yar clients: [person] = [

B (name: "Alice", agé: 30),
{nane: "Bob", age: 25),
{ane: "Charlie", age: 22)]

BBERent in clients where client,
print("\ (client.n : T
k. ame) is \(clie
i)
Alice {5 30
; year
Bob is 95 v S.DId

Apple, Xcode
Playgrounds,
Strings, Col
Sequences, T
Operators, S
Flow Control
10S, macO0S,

watchOS, tvO

Kerem Koseoglu
® Rheinwerk
Computing

Contents

DEAICATION oottt bbbt 19
1 Introduction 21
1.1 ADOUL this BOOK ... sesiiesesssseeessssssssessesssassessees 21
1.2 Welcome to SWIft!cccooomcciririmiinccccrenmiieseessessssssesssssssssssssssssssnnssses 23
1.3 WhyY LEArn SWIft? ..ot eeses e essss e sssss s sesssssssenneees 24
1.4 Swift Versus Other Programming Languagesoorceeonnnnncceeensnnncens 26
141 PYENON ittt 27
LiA.2 JAVA et e e 28
143 CH et s 29
144 JavaSCript e 29
145 30
146 31
147 32
1438 RUST s s 32
1.49 Picking the Ideal LANGUAEEcoevveevvurreceeceerecrarcrnanee 34
1.5 Setting Up the Development Environmentccooomncrcmnncccrcnnencens 35
151 Preparing YOUI MAC ..rcneieneecesecicseoecesenaeessassssscenas 35
1.5.2 Alternative Options for Swift Development ..., 42
F1i6 SUMMAIY .ottt sssse s sseses s i sres 43
2 Variables 45
2.1 VAKIADIESccooei ettt 45
2.1.1 About Variables and ConsStantscncncenecnecneenesesesisesieees 46
2.1.2 Declaring Simple Variables and Constants ..., 46
213 TYPE ANNOTLIONS .ottt sse e ssse s s e sasessseens 48
2014 COMMENTS et eees 50
2.2 BOOIEAN ...t 52
221 AbOUt BOOIEANS ...t reciesiieees 52
2.2.2 AND OPEIAtOr ... 53
2.2.3 OROperator 55
2.24 Nested Conditions 56

Contents

2.3

24

2.5

2.6

2.7

2.8

2.9

NUMDBELS ...ttt sssssssssssssssssssssssssssssssssssens
231 Numeric Types ... et sen
232 Arithmetic OPrators ... s esesessesesesens
2.3.3 ComMPArisON OPEratorsrceeeeeeneeiseeieerssesssesssessesssesssssesessnessaeces
234 NUMEFIC LItErals .crecereecrecreccesseciesieseseaseennas

Text ... AR AR
240 ADOUL STIHNES oottt ssse s s s s sissesens
242 BasiC SHNG LItErals ..o ceseeseesseessssescesssecssseeesenes
243 Multiline String LIterals ...

244 ESCaApE SEQUENCES ...

245 ConCateNAtioNn ...
246 StringInterpolation ...

247 Checking String Contents

248 SUDSENNGS ..oorvieireeeceecrinecinecrireceiesseesrasecsiaennes

249 MOIfYING STHNEGS wcovuiricrieceieceneteieeissecisessieesse e sessesssseesees s eseseesssesssnns
2410 ComPparison OPEratorsrcrerecmneeisesieeiessssesssesssesssesssessssessnessseses
2411 String/NUmMber CONVEISIONovcveumeruieeeeireceieseesseresssaesssssesssesnessssenessenes
2412 REGUIAT EXPIESSIONS ..cocveuneemnceericrinerieecresecrisnessenesesessaseesesessssssssnessssesssssesssnessen
Dates and TIMEScooccorrinccrerinceeesiessssessseesessssssessssssssssssssssssesssssessscsssssens
251 BaSiC DAta TYPES ..o sisesasesssesssessesssesssessssssssesssessacees
252 Arithmetic Operations ...

253 Comparison ...

254 Measuring Durations

2.5.5 String/Date CONVEISIONoeeeerreereeeeeeeeeseeesssseseesseesesssessssssesesssesesssneseeses
256 Internationalization ...
QUANTIEIESooooeeeseeessesssssssssssssssssasssss s
261 UNIES oo
2.6.2 MEASUIEMENT ... ss e saasen
2.6.3 UNIt CONVEISIONS .ot seesessse s s sssse s sssssssssesssssesens
2.6.4 Arithmetic Operations ... sssesseees
TUPIES ..ottt
271 BaSICTUPIES .o .
2.7.2 NAMEA TUPIES oottt eissecesss s s ses e ssssesseses s sssseessessssssesens
273 Tuple Type ANNOLationsirecnececeesieeessecesesessssesssesesens
2.74 Comparison ... ettt
TYPE AITASESoooereiiercreeiiece e sesiaseesessssssessssssassesssssesssessssssssessssssssssssssssnnecs
2.8 1 BASICTYPES ot nisesssssse s sssessassssesssesssesssesssssssnssssessnessaees

2.8.2 Complex Types

SUMMATY ..o sseessae s sesse st esss st saserees

58
58
65
70
71

74
74
77
77
77
79
80
81
84
87
88
90
95

98

98
100
103
105
107
111

113
113
115
116
117

120
120
122
122
123

124
124
125

125

Contents

3 Collections 127
3.1 Arrays 128
3. 11 Creating Arrays ..o 128
3.1.2 Arrays as Constants ... 129
313 ACCESSING AITAYS oeneereiceirerseeieeeeeesssaesienssesssesssssssesssesssessasessnesssessnens 130
314 Array Derivation ... sssesaesesees 134
315 MOAIfYING AITAYS ..coooiieiiieiiieeeiesiieceasesisesiaee s ssasessssssseessssesessssssesessesees 138
3.1.6 Iterating TRroUGN ArTaYSccreceeceiecrineerieereeesiesesseesesecsesesssessesesees 141
Bi2 LS e 148
321 Creating SetS . 150
3.2.2 Setsas Constants ..., 151
3.23 ACCESSING SEES et 151
324 S DENVALION .. 152
325 Checking fOr SUPEISELScicieecceieerciisecsiiseceeieseesseesessessesssecssseeesenes 157
326 MOdifying Sets ... 158
3.2.7 Iterating Through Setsccccconevmernnne. 160
3.3 DICHIONANIES ...t sessisseesssssasessssssasessssssssessesssssnessees 162
3.3 1 Creating DICtiONAMIESc.occeeneeeeeeriereserireniesiseesesiesssesiseesserssesssesssessssssenes 163
3.3.2 Dictionaries as CONSTANTSccccovrrinceincrinecrecserieseseseseeseseseeessseseeesees 168
3.3.3 Accessing DICtioNaries 168
3.34 Modifying Dictionaries 170
3.3.5 Iterating Through a DIiCtioNary ...ccnecrneeneceneeeiseeeesecessecssesssesees 172
3.4 SUMMAIY ..ot as st ess s eses . 173
4 Control Flow 175
4.1 Conditional Statements 176
411 If-Else . 176
412 Logical Operators 184
4.1.3 Ternary Operator 187
4.1.4 Nil-Coalescing Operatoreneceonecns 189
L5 SWITCN e 192
B2 LOOPS oottt ittt e b 199
421 FOM-INLOOPS oottt sasesesas 199
422 WHRIIE LOOPS ..oooriiiiceceiinccsci s sesass s sssssss s ssssanas 207
4.2.3 RePEAT-WHIlE LOOPS ..coveurirircricrriecricrineesiecsieseaseessessinessssessanessansesssessenees 209

Contents

4.3 Control Transfer Statements ... 211
431 BIEAK oot 211
.32 CONTINUE ittt ssse s s sssssse s i ssssssssssssesasesens 213
433 FallthroUGh oo 215
.34 GUAND ettt b e 218
B4 SUMMATY ... ssese s ssse b seses st essse st sase s 221
5 Functions 223
5.1 What Is @ FUNCHION? ...t ssssesesssssesnessesssisns 223
5.2 Defining and Calling FUNCLIONSccoomrrivimmririinnccrcrineccnerineecsssiessessseses 226
52.1 Defininga Function 226
5.2.2 Calling a Function from the Programcccncnecnnecennecenecens 227
5.2.3 Calling a Function from Another Function ... 229
5.2.4 Variable SCOPe in FUNCLIONSoccceceecirecrieriecriecsiseesisecsisesssseessesssnesees 231
5.3 InputParameters ... s 234
531 NAmMed PAarametersonccieeeerecsesiseessesssssise s sssesssessssssans 234
53.2 Omitting Argument Labelsencreninecrneeninecsenecsieeessesseresnes 237
5.3.3 Default ATBUMENTS ...occeuciecrecerececeeciecsiseesirecrieessaeeseseseiees 239
534 GUArdiNG FUNCLIONSoouiiiccreiiecceenecceiieeseeieceiaseseesessessessesssessesssecsssssessenes 241
5.4 RetUIMING VAIUES ...ttt sessts s ssssssssssssssss s sssssns 242
5.4.1 ReturningSingle Values ... 243
5.4.2 Returning MUltiple VAlUEscncmnecnecrneceinecrneceieees 246
5.5 Variadic Parametersncinneesesienesssssieesssssesessssssesnes 250
5.6 FUNction OVErloadingcinnecinnessessinsesesssiessesssssesnessssssssnens 253
5.7 Inout Parameters ... 255
5.8 Nested FUNCHIONS ...t ssssesesssssesnssesssesns 258
5.9 FUNCLION TYPESoorrricccririrecereiineseessisesssssiessesessssessssessiesessssssessesssssssnsessssssssnnecs 261
59.1 Basic 261
59.2 Function Types as Parameter Types 265
5.9.3 Function Types as REEUIN TYPESccwernerirnerieriesieensenieseecssessssnenes 267
510 CIOSUIESooooeriiecrreiiencesssiessesesssessmessssssssssessssssessssssessessssssessessssssssssssssssesnsassssssennecs 268
5.10.1 ClOSUIE EXPIESSIONS ..ouuevemceemceerecemeeemseeesssensseessssesssseessesssssssssseesssessssesssnessssesees 269
510.2 Trailing ClOSUIES ... ssesessssssesesessssesesssessesessesens 273
5.10.3 ESCAPING ClOSUIESoumrveeverieircriieceiecrierssesseecrassesmenessasecsascnses 274
5104 AUTOCIOSUIES ..oouvimericrireiceieceieceiseesessiessissessssessesessissesssseesesessinees 279

10

Contents

5.11 Generic FUNCLIONS ... sceseaseeseessaane . 280
5111 Generic FUNCLIONS ... 280
511.2 Type CONSTIAINTS ..ot sssessssssssssesssesssessesesesssesssssenes 283
5.11.3 Generic WHere ClaUSES ... ceereecereceieeriseesisesssseessssssssssesssesssesesssesssnesses 288
5.12 SUMMATY ..o ssss s sssse s soss s 289
6 Optionals 201
6.1 What Are Optionals? ...t eseess s sesesseees 291
6.1.1 Tuple Optionals 291
6.1.2 Simple Variable Optionalscccccecc.... 293
6.1.3 Collection Optionals ... sssseessenes 295
6.1.4 Function Optionals e bbb 295
6.2 Optional BiNAiNGcooccooovmiririnnccceiincceeeinneseeesinnesesssiesessssssesssesssssseseessense 296
6.3 Implicitly Unwrapped Optionalsnccnneceenienneccssneens 299
6.4 OptioNal ChAININGocccooomricnc s sssessessssseenn 300
6.5 SUMMATYoooooiccc i .. 302
7 Enumerations 303
7.1 What Are ENUMErations?mesmmessseessssssssessssssee 303
7.2 Declaring ENUMErAtioNscccocomcccceremimiinnnneceesesssssessssssssesssssssssessssnseee 305
721 CASEVAIUES 305
722 RAW VAIUES ettt sssse s sseses s sssssesssessissesens 308
7.2.3 ASSOCIALEA VAIUES ..ottt esisss s s siesesnns 310
7.3 Computed Properties 313
7.4 Functions in ENUMErationsceemsesesssesesssssseseeseens 317
7.5 Iterating over ENUMErationsssnsecceeseeessessssssseee 319
751 Iterating over Case Values 319
7.5.2 Iterating over Raw Values 320
7.5.3 Iterating over Associated ValUEsrnceeeinecrneeeineesesecseeseenns 321
7.6 Recursive ENUMErationsseessnesesssesesssssseseseens 322
7.7 GeNneric ENUMEratioNsciecemminecsmmieeessssesesssesessesssesnesessssesneseens 325
7.8 SUMMANY ..o sass s . 327

