


Contents

1 Introduction 17
1.1 Overview of Deep Learning ... 18
111  The Success of Deep Learning 18
11.2  The Two Pillars Supporting These Breakthroughs ..........ccccccmncrnncinccen. 21
113 WRY NOW? s scssesssss s s sasssssess s sesssssssssesenes 22
1.2 WhyKeras 23
1.3  The Structure of This Book .............. 25
131 TEXEBOXES .o ssssassss s ssss s ssssssssssaes 27
1.4 How to Use This Book 28
1.41  Why Keras Installation Comes Later 29
1.42  Suggested Reading Strategy .. 30
2 Introduction to the Core of Machine Learning 33
2.1 WhatIs Machine Learning? 35
211  Helping the Machine Recognize Digits .......ccemerenerenveceneceneceeeeneanee 35
2.1.2  The Outdated Method —Rule-Based Learning ........cncconees 36
2.1.3  Case Study in Machine Learning Code .......meecensceeceneceinees 38
2.14  Structuring the Learning Process 41
215  Analyzing the Machine’s Learning Process 46
2.1.6  Lessons Learned from the Code Case StUdY .....cocmncrnecrnnecrneceneceanne 48
2.2 Types of Machine Learning ... 49
221 SUPEIVISEd LEATNING oo sseseessssessseesssessssssessesssesssssessones 50
2.2.2  Unsupervised Learning 59
2.3 The Magic Sauce: Reinforcement Learning 65
231  The Building Blocks of Reinforcement Learning .......cvecenneceoneceneceenne 65
2.3.2  Key Applications for Reinforcement Learning .......ccoueeneceoneccnnecenecenees 67
2.3.3  Challenges in Implementing Reinforcement Learning .......cc.ccccceemeeceee. 68
2.4  Basics of Neural Networks 69
241  Core Components of Neural NEtWOIKS ........ccvceneceneccnecenecereceaecnnnee 70
2.42  The Unintuitive Process of LEarNing .......cccnecenecenesessscesseceones 72
243  Clearing Up Some Misconceptions 73




Contents

2.5 Setting Up Your Environment 73
2.6 Summary 78
3 Fundamentals of Gradient Descent 79
3.1 Understanding Gradient Descent .......... 80
3.1.1  TheBasic Setup 80
3.1.2  Formalizing the Process: Training Phase ...........crmccrenneceeeneccenns 82
3.1.3  From Training to Deployment: Making It Work in the Real World ........ 84
3.1.4  The Process of Learning 85
3.1.5 Findingthe Best Parameters: Minimizing the LOSS .....ccccovvcmernecrnncnnns 89
316  Liftingthe Assumptions of a Single Input Feature ........cncrcenccees 94
3.1.7  Higher Dimensions in Gradient Descent ........ornncnnecnecens 99
3.2 Types of Gradient Descent: Batch, Stochastic, Mini-Batch .................cccc.cc.... 101
321  Contour Plots for Visualization of Gradient Descent ..........cccccocrvconcceeen. 102
3.2.2  Improving the Efficiency of Batch Gradient Descent .......cccconevnnevenecees 103
3.2.3  AParadoxin the Use of Stochastic Gradient Descent ... 105
3.3 Learning Rate and Optimization 107
3.4 Implementing Gradient Descent in Code 110
341  Gradient Descent from Scratch ... 110
3.42  Gradient Descent Using Keras .....cncemeeneceecsnsecsecsesecsisesses 113
3.5 Summary ... 116
4 Classification Through Gradient Descent 117
4.1 Classification Basics 118
411  Classification Problem SETUP ... 119
412  First Attempt Using Gradient Descent ........ccncenmeenecenecesecmnecsnees 121
413  Second Attempt: Fixing the Issues in the First Attempt ........ccocoovcveeeae. 122
414  Third Attempt: Fixing the Loss FUNCLION ... 128
4.15  Squishing Functions and Decision Boundaries 131
416 Learning ProCess SUMMATY ......ecmmseasesssesssscsssessssesssssssenes 134
4.2  Nonlinear Relationships and Neural Networks 136
421  Feature Transformations ... 137
422  TheKernel Trick, Logistic Regression, and All of Machine Learning ...... 140



Contents

4.3  Binary vs. Multi-Class Classification 147
431  The One-vs-All ADProach .....ccernesiecsissesieeesiesssassesesesseneens 147
43.2  The SOftMax Classifier ... receeseeceeeeceseeeceseeesessseseesanes 152
4.4  Loss Functions: Cross-Entropy ..o, 155
441  Categorical CrosS-ENTrOPY ... sessesssesesseeens 156
4.4.2  Pitfall to Avoid When Using Cross Entropies 157
4.43  Sparse Categorical CrosS-ENtropy .....ccenenneceeceeesssesseecees 158
4.5 Building a Classifier with Gradient Descent 161
451 LAYEIS N COUE oot aisssesseesies st s ssssss s ssssessesesssssesseees 161
452  Choice of Loss Function ....... 163
4.5.3  Parameter Counts 164
454  The Density of Keras CoAe .......mmmmccereemecsisesseseesessessnees 165
4.6 Summary 166
5 Deep Dive into Keras 167
5.1 Introduction to Keras Framework 168
51.1  The Philosophy Behind Keras: Making Al Human-Friendly ........ccccoeco... 169
5.1.2  Evolution Through Adaptability ... 169
51.3  Keras 3.0: The Multi-Engine Framework ............crncnnennnn. 171
514  Key Strengths of Keras 172
515 Kerasinthe Real World 173
5.2 SettingUp Keras ... 174
521 Setting UP PYLNON .ottt sssss s seeseen 175
5.2.2  TensorFlow Installation and Points to Keep in Mind ......cccccoveeneveneenccnnn. 177
5.2.3  Setting Up CUDA for GPU Acceleration .......ecnecrnneennn. 180
524 INSEAIlING KEIAS ..coverrirriicrreceieciecinecisesieeesisse s s i sssseesssessssseesssessssesees 185
5.2.5  Usinga GPU in Google Collaboratory ... 186
5.3  Building Your First Model 188
53.1  Why NumPy Matters for Machine Learning .........ceconecrnneennn. 188
5.3.2  Symbolic Computation: The Magic Behind Neural Networks ................ 200
5.4 Implementing Core Concepts in Keras: Gradient Descent and
Classification 205
5.4.1  The Building Blocks of a Cat-Dog Classifier 205
5.4.2  Getting and Fixing the Data .......cccecrecesesiecrisenens 206
5.4.3  Performance Optimization and Model Specification ... 210



Contents

544  EValuation MELIICS ..o.oririereceeiereeiiecceieeecesieeseessecssesesesssecsssssescesseesesens 212
5.4.5  Guidingthe Training Through Callbacks and Checkpoints ..................... 216
5.4.6  Evaluatingthe Model ... ssesecsassenens 218
5.5 SUMMAIY ..ot 222
6 Regularization Techniques 223
6.1 An Overview of Overfitting and Underfitting: Do You Need More Data? ... 224
6.1.1  From Lines to Curves: Adding Polynomial Features ........cccouevonevunncunnn. 225
6.1.2  UsingIncreasingly Complex MOdElS ........ecneeerinecenecemnecrnees 228
6.1.3  The Balance of COMPIEXILY ...ccvcereieeineciieeieceieciieeeissessssesesssesssseeseees 229
6.1.4  Regularization TEIM ... 234
6.1.5  Adjusting the Complexity Knob . 237
6.1.6 DO INeed MOre Data ......emeceiecemeseseesseesssseseesseesesssesesssescenas 240
6.1.7  Reporting the Final Results: Validation Set ... 241
6.2 Dropout: Concept and Implementation 243
6.2.1  The Problem: Co-Adaptation and Overfitting ........cocronnccecnnecennns 243
6.2.2  The Road to Memorization 244
6.2.3  The Ensemble Intuition Behind Dropout ........cccrnecennecnecenecenne 245
6.2.4  DropoUt MECNANICS ..eeemeeerreireeeieieieeeisereie i ssssesssseeseses s esssessssesssnas 246
6.2.5  Finding the Sweet Spot: Dropout Rates in Practice ........couevnernncnuane. 247
6.2.6  Implementing Dropout in Pure Python 248
6.2.7  Common Pitfalls and DebUgEING TiPs .....ccccveeuurerrecrierimeceereceireceasessseceinees 250
6.3  Other Regularization Methods: L1 and L2 Regularization ........................... 251
6.3.1 L1 Regularization (Lasso) 252
6.3.2  Elastic Net: Combining L1 and L2 .......cccenecrmnrernecrneceinecenecereceasesnanee 252
6.3.3  When Not to Use Regularization ... 253
6.3.4  Practical Considerations: Dropout vs. L1/L2 in Neural Networks ......... 254
6.4 Applying Regularization in Keras 254
6.41  Implementing L2 Regularization in Keras 255
6.4.2  Dropout in KEras ... sssessssssesssesssessssssessssscnes 255
6.4.3  Beyond Basic Dropout: Specialized Variants ... 257
6.4.4  Finding the Perfect Dropout Rate: A Systematic Approach ................... 259
6.5 Summary 264

10



Contents

Convolutional Neural Networks

265

7.1 Introduction to Convolutional Neural Networks 266
7.1.1  The Limitation of Fully Connected Networks 266

7.1.2  The Learning Standstill 269

7.1.3  Solving the Vanishing Gradient Problem ........ccnecnecen. 270

7.1.4  Dense vs. Sparse CONNECLIONS ....c..occcereeeernerimeciersnerieeineeisessessessnesssesssnsens 272

7.1.5  From Convolution to Neural Networks: The Conv2D Layer ................... 279

7.2 Convolutional Layers, Pooling Layers and Fully Connected Layers ................ 287
721  Corelmplementation of a Convolutional Layer ... 288

7.2.2  The Hidden Superpowers of Convolutional Layers .........cneceenn. 291

7.2.3  Pooling Layers: The Image SImplfiers ... 293

724 GIODAI POOIING oot sassesesessassesesessesessasessssessanes 295

7.2.5  Bringing It All Together: Fully Connected Layers in CNNS ......cccocconeveenn. 299

7.3 Implementing CNNs with Keras ................. 301
7.3 1  Conv2D VS. CONVID .. ssssssssssssssssssssssssesssssssnns 301

7.3.2  The Opposite of Convolution: Deconvolution Layers ........ccccecnneceen. 301

7.4 The “Shapes” Problem .. 303
7.5 Case Study: Image Classification . 307
7.6 Summary 313
8 Exploring the Keras Functional API 315
8.1 Overview of Keras Functional API ..................... 316
811  The Information BOttIENECK ... 317

8.1.2  Networks as Directed Acyclic Graphs .......creneeenesreeeneseenee 318

8.1.3  The Functional Programming Heritage ........ccrnecrnecencesnees 319

8.14  Key Advantages of the FUNCLIONl APl ... 320

8.2 Building Complex Models with the Functional API 323
8.2.1  Overview of the Functional API SYNtax .......cccenecrmnneecenreceenonne 323

