

7

Contents

Preface ... 17

1 Introduction to Object-Oriented Programming 23

1.1 The Need for a Better Abstraction ... 23
1.1.1 The Evolution of Programming Languages ... 23
1.1.2 Moving Toward Objects ... 24

1.2 Classes and Objects .. 25
1.2.1 What Are Objects? ... 25
1.2.2 Introducing Classes .. 26
1.2.3 Defining a Class Interface .. 28

1.3 Establishing Boundaries ... 29
1.3.1 Encapsulation and Implementation Hiding .. 29
1.3.2 Understanding Visibility Sections ... 31

1.4 Reuse ... 31
1.4.1 Composition ... 31
1.4.2 Inheritance .. 32
1.4.3 Polymorphism ... 33

1.5 Object Management .. 34

1.6 UML Tutorial: Class Diagram Basics .. 35
1.6.1 What Are Class Diagrams? .. 36
1.6.2 Classes .. 37
1.6.3 Attributes .. 37
1.6.4 Operations .. 38
1.6.5 Associations ... 39
1.6.6 Notes ... 40

1.7 Summary ... 40

2 Working with Objects 41

2.1 Defining Classes ... 41
2.1.1 Creating a Class ... 42
2.1.2 Component Declarations ... 43
2.1.3 Implementing Methods ... 50

2714-3.book Seite 7 Montag, 15. Dezember 2025 2:49 14

7

Contents

8

2.2 Working with Objects .. 51
2.2.1 Object References ... 52
2.2.2 Creating Objects ... 52
2.2.3 Object Reference Assignments .. 53
2.2.4 Accessing Instance Components .. 55
2.2.5 Accessing Class Components ... 58
2.2.6 Working with Events ... 60
2.2.7 Working with Functional Methods .. 64
2.2.8 Chaining Method Calls Together .. 67

2.3 Building Your First Object-Oriented Program ... 70
2.3.1 Creating the Report Program ... 70
2.3.2 Adding in the Local Class Definition .. 74

2.4 Working with Global Classes ... 76
2.4.1 Understanding the Class Pool Concept ... 76
2.4.2 Getting Started with the Class Builder Tool .. 76
2.4.3 Creating Global Classes .. 78
2.4.4 Using the Form-Based Editor .. 80
2.4.5 Using the Source Code Editor ... 88

2.5 Developing Classes Using ABAP Development Tools .. 88
2.5.1 What Is Eclipse? .. 89
2.5.2 Setting Up the ABAP Development Tools Environment 89
2.5.3 Working with the ABAP Development Tools Class Editor 93

2.6 Working with Constructor Expressions ... 101

2.7 UML Tutorial: Object Diagrams ... 104

2.8 Summary ... 106

3 Encapsulation and Implementation Hiding 107

3.1 Lessons Learned from Procedural Programming ... 107
3.1.1 Decomposing the Functional Decomposition Process 108
3.1.2 Case Study: A Procedural Code Library in ABAP ... 110
3.1.3 Moving Toward Objects ... 115

3.2 Data Abstraction with Classes ... 116

3.3 Defining Component Visibilities .. 117
3.3.1 Working with Visibility Sections ... 118
3.3.2 Understanding the Friend Concept .. 121

3.4 Hiding the Implementation .. 123

2714-3.book Seite 8 Montag, 15. Dezember 2025 2:49 14

8

Contents

9

Contents

3.5 Designing by Contract ... 124

3.6 UML Tutorial: Sequence Diagrams .. 125

3.7 Summary ... 126

4 Object Initialization and Cleanup 129

4.1 Understanding the Object Creation Process ... 129

4.2 Working with Constructors ... 133
4.2.1 Defining Constructors ... 134
4.2.2 Understanding How Constructors Work .. 134
4.2.3 Class Constructors ... 136

4.3 Taking Control of the Instantiation Process .. 137
4.3.1 Controlling the Instantiation Context ... 138
4.3.2 Implementing the Singleton Pattern ... 139
4.3.3 Working with Factory Methods ... 141

4.4 Garbage Collection ... 143

4.5 Tuning Performance ... 144
4.5.1 Design Considerations .. 144
4.5.2 Lazy Initialization .. 144
4.5.3 Reusing Objects .. 145
4.5.4 Making Use of Class Attributes ... 146

4.6 UML Tutorial: State Machine Diagrams .. 146

4.7 Summary ... 147

5 Inheritance and Composition 149

5.1 Generalization and Specialization ... 149
5.1.1 Inheritance Defined ... 150
5.1.2 Defining Inheritance Relationships in ABAP Objects 151
5.1.3 Working with Subclasses ... 156
5.1.4 Inheritance as a Living Relationship .. 157

5.2 Inheriting Components ... 159
5.2.1 Designing the Inheritance Interface .. 159
5.2.2 Visibility of Instance Components in Subclasses .. 161
5.2.3 Visibility of Class Components in Subclasses ... 162
5.2.4 Redefining Methods .. 162

2714-3.book Seite 9 Montag, 15. Dezember 2025 2:49 14

9

Contents

Contents

10

5.2.5 Instance Constructors ... 165
5.2.6 Class Constructors ... 166

5.3 The Abstract and Final Keywords ... 166
5.3.1 Abstract Classes and Methods ... 166
5.3.2 Final Classes ... 170
5.3.3 Final Methods .. 172

5.4 Inheritance Versus Composition .. 173

5.5 Working with ABAP Refactoring Tools .. 176

5.6 UML Tutorial: Advanced Class Diagrams, Part I ... 179
5.6.1 Generalizations ... 179
5.6.2 Dependencies and Composition ... 179
5.6.3 Abstract Classes and Methods ... 180

5.7 Summary ... 182

6 Polymorphism 183

6.1 Object Reference Assignments Revisited ... 183
6.1.1 Static and Dynamic Types ... 184
6.1.2 Casting ... 186

6.2 Dynamic Method Call Binding ... 189

6.3 Interfaces ... 191
6.3.1 Interface Inheritance Versus Implementation Inheritance 192
6.3.2 Defining Interfaces .. 193
6.3.3 Implementing Interfaces ... 197
6.3.4 Working with Interfaces .. 200
6.3.5 Nesting Interfaces .. 203
6.3.6 When to Use Interfaces .. 205

6.4 UML Tutorial: Advanced Class Diagrams, Part II ... 207
6.4.1 Interfaces .. 207
6.4.2 Providing and Required Relationships with Interfaces 208
6.4.3 Static Attributes and Methods .. 209

6.5 Summary ... 209

7 Component-Based Design Concepts 211

7.1 Understanding SAP’s Component Model ... 211

2714-3.book Seite 10 Montag, 15. Dezember 2025 2:49 14

10

Contents

11

Contents

7.2 The Package Concept ... 214
7.2.1 Why Do You Need Packages? ... 214
7.2.2 Introducing Packages .. 215
7.2.3 Creating Packages Using the Package Builder .. 217
7.2.4 Embedding Packages .. 224
7.2.5 Defining Package Interfaces ... 225
7.2.6 Creating Use Accesses .. 228
7.2.7 Performing Package Checks .. 229
7.2.8 Restriction of Client Packages .. 231

7.3 Package Design Concepts .. 233

7.4 UML Tutorial: Package Diagrams ... 235

7.5 Summary ... 237

8 Error Handling with Exception Classes 239

8.1 Lessons Learned from Prior Approaches ... 239
8.1.1 Lesson 1: Exception Handling Logic Gets in the Way 239
8.1.2 Lesson 2: Exception Handling Requires Varying Amounts of Data 240
8.1.3 Lesson 3: The Need for Transparency .. 241

8.2 The Class-Based Exception Handling Concept ... 241

8.3 Creating Exception Classes ... 243
8.3.1 Understanding Exception Class Types .. 243
8.3.2 Local Exception Classes .. 244
8.3.3 Global Exception Classes ... 245
8.3.4 Defining Exception Texts ... 247
8.3.5 Mapping Exception Texts to Message Classes ... 249

8.4 Dealing with Exceptions ... 250
8.4.1 Handling Exceptions ... 250
8.4.2 Cleaning Up the Mess ... 254

8.5 Raising and Forwarding Exceptions .. 255
8.5.1 System-Driven Exceptions ... 255
8.5.2 Raising Exceptions Programmatically ... 256
8.5.3 Propagating Exceptions ... 260
8.5.4 Resumable Exceptions .. 263

8.6 UML Tutorial: Activity Diagrams .. 267

8.7 Summary ... 269

2714-3.book Seite 11 Montag, 15. Dezember 2025 2:49 14

11

Contents

Contents

12

9 Unit Tests with ABAP Unit 271

9.1 ABAP Unit Overview ... 271
9.1.1 Unit Testing Terminology .. 272
9.1.2 Understanding How ABAP Unit Works ... 272
9.1.3 ABAP Unit and Production Code .. 274

9.2 Creating Unit Test Classes ... 274
9.2.1 Unit Test Naming Conventions ... 274
9.2.2 Generating Test Classes for Global Classes ... 275
9.2.3 Defining Test Attributes ... 276
9.2.4 Building Test Methods .. 277
9.2.5 Working with Fixtures .. 278
9.2.6 Working with Test Seams .. 278
9.2.7 Defining Reusable Test Classes ... 280

9.3 Assertions in ABAP Unit .. 280
9.3.1 Creating and Evaluating Custom Constraints .. 281
9.3.2 Applying Multiple Constraints ... 282