11

Contents

8 Structs 329
8.1 Whatls a Struct?ccnccniececesinceeceninne 329
8.2 Declaring Structs ... 331
8.2.1 Basic Struct Declaration 331
8.2.2 MULADIE ProOPerties. ... creecrnecineceinecereceiecrisesseessesecsssenses 332
8.2.3 COMPIEX PrOPEILIES ..ottt ssieesisesseeesesesssssesssessisesesens 333
824 NESTEA SLIUCES oot nnes 334
8.2.5 Default Property Valuesecnecnserinesiesecsisennes 337
8.2.6 OPLIONAI PrOPEITIES ...coeeceeceiceceiciecieceiceiesienecrisesseeesesesssssessseeseessanns 337
8.3 StatiC Properties ...t sene e 339
8.4 COMPULEd PrOPEITIES ...t eeesis st esssss st ess s sesseees 341
BA L GELEEIS ettt 341
842 SIS ettt 343
8.5 FUNCHIONS ... sessassessssseasessenes 345
8.5.1 Initialization ... 345
8.5.2 NonmMuEating FUNCLIONS ...ouvurcrcricereceeerecietiesesenisenisesssessssseesesenisessaeees 347
853 Mutating FUNCtions ... 348
8.5.4 Static FUNCHIONS ..o 349
8.6 ENCAPSUIAtION ...t 351
8.6.1 Private PrOPEITIES ...ttt sasessss s e sasessaeens 352
8.6.2 Private FUNCLIONS ..ottt sssesssesssssesesisessseees 354
8.7 Structs as Function Parameters ..., .. 355
8.8 GENEIIC STIUCEScoooii e seneees 357
8.9 Advanced Featuresmcccccremmmiesnsssseeesssessssessssssseeeeee . 359
8.9.1 Lazy Properties ... 359
8.9.2 Property ObServersconens 362
8.9.3 Property WIapPErsS ... sssese e ss e naeseees 363
8.9.4 SUDSCIIPES oottt eiee e 365
8.9.5 Failable INIHialization ... 367
8.10 SUMMAIY ...ooociiiiceecceieceeeiecesssessssseseesssesesesesesssesesssescesssessess s esssesensaesees . 369
9 Classes 371
9.1 Declaring CIASSESccc..ommrimiomcerimineeerssinesseessiesessssesessssssessessssssesssssssessnssssseens 372
9.1.1 Basic Class Declaration ... 372

12

Contents

9.1.2 Reference SEMANTICS ..ot ssssesens 373
9.1.3 COMPOSITION oot 375
9.2 FUNCHIONS ... esessesessssaisessessasessesssasesssssssnn . 380
921 MULADITILY oottt sssse s ssaserens 380
9.2.2 DEeINtialiZation ..t senene 381
9.2.3 Convenience Initialization 384
9.3 INNEILANCEocoitiisre s sssssssee s ssssssees s ssesees 385
9.3.1 Superclasses and Subclasses ettt 385
9.3.2 OVerriding FUNCLIONS ...ttt seisesssesseseesissessseesisessissesens 392
9.3.3 OVverriding INItIaliZers ... 395
9.3.4 Overriding Computed Properties ... 397
9.3.5 OVerriding SUDSCIIPESceuureueceereeecrrecereceiecrisecsiessesecsesecnens . 399
9.3.6 CASTING ot sae st e 401
9.3.7 ANYODJECE TYPE ..ottt sssse s ssase s seaens 407
9.4 Classes as Function Parameters ... 409
9.5 Memory Management ...t siesesienecs 412
9.51 SEroNg REFEIENCES ...ttt sase s ssesesssssesens 412
9.5.2 WEAK REEIENCES ..ottt sseseesesss s s sesesesens 415
9.5.3 Unowned REferencesneceneceennecnnne. 418
9.6 SUMMATY ...t see st . 419
10 Protocols 421
10.1 Purpose of Protocolseieceeiseseeesisseseesssssseesesssssssssssssssssenneees 421
10.2 Function REQUIrEMENTScooooiiericrceecceeieceeseeesi s eeesesesesssssssanns 425
10.2.1 Nonmutating FUNCHION ... sieessesesesesesssesssssenes 425
10.2.2 Mutating FUNCHION ... aeesees 428
10.2.3 Static FUNCHION e 429
10.3 Initializer ReqQUIremMeNts ...t eeese s sessseenes 431
10.4 Property ReqQUIrementscnecsecesisesesseeesisesessseesssenns 433
1041 Get REQUITEMENT ...t sse s sseesaseseesssesssessenes 433
10.4.2 Get Set ReqQUIremMEeNtccocevceecemeeneeneeiecrerreeireniens 435
10.4.3 Static ReqQUIrEMENT ..ot caees 436
10.5 Implementing Multiple Protocolsoocncenereeeeenene 437
10.6 Checking for Protocol Conformance ... 440
10.7 Protocols as Function Parameterscocomccceoncrcceisnnenseceiesseneens 442
10.7.1 ProtoCOl TYPE .oeeceereieeeneceieeieesnecsissesisesseeessssessasessessssensesssesssssssssnessenesses 442

13

Contents

10.7.2 EXIiStential TYPE ..o 443
10.7.3 Opaque TYPE ... 444
10.8 ASSOCIALEA TYPESoooeerrceirceieceiieeeeiee st ess st eess s ssssses s sssesesesssns 445
10.9 Using Standard Protocolsccncneeeceeesesieeesissesesssseesssanns 448
10.9.1 EQUALADIE ottt ittt een 448
10.9.2 COMPATADIE oottt esisse bbbt esse s een 451
10.9.3 1deNTIfiable ... 454
10.9.4 Hashable 455
10.9.5 CustomStringConvertible 457
J0.10 SUMMAIY ... sese st sassnes . 459
11 Extensions 461
11.1 Extending ENUMErAtioNnsoorcciiieceeineeeeseseseeesss s sessssessesssssssseees 462
11.2 Extending STructs ... eeeesssesecssssneee . 464
11.3 EXtending Classesoocorreiemneereeeeeeeessssssessssssssessssssssesssssneeee . 466
11.4 Extending Protocolsceeieceeiseseessssssesesssssssssssssssseseees 468
11.5 Operator EXTENSIONSoocoiiceierceeecriescesiessasescessseseseeeesissesesesessssones 470
11.5.1 Arithmetic and Boolean Operatorscecnecenececsecees 470
11.5.2 Equality and Comparison OPeratorsceenecenecessecssnecesecees 473
11.5.3 Prefix and Postfix Operatorsoneeovecrnnenens 475
11.5.4 Custom OPEerators ... 476
11.6 Extending Swift Data Types ..., 478
11.6. 1 SAMPIE USAGE ooueveceireiieciieceiecisessieceieessasesseeessssessesessessssssssesssesssssessnesssnesses 478
11.6.2 Avoiding Name CONTICESoccoourieiccirereisecreseceeieceeeeeseseseseesscesseseseees 479
11.7 GeNeric EXLENSIONS ...t sessesesssssssesesssessssesssessessssssssneseens 480
11.8 SUMMALNY ... 482
12 Error Handling 483
12.1 Understanding Errors in SWift ... 484
12,2 TRIOWINE EITOTSoooorveiicriceiieeseeeieaessessesseessessasnsssssssasniesssssssnessssssssnnessssssssnessens 486
1221 Throwing BUilt=in EFTOIS ... ccinecnceinecrisecsieeniecsiesesseesesecssseessesssnesees 486
1222 Throwing CUSTOM EITOIScoocivuereeicceieeereeisecsiaseseeasessesseesesssessesssecsesesseseees 488
12.2.3 Propagating Errors ..., 490

14

Contents

12.3 CAtCRING EITOTScooeoeeeee et cesses s sessss st sssss s sssss s 492
12.3.1 Direct Pattern Matchingcneceeeseessecseeesssesseresees 492
12.3.2 Error Pattern MatChing .. cccseceerecseceinecseseceseeessesssesees 496
12.3.3 Localized Error MESSAZESccureeuecruenereeiessemseeesssessessseesesssssesssecssseseseees 499
1234 OptioNal TIY s sinens 502
12.4 Cleanup With DEFEr ...t eess s ssssssesesssss s 504
12.5 Runtime Checks e 508
12.51 Debug RUNTIME CHECKScoveereciriceiceiecriecsieeriecsiseesisecsesecsiseessessesesees 508
12.5.2 Release RUNTIME ChECKS ... sesaessesssecesseseseees 512
12,6 SUMMALY ... 513
13 File Handling 515
L13.1 TEXE FIlES oot sesseeaesessesecsssssasesssssss s ssssssessesssssnensens 515
13.1.1 REAAING TEXE FIlES oot sise s sisseseseesesesssseessessesesees 516
1312 WIIING TEXE FIlES ..o ceieeseeseesiesesesssess s sesises s seseeeseees 519
13.2 BINAry FIles ... ssesssessss s ssssssssssssssessssssssssssssnnnsee 522
13.2.1 ReadiNG BINArY FIlES ... sieessasesssssessssesssssssssessesesees 523
13.2.2 WIIting BiNAry FIleS ... uceriieceneciecrecriecriecsisesneecsesssssseesesessssssssnessenesses 525
13.3 Working with Common Formatscconcinscresnenecesieseeneens 529
L13.3.1 JSON ettt 529
13.3.2 Property List .. 535
13.4 File System Operations ... rcreseenesescesssesenens 542
1341 EXaMINING FOIARIS ...ovviiiiceieceneceieeereeeieciiecsisesreeesissessaseeseesseneees 542
13.4.2 Manipulating Folders ... 545
1343 EXAMINING FIlES ..ot sssse s e sessssssesasesees 548
13.44 Manipulating FIles ... ierrecierireceieceiessenecseseesssseeseessineens 550
135 SUMMANY oo cesesecesssesesese s sssssescesee s esss s essse e sesanas 554
14 Concurrency 555
14.1 What Is CONCUITENCY?cooomccccirrceiiiiissneecccceeeeieaesssseeeeesessssssssssssssesssssssssssssssssse 555
14.2 ASYNCFUNCHIONSoooocccieisssececececeeeesess e ssssesssss s sssssssssss s 557
1421 Writing ASync FUNCLIONS 557
14.2.2 Calling ASYNC FUNCLIONSouvumceeceicrieriecieecrienieessesecsiscnnes .. 559
14.2.3 Running FUNctions in Parallelceceneceneecsseceoecees 565

15

Contents

14.3 TASKS w.ooooeeecrreeeeieeeeserssieessses s ssssssssss s sssssssss s 569
14.3.1 Creating Tasks ..cecnecenercenecinenns ettt erene 570
1432 TASK GIrOUPS cooeeenerercvineeiseeeieceiseessessiesssssessssessisesssssessasssissssseseesssessssecssnesssnesses 574
14.3.3 TaSK PrIOFTIESoomieeeceeicereeceeieeeceeieceieseseeiessissesesases s sesssssesascseseeesenes 581
143.4 Task Cancellation ... 585
14.4 Async Streams 588
14.4.1 Starting an Async Stream 588
1442 Canceling an ASYNC STreamrnccreneeeesecseaseesessessesssecssseseseees 590
14.43 Handling Async STream Errorsrnceeeneseesesesseessesessesens 591
14.5 Shared State Safety ... 593
1451 Task-Local Values ... 594
1452 Detached TASKScooicreecceiiserceiseceieeeseeiesseaseseessessessseesesasssessscsesessesenes 597
L1453 ACEOIS .o .. 599
1454 SENAADIE TYPES ..o ssase st sssss st essesseseseas 602
J4.6 SUMMATY ... eseeesissesse st sseessisessasesres . 606
15 Modules in Swift 607
15.1 Introduction o Modules ... cecsnesesesnessessseseseens 607
1511 WhatIs @ MOAUIE? ... sees 607
15.1.2 Why Use ModUIES?ccoiiiierisnieenciecsiisesisiesissaenens . 610
15.2 Working with Frameworkscconeseseinsensecsiesseseens 613
15.2.1 Setting Up a New Framework 614
15.2.2 Adding Code to a Framework 615
15.2.3 Building a Frameworkencescssesiessesscsesssesones 616
1524 IMpOrting @ FramMeWOTKcccececriecriecniseeseeesessessseesesecsssesssnessesesees 618
15.3 Working With Packagesnncrinnccreicnneseesinseesesssssssessessiesseseens 621
153.1 Setting Up @ NeW Packagecoorcrencreencceieseceeirecsiiseesesiessevseceesesesenes 622
15.3.2 Adding Code to a Packagecnccnncenn. 624
15.3.3 Importing @ Packagecoernecenncernecreecnnns 624
15,4 ACCESS CONTIONcoooi e sessesseesssssasesssssss s sssssessssssesnessens 629
L1541 OPEN et esse s 629
L1542 PUDIIC ot sss s 629
1543 Internal e . 630
1544 File PrIVATe oo cessecesssesesssesssnses s . 630
L1545 PrIVALE .o 631
155 SUMMANY ..o . 631