8.2.2  Creating Models with the Functional APl ... 324

8.2.3  Best Practices for Complex MOdElS ........cercencemneceneceneceaecinecrinees 327

8.2.4  Handling Multiple Inputs and OULPULS ... 328

8.2.5  Example: Building an Image Captioning Model .........ccccoovvomronerinncrunne. 331

826 Residual CONNECLIONS ... essse s soneas 332

8.2.7  Branching ArchiteCtures ......cccecreernecsneceieessecseeseassessones 336

8.3  Use Cases and Examples 340
83.1 Image Classification with ResNet 341

11



Contents

8.3.2  Siamese Networks for Similarity LEArNing ........cvcmeenecrnecenneceneceeneeeenne 346
8.3.3  U-Net for Image Segmentation 354
8.4 Using Transfer Learning to Customize Models for Your Organization ......... 364
8.41  The Why of Transfer LEarNing ......ccceneemeeenecrieeemessesessasecssssessenees 365
8.4.2  Leveraging Pretrained Models from Keras .......ncenneenneceneceenne 366
8.4.3  The Process of Transfer Learning 368
8.4.4  Reloading an Existing Model 368
8.5 Summary ... 373
9 Understanding Transformers 375
9.1 The Theory Behind Transformers 376
9.1.1  ASimple Time Series EXamMPle ...c..eeinenecnecieciseisesressseceeesssesienes 377
9.1.2  From Numbers to Words: The Challenge of Text Data .....ccccccovvecunevuene. 382
9.1.3  GloVe: Learning the Language of Vectors ... 383
9.14  AGentle Introduction to Attention ... 388

9.1.5  Why Transformers Revolutionized Natural Language Processing
AN BEYONT ..ottt ssies s s ssasessasesssssssanees 391
9.2 Components: Attention Mechanism, Encoder, Decoder ... 393
9.21  The Conversation Between Words . 394
9.2.2  Why Position Information Matters 398
9.23  Encoder Structure: The Information Processing Powerhouse ................ 401
9.2.4  Decoder Structure: Creating New Sequences from Understanding ..... 403
9.3 Implementing Transformers in Keras ...........momcremcnneceemmesnnecceenens 406
931 The ENCOAer BIOCK .......ciiiecriiicriiereceeieeceiiseceeieeeseasecssseseesesaseesssessesessssessenens 407
9.3.2  The Decoder Block ... 413
9.3.3  The Transformer: Putting the Encoder and Decoder Together ............... 415
9.4 Case Study: Large Language Model Chatbot ... 418
9.41  Structure of Modern Keras Transformer Models .........cccoccoucruencrecnncreenns 418
9.42  Working with Pretrained Models from Kaggle Hub ........cccccoceiecrneneene. 422
9.5 Summary 427
10 Reinforcement Learning: The Secret Sauce 429
10.1 Introduction to Reinforcement Learning .......... 430
10.1.1 The Problem of Learning by DOING .....occcveveeecumereenmereneeeireerisensssecresesesseesens 430
10.1.2 Brief History and Major Breakthroughs 433

12



Contents

10.1.3  Real-World ApPlICAtiONS ...t sseseesessenens 434
10.1.4 Challenges Unique to Reinforcement Learning 436
10.2 Key Concepts: Agents, Environments, Rewards .. 438
10.2.1 Structure of the Reinforcement Learning Framework .........cc.ccoveceneceen. 438
10.2.2 Environment Design and State Representation ... 440
10.2.3 Understanding Agents and Policy Functions 442
10.2.4 Reward Engineering and Signal Design 443
10.2.5 The Exploration vs. Exploitation Dilemma ......ccnecennecnecenn. 445
10.3 Popular Algorithms: Q-Learning, Policy Gradients, and Deep Q-Networks 447
10.3.1 The Markov DeCiSion PrOCESSES ..........ocwcruecreuerumecrmsimeesneesnssesssesseseseanns 447
10.3.2  Value Functions and Q-Tables ... 449
10.3.3  Building the Q-Table ... sessaesensssesceeas 451
10.3.4 Q-Learning Algorithm: A Worked Example ........rnncccecnncceenns 453
10.3.5 Q-Learning and Associated [SSUES ...........crnccimncrinccineceinccieesieeeenens 458
10.3.6  The Limits of Tabular Q-LEArNing ........crnererurecrieerieereeereseeeens 460
10.4 Implementing Reinforcement Learning Models in Keras ..............ccccccommmc. 464
10.4.1 Our First Reinforcement Learning Environment ......ccccovevmecmnecennccnnennes 465
10.4.2 Implementing the Deep Q-Network Algorithm with Keras ................... 473
10.4.3 Experience Replay and Target Networks: The Foundations of
Stable Deep Reinforcement LEarning .......cceeenecunecemermeecruneeninens 482
10.5 Reinforcement Learning in Large Language Models ..o 486
10.5.1 The Fundamental Challenge: Moving Beyond Prediction .........cc.... 487
10.5.2 Challenges and LIMitations ... 489
10.5.3 Future Directions and Emerging Approaches .........econecenn. 491
10.6 Summary ... 493
11 Autoencoders and Generative Al 495
11.1 Introduction to Autoencoders 496
11.1.1  What Are AUTOENCOTEIS? ... e ssaseneas 497
11.1.2 Autoencoder Architecture Deep DiVe ........ccrcernecrisceineerinsereneesone 500
11.1.3 Building Your First Autoencoder in Keras .......ccnecmecrnecrenennes 505
11.1.4  Types Of AULOENCOUEIS .....vuuceeiereeiieceieeeirseeeiseseissesassessssee s ssssessissesssssesens 514
11.2 Variational Autoencoders 519
11.2.1 Navigating the Space with Uncertainty ... 520
11.2.2 Mathematical Framework of Variational Autoencoders ........................ 521
11.2.3 Variational Autoencoder Implementation in Keras .......coccoveceonecennecenn. 525

13



Contents

11.3 Generative Adversarial Networks 535
1131 The Adversarial GAmME ... sassessssssesssseessones 535
11.3.2 Generative Adversarial Network Architecture ... 537
11.3.3  Other Variations ... eceneceesssessiasesessssessesseesessessesssecsssssesesas 541
11.3.4 Generative Adversarial Network Implementation in Keras ... 543
11.3.5 Implementation ChalleNGEs .......recnerrecreeirecrieesesessieesiseenene 551
11.4 Summary ... 552
12 Advanced Generative Al: Stable Diffusion 553
12.1 Theory Behind Stable Diffusion 554
12.1.1  From Previous Generative Models to Diffusion ... 555
12.1.2 Diffusion Process Fundamentals 557
12.1.3 Reverse Diffusion: Learning to DENOISE .......ccvenereeerinecreneeeieeeisneceseseenas 558
12.1.4 Connections to Physical ProCeSSEs .........cimmnerennreonneceseceseceanenaeenees 559
12.1.5 Denoising Diffusion Probabilistic Models .........ccuccvrecrmcronecrnecrinnecnnn. 559
12.1.6 Latent Diffusion and Stable Diffusion Architecture .........cccoevoncceeea. 562
12.1.7 Cross-Attention: The Bridge Between Text and Images .....ccccccovecenvenen. 564
12.2 How Stable Diffusion Uses Core Concepts 565
1221 Efficient Diffusion Through Learned Representations ... 566
12.2.2 Advanced Attention Mechanisms 567
12.2.3 Training Strategies and Optimization .........cncnecnecrnecnens 570
12.3 Implementing Stable Diffusion Models ..., 572
12.3.1 Environment and Data Prep 573
12.3.2  Setting Up an Evaluation MEasure ..........cnernnerinecrinsenieecseseenens 574
12.3.3 Model Description and Time-Step ENCOAINEGS ......cocccueerrecruecrrnecrenecreneeenne 578
12.3.4 Diffusion and Reverse DiffuSion .......c..rcnereennecseineeeeesecceseseseees 582
12.3.5 The Generation Engine 584
12.3.6 Following Progress in the Training Process 589
12.4 Case Study: Image Generation .......... 593
12.41 Loading Pretrained Models from Keras Hub 594
12.42 Loading Models Through Keras HUD .......cccocmcemecnmecenecenneciecirecrisenens 595
12.4.3 Using Stable Diffusion MOdels .........ccciomcinnerenneeriinesceereecerensesenas 596
12.44 Beyond Image Generation to More Complex Workflows ...................... 599
2.5 SUMMANY ..ot 603

14



Contents

13 Recap of Key Concepts 605
13.1 Future Trends in Deep Learning 606
13.1.1 Advanced Architecture Trajectories ... 607
13.1.2 Reinforcement Learning Frontiers 608
13.1.3  Generative Al REVOIULION ....ccovvucieerreeccecceeieseeeeceseeeseeeseesseeencesseesenens 609
13.2 Tips for Staying Updated with Advancements ...........cccmmrcccnnneccens 611
13.2.1 Technical Skills MAIiNteNANCE ......c.oocvcvrcrrcccrrccececcecec s 611
13.2.2 Following Tutorials and Keras Codebase .......cccunvonecrmneernncrnnne. . 612
13.2.3 Research Consumption Strategy 613
13.24 Community ENGAgEMENT ... seceecsieeiseeieniaeraeseseninens 614
13.3 Following the Latest Research 615
13.3.1 Technical Deep Dives 616
13.3.2 Practical Research Integration 617
1333 PArtiNG WOIAS .oueeereirceiciriecricerieeriecsissesisesseesessseesses e sssessessesssessesessessesens 618
TRE AUTNOT .o 619
TNA@X ettt eseees s sess s et 621

15



Chapter 6
Regularization Techniques

In this chapter, we’ll explore the critical challenge that every machine
learning practitioner faces: creating models that generalize well beyond
their training data. You’ll learn how to identify when our model is too
complex or too simple. By the end of this chapter, you’ll have acquired
essential tools for building neural networks that capture meaningful
patterns without being led astray by noise in the training data.

As we've explored in previous chapters, machine learning models can capture increas-
ingly complex patterns in data. We’ve moved from simple linear models to powerful
neural networks, each time expanding our ability to represent sophisticated relation-
ships. But this growing power comes with a subtle danger. Just as a sharp knife requires
careful handling, powerful models demand proper control to avoid cutting ourselves.
In this chapter, we tackle one of the most fundamental challenges in machine learning:
how to create models that are powerful enough to capture real patterns in our data
without being so flexible that they memorize the noise and peculiarities of our specific
training examples. This balancing act lies at the heart of successful machine learning.

When models are too simple, they miss important patterns—such as attempting to
explain quantum physics using only words a five-year-old would understand. Imagine
trying to describe the rich, multifaceted flavor profile of a gourmet meal using only the
words “yummy” and “yucky”—you’d capture the basic sentiment but miss all the
nuance that makes the experience special. This is what happens with underfit models;
they capture the general direction but miss the subtleties that matter. This problem,
called underfitting, limits the usefulness of our predictions, leaving us with a crude
approximation where precision is needed.

Conversely, when models are too complex relative to the amount of training data avail-
able, they can achieve perfect performance on training examples while failing spectac-
ularly on new data. It’s the equivalent of a student who memorizes exam answers with-
out understanding the underlying principles—they might ace the practice test but
freeze when the real exam presents questions with even slight variations. Think of an
overly complex model as a gossip who creates elaborate narratives based on coinci-
dences: “John always wears blue on days when the stock market goes up!” Such a pat-
tern might perfectly explain past observations while being utterly useless for predic-
tions. This problem, called overfitting, often betrays itself through a growing gap
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between training and testing performance —a warning sign that our model is becoming
too fixated on the particularities of our training examples rather than learning gener-
alizable patterns.

How to Approach This Chapter

The content of this chapter might seem mathematically dense, but it’s perfectly fine if
you don’t fully grasp every detail right away. | encourage you to read through the con-
tent even when concepts feel challenging. We'll revisit key takeaways at the end, and |
promise these techniques will make more sense once you see them in action. In practice,
they are really easy to use.

