

7

Contents

Dedication .. 19

1 Introduction 21

1.1 About this Book .. 21

1.2 Welcome to Swift! .. 23

1.3 Why Learn Swift? ... 24

1.4 Swift Versus Other Programming Languages .. 26
1.4.1 Python .. 27
1.4.2 Java .. 28
1.4.3 C# ... 29
1.4.4 JavaScript .. 29
1.4.5 Dart ... 30
1.4.6 Kotlin .. 31
1.4.7 C++ .. 32
1.4.8 Rust ... 32
1.4.9 Picking the Ideal Language .. 34

1.5 Setting Up the Development Environment ... 35
1.5.1 Preparing Your Mac ... 35
1.5.2 Alternative Options for Swift Development ... 42

1.6 Summary ... 43

2 Variables 45

2.1 Variables .. 45
2.1.1 About Variables and Constants ... 46
2.1.2 Declaring Simple Variables and Constants ... 46
2.1.3 Type Annotations ... 48
2.1.4 Comments .. 50

2.2 Boolean .. 52
2.2.1 About Booleans ... 52
2.2.2 AND Operator .. 53
2.2.3 OR Operator .. 55
2.2.4 Nested Conditions .. 56

2718.book Seite 7 Dienstag, 11. November 2025 6:14 18

7

Contents

8

2.3 Numbers .. 58
2.3.1 Numeric Types ... 58
2.3.2 Arithmetic Operators .. 65
2.3.3 Comparison Operators ... 70
2.3.4 Numeric Literals .. 71

2.4 Text .. 74
2.4.1 About Strings ... 74
2.4.2 Basic String Literals .. 77
2.4.3 Multiline String Literals .. 77
2.4.4 Escape Sequences ... 77
2.4.5 Concatenation ... 79
2.4.6 String Interpolation ... 80
2.4.7 Checking String Contents .. 81
2.4.8 Substrings ... 84
2.4.9 Modifying Strings ... 87
2.4.10 Comparison Operators ... 88
2.4.11 String/Number Conversion ... 90
2.4.12 Regular Expressions ... 95

2.5 Dates and Times ... 98
2.5.1 Basic Data Types ... 98
2.5.2 Arithmetic Operations .. 100
2.5.3 Comparison .. 103
2.5.4 Measuring Durations .. 105
2.5.5 String/Date Conversion .. 107
2.5.6 Internationalization ... 111

2.6 Quantities ... 113
2.6.1 Units .. 113
2.6.2 Measurement .. 115
2.6.3 Unit Conversions .. 116
2.6.4 Arithmetic Operations .. 117

2.7 Tuples .. 120
2.7.1 Basic Tuples .. 120
2.7.2 Named Tuples .. 122
2.7.3 Tuple Type Annotations ... 122
2.7.4 Comparison .. 123

2.8 Type Aliases .. 124
2.8.1 Basic Types .. 124
2.8.2 Complex Types .. 125

2.9 Summary ... 125

2718.book Seite 8 Dienstag, 11. November 2025 6:14 18

8

Contents

9

Contents

3 Collections 127

3.1 Arrays .. 128
3.1.1 Creating Arrays .. 128
3.1.2 Arrays as Constants ... 129
3.1.3 Accessing Arrays ... 130
3.1.4 Array Derivation .. 134
3.1.5 Modifying Arrays .. 138
3.1.6 Iterating Through Arrays .. 141

3.2 Sets ... 148
3.2.1 Creating Sets .. 150
3.2.2 Sets as Constants ... 151
3.2.3 Accessing Sets .. 151
3.2.4 Set Derivation .. 152
3.2.5 Checking for Supersets ... 157
3.2.6 Modifying Sets ... 158
3.2.7 Iterating Through Sets .. 160

3.3 Dictionaries .. 162
3.3.1 Creating Dictionaries .. 163
3.3.2 Dictionaries as Constants .. 168
3.3.3 Accessing Dictionaries .. 168
3.3.4 Modifying Dictionaries ... 170
3.3.5 Iterating Through a Dictionary .. 172

3.4 Summary ... 173

4 Control Flow 175

4.1 Conditional Statements ... 176
4.1.1 If-Else .. 176
4.1.2 Logical Operators .. 184
4.1.3 Ternary Operator .. 187
4.1.4 Nil-Coalescing Operator ... 189
4.1.5 Switch ... 192

4.2 Loops ... 199
4.2.1 For-In Loops .. 199
4.2.2 While Loops .. 207
4.2.3 Repeat-While Loops ... 209

2718.book Seite 9 Dienstag, 11. November 2025 6:14 18

9

Contents

Contents

10

4.3 Control Transfer Statements .. 211
4.3.1 Break ... 211
4.3.2 Continue .. 213
4.3.3 Fallthrough ... 215
4.3.4 Guard .. 218

4.4 Summary ... 221

5 Functions 223

5.1 What Is a Function? .. 223

5.2 Defining and Calling Functions ... 226
5.2.1 Defining a Function ... 226
5.2.2 Calling a Function from the Program .. 227
5.2.3 Calling a Function from Another Function .. 229
5.2.4 Variable Scope in Functions .. 231

5.3 Input Parameters ... 234
5.3.1 Named Parameters .. 234
5.3.2 Omitting Argument Labels ... 237
5.3.3 Default Arguments .. 239
5.3.4 Guarding Functions ... 241

5.4 Returning Values ... 242
5.4.1 Returning Single Values ... 243
5.4.2 Returning Multiple Values .. 246

5.5 Variadic Parameters ... 250

5.6 Function Overloading .. 253

5.7 Inout Parameters ... 255

5.8 Nested Functions ... 258

5.9 Function Types .. 261
5.9.1 Basic .. 261
5.9.2 Function Types as Parameter Types ... 265
5.9.3 Function Types as Return Types .. 267

5.10 Closures .. 268
5.10.1 Closure Expressions ... 269
5.10.2 Trailing Closures ... 273
5.10.3 Escaping Closures ... 274
5.10.4 Autoclosures .. 279

2718.book Seite 10 Dienstag, 11. November 2025 6:14 18

10

Contents

11

Contents

5.11 Generic Functions .. 280
5.11.1 Generic Functions ... 280
5.11.2 Type Constraints ... 283
5.11.3 Generic Where Clauses ... 288

5.12 Summary ... 289

6 Optionals 291

6.1 What Are Optionals? .. 291
6.1.1 Tuple Optionals ... 291
6.1.2 Simple Variable Optionals ... 293
6.1.3 Collection Optionals .. 295
6.1.4 Function Optionals .. 295

6.2 Optional Binding .. 296

6.3 Implicitly Unwrapped Optionals .. 299

6.4 Optional Chaining ... 300

6.5 Summary ... 302

7 Enumerations 303

7.1 What Are Enumerations? ... 303

7.2 Declaring Enumerations ... 305
7.2.1 Case Values ... 305
7.2.2 Raw Values ... 308
7.2.3 Associated Values ... 310

7.3 Computed Properties ... 313

7.4 Functions in Enumerations ... 317

7.5 Iterating over Enumerations .. 319
7.5.1 Iterating over Case Values ... 319
7.5.2 Iterating over Raw Values .. 320
7.5.3 Iterating over Associated Values ... 321

7.6 Recursive Enumerations ... 322

7.7 Generic Enumerations ... 325

7.8 Summary ... 327

2718.book Seite 11 Dienstag, 11. November 2025 6:14 18

11

Contents

Contents

12

8 Structs 329

8.1 What Is a Struct? .. 329

8.2 Declaring Structs .. 331
8.2.1 Basic Struct Declaration ... 331
8.2.2 Mutable Properties .. 332
8.2.3 Complex Properties ... 333
8.2.4 Nested Structs ... 334
8.2.5 Default Property Values ... 337
8.2.6 Optional Properties .. 337

8.3 Static Properties ... 339

8.4 Computed Properties ... 341
8.4.1 Getters ... 341
8.4.2 Setters .. 343

8.5 Functions ... 345
8.5.1 Initialization ... 345
8.5.2 Nonmutating Functions ... 347
8.5.3 Mutating Functions ... 348
8.5.4 Static Functions .. 349

8.6 Encapsulation .. 351
8.6.1 Private Properties ... 352
8.6.2 Private Functions .. 354

8.7 Structs as Function Parameters ... 355

8.8 Generic Structs .. 357

8.9 Advanced Features .. 359
8.9.1 Lazy Properties ... 359
8.9.2 Property Observers ... 362
8.9.3 Property Wrappers ... 363
8.9.4 Subscripts .. 365
8.9.5 Failable Initialization ... 367

8.10 Summary ... 369

9 Classes 371

9.1 Declaring Classes ... 372
9.1.1 Basic Class Declaration ... 372

2718.book Seite 12 Dienstag, 11. November 2025 6:14 18

12

Contents

13

Contents

9.1.2 Reference Semantics ... 373
9.1.3 Composition ... 375

9.2 Functions ... 380
9.2.1 Mutability ... 380
9.2.2 Deinitialization .. 381
9.2.3 Convenience Initialization ... 384

9.3 Inheritance ... 385
9.3.1 Superclasses and Subclasses .. 385
9.3.2 Overriding Functions ... 392
9.3.3 Overriding Initializers .. 395
9.3.4 Overriding Computed Properties .. 397
9.3.5 Overriding Subscripts .. 399
9.3.6 Casting ... 401
9.3.7 AnyObject Type ... 407

9.4 Classes as Function Parameters .. 409

9.5 Memory Management .. 412
9.5.1 Strong References .. 412
9.5.2 Weak References .. 415
9.5.3 Unowned References .. 418

9.6 Summary ... 419

10 Protocols 421

10.1 Purpose of Protocols .. 421

10.2 Function Requirements ... 425
10.2.1 Nonmutating Function ... 425
10.2.2 Mutating Function ... 428
10.2.3 Static Function .. 429

10.3 Initializer Requirements ... 431

10.4 Property Requirements ... 433
10.4.1 Get Requirement .. 433
10.4.2 Get Set Requirement ... 435
10.4.3 Static Requirement .. 436

10.5 Implementing Multiple Protocols .. 437

10.6 Checking for Protocol Conformance ... 440

10.7 Protocols as Function Parameters .. 442
10.7.1 Protocol Type ... 442

2718.book Seite 13 Dienstag, 11. November 2025 6:14 18

13

Contents

Contents

14

10.7.2 Existential Type ... 443
10.7.3 Opaque Type .. 444

10.8 Associated Types .. 445

10.9 Using Standard Protocols ... 448
10.9.1 Equatable .. 448
10.9.2 Comparable .. 451
10.9.3 Identifiable ... 454
10.9.4 Hashable .. 455
10.9.5 CustomStringConvertible .. 457

10.10 Summary ... 459

11 Extensions 461

11.1 Extending Enumerations .. 462

11.2 Extending Structs .. 464

11.3 Extending Classes .. 466

11.4 Extending Protocols ... 468

11.5 Operator Extensions ... 470
11.5.1 Arithmetic and Boolean Operators .. 470
11.5.2 Equality and Comparison Operators .. 473
11.5.3 Prefix and Postfix Operators ... 475
11.5.4 Custom Operators .. 476