16

Contents

16 Conclusion 633
Appendices 635
A UNIETESTING ..ot 635
Al Introduction t0 UNit TESTING w.ceevceecerecrecnecreccecriecrieeriecreeseiseenene 635
A2 Unit Testing With XCTEST ...t seesssecssaseseeaieess 638
A3 Unit Testing with SWift TESTINGociveicreccscccrcececeieeeene 646
A4 SUMMATY e 653
B DEDUGEING ..ot ssesa s ssssasesssssesesssssess s sesseen 655
B.1 DebUGEZING IN XCOUE ..ot esse s sissessesessesesssassesens 655
B.2 Advanced Debugging ToOlsconenncrcnccrnncnnns 662
B.3 SUPPOIt COMMANGS ..o sssessssses e ssssessasessasesssssessanes 670
B.4 SUMMATY oot 671
THE AUTNOT .ttt 673
INdex ..coovuevvunnennns 675

17

Chapter 3
Collections

Collections are sets of variables glued together as logical units.
This chapter will teach you about collection types in Swift.

Now that you've learned about individual variables, you can advance your Swift jour-
ney with collections. In a nutshell, collections are data structures that group multiple
variables into a single, organized container. Nearly all programming languages use
collections—including Swift.

There are three main types of collections, which are the subject of this chapter:

® Arrays are ordered variable lists in which each variable has an index.

m Sets are unordered variable lists in which each value must be unique.

® Dictionaries are key-value pairs in which each key must be unique.

To paraphrase a possible question many of you may have: “But wait a minute—didn’t

we have groups of variables called tuples in the previous chapter? How are collections
different than that?”

That’s a good question! Collections (arrays, sets, dictionaries) and tuples both hold
multiple variables, but they have key differences—which are listed in Table 3.1.

Feature Tuples Collections
Size Fixed size; can’t be changed after Cangrow orshrinkdynamically; you
creation can add/remove elements

Type uniformity | Can group a mix of different types | All elements should have the same

type
Element access | Access using position or named Access using indexes (arrays), itera-
properties tion (sets), or keys (dictionaries)
Use case Best for grouping related variables Best for storing a flexible number of
of different types variables of the same type

Table 3.1 Tuples Versus Collections
Due to such differences, a tuple is not considered a collection type; it is merely a flexible

way of grouping similar variables together. Collections offer more advanced features,
which will be highlighted in this chapter.

127

3 Collections

All clear? Great! Let’s start with arrays, then continue with sets and dictionaries.

Screenshots

The previous chapter offered a coding debut to Swift and Xcode. To ensure that you
could all get used to Xcode and could follow the examples correctly, screenshots of
Xcode outputs were supplied for most of the examples.

Now that everyone is used to how and where Xcode displays outputs, we’ll generally
show the output of statements as inline comments from this point on. Separate results,
such as screenshots or terminal outputs, will be provided only where necessary.

3.1 Arrays

An array in Swift is an ordered collection of elements of the same type, allowing you to
store multiple values efficiently. For instance, if you are programming a queue system
and want to store the customer names ordered by their time of arrival, you could store
their names as strings in an array. In this section, you will learn how to create, access,
and modify arrays, and learn about convenient features offered by Swift.

3.1.1 Creating Arrays

To begin this example, let’s create an array of names for waiting customers, as shown
in Listing 3.1.

var customers = ["Alice", "Bob", "Charlie"]
Listing 3.1 Basic String Array

Check Table 3.2 to see a visual representation of the customers array. Note that indexes
begin with O as usual.

Index Value

0 "Alice"

1 "Bob"

2 "Charlie"

Table 3.2 Visual Representation of Customers Array

And there you go: It’s that easy! Now the customers array holds three distinct string val-
ues, reflecting the names of customers in the queue. As cashiers become available, Alice
would be the first customer to be called, followed by Bob and then Charlie. You'll learn
how to access those values shortly.

128

3 Collections

In Chapter 2, you learned about alternative ways of declaring variables using type infer-
ence and type interpolation. Likewise, there are alternative ways of declaring arrays
using the same methods. Your knowledge of variables will be applicable in that sense.
Listing 3.2 showcases the alternatives.

// Direct value assignment with type inference
var customersl = ["Alice", "Bob", "Charlie"]

// Direct value assignment with type annotation
var customers2: [String] = ["Alice", "Bob", "Charlie"]

// Late value assignment with type annotation
var customers3: [String]
customers3 = ["Alice", "Bob", "Charlie"]

// Alternative syntax
var customers4: Array<String>
customers4 = ["Alice", "Bob", "Charlie"]

Listing 3.2 Different Methods for Array Creation

3.1.2 Arrays as Constants

In Chapter 2, you learned about the var and let keywords. The var keyword is used to
declare a variable, which allows value changes later (mutable), whereas let is used to
declare a constant, which won’t allow its initial value to change (immutable).

The same feature applies to arrays too. An array declared with var would be mutable,
while an array declared with let would be immutable. It is arguably more common to
have mutable arrays, but both states are possible. Listing 3.3 demonstrates both syn-
taxes for number arrays.

var someNumbers = [2, 4, 10, 6, 1, 9]
let lostNumbers = [4, 8, 15, 16, 23, 42]

Listing 3.3 Declaration of Mutable and Immutable Arrays

Our examples so far have featured arrays built out of literals. Naturally, you can build
mutable orimmutable arrays out of variables too—as shown in Listing 3.4, which builds
an immutable array out of numbers. The main prerequisite is to have variables of the
same type; you can’t mix numbers and strings in an array.

let n1 = 4
let n2 =
let n3 = 15

129

3 Collections

let n4 = 16
let n5 = 23
let n6 = 42

let lostNumbers = [n1, n2, n3, n4, n5, n6]

Listing 3.4 Building Array Out of Variables

You can be even more adventurous and build arrays out of complex types as well! Lis-
ting 3.5 showcases an example, which builds a mutable array out of tuples. This code

snippet also highlights the comfort of using type aliases for tuples: Type uniformity for
the array is ensured easily and in a human-readable way.

typealias Person = (name: String, age: Int, married: Bool)

let userl: Person = (name: "John", age: 30, married: true)
let user2: Person = ("Jane", 25, false)

var people: [Person] = [userl, user2]

Listing 3.5 Building Array Out of Tuples

To prevent any confusion, Table 3.3 features a visual representation of the people array.

Index Value
0 (name: "John", age: 30, married: true)
1 (name: "Jane", age: 25, married: false)

Table 3.3 Visual Representation of People Array

Got it? OK, then! Now, let’s go over how to access values in an array.

3.1.3 Accessing Arrays

In this section, you'll learn about accessing arrays in Swift. We'll explore a handful of
options in that regard: basic array functions, index-based element access, and first/last
elements.

Basic Array Functions

Let’s start with array functions. Table 3.4 showcases some basic functions that are used
frequently.

130

3 Collections

Function Result

isEmpty trueif the array is empty; false otherwise

count Number of elements in the array
contains(element) true if the element is in the array; false otherwise

Table 3.4 Basic Array Functions

To see those useful functions in context, check Listing 3.6, which contains the output of
each function as a comment. Now that you're familiar with Swift, this code snippet
should be intuitive and self-explanatory.

let happyCustomers: [String] = ["Alice", "Bob", "Charlie"]
let sadCustomers: [String] = []

happyCustomers.isEmpty // false
happyCustomers.count /] 3
happyCustomers.contains("Alice") // true
happyCustomers.contains("Ann") // false
sadCustomers.isEmpty // true
sadCustomers.count // 0

Listing 3.6 Basic Array Properties

Index-Based Element Access

Now that you know about basic functions, let’s move forward with element access. As
you know, arrays are ordered lists in which each element has an index. Therefore, it’s
natural to expect the core functionality of being able to access elements via their
indexes. As with tuples, indexes start with O and increment by one for each element.
Listing 3.7 demonstrates a code snippet for element access by index, in which you
extract the first and second person in a bank queue. The intuitive bankQueue[n] expres-
sion returns the nth element in the array.

var bankQueue = ["Alice", "Bob", "Charlie"]

let firstInlLine = bankQueue[0] // Alice
let secondInlLine = bankQueue[1] // Bob

Listing 3.7 Array Element Access by Index
Of course, you can use a variable as an index too! In Listing 3.8, the myIndex variable is

used as an array index. Instead of using literal values like 0 or 1, you use the value of
myIndex.

131

3 Collections

var bankQueue = ["Alice", "Bob", "Charlie"]

var myIndex = 0 //0
var myCustomer = bankQueue[myIndex] // Alice

myIndex += 1 //1
myCustomer = bankQueue[myIndex] // Bob

Listing 3.8 Using Variable as Array Index

Check the Index First

If the index value exceeds the number of elements in the array, Swift will naturally gen-
erate an error. In Listing 3.8, bankQueue[0] (having the value "Alice") or bankQueue[1]
(having the value "Bob") or bankQueue[2] (having the value "Charlie")is fine. However,
bankQueue[3] would generate an error because there is no such element.

To prevent such errors, you should always ensure that the index is less than the element
count. In this example, the if myIndex < bankQueue.count expression can be placed as a
condition before the element access.

Although you will learn much more about if statements in Chapter 4, this heads-up
should be a useful detail to have in advance.

First and Last

Access via indexes is cool, but sometimes you simply want to access the first or last ele-
ment of an array. Swift arrays feature two shortcut functions for that—namely, first
and last. These are demonstrated in Listing 3.9.

var bankQueue = ["Alice", "Bob", "Charlie"]
let firstInQueue = bankQueue.first! // Alice
let lastInQueue = bankQueue.last! // Charlie

Listing 3.9 Accessing First and Last Elements of Array
Beyond this basic syntax, first and last also feature a search functionality. For exam-
ple, if you have a string array, then you can invoke string functions against the elements

and look for matches. In Listing 3.10, you run a search in bankQueue to find the first and
last customers whose names contain the character 1.

var bankQueue = ["Alice", "Bob", "Charlie"]

let firstWithL = bankQueue.first(where: { $0.contains("1") }) // Alice

132

3 Collections

let lastWithL = bankQueue.last(where: { $0.contains("1") }) // Charlie
let firstWithX = bankQueue.first(where: { $0.contains("x") }) // nil

Listing 3.10 Finding First/Last Search Results in String Array
As expected, "Alice" is returned as the first string with 1 and "Charlie" is returned as

the last string with 1. When we search for string containing the character x, we get nil
as the result simply because there is none.

Closures

{ $0.contains("1") } and similar expressions are closures, which are self-contained
blocks of code passed as parameters. They are similar to lambda functions in other pro-
gramming languages. You'll learn more about closures in Chapter 5. For now, you can
accept them as common syntax elements and keep your focus on collections.

Naturally, the search functionality can be invoked for other data types too. Listing 3.11
demonstrates a code snippet in which a number search is executed using the < 20 con-
dition.

var bingoNumbers = [59, 19, 36, 55, 28]

let firstSmallNumber = bingoNumbers.first(where: {$0 < 20 }) // 19

Listing 3.11 Finding First Search Result in Number Array

You can get a little more adventurous and search through an array of complex types as
well—such as tuples. In Listing 3.12, there is a patientQueue built out of tuples, in which
the name and age of each patient is declared. To find the oldest and youngest patient, you
can search through the array using the age property of the tuples.

typealias Person = (name: String, age: Int)
var patientQueue: [Person] = [

(name: "John", age: 30),

(name: "Jane", age: 15),

(name: "Jim", age: 80),
(name: "Jill", age: 20)]

let firstOldPatient = patientQueue.first(where: { $0.age > 65 }) // Jim
let firstYoungPatient = patientQueue.first { $0.age < 18 } // Jane

Listing 3.12 Finding First Search Result in Tuple Array

On the last line of the code snippet, you can also see the shortcut version of running a
search; as shown, the parentheses and where: prefix can be omitted if you like.