In this chapter, we’ll see the tools that allow us to navigate between these extremes.
These tools let us use sophisticated, high-capacity models while restraining their ten-
dency to overfit. They act like guardrails, keeping our models on the road to good gen-
eralization rather than veering off into the ditch of memorization. The general term for
this balancing act is regularization. Here, we’ll explore several powerful regularization
approaches. We’ll begin with the L2 regularization method, which constrains our model
weights to prevent them from growing too large. We'll then examine dropout, which
makes regularization very easy in practice. Along the way, we'll develop an intuitive
understanding of the bias-variance trade-off that underlies these techniques and learn
practical skills for implementing regularization in Keras. By the end of this chapter,
you’ll possess the essential tools to build models that not only perform well on training
data but generalize effectively to new, unseen examples—the true measure of machine
learning success. Let’s begin working on this plan by revisiting our old friend—the
housing prices dataset.

6.1 An Overview of Overfitting and Underfitting: Do You Need
More Data?

In Chapter 3, we built a simple housing price model with just one feature. We assumed
alinearrelationship and thus drew a straight line through our data points, capturing the
basic relationship between house size and price. This linear approach served us well as
an introduction, but it’s a bit like trying to describe a complex landscape using only
straight paths—sometimes, you need curves to capture the real terrain. We later intro-
duced neural networks as one way to capture nonlinear relationships, giving our mod-
els the flexibility to bend and curve in response to the data. But there’s another, often
simpler approach we can take: polynomial features. In the following sections, we’ll take
alook at how we can add flexibility to our models. We'll also discuss the problems that
arise as we try to do this and then introduce generalized solutions to these problems.
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6.1.1 From Lines to Curves: Adding Polynomial Features

Let’s consider what happens if the relationship between house size and price isn't a
straight line but a curve. Think about it intuitively: Perhaps each additional square
meter becomes more valuable as the house gets larger. A jump from 1,500 to 2,000
square meters might add more value than a jump from 1,000 to 1,500 square meters. If
the ground truth is that the relationship between inputs and outputs is quadratic, but
our model assumes linearity, we may get some data points right, but the rest might not
fit that well. Figure 6.1 shows what this model will look like. While not that bad for these
few data points, it will break down very quickly for larger x-axis values. (For the follow-
ing discussion, try not to focus on the actual y-axis values. Try to look at the bigger pic-
ture by following the trend lines.)

Figure 6.1 Linear Model for a Quadratic Relationship

We can model the underlying relationship between the area and the price as quadratic
rather than linear. So, the ground truth is going to look like Figure 6.2. Compare these
two models, and you'll notice that the quadraticline follows the data more closely, espe-
cially as the input values increase.

Notice how the squared values grow much faster than the original areas. As the house
size increases linearly, the squared term increases quadratically. This gives our model
the power to capture accelerating relationships—known as polynomial regression. This
means that, instead of just using the original feature (house size), we create additional
features by raising it to different powers. If our original model looked like this:

price = 0; X area + 6
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Figure 6.2 Quadratic Model for the Quadratic Relationship

A quadratic model would look like this:

price = 8; X area + 8, X area® + 0,

To incorporate this in our gradient descent algorithm, we simply have to add a new col-
umn containing the squared values of the original feature, as shown in Table 6.1.

Area Area? Price
145 21,025 808
202 40,804 993
305 93,025 727
365 133,225 582
450 202,500 1612

Table 6.1 Values of Features Squared

Adding this column is quite easy to implement in code, especially because this has to
be done only once. We can augment our original dataset with these new pseudo-fea-
tures and then save the modified dataset to the disk. After this step is done once, we

only need to consider the modified dataset for polynomial regression. This can be easily
achieved through Scikit-learn (sklearn) as well, as shown in Listing 6.1. Here, the Polyno-

mialFeatures function acts like a feature multiplication workshop. When we set degree=

2, we're telling it to create all possible combinations of our features raised to powers up
to 2. Because we only have one feature (house size), it simply gives us that feature and

its square. The include bias=False parameter tells it not to add a constant column of 1s
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because we'll do that in our model ourselves. (You can run the code through the 06-01-
polynomial-features notebook in the book resources on https://recluze.net/keras-book
and on the book’s official web page.)

When we call poly.fit transform(X), the function analyzes our data to understand its
structure and then creates the new polynomial features. The result, X _poly, now has two
columns: the original house sizes and those same values squared.

import numpy as np
from sklearn.preprocessing import PolynomialFeatures

# Original feature - house sizes
X = np.array([[1000], [1500], [2000], [2500], [3000]])

# Transform into polynomial features

poly = PolynomialFeatures(degree=2, include bias=False)
X_poly = poly.fit transform(X)

print("0
print(X)

print("\nPolynomial features (degree 2):")
print(X_poly)

# Output --------------

# Original features:

[[1000]

1500]
2000]
2500]
3000]]

riginal features:")

+H

(
[
[
(

Polynomial features (degree 2):
[[1.00e+03 1.00e+06]
1.50e+03 2.25e+06]
2.00e+03 4.00e+06]
2.50e+03 6.25e+06]
3.00e+03 9.00e+06] ]

HOH OHF HF H H HF HF HF H OH

— — — —

Listing 6.1 Adding Polynomial Features Using Sklearn

We've just transformed our single feature into two features—the original area and the
area squared. This gives our model more flexibility to capture the curve in our data.

The beauty of this approach is that we can continue using our existing gradient descent
algorithm from the previous chapters without any modifications. From the perspective
of our gradient descent code, we're just adding another feature—it doesn’t know or care
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that this new feature is derived from the original one. If we call our original feature x
and our new squared feature v (where v = x?), our model becomes

price=0; Xx+ 6, Xxv+ 0,

All our gradient descent equations from Chapter 3 still apply perfectly. We simply have
one more weight (8,) to learn, but the fundamental process remains unchanged. The
partial derivatives, weight updates, and convergence criteria all work exactly as before.
In fact, we could add any number of transformed features (x3, x4, log(x), etc.), and our
gradient descent algorithm would still work without modification. This is one of the
most powerful aspects of machine learning algorithms: once you understand the core
principles, you can easily extend them to more complex scenarios by transforming
your data rather than rewriting your algorithms.

6.1.2 Using Increasingly Complex Models

When we fit alinear model to our housing data, it can only draw a straight line. But when
we add polynomial features, our model can fit curves of increasing complexity. Assume
now that we don't know what the underlying relationship is. So, we go a step further and
add 8 degrees of polynomial to our dataset instead of just the quadratic term. The rela-
tionship learned as a result will look like Figure 6.3. As you can see, the line follows even
closer to the dataset but still misses out some points.

Figure 6.3 8th Order Polynomial Fitting the Same Data
Take this to an extreme and instead try to see what happens if we try to model a rela-

tionship that is a 12" degree polynomial. This leads to a curve fitting our data perfectly,
as shown in Figure 6.4.
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Figure 6.4 12th Order Polynomial Fitting the Same Data

The degree-1 model is just a straight line, while higher-degree models can capture
increasingly complex patterns. As we increase the degree, our model becomes more
flexible:

B Degree 1: A straight line that misses most points
® Degree 2: A gentle curve that follows the general trend
® Degree 8: A slightly more flexible curve that gets closer to all points

m Degree 12: A wildly oscillating curve that touches every point perfectly

Stop here and think about it! This flexibility is a double-edged sword. The degree-12
model fits our training data perfectly, but it’s learned a complex pattern that’s unlikely
to generalize well to new houses. It’s like memorizing the exact answers to the practice
problems without understanding the underlying principles—you’ll ace the practice test
but struggle with new problems.

6.1.3 The Balance of Complexity

Adding more polynomial terms is like giving our model increasingly sophisticated
vocabulary—but as with human language, more words don’t always lead to clearer
communication. Let’s see what might go wrong if we try to use the 12t degree polyno-
mial we modeled previously. To truly understand how our models perform, we need to
look beyond the training data. That’s where our test set comes in. These are data points
our model hasn’t seen during training—the equivalent of a pop quiz with new ques-
tions. Let’s visualize how models of different complexities perform on both training
and test data in Figure 6.5.
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Figure 6.5 Introducing the Test Set into the Mix

Notice how the curve passes precisely through each x (training points), creating an elab-
orate, winding path. At first glance, this might seem impressive, like a student who can
recite every example from the textbook perfectly. But the true test of learning isn’t
memorization; it’s the ability to apply knowledge to new situations. When we look at
how this model performs on the test data (the circles), we see concerning discrepancies.
The most dramatic example occurs around x = 200, where our model takes a dramatic
plunge to predict a value of -500. But the actual test point in that region shows a value
closer to +400! That’s a staggering 900-unit error.

Interactive Demo for Polynomial Fits

You can play with an interactive demo we’ve created to show how the fit changes based
on the order of the polynomial. You can find it on the book resources page at https://
recluze.net/keras-book as 06-04-polynomial-fit-demo.

Our model has become so fixated on perfectly fitting every training point that it’s cre-
ated an unnecessarily complex explanation. Between x = 150 and x = 250, the model
noticed there weren’'t many training points, so it took a wild dive downward before
shooting back up. The algorithm didn’t “decide” to do this out of malice or confusion;
it simply found that this rollercoaster curve was mathematically the best way to hit all
the training points perfectly. So, there are two extremes that we can face while deciding
on model complexity. We’ll discuss these in the following sections and provide guid-
ance for finding the sweet spot in between.
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When Models Are Too Simple: Underfitting

Looking at our degree-1 polynomial (the straight line), we notice it performs poorly on
both the training and test data. The model fails to capture the curvature that clearly
exists in our housing price relationship. The training error is high, and the test error is
similarly high.

As mentioned earlier, this problem is called underfitting or high bias. It’s like trying to
explain quantum mechanics using only elementary school vocabulary—the tools are
simply inadequate for the task at hand. Our model has made an overly simplistic
assumption about the world (that housing prices are a linear function of area), and this
bias prevents it from learning the true pattern. This assumption is built into the very
structure of our linear model. By restricting ourselves to a straight line, we're essentially
declaring that each additional square meter adds exactly the same value to a house,
regardless of the home’s size. This ignores economic realities such as premium pricing
for larger homes, the diminishing utility of extra space beyond certain thresholds, or
the way different size brackets might appeal to different market segments.

This is what high bias means in machine learning: The model has strong preconcep-
tions about what the underlying function should look like, and these preconceptions
are wrong. No amount of additional training data will help a linear model fit a quadratic
relationship—it simply doesn’t have the capacity to represent the curve. In practice, it’s
usually easy to recognize a situation in which a model is underfitting. This is usually
when we have very high training loss. This means that our model can’t even memorize
the data points given to it, let alone predict unseen data points.

The Term High Bias

Underfitting is called high bias because the model is biased toward its own simplistic
understanding rather than adapting to the true complexity of the data. It doesn’t want
to learn from its mistakes.

When Models Are Too Complex: Overfitting

On the other end, look at the degree-12 polynomial. It creates a wildly oscillating curve
that passes almost perfectly through each training point. The training error is nearly
zero—our model has essentially memorized the training data! But look what happens
with the test points: The model’s predictions are way off. The test error is enormous
compared to the training error. Our model has learned the peculiarities of our specific
training examples rather than the general relationship between house size and price.

To understand this distinction, we need to recognize that any dataset contains two
components: the underlying pattern we want to learn and the random noise or peculiar-
ities specific to our sample. The underlying pattern is the true relationship that gener-
alizes across all houses—perhaps house prices increase with area following a gentle
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quadratic curve due to fundamental market dynamics. This pattern applies to houses
we haven’t seen yet and represents the predictive knowledge we're actually seeking. The
peculiarities, on the other hand, are random fluctuations specific to our training exam-
ples—perhaps one house in our training set sold for slightly more because it had a par-
ticularly nice view, or another sold for less because the owner needed to move quickly.
These factors aren’t captured in our features and appear as random noise in our data.
When we use a degree-12 polynomial to fit just a handful of training points, we're giving
our model enough flexibility to memorize not just the general trend but also these ran-
dom fluctuations. It’s like creating an elaborate theory to explain why one student got
a 93% and another got a 91% on a test, when the difference might just be that one stu-
dent guessed correctly on one more question.