11.6 Extending Swift Data Types .. 478
11.6.1 Sample Usage .. 478
11.6.2 Avoiding Name Conflicts ... 479

11.7 Generic Extensions .. 480

11.8 Summary ... 482

12 Error Handling 483

12.1 Understanding Errors in Swift ... 484

12.2 Throwing Errors .. 486
12.2.1 Throwing Built-in Errors ... 486
12.2.2 Throwing Custom Errors .. 488
12.2.3 Propagating Errors ... 490

2718.book Seite 14 Dienstag, 11. November 2025 6:14 18

14

Contents

15

Contents

12.3 Catching Errors .. 492
12.3.1 Direct Pattern Matching .. 492
12.3.2 Error Pattern Matching ... 496
12.3.3 Localized Error Messages ... 499
12.3.4 Optional Try .. 502

12.4 Cleanup with Defer ... 504

12.5 Runtime Checks .. 508
12.5.1 Debug Runtime Checks .. 508
12.5.2 Release Runtime Checks .. 512

12.6 Summary ... 513

13 File Handling 515

13.1 Text Files .. 515
13.1.1 Reading Text Files ... 516
13.1.2 Writing Text Files .. 519

13.2 Binary Files ... 522
13.2.1 Reading Binary Files ... 523
13.2.2 Writing Binary Files .. 525

13.3 Working with Common Formats .. 529
13.3.1 JSON .. 529
13.3.2 Property List .. 535

13.4 File System Operations ... 542
13.4.1 Examining Folders .. 542
13.4.2 Manipulating Folders .. 545
13.4.3 Examining Files ... 548
13.4.4 Manipulating Files ... 550

13.5 Summary ... 554

14 Concurrency 555

14.1 What Is Concurrency? .. 555

14.2 Async Functions .. 557
14.2.1 Writing Async Functions .. 557
14.2.2 Calling Async Functions ... 559
14.2.3 Running Functions in Parallel ... 565

2718.book Seite 15 Dienstag, 11. November 2025 6:14 18

15

Contents

Contents

16

14.3 Tasks .. 569
14.3.1 Creating Tasks ... 570
14.3.2 Task Groups .. 574
14.3.3 Task Priorities ... 581
14.3.4 Task Cancellation ... 585

14.4 Async Streams ... 588
14.4.1 Starting an Async Stream .. 588
14.4.2 Canceling an Async Stream ... 590
14.4.3 Handling Async Stream Errors ... 591

14.5 Shared State Safety .. 593
14.5.1 Task-Local Values ... 594
14.5.2 Detached Tasks ... 597
14.5.3 Actors .. 599
14.5.4 Sendable Types .. 602

14.6 Summary ... 606

15 Modules in Swift 607

15.1 Introduction to Modules .. 607
15.1.1 What Is a Module? ... 607
15.1.2 Why Use Modules? .. 610

15.2 Working with Frameworks ... 613
15.2.1 Setting Up a New Framework .. 614
15.2.2 Adding Code to a Framework ... 615
15.2.3 Building a Framework ... 616
15.2.4 Importing a Framework ... 618

15.3 Working with Packages .. 621
15.3.1 Setting Up a New Package .. 622
15.3.2 Adding Code to a Package ... 624
15.3.3 Importing a Package .. 624

15.4 Access Control ... 629
15.4.1 Open ... 629
15.4.2 Public .. 629
15.4.3 Internal ... 630
15.4.4 File Private ... 630
15.4.5 Private .. 631

15.5 Summary ... 631

2718.book Seite 16 Dienstag, 11. November 2025 6:14 18

16

Contents

17

Contents

16 Conclusion 633

Appendices 635

A Unit Testing .. 635
A.1 Introduction to Unit Testing ... 635
A.2 Unit Testing with XCTest ... 638
A.3 Unit Testing with Swift Testing ... 646
A.4 Summary ... 653

B Debugging .. 655
B.1 Debugging in Xcode .. 655
B.2 Advanced Debugging Tools .. 662
B.3 Support Commands ... 670
B.4 Summary ... 671

The Author ... 673
Index .. 675

2718.book Seite 17 Dienstag, 11. November 2025 6:14 18

17

Contents

127

3

Chapter 3
Collections
Collections are sets of variables glued together as logical units.
This chapter will teach you about collection types in Swift.

Now that you’ve learned about individual variables, you can advance your Swift jour-
ney with collections. In a nutshell, collections are data structures that group multiple
variables into a single, organized container. Nearly all programming languages use
collections—including Swift.

There are three main types of collections, which are the subject of this chapter:

▪ Arrays are ordered variable lists in which each variable has an index.

▪ Sets are unordered variable lists in which each value must be unique.

▪ Dictionaries are key-value pairs in which each key must be unique.

To paraphrase a possible question many of you may have: “But wait a minute—didn’t
we have groups of variables called tuples in the previous chapter? How are collections
different than that?”

That’s a good question! Collections (arrays, sets, dictionaries) and tuples both hold
multiple variables, but they have key differences—which are listed in Table 3.1.

Due to such differences, a tuple is not considered a collection type; it is merely a flexible
way of grouping similar variables together. Collections offer more advanced features,
which will be highlighted in this chapter.

Feature Tuples Collections

Size Fixed size; can’t be changed after
creation

Can grow or shrink dynamically; you
can add/remove elements

Type uniformity Can group a mix of different types All elements should have the same
type

Element access Access using position or named
properties

Access using indexes (arrays), itera-
tion (sets), or keys (dictionaries)

Use case Best for grouping related variables
of different types

Best for storing a flexible number of
variables of the same type

Table 3.1 Tuples Versus Collections

2718.book Seite 127 Dienstag, 11. November 2025 6:14 18

127

3 Collections

128

All clear? Great! Let’s start with arrays, then continue with sets and dictionaries.

Screenshots
The previous chapter offered a coding debut to Swift and Xcode. To ensure that you
could all get used to Xcode and could follow the examples correctly, screenshots of
Xcode outputs were supplied for most of the examples.

Now that everyone is used to how and where Xcode displays outputs, we’ll generally
show the output of statements as inline comments from this point on. Separate results,
such as screenshots or terminal outputs, will be provided only where necessary.

3.1 Arrays

An array in Swift is an ordered collection of elements of the same type, allowing you to
store multiple values efficiently. For instance, if you are programming a queue system
and want to store the customer names ordered by their time of arrival, you could store
their names as strings in an array. In this section, you will learn how to create, access,
and modify arrays, and learn about convenient features offered by Swift.

3.1.1 Creating Arrays

To begin this example, let’s create an array of names for waiting customers, as shown
in Listing 3.1.

var customers = ["Alice", "Bob", "Charlie"]

Listing 3.1 Basic String Array

Check Table 3.2 to see a visual representation of the customers array. Note that indexes
begin with 0 as usual.

And there you go: It’s that easy! Now the customers array holds three distinct string val-
ues, reflecting the names of customers in the queue. As cashiers become available, Alice
would be the first customer to be called, followed by Bob and then Charlie. You’ll learn
how to access those values shortly.

Index Value

0 "Alice"

1 "Bob"

2 "Charlie"

Table 3.2 Visual Representation of Customers Array

2718.book Seite 128 Dienstag, 11. November 2025 6:14 18

128

3 Collections

129

3.1 Arrays

3

In Chapter 2, you learned about alternative ways of declaring variables using type infer-
ence and type interpolation. Likewise, there are alternative ways of declaring arrays
using the same methods. Your knowledge of variables will be applicable in that sense.
Listing 3.2 showcases the alternatives.

// Direct value assignment with type inference
var customers1 = ["Alice", "Bob", "Charlie"]

// Direct value assignment with type annotation
var customers2: [String] = ["Alice", "Bob", "Charlie"]

// Late value assignment with type annotation
var customers3: [String]
customers3 = ["Alice", "Bob", "Charlie"]

// Alternative syntax
var customers4: Array<String>
customers4 = ["Alice", "Bob", "Charlie"]

Listing 3.2 Different Methods for Array Creation

3.1.2 Arrays as Constants

In Chapter 2, you learned about the var and let keywords. The var keyword is used to
declare a variable, which allows value changes later (mutable), whereas let is used to
declare a constant, which won’t allow its initial value to change (immutable).

The same feature applies to arrays too. An array declared with var would be mutable,
while an array declared with let would be immutable. It is arguably more common to
have mutable arrays, but both states are possible. Listing 3.3 demonstrates both syn-
taxes for number arrays.

var someNumbers = [2, 4, 10, 6, 1, 9]
let lostNumbers = [4, 8, 15, 16, 23, 42]

Listing 3.3 Declaration of Mutable and Immutable Arrays

Our examples so far have featured arrays built out of literals. Naturally, you can build
mutable or immutable arrays out of variables too—as shown in Listing 3.4, which builds
an immutable array out of numbers. The main prerequisite is to have variables of the
same type; you can’t mix numbers and strings in an array.

let n1 = 4
let n2 = 8
let n3 = 15

2718.book Seite 129 Dienstag, 11. November 2025 6:14 18

129

3 Collections

3 Collections

130

let n4 = 16
let n5 = 23
let n6 = 42

let lostNumbers = [n1, n2, n3, n4, n5, n6]

Listing 3.4 Building Array Out of Variables

You can be even more adventurous and build arrays out of complex types as well! Lis-
ting 3.5 showcases an example, which builds a mutable array out of tuples. This code
snippet also highlights the comfort of using type aliases for tuples: Type uniformity for
the array is ensured easily and in a human-readable way.

typealias Person = (name: String, age: Int, married: Bool)

let user1: Person = (name: "John", age: 30, married: true)
let user2: Person = ("Jane", 25, false)

var people: [Person] = [user1, user2]

Listing 3.5 Building Array Out of Tuples

To prevent any confusion, Table 3.3 features a visual representation of the people array.

Got it? OK, then! Now, let’s go over how to access values in an array.

3.1.3 Accessing Arrays

In this section, you’ll learn about accessing arrays in Swift. We’ll explore a handful of
options in that regard: basic array functions, index-based element access, and first/last
elements.

Basic Array Functions

Let’s start with array functions. Table 3.4 showcases some basic functions that are used
frequently.

Index Value

0 (name: "John", age: 30, married: true)

1 (name: "Jane", age: 25, married: false)

Table 3.3 Visual Representation of People Array

2718.book Seite 130 Dienstag, 11. November 2025 6:14 18

130

3 Collections

131

3.1 Arrays

3

To see those useful functions in context, check Listing 3.6, which contains the output of
each function as a comment. Now that you’re familiar with Swift, this code snippet
should be intuitive and self-explanatory.

let happyCustomers: [String] = ["Alice", "Bob", "Charlie"]
let sadCustomers: [String] = []

happyCustomers.isEmpty // false
happyCustomers.count // 3
happyCustomers.contains("Alice") // true
happyCustomers.contains("Ann") // false

sadCustomers.isEmpty // true
sadCustomers.count // 0

Listing 3.6 Basic Array Properties

Index-Based Element Access

Now that you know about basic functions, let’s move forward with element access. As
you know, arrays are ordered lists in which each element has an index. Therefore, it’s
natural to expect the core functionality of being able to access elements via their
indexes. As with tuples, indexes start with 0 and increment by one for each element.