9.4 Managing Dependencies ... 283
9.4.1 Dependency Injection ... 283
9.4.2 Private Dependency Injection .. 284
9.4.3 Partially Implemented Interfaces ... 284
9.4.4 Working with Test Doubles .. 285
9.4.5 Other Sources of Information .. 287

9.5 Case Study: Creating a Unit Test in ABAP Unit .. 288

9.6 Executing Unit Tests ... 291
9.6.1 Integration with the ABAP Workbench ... 291
9.6.2 Creating Favorites in the ABAP Unit Test Browser 292
9.6.3 Integration with the Code Inspector ... 293

9.7 Evaluating Unit Test Results ... 294

9.8 Measuring Code Coverage ... 294

9.9 Moving Toward Test-Driven Development ... 296

9.10 Behavior-Driven Development .. 296

9.11 UML Tutorial: Use Case Diagrams .. 297
9.11.1 Use Case Terminology .. 297
9.11.2 An Example Use Case .. 298
9.11.3 The Use Case Diagram .. 299
9.11.4 Use Cases for Requirements Verification ... 300
9.11.5 Use Cases and Testing .. 301

9.12 Summary ... 301

2714-3.book Seite 12 Montag, 15. Dezember 2025 2:49 14

12

Contents

13

Contents

10 Business Object Development with BOPF 303

10.1 What Is BOPF? ... 303

10.2 Anatomy of a Business Object ... 305
10.2.1 Nodes .. 306
10.2.2 Actions ... 310
10.2.3 Determinations ... 312
10.2.4 Validations .. 313
10.2.5 Associations ... 315
10.2.6 Queries ... 318

10.3 Working with the BOPF Client API ... 319
10.3.1 API Overview .. 320
10.3.2 Creating Business Object Instances and Node Rows 323
10.3.3 Searching for Business Object Instances .. 326
10.3.4 Updating and Deleting Business Object Node Rows 327
10.3.5 Executing Actions ... 328
10.3.6 Working with the Transaction Manager .. 329

10.4 Where to Go from Here .. 330
10.4.1 Looking at the Big Picture .. 330
10.4.2 Enhancing Business Objects ... 331

10.5 UML Tutorial: Advanced Sequence Diagrams .. 331
10.5.1 Creating and Deleting Objects ... 332
10.5.2 Depicting Control Logic with Interaction Frames .. 333

10.6 Summary ... 334

11 ABAP RESTful Application Programming Model 335

11.1 Introduction ... 335
11.1.1 What Is the ABAP RESTful Application Programming Model? 335
11.1.2 Relationship to SAP Gateway ... 337
11.1.3 Business Object Runtime ... 338
11.1.4 Behavior Definitions .. 340
11.1.5 Model Classes .. 342

11.2 CDS and SAP Gateway Service Bindings .. 347
11.2.1 CDS Views ... 347
11.2.2 Associations ... 348

11.3 Modeling Behavior Using Object-Oriented Techniques 350
11.3.1 Creating the Service ... 350

2714-3.book Seite 13 Montag, 15. Dezember 2025 2:49 14

13

Contents

Contents

14

11.3.2 Object-Oriented Implementation ... 360

11.4 Summary ... 370

12 ABAP Cloud 371

12.1 Introduction to SAP Business Technology Platform .. 372
12.1.1 What Is SAP Business Technology Platform? .. 372
12.1.2 Core Capabilities of SAP Business Technology Platform 374
12.1.3 ABAP and SAP Business Technology Platform .. 376

12.2 ABAP Environment Overview .. 377
12.2.1 Core Concepts .. 378
12.2.2 Key Architectural Components .. 383

12.3 Setting Up Your Cloud Development Environment ... 386
12.3.1 Transitioning from On-Premise to Cloud Development 386
12.3.2 Creating Your SAP BTP ABAP Environment .. 388

12.4 Case Study: Implementing ABAP RESTful Application Programming
Model Elements via ABAP Cloud .. 395
12.4.1 Recreation of ABAP RESTful Application Programming Model Objects 396
12.4.2 Publishing and Consuming the Service .. 397

12.5 Summary ... 397

13 Best Practices and Design Patterns 399

13.1 Object-Oriented Analysis and Design .. 399

13.2 Creational Patterns ... 401
13.2.1 When to Use Creational Patterns in ABAP ... 403
13.2.2 Singleton Pattern .. 404
13.2.3 Factory Method Pattern ... 405

13.3 Structural Patterns .. 408
13.3.1 When to Use Structural Patterns in ABAP .. 409
13.3.2 Adapter Pattern ... 411
13.3.3 Decorator Pattern ... 414

13.4 Behavioral Patterns .. 419
13.4.1 When to Use Behavioral Patterns in ABAP .. 421
13.4.2 Strategy Pattern .. 421

13.5 Summary ... 425

2714-3.book Seite 14 Montag, 15. Dezember 2025 2:49 14

14

Contents

15

Contents

Appendices 427

A Installing the Eclipse IDE ... 427

B The Authors ... 433

Index .. 435

2714-3.book Seite 15 Montag, 15. Dezember 2025 2:49 14

15

Contents

41

2
Chapter 2
Working with Objects
This chapter introduces you to some basic ABAP Objects syntax and the
relevant development tools that you’ll need to start building object-
oriented programs in ABAP.

Object-oriented programming (OOP), like many abstract concepts, is best learned by
example. Now that we’ve gotten the basic definitions out of the way in Chapter 1, we’re
ready to turn our attention toward more practical matters and look at some basic syn-
tax and sample code using ABAP Objects.

Because the primary unit of development for object-oriented programs is the class,
we’ll spend quite a bit of time in this chapter exploring the syntax used to define
classes and their internal components. Once you’re up to speed with basic syntax rules,
we’ll take a look at the tools used to define and maintain classes.

2.1 Defining Classes

Classes in ABAP Objects are declared using the CLASS statement block. This statement
block is a wrapper of sorts, grouping all relevant class component declarations into two
distinct sections:

� Declaration section
This section specifies all the components defined within the class including attri-
butes, methods, and events.

� Implementation section
This section provides implementations (i.e., the source code) for the methods
defined within the declaration section.

In the following sections, we’ll unpack the syntax used to build out these sections and
fully specify class types. For the purposes of this introductory section, our focus will be
on defining local classes (i.e., classes that are defined within ABAP report programs and
function group includes). However, in Section 2.4, you’ll learn that this same syntax
applies to the definition of global class types as well. The primary difference in the case
of global classes is that you have a form-based editor in the Class Builder tool that
spares you from manually typing out some of the declaration syntax.

2714-3.book Seite 41 Montag, 15. Dezember 2025 2:49 14

41

2 Working with Objects

42

2.1.1 Creating a Class

To define a new class type, you must declare it within a CLASS...DEFINITION...ENDCLASS
statement block as shown in Listing 2.1. This statement block makes up the aforemen-
tioned declaration section of the ABAP class definition. As we noted earlier, this section
is used to declare the primary components that make up a class, such as attributes and
methods.

CLASS {class_name} DEFINITION [class_options].
 PUBLIC SECTION.
 [components]
 PROTECTED SECTION.
 [components]
 PRIVATE SECTION.
 [components]
ENDCLASS.

Listing 2.1 ABAP Class Declaration Section Syntax

If you look closely at Listing 2.1, you can see that the components of a class definition
are organized into three distinct visibility sections: the PUBLIC SECTION, the PROTECTED
SECTION, and the PRIVATE SECTION. Each of these visibility sections is optional, so it’s up
to you as a developer to determine which components go where—a subject that we’ll
consider at length in Chapter 3.

Besides the definition of the components that makeup the class’s interface, the next
most important task in defining a class is coming up with a good and meaningful name
for it. As trivial as it may sound, this task is often harder than it looks. Part of the chal-
lenge stems from the fact that ABAP only gives you 30 characters to work with. You
must come up with a meaningful name that fits within the confines of the syntax
shown in Listing 2.2.

[{Namespace}|{Prefix}]CL_{Meaningful_Name}

Listing 2.2 ABAP Class Naming Convention

Listing 2.3 shows how this class naming syntax is applied to the various class types that
may exist within the ABAP Repository. You’ll see many more examples of this naming
convention at work as you progress through the book.

LCL_LOCAL_CLASS "Local Customer Class
ZCL_GLOBAL_CLASS "Global Customer Class
CL_ABAP_MATCHER "SAP-Standard Class (no namespace)
/BOWDK/CL_STRING_UTILS "3rd-Party Class w/Namespace Prefix

Listing 2.3 Class Naming Examples

2714-3.book Seite 42 Montag, 15. Dezember 2025 2:49 14

42

2 Working With Objects

43

2.1 Defining Classes

2

2.1.2 Component Declarations

As you’ve seen, the structure and makeup of a class is determined by its component
definitions. Therefore, in this section, you’ll learn about the different component types
that you can define within a class. Before you get started, though, you first need to
understand how components are grouped from a scoping perspective. Within a class
declaration, there are two different types of components:

� Instance components
Instance components, as the name suggests, are components that define the state
and behavior of individual object instances. For example, an Employee class might
have an instance attribute called id that uniquely identifies an employee within a
company. Each instance of the Employee class maintains its own copy of the id attri-
bute, which has a distinct value. Instance methods operate on these instance attri-
butes to manipulate the object’s state and perform instance-specific tasks.