As mentioned at the beginning of the chapter, this problem is called overfitting or high
variance and is recognizable through a key indicator: very low error on training data
along with significantly higher error on test data that leads to a large performance gap
between training and test results. Overfitting occurs when our model is so flexible that
it captures not only the underlying pattern but also the random noise in our training
data.

The Term High Variance

Overfitting is called high variance because the parameters the model learns are going
to vary a lot depending on which data points are used to train it. If we pick odd-num-
bered data points, the model will learn their peculiarities, which will be quite different
from the specific noise in even-numbered data points.

Finding the Sweet Spot

The degree-2 polynomial seems to strike a good balance. It’s flexible enough to capture
the curvature in our data without going overboard with unnecessary complexity. Both
the training and test errors are relatively low, and they're similar to each other—a sign
that our model is generalizing well.

This illustrates a fundamental principle in machine learning: the bias-variance trade-
off. As we increase model complexity, the following happens:

® Bias tends to decrease (the model can represent more complex patterns).

® Variance tends to increase (the model becomes more sensitive to the specific train-
ing examples).

Our goal is to find the sweet spot that balances these two sources of error. It’s like
stretching a rubber band to wrap around a package—not stretching enough leaves it too
loose to hold anything together (underfitting), while stretching it too far causes it to
snap (overfitting). We need just the right amount of tension that secures the package
without breaking the band.
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Important Issues to Keep in Mind

Remember that our algorithms don'’t “see” the data the way we do. When we perform
gradient descent, the machine isn’t visualizing curves or making aesthetic judgments
about whether or not the line fitting the points is visually appealing. It’s simply calcu-
lating a loss value and following the gradient downward, regardless of whether the
resulting function is sensibly smooth or wildly oscillating between data points. This
presents a fundamental challenge that becomes even more pronounced with high-
dimensional data. In our housing example, we could visualize the relationship between
house size and price in a simple 2D plot. But what if our model includes dozens or hun-
dreds of features? We lose our ability to eyeball the complexity of the relationship, and
even experts can't intuitively judge when a model with 50 features is using a relation-
ship that’s too complex.

We have two broad approaches to address this challenge. The first, which we touched
on in Chapter 3, is to simply make an assumption about the appropriate complexity for
our problem. We might decide based on domain knowledge that a quadratic relation-
ship makes sense for housing prices or that certain features should interact while others
shouldn’t. This approach works well when we have strong prior knowledge, but it’s not
always available.

The second approach—which we’ll focus on throughout the rest of this chapter—is to
develop automated methods that help us determine the right level of complexity. We
need mechanisms that allow our models to find that balance themselves without
requiring us to manually specify the perfect polynomial degree or feature interactions.

Another critical point to remember is that we must make these decisions without peek-
ing at the test set. Using test data to choose our model’s complexity is like getting access
to exam questions before a test—it defeats the purpose of having an independent eval-
uation. This form of data leakage can give us an overly optimistic view of how well our
model will perform on truly new data when deployed in the real world.

Always Keep the Test Set Separate
When writing code, always make sure that you aren’t using your test data points during

training. While this might lead to good laboratory results, the model’s real success—
that in the real world —will become unpredictable!

These techniques are guardrails that keep our models on the right path. Rather than
manually deciding when to stop adding complexity, we’ll develop systems that naturally
prefer simpler explanations unless there’s strong evidence for complexity. As we
explore these techniques, remember that finding the right complexity isn't simply a the-
oretical concern. It's fundamental to creating models that work in the real world. A
model that perfectly memorizes training data but fails on new examples is like a student
who can recite textbook pages verbatim but can’t apply the concepts to new problems.
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Our goal is to build models that truly learn the underlying patterns. They shouldn’t be
limited to the specific examples we’ve shown them.

But how do we come up with complex models that capture intricate patterns in our data
without overfitting? That’s where regularization comes in—a technique that allows us
to use complex models while preventing them from overfitting. We'll explore this pow-
erful approach in the next section.

6.1.4 Regularization Term

Now that we've identified the problem of overfitting, let’s discuss a powerful solution
that doesn’t require us to manually restrict our model’s complexity. Rather than decid-
ing in advance which polynomial degree to use, what if we could use a high-degree poly-
nomial but somehow encourage it to behave more reasonably? This is where regular-
ization enters the picture. Regularization works by modifying our loss function—the
very compass that guides our model during training. Let’s recall the loss function we
used in Chapter 3 for our housing price prediction:

1 m
) = —> 5= )?
i=1

This function only cares about one thing: how well our predictions (§,) match the actual
values (y;) in our training data. It’s like a teacher who grades solely on getting the correct
final answers without considering how students arrive at those answers or whether
their methods would work on different problems.

We're going to add a term to this loss function. It might seem strange at first but we’ll
explain the “why” of this in a minute. This is called the L2 regularization term and is
given as

n
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where 2 (lambda) is a new hyperparameter that controls complexity, and 6; represents
each parameter in our model. Our complete regularized loss function becomes
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We can modify the value of this parameter at will. First, let’s consider what happens
when we set A = 0.1In this case, our loss function simplifies to
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We're right back to our original mean squared error (MSE)! The regularization term
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completely disappears, and our model is free to use any parameter values it wants, how-
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ever large, to fit the training data perfectly. This is the world we were living in before,
where our polynomial models could create those wild oscillations to pass through
every training point. See the solid lined contour plot in Figure 6.6 for what the loss func-
tion landscape will look like in this case. In this example, we get 6; = 10,08, = 5 for our
model parameter values that minimize the loss. If you want a refresher on contour
plots, please refer to Chapter 3, Section 3.2.1.

Figure 6.6 Effect of Lambda on Contour Plots and Minimizing Values

But what happens at the other extreme? Let’s say we set ] to a very large value, such as
1000. Now our loss function becomes overwhelmingly dominated by the regulariza-
tion term. The whole MSE loss function doesn’t matter much at all because the regular-
ization term has all the say in the final value of the overall loss.

B

Effect of Weights: A Simple Example
To fully internalize what A is doing, consider

p=q+W-r
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where W (our hyperparameter) is a very large number such as 71000. If g = 10 and r = 0.01,
then

p = 10 + 1000 -0.01 = 10 + 10 = 20

Now, if we change g by adding 2 to it, p becomes

p = 12 + 1000 -0.01 = 12 + 10 = 22

On the other side, if we merely change r a tiny bit to 0.015, then
p = 10 + 1000 -0.015 = 10 + 15 = 25

Even though we made a much smaller relative change to r, its effect on the final result
is more significant than a large change in g because it’s being multiplied by that large
weight W.

When A is very large, the MSE term becomes almost irrelevant compared to even tiny
changes in the regularization term. Our gradient descent algorithm will focus almost
entirely on minimizing the regularization term, with little regard for how well the
model actually fits the training data.

So, what does minimizing the regularization term mean? Let’s look at it again:

n
N
=1

When we're trying to minimize this expression and 1is fixed (even if it’s large), the only
way to make it smaller is to reduce the sum of squared parameters. And the absolute
minimum value this sum can take is 0, which happens when all parameters 6; are
exactly O.

This is a critical insight: When A is extremely large, our model will push all parameters
toward O, effectively ignoring the actual relationships in the data. Even increasing one
parameter to a small value like 0.1 would add 0.12 = 0.01 to our sum, which gets multi-
plied by ourlarge A = 1000to add 10 units to our loss—a huge penalty compared to the
minor improvement it might make to the MSE term. Refer back to Figure 6.6. In this
case, when A is very large, the only thing that affects the loss is the regularization term,
which is forcing the loss to have a minimum when both parameter values are O (or
extremely close to it). Remember, the MSE term is what’s looking at our data points and
measuring how well our predictions match the actual house prices. It’s the part of our
loss function that connects our model to reality. If we ignore it by setting A too high,
we’re essentially telling our model, “Don’t worry about predicting house prices accu-
rately—just make sure all of your parameters are as close to O as possible!”

With all parameters at or near 0, our model would predict virtually the same value for
every house, regardless of its size or any other features. This is the opposite extreme of
overfitting—we’ve now created a model that’s too simple to capture any meaningful
patterns in our data, which is a classic case of underfitting.
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To summarize, consider what this means: With a large value of A, we're saying that all
values of thetas should be 0. This feels like a mathematical quirk, but it’s a fundamental
reshaping of our model’s underlying behavior.

In turn, we're saying that none of the inputs have any relation to the output, so we com-
pletely disconnected the inputs from the predicted output. That is obviously not what
we want. Imagine trying to predict house prices without considering size, location, or
any features at all! It would be like a real estate agent who gives the same price estimate
for every house, regardless of whether it's a mansion or a studio apartment. But now,
we have two extremes: when A is O, the regularization term has no effect, but when it’s
very large, the regularization term dominates and says that none of the inputs have any
effect on the output. We’ve mapped out two boundaries of a spectrum—on one end, our
model is free to create wild, complex relationships that overfit our training data, and on
the other, it's constrained to the point of uselessness, ignoring all input features
entirely.

What we want is to somehow control this by slowly turning the knob of A. Think of 4 as
a sensitivity dial on a sophisticated instrument. Turn it too low, and the readings
become chaotic and unreliable—our model overfits. Turn it too high, and the instru-
ment becomes unresponsive—our model underfits. Somewhere in the middle lies the
sweet spot where our model is responsive to genuine patterns in the data without being
overly sensitive to noise.

6.1.5 Adjusting the Complexity Knob

Refer back to Figure 6.6 one last time. When we change the A from O to a very high value,
this takes us slowly from point A in the figure to point B. During this movement, some
of the inputs are ignored less, and some are ignored more. Point A sits far from the ori-
gin, with large values for both 8, and 8,. This is where our model lands when A equals
O—we're only concerned with minimizing the MSE, and we've found parameters that
fit our training data exceptionally well. But these large parameter values suggest a com-
plex model that might be overfitting.

Point B, in stark contrast, sits much closer to the origin. As 4 increases, our model is
pulled toward this simpler configuration with smaller parameter values. It’s like watch-
ing a ball rolling downhill, but the landscape itself is changing as we adjust 4, creating a
stronger gravitational pull toward the origin.

The black solid line connecting A and B traces the path our model takes as we gradually
increase A. Notice how the path isn’t simply a straight line toward the origin—it follows
a nuanced trajectory influenced by both the shape of our error surface (solid contours)
and the regularization penalty (dashed circles).

This visualization reveals something profound about regularization: It doesn’t simply
shrink all parameters equally. As we move from A toward B, some parameters decrease

237



6 Regularization Techniques

more rapidly than others. The model is making strategic sacrifices, reducing the influ-
ence of some inputs while preserving others that provide more explanatory power per
unit of regularization cost.

It's similar to how a company might respond to budget cuts—not by reducing every
department equally, but by strategically preserving critical functions while scaling back
areas that deliver less value relative to their cost. Our model likewise preserves the most
efficient parameters while penalizing those that contribute less to predictive accuracy
relative to their size. When this happens, the model might decide to make the weights
associated with 4+ degree polynomials O, thus effectively reducing the model complex-
ity. We have a way of adjusting complexity by just changing one value—the A hyperpa-
rameter! This movement between A and B represents the fundamental trade-off at the
heart of regularization—finding the sweet spot where our model is complex enough to
capture true patterns in the data but simple enough to avoid fitting noise.