Listing 3.7 demonstrates a code snippet for element access by index, in which you
extract the first and second person in a bank queue. The intuitive bankQueue[n] expres-
sion returns the nth element in the array.

var bankQueue = ["Alice", "Bob", "Charlie"]

let firstInLine = bankQueue[0] // Alice
let secondInLine = bankQueue[1] // Bob

Listing 3.7 Array Element Access by Index

Of course, you can use a variable as an index too! In Listing 3.8, the myIndex variable is
used as an array index. Instead of using literal values like 0 or 1, you use the value of
myIndex.

Function Result

isEmpty true if the array is empty; false otherwise

count Number of elements in the array

contains(element) true if the element is in the array; false otherwise

Table 3.4 Basic Array Functions

2718.book Seite 131 Dienstag, 11. November 2025 6:14 18

131

3 Collections

3 Collections

132

var bankQueue = ["Alice", "Bob", "Charlie"]

var myIndex = 0 // 0
var myCustomer = bankQueue[myIndex] // Alice

myIndex += 1 // 1
myCustomer = bankQueue[myIndex] // Bob

Listing 3.8 Using Variable as Array Index

Check the Index First
If the index value exceeds the number of elements in the array, Swift will naturally gen-
erate an error. In Listing 3.8, bankQueue[0] (having the value "Alice") or bankQueue[1]
(having the value "Bob") or bankQueue[2] (having the value "Charlie") is fine. However,
bankQueue[3] would generate an error because there is no such element.

To prevent such errors, you should always ensure that the index is less than the element
count. In this example, the if myIndex < bankQueue.count expression can be placed as a
condition before the element access.

Although you will learn much more about if statements in Chapter 4, this heads-up
should be a useful detail to have in advance.

First and Last

Access via indexes is cool, but sometimes you simply want to access the first or last ele-
ment of an array. Swift arrays feature two shortcut functions for that—namely, first
and last. These are demonstrated in Listing 3.9.

var bankQueue = ["Alice", "Bob", "Charlie"]
let firstInQueue = bankQueue.first! // Alice
let lastInQueue = bankQueue.last! // Charlie

Listing 3.9 Accessing First and Last Elements of Array

Beyond this basic syntax, first and last also feature a search functionality. For exam-
ple, if you have a string array, then you can invoke string functions against the elements
and look for matches. In Listing 3.10, you run a search in bankQueue to find the first and
last customers whose names contain the character l.

var bankQueue = ["Alice", "Bob", "Charlie"]

let firstWithL = bankQueue.first(where: { $0.contains("l") }) // Alice

2718.book Seite 132 Dienstag, 11. November 2025 6:14 18

132

3 Collections

133

3.1 Arrays

3

let lastWithL = bankQueue.last(where: { $0.contains("l") }) // Charlie
let firstWithX = bankQueue.first(where: { $0.contains("x") }) // nil

Listing 3.10 Finding First/Last Search Results in String Array

As expected, "Alice" is returned as the first string with l and "Charlie" is returned as
the last string with l. When we search for string containing the character x, we get nil
as the result simply because there is none.

Closures
{ $0.contains("l") } and similar expressions are closures, which are self-contained
blocks of code passed as parameters. They are similar to lambda functions in other pro-
gramming languages. You’ll learn more about closures in Chapter 5. For now, you can
accept them as common syntax elements and keep your focus on collections.

Naturally, the search functionality can be invoked for other data types too. Listing 3.11
demonstrates a code snippet in which a number search is executed using the < 20 con-
dition.

var bingoNumbers = [59, 19, 36, 55, 28]
let firstSmallNumber = bingoNumbers.first(where: {$0 < 20 }) // 19

Listing 3.11 Finding First Search Result in Number Array

You can get a little more adventurous and search through an array of complex types as
well—such as tuples. In Listing 3.12, there is a patientQueue built out of tuples, in which
the name and age of each patient is declared. To find the oldest and youngest patient, you
can search through the array using the age property of the tuples.

typealias Person = (name: String, age: Int)

var patientQueue: [Person] = [
 (name: "John", age: 30),
 (name: "Jane", age: 15),
 (name: "Jim", age: 80),
 (name: "Jill", age: 20)]

let firstOldPatient = patientQueue.first(where: { $0.age > 65 }) // Jim
let firstYoungPatient = patientQueue.first { $0.age < 18 } // Jane

Listing 3.12 Finding First Search Result in Tuple Array

On the last line of the code snippet, you can also see the shortcut version of running a
search; as shown, the parentheses and where: prefix can be omitted if you like.

2718.book Seite 133 Dienstag, 11. November 2025 6:14 18

133

3 Collections

3 Collections

134

If you don’t want to fetch the resulting element and only want to find the index, you
can use firstIndex and lastIndex functions just like you would use first and last. Listing
3.13 demonstrates using those functions to find the indexes of the first/last elements
for the given search conditions.

typealias Person = (name: String, age: Int)

var patientQueue: [Person] = [
 (name: "John", age: 30),
 (name: "Jane", age: 15),
 (name: "Jim", age: 80),
 (name: "Jill", age: 20)]

let firstOldIndex = patientQueue.firstIndex { $0.age > 65 } // 2 (Jim)
let lastJIndex = patientQueue.lastIndex { $0.name.contains("J") } // 3 (Jill)

Listing 3.13 Demonstration of firstIndex and lastIndex Functions

3.1.4 Array Derivation

In Chapter 2, we looked at alternative ways to extract substrings from strings, remem-
ber? Swift features similar functions to derive new subarrays from existing arrays. In
this section, we’ll go through some significant functions for that purpose.

Slicing

The most basic method of array derivation is to slice a subarray from an existing array.
For example, if you have an array of seven elements, then we can extract the elements
between 1 and 3 as a new array. Listing 3.14 demonstrates an example in which workdays
are extracted from weekdays using indexes.

let weekDays = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
let workDays = Array(weekDays[1...5]) // Mon, Tue, Wed, Thu, Fri

Listing 3.14 Slicing Out Subarrays

In the end, workDays becomes an independent array, usable on its own like any other
array—just like extracted substrings.

Filter

Another popular technique is filtering, in which you filter values of a bigger array to
extract values as a smaller array. Listing 3.15 features a basic code snippet in which you
filter a number array twice. In this code snippet, $0 represents elements of the main
array.

2718.book Seite 134 Dienstag, 11. November 2025 6:14 18

134

3 Collections

135

3.1 Arrays

3

let numbers = [1, 2, 3, 4, 5]
let bigNumbers = numbers.filter { $0 > 3 } // 4, 5
let evenNumbers = numbers.filter { $0 % 2 == 0 } // 2, 4

Listing 3.15 Filtering Numbers

In the end, bigNumber contained numbers greater than 3 and evenNumbers contained
even numbers; both are individual arrays of their own.

The same technique can be used with strings as well. In Listing 3.16, city names are fil-
tered using their character counts, and short city names are extracted into a new array
called shortCities. Once again, $0 represents elements of the main array. We could have
used any string function, but this example features $0.count to filter over string length.

let cities = ["New York", "San Francisco", "Los Angeles", "Chicago"]
let shortCities = cities.filter { $0.count < 10 } // New York, Chicago

Listing 3.16 Filtering Strings

Why not get a bit more adventurous and filter over tuples, too? The core logic of the fil-
tering won’t change—so Listing 3.17 should be pretty easy to follow!

typealias Person = (name: String, age: Int)

let people: [Person] = [
 ("Alice", 30),
 ("Bob", 25),
 ("Charlie", 16),
 ("David", 14)
]

let youngPeople = people.filter { $0.age < 18 } // Charlie, David

Listing 3.17 Filtering Tuples

Naturally, filters may contain multiple logical conditions too—as demonstrated in Lis-
ting 3.18.

let numbers = [231, 12, 334, 423, 25]
let smallOddNumbers = numbers.filter { $0 < 100 && $0 % 2 == 1 } // 25

Listing 3.18 Filter with Multiple Conditions

Here we have two distinct conditions, bound together with the && operator. Swift will
process those conditions sequentially as demonstrated in Table 3.5 and produce the
result shown: an array with a single element.

2718.book Seite 135 Dienstag, 11. November 2025 6:14 18

135

3 Collections

3 Collections

136

Map

Mapping is a technique that returns a new array of the same size but with transformed
elements. Listing 3.19 features a demonstration that uses the map function to create a
new array containing numbers multiplied by 2.

let numbers = [1, 2, 3, 4, 5]
let doubleNumbers = numbers.map { $0 * 2 } // 2, 4, 6, 8, 10

Listing 3.19 Mapping Numbers

As usual, $0 represents each element in the array. The map { $0 * 2 } expression declares
the intention to multiply each number by 2 and return the results as a new array.

As a second demonstration, Listing 3.20 features a map operation on strings. This time,
map { $0.uppercased() } builds a new array out of students, with each name converted to
uppercase.

let students = ["Alice", "Bob", "Charlie"]
let upperStudens = students.map { $0.uppercased() } // ALICE, BOB, CHARLIE

Listing 3.20 Mapping Strings

Reduce

Arrays feature a useful function called reduce, which is called when you want to run a
certain calculation over array elements and return a single result.

Listing 3.21 features a basic example that calculates the sum of all elements in an array.

let numbers = [1, 2, 3, 4, 5]
let sum = numbers.reduce(0) { $0 + $1 } // 15

Listing 3.21 Summing Numbers in Array

Here, (0) is the initial value of the result, and { $0 + $1 } means that you want to add up
each number until the array is finished. Table 3.6 showcases the detailed iteration exe-
cuted by the reduce function.

Condition Meaning Result

$0 < 100 Number must be less than 100 [12, 25]

$0 % 2 == 1 Number must be odd [25]

Table 3.5 Multicondition Filter Process

2718.book Seite 136 Dienstag, 11. November 2025 6:14 18

136

3 Collections

137

3.1 Arrays

3

This useful function can be applied to any array summarization, such as concatenating
strings in an array. Listing 3.22 demonstrates this approach through a clean example,
followed by its detailed iteration in Table 3.7.

let words = ["Hello", "world", "!"]
let sentence = words.reduce("") { $0 + " " + $1 } // Hello world !

Listing 3.22 Concatenating Strings in Array

Naturally, you also can supply an initial value and use other functions within the reduce
clause. In Listing 3.23, we debut the result with the initial value "I say:" and continue by
applying the uppercased version of each string in words.

let words = ["Hello", "world", "!"]
let sn = words.reduce("I say:") { $0 + " " + $1.uppercased() } // I say: HELLO
WORLD !

Listing 3.23 Using String Functions While Reducing

Join

You also have the option of joining two existing arrays to build a new one. How cool is
that? You can simply use the + operator to combine two arrays, as demonstrated in Lis-
ting 3.24. You can imagine this technique as akin to concatenating the arrays.

Iteration Current Result Operation New Result

1 0 + 1 1

2 1 + 2 3

3 3 + 3 6

4 6 + 4 10

5 10 + 5 15

Table 3.6 Number Iteration Executed by reduce Function

Iteration Current Result Operation New Result

1 "" + " " + "Hello" " Hello"

2 " Hello" + " " + "world" " Hello world"

3 " Hello world" + " " + "!" " Hello world !"