� Class components
Class components, on the other hand, are defined at the class level, meaning class
components are shared across all object instances. Such components can come in
handy in situations where you want to share data or expose utility functions on a
wider scale. For example, in the Employee class scenario, you might use a class attri-
bute called next_id to keep track of the next available employee ID number. This
value could be used as a primitive number range object to assign the id instance
attribute for newly created Employee objects.

In practice, most of the classes you define will contain few class components. After
all, it’s hard to establish identity at the object level if all the data and/or functionality
resides in global class components. However, you’ll see that class components come
in handy in certain situations, such as dealing with complex object creation scenar-
ios or finding a home for utility functions.

Static Components

Class components are sometimes referred to as static components since they are stati-
cally defined and maintained at the class level. This is especially the case in other
object-oriented languages such as Java or C#.

Internal Namespaces

Regardless of where you decide to define your components, it’s important to keep in
mind that all component names within an ABAP Objects class belong to the same
internal namespace. For example, it’s not possible to define an attribute and a method
using the same name—even if they belong to different visibility sections. In the sec-
tions that follow, you’ll learn that the adoption of good naming conventions makes it
easy to avoid such naming collisions.

2714-3.book Seite 43 Montag, 15. Dezember 2025 2:49 14

43

2 Working With Objects

2 Working with Objects

44

Attributes

As you learned in Chapter 1, attributes are essentially variables defined internally
within a class or object. Attributes are defined in the same way that variables are
defined in other ABAP programming modules. The primary difference in the case of
classes is that you’re contending with different contexts.

To put these contexts into perspective, consider the LCL_CUSTOMER sample class in Lis-
ting 2.4. Within this class definition, we’ve defined three different types of attributes:

� Instance attributes
To define the properties that are unique to a particular customer instance, we’ve cre-
ated several instance attributes such as mv_id, mv_customer_type, mv_name, and ms_
address. As you can see in Listing 2.4, these instance attributes are defined using the
familiar DATA keyword. Here, you can choose from any valid ABAP data type includ-
ing structure types, table types, reference types, or even other class types.

� Class attributes
The sv_next_id attribute is an example of a class attribute. As you can see, the only
real difference syntax-wise between class attributes and instance attributes is the
use of the CLASS-DATA keyword in lieu of the typical DATA keyword.

� Constants
In the PUBLIC SECTION of our customer class, we’ve also defined several constants to
represent the different customer types modeled in our class: CO_PERSON_TYPE for
individuals, CO_ORG_TYPE for organizations, and CO_GROUP_TYPE for customer groups.
These constants are defined just like any other constant using the CONSTANTS key-
word. However, in the case of class constants, what we’re really talking about is a spe-
cialized case of a class/static attribute (one that can’t be modified at runtime).

CLASS lcl_customer DEFINITION.
 PUBLIC SECTION.
 CONSTANTS: CO_PERSON_TYPE TYPE c VALUE '1',
 CO_ORG_TYPE TYPE c VALUE '2',
 CO_GROUP_TYPE TYPE c VALUE '3'.
 PRIVATE SECTION.
 DATA: mv_id TYPE i,
 mv_customer_type TYPE c,
 mv_name TYPE string,
 ms_address TYPE adrc.
 CLASS-DATA: sv_next_id TYPE i.
ENDCLASS.

Listing 2.4 Declaring Attributes Within a Class

Though the ABAP compiler will generally allow you to define attributes with whatever
name you prefer, we strongly recommend that you adopt a naming convention that

2714-3.book Seite 44 Montag, 15. Dezember 2025 2:49 14

44

2 Working With Objects

45

2.1 Defining Classes

2

makes it easier to identify the scope of a given attribute. Table 2.1 describes the naming
convention that will be used within this book.

Methods

Methods are defined using either the METHODS statement for instance methods or the
CLASS-METHODS statement for class methods. The syntax for both statement types is
shown in the syntax diagram in Listing 2.5. Here, you can see that a method definition
consists of a method name, an optional parameter list, and an optional set of excep-
tions that might occur. For this introductory section, we’ll focus on the first two parts
of a method definition. We’ll circle back and cover exceptions in Chapter 8.

{CLASS-}METHODS {method_name}
 [IMPORTING parameters]
 [EXPORTING parameters]
 [CHANGING parameters]
 [RETURNING VALUE(parameter)]
 [{RAISING}|{EXCEPTIONS}...].

Listing 2.5 Method Definition Syntax

As you can see in Listing 2.5, the first thing you specify in a method definition is the
method’s name. Since methods define the behavior of classes, it’s important that you

Attribute Type Naming Convention Description

Instance attributes M{Type}_{Meaningful_
Name}

Examples:

mv_id

ms_address

mt_contacts

Here, the M implies that you’re defin-
ing a member variable. The {Type}
designator helps you more easily
determine whether you’re dealing
with elementary variables (V), struc-
tures (S), internal tables (T), and so on.

Aside from these scoping details, the
rest of the instance attribute name is
freeform and should be defined in
such a way that it conveys meaning.

Class (static) attri-
butes

S{Type}_{Meaningful_
Name}

Examples:

sv_next_id

This convention is almost identical to
instance attributes. However instead
of the M for member variable, static
attributes are prefixed with an S to
imply that the attribute belongs to the
static context.

Constants CO_{MEANINGFUL_NAME} Constants are typically defined in all
caps using the CO_ prefix.

Table 2.1 Naming Convention for Defining Attributes

2714-3.book Seite 45 Montag, 15. Dezember 2025 2:49 14

45

2 Working With Objects

2 Working with Objects

46

come up with meaningful names that intuitively describe the method’s purpose. Nor-
mally, it makes sense to prefix a method name with a strong action verb that describes
the type of operation being performed. The sample class in Listing 2.6 provides some
examples of this convention.

CLASS lcl_date DEFINITION.
 PUBLIC SECTION.
 METHODS:
 add IMPORTING iv_days TYPE i,
 subtract IMPORTING iv_days TYPE i,
 get_day_of_week RETURNING VALUE(rv_day) TYPE string,
 ...
ENDCLASS.

Listing 2.6 Defining Meaningful Names for Methods

After you come up with meaningful names for your methods, your next objective is to
determine what sort of parameters (if any) the methods will need to perform their
tasks. If you look at the syntax diagram from Listing 2.5, you can see that there are four
different types of parameters that can be defined within a method’s parameter list.
Table 2.2 describes each of these parameter types in detail.

To distinguish between the various parameter types within a method definition,
method parameters are normally prefixed according to the convention described in
Table 2.3. Here, the {Type} designator is once again used to differentiate between ele-
mentary data types (V), structure types (S), table types (T), and so on.

Parameter Type Description

Importing Importing parameters define the input parameters for a method. The val-
ues of an importing parameter cannot be modified inside the method
implementation.

Exporting Exporting parameters represent the output parameters for a method.

Changing Changing parameters are input/output parameters that allow you to
update or modify data within a method.

Returning Returning parameters are used to define functional methods. You’ll learn
more about this parameter type when we look at functional methods in
Section 2.2.7.

Table 2.2 Parameter Types for Method Definitions

2714-3.book Seite 46 Montag, 15. Dezember 2025 2:49 14

46

2 Working With Objects

47

2.1 Defining Classes

2

Regardless of the parameter’s type, the syntax for declaring a parameter p1 is shown in
the syntax diagram in Listing 2.7. As you can see, this syntax provides you with several
configuration options for defining a parameter:

� The optional VALUE addition allows you to specify that a parameter will be passed by
value instead of by reference. For more details on this concept, check out the upcom-
ing text box.

� You can use the TYPE addition to specify the parameter’s data type. The addition is
used in this context in the exact same way it’s used to define normal variables or
form parameters.

� You can use the OPTIONAL addition to mark a parameter as optional. Such parameters
can be omitted during method calls on the consumer side.

� You can use the DEFAULT addition to specify a default value for a given parameter
(which makes the parameter optional from a consumer perspective). The caller of
the method can override this value as needed.

{ p1 | VALUE(p1)} TYPE type [OPTIONAL | {DEFAULT def1}]

Listing 2.7 Formal Parameter Declaration Syntax

Pass-by-Value versus Pass-by-Reference

At runtime, whenever a method that contains parameters is invoked, the calling pro-
gram will pass parameters by matching up actual parameters (e.g., local variables in
the calling program and literal values) in the method call with the formal parameters
declared in the method signature (see Figure 2.1). Here, parameters are passed in one of
two ways: by reference (default behavior) or by value.

Pass-by-value semantics is enabled via the aforementioned VALUE addition. Perfor-
mance-wise, pass-by-value implies that a copy of an actual parameter is created and
passed to the method for consumption. As a result, changes made to value parameters
inside the method only affect the copy; the contents of the variable used as the actual
parameter are not disturbed in any way. This behavior is illustrated at the top of Figure
2.1 with the mapping of parameter a. Here, whenever the method is invoked, a copy of

Parameter Type Naming Convention

Importing I{Type}_{Parameter_Name}

Exporting E{Type}_{Parameter_Name}

Changing C{Type}_{Parameter_Name}

Returning R{Type}_{Parameter_Name}

Table 2.3 Method Parameter Naming Conventions

2714-3.book Seite 47 Montag, 15. Dezember 2025 2:49 14

47

2 Working With Objects

2 Working with Objects

48

variable x is made and assigned to parameter a. As you might expect, this kind of oper-
ation can become rather expensive when you start dealing with large data objects.