But how do we figure out where to stop? How do we know which value of A gives us that
perfect balance between simplicity and accuracy? Here’s the plan: We already know that
we can’t trust our training loss. So, we're going to set A to a particular value, run the
whole training/testing, and come up with a final test loss value for this particular 4
value. Then, we’ll change the A value and rerun the whole thing again—this time getting
a different overall test loss. Remember, training loss isn’t important. That is always
going to be minimum for an overfitting model.
So, we end up with this experimental process:

Choose a specific A value.
. Train a model using this A value on your training data.
. Evaluate the model’s performance on test data to get a test loss.
. Record the A value and corresponding training and test losses.
. Select a different 4 value.
. Repeat steps 2-5 for multiple A values.

. Plot the relationship between 4 values and training and test losses.

0 N o Vs W N e

. Identify the A value that produces the lowest test loss.

Each experiment gives us a point on a curve showing the relationship between regular-
ization strength and generalization performance. It’s like a scientist methodically test-
ing different conditions to find the optimal formula. A typical example of this plot is
shown in Figure 6.7.

The figure illustrates the dance between underfitting and overfitting as we adjust our
regularization strength. Take a careful look at the x-axis—it’s actually plotted in reverse,
with high A values on the left (1.0) decreasing to O on the right. This reverse scaling helps
us visualize the journey from simple to complex models as we move from left to right.
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Figure 6.7 Effect of Regularization on Training and Testing Losses

When we start on the left side with a high A value, we're firmly in the underfitting
region. Here, our model is playing it too safe—most parameters are essentially O, and
the model is largely ignoring the patterns in our data. The training loss is high because
our model isn’t capturing much of anything, and the test loss is equally disappointing.

As we begin to decrease A, moving rightward on the graph, both training and test loss
start to decrease. This is the sweet spot of learning—our model is gradually embracing
more complexity, discovering genuine patterns in the data rather than just playing it
safe. The model is learning something meaningful from the data, and this learning gen-
eralizes well to new examples. But notice what happens as we continue moving right,
further decreasing A below 0.33. The training loss continues its downward trajectory—
after all, with less regularization, our model can fit the training data more and more pre-
cisely. It’s like a student who memorizes the textbook examples perfectly.

However, the test loss reaches its minimum at 4 = 0.33 (marked by the dot and vertical
dashed line) and then begins to climb back up. This inflection point tells us something
crucial: our model has started to overfit. It's no longer just learning meaningful pat-
terns; it’s starting to memorize the quirks and noise in our training data. Like an actor
who rehearses so rigidly that they can’t adapt to unexpected circumstances, our model
is losing its ability to generalize.

The Goldilocks Zone [+]

The visualization in Figure 6.7 perfectly captures the Goldilocks principle in machine
learning: With high A, our model is too simple (underfitting); with low 4, it's too complex
(overfitting); but at 4 = 0.33, it’s just right—complex enough to learn meaningful pat-
terns but not so complex that it gets distracted by noise.
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This vertical line marks this optimal value—the point where we should stop reducing 4
and declare this as our best model. It has just the right amount of complexity, balancing
the need to fit the training data against the risk of memorizing noise. It’s found the
sweet spot between ignoring the data (underfitting) and believing everything it sees
(overfitting). What's particularly elegant about this approach is that we didn’t need to
manually specify how complex our model should be. Instead, by systematically explor-
ing different A values and measuring their effect on test performance, we let the data
itself tell us the right level of complexity. This data-driven approach to model selection
is at the heart of modern machine learning.

6.1.6 Do | Need More Data

Now we're in the position to answer that difficult question in machine learning prac-
tice: Should I get more data to make my machine learn better. The answer is “not
always.” It’s a bit like wondering if you need more ingredients to improve your cook-
ing—sometimes the secretlies not in more stuff but in better technique—orin our case,
complexity. Data collection is expensive, especially labeled data. Getting it in good
quality is more difficult. Think of labeled data like handcrafted furniture—each piece
requires careful human attention, making it valuable and time-consuming to produce.
So, we need to make sure our model actually needs more data before spending the time
and effort to collect it.

Before rushing to gather more examples, you first need to use whatever data is available
and plot your complexity curves, as we saw in the previous subsection. This diagnostic
step is like a doctor running tests before prescribing medication—we need to under-
stand the nature of our model’s struggles before we can properly address them. Then,
figure out if you're in the overfitting or underfitting zone. If you're underfitting, first
increase the complexity of the model by adding higher order polynomials or add com-
plexity in other ways. This is like upgrading from a bicycle to a car when you’re consis-
tently arriving late—sometimes, the tool itself lacks the necessary capacity.

In neural networks, adding more complexity means adding more layers or more neu-
rons. Each layer in a neural network acts like a team of specialists that processes infor-
mation in increasingly sophisticated ways. The first layer might identify simple pat-
terns such as edges or colors, while deeper layers combine these basic observations into
complex concepts such as “this is a face” or “this sentence expresses disappointment.”
Adding more neurons is like hiring more specialists within each team, allowing for
more nuanced processing.

For example, if you're building an image recognition system that struggles to distin-
guish between cats and dogs, adding more layers might help it recognize hierarchical
features—moving from identifying basic shapes to understanding fur patterns to rec-
ognizing distinctive facial structures. Similarly, adding more neurons might help it
become sensitive to subtle distinctions within these categories. When you do this,
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you’ll get a better understanding of which zone you'rein. It’s like turning up the volume
on your model’s capabilities to see if that solves the problem.

If you're underfitting, first make your model complex enough. Don’t rush to collect
more data if your current model isn’t even capable of capturing the patterns in your
existing dataset.

If you're overfitting, then more data can usually help because as you get more data,
there are more patterns and complexity, and your model can actually find these pat-
terns and decrease the loss. Think of it like teaching someone to recognize bird spe-
cies—if you only show them three examples of eagles, they might fixate on irrelevant
details such as the background color. But show them hundreds of eagles in different
positions, lighting conditions, and environments, and they’ll start to focus on the truly
distinctive features. Additional data in the overfitting zone works because it forces your
model to find generalizable patterns rather than memorizing specific examples. It’s the
difference between a student who has memorized a few specific math problems versus
one who has solved enough variations to understand the underlying principles that
apply to all problems of that type.

This strategic approach to model improvement—diagnosing the problem first, then
addressing it appropriately—saves you from the costly mistake of gathering unneces-
sary data or the frustration of trying to force a too-simple model to perform complex
tasks. It’s about working smarter, not just collecting more. Once all of this is done and
we have the best value for our hyperparameter 4, one final test for our model remains.

6.1.7 Reporting the Final Results: Validation Set

Hold on a minute—we’ve just uncovered a subtle but critical issue in our approach.
Remember how we used our test set to pick our hyperparameter value A? There’s a hid-
den danger here that we need to address.

Think about what we've been doing so far. We used our training data to learn the model
parameters, which makes perfect sense. Then, we used what we’ve been calling our “test
set” to find the best A value. But here’s the catch: By using this test data to make deci-
sions about our model structure, we've actually leaked information from the test data
into our design process. Like peeking at part of the final exam while studying, it com-
promises the integrity of our evaluation.

Just as we used the training set to pick the model parameters and then used the test set
to ensure that these parameters were correct, we need to somehow ensure that the 4
picked using the test set is also correct. We need a truly independent evaluation that
hasn’t influenced any of our choices. For this, we're going to need some more data, but
we used up all our data during training and testing (hyperparameter optimization).
What now? Don’t worry. We can still keep the same process but start slightly differently.
In step 1 of our machine learning process, we won't split the data into just training and
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testing. We'll split it in three parts: training, validation, and test sets. The training part is
self-evident—it’s the data our model learns from directly, adjusting its parameters to
minimize the loss function. The second set that we use to select the best hyperparame-
ters—what we’ve been calling the test set until now—will be called the validation set.
It’s like a practice exam that helps us fine-tune our study strategy before the real thing.

Once the hyperparameter best value is decided, we’ll use this singular value to run the
whole model on the third set, which we’ll now call the test set as it’s doing the final test-
ing of our model. This test set is our genuine, untouched evaluation data—it’s like the
sealed final exam that only gets opened when everything else is ready and once you
take that, you can no longer retake it.

Whatever result is achieved by the model on the test set, we report that. If it’s not good,
our model didn’t learn well. This lets us ensure that when the model is deployed in the
real world, it will likely perform just the same as it did on the test set. By maintaining
this discipline, we build models that don’t just perform well on data they’ve seen before
but are truly prepared for the challenges of the real world.

The Three-Way Split of Data

This three-way split creates a clean separation of concerns:

B Training data teaches our model parameters.

® Validation data helps us choose the best hyperparameters.

m Test data gives us a true evaluation of our final model’s performance.

This is the scientific method for machine learning: We form hypotheses with the train-
ing data, refine them with the validation data, and then conduct the final experiment
with the test data.

To summarize this section, regularization gives us a powerful way to manage complex-
ity, acting like a judicious editor that simplifies our model by gradually silencing unnec-
essary parameters—encouraging our model to generalize from patterns rather than
memorize specific examples. However, this approach does come with its own chal-
lenges, particularly in computational efficiency. To calculate the best value of 1, we have
torun the entire training multiple times in a loop, which might not be feasible for large-
scale modern machine models.

In the next section, we’ll explore an alternative technique that maintains this core phi-
losophy of controlled complexity while addressing this limitation. The concepts we’ve
learned until now will still be useful, but we’ll find an easier way to reduce unnecessary
complexity.
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6.2 Dropout: Concept and Implementation

Take a look at Figure 6.8. Even though a large part of the object in front of the keyboard
is obstructed, you can tell that it’s unmistakably a banana. Despite this obstruction,
your brain can still identify it easily. You've learned the concept of “banana-ness” so
well that you don’t need to see the entire fruit to recognize it even if it’s surrounded by
other unrelated objects.

Figure 6.8 An Obstructed Image

Neural networks, however, often struggle with this kind of robust recognition because
they tend to fall into a trap known as co-adaptation.

6.2.1 The Problem: Co-Adaptation and Overfitting

Co-adaptation occurs when neurons in a network become overly reliant on one another
during training. Recall that in neural networks, neurons are all connected to each other
in adjacent layers, with each neuron feeding its learned features forward to neurons in
the nextlayer. This interconnected structure is powerful, but it creates an environment
where co-dependencies can easily form. Instead of learning independent, robust fea-
tures, neurons develop intricate dependencies. This is like a study group where, instead
of each student developing their own understanding of the material, they become com-
pletely dependent on each other’s notes and can’t function independently. In our neu-
ral network, this means that specific neurons start to compensate for the mistakes or
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biases of others. Rather than learning complementary features that contribute to over-
all understanding, they form a fragile ecosystem where each neuron’s output critically
depends on precisely what other neurons are doing.

Think about our banana image again. A robust network should recognize bananas
based on multiple independent features: color, shape, texture, and size. But a co-
adapted network might develop strange dependencies where one neuron only activates
if another specific neuron has activated in a particular way. Remove or alter any piece
of this intricate puzzle, and the whole recognition system falls apart.

6.2.2 The Road to Memorization

This co-adaptation leads directly to overfitting, which is perhaps the most persistent
challenge in machine learning. Instead of learning generalizable patterns from the
training data, the network essentially memorizes the training examples. When this
happens, our network performs brilliantly on training data but fails miserably when
faced with new examples. The network has learned the peculiarities and even the noise
in the training set rather than the true underlying patterns that would allow it to gen-
eralize to new situations.