Table 3.7 String Iteration Executed by reduce Function

2718.book Seite 137 Dienstag, 11. November 2025 6:14 18

137

3 Collections

3 Collections

138

let guestsOnTime = ["Alice", "Bob"]
let guestsLate = ["David", "Eve"]
let allGuests = guestsOnTime + guestsLate // Alice, Bob, David, Eve

Listing 3.24 Joining Arrays Using +

The same technique can be applied to arrays with elements of other types too. Just for
the fun of it, Listing 3.25 demonstrates the join operation of two arrays containing
Measurement objects. In the end, allWeights will contain four Measurement values—which
is the joint output of someWeights and otherWeights.

import Foundation

let weight1 = Measurement(value: 100, unit: UnitMass.kilograms)
let weight2 = Measurement(value: 1, unit: UnitMass.grams)
let someWeights = [weight1, weight2]

let weight3 = Measurement(value: 44, unit: UnitMass.kilograms)
let weight4 = Measurement(value: 12, unit: UnitMass.grams)
let otherWeights = [weight3, weight4]

let allWeights = someWeights + otherWeights // 4 elements

Listing 3.25 Joining Arrays with Measurement Values

This fun example concludes our content on array derivation. Now you know how to cre-
ate, access, and derive arrays. The next natural step is to modify existing arrays, which
will be covered in the next section.

3.1.5 Modifying Arrays

In this section, you will learn how to modify arrays. Operations like appending new ele-
ments or modifying or deleting existing elements will be covered.

An initial reminder, though: Modifiable arrays must have been declared using a var
statement. As you know, let declarations create static/constant arrays that can’t be
changed later. Therefore, modification examples in this section will inevitably declare
arrays using var statements.

Appending Elements

Swift features multiple methods to append elements to an array, which you’ll discover
next. The most basic and straightforward way is to simply invoke the append function
of the array object. In Listing 3.26, after the initial declaration of numbers as [1, 2, 3], we
execute the append(4) function, extending the array as [1, 2, 3, 4].

2718.book Seite 138 Dienstag, 11. November 2025 6:14 18

138

3 Collections

139

3.1 Arrays

3

var numbers = [1, 2, 3]
numbers.append(4) // [1, 2, 3, 4]

Listing 3.26 Appending Array Element Using append Function

That’s pretty easy, right? It’s almost plain English! Now, what if you wanted to append
multiple elements instead of just one? Listing 3.27 demonstrates how to do so. For this
purpose, you can still use the append function—but instead of providing a single ele-
ment as the parameter, you provide the contentsOf: [4, 5] parameter, indicating the
elements you want to append.

var numbers = [1, 2, 3]
numbers.append(contentsOf: [4, 5]) // [1, 2, 3, 4, 5]

Listing 3.27 Appending Multiple Elements to Array Using append Function

As a shortcut, you can also make use of the += operator, which you used with strings in
Chapter 2. The same logic applies: You can concatenate a subarray to a main array, like
concatenating strings. Check the demonstration in Listing 3.28.

var numbers = [1, 2, 3]
numbers += [4, 5] // [1, 2, 3, 4, 5]

Listing 3.28 Appending Multiple Elements to Array Using += Operator

The examples so far have focused on appending elements to the tail of an array. What
if you want to insert elements at a specific index? For that purpose, you should use the
insert function of the array object, as demonstrated in Listing 3.29. This function
accepts two parameters: the element to insert ("Ann") and the insertion index (2).

var people = ["John", "Mary", "Alice"]
people.insert("Ann", at: 2) // John, Mary, Ann, Alice

Listing 3.29 Inserting Element at Specific Index

You know by now that indexes begin with 0. That’s why the statement at: 2 guided Swift
to insert "Ann" after "Mary": Counting 0, 1, 2 makes "Ann" the third element of the array.

To insert multiple elements at a specific index, you should modify the parameters of the
insert function just as you did with the append function. Check the intuitive demonstra-
tion in Listing 3.30, which makes use of the contentsOf parameter once again.

var people = ["John", "Mary", "Alice"]
people.insert(contentsOf: ["Ann", "Bob"], at: 2) // John, Mary, Ann, Bob, Alice

Listing 3.30 Inserting Multiple Elements at Specific Index

2718.book Seite 139 Dienstag, 11. November 2025 6:14 18

139

3 Collections

3 Collections

140

Modifying Elements

Modifying an element of an array is as simple as inserting it. Check Listing 3.31, in which
you change the second element of the array from "Banana" to "Blueberry".

var fruits = ["Apple", "Banana", "Cherry"]
fruits[1] = "Blueberry" // Apple, Blueberry, Cherry

Listing 3.31 Modification of Array Element

To get a bit more adventurous, Listing 3.32 features another example of array element
modification. Although it uses the exact same approach, the array contains tuples
instead of a basic data type. But if you check the very last line, you will see that the mod-
ification syntax doesn’t change at all!

typealias Instrument = (name: String, price: Double)

var instruments: [Instrument] = []

instruments.append((name: "Guitar", price: 100)) // Guitar
instruments.append((name: "Drums", price: 300)) // Guitar, Drums
instruments.append((name: "Piano", price: 200)) // Guitar, Drums, Piano

instruments[2] = (name: "Keyboard", price: 150) // Guitar, Drums, Keyboard

Listing 3.32 Modification of Array Tuple

Deleting Elements

Deleting elements from an array is equally easy. Array objects feature ready-to-use
functions with the remove prefix, which are listed in Table 3.8.

A demonstration of those functions is provided in Listing 3.33. The syntax and results
are self-explanatory.

var fibo = [1, 2, 3, 5, 8, 13, 21, 34, 55]
fibo.removeFirst(3) // 5, 8, 13, 21, 34, 55
fibo.removeLast(2) // 5, 8, 13, 21

Function Purpose

removeFirst(n) Removes the first n elements of the array

removeLast(n) Removes the last n elements of the array

remove(at: n) Removes the nth element of the array

removeAll() Clears the array completely

Table 3.8 Array Functions for Element Removal

2718.book Seite 140 Dienstag, 11. November 2025 6:14 18

140

3 Collections

141

3.1 Arrays

3

fibo.remove(at: 2) // 5, 8, 21
fibo.removeAll() // Empty

Listing 3.33 Demonstration of Element Deletion from Array

One cool trick is to add a where condition to removeAll. Listing 3.34 demonstrates how to
delete elements with a value greater than 10 from the array fibo. The syntax of the where
condition is the same as in previous similar examples.

var fibo = [1, 2, 3, 5, 8, 13, 21, 34, 55]
fibo.removeAll(where: { $0 > 10 }) // 1, 2, 3, 5, 8

Listing 3.34 removeAll Function with where Condition

Sorting Arrays

Finally, we will show you how to sort arrays. And once again, it’s very easy: You simply
invoke the sort function of the array object. Listing 3.35 demonstrates how to sort an
array in ascending and descending order.

var numbers = [5, 2, 8, 3, 1]
numbers.sort() // 1, 2, 3, 5, 8
numbers.sort(by: >) // 8, 5, 3, 2, 1

Listing 3.35 Sorting Array in Swift

A similar function is sorted, which does almost the same job as sort. However, instead
of mutating the original array, it returns a new sorted array. Check Listing 3.36 for a
demonstration.

var numbers = [5, 2, 8, 3, 1]
var sortedNumbers = numbers.sorted() // 1, 2, 3, 5, 8

Listing 3.36 Creating New Sorted Array

The next step is array iteration, in which you loop through the elements of an array for
bulk operations.

3.1.6 Iterating Through Arrays

When you have an array at hand, it is a natural expectation to visit each element
sequentially. In many cases, this is the reason to build an array in the first place. Imagine
an array of phone numbers, in which you have to call each customer in line sequen-
tially. This would require iterating through the numbers in the array, right?

For such cases, Swift offers various methods to iterate through the elements of an array.
In this section, we will discuss those iteration methods and their differences.

2718.book Seite 141 Dienstag, 11. November 2025 6:14 18

141

3 Collections

3 Collections

142

For Clause

The most fundamental approach to array iteration is to use a for … in … statement. Check
the demonstration in Listing 3.37, which iterates through phone numbers.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
 print(phone)
}

Listing 3.37 Iteration Through Phone Numbers Using for Statement

The initial part of this code snippet is familiar: The phones array has been declared with
some mock values. The next part is the interesting one! Using the for phone in phones
statement, you tell Swift to iterate through all elements in phones, assigning a new value
to the phone variable on every iteration. The code block between { and } will be executed
for each phone sequentially.

That was a mouthful; let’s break it down now! Table 3.9 showcases each iteration, includ-
ing the value assigned to phone and how print(phone) looks.

It should be clear now! For each iteration, phone was assigned a new value, pulled from
phones sequentially. The terminal output is shown in Figure 3.1 for even more clarity.

Figure 3.1 Output of for Iteration

Iteration Value in Phone Print Statement Output

1 "123-4567" print("123-4567") 123-4567

2 "890-1234" print("890-1234") 890-1234

3 "543-2109" print("543-2109") 543-2109

4 "234-5678" print("234-5678") 234-5678

Table 3.9 Iteration Broken Down

2718.book Seite 142 Dienstag, 11. November 2025 6:14 18

142

3 Collections

143

3.1 Arrays

3

Naturally, the code between { and } can be as complex as needed, but the basic idea
doesn’t change: The code between { and } is executed with every phone value through
the iteration. Listing 3.38 demonstrates the same iteration with slightly more complex
code, making use of features you learned about before.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
 let cleanPhone = phone.replacing("-", with: "")
 let operatorText = "You can dial \(cleanPhone) now"
 print(operatorText)
}

Listing 3.38 Iteration with Slightly More Complex Code

As evident in the output in Figure 3.2, the iteration ran the same way as before—even if
the code between { and } was a little different.

Figure 3.2 Output for Slightly More Complex Iteration

Using Enumerated

Arrays contain a cool function called enumerated(). When this function is used in a for
iteration, you get access to the element and its index simultaneously. The example in
Listing 3.39 invokes this functionality: Instead of executing the for iteration against the
bankQueue array itself, you execute it against bankQueue.enumerated(). In return, you get
access to the so-called queueEntry object, which contains the element index in queueEntry.

offset (sequentially, 0, 1, 2) and the element value in queueEntry.element (sequentially,
"James", "John", "Robert").

var bankQueue = ["James", "John", "Robert"]

for queueEntry in bankQueue.enumerated() {
 print(queueEntry.offset)
 print(queueEntry.element)
}

Listing 3.39 Accessing Index and Element Throughout Iteration

2718.book Seite 143 Dienstag, 11. November 2025 6:14 18

143

3 Collections

3 Collections

144

A breakdown of this code snippet is provided in Table 3.10, where the operation in each
iteration is shown clearly.

It’s time to test the code and see if you get the expected result. Check the playground
output in Figure 3.3: Things seem to be OK!

Figure 3.3 Output of Enumerated Iteration

Iteration Control Flow
It is possible to manipulate the iteration flow using keywords like break or continue,
with which you might be familiar from other programming languages. This concept will
be covered in Chapter 4, which is focused on control flow.

As stated before, the code between { and } can be as complex as needed. Listing 3.40 fea-
tures the same iteration with slightly more complex code, in which you prepare a more
intuitive cashier text for each customer in bankQueue.