Reference parameters, on the other hand, contain a reference (or pointer) to the actual
parameter used in the method call. Therefore, changes made to reference parameters
are reflected in the calling program. In Figure 2.1, this is illustrated in the mapping of
parameter b. Here, if you were to change the value of parameter b inside the method,
the change would be reflected in variable y in the calling program.

Figure 2.1 Mapping Actual Parameters to Formal Parameters

Since this behavior can potentially cause dangerous side effects, ABAP allows you to
lock down reference parameters for editing inside methods by defining them as
importing parameters. For example, if you define parameter b as an importing parame-
ter, the compiler would complain if you try to modify its contents within the method
body. In effect, importing parameters allow you to attain all the performance benefits
of reference passing without the negative effects.

Collectively, a method’s name and parameter list make up the method’s signature.
From the perspective of class consumers, method signatures determine the exact
requirements for calling a particular method: which parameters to pass, the data types
of the parameters being exchanged, and so on. As a method designer, it’s important
that you get these details right so that your methods are intuitive and easy to use. To
that end, here are some design points to consider when defining method signatures:

� In general, keep the number of parameters being passed to or from methods to the
bare minimum. You should assume that an object already has most of the informa-
tion it needs (via its instance attributes) to perform a particular task, so you should
only require a handful of parameters when defining a method.

� Define methods to perform one task. Avoid defining methods such as copyDataAnd-
WashCat().

Actual
Parameters

Formal
Parameters

Calling Program Method

Value

Reference

x

y

a

b

2714-3.book Seite 48 Montag, 15. Dezember 2025 2:49 14

48

2 Working With Objects

49

2.1 Defining Classes

2

� When performing generic operations where specific data types don’t matter, incor-
porate the use of generic ABAP types so that the methods can be (re)used in a variety
of contexts. For a list of available generic types, search for “generic ABAP types” in
the ABAP Keyword Documentation.

Events

Besides the more common attributes and methods that you see in most object-ori-
ented languages, ABAP Objects also allows you to define events that model certain
types of occurrences within an object’s lifecycle. Once again, you can distinguish
between instance events that occur within a specific object instance and class events
that are defined at the class level.

Listing 2.8 contains the basic syntax used to define instance events and class events.
The parameters defined for an event are used to pass additional information about the
event to interested event handler methods. Since this is a one-way data exchange,
you’re only allowed to define exporting parameters in an event definition. The syntax
is pretty much identical to the syntax used to define exporting parameters in methods.
The only difference in this case is that event parameters must be passed by value. Aside
from the formally defined exporting parameters in an event definition, the system also
supplies an implicit parameter called sender that contains a reference to the sending
object (i.e., the object that raised the event).

EVENTS evt [EXPORTING parameters].
CLASS-EVENTS evt [EXPORTING parameters].

Listing 2.8 Event Declaration Syntax

Types

You can define custom data types within a class using the ABAP TYPES statement. These
types are defined at the class level and are therefore not specific to any object instance.
You can use these custom types to define local variables within methods, method
parameter types, and so on. It’s also possible to declare the use of global type pools
defined within the ABAP Dictionary using the TYPE-POOLS statement.

The definition of class LCL_PERSON in Listing 2.9 demonstrates how types can be
declared and used in a class definition. Here, we’ve defined a custom structure type
called TY_NAME that’s being used to define the person’s ms_name attribute. The use of the
TY_ prefix in this case is by convention: Class-defined types are normally defined using
the naming convention TY_{Type_Name}.

CLASS lcl_person DEFINITION.
 PRIVATE SECTION.
 TYPES: BEGIN OF ty_name,
 first_name TYPE char40,
 middle_initial TYPE char1,

2714-3.book Seite 49 Montag, 15. Dezember 2025 2:49 14

49

2 Working With Objects

2 Working with Objects

50

 last_name TYPE char40,
 END OF ty_name.
 TYPE-POOLS: szadr. "Business Address Services

 DATA: ms_name TYPE ty_name,
 ms_address TYPE szadr_addr1_complete.
ENDCLASS.

Listing 2.9 Defining and Working with Class-Level Types

If you look closely at Listing 2.9, you can also see how type groups from the ABAP Dic-
tionary are declared using the TYPE-POOLS statement. In this case, the class has declared
the use of the SZADR type group from the Business Address Services package. Once this
declaration is in place, you can use types such as the SZADR_ADDR1_COMPLETE type in attri-
bute definitions and method signatures.

2.1.3 Implementing Methods

Any time you define methods within the declaration section of a class, you need to pro-
vide implementations for them in the implementation section. Such implementations
are provided using METHOD...ENDMETHOD statement blocks that are nested inside of a
CLASS...IMPLEMENTATION...ENDCLASS statement block, as shown in Listing 2.10.

CLASS lcl_date DEFINITION.
 ...
ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
 METHOD add.
 mv_date = mv_date + iv_days.
 ENDMETHOD.

 METHOD subtract.
 mv_date = mv_date - iv_days.
 ENDMETHOD.

 METHOD get_day_of_week.
 "Implementation goes here..
 ENDMETHOD.
ENDCLASS.

Listing 2.10 Providing Implementations for Methods

As you can see in Listing 2.10, method implementations allow you to jump right into
the code. There’s no need to provide any further details about the method context,
since you’ve already defined its signature in the declaration section. Within the

2714-3.book Seite 50 Montag, 15. Dezember 2025 2:49 14

50

2 Working With Objects

51

2.2 Working with Objects

2

method processing block, you can implement the behavior of the class using regular
ABAP statements in much the same way that you would implement subroutines and
function modules from the procedural world. You’ll see many examples of this in the
sections that follow.

Syntax Restrictions

If you’re coming to ABAP Objects from a procedural background, we should point out
that there are a handful of ABAP language constructs that have been rendered obso-
lete/deprecated from within the object-oriented context. These changes came about
as part of a language cleanup effort when SAP first introduced object-oriented exten-
sions to ABAP. SAP saw an opportunity to do some internal housekeeping and ensure
that deprecated language elements didn’t make their way into new ABAP Objects
classes.

For the most part, developers following current best practices shouldn’t encounter
these statements, as their use is generally frowned upon in any context. Still, if you’re
not sure which statements have become deprecated over the years, don’t worry; the
compiler will tell you if you’ve used one.

Before we wrap up our discussion on method implementations, let’s take a moment to
discuss variable scoping rules in an object-oriented context. Unlike procedural con-
texts, where the context is pretty cut-and-dry between global variables and local vari-
ables, method implementations get their hands on variables at several different scop-
ing levels:

� Class attributes that behave like global variables

� Local variables whose scope is limited to the method that defines them

� Instance variables that sit somewhere in the middle, defining the state of a given
object instance

With these additional options in play, you should be careful when qualifying variables
so that their usage is clear. This makes the code more readable and prevents you from
accidentally hiding instance or class attributes behind method-local variables with the
same name. As you can expect, hiding instance or class attributes within a method can
have some nasty side effects. Fortunately, if you stick to the naming conventions out-
lined in Section 2.1.2, this shouldn’t ever be a concern.

2.2 Working with Objects

Now that you have a feel for how classes are defined in ABAP Objects, let’s take a look at
how these classes can be utilized from a consumer standpoint. In the sections that fol-
low, you’ll learn to define object reference variables, create new object instances, and
put them to work in ABAP programs.

2714-3.book Seite 51 Montag, 15. Dezember 2025 2:49 14

51

2 Working With Objects

2 Working with Objects

52

2.2.1 Object References

Before you begin creating new object instances, you first need to define variables to
hold onto these objects so that you can address them within your programs. For rea-
sons that will be explained in Chapter 4, the ABAP runtime environment does not allow
direct access to an object in your programs. Instead, you’re given indirect access to allo-
cated objects via a special kind of variable called an object reference variable.

Listing 2.11 demonstrates the syntax used to define an object reference variable. Notice
the use of the TYPE REF TO addition to indicate that lo_date is a reference variable. When
reading this statement, keep in mind that the lo_date is an object reference variable
that can point to objects of (class) type LCL_DATE.

DATA lo_date TYPE REF TO lcl_date.

Listing 2.11 Syntax to Define an Object Reference Variable

You can use this type of syntax to define object reference variables as instance attri-
butes, local variables within method implementations, local variables within form rou-
tines, or even global variables.

2.2.2 Creating Objects

Once you define the appropriate object reference variables, you can begin creating
object instances using the CREATE OBJECT statement shown in Listing 2.12. Functionally,
this statement is processed behind the scenes as follows:

1. First, the ABAP runtime environment dynamically creates a new object of type LCL_
DATE.

2. Then, after the object instance is created, control is handed off to a special method
called a constructor that provides you with the ability to initialize the object instance
before it’s used. You’ll learn more about constructor methods in Chapter 4.

3. Finally, once the object instance is initialized, the ABAP runtime environment fills in
the lo_date variable with a reference that points to the newly created object.

DATA lo_date TYPE REF TO lcl_date.
CREATE OBJECT lo_date.

Listing 2.12 Instantiating an Object at Runtime

From a syntax perspective, that’s all there is to instantiating objects. Anytime you want
a new object reference, you simply use the CREATE OBJECT statement to allocate one on
the fly. Of course, if you’re not careful in maintaining your object reference variables,
these objects can become orphaned. With that in mind, the next section focuses on the
important topic of object reference assignments.