133

3 Collections

If you don’t want to fetch the resulting element and only want to find the index, you
can use firstIndex and lastIndex functions justlike you would use first and last. Listing
3.13 demonstrates using those functions to find the indexes of the first/last elements
for the given search conditions.

typealias Person = (name: String, age: Int)

var patientQueue: [Person] = [
(name: "John", age: 30),
(name: "Jane", age: 15),
(name: "Jim", age: 80),
(name: "Jill", age: 20)]

let firstOldIndex = patientQueue.firstIndex { $0.age > 65 } // 2 (3im)
let lastJIndex = patientQueue.lastIndex { $0.name.contains("3") } // 3 (3ill)

Listing 3.13 Demonstration of firstindex and lastindex Functions

3.1.4 Array Derivation

In Chapter 2, we looked at alternative ways to extract substrings from strings, remem-
ber? Swift features similar functions to derive new subarrays from existing arrays. In
this section, we’ll go through some significant functions for that purpose.

Slicing

The most basic method of array derivation is to slice a subarray from an existing array.
For example, if you have an array of seven elements, then we can extract the elements
between1land 3 as anew array. Listing 3.14 demonstrates an example in which workdays
are extracted from weekdays using indexes.

let weekDays = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"]
let workDays = Array(weekDays[1...5]) // Mon, Tue, Wed, Thu, Fri

Listing 3.14 Slicing Out Subarrays

In the end, workDays becomes an independent array, usable on its own like any other
array—just like extracted substrings.

Filter

Another popular technique is filtering, in which you filter values of a bigger array to
extract values as a smaller array. Listing 3.15 features a basic code snippet in which you
filter a number array twice. In this code snippet, $0 represents elements of the main
array.

134

3 Collections

let numbers = [1, 2, 3, 4, 5]
let bigNumbers = numbers.filter { $0 > 3 } /] 4,5
let evenNumbers = numbers.filter { $0 % 2 == 0 } /]2, 4

Listing 3.15 Filtering Numbers

In the end, bigNumber contained numbers greater than 3 and evenNumbers contained
even numbers; both are individual arrays of their own.

The same technique can be used with strings as well. In Listing 3.16, city names are fil-
tered using their character counts, and short city names are extracted into a new array
called shortCities. Once again, $0 represents elements of the main array. We could have
used any string function, but this example features $0. count to filter over string length.

let cities = ["New York", "San Francisco", "Los Angeles", "Chicago"]
let shortCities = cities.filter { $0.count < 10 } // New York, Chicago

Listing 3.16 Filtering Strings
Why not get a bit more adventurous and filter over tuples, too? The core logic of the fil-
tering won't change—so Listing 3.17 should be pretty easy to follow!
typealias Person = (name: String, age: Int)
let people: [Person] = [
("Alice", 30),
("Bob", 25),

("Charlie", 16),
("David", 14)

let youngPeople = people.filter { $0.age < 18 } // Charlie, David

Listing 3.17 Filtering Tuples

Naturally, filters may contain multiple logical conditions too—as demonstrated in Lis-
ting 3.18.

let numbers = [231, 12, 334, 423, 25]
let smallOddNumbers = numbers.filter { $0 < 100 8% $0 % 2 == 1 } // 25

Listing 3.18 Filter with Multiple Conditions
Here we have two distinct conditions, bound together with the 8& operator. Swift will

process those conditions sequentially as demonstrated in Table 3.5 and produce the
result shown: an array with a single element.

135

3 Collections

Condition Meaning Result
$0 < 100 Number must be less than 100 [12, 25]
$0%2==1 Number must be odd [25]

Table 3.5 Multicondition Filter Process

Map

Mapping is a technique that returns a new array of the same size but with transformed
elements. Listing 3.19 features a demonstration that uses the map function to create a
new array containing numbers multiplied by 2.

let numbers = [1, 2, 3, 4, 5]
let doubleNumbers = numbers.map { $0 * 2 } // 2, 4, 6, 8, 10

Listing 3.19 Mapping Numbers

As usual, $0 represents each element in the array. The map { $0 * 2 } expression declares
the intention to multiply each number by 2 and return the results as a new array.

As a second demonstration, Listing 3.20 features a map operation on strings. This time,
map { $0.uppercased() } builds a new array out of students, with each name converted to
uppercase.

let students = ["Alice", "Bob", "Charlie"]
let upperStudens = students.map { $0.uppercased() } // ALICE, BOB, CHARLIE

Listing 3.20 Mapping Strings

Reduce

Arrays feature a useful function called reduce, which is called when you want to run a
certain calculation over array elements and return a single result.

Listing 3.21 features a basic example that calculates the sum of all elements in an array.

let numbers = [1, 2, 3, 4, 5]
let sum = numbers.reduce(0) { $0 + $1 } // 15

Listing 3.21 Summing Numbers in Array
Here, (0) is the initial value of the result, and { $0 + $1 } means that you want to add up

each number until the array is finished. Table 3.6 showcases the detailed iteration exe-
cuted by the reduce function.

136

3 Collections

Iteration Current Result Operation New Result
1 0 +1 1

2 1 +2 3

3 3 +3 6

4 6 +4 10

5 10 +5 15

Table 3.6 Number Iteration Executed by reduce Function

This useful function can be applied to any array summarization, such as concatenating
strings in an array. Listing 3.22 demonstrates this approach through a clean example,
followed by its detailed iteration in Table 3.7.

let words = ["Hello", "world", "!I"]

let sentence

words.reduce("") { $0 + " " + $1 }

Listing 3.22 Concatenating Strings in Array

// Hello world !

Iteration Current Result Operation New Result

1 . +""+ "Hello" " Hello"

2 "Hello" +""+ "world" "Helloworld"
3 "Helloworld" + "Helloworld !"

Table 3.7 String Iteration Executed by reduce Function

Naturally, you also can supply an initial value and use other functions within the reduce
clause. In Listing 3.23, we debut the result with the initial value "I say:" and continue by
applying the uppercased version of each string in words.

let words = ["Hello", "world", "!1"]

let sn = words.reduce("T say:") { $0 + " " + $1l.uppercased() } // I say: HELLO
WORLD !

Listing 3.23 Using String Functions While Reducing
Join
You also have the option of joining two existing arrays to build a new one. How cool is

that? You can simply use the + operator to combine two arrays, as demonstrated in Lis-
ting 3.24. You can imagine this technique as akin to concatenating the arrays.

137

3 Collections

let guestsOnTime = ["Alice", "Bob"]
let guestslate = ["David", "Eve"]
let allGuests = guestsOnTime + guestslate // Alice, Bob, David, Eve

Listing 3.24 Joining Arrays Using +

The same technique can be applied to arrays with elements of other types too. Just for
the fun of it, Listing 3.25 demonstrates the join operation of two arrays containing
Measurement objects. In the end, allWeights will contain four Measurement values—which
is the joint output of someWeights and otherWeights.

import Foundation
let weightl = Measurement(value: 100, unit: UnitMass.kilograms)

let weight2 = Measurement(value: 1, unit: UnitMass.grams)
let someWeights = [weightl, weight2]

let weight3 = Measurement(value: 44, unit: UnitMass.kilograms)
let weight4 = Measurement(value: 12, unit: UnitMass.grams)
let otherWeights = [weight3, weight4]

let alllWeights = somelWeights + otherWeights // 4 elements

Listing 3.25 Joining Arrays with Measurement Values

This fun example concludes our content on array derivation. Now you know how to cre-
ate, access, and derive arrays. The next natural step is to modify existing arrays, which
will be covered in the next section.

3.1.5 Modifying Arrays

In this section, you will learn how to modify arrays. Operations like appending new ele-
ments or modifying or deleting existing elements will be covered.

An initial reminder, though: Modifiable arrays must have been declared using a var
statement. As you know, let declarations create static/constant arrays that can’t be
changed later. Therefore, modification examples in this section will inevitably declare
arrays using var statements.

Appending Elements

Swift features multiple methods to append elements to an array, which you’ll discover
next. The most basic and straightforward way is to simply invoke the append function
of the array object. In Listing 3.26, after the initial declaration of numbers as [1, 2, 3], we
execute the append(4) function, extending the array as [1, 2, 3, 4].

138

3 Collections

var numbers = [1, 2, 3]
numbers.append(4) // [1, 2, 3, 4]

Listing 3.26 Appending Array Element Using append Function

That’s pretty easy, right? It’s almost plain English! Now, what if you wanted to append
multiple elements instead of just one? Listing 3.27 demonstrates how to do so. For this
purpose, you can still use the append function—but instead of providing a single ele-
ment as the parameter, you provide the contentsOf: [4, 5] parameter, indicating the
elements you want to append.

var numbers = [1, 2, 3]
numbers.append(contentsOf: [4, 5]) // [1, 2, 3, 4, 5]

Listing 3.27 Appending Multiple Elements to Array Using append Function

As a shortcut, you can also make use of the += operator, which you used with strings in
Chapter 2. The same logic applies: You can concatenate a subarray to a main array, like
concatenating strings. Check the demonstration in Listing 3.28.

var numbers = [1, 2, 3]
numbers += (4, 5] // [1, 2, 3, 4, 5]

Listing 3.28 Appending Multiple Elements to Array Using += Operator

The examples so far have focused on appending elements to the tail of an array. What
if you want to insert elements at a specific index? For that purpose, you should use the
insert function of the array object, as demonstrated in Listing 3.29. This function
accepts two parameters: the element to insert ("Ann") and the insertion index (2).

var people = ["John", "Mary", "Alice"]
people.insert("Ann", at: 2) // John, Mary, Ann, Alice

Listing 3.29 Inserting Element at Specific Index

You know by now that indexes begin with O. That’s why the statement at: 2 guided Swift
to insert "Ann" after "Mary": Counting O, 1, 2 makes "Ann" the third element of the array.

To insert multiple elements at a specific index, you should modify the parameters of the
insert function just as you did with the append function. Check the intuitive demonstra-
tion in Listing 3.30, which makes use of the contentsOf parameter once again.

var people = ["John", "Mary", "Alice"]
people.insert(contentsOf: ["Ann", "Bob"], at: 2) // John, Mary, Ann, Bob, Alice

Listing 3.30 Inserting Multiple Elements at Specific Index

139

3 Collections

Modifying Elements

Modifying an element of an array is as simple as inserting it. Check Listing 3.31, in which
you change the second element of the array from "Banana” to "Blueberry".

var fruits = ["Apple", "Banana", "Cherry"]
fruits[1] = "Blueberry" // Apple, Blueberry, Cherry

Listing 3.31 Modification of Array Element
To get a bit more adventurous, Listing 3.32 features another example of array element
modification. Although it uses the exact same approach, the array contains tuples

instead of a basic data type. But if you check the very last line, you will see that the mod-
ification syntax doesn’t change at all!

typealias Instrument = (name: String, price: Double)
var instruments: [Instrument] = []

instruments.append((name: "Guitar", price: 100)) // Guitar

instruments.append((name: "Drums", price: 300)) // Guitar, Drums
instruments.append((name: "Piano", price: 200)) // Guitar, Drums, Piano
instruments[2] = (name: "Keyboard", price: 150) // Guitar, Drums, Keyboard

Listing 3.32 Modification of Array Tuple

Deleting Elements

Deleting elements from an array is equally easy. Array objects feature ready-to-use
functions with the remove prefix, which are listed in Table 3.8.