Iteration queueEntry.offset queueEntry.element Expected Output

1 0 "James" 0
James

2 1 "John" 1
John

3 2 "Robert" 2
Robert

Table 3.10 Enumerated Iteration Broken Down

2718.book Seite 144 Dienstag, 11. November 2025 6:14 18

144

3 Collections

145

3.1 Arrays

3

var bankQueue = ["James", "John", "Robert"]

for queueEntry in bankQueue.enumerated() {
 let number = queueEntry.offset + 1
 let name = queueEntry.element
 let cashierText = "Call \(number). customer: \(name)"
 print(cashierText)
}

Listing 3.40 Slightly More Complex Enumerated Iteration

The output of this code snippet is shown in Figure 3.4. Once again, the core iteration
didn’t change at all; we merely changed the displayed output.

Figure 3.4 Output Containing Intuitive Cashier Text

Where Conditions

So far, we’ve gone through iterations in which we access all elements in an array sequen-
tially. What if we want to access only some of them? There will be cases in which you
only want to sequentially access elements matching a certain condition.

In such scenarios, you can add a where clause to the for iteration, containing the desired
conditions. It works just like array filters, with a slightly different syntax.

Listing 3.41 demonstrates such an example. In this code snippet, numbers is a regular
array. While iterating through numbers, you simply add the condition where number > 100.
As a result, only values greater than 100 are processed through the iteration, and thus it
only prints the values 435 and 522.

2718.book Seite 145 Dienstag, 11. November 2025 6:14 18

145

3 Collections

3 Collections

146

let numbers = [1, 25, 38, 435, 522]

for number in numbers where number > 100 {
 print(number) // 435, 522
}

Listing 3.41 Iterating with where Condition

All kinds of logical operators and parenthesis can be used in a where condition. Listing
3.42 demonstrates an example in which a where clause with two conditions is present.

let people = ["John", "Ann", "Alice", "Bob"]

for person in people
where person.count > 3 && person.hasPrefix("A") {
 print(person) // Alice
}

Listing 3.42 Complex where Condition with Logical Operators

A breakdown of those where conditions is provided in Table 3.11. In the end, Swift is only
able to print the value "Alice".

Such where conditions, and iterations in general, can be used with more complex data
types too—like tuples. Listing 3.43 demonstrates an example in which an iteration
through a tuple array is executed—including a where condition, too!

typealias Person = (name: String, age: Int)

var clients: [Person] = [
 (name: "Alice", age: 30),
 (name: "Bob", age: 25),
 (name: "Charlie", age: 22)]

Initial Elements Condition Eliminated Remaining

John
Ann
Alice
Bob

person.count > 3 Ann
Bob

John
Alice

John
Alice

person.hasPrefix("A") John Alice

Table 3.11 Breakdown of where Conditions

2718.book Seite 146 Dienstag, 11. November 2025 6:14 18

146

3 Collections

147

3.1 Arrays

3

for client in clients where client.age >= 25 {
 print("\(client.name) is \(client.age) years old")
}

Listing 3.43 Iteration Through Tuple Array

As you can see, the core syntax of the iteration didn’t change at all; we simply threw in
some tuples as a mental exercise. The output of this iteration is shown in Figure 3.5.

Figure 3.5 Output of Tuple Iteration

Randomization

Swift empowers programmers with options for random access to array elements. Lis-
ting 3.44 features an example in which you access a random element in fruits. Every
time you execute this code, randomFruit gets a random value, such as "Apple", "Cherry",
or "Orange".

let fruits = ["Apple", "Banana", "Cherry", "Mango", "Orange"]
let randomFruit = fruits.randomElement()

Listing 3.44 Picking Random Array Element

This code could be used, for example, in an app that suggests a random daily fruit to
consume.

Another randomization feature lets you shuffle elements in an array. Just like shuffling
cards before starting a card game, you can shuffle an array to randomly change the posi-
tions of its elements. Listing 3.45 features such an example, in which you use shuffle()
to shuffle the names in participants and declare the first three as winners. It’s a handy
feature for a lottery app, right?

// List of participants
var participants = ["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace"]

// Shuffle the array
participants.shuffle()

2718.book Seite 147 Dienstag, 11. November 2025 6:14 18

147

3 Collections

3 Collections

148

// Get the first three as winners
let winners = participants.prefix(3)

// Print the winners
print("Winners:")
for (index, winner) in winners.enumerated() {
 print("\(index + 1). \(winner)")
}

Listing 3.45 Array Shuffle Example

Due to the nature of randomization, you will get a different output every time you exe-
cute this code. Nevertheless, Figure 3.6 demonstrates a possible output in which three
random participants were declared as winners. Apparently, those names were in the
first three positions in participants when participants.shuffle() was executed.

Figure 3.6 One Possible Shuffle Output

That final example concluded our content on arrays, one of three major collection
types, along with sets and dictionaries. We will continue the journey with sets, which
are similar to arrays but bring the uniqueness constraint to the table. Take a break, get
some fresh air if you need to, and see you there!

3.2 Sets

In Swift, a set is a collection, like an array; they share some common ground. The core
difference is that a set is an unordered collection of unique values. Unlike arrays, sets
don’t allow duplicate elements and don’t guarantee a specific order by index—but they
promise a very high access speed, which is a significant benefit in large datasets.

2718.book Seite 148 Dienstag, 11. November 2025 6:14 18

148

3 Collections

149

3.2 Sets

3

Table 3.12 describes the differences between arrays and sets clearly.

The selling points of a set are basically element uniqueness and access speed. Here are
some general suggestions for working with a set:

▪ Use an array when you need ordered elements with possible duplicates.

▪ Use a set when you need fast lookup with unique elements.

To strengthen your understanding, Table 3.13 contrasts some use cases in which either
an array or set would be preferred as an element container.

As you can see, arrays and sets can’t fully replace each other. You could attempt to use
an array instead of a set, but it won’t ensure uniqueness and access speed would be
unnecessarily slow. Likewise, you could attempt to use a set instead of an array, but your
app will fail on duplicate elements and won’t follow the given element order.

Why Are Sets Faster?
Sets are faster than arrays for lookups because they use hashing, while arrays use linear
searches.

In more common terms, when checking if an element exists in an array, Swift must scan
each item one by one until it finds a correspondence between elements. The runtime
cost may be negligible in small datasets, but it would make a significant difference in
large datasets.

Feature Array Set

Order Ordered Unordered

Duplicate values Allowed Not allowed

Access by index Allowed Not allowed

Element lookup speed Slow Fast

Table 3.12 Comparison Between Arrays and Sets

Case Preference Reason

Shopping cart Array Duplicate items should be allowed.

Queue Array Order matters and a queue is accessed in entry order.

Member list Set Members are unique and access by user name would be
fast.

Product categories Set Categories are unique and order doesn’t matter.

Table 3.13 Use Cases for Arrays and Sets

2718.book Seite 149 Dienstag, 11. November 2025 6:14 18

149

3 Collections

3 Collections

150

Sets, meanwhile, use a hash table to help spot elements, which allows for instant
lookup. The runtime cost is constant regardless of the set size. When an element is
added to a set, Swift (secretly) computes a hash value, which is used as in index. When
checking for an element, Swift directly jumps to the hashed index instead of scanning
every item.

Now that you have a general notion of sets, we can move forward to hands-on examples
to introduce the corresponding syntax and further features.

3.2.1 Creating Sets

Set declarations can be made using a familiar syntax, like that for arrays. No big surprise,
right? Listing 3.46 showcases alternative methods for set declarations. Here, set1, set2,
and set3 will end up having the exact same elements.

// Explicit type declaration
var set1 = Set<Int>()
set1.insert(1)
set1.insert(2)
set1.insert(3)

// Explicit type declaration with values
var set2: Set<Int> = [1, 2, 3]

// Type inference
var set3 = Set([1, 2, 3])

Listing 3.46 Alternative Methods of Set Declaration

In the first part, you explicitly declare the type of set1 as Set<Int>() and insert elements
afterward. In the second part, you declare the type of set2—but insert the initial ele-
ments immediately. Finally, set3 is declared using type inference, which means that
you let Swift “guess” the types of elements on your behalf.

Insert Versus Append
You might have caught a syntax difference here. In arrays, new elements are added via
the array.append function. In sets, new elements are added via the set.insert func-
tion. Although their purposes are similar, the difference is worth noting.

Note that array.append will add the new element to the tail of the array because an
array is an ordered collection. However, set.insert will do the hash calculations and
add the new element “somewhere”; no particular order is guaranteed.

2718.book Seite 150 Dienstag, 11. November 2025 6:14 18

150

3 Collections

151

3.2 Sets

3

You can create a set from an array as well! The catch is that you will lose duplicate entries
in the process. Whether that’s desirable or not depends on the use case. Listing 3.47 fea-
tures such a conversion.

var allStudents = ["Alice", "Bob", "Charlie", "Bob", "Alice"]
var uniqueStudents = Set(allStudents) // Alice, Charlie, Bob

Listing 3.47 Array to Set Conversion

3.2.2 Sets as Constants

As with any other data type, sets can be declared as mutable via var or immutable (read-
only) via let. To keep this section self-contained, Listing 3.48 demonstrates both decla-
ration types.

var changeableSet = Set([1, 2, 3, 4, 5])
let readOnlySet = Set([1, 2, 3, 4, 5])

Listing 3.48 Set Declaration as Constant

In this example, you can modify the contents of changeableSet in due course—because
it was declared to be mutable using var. On the other hand, readOnlySet can’t be modi-
fied later—because it was declared to be immutable using let.

3.2.3 Accessing Sets

In this section, you will learn how to access set elements. We are going to cover basic set
functions and how to access the first element of a set.

Basic Set Functions

First things first: Basic array functions, which were covered in Section 3.1.3, are available
with sets too! To keep this section self-contained, Table 3.14 showcases those functions.

To see those functions in context, look at Listing 3.49; the functionality is quite intui-
tive.

Function Result

isEmpty true if the set is empty; false otherwise

count Number of elements in the set

contains(element) true if the element is in the set; false otherwise

Table 3.14 Basic Set Functions

2718.book Seite 151 Dienstag, 11. November 2025 6:14 18

151

3 Collections

3 Collections

152

var animals: Set<String> = ["dog", "cat", "bird", "elephant"]

animals.isEmpty // false
animals.count // 4
animals.contains("bird") // true
animals.contains("snake") // false

Listing 3.49 Demonstration of Basic Set Functions

A cool feature is to use a where clause within the contains function. Because you’re
already familiar with where clauses in Swift, the syntax of the demonstration in Listing
3.50 should be intuitive.

var animals: Set<String> = ["dog", "cat", "bird", "elephant"]
animals.contains(where: { $0.count > 5 }) // true due to "elephant"
animals.contains(where: { $0.contains("x") }) // false

Listing 3.50 Where Clause Within contains Function

First Function

Because sets are unordered collection types, they don’t support index-based access. A
supported complementary function is first, which returns the “first” element in the
set. Be careful though: Because sets are not ordered like arrays, Swift doesn’t guarantee
that first returns the initial inserted element; instead, it simply returns an element
based on the internal order of the set, which could be any of them.