2714-3.book Seite 52 Montag, 15. Dezember 2025 2:49 14

52

2 Working With Objects

53

2.2 Working with Objects

2

2.2.3 Object Reference Assignments

Since object reference variables are basically a special kind of variable, they can be used
in assignment statements using the familiar equals (=) operator. Of course, when
assigning object reference variables, it’s important to remember what you’re assigning.
To put this concept into perspective, consider the assignment scenario in Listing 2.13.

DATA lo_date1 TYPE REF TO lcl_date.
DATA lo_date2 TYPE REF TO lcl_date.

CREATE OBJECT lo_date1.
CREATE OBJECT lo_date2.

lo_date1 = lo_date2.

Listing 2.13 Understanding Object Reference Assignments

Within the code excerpt in Listing 2.13, we have two object reference variables called lo_
date1 and lo_date2 that point to newly created LCL_DATE objects. Prior to the assign-
ment statement at the bottom of the code excerpt, the variable assignments resemble
what is shown in Figure 2.2. Notice that the objects themselves are not stored within
the object reference variables. Instead, the object reference variables contain an
address for where the object exists in memory.

Figure 2.2 Understanding Object-Reference Assignments (Part 1)

The diagram in Figure 2.3 illustrates what things look like after the object reference
assignment is performed at the bottom of Listing 2.13. Here, you can see that the assign-
ment statement has copied the address of the LCL_DATE object instance pointed to by
the lo_date2 object reference into lo_date1. Now, both lo_date1 and lo_date2 point to
the same object instance (i.e., the instance at the bottom of Figure 2.3).

lcl_date

lcl_date

lo_date1

lo_date2

2714-3.book Seite 53 Montag, 15. Dezember 2025 2:49 14

53

2 Working With Objects

2 Working with Objects

54

If you look closely at the before and after memory snapshots in Figure 2.2 and Figure
2.3, you can draw several important conclusions about object reference assignments:

1. First, it should be clear that object reference assignments only copy the addresses of
objects, and not the objects themselves. This implies that object reference assign-
ments are relatively inexpensive from a performance standpoint.

2. Second, any time you have two or more object reference variables that point to the
same object instance, changes made to the object via one object reference variable
will be reflected in the other object reference variables. This should come as no sur-
prise, since the object reference variables all point to the same object instance.

3. Finally, if an object instance is no longer pointed to by any live object reference vari-
ables, the object instance becomes orphaned and is no longer accessible from a pro-
gramming context. In Chapter 4, you’ll see how a special service of the ABAP run-
time environment called the garbage collector cleans up these orphaned objects to
recoup unused memory.

Figure 2.3 Understanding Object-Reference Assignments (Part 2)

With time and a little bit of practice, these concepts should become second nature. In
the meantime, though, we recommend taking a methodical approach to creating
object instances and performing object reference assignments. For example, consider
the code excerpt in Listing 2.14. The intent was to create 10 date objects but, since
there’s only one object reference variable, the first 9 date objects are created and then
subsequently orphaned.

DATA lo_date TYPE REF TO lcl_date.
DO 10 TIMES.
 CREATE OBJECT lo_date.
ENDDO.

Listing 2.14 An Invalid Idiom for Creating a Collection of Objects

lcl_date

lcl_date

lo_date1

lo_date2

X

2714-3.book Seite 54 Montag, 15. Dezember 2025 2:49 14

54

2 Working With Objects

55

2.2 Working with Objects

2

Listing 2.15 corrects the error from Listing 2.14 by introducing an internal table of object
references. Now, each new date object that’s created is stored in a separate object refer-
ence variable within the table. As obvious as this may seem, these are the types of
issues that can occur if you aren’t careful with your object handling.

DATA lt_dates TYPE STANDARD TABLE OF REF TO lcl_date.
FIELD-SYMBOLS <lo_date> LIKE LINE OF lt_dates.

DO 10 TIMES.
 APPEND INITIAL LINE TO lt_dates ASSIGNING <lo_date>.
 CREATE OBJECT <lo_date>.
ENDDO.

Listing 2.15 Defining a Collection of Objects

Thinking (Object)ively
For many ABAP developers, the notion of reference variables is a foreign concept. If you
find yourself getting tripped up by all this indirection, perhaps an analogy will help.
Consider the relationship between a remote control and a TV set.

Remote controls are small, lightweight devices that make it easy for you to control a TV
set. As long as you have your remote control, you can turn on the TV, change the chan-
nel, and control the volume as desired. However, if you were to lose the remote, then
you’d no longer be able to access the TV (at least, not without getting off the couch). To
guard against such occurrences, you could buy a universal remote as a backup. That
way, you could program the universal remote to point to the TV’s remote frequency.
Once the universal remote is programmed, you could control the TV with either
remote, since they both effectively point to the same TV.

Relating this back to our object reference discussion, object reference variables are
rather like remote controls. As long as an object reference variable points to a particular
object instance, you can use the object reference to control the object it points to. How-
ever, if you reassign the object reference or clear it out using the ABAP CLEAR statement,
then you can no longer use it to access the object instance. This doesn’t mean the object
is deleted, the same way that your TV would still exist even if you lost your remote con-
trol. What it does mean is that you may no longer be able to access the object if you
don’t have another object reference variable on hand that happens to point to that
object. This is the OOP equivalent of losing all of your remotes in the couch cushions.

The moral of the story is to treat object references with care. Make sure that you’re
really done with an object before clearing its object reference variables.

2.2.4 Accessing Instance Components

As you learned in the previous sections, object reference variables provide a handle for
addressing object instances. Using this handle, you can access the instance components

2714-3.book Seite 55 Montag, 15. Dezember 2025 2:49 14

55

2 Working With Objects

2 Working with Objects

56

of an object by building compound expressions using the object component selector
operator (->), as shown in Listing 2.16. Here, you can see that the object component
selector allows you to specify which instance component you want to access within a
given object instance.

oref->attribute
oref->method()
CALL METHOD oref->method()

Listing 2.16 Working with the Object Component Selector (Part 1)

What’s the Proper Syntax for Calling a Method?

As you can see in Listing 2.16, there are two different ways to call methods. These days,
the direct oref->method() option is the preferred option, as it more closely resembles
syntax used in other object-oriented languages. The CALL METHOD statement is still
valid, of course, but you should avoid it as a rule. In Section 2.2.7 and Section 2.2.8, you’ll
understand why it’s a good idea to get into the habit of calling methods directly.

To demonstrate the use of the object component selector operator, let’s take a look at an
example. Imagine that you’re modeling a 2D graphics system and want to create an
object to represent points in the Cartesian coordinate system. If it’s been a while since
your last high school geometry class, a Cartesian coordinate system (or plane) is a two-
dimensional grid that contains a horizontal x-axis and vertical y-axis (see Figure 2.4). To
plot points on the graph, all you have to do is specify an x-coordinate and a y-coordinate.
This is demonstrated in Figure 2.4 where we’ve plotted a point at (1,2).

Figure 2.4 Modeling a Point Object in the Cartesian Coordinate System

To model our point object, we’ll create a new class called LCL_POINT, as shown in Listing
2.17. This class contains three instance components: two instance attributes called mv_x
and mv_y to represent the x and y coordinates, respectively, and an instance method

1 2 3

1

2

3

-1

-2

-3

-1-2-3

(1,2)

x

y
I

IIIII

IV

2714-3.book Seite 56 Montag, 15. Dezember 2025 2:49 14

56

2 Working With Objects

57

2.2 Working with Objects

2

called get_distance() that can be used to calculate the Euclidian distance between the
current point and some other point within the plane.

CLASS lcl_point DEFINITION.
 PUBLIC SECTION.
 DATA: mv_x TYPE p DECIMALS 2 "X-Coordinate
 mv_y TYPE p DECIMALS 2. "Y-Coordinate

 METHODS get_distance IMPORTING io_point2
 TYPE REF TO lcl_point
 RETURNING VALUE(rv_distance) TYPE f.
ENDCLASS.

CLASS lcl_point IMPLEMENTATION.
 METHOD get_distance.
 DATA: lv_dx TYPE f, "Diff. X
 lv_dy TYPE f. "Diff. Y

 "Calculate the Euclidean distance between the points:
 lv_dx = io_point2->mv_x – me->mv_x.
 lv_dy = io_point2->mv_y – me->mv_y.

 rv_distance =
 sqrt((lv_dx * lv_dx) + (lv_dy * lv_dy)).
 ENDMETHOD.
ENDCLASS.

Listing 2.17 Working with the Object Component Selector (Part 2)

If you look closely at the implementation of the get_distance() method, you can see
that the object component selector is used to access the instance attributes of two dif-
ferent objects: the io_point2 object passed to the method and the current point object.
In the latter case, we’re referring to the current point object’s instance attributes using
the me self-reference variable.

Where Does the me Self-Reference Variable Come From?

The me self-reference variable is a special instance attribute implicitly defined by the
ABAP runtime environment whenever an object instance is created. As its name
implies, the me reference variable points back to its containing object. If you’ve worked
with other object-oriented languages such as Java, you can think of the me reference
variable as being equivalent to the this self-reference variable.

From a usage perspective, the me self-reference variable can be used just like any other
object reference variable. For example, in Listing 2.17 we used me to access the mv_x and
mv_y instance attributes of the LCL_POINT class. Technically speaking, we didn’t have to

2714-3.book Seite 57 Montag, 15. Dezember 2025 2:49 14

57

2 Working With Objects

2 Working with Objects

58

use me to access these attributes. Instead, we could have simply referenced the attri-
butes directly and the system would have quietly resolved the reference behind the
scenes. The advantage of qualifying these references directly is that we make our
intentions clear to the reader.