The consequences of this co-adaptation and overfitting are far from academic. In real-
world applications, they manifest as follows:

® Medical diagnosis systems that work perfectly in the lab but fail with patients from
different demographics

B Facial recognition systems that can’t handle varying lighting conditions

® Recommendation engines that can’t adapt to shifting user preferences

® Autonomous vehicles that struggle with unfamiliar road conditions

In each case, the network has learned to rely too heavily on specific patterns in the train-
ing data rather than developing robust, generalizable features.

The elegant concept of dropout was designed to solve this very issue. The strategy is
pretty simple: Randomly ignore some neurons during training. That’s it—that’s the
whole strategy. By randomly “dropping out” neurons during training, we force the net-
work to build redundancy and resilience. Each neuron can no longer rely on any other
specific neuron being present, so it must learn features that are robust even when parts
of the network are missing—just like how you can still recognize a banana even when
most of it is covered by a white rectangle.

Let’s consider how this simple concept cleverly simulates an ensemble of different net-
works to combat this problem of co-adaptation and overfitting.
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6.2.3 The Ensemble Intuition Behind Dropout

Picture yourself assembling a team for an important project. Would you rather have
one brilliant but temperamental expert who might not show up on the day of your pre-
sentation, or would you prefer a diverse group of solid performers who can cover for
each other if someone falls ill? Most of us would choose the reliable team. This is pre-
cisely the wisdom behind dropout, as we’ll discuss in the following sections.

Training an Ensemble in Disguise

At its heart, dropout is a clever illusion. While it appears we're training a single neural
network, we're actually training thousands of different networks simultaneously. It’s
like having a theater company where, for each rehearsal, some actors randomly call in
sick, forcing the remaining cast to adapt and cover their roles. When we apply dropout
to a neural network with 100 neurons and set our dropout rate to 0.5 (meaning each
neuron has a 50% chance of being temporarily disabled), we're effectively creating 2100
different possible network configurations. That’s more possible networks than there
are atoms in the observable universe! Each training iteration randomly samples one of
these possible networks, trains it for that batch, and then moves on to another random
configuration.

This is the magic of dropout: instead of training one massive, co-dependent network,
we're training an implicit ensemble of thinner, more robust networks that are forced to
work independently.

Connection to Other Ensemble Methods

The concept behind dropout is part of a broader class of machine learning techniques
known as ensemble methods. In traditional machine learning, algorithms such as ran-
dom forests improve on basic decision trees by training on different subsets of features
and examples to create a more robust predictor.

If you're interested in exploring these connections further, looking into traditional
ensemble methods such as bagging and boosting can be illuminating. These
approaches explicitly train multiple complete models and then combine their predic-
tions. What makes dropout special is that it achieves a similar ensemble effect implicitly
within a single model, making it computationally efficient while still capturing the wis-
dom of the crowd.

The key insight that connects dropout to classical ensemble methods is this: Diversity
in learning leads to robustness in prediction. By forcing different parts of the network
to function independently, we create a system where errors tend to cancel out rather
than compound. This ensemble intuition helps explain why, counterintuitively, delib-
erately handicapping our network during training by randomly shutting off neurons
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actually leads to better generalization. It’s the neural network equivalent of the old say-
ing, “What doesn’t kill you makes you stronger.”

In the next section, we’ll dive into the nuts and bolts of how dropout is actually imple-
mented, including the subtle but important scaling adjustments needed to make the
technique work properly.

6.2.4 Dropout Mechanics

Now that we understand the “why” behind dropout, let’s roll up our sleeves and explore
the “how.” Like many brilliant ideas, dropout’s implementation is surprisingly straight-
forward, though there are some subtle but crucial details that make all the difference,
as we'll discuss in the following sections.

Two Phases: Training vs. Inference

Think of dropout as wearing two different hats—one during training and another
during testing (or inference). This dual personality is key to understanding how drop-
out works in practice. During training, dropout behaves like that one friend who's
always canceling plans at the last minute. As your network processes each batch of data,

dropout randomly selects neurons and says, “Sorry, can’t make it today!” These neu-
rons are temporarily removed from the network, their outputs are set to zero, and they

don’t contribute to the forward pass or receive updates during backpropagation.

When it’s time for the real show—the inference phase where your model makes predic-
tions on new data—dropout suddenly becomes completely reliable. All neurons show
up for work with no exceptions. This Jekyll and Hyde behavior serves a purpose. During
training, the random dropout forces the network to build redundancy and resilience.
During inference, we want our model to use all of its resources to make the best possible
predictions.

The Mathematics of Scaling: Balancing the Books

There’s a mathematical wrinkle in this that we need to iron out though. If we're turning
off, say, 50% of our neurons during training but keeping them all on during inference,
won't this create a mismatch in the scale of activations? This is a crucial detail that the
original dropout paper addresses. Let’s walk through it with a simple example.

Consider the case where you have a layer with 4 neurons, each outputting the value 2.
The total output sum is 8. Now, if we apply dropout with a rate of 0.5, we randomly dis-
able 2 of these neurons, leaving us with a sum of 4 instead of 8. That’s a significant reduc-
tion!

To compensate for this reduction during training, we scale up the remaining activa-
tions by dividing by (I - dropoutRate). In our example, we’d multiply the output of each
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remaining neuron by 1/(1-0.5) = 2. So, our 2 remaining neurons now output 4 each, giv-
ing us a total of 8 again—matching the expected magnitude of the full network.

Inverted Dropout: The Modern Approach

In early implementations, the scaling correction was applied during inference—all acti-
vations were multiplied by (I — dropoutRate). However, this approach has a disadvan-
tage: You need to apply different operations depending on whether you're in training
or inference mode.

Modern implementations use what'’s called inverted dropout, which flips this approach.
With inverted dropout, the following occurs:

® During training, we scale up the remaining activations immediately.

® During inference, no scaling is needed at all.

This shift simplifies deployment by ensuring the inference-time computation is exactly
what you’d expect without dropout. In code, inverted dropout looks like that given in
Listing 6.2.

def inverted dropout(x, dropout rate):

if training:
# Generate binary dropout mask
mask = np.random.binomial(1, 1-dropout rate, size=x.shape)
# Apply mask and scale
return (x * mask) / (1 - dropout rate)

else:
# During inference, no changes
return x

Listing 6.2 Inverted Dropout in Python

6.2.5 Finding the Sweet Spot: Dropout Rates in Practice

Not all layers are created equal when it comes to dropout. Through years of experimen-
tation, the deep learning community has developed some rules of thumb for dropout
rates:
® Input layers
Light dropout (0.1-0.2) or none at all.
®m Hidden layers
Moderate dropout (0.3-0.5).
m Very deep networks
Increasing dropout for deeper layers.
® Convolutional layers
Lower dropout rates than fully connected layers.

247



6 Regularization Techniques

® Recurrent layers
Apply dropout carefully, often with specialized techniques.

® Transformers
Typically use dropout rates around O.1.

We'll get to the convolution and transformer layers in Chapter 7 and Chapter 9, respec-
tively. The intuition here is that earlier layers learn more general features that are less
prone to overfitting, while deeper layers learn more specialized features that benefit
more from regularization.

It's worth noting that dropout isn’t a one-size-fits-all solution. Some architectures (par-
ticularly very deep ones or those with skip connections) may benefit from different
dropout strategies or alternative regularization techniques. Like any good recipe, the
key is experimentation and adaptation to your specific ingredients.

In the next section, we’ll put theory into practice by visualizing exactly what happens
to your network’s internal representations when dropout is applied. Seeing is believing,
and these visualizations will give you a concrete understanding of how dropout
reshapes your model’s learning process.

6.2.6 Implementing Dropout in Pure Python

Let’s roll up our sleeves and build dropout from the ground up. There’s something mag-
ical about implementing an algorithm yourself—it transforms an abstract concept into
something tangible that you can poke, prod, and truly understand. Like learning to bake
bread from scratch instead of buying it at the store, coding dropout yourself gives you
insights you'd never get from just importing a library. So, let’s create a simple Dropout
layer in pure Python using Listing 6.3. The complete code for this section can be seen in
the book resources page on https://recluze.net/keras-book in the notebook 06-02-drop-
out-scratch and on the book’s official web page.

import numpy as np

class Dropout:
def init (self, dropout rate=0.5):
self.dropout rate = dropout rate
self.mask = None
self.training = True

def forward(self, inputs):

if not self.training:
return inputs
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# Create a binary mask: 1 for keep, 0 for drop
self.mask = np.random.binomial(l, 1 - \
self.dropout rate, size=inputs.shape)

# Apply the mask and scale by the keep probability
# This is inverted dropout
outputs = (inputs * self.mask) / (1 - self.dropout rate)

return outputs

def backward(self, grad outputs):
# Apply the same mask to the gradient
return (grad outputs * self.mask) / (1 - self.dropout rate)

def set mode(self, training):
self.training = training

Listing 6.3 Dropout Layer in Pure Python

Let’s take a moment to digest what’s happening here. Our Dropout class is like a gate-
keeper that neurons must pass through. During training, this gatekeeper randomly
stops some neurons from passing (setting them to O) and gives a boost to the ones that
make it through (scaling them up). During inference, the gatekeeper steps aside and lets
everyone through without any interference.

To really understand what’s happening, let’s create a toy example and see dropout in
action through Listing 6.4. Consider having a small layer with just 10 neurons, and we're
applying a dropout rate of 0.5, meaning roughly half the neurons will be deactivated.

# Let's create a toy example
np.random.seed(42) # For reproducibility

# Create an input with 10 neurons, each with activation 1.0
inputs = np.ones(10)
print("Original inputs:", inputs)

# Apply dropout during training

dropout = Dropout(dropout rate=0.5)
dropout.set mode(training=True)

outputs _training = dropout.forward(inputs)
print("Mask:", dropout.mask)

print("Training outputs:", outputs training)
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# Now, let's see what happens during inference

dropout.set mode(training=False)

outputs_inference = dropout.forward(inputs)
print("Inference outputs:", outputs inference)

# Outputs ---------

Original inputs: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Mask: [1010110110]

Training outputs: [2. 0. 2. 0. 2. 2. 0. 2. 2. 0.]
Inference outputs: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

Listing 6.4 Using the Custom Dropout Layer

Notice how during training, some outputs become O (where the mask is 0), while others
are scaled up to 2.0 (because our dropout_rateis 0.5, we divide by 0.5, which doubles the
value). But during inference, all outputs remain at their original values of 1.0. This is
inverted dropout in action—scale during training, and do nothing during inference.

Keras uses something very similar to this layer in its implementation. So, you can use
Keras’s implementation but be aware of some common pitfalls that you might encoun-
ter when using it, as we’ll discuss next.

6.2.7 Common Pitfalls and Debugging Tips

When implementing dropout, there are a few common pitfalls to watch out for:

Forgetting to switch modes

The most common mistake is forgetting to set training=False during inference. This
would apply random dropout to your production predictions! Always double-check
your mode transitions.

Incorrect scaling

If you scale during inference instead of training (noninverted dropout), you might
accidentally apply the scaling factor twice. This manifests as predictions that are con-
sistently too small by a factor of (I — dropoutRate).

Too much dropout

Applying too high a dropout rate, especially in smaller networks, can prevent the
model from learning anything useful. If your model is underfitting, try reducing the
dropout rate.

Memory leaks

In our simple implementation, we store the dropout mask for backpropagation. In a
production system with many layers, these masks can consume significant memory.
Consider clearing them after backpropagation if you're rolling out your own Dropout
code.
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® Uneven distribution
Random dropout should follow a binomial distribution. If you implement it with a
simple threshold on uniform random values, check that you're not introducing sub-
tle biases.