Having that said, Listing 3.51 demonstrates the usage of the first function. Go ahead
and try it: Every time you execute this code snippet, you should get a different element
because the calculated hash values will change on each execution—and therefore, so
does the “first” element behind the scenes.

var numbers: Set = [10, 20, 30, 40, 50]
numbers.first! // Output: Could be any of 10, 20, 30, 40, 50

Listing 3.51 Demonstration of first Function for Sets

3.2.4 Set Derivation

Just like arrays, sets feature functions through which you can derive new sets. They are
mostly similar to those for array derivation—with the obvious deviation that index-
based access would not make sense. In this section, we will walk through the available
derivation functions for sets.

2718.book Seite 152 Dienstag, 11. November 2025 6:14 18

152

3 Collections

153

3.2 Sets

3

Filter

Set filters share the same logic and syntax as array filters. The filter function allows
you to create a subset of a set based on a condition. Listing 3.52 showcases two examples,
in which you extract even numbers and fruits starting with the letter A.

let numbers: Set = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
let evenNumbers = numbers.filter { $0 % 2 == 0 }
print(evenNumbers) // 2, 4, 6, 8, 10; order varies

let fruits: Set = ["Apple", "Banana", "Cherry", "Avocado", "Blueberry"]
let aFruits = fruits.filter { $0.hasPrefix("A") }
print(aFruits) // Apple, Avocado; order varies

Listing 3.52 Set Filtering Demonstration

Although this code will work just fine, you can’t ensure the element order in evenNumbers
and aFruits; Swift will order them as it pleases, based on hash values.

Map

Like it is in arrays, the map function for sets in Swift is used to transform each element
in the set into a new value. The output is a new set containing those new values. Listing
3.53 features two mapping examples.

let numbers: Set = [1, 2, 3, 4, 5]
let squaredNumbers = numbers.map { $0 * $0 }
print(squaredNumbers) // Output: [1, 4, 9, 16, 25] (order varies)

let fruits: Set = ["Apple", "Banana"]
let uppercasedFruits = fruits.map { $0.uppercased() }
print(uppercasedFruits) // Output: ["APPLE", "BANANA"] (order varies)

Listing 3.53 Set Mapping Demonstration

In the first example, you square the elements in numbers and collect them into a new set
called squaredNumbers. In the second example, you convert the elements in fruits to
uppercase and collect them into a new set called uppercasedFruits. As usual, element
order is undeterminable in either sample.

Reduce

Like in arrays, the reduce function for sets in Swift allows you to combine all elements
in a set into a single value. The detailed breakdown for this function was provided in
Section 3.1.4 already, so you can jump directly into a couple of examples provided in Lis-
ting 3.54.

2718.book Seite 153 Dienstag, 11. November 2025 6:14 18

153

3 Collections

3 Collections

154

let numbers: Set = [10, 20, 30, 40, 50]
let sum = numbers.reduce(0) { $0 + $1 }
print(sum) // Output: 150

let words: Set = ["Follow", "the", "white", "rabbit"]
let sentence = words.reduce("") { $0 + " " + $1 }
print(sentence) // Output: " the Follow rabbit white" (order varies)

Listing 3.54 Set reduce Demonstration

In the first part, you have a set of numbers. By invoking numbers.reduce(0) { $0 + $1 },
you tell Swift to sum those numbers, the result of which is 150. Because the element
order doesn’t affect the result of an addition operation, this part works just like it does
for arrays.

In the second part, though, we have a different story. The words set contains a collection
of unique strings. The words.reduce("") { $0 + " " + $1 } expression should return a con-
catenation of all strings in the set, right?

It kind of does—but with a twist: Because words didn’t index the strings in the order they
were provided, the sentence output will seemingly have shuffled the order of the
strings—which is the expected behavior for sets! If you’re aiming for control over the
order of elements, you should use an array instead.

Union

You already know that it’s possible to merge existing arrays; this topic was covered
in Section 3.1.4. Likewise, it’s possible to merge existing sets, combining all their
elements—as shown semantically in Figure 3.7.

Figure 3.7 Scope of Set Union

You can either build a joint set out of two sets or insert rows of a set into another one to
extend it. In this section, we will go over both options.

Listing 3.55 demonstrates the usage of the union function to merge two sets and create
a new one. When setA.union(setB) is executed, Swift will merge all elements of setA and

2718.book Seite 154 Dienstag, 11. November 2025 6:14 18

154

3 Collections

155

3.2 Sets

3

setB into the target mergedSet variable. Meanwhile, the original setA and setB sets are
not mutated.

let setA: Set = [1, 2, 3]
let setB: Set = [3, 4, 5]

let mergedSet = setA.union(setB)
print(mergedSet) // 1, 2, 3, 4, 5 (order varies)

Listing 3.55 Joining Sets Using union Function

Note that 3 is a common element in setA and setB. Due to the uniqueness requirement
of sets, common elements like 3 are not duplicated in the target set.

What if you had three sets to merge instead of two? That’s easy! You can simply chain
the union function as shown in Listing 3.56. Because union returns a new set anyway, you
can keep chain-executing this function for all sets you need to merge.

let setA: Set = [1, 2]
let setB: Set = [2, 3]
let setC: Set = [3, 4]

let mergedSet = setA.union(setB).union(setC)
print(mergedSet) // 1, 2, 3, 4 (order varies)

Listing 3.56 Chain-Executing Set Unions

The examples so far focused on producing a new set out of existing sets. But you can
also merge a set into another set, extending the target set with new elements. The way
to do so is to invoke the formUnion function of the target set. In the demonstration in
Listing 3.57, setA was extended with new elements from setB. Naturally, setB is not
affected or mutated by this operation.

var setA: Set = [10, 20, 30]
let setB: Set = [30, 40, 50]

setA.formUnion(setB)
print(setA) // 10, 20, 30, 40, 50 (order varies)

Listing 3.57 Merging Set into Another Set Using formUnion

Intersection

In this section, our purpose is to find common elements of two sets. The semantics of
this operation is shown in Figure 3.8.

2718.book Seite 155 Dienstag, 11. November 2025 6:14 18

155

3 Collections

3 Collections

156

Figure 3.8 Scope of Set Intersection

For this purpose, you’ll invoke the intersection function of either set. Listing 3.58
demonstrates how to do so; note the syntactic similarity to the former union function.

let setA: Set = [1, 2, 3, 4, 5]
let setB: Set = [3, 4, 5, 6, 7]

let commonElements = setA.intersection(setB)
print(commonElements) // 3, 4, 5 (order varies)

Listing 3.58 Finding Common Elements of Sets Using intersection Function

The intersection function doesn’t mutate any of the sets; it simply creates a new set
out of their common elements. An alternative is to invoke the formIntersection func-
tion, which will mutate the target set and reduce its elements to common elements of
the two sets.

Listing 3.59 contains a demonstration of this function. After executing setA.formInter-
section(setB), setA will contain only elements in common with setB, replacing its for-
mer contents. setB is not mutated.

var setA: Set = [10, 20, 30, 40, 50]
let setB: Set = [30, 40, 50, 60, 70]

setA.formIntersection(setB)
print(setA) // 30, 40, 50 (order varies)

Listing 3.59 Demonstration of formIntersection Function

Subtracting

Now that you know about spotting the common elements of two sets, it’s time to learn
how to spot the differing elements of two sets! Figure 3.9 showcases the semantics of
this operation.

2718.book Seite 156 Dienstag, 11. November 2025 6:14 18

156

3 Collections

157

3.2 Sets

3

Figure 3.9 Scope of Set Subtraction

For this purpose, you can invoke the subtracting function (Listing 3.60), which will
build a new set from the differing elements of the given sets.

let setA: Set = [1, 2, 3, 4, 5]
let setB: Set = [3, 4, 5, 6, 7]

let diffSet = setA.subtracting(setB)
print(diffSet) // Output: 1, 2 (order varies)

Listing 3.60 Finding Differing Elements of Sets Using subtracting Function

As with union and intersection, you can also mutate the original set with the differing
values if you want. For that purpose, you can invoke the subtract function. Check Lis-
ting 3.61 for a demonstration: The execution of setA.subtract(setB) will remove ele-
ments from setA—but not the ones in common with setB. Meanwhile, setB is not
mutated.

var setA: Set = [1, 2, 3, 4, 5]
let setB: Set = [3, 4, 5, 6, 7]

setA.subtract(setB)
print(setA) // Output: 1, 2 (order varies)

Listing 3.61 Demonstration of subtract Function

This example concludes our content on set derivation. We went through various func-
tions that will help you produce new sets out of existing ones. Our next topic is a natural
follow-up: How to check if sets are supersets or subsets of each other.

3.2.5 Checking for Supersets

For this topic, it might be a good idea to understand the terms superset and subset
before jumping to the playground. Figure 3.10 illustrates a superset and subset.

2718.book Seite 157 Dienstag, 11. November 2025 6:14 18

157

3 Collections

3 Collections

158

Figure 3.10 Superset and Subset Diagram

In this diagram, the inner circle is a subset and the outer circle is a superset—which con-
tains the entire subset, plus more. The (inner) subset contains the elements a and b. The
(outer) superset automatically contains the subset elements a and b, as well as the addi-
tional elements c and d. Table 3.15 showcases the element lists in pseudocode format.

So far, so good! Moving forward to Swift, you can easily check whether a set is the sup-
erset of another set. Naturally, you can also check if a set is the subset of another one.

Listing 3.62 contains a demonstration of such checks. The isSuperset function is
invoked to find if a set is a superset of another set, and isSubset is invoked to find out
if a set is a subset of another set.

let set1: Set = ["a", "b"]
let set2: Set = ["a", "b", "c", "d"]
let set3: Set = ["e", "f"]

set1.isSubset(of: set2) // true
set2.isSuperset(of: set1) // true
set3.isSubset(of: set2) // false
set2.isSuperset(of: set3) // false

Listing 3.62 Checking for Superset and Subset Relations

3.2.6 Modifying Sets

Now that you know about creating, accessing, and deriving sets, it’s time to learn about
set mutation. In this section, you will learn about modifying sets and changing their
contents.

Set Elements

Subset ["a", "b"]

Superset ["a", "b", "c", "d"]

Table 3.15 Subset and Superset Elements

a b
c

d

2718.book Seite 158 Dienstag, 11. November 2025 6:14 18

158

3 Collections

159

3.2 Sets

3

Sets Aren’t Indexed
Because sets don’t have indexes, set-modification functions will deviate from their array
counterparts. Although there is a reasonable overlap, index-based functions are natu-
rally not available for sets.

Inserting Elements
In Section 3.2.1, we went through an example that created a set by using insert to insert
its initial elements. However, you can invoke the insert function to insert elements
later too! Listing 3.63 demonstrates this technique by adding new animals to the
animals set.

var animals: Set = ["cat", "dog", "bird"]
animals.insert("fish")
animals.insert("snake")
print(animals) // cat, dog, bird, fish, snake (order varies)

Listing 3.63 Inserting Elements into Set

As you know by now, a feature of sets is their promise to contain unique values. Even if
you attempt to insert duplicates into a set, as in Listing 3.64, Swift will ignore the dupli-
cate insertion and preserve the uniqueness of the set’s elements.

var animals: Set = ["cat", "dog", "bird"]
animals.insert("cat")
animals.insert("dog")
print(animals) // cat, dog, bird (order varies)

Listing 3.64 Inserting Duplicates into Set

Deleting Elements
Deleting elements from a set is a straightforward operation. Set objects feature ready-
to-use functions via the remove prefix; these are listed in Table 3.16.