Function Purpose

removeFirst(n) Removes the first n elements of the array
removelast(n) Removes the last n elements of the array
remove(at: n) Removes the nth element of the array
removeAll() Clears the array completely

Table 3.8 Array Functions for Element Removal

A demonstration of those functions is provided in Listing 3.33. The syntax and results
are self-explanatory.

var fibo = [1, 2, 3, 5, 8, 13, 21, 34, 55]
fibo.removeFirst(3) // 5, 8, 13, 21, 34, 55
fibo.removelast(2) //'5, 8, 13, 21

140

3 Collections

fibo.remove(at: 2) //5, 8, 21
fibo.removeAll() // Empty

Listing 3.33 Demonstration of Element Deletion from Array

One cool trick is to add a where condition to removeAll. Listing 3.34 demonstrates how to
delete elements with a value greater than 10 from the array fibo. The syntax of the where
condition is the same as in previous similar examples.

var fibo = [1, 2, 3, 5, 8, 13, 21, 34, 55]
fibo.removeAll (where: { $0 > 10 }) // 1, 2, 3, 5, 8

Listing 3.34 removeAll Function with where Condition

Sorting Arrays

Finally, we will show you how to sort arrays. And once again, it’s very easy: You simply
invoke the sort function of the array object. Listing 3.35 demonstrates how to sort an
array in ascending and descending order.

var numbers = [5, 2, 8, 3, 1]
numbers. sort() // 1, 2,3, 5,8
numbers.sort(by: >) // 8, 5, 3, 2, 1

Listing 3.35 Sorting Array in Swift

A similar function is sorted, which does almost the same job as sort. However, instead
of mutating the original array, it returns a new sorted array. Check Listing 3.36 for a
demonstration.

var numbers = [5, 2, 8, 3, 1]
var sortedNumbers = numbers.sorted() // 1, 2, 3, 5, 8

Listing 3.36 Creating New Sorted Array

The next step is array iteration, in which you loop through the elements of an array for
bulk operations.

3.1.6 lterating Through Arrays

When you have an array at hand, it is a natural expectation to visit each element
sequentially. In many cases, this is the reason to build an array in the first place. Imagine
an array of phone numbers, in which you have to call each customer in line sequen-
tially. This would require iterating through the numbers in the array, right?

For such cases, Swift offers various methods to iterate through the elements of an array.
In this section, we will discuss those iteration methods and their differences.

141

3 Collections

For Clause

The most fundamental approach to array iteration is to use a for .. in.. statement. Check
the demonstration in Listing 3.37, which iterates through phone numbers.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
print(phone)
¥

Listing 3.37 Iteration Through Phone Numbers Using for Statement

The initial part of this code snippet is familiar: The phones array has been declared with
some mock values. The next part is the interesting one! Using the for phone in phones
statement, you tell Swift to iterate through all elements in phones, assigning a new value
to the phone variable on every iteration. The code block between { and } will be executed
for each phone sequentially.

That was a mouthful; let’s break it down now! Table 3.9 showcases each iteration, includ-
ing the value assigned to phone and how print(phone) looks.

Iteration Value in Phone Print Statement Output

1 "123-4567" print("123-4567") 123-4567
2 "890-1234" print("890-1234") 890-1234
3 "543-2109" print("543-2109") 543-2109
4 "234-5678" print("234-5678") 234-5678

Table 3.9 Iteration Broken Down

It should be clear now! For each iteration, phone was assigned a new value, pulled from
phones sequentially. The terminal output is shown in Figure 3.1 for even more clarity.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
print(phone)
5 1

»)

a >

123-4567
890-1234
543-2109
234-5678

Figure 3.1 Output of for Iteration

142

3 Collections

Naturally, the code between { and } can be as complex as needed, but the basic idea
doesn’t change: The code between { and } is executed with every phone value through
the iteration. Listing 3.38 demonstrates the same iteration with slightly more complex
code, making use of features you learned about before.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
let cleanPhone = phone.replacing("-", with: "")
let operatorText = "You can dial \(cleanPhone) now"
print(operatorText)

}
Listing 3.38 Iteration with Slightly More Complex Code

As evident in the output in Figure 3.2, the iteration ran the same way as before—even if
the code between { and } was a little different.

var phones = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {

let cleanPhone = phone.replacing("-", with: "")

let operatorText = "You can dial \(cleanPhone) now"
>
You can dial 1234567 now
You can dial 8901234 now
You can dial 5432109 now
You can dial 2345678 now

Figure 3.2 Output for Slightly More Complex Iteration

Using Enumerated

Arrays contain a cool function called enumerated(). When this function is used in a for
iteration, you get access to the element and its index simultaneously. The example in
Listing 3.39 invokes this functionality: Instead of executing the for iteration against the
bankQueue array itself, you execute it against bankQueue.enumerated(). In return, you get
access to the so-called queueEntry object, which contains the element index in queueEntry.
offset (sequentially, 0, 1, 2) and the element value in queueEntry.element (sequentially,
"James", "John", "Robert").

var bankQueue = ["James", "John", "Robert"]

for queueEntry in bankQueue.enumerated() {
print(queuekntry.offset)
print(queueEntry.element)

¥
Listing 3.39 Accessing Index and Element Throughout Iteration

143

3 Collections

A breakdown of this code snippet is provided in Table 3.10, where the operation in each

iteration is shown clearly.

Iteration queueEntry.offset queueEntry.element Expected Output
1 0 "James" 0
James
2 1 "John" 1
John
3 2 "Robert" 2
Robert

Table 3.10 Enumerated Iteration Broken Down

It’s time to test the code and see if you get the expected result. Check the playground

output in Figure 3.3: Things seem to be OK!

var bankQueue = ["James", "John", "Robert"]
for queueEntry in bankQueue.enumerated() {
print(queueEntry.offset)
print(queueEntry.element)
}
" >
(%]
James
1
John
2
Robert

Figure 3.3 Output of Enumerated Iteration

Iteration Control Flow

It is possible to manipulate the iteration flow using keywords like break or continue,
with which you might be familiar from other programming languages. This concept will

be covered in Chapter 4, which is focused on control flow.

As stated before, the code between { and } can be as complex as needed. Listing 3.40 fea-
tures the same iteration with slightly more complex code, in which you prepare a more

intuitive cashier text for each customer in bankQueue.

144

3 Collections

var bankQueue = ["James", "John", "Robert"]

for queueEntry in bankQueue.enumerated() {
let number = queueEntry.offset + 1
let name = queueEntry.element
let cashierText = "Call \(number). customer: \(name)"
print(cashierText)

¥
Listing 3.40 Slightly More Complex Enumerated Iteration

The output of this code snippet is shown in Figure 3.4. Once again, the core iteration
didn’t change at all; we merely changed the displayed output.

var bankQueue = ["James", "John", "Robert"]

for queueEntry in bankQueue.enumerated() {
let number = queueEntry.offset + 1
let name = queueEntry.element
let cashierText = "Call \(number). customer: \(name)"
print(cashierText)

" >

Call 1. customer: James
Call 2. customer: John

Call 3. customer: Robert

Figure 3.4 Output Containing Intuitive Cashier Text

Where Conditions

Sofar, we’'ve gone through iterations in which we access all elements in an array sequen-
tially. What if we want to access only some of them? There will be cases in which you
only want to sequentially access elements matching a certain condition.

In such scenarios, you can add a where clause to the for iteration, containing the desired
conditions. It works just like array filters, with a slightly different syntax.

Listing 3.41 demonstrates such an example. In this code snippet, numbers is a regular
array. While iterating through numbers, you simply add the condition where number > 100.
As aresult, only values greater than 100 are processed through the iteration, and thus it
only prints the values 435 and 522.

145

3 Collections

let numbers = [1, 25, 38, 435, 522]

for number in numbers where number > 100 {
print(number) // 435, 522
}

Listing 3.41 Iterating with where Condition

All kinds of logical operators and parenthesis can be used in a where condition. Listing
3.42 demonstrates an example in which a where clause with two conditions is present.

let people = ["John", "Ann", "Alice", "Bob"]
for person in people
where person.count > 3 && person.hasPrefix("A") {

print(person) // Alice
¥

Listing 3.42 Complex where Condition with Logical Operators

Abreakdown of those where conditions is provided in Table 3.11. In the end, Swift is only
able to print the value "Alice".

Initial Elements Condition Eliminated Remaining
John person.count >3 Ann John

Ann Bob Alice
Alice

Bob

John person.hasPrefix("A") John Alice
Alice

Table 3.11 Breakdown of where Conditions

Such where conditions, and iterations in general, can be used with more complex data
types too—like tuples. Listing 3.43 demonstrates an example in which an iteration
through a tuple array is executed —including a where condition, too!

typealias Person = (name: String, age: Int)
var clients: [Person] = [
(name: "Alice", age: 30),

(name: "Bob", age: 25),
(name: "Charlie", age: 22)]

146

3 Collections

for client in clients where client.age >= 25 {
print("\(client.name) is \(client.age) years old")

¥
Listing 3.43 Iteration Through Tuple Array

As you can see, the core syntax of the iteration didn’t change at all; we simply threw in
some tuples as a mental exercise. The output of this iteration is shown in Figure 3.5.

typealias Person = (name: String, age: Int)

var clients: [Person] = [
(name: "Alice", age: 30),
(name: "Bob", age: 25),
(name: "Charlie", age: 22)]

for client in clients where client.age >= 25 {
print("\(client.name) is \(client.age) years old")
}
>
Alice is 30 years old
Bob is 25 years old

Figure 3.5 Output of Tuple Iteration

Randomization

Swift empowers programmers with options for random access to array elements. Lis-
ting 3.44 features an example in which you access a random element in fruits. Every

time you execute this code, randomFruit gets a random value, such as "Apple", "Cherry",
or "Orange".

let fruits = ["Apple", "Banana", "Cherry", "Mango", "Orange"]
let randomFruit = fruits.randomElement()

Listing 3.44 Picking Random Array Element

This code could be used, for example, in an app that suggests a random daily fruit to
consume.

Another randomization feature lets you shuffle elements in an array. Just like shuffling
cards before starting a card game, you can shuffle an array to randomly change the posi-
tions of its elements. Listing 3.45 features such an example, in which you use shuffle()
to shuffle the names in participants and declare the first three as winners. It’s a handy
feature for a lottery app, right?

// List of participants
var participants = ["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace"]

// Shuffle the array
participants.shuffle()

147

3 Collections

// Get the first three as winners
let winners = participants.prefix(3)

// Print the winners

print("Winners:")

for (index, winner) in winners.enumerated() {
print("\(index + 1). \(winner)")

¥

Listing 3.45 Array Shuffle Example

Due to the nature of randomization, you will get a different output every time you exe-
cute this code. Nevertheless, Figure 3.6 demonstrates a possible output in which three
random participants were declared as winners. Apparently, those names were in the
first three positions in participants when participants.shuffle() was executed.

a p

Winners:
1. Frank
2. Bob

3. Alice

// List of participants
var participants = ["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace"l]

// Shuffle the array
participants.shuffle()

// Get the first three as winners
let winners = participants.prefix(3)

// Print the winners

print("wWinners:")

for (index, winner) in winners.enumerated() {
print("\(index + 1). \(winner)")

s

Figure 3.6 One Possible Shuffle Output

That final example concluded our content on arrays, one of three major collection
types, along with sets and dictionaries. We will continue the journey with sets, which
are similar to arrays but bring the uniqueness constraint to the table. Take a break, get
some fresh air if you need to, and see you there!

3.2 Sets

In Swift, a set is a collection, like an array; they share some common ground. The core
difference is that a set is an unordered collection of unique values. Unlike arrays, sets
don’t allow duplicate elements and don’t guarantee a specific order by index—but they
promise a very high access speed, which is a significant benefit in large datasets.

148

3 Collections

Table 3.12 describes the differences between arrays and sets clearly.

Feature Array Set

Order Ordered Unordered
Duplicate values Allowed Not allowed
Access by index Allowed Not allowed
Element lookup speed Slow Fast

Table 3.12 Comparison Between Arrays and Sets

The selling points of a set are basically element uniqueness and access speed. Here are
some general suggestions for working with a set:

® Use an array when you need ordered elements with possible duplicates.

® Use a set when you need fast lookup with unique elements.

To strengthen your understanding, Table 3.13 contrasts some use cases in which either
an array or set would be preferred as an element container.

Case Preference | Reason

Shopping cart Array Duplicate items should be allowed.

Queue Array Order matters and a queue is accessed in entry order.

Member list Set Members are unique and access by user name would be
fast.

Product categories | Set Categories are unique and order doesn’t matter.

Table 3.13 Use Cases for Arrays and Sets

As you can see, arrays and sets can't fully replace each other. You could attempt to use
an array instead of a set, but it won’t ensure uniqueness and access speed would be
unnecessarily slow. Likewise, you could attempt to use a set instead of an array, but your
app will fail on duplicate elements and won't follow the given element order.

Why Are Sets Faster?

Sets are faster than arrays for lookups because they use hashing, while arrays use linear
searches.