To debug dropout issues, try these approaches:

® Temporarily set the dropout rate to O and see if your model converges. If it does,
gradually reintroduce dropout.

® Print the proportion of Os in your dropout masks to verify it matches your intended
dropout rate.

® Look at activations before and after dropout to ensure the scaling is working cor-
rectly.

® Check gradients flowing through Dropout layers during backpropagation to confirm
they’re properly masked and scaled.

Now that you've built dropout from scratch, you'll have a much deeper appreciation for
what’s happening under the hood when you use high-level libraries such as Keras or
TensorFlow. Speaking of which, in the next section, we’ll see how to implement dropout
in Keras with just a few lines of code, using all the insights we’ve gained so far.

6.3 Other Regularization Methods: L1and L2 Regularization

So far, we've explored dropout as a powerful technique to combat overfitting. Think of
dropout as randomly silencing neurons during training, forcing the network to build
redundancy and more robust feature detection. But dropout isn’t the only tool in our
regularization toolKkit.

In this section, we’ll turn our attention to two other important regularization tech-
niques: L1 and L2 regularization. These approaches tackle overfitting from a different
angle—instead of randomly shutting down neurons, they put constraints on the mag-
nitude of the weights themselves. At their core, both L1 and L2 regularization add an
extra term to our loss function that penalizes large weights. The mathematical
approach is straightforward. If our original loss function is denoted as L jgjnq;, OUr reg-
ularized loss becomes

Lregularized = Loriginal + A X penalty

where ) controls how much we care about the penalty compared to our original objec-
tive. A larger \lambda means we're more concerned about keeping weights small than
minimizing the original loss.
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6.3.1 L1Regularization (Lasso)

Llregularization, also known as Least Absolute Shrinkage and Selection Operator (Lasso),
adds a penalty equal to the absolute value of the weights. Mathematically, we add this
term to our loss function:

n
L= Loriginal + )\leil

i=1
This simple modification creates some interesting and highly useful effects on how our
model learns. The most notable characteristic of L1 regularization is its tendency to
push weights exactly to O, effectively removing certain features from consideration.
While L2 regularization reduced the weights of less important features, L1 regulariza-
tion is like a harsh judge who says, “If that feature isn’t absolutely necessary, don’t use
itatall”

Consider a situation where you're trying to predict house prices, and you have dozens
of potential factors—number of bedrooms, location, square footage, age of the house,
and even more specific details like the color of the front door or the type of doorknobs.
L1 regularization helps you identify which features actually matter by setting the
weights for irrelevant features (perhaps doorknob type) to exactly O, while maintaining
nonzero weights for important features such as location and square footage. This fea-
ture selection property makes L1 particularly valuable when you suspect many of your
inputs might be irrelevant or redundant. It leads to sparse models—models that only
use a subset of available features—which are often easier to interpret and can be more
efficient to deploy.

On the other hand, L2 regularization also has a nice mathematical property: It works
particularly well when you have correlated features. For example, if both “square foot-
age of living space” and “number of rooms” help predict house prices (and they’re obvi-
ously related), L2 will distribute the importance between them rather than arbitrarily
picking one over the other.

6.3.2 Elastic Net: Combining L1and L2

What if we want the best of both worlds—the feature selection properties of L1 and the
stability benefits of L2? Enter Elastic Net, which simply combines both penalties:

n n
LEiastic = Loriginal + 2 Z lwil + 2, Z Wi2
i=1 i=1
Elastic Net gives us fine-grained control over regularization by letting us adjust the rel-
ative importance of L1 versus L2 penalties. It’s like having two different teachers in the
classroom—one focused on removing distractions entirely and another on making
sure everyone participates without anyone being too dominant.
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This hybrid approach shines in scenarios where you have many correlated features but
suspect only some are truly relevant. For instance, in genomic studies where thousands
of genes might be measured but only a small subset actually influence the trait being
studied, Elastic Net can identify groups of related important genes rather than arbi-
trarily selecting one representative from each correlated group (as L1 might do) or
spreading importance too thinly across all of them (as L2 might do).

6.3.3 When Not to Use Regularization

Now that we've explored the powerful regularization techniques in our arsenal, let’s
talk about when to put these tools back on the shelf. Regularization isn’t always the
answer, and knowing when to avoid it is just as important as knowing how to apply it.
The first and most obvious scenario is when you're already facing underfitting. Adding
regularization to a model that’s struggling to capture the underlying patterns in your
datais like giving low calorie diet advice to someone who’s already underweight. If your
training loss is high and your model can’t even fit the training data well, adding regu-
larization will only make the problem worse.

Very small datasets present another case where regularization might do more harm
than good. When data is scarce, your model needs to squeeze every bit of information
from the limited examples available. Regularization, by design, restricts the model’s
capacity to fit the data perfectly. With very small datasets, the risk of overfitting is nat-
urally reduced because there’s simply not enough data to memorize. In these cases, you
might find better performance by letting your model use its full capacity without regu-
larization constraints.

There are also situations where interpretability is your primary concern. L1 regulariza-
tion can be helpful here because it creates sparse models, but sometimes you need to
retain all features to understand their relationships properly. For instance, in medical
research, removing certain variables through aggressive regularization might elimi-
nate factors that doctors need to see, even if they only have a small effect on the predic-
tion. It’s like a detective needing to consider all the evidence, not just the most compel-
ling pieces.

Interpretability is a very active area in modern deep learning research. Modern models
work so well that they are being used in almost all domains you can think of. The issue
though is that researchers and engineers aren’t really sure why and how the results are
so accurate. Interpretable machine learning is an active area of research that aims to cre-
ate tools and methods for figuring out why the models are working and what different
learned weights mean, as well as to improve the models in the process.
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Interpretable Machine Learning

| find the area of interpretability to be highly interesting. While it's beyond the scope of
this book, | highly recommend you check out the work by Chris Olah (https://
colah.github.io) as an introduction to this area.

Finally, consider your domain knowledge. If you have strong prior information that all
of your features are relevant, regularization might be unnecessarily discarding valuable
information. For example, if you've carefully crafted a set of financial indicators for
stock prediction based on years of economic theory, you probably don’t want regular-
ization to arbitrarily zero out some of these hard-won features.

6.3.4 Practical Considerations: Dropout vs. L1/L2 in Neural Networks

While understanding L1 and L2 regularization is essential for your machine learning
toolkit, it’s worth noting that dropout has become the dominant regularization tech-
nique for deep neural networks in practice. The reason lies in computational efficiency
and convenience. Both L1 and L2 require careful tuning of the regularization strength
parameter A. Finding the optimal A often involves running multiple training sessions
with different values, which becomes prohibitively expensive for large neural networks
that might take days or weeks to train once, let alone multiple times.

Dropout, by contrast, typically works well with default settings (dropping 20%-50% of
neurons), making it more of a plug-and-play solution. It also integrates naturally into
the forward and backward passes of neural network training without requiring addi-
tional hyperparameter searches.

That said, in smaller models or when you have specific goals such as feature selection,
L1 and L2 regularization remain valuable tools. Many practitioners even combine tech-
niques—using dropout between layers while also applying a small L2 penalty on the
weights. It's important to understand the strengths and limitations of each approach,
allowing you to make informed choices based on your specific needs rather than
blindly applying the same technique to every problem. Regularization is both art and
science—it requires not just mathematical understanding but also intuition developed
through practice. This intuition can be developed by repeatedly using it in actual code.
So, let’s do such an implementation in the next section.

6.4 Applying Regularization in Keras

In this section, we’ll take a look at how both L2 regularization and dropout can be
applied in Keras. Adding these powerful regularization techniques to your models is
surprisingly straightforward.
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6.4.1 Implementing L2 Regularization in Keras

In Keras, adding L2 regularization is refreshingly easy, as shown in Listing 6.5.

from tensorflow.keras.layers import Dense
from tensorflow.keras.regularizers import 12

# Adding L2 regularization to a Dense layer
x = Dense(units=128,
activation="relu',
kernel regularizer=12(0.001))(inputs)

Listing 6.5 L2 Regularization in Keras

That’s it! One parameter, and you've transformed your model. The kernel regularizer=
12(0.001) argument tells Keras to apply L2 regularization to the layer’s weights (but not
biases) with a regularization strength of 0.001. You can visit the official documentation
of Keras to take a look at other options that are available for regularization here: https://
keras.io/api/layers/reqgularizers.

6.4.2 Dropout in Keras

Finally, let’s see how we can implement dropout in Keras with just a few lines of code.
The beauty of Keras is that it handles all the complex machinery we explored earlier,
wrapping itinaclean, intuitive interface that lets us focus on designing our architecture
rather than managing implementation details.

In Keras, adding dropout to your model is remarkably straightforward. It’s akin to
installing a quality control checkpoint between assembly lines in a factory. Each check-
point randomly inspects some products and lets others pass through without scrutiny.
Take alook at how we can create a simple neural network with Dropout layers in Listing
6.6.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
import numpy as np

# Create a simple model with Dropout
model = Sequential([
# Input layer
Dense(128, activation='relu', input _shape=(784,)),
# Dropout layer with 30% rate
Dropout(0.3),
Dense(64, activation='relu'),
Dropout(0.2),
Dense(10, activation="softmax")
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D

# Compile the model

model . compile(
optimizer="adam',
loss="sparse_categorical crossentropy',
metrics=["'accuracy']

)
Listing 6.6 Dropout Usage in Keras

That’s it! With these few lines, we’ve created a network that automatically applies drop-
out during training. Notice how we place the Dropout layers directly after the Dense lay-
ers we want to regularize. The parameter we pass to Dropout(0.3) indicates the fraction
of neurons that will be randomly deactivated during each training pass—in this case,
30% of the neurons in the first hidden layer. When we train this model, Keras handles
all the complexity behind the scenes. During each training batch, it randomly selects
different neurons to deactivate, forcing the network to learn redundant representa-
tions. But here’s the really clever part—when it comes time to make predictions, Keras
automatically switches to using all neurons with appropriately scaled weights. You
don’t need to write any additional code to handle this transition between training and
inference behaviors.

There are a few key options for the Dropout layer that are worth knowing:

® rate
This is the fraction of units to drop, typically between 0.2 and 0.5. Higher values mean
more aggressive regularization but might slow down learning.

® seed
If you want reproducible results, you can set a random seed to ensure the same neu-
rons are dropped in each run.

® noise shape
This allows you to specify the shape of the binary dropout mask, giving you finer con-
trol over which dimensions get dropped.

For most applications, you'll only need to adjust the dropout rate. Finding the right rate
often requires experimentation. Too little dropout, and your model might still overfit.
Too much, and it might struggle to learn patterns at all. One common pattern is to use
higher dropout rates for larger layers (those with more neurons) and lower rates for
smaller layers. You can also experiment with gradually increasing dropout rates as you
go deeper into the network.

Let’s see a complete example of training our model with dropout in Listing 6.7.
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# Generate some dummy data

# 1000 examples, 784 features

x_train = np.random.random((1000, 784))

# 10 classes

y_train = np.random.randint(10, size=1000)

# Train the model
history = model.fit(
x_train, y train,
epochs=10,
batch size=32,
validation split=0.2

)
Listing 6.7 Using Dropout with Dummy Data

When you run this code, you'll notice something interesting in the training metrics. Ini-
tially, the training accuracy might be lower than you'd expect for such a simple dataset.
That’s dropout at work! During training, the network is deliberately handicapped by
having some neurons turned off. Sort of like if you ask a football team to play with only
7 players instead of 11, performance will suffer.