A demonstration of those functions is given in Listing 3.65. After the initial set defini-
tion, numbers.remove(2) is executed, which spots and removes the given element. In the

Function Purpose

remove(element) Removes the element from the set

removeFirst() Removes the first element from the set (random)

removeAll() Clears the set completely

Table 3.16 Set Functions for Element Removal

2718.book Seite 159 Dienstag, 11. November 2025 6:14 18

159

3 Collections

3 Collections

160

second part, numbers.removeFirst() is executed. Because you can’t be sure of the ele-
ment order, this statement removes a random element from the set. Finally, numbers.
removeAll() clears the entire set.

var numbers: Set = [1, 2, 3, 4, 5]

numbers.remove(2) // Removes specific element
print(numbers) // 1, 3, 4, 5 (order varies)

numbers.removeFirst() // Removes an arbitrary element
print(numbers) // Remaining three elements, varies

numbers.removeAll() // Clears the set
print(numbers) // (empty)

Listing 3.65 Demonstration of Element-Removal Functions

Set Element Modification
Because set elements are uniquely hashed, you can’t modify an element in a set like an
array. As a workaround, you can emulate element modification by deleting the old value
and inserting the new value.

3.2.7 Iterating Through Sets

Although sets are typically preferred for single-element access, it is possible to iterate
through set elements too. In fact, the functions to iterate through sets are nearly iden-
tical to their array counterparts. In this section, you will discover those functions, as you
did for arrays.

As a reminder: Keep in mind that sets don’t guarantee an element order, so when you
iterate through a set, the access order will be virtually random.

For Clause

The most fundamental approach to set iteration is to use a for … in … statement. Check
the demonstration in Listing 3.66, which iterates through phone numbers.

var phones: Set = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
 print(phone) // Prints each phone, order varies
}

Listing 3.66 Iterating Through Set Using for Clause

2718.book Seite 160 Dienstag, 11. November 2025 6:14 18

160

3 Collections

161

3.2 Sets

3

The logic of for clauses is identical in arrays and sets. To prevent content duplication,
we won’t dive into those details again here.

Using Enumerated

Likewise, the use of the enumerated function is also identical to its use in arrays. Check
the demonstration in Listing 3.67, which iterates through each element of the set.

var customers: Set = ["James", "John", "Robert"]

for customer in customers.enumerated() {
 print(customer.offset)
 print(customer.element)
}

Listing 3.67 Iterating Through Set Using Enumerated

The output of this code snippet is shown in Figure 3.11, but there are a couple of things
to keep in mind:

▪ Every time you execute this code, you will get a different order because values are
hashed, not ordered.

▪ customer.offset should merely be seen as an index, starting from 0 and increasing
with each element. It does not symbolize the (nonexistent) “element order” in the set.

Figure 3.11 Set Enumeration Demonstration Output

Despite those limitations, the ability to browse through set elements is a neat feature
to have!

Where Conditions

Just like arrays, sets can be partially iterated with the help of where conditions. Even the
syntax is the same! Nevertheless, Listing 3.68 demonstrates an iteration example in
which you iterate only through numbers bigger than 100.

2718.book Seite 161 Dienstag, 11. November 2025 6:14 18

161

3 Collections

3 Collections

162

let numbers: Set = [1, 25, 38, 435, 522]

for number in numbers where number > 100 {
 print(number) // 435, 522; order varies
}

Listing 3.68 Set Iteration Supported by where Condition

You can check Section 3.1.6 for additional where examples, ones used in our discussion
of arrays.

Randomization

Finally, you will learn about fetching random elements out of a set—which is, once
again, the same as for arrays. Listing 3.69 demonstrates the usage of randomElement in a
set.

let fruits: Set = ["Apple", "Banana", "Cherry", "Mango", "Orange"]
let randomFruit = fruits.randomElement()

Listing 3.69 Picking Random Element from Set

No Shuffle for Sets

Because sets are unordered collections with a virtually random element order, it doesn’t
make sense to shuffle a set. That’s why Swift sets don’t have a shuffle function like
arrays.

This section has concluded our content on sets. It was probably easy to follow through
as sets share a lot of common ground with arrays. By reading about sets, your knowl-
edge of arrays was also solidified. Now we’ll move forward to a new collection type, one
that’s a little different than arrays and sets.

3.3 Dictionaries

The final collection type, dictionaries, is a little different than arrays and sets. Arrays and
sets are lists of elements of the same type. Their selling point is their ability to contain
multiple elements. A dictionary, meanwhile, is a flat structure containing key-value
pairs.

The difference is highlighted in Figure 3.12. On the left side, userNames is an array holding
a list of strings, reflecting the names of users in a system. On the right side, currentUser
is a dictionary containing details about the current user.

2718.book Seite 162 Dienstag, 11. November 2025 6:14 18

162

3 Collections

163

3.3 Dictionaries

3

Figure 3.12 Array and Dictionary, Side by Side

In this example, you can imagine the array as a list of elements (user names) and the
dictionary as zoomed in on an element (like a user) to show all its details. That’s the
usual selling point of a dictionary, anyway.

But wait: Didn’t we use named tuples for that purpose in Chapter 2? How are dictionar-
ies different? Good point! Their main differences are contrasted in Table 3.17.

Despite those differences, tuples and dictionaries do have some overlapping function-
ality. If you are aiming for flexibility, though, dictionaries are the way to go because you
can add new key-value pairs as needed.

As we go over some hands-on coding examples, you’ll get a better idea of what makes
dictionaries unique. Without further ado, let’s begin!

3.3.1 Creating Dictionaries

In Chapter 2, you learned about alternative ways of declaring variables using type infer-
ence and type interpolation. Likewise, there are alternative ways of declaring dictionar-
ies using the same methods, as we’ll discuss in this section.

Dictionaries with a Single Type

Let’s start with the basic example in Listing 3.70, featuring type inference, as a relaxed
warm-up.

Feature Tuple Dictionary

Structure Fixed set of values Key-value pairs

Access By index or name By key

Size Fixed; set at declaration Dynamic; can grow or shrink

Mutability Can’t add/remove elements Can add/remove key-value pairs

Best use case Grouping related values Flexible key-value storage

Table 3.17 Tuples Versus Dictionaries

userNames
"Joe"
"Mary"
"George"
"Linda"
"Emma"

"name" "Joe"
"age" 25
"isAdmin" true

currentUser

2718.book Seite 163 Dienstag, 11. November 2025 6:14 18

163

3 Collections

3 Collections

164

var myCar = [
 "make": "Nissan",
 "model": "Qashqai",
 "color": "Black",
 "bodyType": "SUV"
]

print(myCar["make"]!) // Nissan
print(myCar["color"]!) // Black

Listing 3.70 Dictionary Declaration Using Type Inference

In this example, myCar is a dictionary. It contains various properties as key-value pairs.
If you had to list those properties in a table, it would look like Table 3.18.

That’s clear, right? You can add as many properties as necessary. All those key-value
pairs are logically properties of myCar.

The last part of Listing 3.70 demonstrates the basic way to access elements in a dictio-
nary: myCar["make"] would return "Nissan", while myCar["color"] would return "Black".

Now that you have seen the basic approach to dictionary declaration, we can move for-
ward to further methods. Listing 3.71 showcases examples of alternative syntax that
serve the same purpose. You can pick any alternative that suits your needs.

// Type annotation
var myCar: [String: String] = [:]
myCar["make"] = "Nissan"
myCar["model"] = "Qashqai"

// Type annotation - alternative syntax
var herCar = Dictionary<String, String>()
herCar["make"] = "Hyundai"
herCar["model"] = "Accent"

Key Value

make "Nissan"

model "Qashqai"

color "Black"

bodyType "SUV"

Table 3.18 Key-Value Pairs of myCar

2718.book Seite 164 Dienstag, 11. November 2025 6:14 18

164

3 Collections

165

3.3 Dictionaries

3

// Type annotation with initial values
var hisCar: [String: String] = [
 "make": "Toyota",
 "model": "Corolla"
]

Listing 3.71 Alternative Dictionary Declaration Methods

Dictionaries with Multiple Types

So far, we have declared dictionaries with a single type, meaning that all values were
strings. More often than not, though, a dictionary needs to contain values of various
types. Revisiting the introduction to this section, Figure 3.13 features such an example.

Figure 3.13 Dictionary with Multiple Types

If you look closely, you’ll see that currentUser has keys with different data types, which
are listed in Table 3.19.

To declare such dictionaries with flexible/multiple data types, you need to use the Any
keyword. An implementation of this is provided in Listing 3.72. Note that we have pro-
vided Any as the value data type here, indicating that Swift should behave in a flexible
manner and accept any provided value type.

var currentUser: [String: Any] = [
 "name": "Joe",
 "age": 25,
 "isAdmin": true
]

print(currentUser["name"]!) // Joe

Key Data Type

name String

age Integer

isAdmin Boolean

Table 3.19 Data Types of currentUser Keys

"name" "Joe"
"age" 25
"isAdmin" true

currentUser

2718.book Seite 165 Dienstag, 11. November 2025 6:14 18

165

3 Collections

3 Collections

166

print(currentUser["age"]!) // 25
print(currentUser["isAdmin"]!) // true

Listing 3.72 Declaration of Dictionary with Flexible/Multiple Data Types

Multidimensional Dictionaries

So far, we’ve covered flat dictionaries, in which each key corresponds to a single value.
However, Swift supports multidimensional dictionaries too! You can declare a nested
dictionary, in which an element is a collection instead of a simple variable.

Listing 3.73 demonstrates how to declare an array as a dictionary element. bassGuitar
has an element called availableColors, which is a string array.

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "availableColors": ["Black", "Sage Green", "Maple"]
]

Listing 3.73 Declaring a Dictionary Containing an Array

Likewise, a dictionary may contain a set as well—as demonstrated in Listing 3.74.

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "availableColors": Set(["Black", "Sage Green", "Maple"])
]

Listing 3.74 Declaring a Dictionary Containing a Set

You can even include a dictionary inside another dictionary, making it a nested dictio-
nary. In Listing 3.75, specs is a subdictionary of bassGuitar, containing key-value pairs
of its own.

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "specs": [
 "bodyWood": "Alder",
 "neckWood": "Maple",
 "fingerWood": "Rosewood",
 "quarterSawn": true,

2718.book Seite 166 Dienstag, 11. November 2025 6:14 18

166

3 Collections

167

3.3 Dictionaries

3

 "scaleLength": 34,
 "frets": 21
]
]

Listing 3.75 Nested Dictionary Demonstration

As a mental exercise, Listing 3.76 demonstrates a complex dictionary, containing both
a subset and a subdictionary as elements.

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "availableColors": Set(["Black", "Sage Green", "Maple"]),
 "specs": [
 "bodyWood": "Alder",
 "neckWood": "Maple",
 "fingerWood": "Rosewood",
 "quarterSawn": true,
 "scaleLength": 34,
 "frets": 21
]
]

Listing 3.76 Complex Nested Dictionary Example

JSON Similarity
Readers with JSON experience might have noticed that complex dictionaries start to
look like JSON files. That’s correct—and you can use that similarity as a mental hook to
understand dictionaries a little better.