In more common terms, when checking if an element exists in an array, Swift must scan
each item one by one until it finds a correspondence between elements. The runtime
cost may be negligible in small datasets, but it would make a significant difference in
large datasets.

149

3 Collections

Sets, meanwhile, use a hash table to help spot elements, which allows for instant
lookup. The runtime cost is constant regardless of the set size. When an element is
added to a set, Swift (secretly) computes a hash value, which is used as in index. When
checking for an element, Swift directly jumps to the hashed index instead of scanning
every item.

Now that you have a general notion of sets, we can move forward to hands-on examples
to introduce the corresponding syntax and further features.

3.2.1 Creating Sets

Set declarations can be made using a familiar syntax, like that for arrays. No big surprise,
right? Listing 3.46 showcases alternative methods for set declarations. Here, setl, set2,
and set3 will end up having the exact same elements.

// Explicit type declaration
var setl = Set<Int>()
setl.insert(1)
setl.insert(2)
setl.insert(3)

// Explicit type declaration with values
var set2: Set<Int> = [1, 2, 3]

// Type inference
var set3 = Set([1, 2, 3])

Listing 3.46 Alternative Methods of Set Declaration

In the first part, you explicitly declare the type of set1 as Set<Int>() and insert elements
afterward. In the second part, you declare the type of set2—but insert the initial ele-
ments immediately. Finally, set3 is declared using type inference, which means that
you let Swift “guess” the types of elements on your behalf.

Insert Versus Append

You might have caught a syntax difference here. In arrays, new elements are added via
the array.append function. In sets, new elements are added via the set.insert func-
tion. Although their purposes are similar, the difference is worth noting.

Note that array.append will add the new element to the tail of the array because an
array is an ordered collection. However, set.insert will do the hash calculations and
add the new element “somewhere”; no particular order is guaranteed.

150

3 Collections

You can create a set from an array as well! The catch is that you will lose duplicate entries
in the process. Whether that’s desirable or not depends on the use case. Listing 3.47 fea-
tures such a conversion.

var allStudents = ["Alice", "Bob", "Charlie", "Bob", "Alice"]
var uniqueStudents = Set(allStudents) // Alice, Charlie, Bob

Listing 3.47 Array to Set Conversion

3.2.2 Sets as Constants

As with any other data type, sets can be declared as mutable via var or immutable (read-
only) via let. To keep this section self-contained, Listing 3.48 demonstrates both decla-
ration types.

var changeableSet = Set([1, 2, 3, 4, 5])
let readOnlySet = Set([1, 2, 3, 4, 5])

Listing 3.48 Set Declaration as Constant

In this example, you can modify the contents of changeableSet in due course—because
it was declared to be mutable using var. On the other hand, readOnlySet can’t be modi-
fied later—because it was declared to be immutable using let.

3.2.3 Accessing Sets

In this section, you will learn how to access set elements. We are going to cover basic set
functions and how to access the first element of a set.

Basic Set Functions

First things first: Basic array functions, which were covered in Section 3.1.3, are available
with sets too! To keep this section self-contained, Table 3.14 showcases those functions.

Function Result

isEmpty true if the set is empty; false otherwise

count Number of elements in the set
contains(element) true if the element is in the set; false otherwise

Table 3.14 Basic Set Functions

To see those functions in context, look at Listing 3.49; the functionality is quite intui-
tive.

151

3 Collections

var animals: Set<String> = ["dog", "cat", "bird", "elephant"]

animals.isEmpty // false
animals.count // 4

animals.contains("bird") // true
animals.contains("snake") // false

Listing 3.49 Demonstration of Basic Set Functions

A cool feature is to use a where clause within the contains function. Because you're
already familiar with where clauses in Swift, the syntax of the demonstration in Listing
3.50 should be intuitive.

var animals: Set<String> = ["dog", "cat", "bird", "elephant"]
animals.contains(where: { $0.count > 5 }) // true due to "elephant"
animals.contains(where: { $0.contains("x") }) // false

Listing 3.50 Where Clause Within contains Function

First Function

Because sets are unordered collection types, they don’t support index-based access. A
supported complementary function is first, which returns the “first” element in the
set. Be careful though: Because sets are not ordered like arrays, Swift doesn’t guarantee
that first returns the initial inserted element; instead, it simply returns an element
based on the internal order of the set, which could be any of them.

Having that said, Listing 3.51 demonstrates the usage of the first function. Go ahead
and try it: Every time you execute this code snippet, you should get a different element
because the calculated hash values will change on each execution—and therefore, so
does the “first” element behind the scenes.

var numbers: Set = [10, 20, 30, 40, 50]
numbers.first! // Output: Could be any of 10, 20, 30, 40, 50

Listing 3.51 Demonstration of first Function for Sets

3.2.4 Set Derivation

Just like arrays, sets feature functions through which you can derive new sets. They are
mostly similar to those for array derivation—with the obvious deviation that index-
based access would not make sense. In this section, we will walk through the available
derivation functions for sets.

152

3 Collections

Filter

Set filters share the same logic and syntax as array filters. The filter function allows
youto create a subset of a set based on a condition. Listing 3.52 showcases two examples,
in which you extract even numbers and fruits starting with the letter A.

let numbers: Set = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
let evenNumbers = numbers.filter { $0 % 2 == 0 }
print(evenNumbers) // 2, 4, 6, 8, 10; order varies

let fruits: Set = ["Apple", "Banana", "Cherry", "Avocado", "Blueberry"]
let afruits = fruits.filter { $0.hasPrefix("A") }
print(aFruits) // Apple, Avocado; order varies

Listing 3.52 Set Filtering Demonstration

Although this code will work just fine, you can’t ensure the element order in evenNumbers
and afruits; Swift will order them as it pleases, based on hash values.

Map

Like it is in arrays, the map function for sets in Swift is used to transform each element
in the set into a new value. The output is a new set containing those new values. Listing
3.53 features two mapping examples.

let numbers: Set = [1, 2, 3, 4, 5]
let squaredNumbers = numbers.map { $0 * $0 }
print(squaredNumbers) // Output: [1, 4, 9, 16, 25] (order varies)

let fruits: Set = ["Apple", "Banana"]
let uppercasedFruits = fruits.map { $0.uppercased() }
print(uppercasedfruits) // Output: ["APPLE", "BANANA"] (order varies)

Listing 3.53 Set Mapping Demonstration

In the first example, you square the elements in numbers and collect them into a new set
called squaredNumbers. In the second example, you convert the elements in fruits to
uppercase and collect them into a new set called uppercasedFruits. As usual, element
order is undeterminable in either sample.

Reduce

Like in arrays, the reduce function for sets in Swift allows you to combine all elements
in a set into a single value. The detailed breakdown for this function was provided in
Section 3.1.4 already, so you can jump directly into a couple of examples provided in Lis-
ting 3.54.

153

3 Collections

let numbers: Set = [10, 20, 30, 40, 50]
let sum = numbers.reduce(0) { $0 + $1 }
print(sum) // Output: 150

let words: Set = ["Follow", "the", "white", "rabbit"]
let sentence = words.reduce("") { $0 + " " + $1 }
print(sentence) // Output: " the Follow rabbit white" (order varies)

Listing 3.54 Set reduce Demonstration

In the first part, you have a set of numbers. By invoking numbers.reduce(0) { $0 + $1 },
you tell Swift to sum those numbers, the result of which is 150. Because the element
order doesn’t affect the result of an addition operation, this part works just like it does
for arrays.

In the second part, though, we have a different story. The words set contains a collection
of unique strings. The words.reduce("") { $0 +

non

+$1 } expression should return a con-
catenation of all strings in the set, right?

It kind of does—but with a twist: Because words didn’t index the strings in the order they
were provided, the sentence output will seemingly have shuffled the order of the
strings—which is the expected behavior for sets! If you're aiming for control over the
order of elements, you should use an array instead.

Union

You already know that it’s possible to merge existing arrays; this topic was covered
in Section 3.1.4. Likewise, it's possible to merge existing sets, combining all their
elements—as shown semantically in Figure 3.7.

Figure 3.7 Scope of Set Union

You can either build a joint set out of two sets or insert rows of a set into another one to
extend it. In this section, we will go over both options.

Listing 3.55 demonstrates the usage of the union function to merge two sets and create
anew one. When setA.union(setB) is executed, Swift will merge all elements of setAand

154

3 Collections

setB into the target mergedSet variable. Meanwhile, the original setA and setB sets are
not mutated.

let setA: Set
let setB: Set

(1, 2, 3
(3, 4, 5]

let mergedSet = setA.union(setB)
print(mergedSet) // 1, 2, 3, 4, 5 (order varies)

Listing 3.55 Joining Sets Using union Function

Note that 3 is a common element in setA and setB. Due to the uniqueness requirement
of sets, common elements like 3 are not duplicated in the target set.

What if you had three sets to merge instead of two? That’s easy! You can simply chain
the union function as shown in Listing 3.56. Because union returns a new set anyway, you
can keep chain-executing this function for all sets you need to merge.

let setA: Set = [1, 2]
let setB: Set = [2, 3]
let setC: Set = [3, 4]

let mergedSet = setA.union(setB).union(setC)
print(mergedSet) // 1, 2, 3, 4 (order varies)

Listing 3.56 Chain-Executing Set Unions

The examples so far focused on producing a new set out of existing sets. But you can
also merge a set into another set, extending the target set with new elements. The way
to do so is to invoke the formUnion function of the target set. In the demonstration in
Listing 3.57, setA was extended with new elements from setB. Naturally, setB is not
affected or mutated by this operation.

[10, 20, 30]
[30, 40, 50]

var setA: Set
let setB: Set

setA.formUnion(setB)
print(setA) // 10, 20, 30, 40, 50 (order varies)

Listing 3.57 Merging Set into Another Set Using formUnion
Intersection

In this section, our purpose is to find common elements of two sets. The semantics of
this operation is shown in Figure 3.8.

155

3 Collections

Figure 3.8 Scope of Set Intersection

For this purpose, you'll invoke the intersection function of either set. Listing 3.58
demonstrates how to do so; note the syntactic similarity to the former union function.

let setA: Set
let setB: Set

oo
— —
w =
[P
E)
[
[Su—
o
[Su

P

let commonElements = setA.intersection(setB)
print(commontlements) // 3, 4, 5 (order varies)

Listing 3.58 Finding Common Elements of Sets Using intersection Function

The intersection function doesn’t mutate any of the sets; it simply creates a new set
out of their common elements. An alternative is to invoke the formIntersection func-
tion, which will mutate the target set and reduce its elements to common elements of
the two sets.

Listing 3.59 contains a demonstration of this function. After executing setA. formInter-
section(setB), setA will contain only elements in common with setB, replacing its for-
mer contents. setB is not mutated.

[10, 20, 30, 40, 50]
[30, 40, 50, 60, 70]

var setA: Set
let setB: Set

setA.formIntersection(setB)
print(setA) // 30, 40, 50 (order varies)

Listing 3.59 Demonstration of formintersection Function

Subtracting

Now that you know about spotting the common elements of two sets, it’s time to learn
how to spot the differing elements of two sets! Figure 3.9 showcases the semantics of
this operation.

156

3 Collections

Figure 3.9 Scope of Set Subtraction

For this purpose, you can invoke the subtracting function (Listing 3.60), which will
build a new set from the differing elements of the given sets.

let setA: Set
let setB: Set

1l I
—_— —
w
Gl
NN
N
TN
o &
N
~ v
A

let diffSet = setA.subtracting(setB)
print(diffSet) // Output: 1, 2 (order varies)

Listing 3.60 Finding Differing Elements of Sets Using subtracting Function

As with union and intersection, you can also mutate the original set with the differing
values if you want. For that purpose, you can invoke the subtract function. Check Lis-
ting 3.61 for a demonstration: The execution of setA.subtract(setB) will remove ele-
ments from setA—but not the ones in common with setB. Meanwhile, setB is not
mutated.

var setA: Set = [1, 2, 3, 4, 5]

let setB: Set = [3, 4, 5, 6, 7]

setA.subtract(setB)

print(setA) // Output: 1, 2 (order varies)

Listing 3.61 Demonstration of subtract Function

This example concludes our content on set derivation. We went through various func-

tions that will help you produce new sets out of existing ones. Our next topicis a natural
follow-up: How to check if sets are supersets or subsets of each other.

