx_Freeze
	38.3.1 Installation
	38.3.2 Anwendung

	38.4 Paketmanager
	38.4.1 Der Python-Paketmanager – pip
	38.4.2 Der Paketmanager conda

	38.5 Lokalisierung von Programmen – gettext
	38.5.1 Beispiel für die Verwendung von gettext
	38.5.2 Erstellen des Sprachkompilats


	39 Virtuelle Umgebungen
	39.1 Das Arbeiten mit virtuellen Umgebungen – venv
	39.1.1 Eine virtuelle Umgebung aktivieren
	39.1.2 In einer virtuellen Umgebung arbeiten
	39.1.3 Eine virtuelle Umgebung deaktivieren

	39.2 Virtuelle Umgebungen in Anaconda

	40 Alternative Interpreter und Compiler
	40.1 Just-in-Time-Kompilierung – PyPy
	40.1.1 Installation und Verwendung
	40.1.2 Beispiel

	40.2 Numba
	40.2.1 Installation
	40.2.2 Beispiel

	40.3 Anbindung an C und C++ – Cython
	40.3.1 Installation
	40.3.2 Die Funktionsweise von Cython
	40.3.3 Ein Cython-Programm kompilieren
	40.3.4 Ein Cython-Programm mit statischer Typisierung
	40.3.5 Eine C-Bibliothek verwenden

	40.4 Die interaktive Python-Shell – IPython
	40.4.1 Installation
	40.4.2 Die interaktive Shell
	40.4.3 Das Jupyter Notebook


	41 Grafische Benutzeroberflächen
	41.1 Toolkits
	41.1.1 Tkinter (Tk)
	41.1.2 PyGObject (Gtk)
	41.1.3 Qt for Python (Qt)
	41.1.4 wxPython (wxWidgets)

	41.2 Einführung in tkinter
	41.2.1 Ein einfaches Beispiel
	41.2.2 Steuerelementvariablen
	41.2.3 Der Packer
	41.2.4 Events
	41.2.5 Steuerelemente
	41.2.6 Zeichnungen – das Canvas-Widget
	41.2.7 Weitere Module

	41.3 Einführung in PySide6
	41.3.1 Installation
	41.3.2 Grundlegende Konzepte von Qt
	41.3.3 Der Entwicklungsprozess
	41.3.4 Signale und Slots
	41.3.5 Wichtige Widgets
	41.3.6 Die Zeichenfunktionalität von Qt
	41.3.7 Die Model-View-Architektur


	42 Python als serverseitige Programmiersprache im WWW – ein Einstieg in Django
	42.1 Konzepte und Besonderheiten von Django
	42.2 Installation von Django
	42.3 Ein neues Django-Projekt erstellen
	42.3.1 Der Entwicklungswebserver
	42.3.2 Konfiguration des Projekts

	42.4 Eine Applikation erstellen
	42.4.1 Die Applikation in das Projekt einbinden
	42.4.2 Ein Model definieren
	42.4.3 Beziehungen zwischen Models
	42.4.4 Übertragung des Models in die Datenbank
	42.4.5 Die Model-API
	42.4.6 Unser Projekt bekommt ein Gesicht
	42.4.7 Djangos Template-System
	42.4.8 Verarbeitung von Formulardaten
	42.4.9 Djangos Administrationsoberfläche


	43 Wissenschaftliches Rechnen und Data Science
	43.1 Installation
	43.2 Das Modellprogramm
	43.2.1 Der Import von numpy, scipy und matplotlib
	43.2.2 Vektorisierung und der Datentyp numpy.ndarray
	43.2.3 Visualisieren von Daten mit matplotlib.pyplot

	43.3 Überblick über die Module numpy und scipy
	43.3.1 Überblick über den Datentyp numpy.ndarray
	43.3.2 Überblick über scipy

	43.4 Eine Einführung in die Datenanalyse mit pandas
	43.4.1 Das DataFrame-Objekt
	43.4.2 Selektiver Datenzugriff
	43.4.3 Löschen von Zeilen und Spalten
	43.4.4 Einfügen von Zeilen und Spalten
	43.4.5 Logische Ausdrücke auf Datensätzen
	43.4.6 Manipulation von Datensätzen
	43.4.7 Ein- und Ausgabe
	43.4.8 Visualisierung


	44 Insiderwissen
	44.1 URLs im Standardbrowser öffnen – webbrowser
	44.1.1 open(url, [new, autoraise])

	44.2 Interpretieren von Binärdaten – struct
	44.3 Versteckte Passworteingabe – getpass
	44.3.1 getpass([prompt, stream], {echo_char})
	44.3.2 getpass.getuser()

	44.4 Kommandozeilen-Interpreter – cmd
	44.5 Dateiinterface für Strings – io.StringIO
	44.6 Kopieren von Instanzen – copy
	44.6.1 Zurück zum Eingangsbeispiel

	44.7 Bildverarbeitung – Pillow
	44.7.1 Installation
	44.7.2 Bilddateien laden und speichern
	44.7.3 Zugriff auf einzelne Pixel
	44.7.4 Manipulation von Bildern
	44.7.5 Interoperabilität


	45 Eine Geschichte der Python-Versionen
	45.1 Die Versionshistorie
	45.2 Der Sprung nach Python 3
	45.2.1 Ein-/Ausgabe
	45.2.2 Iteratoren
	45.2.3 Strings
	45.2.4 Ganze Zahlen
	45.2.5 Exception Handling
	45.2.6 Standardbibliothek


	Anhang
	A.1 Reservierte Wörter
	A.2 Operatorrangfolge
	A.3 Eingebaute Funktionen
	A.4 Eingebaute Exceptions
	A.5 Python-IDEs
	A.5.1 PyCharm
	A.5.2 Visual Studio Code
	A.5.3 Spyder


	Index
	Serviceseiten
	Rechtliche Hinweise
	Über die Autoren