Zipping Dictionaries

A cool trick in dictionary creation is to use the zip keyword. In Listing 3.77, the keys are
in the keys array and the values in the values array.

let keys = ["brand", "model", "strings"]
let values = ["Fender", "Precision", "5"]

var bassGuitar = Dictionary(uniqueKeysWithValues: zip(keys, values))
print(bassGuitar) // ["brand": "Fender", "model": "Precision", "strings": "5"]

Listing 3.77 Dictionary Creation Using Zip

2718.book Seite 167 Dienstag, 11. November 2025 6:14 18

167

3 Collections

3 Collections

168

To build the bassGuitar dictionary, you “zip” keys with values: The first key (brand) gets
the first value (Fender); the second key (model) gets the second value (Precision); and so
on.

3.3.2 Dictionaries as Constants

As with any other data type, dictionaries can be declared as mutable via var or
immutable (read-only) via let. To keep this section self-contained, Listing 3.78 demon-
strates a mutable and an immutable dictionary declaration.

// Mutable
var currentUser: [String: Any] = [
 "name": "Joe",
 "age": 25,
 "isAdmin": true
]

// Immutable
let previousUser: [String: Any] = [
 "name": "Mary",
 "age": 33,
 "isAdmin": false
]

Listing 3.78 Mutable and Immutable Dictionary Declarations

3.3.3 Accessing Dictionaries

Now that you know how to create dictionaries, it’s time to access them. After all, why
create a dictionary you will never read, right? We’ll walk through various methods of
accessing dictionaries in this section.

Direct Access Using a Key

Because dictionaries are basically key-value pairs, the first natural expectation would
be to give the key and receive the corresponding value, right? Listing 3.79 demonstrates
the basic syntax for this. The bassGuitar["brand"] expression returns the value of
"brand" within the dictionary—and the same approach applies to "model".

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "availableColors": ["Black", "Sage Green", "Maple"]
]

2718.book Seite 168 Dienstag, 11. November 2025 6:14 18

168

3 Collections

169

3.3 Dictionaries

3

print(bassGuitar["brand"]!) // Fender
print(bassGuitar["model"]!) // Precision

Listing 3.79 Accessing Simple Dictionary Element

If you query a nonexisting key, Swift will simply return nil, as demonstrated in Listing
3.80.

var bassGuitar: [String: Any] = [
 "brand": "Fender",
 "model": "Precision",
 "strings": 5,
 "availableColors": ["Black", "Sage Green", "Maple"]
]

bassGuitar["price"] // nil

Listing 3.80 Accessing Nonexisting Dictionary Element

Optionals in Dictionary Access

Because it aims to be a type-safe language, Swift is strict about being absolutely sure
about the type of any variable. When a dictionary is defined as [String: Any] as in Lis-
ting 3.80, this means that you can assign any type of value for a dictionary key. That’s a
potential area for safety issues because you could mistakenly unwrap an existing ele-
ment to an incorrect variable type, like assigning the bassGuitar["availableColors"]
array to an integer variable.

Or you could basically access a nonexisting element, as in bassGuitar["price"], which
may potentially lead to an app crash.

Due to such concerns, Swift always assumes that accessing a dictionary element
“optionally” returns a value of the desired type. The dictionary may contain another type
of data, or it may not contain such a key at all.

In Chapter 6, you will learn about optionals in Swift. In that chapter, once you under-
stand the core logic of optionals, we will go over dictionary-specific examples of optional
element access. But for now, we’ll stick to the basics.

Checking If a Key Exists

Each dictionary comes with a property called keys. By invoking keys.contains, you can
check if a dictionary contains a key or not. Listing 3.81 demonstrates the necessary syn-
tax for that.

var bassGuitar: [String: Any] = [
 "brand": "Fender",

2718.book Seite 169 Dienstag, 11. November 2025 6:14 18

169

3 Collections

3 Collections

170

 "model": "Precision",
 "strings": 5,
 "availableColors": ["Black", "Sage Green", "Maple"]
]

bassGuitar.keys.contains("brand") // true
bassGuitar.keys.contains("price") // false

Listing 3.81 Checking if Key Exists in Dictionary

In this example, bassGuitar.keys.contains("brand") returns true because "brand" is an
existing key in the dictionary. However, bassGuitar.keys.contains("price") returns
false because "price" isn’t a key within the dictionary. That’s clear, right?

This feature will be useful when you learn about control flow in Chapter 4. You will be
able to make your app behave differently depending on the existence of a key in a dic-
tionary.

3.3.4 Modifying Dictionaries

In this section, you will learn how to make changes to dictionaries after their initial dec-
laration. Adding, changing, and removing key-value pairs will be the focus.

Inserting Elements

Inserting a new key-value pair into a dictionary is as simple as merely providing the key
and the value! Listing 3.82 features the required syntax.

var mobilePhone: [String: Any] = [
 "brand": "Apple",
 "model": "iPhone 15 Pro",
 "operatingSystem": "iOS 17",
 "screenSize": 6.1,
 "storageOptions": [128, 256, 512, 1024],
 "has5G": true,
 "colors": Set(["Black", "Blue", "White", "Titanium"])
]

mobilePhone["weight"] = 187
mobilePhone["waterResistant"] = true

Listing 3.82 Inserting New Key-Value Pairs into Dictionary

On the last two lines, the weight and water-resistance features of the mobile phone were
added to the dictionary. It’s simple as that!

2718.book Seite 170 Dienstag, 11. November 2025 6:14 18

170

3 Collections

171

3.3 Dictionaries

3

Modifying Elements

Modifying the value for a key uses the exact same syntax as insertion. Listing 3.83
demonstrates both item modification and insertion to showcase them side-by-side.

var mobilePhone: [String: Any] = [
 "brand": "Apple",
 "model": "iPhone 15 Pro",
 "operatingSystem": "iOS 17",
 "screenSize": 6.1,
 "storageOptions": [128, 256, 512, 1024],
 "has5G": true,
 "colors": Set(["Black", "Blue", "White", "Titanium"]),
 "weight": 187
]

print(mobilePhone["weight"]!) // Output: 187
mobilePhone["weight"] = 186 // Changes to 186
print(mobilePhone["weight"]!) // Output: 186

mobilePhone["waterResistant"] = true // Inserts new element

Listing 3.83 Dictionary Element Modification Demonstration

In this code snippet, weight was initially declared as 187. The mobilePhone["weight"] = 186
expression then changes this value to 186. Note that this line has the exact same syntax
as element insertion. The action here will depend on a couple of factors:

▪ If the dictionary contains an entry for weight already, Swift will update its value.

▪ Otherwise, Swift will insert the provided key-value pair, as happens for waterResis-
tant.

Deleting Elements

In Swift, element removal from a dictionary is as straightforward as it gets. Listing 3.84
demonstrates two dictionary functions for this task.

var mobilePhone: [String: Any] = [
 "brand": "Apple",
 "model": "iPhone 15 Pro",
 "operatingSystem": "iOS 17",
 "screenSize": 6.1,
 "storageOptions": [128, 256, 512, 1024],
 "has5G": true,
 "colors": Set(["Black", "Blue", "White", "Titanium"]),
 "weight": 187
]

2718.book Seite 171 Dienstag, 11. November 2025 6:14 18

171

3 Collections

3 Collections

172

mobilePhone.removeValue(forKey: "has5G") // Removes single element
mobilePhone.removeAll() // Removes all elements

Listing 3.84 Dictionary Element Removal Demonstration

The function removeValue will remove the key-value pair for the provided key, whereas
removeAll will remove all key-value pairs from the dictionary, leaving an empty collec-
tion behind.

3.3.5 Iterating Through a Dictionary

There might be cases in which you have a dynamically created dictionary without
knowing the exact key names. For example, a third-party library might have parsed a
JSON file and returned a dictionary. In such a case, you might want to access all keys
and/or values in the dictionary sequentially, as an array.

In such cases, you can use a for clause to iterate through key-value pairs, as demon-
strated in Listing 3.85.

var mobilePhone: [String: Any] = [
 "brand": "Apple",
 "model": "iPhone 15 Pro",
 "operatingSystem": "iOS 17",
 "screenSize": 6.1,
 "storageOptions": [128, 256, 512, 1024],
 "has5G": true,
 "colors": Set(["Black", "Blue", "White", "Titanium"]),
 "weight": 187
]

for (key, value) in mobilePhone {
 print(key, value, separator: " : ")
}

Listing 3.85 Iterating Through Keys and Values of Dictionary

In this example, for (key, value) in mobilePhone is the iteration command—which
works via the same logic as for arrays and sets. The code between { and } is executed for
each key-value pair in the dictionary. On each iteration, Swift assigns the next key to the
key variable and the next value to the value variable.

The output is shown in Figure 3.14. In this example, all we did between { and } was to
print the keys and values. In upcoming chapters, we will do more interesting things as
you learn more about Swift.

2718.book Seite 172 Dienstag, 11. November 2025 6:14 18

172

3 Collections

173

3.4 Summary

3

Figure 3.14 Output of Dictionary Iteration

And voilà! This final example concludes our content on dictionaries, as well as our
entire chapter on collections.

3.4 Summary

In this chapter, you learned about collections in Swift. Basically, collections are data
structures that group multiple variables into a single, organized container. Swift offers
three main collection types, which are summarized in Table 3.20.

Collection Type Content Duplicates Use Case Specialty

Array Indexed/ordered collection
of elements

Yes Queue Flexibility

Set Hashed/unordered collec-
tion of elements

No Member list Fast element
access

Dictionary Hashed/unordered key-
value pairs

No Product
properties

JSON-like

Table 3.20 Swift Collection Type Summary

2718.book Seite 173 Dienstag, 11. November 2025 6:14 18

173

3 Collections

3 Collections

174

Due to type safety concerns, Swift expects programmers to make use of optionals when
accessing collections with flexible/uncertain data types, such as Any. You will learn
more about optionals in Chapter 6 and will see corresponding examples there.

At this point, you know about variables and collections in Swift, which are the basic
building blocks for any program. Now you can venture one step further and learn about
control flow. In the next chapter, you will learn how to “flow” through different code
snippets based on conditions.

2718.book Seite 174 Dienstag, 11. November 2025 6:14 18

174

3 Collections

The Author

Dr. Kerem Koseoglu is a seasoned software engineer, author, and educator with experience in
global software development projects. He works extensively with Swift, Python, and ABAP.

We hope you have enjoyed this reading sample. You may
recommend or pass it on to others, but only in its entirety,
including all pages. This reading sample and all its parts
are protected by copyright law. All usage and exploitation
rights are reserved by the author and the publisher.

ISBN 978-1-4932-2718-1 • 680 pages • 12/2025

E-book: $54.99 • Print book: $59.95 • Bundle: $69.99

Kerem Koseoglu

Swift
The Practical Guide

	■ Your comprehensive guide to the
Swift programming language

	■ Work with variables, collections,
enums, structs, and other language
elements

	■ Practice as you learn with download-
able code snippets

rheinwerk-computing.com/6111

http://rheinwerk-computing.com/6111
http://www.rheinwerk-computing.com/2718
http://www.rheinwerk-computing.com/6111