3.2.5 Checking for Supersets

For this topic, it might be a good idea to understand the terms superset and subset
before jumping to the playground. Figure 3.10 illustrates a superset and subset.

157

3 Collections

Figure 3.10 Superset and Subset Diagram

In this diagram, the inner circle is a subset and the outer circle is a superset—which con-
tains the entire subset, plus more. The (inner) subset contains the elements a and b. The
(outer) superset automatically contains the subset elements a and b, as well as the addi-
tional elements c and d. Table 3.15 showcases the element lists in pseudocode format.

Set Elements

Subset ["a”, "b”]

Superset [”a", "b”, ucnJ "d"]

Table 3.15 Subset and Superset Elements

So far, so good! Moving forward to Swift, you can easily check whether a set is the sup-
erset of another set. Naturally, you can also check if a set is the subset of another one.

Listing 3.62 contains a demonstration of such checks. The isSuperset function is
invoked to find if a set is a superset of another set, and isSubset is invoked to find out
if a set is a subset of another set.

let setl: Set = ["a", "b"]
1et Set2: Set — [Hall, ||bll) "C”) lldH:I
let set3: Set = ["e", "f"]

setl.isSubset(of: set2) // true
set2.isSuperset(of: setl) // true
set3.isSubset(of: set2) // false
set2.isSuperset(of: set3) // false

Listing 3.62 Checking for Superset and Subset Relations

3.2.6 Modifying Sets

Now that you know about creating, accessing, and deriving sets, it’s time to learn about
set mutation. In this section, you will learn about modifying sets and changing their
contents.

158

3 Collections

Sets Aren’t Indexed
Because sets don’t have indexes, set-modification functions will deviate from their array

counterparts. Although there is a reasonable overlap, index-based functions are natu-
rally not available for sets.

Inserting Elements

In Section 3.2.1, we went through an example that created a set by using insert to insert
its initial elements. However, you can invoke the insert function to insert elements
later too! Listing 3.63 demonstrates this technique by adding new animals to the
animals set.

var animals: Set = ["cat", "dog", "bird"]
animals.insert("fish")

animals.insert("snake")

print(animals) // cat, dog, bird, fish, snake (order varies)

Listing 3.63 Inserting Elements into Set

As you know by now, a feature of sets is their promise to contain unique values. Even if
you attempt to insert duplicates into a set, as in Listing 3.64, Swift will ignore the dupli-
cate insertion and preserve the uniqueness of the set’s elements.

var animals: Set = ["cat", "dog", "bird"]
animals.insert("cat")

animals.insert("dog")

print(animals) // cat, dog, bird (order varies)

Listing 3.64 Inserting Duplicates into Set

Deleting Elements

Deleting elements from a set is a straightforward operation. Set objects feature ready-
to-use functions via the remove prefix; these are listed in Table 3.16.

Function Purpose

remove (element) Removes the element from the set
removeFirst() Removes the first element from the set (random)
removeAll() Clears the set completely

Table 3.16 Set Functions for Element Removal

A demonstration of those functions is given in Listing 3.65. After the initial set defini-
tion, numbers.remove(2) is executed, which spots and removes the given element. In the

159

3 Collections

second part, numbers.removeFirst() is executed. Because you can’t be sure of the ele-
ment order, this statement removes a random element from the set. Finally, numbers.
removeAll() clears the entire set.

var numbers: Set = [1, 2, 3, 4, 5]

numbers.remove(2) // Removes specific element
print(numbers) // 1, 3, 4, 5 (order varies)

numbers.removeFirst() // Removes an arbitrary element

print(numbers) // Remaining three elements, varies
numbers.removeAll() // Clears the set
print(numbers) // (empty)

Listing 3.65 Demonstration of Element-Removal Functions

Set Element Modification

Because set elements are uniquely hashed, you can’t modify an element in a set like an
array. As a workaround, you can emulate element modification by deleting the old value
and inserting the new value.

3.2.7 lIterating Through Sets

Although sets are typically preferred for single-element access, it is possible to iterate
through set elements too. In fact, the functions to iterate through sets are nearly iden-
tical to their array counterparts. In this section, you will discover those functions, as you
did for arrays.

As areminder: Keep in mind that sets don’t guarantee an element order, so when you
iterate through a set, the access order will be virtually random.

For Clause

The most fundamental approach to set iteration is to use a for .. in .. statement. Check
the demonstration in Listing 3.66, which iterates through phone numbers.

var phones: Set = ["123-4567", "890-1234", "543-2109", "234-5678"]

for phone in phones {
print(phone) // Prints each phone, order varies

}
Listing 3.66 Iterating Through Set Using for Clause

160

3 Collections

The logic of for clauses is identical in arrays and sets. To prevent content duplication,
we won't dive into those details again here.

Using Enumerated

Likewise, the use of the enumerated function is also identical to its use in arrays. Check
the demonstration in Listing 3.67, which iterates through each element of the set.

var customers: Set = ["James", "John", "Robert"]

for customer in customers.enumerated() {
print(customer.offset)
print(customer.element)

}
Listing 3.67 Iterating Through Set Using Enumerated

The output of this code snippet is shown in Figure 3.11, but there are a couple of things

to keep in mind:

m Every time you execute this code, you will get a different order because values are
hashed, not ordered.

m customer.offset should merely be seen as an index, starting from O and increasing
with each element. It does not symbolize the (nonexistent) “element order” in the set.

var customers: Set = ["James", "John", "Robert"]
for customer in customers.enumerated() {
print(customer.offset)
print(customer.element)
H
G
I g
@
Robert
1.
John
2
James

Figure 3.11 Set Enumeration Demonstration Output

Despite those limitations, the ability to browse through set elements is a neat feature
to have!

Where Conditions

Just like arrays, sets can be partially iterated with the help of where conditions. Even the
syntax is the same! Nevertheless, Listing 3.68 demonstrates an iteration example in
which you iterate only through numbers bigger than 100.

161

3 Collections

let numbers: Set = [1, 25, 38, 435, 522]

for number in numbers where number > 100 {
print(number) // 435, 522; order varies
}

Listing 3.68 Set Iteration Supported by where Condition

You can check Section 3.1.6 for additional where examples, ones used in our discussion
of arrays.

Randomization

Finally, you will learn about fetching random elements out of a set—which is, once
again, the same as for arrays. Listing 3.69 demonstrates the usage of randomElement in a
set.

let fruits: Set = ["Apple", "Banana", "Cherry", "Mango", "Orange"]
let randomfFruit = fruits.randomElement()

Listing 3.69 Picking Random Element from Set

No Shuffle for Sets

Because sets are unordered collections with a virtually random element order, it doesn’t
make sense to shuffle a set. That's why Swift sets don’t have a shuffle function like
arrays.

This section has concluded our content on sets. It was probably easy to follow through
as sets share a lot of common ground with arrays. By reading about sets, your knowl-
edge of arrays was also solidified. Now we’ll move forward to a new collection type, one
that’s a little different than arrays and sets.

3.3 Dictionaries

The final collection type, dictionaries, is a little different than arrays and sets. Arrays and
sets are lists of elements of the same type. Their selling point is their ability to contain
multiple elements. A dictionary, meanwhile, is a flat structure containing key-value
pairs.

The difference is highlighted in Figure 3.12. On the left side, userNames is an array holding
alist of strings, reflecting the names of users in a system. On the right side, currentUser
is a dictionary containing details about the current user.

162

3 Collections

userNames currentUser
"Joe" "name" "Joe"
"Mary" "age" 25
"George" "isAdmin" | true
"Linda"
"Emma"

Figure 3.12 Array and Dictionary, Side by Side

In this example, you can imagine the array as a list of elements (user names) and the
dictionary as zoomed in on an element (like a user) to show all its details. That’s the
usual selling point of a dictionary, anyway.

But wait: Didn’t we use named tuples for that purpose in Chapter 2? How are dictionar-
ies different? Good point! Their main differences are contrasted in Table 3.17.

Feature Tuple Dictionary

Structure Fixed set of values Key-value pairs

Access By index or name By key

Size Fixed; set at declaration Dynamic; can grow or shrink
Mutability Can’t add/remove elements Can add/remove key-value pairs
Best use case Grouping related values Flexible key-value storage

Table 3.17 Tuples Versus Dictionaries

Despite those differences, tuples and dictionaries do have some overlapping function-
ality. If you are aiming for flexibility, though, dictionaries are the way to go because you
can add new key-value pairs as needed.

As we go over some hands-on coding examples, you'll get a better idea of what makes
dictionaries unique. Without further ado, let’s begin!

3.3.1 Creating Dictionaries

In Chapter 2, you learned about alternative ways of declaring variables using type infer-
ence and type interpolation. Likewise, there are alternative ways of declaring dictionar-
ies using the same methods, as we’ll discuss in this section.

Dictionaries with a Single Type

Let’s start with the basic example in Listing 3.70, featuring type inference, as a relaxed
warm-up.

163

3 Collections

var myCar = [
"make": "Nissan",
"model": "Qashgai",
"color": "Black",
"bodyType": "SUV"

print(myCar["make"]!) // Nissan
print(myCar["color"]!) // Black

Listing 3.70 Dictionary Declaration Using Type Inference

In this example, myCar is a dictionary. It contains various properties as key-value pairs.
If you had to list those properties in a table, it would look like Table 3.18.

Key Value
make "Nissan"
model "Qashqgai"
color "Black"
bodyType "Suv"

Table 3.18 Key-Value Pairs of myCar

That’s clear, right? You can add as many properties as necessary. All those key-value
pairs are logically properties of myCar.

The last part of Listing 3.70 demonstrates the basic way to access elements in a dictio-
nary:myCar["make"] would return "Nissan", whilemyCar["color"] would return "Black".

Now that you have seen the basic approach to dictionary declaration, we can move for-
ward to further methods. Listing 3.71 showcases examples of alternative syntax that
serve the same purpose. You can pick any alternative that suits your needs.

// Type annotation

var myCar: [String: String] = [:]
myCar["make"] = "Nissan"
myCar["model"] = "Qashgai”

// Type annotation - alternative syntax
var herCar = Dictionary<String, String>()
herCar["make"] = "Hyundai"

herCar["model"] = "Accent"

164

3 Collections

// Type annotation with initial values
var hisCar: [String: String] = [
"make": "Toyota",
"model": "Corolla"

]

Listing 3.71 Alternative Dictionary Declaration Methods

Dictionaries with Multiple Types

So far, we have declared dictionaries with a single type, meaning that all values were
strings. More often than not, though, a dictionary needs to contain values of various
types. Revisiting the introduction to this section, Figure 3.13 features such an example.

currentUser
"name” "Joe"
"age" 25
"isAdmin" | true

Figure 3.13 Dictionary with Multiple Types

If you look closely, you'll see that currentUser has keys with different data types, which
are listed in Table 3.19.

Key Data Type
name String
age Integer
isAdmin Boolean

Table 3.19 Data Types of currentUser Keys

To declare such dictionaries with flexible/multiple data types, you need to use the Any
keyword. An implementation of this is provided in Listing 3.72. Note that we have pro-
vided Any as the value data type here, indicating that Swift should behave in a flexible
manner and accept any provided value type.

var currentUser: [String: Any] = [
"name": "Joe",
"age": 25,
"isAdmin": true

print(currentUser["name"]!) // Joe

165

3 Collections

print(currentUser["age"]!) /] 25
print(currentUser["isAdmin"]!) // true

Listing 3.72 Declaration of Dictionary with Flexible/Multiple Data Types

Multidimensional Dictionaries

So far, we've covered flat dictionaries, in which each key corresponds to a single value.
However, Swift supports multidimensional dictionaries too! You can declare a nested
dictionary, in which an element is a collection instead of a simple variable.