Another place where the me reference variable is used is in situations where you want
to pass the current object instance as a parameter to another method. In this case, me
provides you with a convenient mechanism for accessing the current object directly
within a method implementation.

The code excerpt in Listing 2.18 demonstrates how to use the object component selec-
tor to access attributes and methods from outside of a class. Here, we’re using the selec-
tor to:

� Initialize the instance attributes of a pair of point objects (lo_point_a and lo_point_
b, respectively).

� Invoke the get_distance() method to calculate the distance between the two points.

DATA: lo_point_a TYPE REF TO lcl_point,
 lo_point_b TYPE REF TO lcl_point,
 lv_distance TYPE f.

"Instantiate both of the point objects:
CREATE OBJECT lo_point_a.
lo_point_a->mv_x = 1.
lo_point_a->mv_y = 1.

CREATE OBJECT lo_point_b.
lo_point_b->mv_x = 3.
lo_point_b->mv_y = 3.

"Calculate the distance & display the results:
lv_distance = lo_point_a->get_distance(lo_point_b).
WRITE: 'Distance between point a and point b is: ',
 lv_distance.

Listing 2.18 Working with the Object Component Selector (Part 3)

2.2.5 Accessing Class Components

To demonstrate how to access class components, Listing 2.19 shows how we can
enhance the LCL_POINT class we developed in the previous section to incorporate class
components. Here, we’ll introduce a new class method called create_from_polar() that
can be used to create point objects using polar coordinates. To drive the conversion
routine, we’ve also created a constant called CO_PI to represent the value of pi.

2714-3.book Seite 58 Montag, 15. Dezember 2025 2:49 14

58

2 Working With Objects

59

2.2 Working with Objects

2

CLASS lcl_point DEFINITION.
 PUBLIC SECTION.
 CONSTANTS CO_PI TYPE f VALUE '3.14159265'.

 CLASS-METHODS:
 create_from_polar IMPORTING iv_r TYPE f iv_theta TYPE p
 RETURNING VALUE(ro_point) TYPE REF TO lcl_point.
 ...
ENDCLASS.

CLASS lcl_point IMPLEMENTATION.
 METHOD create_from_polar.
 "Convert the angle measure to radians:
 DATA lv_theta_rad TYPE f.
 lv_theta_rad = (iv_theta * CO_PI) / 180.

 "Create a new point object and calculate the
 "X & Y coordinates:
 CREATE OBJECT ro_point.

 ro_point->mv_x = iv_r * cos(lv_theta_rad).
 ro_point->mv_y = iv_r * sin(lv_theta_rad).
 ENDMETHOD.
 ...
ENDCLASS.

Listing 2.19 Defining Class Components

Since our new create_from_polar() method is defined at the class level, we don’t
require an object reference to access it. Instead, we can access it via the static/class con-
text using the class component selector operator (=>), as shown in Listing 2.20. Here,
you can see how we’re also accessing the CO_PI constant using the same kind of syntax:
{class_name}=>{class_component}.

DATA lo_point TYPE REF TO lcl_point.
DATA lv_message TYPE string.

lo_point = lcl_point=>create_from_polar(iv_r = '3.6' iv_theta = '56.31').
lv_message =
 |Coordinates: ({ lo_point->mv_x }, { lo_point->mv_y })|.
WRITE: / lv_message.
lv_message = |PI is { lcl_point=>CO_PI }|.
WRITE: / lv_message.

Listing 2.20 Working with the Class Component Selector

2714-3.book Seite 59 Montag, 15. Dezember 2025 2:49 14

59

2 Working With Objects

2 Working with Objects

60

If you look back at Listing 2.19, you’ll notice that we didn’t qualify the use of the CO_PI
constant within the create_from_polar() method. Within the class itself, such qualifica-
tions are optional, since the class context is implicitly known. Whether or not you
choose to formally qualify such references is strictly a matter of preference.

2.2.6 Working with Events

For developers coming into ABAP Objects with a background in other object-oriented
languages such as Java or C#, the concept of events as first-class citizens of class defini-
tions may seem a bit foreign. However, once you understand how events work, it’s easy
to see how they relate to common object synchronization patterns employed in those
environments (e.g., the observer pattern).

From a conceptual perspective, events are a special kind of component you can use to
model important milestones that might occur during an object’s lifecycle. Such mile-
stones could be unique to a particular object instance (instance events) or to the class
itself (class events). In either case, whenever a particular milestone is reached, you can
highlight the occurrence by raising an event. You can have interested parties (i.e., other
objects) listen for these events by registering them as event handlers. This allows the
ABAP runtime environment to automatically notify objects of the event.

This exchange is illustrated by the diagram in Figure 2.5. Here, we have a class called
LCL_PUBLISHER that defines an instance event called MESSAGE_ADDED.

Figure 2.5 Understanding the Event Process Flow

lcl_publisher
Event: message_added

METHOD add_message.
 RAISE EVENT message_added…
endmethod.

lcl_subscriber
Event: message_added

METHOD on_message.
 “Respond to the event…
METHOD.

Registered as a handler
for the MESSAGE_ADDED
event.

2714-3.book Seite 60 Montag, 15. Dezember 2025 2:49 14

60

2 Working With Objects

61

2.2 Working with Objects

2

This event is triggered whenever the publisher receives a new message via its add_
message() instance method. On the other end of the exchange, we have another class
called LCL_SUBSCRIBER that is registered as a listener for the MESSAGE_ADDED event. Now,
whenever a new message arrives at the publisher, instances of LCL_SUBSCRIBER will be
notified via the on_message() event handler method.

Event-Related Syntax

If you’re looking at the event process flow in Figure 2.5, you might be wondering how
the on_message() method was fired in response to the MESSAGE_ADDED event. Unlike the
methods you’ve seen thus far, the on_message() method is defined as an event handler
method. As you might expect, event handler methods are specialized methods that reg-
ister themselves as listeners for particular types of events. You can define event handler
methods within the same class that declared the event or in a completely separate class.

To declare event handler methods, you must once again enlist the aid of the METHODS
statement, as shown in Listing 2.21. Here, the FOR EVENT...OF CLASS addition links the
method with the corresponding event it’s defined to handle. As you would expect, the
importing parameter list must match the exporting parameter list defined by the
event it’s listening for.

METHODS {method_name}
 FOR EVENT {event} of CLASS {class_name}
 [IMPORTING p1 p2 ... [sender]].

Listing 2.21 Declaring Event Handler Methods

Once an event handler method is defined, you can register it to listen for events using
the SET HANDLER statement, whose syntax is shown in Listing 2.22. Here, the handler
tokens refer to event handler methods (without quotes) that are defined within the
class from which the SET HANDLER statement emanates. The remaining additions are
defined as follows:

� When registering event handler methods for instance events, you have a couple of
options for identifying the scope of the event binding:

– The optional FOR oref addition is used to bind an event handler method to a spe-
cific object instance.

– Alternatively, you can use the ALL INSTANCES addition to bind an event handler
method to all object instances.

� When registering event handler methods for class events, you don’t have to specify
an object context, so neither of the FOR oref and ALL INSTANCES additions apply.

� Finally, for both instance and class event bindings, you have the option of activating
and deactivating an event registration using the ACTIVATION addition. Here, you can
activate an event handler method using the true ('X') value or deactivate the
method using the false (space) value.

2714-3.book Seite 61 Montag, 15. Dezember 2025 2:49 14

61

2 Working With Objects

2 Working with Objects

62

SET HANDLER handler1 handler2 ... [FOR oref|{ALL INSTANCES}]
 [ACTIVATION {'X'|' '}].

Listing 2.22 Registering Event Handler Methods

The final piece to the event syntax puzzle is the RAISE EVENT statement, whose syntax is
shown in Listing 2.23. As you can see, the syntax is straightforward: You simply specify
the event being raised and pass along any parameters that event handlers will use to
process the event downstream.

RAISE EVENT evt [EXPORTING p1 = a1 p2 = a2 ...].

Listing 2.23 Syntax for Raising Events

Putting It All Together

To see how all this comes together in real-life ABAP code, let’s look at how you might
build the LCL_PUBLISHER and LCL_SUBSCRIBER classes depicted in Figure 2.5. Listing 2.24
shows the code for the LCL_PUBLISHER class. Here, you can see how we’ve defined the
message_added event using the EVENTS keyword introduced in Section 2.1.2. This event is
then triggered from within the add_message() method using the RAISE EVENT statement.

CLASS lcl_publisher DEFINITION.
 PUBLIC SECTION.
 METHODS:
 add_message IMPORTING iv_message TYPE string,
 confirm_receipt IMPORTING iv_subscriber TYPE string.

 EVENTS:
 message_added
 EXPORTING VALUE(ev_message) TYPE string.
ENDCLASS.

CLASS lcl_publisher IMPLEMENTATION.
 METHOD add_message.
 DATA lv_message TYPE string.
 lv_message = |Publishing message: [{ iv_message }].|.
 WRITE: / lv_message.

 RAISE EVENT message_added
 EXPORTING
 ev_message = iv_message.
 ENDMETHOD.

 METHOD confirm_receipt.
 DATA lv_message TYPE string.
 lv_message = |Message processed by { iv_subscriber }.|.

2714-3.book Seite 62 Montag, 15. Dezember 2025 2:49 14

62

2 Working With Objects

63

2.2 Working with Objects

2

 WRITE: / lv_message.
 ENDMETHOD.
ENDCLASS.