But when evaluation time comes on the validation set, Keras automatically switches to
using all neurons with scaled weights. You'll often see a significant gap between train-
ing and validation performance, with validation surprisingly outperforming training.
This isn’t a bug—it’s a sign that dropout is working as intended. Your model is learning
to be robust.

Remember, the whole point of regularization isn’t to achieve the highest possible train-
ing accuracy. It’s to build a model that generalizes well to new, unseen data. Dropout
helps us achieve that by preventing our network from becoming too reliant on any spe-
cific neuron.

In the next section, we’ll explore other forms of regularization available in Keras and
discuss strategies for combining them effectively.

6.4.3 Beyond Basic Dropout: Specialized Variants

While standard dropout has proven remarkably effective across many architectures, it
sometimes introduces unexpected complications in specific network designs. As we
continue to refine our understanding of neural networks, researchers have developed
specialized dropout variants to address these unique challenges, as we'll discuss in the
following sections.
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The Challenge with Self-Normalizing Networks

Try to picture a beautiful fountain with multiple levels, where each basin perfectly con-
trols the water flow to the next. The water pressure at each level stays consistent, creat-
ing a harmonious system. Now, what happens if you randomly block some of the water
spouts? The carefully balanced pressure throughout your fountain system becomes
disrupted.

This is similar to what happens in self-normalizing neural networks that use Scaled Expo-
nential Linear Unit (SELU) activation functions. These networks are designed to main-
tain a specific statistical distribution of activations across layers—essentially keeping
the “water pressure” steady throughout the network. Standard dropout disrupts this
carefully balanced system by randomly zeroing activations.

AlphaDropout: Preserving the Statistical Character

AlphaDropout offers an elegant solution to this problem. Instead of simply setting val-
ues to O, which shifts the mean and variance of the layer, AlphaDropout replaces
dropped values with noise that maintains the layer’s statistical properties. Let’s take a
look at a model using AlphaDropout in Listing 6.8.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, AlphaDropout

# Create a self-normalizing neural network with AlphaDropout
model = Sequential([
Dense(128, activation='selu', input _shape=(784,)),
AlphaDropout(0.2), # Maintains mean and variance of SELU activations
Dense(64, activation="selu'),
AlphaDropout(0.3),
Dense(10, activation='softmax"')

1))
Listing 6.8 AlphaDropout in Keras

What makes AlphaDropout special is its mathematical design. When using SELU activa-
tions, our networks develop a particular statistical property—activations tend to have
a mean of O and variance of 1 (what statisticians call the standard normal distribution).
It’s specifically designed for networks using SELU activation functions. If you're build-
ing a self-normalizing neural network with SELU activations, AlphaDropout should be
your regularization method of choice. Its parameter options are virtually identical to
standard dropout as shown in Listing 6.9.
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AlphaDropout (
rate=0.2, # Fraction of units to drop
seed=None # Optional random seed for reproducibility

)
Listing 6.9 AlphaDropout Settings

Like standard dropout, AlphaDropout operates only during training and is automati-
cally disabled during evaluation and prediction phases.

Other Specialized Dropout Variant

The Keras ecosystem offers several other specialized dropout variants worth knowing
about:

® SpatialDropout 1D/2D/3D
These variants drop entire feature maps rather than individual neurons, particularly
useful in convolutional networks where adjacent pixels have high correlation. We'll
return to these in the next chapter after we've covered another type of layer.

B GaussianDropout
Instead of binary dropout, this applies multiplicative Gaussian noise to the inputs,
achieving a similar regularizing effect with different statistical properties.

® GaussianNoise
This adds zero-centered Gaussian noise to the inputs, serving as a form of data aug-
mentation rather than dropout.

Each variant addresses specific challenges in neural network architectures, giving you
a powerful toolkit for regularization. As we explore more complex architectures in later
chapters, we’ll see how these specialized techniques can be vital for optimizing
advanced models.

The power of Keras is that it makes these sophisticated techniques accessible through
simple, consistent interfaces. Just like how modern cameras abstract away the complex
physics of photography, Keras allows you to focus on the architecture of your network
while it handles the mathematical intricacies under the hood. One issue remains
though: How do we figure out the dropout rate when we’re actually applying dropout?

6.4.4 Finding the Perfect Dropout Rate: A Systematic Approach

Sofar, we've talked about dropout rates as if they were values you should just intuitively
know. “Use 0.2 here, maybe 0.5 there”—but where do these numbers come from? The
truth is, finding the ideal dropout rate is a bit like finding the perfect amount of spice in
a recipe. Too little, and your model might still overfit. Too much, and your network
might struggle to learn anything useful. In practice, the optimal dropout rate depends
on many factors:
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® The complexity of your dataset
® The depth and width of your network
® The amount of training data available

m The specific patterns your network needs to learn

Rather than relying on rules of thumb or intuition, we can let systematic experimenta-
tion find the answer for us. This is where Keras Tuner comes to our rescue, allowing us
to try multiple dropout rates and see which one yields the best performance.

Let’s see how we can systematically search for the best dropout rate using Keras Tuner.
You might have to install the Tuner using the following command:

pip install keras-tuner

If you're in Google Colab or in a Jupyter Notebook, you can issue the magic command:

Ipip install keras-tuner

The code begins by loading the MNIST dataset, as shown in Listing 6.10, which contains
images of handwritten digits. We've done this a few times already, so we’ll go through
it quickly. The complete code for this section can be seen in the book resources page on
https://recluze.net/keras-book in the notebook 06-03-keras-tuner.

import keras

import keras tuner as kt

from keras import layers

from keras.datasets import mnist

from sklearn.model selection import train test split

(X, y), (_, ) = mnist.load data()

X = X.reshape(X.shape[0], -1) / 255.0

X train, X test, y train, y test =\
train test split(X, y, test size=0.2)

Listing 6.10 Loading and Shaping the Data

This section loads the MNIST dataset, normalizes pixel values to [0,1] by dividing by 255,
and splits data into 80% training and 20% testing sets with a fixed random seed for
reproducibility. Then, we get to the heart of hyperparameter tuning, which is defining
which aspects of the model should be adjustable. The build model function shown in
Listing 6.11 creates a neural network with tunable hyperparameters.

# A model-building function that takes a hyperparameter object
def build model(hp):
model = keras.Sequential()

260



6 Regularization Techniques

# Add our first layer with tunable units
model.add(layers.Dense(
units=hp.Int('units 1', min value=32, \
max_value=128, step=32),
activation='relu',
input shape=(784,)

)

# Add our first Dropout layer with a tunable rate
model.add(layers.Dropout(
rate=hp.Float('dropout 1', min value=0.2, \
max_value=0.4, step=0.1)

)

# Output layer
model.add(layers.Dense(10, activation='softmax'))

# Compile the model

model. compile(
optimizer=keras.optimizers.Adam(),
loss="sparse categorical crossentropy',
metrics=["'accuracy"']

return model

Listing 6.11 Building the Model for Parameter Tuning

This function defines a neural network with the following:

® A tunable first Dense layer where the number of neurons (units) can vary from 32 to
128 in steps of 32

® A tunable Dropout layer where the dropout rate can range from 0.2 to 0.4 in steps of
0.1

m A fixed output layer with 10 neurons (one for each digit) and softmax activation

The hp parameter is a hyperparameter object provided by Keras Tuner that allows us to
define searchable parameters. For each parameter, we specify the following:

® Aunique name (e.g., units 1 ordropout 1)

m The range of values to search (min_value tomax value)

® The step size between values

The model uses Rectified Linear Unit (ReLU) activation for the hidden layer and softmax
for the output layer, which is standard for classification tasks. It's compiled with the
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Adam optimizer and sparse categorical cross-entropy loss function that we've already
seen previously.

Once we've defined our model structure and tunable parameters, we set up and run the
hyperparameter tuning process, as shown in Listing 6.12.

# Create a tuner with our model builder
tuner = kt.Hyperband(

build model,

objective="val accuracy',

max_epochs=10,

factor=3,

directory="dropout tuning',

project name='mnist dropout’

# Start the search

tuner.search(X train, y train,
epochs=30,
validation split=0.2)

Listing 6.12 Keras Tuner Execution

This sets up a hyperband tuner, which will find the optimum values for us, with these
specifications:

®m Uses our build model function as a template

® Aims to maximize validation accuracy (val accuracy)

B Trains models for a maximum of 10 epochs in its final round

® Prunes underperforming models at alevel of aggression determined by the factor of 3
The results of optimum hyperparameter search are stored in a directory called dropout

tuning under the project namemnist_dropout. The search method initiates the hyperpa-
rameter search by following these steps:

® It trains on our training data (X_train,y train).
® Each model can train for up to 30 epochs.

m Ofthe training data, 20% is set aside for validation during training.

After the search completes, we retrieve and use the best hyperparameters through the
code shown in Listing 6.13.
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# Get the best model and hyperparameters
best _hps = tuner.get best hyperparameters(num trials=1)[0]

print(f"Best dropout rate for first layer: {best hps.get('dropout 1')}")
print(f"Best units for first layer: {best hps.get('units 1')}")

Listing 6.13 Getting Keras Tuner Results

The code extracts the best hyperparameters based on validation accuracy. The get
best hyperparameters method returns an ordered list of hyperparameter sets, with the
best-performing configuration first. By specifying num trials=1, we retrieve only the
single best result. The code then prints both the optimal dropout rate and the optimal
number of units (neurons) found for the first layer. The output of the tuner when I ran
it is shown in Listing 6.14. For this run, the best dropout rate it found was 0.2 and the
number of units was 128. These values represent the hyperparameter combination that
produced the highest validation accuracy during the tuning process.

Trial 3 Complete [00h 0Om 10s]
val accuracy: 0.9292708039283752

Best val accuracy So Far: 0.9512500166893005
Total elapsed time: 00h 0Om 35s

Search: Running Trial #4

Value |Best Value So Far |Hyperparameter
128 1128 lunits 1
0.3 |0.2 |dropout 1

Best dropout rate for first layer: 0.2
Best units for first layer: 128

Listing 6.14 Results of the Keras Tuner

We can use these optimal values to construct our final model, knowing it has been spe-
cifically tuned for this dataset with the ideal dropout rate and neuron count in the first
layer. As you can see, we can optimize any parameter value, including the number of
neurons in the layer. This systematic approach to hyperparameter optimization gives us
confidence that we're using dropout effectively, neither under-regularizing nor over-
regularizing our model.
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Hyperparameter Tuning in Production
Once the best values of hyperparameters are found, the model is updated to just use the

parameter values instead of the hp parameter. For instance, the preceding model will be
replaced with the following:

model.add(layers.Dense(128, activation="relu', \
input_shape=(784, )))
model.add(layers.Dropout(0.2))

6.5 Summary

This chapter examined regularization techniques to solve overfitting in machine learn-
ing models. It began by explaining overfitting and underfitting through examples of
polynomial features and model complexity, introducing regularization terms as a solu-
tion. The chapter then explored dropout, presenting its concept, mechanics, and imple-
mentation details to prevent neurons from co-adapting. It covered L1and L2 regulariza-
tion methods, explaining their mathematical foundations and appropriate use cases.
The final section demonstrated practical implementations of these techniques in Keras,
including code examples for L2 regularization, Dropout layers, and specialized dropout
variants. The chapter concluded with systematic approaches for finding optimal drop-
out rates for different model architectures. We’re now in the position to move on to
more advanced models and techniques, starting with a powerful type of model in the
next chapter that’s especially good at working with images. All the fundamentals we've
built until now will be reused time and again to support us.
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