Listing 3.73 demonstrates how to declare an array as a dictionary element. bassGuitar
has an element called availableColors, which is a string array.

var bassCuitar: [String: Any] = [

"brand": "Fender",

"model": "Precision”,

"strings": 5,

"availableColors": ["Black", "Sage Green", "Maple"]
]

Listing 3.73 Declaring a Dictionary Containing an Array

Likewise, a dictionary may contain a set as well—as demonstrated in Listing 3.74.

var bassCuitar: [String: Any] = [
"brand": "Fender",
"model": "Precision”,
"strings": 5,
"availableColors": Set(["Black", "Sage Green", "Maple"])

]
Listing 3.74 Declaring a Dictionary Containing a Set

You can even include a dictionary inside another dictionary, making it a nested dictio-
nary. In Listing 3.75, specs is a subdictionary of bassGuitar, containing key-value pairs
of its own.

var bassCuitar: [String: Any] = [

"brand": "Fender",
"model": "Precision",
"strings": 5,
"specs": [

"bodyWood": "Alder",
"neckWood": "Maple",
"fingerlWood": "Rosewood",
"quarterSawn": true,

166

3 Collections

"scalelength": 34,
“frets": 21

]

Listing 3.75 Nested Dictionary Demonstration

As a mental exercise, Listing 3.76 demonstrates a complex dictionary, containing both
a subset and a subdictionary as elements.

var bassCuitar: [String: Any] = [

"brand": "Fender",

"model": "Precision",

"strings": 5,

"availableColors": Set(["Black", "Sage Green", "Maple"]),

"specs": [
"bodyWood": "Alder",
"neckWood": "Maple",
"fingerWood": "Rosewood",
"quarterSawn": true,
"scalelength": 34,
"frets": 21

]
Listing 3.76 Complex Nested Dictionary Example

JSON Similarity

Readers with JSON experience might have noticed that complex dictionaries start to
look like JSON files. That’s correct—and you can use that similarity as a mental hook to
understand dictionaries a little better.

Zipping Dictionaries
A cool trick in dictionary creation is to use the zip keyword. In Listing 3.77, the keys are
in the keys array and the values in the values array.

let keys = ["brand", "model"”, "strings"]
let values = ["Fender", "Precision", "5"]
var bassCuitar = Dictionary(uniqueKeysWithvalues: zip(keys, values))

print(bassGuitar) // ["brand": "Fender", "model": "Precision", "strings": "5"]

Listing 3.77 Dictionary Creation Using Zip

167

3 Collections

To build the bassGuitar dictionary, you “zip” keys with values: The first key (brand) gets
the first value (Fender); the second key (model) gets the second value (Precision); and so
on.

3.3.2 Dictionaries as Constants

As with any other data type, dictionaries can be declared as mutable via var or
immutable (read-only) via let. To keep this section self-contained, Listing 3.78 demon-
strates a mutable and an immutable dictionary declaration.

// Mutable

var currentUser: [String: Any] = [
"name": "Joe",
"age": 25,
"isAdmin": true

// Immutable

let previousUser: [String: Any] = [
"name": "Mary",
"age": 33,
"isAdmin": false

]

Listing 3.78 Mutable and Immutable Dictionary Declarations

3.3.3 Accessing Dictionaries

Now that you know how to create dictionaries, it’s time to access them. After all, why
create a dictionary you will never read, right? We’ll walk through various methods of
accessing dictionaries in this section.

Direct Access Using a Key

Because dictionaries are basically key-value pairs, the first natural expectation would
be to give the key and receive the corresponding value, right? Listing 3.79 demonstrates
the basic syntax for this. The bassGuitar["brand"] expression returns the value of
"pbrand" within the dictionary—and the same approach applies to "model".

var bassCuitar: [String: Any] = [
"brand": "Fender",
"model": "Precision",
"strings": 5,
"availableColors": ["Black", "Sage Creen", "Maple"]

168

3 Collections

print(bassGuitar["brand"]!) // Fender
print(bassGuitar["model"]!) // Precision

Listing 3.79 Accessing Simple Dictionary Element
If you query a nonexisting key, Swift will simply return nil, as demonstrated in Listing
3.80.

var bassCuitar: [String: Any] = [
"brand": "Fender",
"model": "Precision",
"strings": 5,
"availableColors": ["Black", "Sage Green", "Maple"]

bassGuitar["price"] // nil

Listing 3.80 Accessing Nonexisting Dictionary Element

Optionals in Dictionary Access

Because it aims to be a type-safe language, Swift is strict about being absolutely sure
about the type of any variable. When a dictionary is defined as [String: Any] as in Lis-
ting 3.80, this means that you can assign any type of value for a dictionary key. That’s a
potential area for safety issues because you could mistakenly unwrap an existing ele-
ment to an incorrect variable type, like assigning the bassGuitar["availableColors"]
array to an integer variable.

Or you could basically access a nonexisting element, as in bassGuitar["price"], which
may potentially lead to an app crash.

Due to such concerns, Swift always assumes that accessing a dictionary element
“optionally” returns a value of the desired type. The dictionary may contain another type
of data, or it may not contain such a key at all.

In Chapter 6, you will learn about optionals in Swift. In that chapter, once you under-
stand the core logic of optionals, we will go over dictionary-specific examples of optional
element access. But for now, we’ll stick to the basics.

Checking If a Key Exists

Each dictionary comes with a property called keys. By invoking keys.contains, you can
check if a dictionary contains a key or not. Listing 3.81 demonstrates the necessary syn-
tax for that.

var bassCuitar: [String: Any] = [
"brand": "Fender",

169

3 Collections

"model": "Precision",
"strings": 5,
"availableColors": ["Black", "Sage Creen", "Maple"]

bassGuitar.keys.contains("brand") // true
bassGuitar.keys.contains("price") // false

Listing 3.81 Checking if Key Exists in Dictionary

In this example, bassGuitar.keys.contains("brand") returns true because "brand" is an
existing key in the dictionary. However, bassCuitar.keys.contains("price") returns
false because "price" isn’t a key within the dictionary. That’s clear, right?

This feature will be useful when you learn about control flow in Chapter 4. You will be
able to make your app behave differently depending on the existence of a key in a dic-
tionary.

3.3.4 Modifying Dictionaries

In this section, you will learn how to make changes to dictionaries after their initial dec-
laration. Adding, changing, and removing key-value pairs will be the focus.

Inserting Elements

Inserting a new key-value pair into a dictionary is as simple as merely providing the key
and the value! Listing 3.82 features the required syntax.

var mobilePhone: [String: Any] = [
"brand": "Apple",
"model": "iPhone 15 Pro",
"operatingSystem": "i0S 17",
"screenSize": 6.1,
"storageOptions": [128, 256, 512, 1024],
"has5G": true,
"colors": Set(["Black", "Blue", "White", "Titanium"])

mobilePhone["weight"] = 187
mobilePhone["waterResistant"] = true

Listing 3.82 Inserting New Key-Value Pairs into Dictionary

Onthelasttwolines, the weight and water-resistance features of the mobile phone were
added to the dictionary. It's simple as that!

170

3 Collections

Modifying Elements

Modifying the value for a key uses the exact same syntax as insertion. Listing 3.83
demonstrates both item modification and insertion to showcase them side-by-side.

var mobilePhone: [String: Any] = [
"brand": "Apple",
"model": "iPhone 15 Pro",
"operatingSystem": "i0OS 17",
"screenSize": 6.1,
"storageOptions": [128, 256, 512, 1024],
"has5G": true,
"colors": Set(["Black", "Blue", "White", "Titanium"]),

"weight": 187
]
print(mobilePhone["weight"]!) // Output: 187
mobilePhone["weight"] = 186 // Changes to 186
print(mobilePhone["weight"]!) // Output: 186

mobilePhone["waterResistant"] = true // Inserts new element

Listing 3.83 Dictionary Element Modification Demonstration

In this code snippet, weight was initially declared as 187. ThemobilePhone["weight"] =186
expression then changes this value to 186. Note that this line has the exact same syntax
as element insertion. The action here will depend on a couple of factors:

m Ifthe dictionary contains an entry for weight already, Swift will update its value.

® Otherwise, Swift will insert the provided key-value pair, as happens for waterResis-
tant.

Deleting Elements

In Swift, element removal from a dictionary is as straightforward as it gets. Listing 3.84
demonstrates two dictionary functions for this task.

var mobilePhone: [String: Any] = [
"brand": "Apple",
"model": "iPhone 15 Pro",
"operatingSystem": "i0S 17",
"screenSize": 6.1,
"storageOptions": [128, 256, 512, 1024],
"has5G": true,
"colors": Set(["Black", "Blue", "White", "Titanium"]),
"weight": 187

171

3 Collections

mobilePhone.removeValue(forKey: "has5G") // Removes single element
mobilePhone.removeAll() // Removes all elements

Listing 3.84 Dictionary Element Removal Demonstration

The function removeValue will remove the key-value pair for the provided key, whereas
removeAll will remove all key-value pairs from the dictionary, leaving an empty collec-
tion behind.

3.3.5 Iterating Through a Dictionary

There might be cases in which you have a dynamically created dictionary without
knowing the exact key names. For example, a third-party library might have parsed a
JSON file and returned a dictionary. In such a case, you might want to access all keys
and/or values in the dictionary sequentially, as an array.

In such cases, you can use a for clause to iterate through key-value pairs, as demon-
strated in Listing 3.85.

var mobilePhone: [String: Any] = [
"brand": "Apple",
"model": "iPhone 15 Pro",
"operatingSystem": "i0S 17",
"screenSize": 6.1,
"storageOptions": [128, 256, 512, 1024],
"has5G": true,
"colors": Set(["Black", "Blue", "White", "Titanium"]),
"weight": 187

for (key, value) in mobilePhone {
print(key, value, separator: " : ")

}
Listing 3.85 Iterating Through Keys and Values of Dictionary

In this example, for (key, value) in mobilePhone is the iteration command—which
works via the same logic as for arrays and sets. The code between { and } is executed for
each key-value pairin the dictionary. On each iteration, Swift assigns the next key to the
key variable and the next value to the value variable.

The output is shown in Figure 3.14. In this example, all we did between { and } was to
print the keys and values. In upcoming chapters, we will do more interesting things as
you learn more about Swift.

172

3 Collections

var mobilePhone: [String: Any] = [
"brand": "Apple",
"model": "iPhone 15 Pro",
"operatingSystem": "i0S 17",
"screenSize": 6.1,
"storageOptions": [128, 256, 512, 1824],
"hasbG": true,
"colors": Set(["Black", "Blue", "White", "Titanium"1),
"weight": 187

]
for (key, value) in mobilePhone {
print(key, value, separator: " : ")
}
" >
has5G : true
colors : ["white", "Blue", "Black", "Titanium"]
weight : 187

model : iPhone 15 Pro

brand : Apple

operatingSystem : i0S 17

screenSize : 6.1

storageOptions : [128, 256, 512, 1024]

Figure 3.14 Output of Dictionary Iteration

And voila! This final example concludes our content on dictionaries, as well as our
entire chapter on collections.

3.4 Summary

In this chapter, you learned about collections in Swift. Basically, collections are data
structures that group multiple variables into a single, organized container. Swift offers
three main collection types, which are summarized in Table 3.20.

Collection Type | Content Duplicates | Use Case Specialty
Array Indexed/ordered collection Yes Queue Flexibility
of elements
Set Hashed/unordered collec- No Member list | Fast element
tion of elements access
Dictionary Hashed/unordered key- No Product JSON-like
value pairs properties

Table 3.20 Swift Collection Type Summary

173

3 Collections

Due to type safety concerns, Swift expects programmers to make use of optionals when
accessing collections with flexible/uncertain data types, such as Any. You will learn
more about optionals in Chapter 6 and will see corresponding examples there.

At this point, you know about variables and collections in Swift, which are the basic
building blocks for any program. Now you can venture one step further and learn about
control flow. In the next chapter, you will learn how to “flow” through different code
snippets based on conditions.

174

BOr client in clien ere client,
BB (client. nane) i \(clie
| i
"

Mige 3
By

A

Apple, Xcode
Playgrounds,
Strings, Col
Sequences, T
Operators, S
Flow Control
i0S, mac0s,

watch0S, tv0

Kerem Koseoglu

® Rheinwerk
Computing

The Author

Kerem Koseoglu

Swift

The Practical Guide

Your comprehensive guide to the
Swift programming language

Work with variables, collections,
enums, structs, and other language
elements

Practice as you learn with download-
able code snippets

@ rheinwerk-computing.com/6111

Dr. Kerem Koseoglu is a seasoned software engineer, author, and educator with experience in
global software development projects. He works extensively with Swift, Python, and ABAP.

ISBN 978-1-4932-2718-1 - 680 pages * 12/2025
E-book: $54.99 « Print book: $59.95 « Bundle: $69.99

® Rheinwerk
Publishing

http://rheinwerk-computing.com/6111
http://www.rheinwerk-computing.com/2718
http://www.rheinwerk-computing.com/6111