Listing 2.24 Defining and Raising Events

Listing 2.25 contains the definition of the LCL_SUBSCRIBER class, which is listening for
messages issued from the LCL_PUBLISHER class. We’ve defined an event handler method
called on_message() that will be used to process publication events at runtime. The event
binding takes place within the constructor() method using the SET HANDLER statement.
You’ll learn more about constructor methods in Chapter 4, but for now, know that this
method is invoked automatically whenever an LCL_SUBSCRIBER instance is created.

CLASS lcl_subscriber DEFINITION.
 PUBLIC SECTION.
 METHODS:
 constructor,

 on_message FOR EVENT message_added
 OF lcl_publisher
 IMPORTING
 ev_message sender.

ENDCLASS.

CLASS lcl_subscriber IMPLEMENTATION.
 METHOD constructor.
 SET HANDLER on_message FOR ALL INSTANCES.
 ENDMETHOD.

 METHOD on_message.
 DATA lv_message TYPE string.
 lv_message = |Received message [{ ev_message }]|.
 WRITE: / lv_message.

 sender->confirm_receipt('LCL_SUBSCRIBER').
 ENDMETHOD.
ENDCLASS.

Listing 2.25 Defining and Registering an Event Handler Method

With both classes in place, you can run a test by passing a message to the add_message()
method of the LCL_PUBLISHER class (see Listing 2.26). This will trigger the MESSAGE_ADDED
event and allow you to see how the LCL_SUBSCRIBER class responds. Once you play
around with this and learn how to interact with the event processing loop, you’ll find
that this feature offers many interesting possibilities.

2714-3.book Seite 63 Montag, 15. Dezember 2025 2:49 14

63

2 Working With Objects

2 Working with Objects

64

DATA lo_publisher TYPE REF TO lcl_publisher.
DATA lo_subscriber TYPE REF TO lcl_subscriber.

CREATE OBJECT lo_publisher.
CREATE OBJECT lo_subscriber.

lo_publisher->add_message('Ping...').

Listing 2.26 Testing the Event Processing Loop

2.2.7 Working with Functional Methods

As we’ve stated from the outset, one of the main goals with OOP is to develop code
that’s intuitive and easy to read. One of the ways that object-oriented languages
achieve this is by providing a syntax that resembles the sentence structure of spoken
languages. For example, if you think about a method call, you have a subject (either an
object or a class) and a verb (the method being called). With a little bit of creativity and
proper naming, you can build statements that even people without a technical back-
ground can read and understand (at least conceptually).

To make your code flow even better, you can employ the use of functional methods. As
the name suggests, functional methods are used to compute a single discrete value.
The value in this approach is that you can plug in functional methods in the operand
positions of various ABAP statements to build powerful expressions.

Listing 2.27 illustrates the basic syntax used to declare functional methods. Here, as
before, you can declare IMPORTING parameters to provide inputs to the method. The
lone output of the method is provided in the form of the RETURNING value parameter. As
is the case with other parameter types, you’re generally free to define the type of the
returning parameter using the same rules that apply for EXPORTING parameters. How-
ever, type selection does play a role in determining whether a functional method can
be used as an operand in selected ABAP statements.

METHODS func_method
 [IMPORTING parameters]
 RETURNING VALUE(rval) TYPE type
 [EXCEPTIONS...].

Listing 2.27 Functional Method Declaration Syntax

To demonstrate how functional methods are used in ABAP code, let’s look at an exam-
ple. In Listing 2.28, we’ve created a string tokenizer class called LCL_STRING_TOKENIZER
that can be used to parse through delimited records and make it easy to access individ-
ual string tokens. This class defines two functional methods:

� The has_more_tokens() method is a Boolean method that can be used to determine
whether there are more tokens in the sequence.

2714-3.book Seite 64 Montag, 15. Dezember 2025 2:49 14

64

2 Working With Objects

65

2.2 Working with Objects

2

� The next_token() method provides a simple mechanism for accessing the next
token in the sequence.

CLASS lcl_string_tokenizer DEFINITION.
 PUBLIC SECTION.
 METHODS:
 constructor IMPORTING iv_string TYPE csequence
 iv_delimiter TYPE csequence,

 has_more_tokens RETURNING VALUE(rv_result) TYPE abap_bool,

 next_token RETURNING VALUE(rv_token) TYPE string.

 PRIVATE SECTION.
 DATA mt_tokens TYPE string_table.
 DATA mv_index TYPE i.
ENDCLASS.

CLASS lcl_string_tokenizer IMPLEMENTATION.
 METHOD constructor.
 SPLIT iv_string AT iv_delimiter INTO TABLE me->mt_tokens.

 IF lines(me->mt_tokens) GT 0.
 me->mv_index = 1.
 ELSE.
 me->mv_index = 0.
 ENDIF.
 ENDMETHOD.

 METHOD has_more_tokens.
 IF me->mv_index LE lines(me->mt_tokens).
 rv_result = abap_true.
 ELSE.
 rv_result = abap_false.
 ENDIF.
 ENDMETHOD.

 METHOD next_token.
 READ TABLE me->mt_tokens INDEX me->mv_index INTO rv_token.
 ADD 1 TO me->mv_index.
 ENDMETHOD.
ENDCLASS.

Listing 2.28 Working with Functional Methods (Part 1)

2714-3.book Seite 65 Montag, 15. Dezember 2025 2:49 14

65

2 Working With Objects

2 Working with Objects

66

The code excerpt in Listing 2.29 demonstrates how you can use your string tokenizer
class within regular ABAP code. Notice how we’re using the has_more_rows() method as
the basis of the logical expression that drives the WHILE loop that processes the string
tokens. At runtime, this method will be invoked prior to the evaluation of the logical
expression, and the returned value will be used to determine if the WHILE loop should
continue. Not only does this save you a few lines of code, it also makes the code much
more intuitive.

DATA lo_tokenizer TYPE REF TO lcl_string_tokenizer.
DATA lv_token TYPE string.

CREATE OBJECT lo_tokenizer
 EXPORTING
 iv_string = '09/13/2005'
 iv_delimiter = '/'.

WHILE lo_tokenizer->has_more_tokens() EQ abap_true.
 lv_token = lo_tokenizer->next_token().
 WRITE: / lv_token.
ENDWHILE.

Listing 2.29 Working with Functional Methods (Part 2)

Table 2.4 provides some further examples of places where you can use functional
methods in common ABAP expressions.

ABAP Expression Where It’s Used

Conditional expressions
(e.g., IF and WHILE statements)

As an operand in a logical expression.

Example:

IF oref->get_weight() GT 100.

 ...

ENDIF.

CASE As an operand in a logical expression.

Example:

CASE oref->get_type().

WHEN oref->get_value1().

 ...

ENDCASE.

Table 2.4 Using Functional Methods in Expressions

2714-3.book Seite 66 Montag, 15. Dezember 2025 2:49 14

66

2 Working With Objects

67

2.2 Working with Objects

2

Enhancements to Functional Methods
A functional method’s signature supports exporting and changing parameters in addi-
tion to the singular returning parameter. Such methods can still be used inline within
regular ABAP expressions; the extra exporting and changing parameters simply come
along for the ride.

Predicative method calls are another useful feature. As the name suggests, these are
functional method calls where the result is used as a predicate in logical expressions.
To put this into perspective, consider the way that we’re using predicative method calls
to refactor the WHILE loop in Listing 2.29. Notice that we no longer have to compare the
result of the has_more_tokens() method using a logic expression. In this context, if the
returning value parameter of has_more_tokens() is initial, then the result is false; all
non-initial values evaluate to true. Therefore, we can define the signature of methods
using Boolean approximation types such as ABAP_BOOL or pretty much any other data
type. Of course, for readability’s sake, we encourage you to define your functional
methods using familiar Boolean types wherever possible.

WHILE lo_tokenizer->has_more_tokens().
 ...
ENDWHILE.

Note that no syntactical changes are required in the implementation of methods such
as has_more_tokens() to exploit this functionality. You can continue to develop func-
tional methods as per usual, only now you can incorporate them into functional
expressions in a concise and readable manner.

2.2.8 Chaining Method Calls Together

Chained method calls are a type of syntactic sugar popular among ABAP developers.
They make it easy to consolidate a handful of operations into a single line of code.

To understand how chained method calls work, consider this example. In Listing 2.30,
we’ve created a simple string utilities class called LCL_STRING. Within this class, we’ve
defined several functional methods that perform various operations on a string value:

LOOP AT, DELETE, and MODIFY As part of the logical expression in a WHERE clause.

Example:

LOOP AT itab

 WHERE field EQ oref->get_val().

 ...

ENDLOOP.

ABAP Expression Where It’s Used

Table 2.4 Using Functional Methods in Expressions (Cont.)

2714-3.book Seite 67 Montag, 15. Dezember 2025 2:49 14

67

2 Working With Objects

2 Working with Objects

68

converting the string to upper case, trimming of leading/trailing whitespace, and
replacing characters. This is all standard fare, until you get to the part where each of
these methods passes back a copy of the me self-reference variable. This subtle addition
to the code is what makes method chaining possible.

CLASS lcl_string DEFINITION.
 PUBLIC SECTION.
 METHODS:
 constructor IMPORTING iv_string TYPE csequence,

 trim RETURNING VALUE(ro_string) TYPE REF TO lcl_string,

 upper RETURNING VALUE(ro_string)
 TYPE REF TO lcl_string,

 replace IMPORTING iv_pattern TYPE string
 iv_replace TYPE string
 RETURNING VALUE(ro_string)
 TYPE REF TO lcl_string,

 get_value RETURNING VALUE(rv_value) TYPE string.

 PRIVATE SECTION.
 DATA mv_string TYPE string.
ENDCLASS.

CLASS lcl_string IMPLEMENTATION.
 METHOD constructor.
 me->mv_string = iv_string.
 ENDMETHOD.

 METHOD trim.
 me->mv_string =
 condense(val = me->mv_string from = ``).
 ro_string = me.
 ENDMETHOD.

 METHOD upper.
 me->mv_string = to_upper(val = me->mv_string).
 ro_string = me.
 ENDMETHOD.

 METHOD replace.
 REPLACE ALL OCCURRENCES OF REGEX iv_pattern
 IN me->mv_string WITH iv_replace.

2714-3.book Seite 68 Montag, 15. Dezember 2025 2:49 14

68

2 Working With Objects

69

2.2 Working with Objects

2

 ro_string = me.
 ENDMETHOD.

 METHOD get_value.
 rv_value = me->mv_string.
 ENDMETHOD.
ENDCLASS.

Listing 2.30 Working with Chained Methods (Part 1)

The code excerpt in Listing 2.31 demonstrates how to implement chained method calls
from a code perspective. Here, you can see how we’re taking an existing string and per-
forming multiple operations on it in one go. This starts with the call to the trim()
method. This method strips off the leading/trailing whitespace and then passes back a
copy of the me self-reference. The resultant object reference is then used as the basis for
the subsequent call to the upper() method, which follows the same kind of pattern. The
call chain ultimately terminates with the call to get_value(), at which time we receive
the formatted text “PAIGE_A_PUMPKIN”.

Note
We added the line break between the calls to upper() and replace() so that the state-
ment would fit onto a printed page in the book. Within the ABAP Editor, this sort of line
break would result in a syntax error.

DATA lo_string TYPE REF TO lcl_string.
DATA lv_new_value TYPE string.

CREATE OBJECT lo_string
 EXPORTING
 iv_string = ` Paige A Pumpkin `.

lv_new_value =
 lo_string->trim()->upper()->
 replace(iv_pattern = `\s` iv_replace = '_')->get_value().

WRITE: / lv_new_value.

Listing 2.31 Working with Chained Methods (Part 2)

As you can see in the example, chained method calls make it easy to string together
related operations in one condensed statement. For simple operations like the ones
demonstrated in Listing 2.31, this makes logical sense. For more complex statements,
though, chained method calls are probably a bad idea. We leave it to you as a responsible
developer to know when it makes sense to sacrifice readability to save a few keystrokes.

2714-3.book Seite 69 Montag, 15. Dezember 2025 2:49 14

69

2 Working With Objects

2 Working with Objects

70

2.3 Building Your First Object-Oriented Program

In the previous section, we looked at several examples that demonstrated how to work
with objects. However, since these code excerpts were isolated, you might be wonder-
ing how all these pieces fit together in actual ABAP programs. With that in mind, this
section will demonstrate the creation of a simple report program that utilizes a local
class. As you’ll come to find out, these concepts apply equally to the incorporation of
local classes to function group definitions, module pool programs, and so on.

2.3.1 Creating the Report Program

To get things started, let’s create the report program that will drive our demo. If you’re
new to ABAP development, this can be achieved by performing the following steps:

1. To begin, log onto the system and open the Object Navigator (Transaction SE80).

2. In the object list selection box in the Repository Browser on the left-hand side of the
screen, choose the Local Objects list option (see Figure 2.6).

Figure 2.6 Selecting the Local Objects Repository View

2714-3.book Seite 70 Montag, 15. Dezember 2025 2:49 14

70

2 Working With Objects

71

2.3 Building Your First Object-Oriented Program

2

3. This will pull up a tree view of locally defined development objects for your user
account, as shown in Figure 2.7. To create a new report program, right-click on the
top-level object node (i.e., $TMP JWOOD in Figure 2.7) and select Create • Program
from the menu.

Figure 2.7 Creating a Report Program (Part 1)

4. Next, you’ll be presented with the Create Program dialog box shown in Figure 2.8. At
this step, simply specify the name of the report program (we called our report YDATE_
DEMO) and press (Enter) to continue. Note that you shouldn’t select the Create with
TOP Include checkbox in this case since you’re just building a simple report.

Figure 2.8 Creating a Report Program (Part 2)

2714-3.book Seite 71 Montag, 15. Dezember 2025 2:49 14

71

2 Working With Objects

2 Working with Objects

72

5. Figure 2.9 shows the next dialog box in the creation process, where you provide a
program title and additional attributes concerning the program setup. For the pur-
pose of this simple demonstration, you can leave the default settings and click on
the Save button to continue.

Figure 2.9 Creating a Report Program (Part 3)

6. At the next step, as shown in Figure 2.10, you’ll be asked to select a package to store
the object in within the ABAP Repository. Since this is a demo program, leave the
default $TMP package selection and click the Save icon to continue. That way, the
program will only be defined locally and can’t be transported.

7. Finally, if all goes well, you should end up at an editor screen like the one shown in
Figure 2.11. From there, you can get started with your coding exercise.

2714-3.book Seite 72 Montag, 15. Dezember 2025 2:49 14

72

2 Working With Objects

73

2.3 Building Your First Object-Oriented Program

2

Figure 2.10 Creating a Report Program (Part 4)

Figure 2.11 Creating a Report Program (Part 5)

2714-3.book Seite 73 Montag, 15. Dezember 2025 2:49 14

73

2 Working With Objects

2 Working with Objects

74

2.3.2 Adding in the Local Class Definition

Once the report program is created, you can begin defining your local class in one of
two ways:

� You can start keying in the class definition directly underneath the REPORT statement
just like you would for other type definitions.

� Or, you can create an INCLUDE program and key in the class definition there.

The ABAP compiler doesn’t care which option you choose, so it’s up to you to decide
how best to organize your code. For now, we’ll keep things simple and define the class
directly within the report program (see Listing 2.32). In Section 2.4, we’ll take a closer
look at some logistical implications when defining classes.

REPORT ydate_demo.
CLASS lcl_date DEFINITION.
 ...
ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
 ...
ENDCLASS.

Listing 2.32 Defining Local Classes within a Report Program

Once the local class is defined, you can access it from within the report program in sev-
eral different ways:

� You could define global object reference variables and then use those variables to
create and use objects from within report events such as START-OF-SELECTION and
END-OF-SELECTION.

� You could define local object reference variables within subroutines called from
within the report program and access the objects that way.

� If the class defines a main class method, you could invoke that directly and let the
class itself drive the main program logic.

Since this is a book about OOP, we tend to prefer the third option, as it frees us from
having to mix-and-match programming paradigms. The code excerpt in Listing 2.33
demonstrates this approach. Here, you can see how the main program logic is driven
by the main() class method, which is accessed directly within the START-OF-SELECTION
event module. From here, it’s OOP as per usual. Figure 2.12 shows what the program
output looks like. If you want to try this out for yourself, you can download a complete
version of the program from the book’s source code bundle (available at www.sap-
press.com/6093).

2714-3.book Seite 74 Montag, 15. Dezember 2025 2:49 14

74

2 Working With Objects

75

2.3 Building Your First Object-Oriented Program

2

REPORT zoopbook_date_demo.
CLASS lcl_date DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:
 main.
 ...
ENDCLASS.

CLASS lcl_date IMPLEMENTATION.
 METHOD main.
 DATA lo_birth_date TYPE REF TO lcl_date.
 DATA lv_message TYPE string.

 CREATE OBJECT lo_birth_date
 EXPORTING
 iv_date = '20030113'.

 lv_message =
 |Andersen was born on a
 { lo_birth_date->get_day_of_week() }.|.
 WRITE: / lv_message.

 lv_message =
 |Official birth date:
 { lo_birth_date->get_long_format() }.|.
 WRITE: / lv_message.
 ENDMETHOD.
ENDCLASS.

START-OF-SELECTION.
 lcl_date=>main().

Listing 2.33 Integrating Local Classes Inside Report Programs

Figure 2.12 Output of the Example Program

2714-3.book Seite 75 Montag, 15. Dezember 2025 2:49 14

75

2 Working With Objects

ISBN 978-1-4932-2714-3 • 448 pages • 01/2026

E-book: $84.99 • Print book: $89.95 • Bundle: $99.99

www.sap-press.com/6093

The Authors
Jeffrey Boggess, Colby Hemond, James Wood, and Joseph Rupert work at Bowdark Consulting.
Their experience with SAP solutions includes ABAP programming, integration, cloud data
architecture, and digital transformation.

We hope you have enjoyed this reading sample. You may
recommend or pass it on to others, but only in its entirety,
including all pages. This reading sample and all its parts
are protected by copyright law. All usage and exploitation
rights are reserved by the author and the publisher.

Boggess, Hemond, Wood, Rupert

Object-Oriented
Programming with
ABAP® Objects

	■ Make the move from procedural to
object-oriented programming

	■ Learn to use encapsulation, inheri-
tance, polymorphism, and more

	■ Work with ABAP Objects in the
ABAP RESTful application
programming model and the SAP
BTP ABAP environment

http://www.sap-press.com/6093
http://www.sap-press.com/6093

